
Université de Montréal

Reinforcement learning applied to the real world:
uncertainty, sample efficiency, and multi-agent

coordination

par

Vincent Mai

Département d’informatique et de recherche opérationnelle
Faculté des arts et des sciences

Thèse présentée en vue de l’obtention du grade de
Philosophiæ Doctor (Ph.D.)

en Informatique

30 décembre 2022

© Vincent Mai, 2022





Université de Montréal
Faculté des arts et des sciences

Cette thèse intitulée

Reinforcement learning applied to the real world:
uncertainty, sample efficiency, and multi-agent coordination

présentée par

Vincent Mai

a été évaluée par un jury composé des personnes suivantes :

Glen Berseth
(président-rapporteur)

Liam Paull
(directeur de recherche)

Marc Bellemare
(membre du jury)

Emmanuel Rachelson
(examinateur externe)

(représentant du doyen de la FESP)





Résumé

L’immense potentiel des approches d’apprentissage par renforcement profond (ARP) pour
la conception d’agents autonomes a été démontré à plusieurs reprises au cours de la dernière
décennie. Son application à des agents physiques, tels que des robots ou des réseaux élec-
triques automatisés, est cependant confrontée à plusieurs défis. Parmi eux, l’inefficacité de
leur échantillonnage, combinée au coût et au risque d’acquérir de l’expérience dans le monde
réel, peut décourager tout projet d’entraînement d’agents incarnés. Dans cette thèse, je me
concentre sur l’application de l’ARP sur des agents physiques. Je propose d’abord un cadre
probabiliste pour améliorer l’efficacité de l’échantillonnage dans l’ARP. Dans un premier
article, je présente la pondération BIV (batch inverse-variance), une fonction de perte tenant
compte de la variance du bruit des étiquettes dans la régression bruitée hétéroscédastique.
La pondération BIV est un élément clé du deuxième article, où elle est combinée avec des
méthodes de pointe de prédiction de l’incertitude pour les réseaux neuronaux profonds
dans un pipeline bayésien pour les algorithmes d’ARP avec différences temporelles. Cette
approche, nommée apprentissage par renforcement à variance inverse (IV-RL), conduit à un
entraînement nettement plus rapide ainsi qu’à de meilleures performances dans les tâches de
contrôle. Dans le troisième article, l’apprentissage par renforcement multi-agent (MARL)
est appliqué au problème de la réponse rapide à la demande, une approche prometteuse
pour gérer l’introduction de sources d’énergie renouvelables intermittentes dans les réseaux
électriques. En contrôlant la coordination de plusieurs climatiseurs, les agents MARL ob-
tiennent des performances nettement supérieures à celles des approches basées sur des règles.
Ces résultats soulignent le rôle potentiel que les agents physiques entraînés par MARL
pourraient jouer dans la transition énergétique et la lutte contre le réchauffement climatique.

Mots-clés : Regression hétéroscéedastique, apprentissage par renforcement profond,
estimation d’incertitude, apprentissage par renforcement multi-agents, réseau électrique, ré-
gulation de fréquence.

5





Abstract

The immense potential of deep reinforcement learning (DRL) approaches to build au-
tonomous agents has been proven repeatedly in the last decade. Its application to embodied
agents, such as robots or automated power systems, is however facing several challenges.
Among them, their sample inefficiency, combined to the cost and the risk of gathering
experience in the real world, can deter any idea of training embodied agents. In this thesis,
I focus on the application of DRL on embodied agents. I first propose a probabilistic
framework to improve sample efficiency in DRL. In the first article, I present batch
inverse-variance (BIV) weighting, a loss function accounting for label noise variance in
heteroscedastic noisy regression. BIV is a key element of the second article, where it is
combined with state-of-the-art uncertainty prediction methods for deep neural networks
in a Bayesian pipeline for temporal differences DRL algorithms. This approach, named
inverse-variance reinforcement learning (IV-RL), leads to significantly faster training as
well as better performance in control tasks. In the third article, multi-agent reinforcement
learning (MARL) is applied to the problem of fast-timescale demand response, a promising
approach to the manage the introduction of intermittent renewable energy sources in
power-grids. As MARL agents control the coordination of multiple air conditioners, they
achieve significantly better performance than rule-based approaches. These results underline
to the potential role that DRL trained embodied agents could take in the energetic transition
and the fight against global warming.

Keywords: Heteroscedastic regression, deep reinforcement learning, uncertainty esti-
mation, multi-agent reinforcement learning, power grid, demand response.

7





Contents

Résumé . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

List of tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

List of figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

List of acronyms and abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Chapter 1. Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

1.1. Uncertainty in regression with deep neural networks . . . . . . . . . . . . . . . . . . . . . . . . . . 31
1.1.1. Objective of regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
1.1.2. Neural networks optimization for regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

1.1.2.1. Defining a neural network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
1.1.2.2. Training a neural network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

1.1.3. Predictive uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
1.1.4. Sources of predictive uncertainty in supervised regression . . . . . . . . . . . . . . . . . 34

1.1.4.1. Aleatoric uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
1.1.4.2. Epistemic uncertainty. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
1.1.4.3. Noisy labels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

1.1.5. Measuring uncertainty in deep supervised regression. . . . . . . . . . . . . . . . . . . . . . . 36
1.1.5.1. Estimating aleatoric uncertainty with neural networks. . . . . . . . . . . . . . . . . 36
1.1.5.2. Epistemic uncertainty. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
1.1.5.3. Estimating predictive uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

1.2. Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
1.2.1. Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
1.2.2. Online reinforcement learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

9



1.2.2.1. Generalized Policy iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
1.2.2.2. Policy evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
1.2.2.3. Policy improvement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

1.2.3. Deep Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
1.2.3.1. Deep Q-Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
1.2.3.2. Policy-gradient methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
1.2.3.3. Soft-actor critic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

1.2.4. Bayesian Deep Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
1.2.4.1. Distributional deep Q-networks (DQN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
1.2.4.2. Epistemic uncertainty estimation for exploration . . . . . . . . . . . . . . . . . . . . . . 48
1.2.4.3. Out of distribution detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

1.3. Multi-agent reinforcement learning for decentralized collaboration . . . . . . . . . . . . 49
1.3.1. Problem definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

1.3.1.1. Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
1.3.1.2. Environment characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

1.3.2. Challenges particular to MARL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
1.3.2.1. Non-stationarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
1.3.2.2. Partial observation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
1.3.2.3. Credit assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
1.3.2.4. Coordination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
1.3.2.5. Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
1.3.2.6. Scaling in number of agents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

1.3.3. multi-agent reinforcement learning (MARL) approaches . . . . . . . . . . . . . . . . . . . 53
1.3.3.1. Parameter sharing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
1.3.3.2. Shared experience. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
1.3.3.3. Centralized critics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
1.3.3.4. Mean field reinforcement learning (RL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
1.3.3.5. Reduced communications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
1.3.3.6. Common MARL algorithms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Chapter 2. Prologue to Article 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Chapter 3. Article 1: Batch Inverse-Variance Weighting: Deep
Heteroscedastic Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Résumé. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

10



Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.2. Heteroscedastic noisy labels in regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.3. Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.4. Batch Inverse-Variance Weighting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.4.1. Inverse variance for linear models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.4.2. Batch Inverse-Variance weighting for heteroscedastic noisy labels . . . . . . . . . . 63
3.4.3. Cutoff: filtering heteroscedastic noisy labels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.5. Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.5.1. Noise generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.5.2. Evaluating the performance of the model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.6. Experimental Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.6.1. For L2 loss, mean variance is all that matters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.6.2. High and low variance noise regimes: BIV acts as a filter . . . . . . . . . . . . . . . . . . 66
3.6.3. Continuous, decreasing noise variance distribution: the advantage of BIV. . 67
3.6.4. Ablation study: comparison to IV. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.6.5. Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.7. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Chapter 4. Prologue to Article 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Chapter 5. Article 2: Sample Efficient Deep Reinforcement Learning via
Uncertainty Estimation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Résumé. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.2. Background and preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.2.1. Batch Inverse-Variance Weighting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.2.2. Estimating the uncertainty of a neural network prediction . . . . . . . . . . . . . . . . . 79

5.2.2.1. Sampled ensembles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.2.2.2. Variance networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.2.2.3. Variance ensembles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

11



5.2.3. Uncertainty and exploration in DRL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.3. Inverse-Variance Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.3.1. Target uncertainty in Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.3.1.1. The target as a random variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.3.1.2. Variance of the target . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.3.1.3. Loss function for IV-RL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.3.2. Q-value uncertainty and actor-critic structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.3.3. Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.4. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.4.1. IV-DQN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.4.2. IV-SAC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.5. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Chapter 6. Prologue to Article 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Chapter 7. Article 3: Multi-Agent Reinforcement Learning for Fast-
Timescale Demand Response of Residential Loads . . . . . . . . . . 91

Résumé. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

7.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

7.2. Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

7.3. Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
7.3.1. Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

7.3.1.1. House thermal model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
7.3.1.2. Air conditioners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
7.3.1.3. Regulation signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
7.3.1.4. Communication between agents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

7.3.2. Decentralized Partially Observable Markov Decision Process. . . . . . . . . . . . . . . 97
7.3.2.1. State, transition probabilities and actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
7.3.2.2. Observations and communications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
7.3.2.3. Reward . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

7.4. Classical and learning-based algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
7.4.1. Classical baselines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

12



7.4.1.1. Bang-bang controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
7.4.1.2. Greedy myopic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
7.4.1.3. Model predictive control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

7.4.2. Learning-based methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
7.4.2.1. Centralized Training, Decentralized Execution. . . . . . . . . . . . . . . . . . . . . . . . . 99
7.4.2.2. MA-DQN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
7.4.2.3. MA-PPO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
7.4.2.4. Communications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
7.4.2.5. Agent training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

7.5. Results and analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
7.5.1. Metrics of performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
7.5.2. Performance of agents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
7.5.3. Scalability with number of agents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
7.5.4. PPO agents’ dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
7.5.5. Communications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
7.5.6. Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

7.5.6.1. Faulty communications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
7.5.6.2. Heterogeneous houses and ACs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
7.5.6.3. Other environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

7.5.7. Processing time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

7.6. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Appendix A. Batch Inverse-Variance weighting: Supplementary material . 125

A.1. Data sets and Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
A.1.1. UTKFace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

A.1.1.1. Dataset description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
A.1.1.2. Neural network and training hyper-parameters . . . . . . . . . . . . . . . . . . . . . . . 125

A.1.2. Bike Sharing Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
A.1.2.1. Dataset description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
A.1.2.2. Neural network and training hyper-parameters . . . . . . . . . . . . . . . . . . . . . . . 127

A.2. Additional experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

13



A.2.1. The influence of ϵ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
A.2.2. BIV on different distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

A.2.2.1. Uniform distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
A.2.3. BIV on Gamma distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

A.2.3.1. α ≤ 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
A.2.3.2. α > 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

A.2.4. Robustness of BIV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
A.2.4.1. Size of the mini-batches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
A.2.4.2. Noisy variance estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

Appendix B. Sample efficient reinforcement learning via uncertainty
estimation: Supplementary material . . . . . . . . . . . . . . . . . . . . . . . . 133

B.1. Carbon emissions of the research project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

B.2. Appendix - Algorithms in details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
B.2.1. BootstrapDQN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
B.2.2. IV-DQN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
B.2.3. Ablations for IV-DQN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
B.2.4. IV-SAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
B.2.5. Ablations for IV-SAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

B.3. Appendix - Hyperparameter tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

B.4. Appendix - λ in LIVRL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

B.5. Appendix - Computation time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

B.6. Appendix - Variance estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
B.6.1. IV-DQN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
B.6.2. IV-SAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

B.7. Appendix - Weighting schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

B.8. Appendix - Variance networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

B.9. Appendix - IV-RL and Optimism in the Face of Uncertainty . . . . . . . . . . . . . . . . . 147

Appendix C. Multi-gent reinforcement learning for fast-timescale demand
response of residential loads: supplementary material . . . . . . . 149

C.1. Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

14



C.2. Carbon emissions of the research project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

C.3. Environment details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
C.3.1. Detailed house thermal model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

C.3.1.1. Solar gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
C.3.2. Detailed air conditioner model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
C.3.3. Regulation signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

C.3.3.1. Interpolation for the base signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
C.3.3.2. Perlin noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

C.4. Algorithm details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
C.4.1. Model Predictive Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
C.4.2. Learning-based methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

C.4.2.1. TarMAC and MA-PPO. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
C.4.2.2. Neural networks architecture and optimization. . . . . . . . . . . . . . . . . . . . . . . . 156
C.4.2.3. Hyperparameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

C.5. Nde and per-agent RMSE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

15





List of tables

1 Lowest test loss for different α on two datasets, for BIV, L2 and several cutoff
losses. The test loss with standard deviation is computed as the average over 5
runs. In every case, BIV loss led to the lowest value. The best C value differs
based on α. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

1 25th - 50th - 75th percentiles of the number of episodes necessary for the return
averaged with a 100-episode window to reach the solved score on different
environments. IV-DQN shows significant improvements in sample efficiency when
the environment is not exploration-based. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

2 Performance at 100K and 200K time steps (100 and 200 episodes) for several
robotics environments in OpenAI Gym. The results show the mean and standard
error over 25 runs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

1 Performance of the different agents, computed over 10 environment seeds. . . . . . . . 101
2 Performance under faulty communication (5 seeds) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
3 Performance under house and AC heterogeneity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
4 Robustness on environment changes (5 seeds) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5 Computation time (s) for action selection, for 100 seconds of simulation. We

report the time per-agents for a decentralized system and for the whole system
otherwise. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

1 List and set of hyperparameters that were tuned when testing the algorithm. . . . . 141
2 Average training time for 1000 steps on walker2d environment. . . . . . . . . . . . . . . . . . . 143
3 Average training time per episode on LunarLander-v2 environment . . . . . . . . . . . . . . 143

1 Notation table - Part 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
2 Notation table - Part 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
3 Default house thermal parameters θh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
4 Training hyperparameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

17





List of figures

1 Similar performance of the L2 loss on UTKF for different P (σ2) with constant
µP = 2000. No matter the distribution type or parameters, the performance is
similar. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

2 Comparison between BIV, Cutoff and L2 losses for binary uniform distributions
of variance with different ps for µP = 2000 and Vh = 0 on UTKF. . . . . . . . . . . . . . . . 67

3 Comparison between the performances of BIV, L2, and different cutoff values on
both datasets where the noise variance follows a Gamma distribution with α = 1. 67

4 Ablation study for ϵ and normalization for both datasets where P (σ2) is a Gamma
distribution with α = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5 Training loss for ablation study for ϵ and normalization for both datasets where
P (σ2) is a Gamma distribution with α = 1. Note that, because the normalization
value depends on ϵ, these curves should not be compared quantitatively but
quantitatively, by looking at their respective variability. . . . . . . . . . . . . . . . . . . . . . . . . . 69

1 Bayesian network representing the target sampling process . . . . . . . . . . . . . . . . . . . . . . 82

2 Using IV-RL shows improved performance over baseline methods in Cartpole
Noise and LunarLander, and does not impact MountainCar. . . . . . . . . . . . . . . . . . . . . 86

3 Ablation study: depending on the environment, the BIV or the var-ensemble
component is the most important factor of improvement. . . . . . . . . . . . . . . . . . . . . . . . 87

4 IV-SAC learns faster and leads to significantly better results than the baselines. . 88

5 Ablation Study: (first two figures) Impact of using different uncertainty
estimation methods (last two figures) Comparing different weighting schemes
with var-ensembles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

1 MA-PPO-HE and TarMAC-PPO outperform DQN and BBC for signal and
temperature over 2 days with Nde = 50 agents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

2 Both MA-PPO policies scale seamlessly in the number of agents: signal and
consumption on 800s for Nde = 50 and 1000. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

19



3 Training with more agents Ntr does not lead to better performance, even when
deployed on large Nde. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4 State of 20 houses controlled with two different PPO agents. The number on
the top right is the remaining lockout time. (Left) Two different agents of MA-
PPO-HE with Ncde = 19 show a “20-house” (up) and a “3-house” (down) pattern.
(Right) Two different TarMAC-PPO agents show no such pattern. . . . . . . . . . . . . . . 103

5 TarMAC-PPO’s performance does not increase after Ncde = 9 neighbours, while
MA-PPO-HE is better with Ncde = 19 neighbours, for Nde = 250 houses. . . . . . . . . 104

6 A TarMAC-PPO agent performs well as long as it communicates with Ncde = 7
neighbours or more, on Nde = 50 houses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

1 Results of running BIV with different values of ϵ on UTKF with P (σ2) as a
Gamma distribution with α = 1, µP = 2000. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

2 Results of running BIV with different values of ϵ on BikeSharing with P (σ2) as a
Gamma distribution with α = 1, µP = 20000. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

3 Impact of ϵ when training with highly noisy labels using BIV loss on UTKF
dataset. The variance was sampled through a binary uniform distribution with
p = 0.5, µP = 2000, and Vh = 0. Very high ϵ shows a loss of performance as BIV
approaches the L2 results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

4 Test loss on the UTKF dataset for L2 and BIV learning on Gamma function with
α ≥ 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5 Test loss for L2 and BIV learning on uniform with different variances V . . . . . . . . . 131

6 On BikeSharing with µP = 20000, using cutoff is not helpful in the uniform setting.
This is due to the significant loss of information induced by such a strategy. . . . . . 131

7 Test loss on the BikeSharing dataset, with α ≤ 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

8 Test loss on the UTKF dataset, with α ≤ 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

9 BIV with different batch sizes in both UTKF and BikeSharing datasets. . . . . . . . . . 132

10 Robustness of BIV to noise in the variance with different disturbance coefficients
Dv. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

1 IV-RL with λ values around the range of 1 to 10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

2 IV-RL with extreme values of λ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

3 Mean target variance predictions for discrete environments . . . . . . . . . . . . . . . . . . . . . . 144

20



4 Median target variance predictions on discrete environments . . . . . . . . . . . . . . . . . . . . 144
5 Mean target variance predictions on continuous environments . . . . . . . . . . . . . . . . . . . 144
6 Median target variance predictions on continuous environments . . . . . . . . . . . . . . . . . 145
7 Comparing BIV, UWAC and SUNRISE weights with var-ensemble . . . . . . . . . . . . . . 146
8 Single variance networks combined with BIV lead to a very slight improvement. . 147

1 Illustration of how several octaves add up to form Perlin noise. The frequency of
the octaves increases as their amplitude decreases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

2 Architecture of the TarMAC-PPO actor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

21





List of acronyms and abbreviations

RL reinforcement learning
DRL deep reinforcement learning
MARL multi-agent reinforcement learning
PPO proximal policy optimization
MA-PPO multi-agent PPO
DQN deep Q-networks
MA-DQN multi-agent DQN
SAC soft actor-critic
DDPG deep deterministic policy gradient
MA-DDPG multi-agent DDPG
SGD stochastic gradient descent
C51 Categorical 51
RPF randomized prior functions
MSE mean squared error
RMSE root mean squared error
MC dropout Monte Carlo dropout
DEUP direct epistemic uncertainty prediction
MDP Markov decision process
Dec-POMDP decentralized, partially observable MDP
TD temporal differences
UCB upper confidence bounds
DTDE distributed training, decentralized execution
CTDE centralized training, decentralized execution
ReLU rectified linear unit
BIV batch inverse-variance
IV-RL inverse-variance reinforcement learning

23





Acknowledgments

A PhD is commonly known to be a lonely endeavour. I was lucky: it was never the case for
me. This thesis was a common effort by many amazing people, whom I would like to thank.

At a time when I had small research experience, Liam Paull trusted me with an opportu-
nity and a responsibility - to be one of his first PhD students. I started slowly, but he gave
me the time and space to grow and to learn. His reliable and caring support was a solid base
upon which I could start building. His wise advice guided me through the winding path of
learning to be a researcher. When we first met, Liam told me that he saw his lab as a team,
where all worked together towards everyone’s success. I am immensely grateful to have been
part of his team. If I was to start again, I would not want any other supervisor than Liam.

The different works I present here are the fruits of collaborations with brilliant researchers.
Waleed Khamies brought enthusiasm and courage at a time I most needed it. His hard work
was instrumental, but it is his ability to cope with difficult situations which most inspired
me. Kaustubh Mani had an enormous impact on this thesis. He joined a project which
was at its embryonic state, and he was convinced enough that he agreed to work on it for a
year. His trust gave me the confidence I needed to push this project forward. Kaustubh’s
insatiable curiosity, methodical rigour, and wide knowledge supported every next step in my
thesis. Philippe Maisonneuve showed me the value of multidisciplinarity when working on
an applied project. His intelligence, perseverance, and vision ensured the success of the final
part of this thesis. The three of them will continue their path as PhD students. I have no
doubt they will be successful – I only wish that they receive the same support they gave me.

Antoine Lesage Landry provided me with the opportunity – so precious for a PhD student
– to apply my knowledge on an important challenge. I could count on his unwavering support
and domain expertise for a project on renewable energies. This experience has probably
shaped my future career. I had amazing collaborators, Tianyu Zhang, Hadi Nokoei and
Jorge Montalvo, whose competence and motivation were a constant source of energy.

I was lucky to share my time at the Robotics and Embodied AI Lab with Krishna
Murthy Jatavallabhula, who started his PhD at the same time than me, but mentored me
in the academic world, Ali Harakeh with whom I shared many certainties about uncertainty,
and Manfred Diaz and his always constructive feedback. Sai, Dhaivat, Dishank, Gunshi,

25



Mahtab, Mostafa, Simon and Miguel became dear friends. Florian, Charlie, Roger, Adriana,
Ali, Kirsty, Breandan, Rey, Anthony, Steven, Nithin, Zihan, and Adam made this lab feel
like home. A special mention goes to Glen Berseth, whose arrival brought yet another layer
of kindness, experience, and expertise to the lab.

Although it is not shown in this thesis, my PhD work was not only technical research.
I was immensely privileged to be able to explore the societal impacts of the field I was
working on. From the Montreal to UNESCO, Marc-Antoine Dilhac took me in his teams
and allowed me to work on high impact AI ethics projects. He was another mentor for me. A
special mention to Martin Gibert, the sherpa opening new paths in AI ethics, to Christophe
Abrassart, whose prospective scenarios made me think further, and to Anne Marie Savoie,
who gave me my first role in this important initiative. I also want to thank Pauline Noiseau,
whose strength never faltered, Fatima, Lucia and Camylle, who opened my eyes to completely
new, but oh-so important, perspectives, and the courageous Gabrielle. My work in AI ethics
and sustainability would not have been this exciting without my friend and partner-in-crime
Carl-Maria Mörch. Together, we explored AI ethics in dentistry, we organized a workshop
at IROS, and we took part in an international research project on sustainable robotics. I
want to thank Bram Vanderboght and Tamas Haidegger for their support, Bhavani Rao R
for her expertise and her immense kindness, and An Jacobs, AJung Moon, Dominik Boesl
and Alaa Khamis for the precious experience they offered me.

I cannot not mention the people who made Mila a welcoming place. The Mila staff, who
build everyday an extraordinary research environment: Émélie, Rose, Jeanne, Jean-François,
Linda, Olexa, Benjamin, and I forget many. The professors, always ready to give advice and
support: Simon Lacoste-Julien, Yoshua Bengio, Guillaume Dumas, Guillaume Rabusseau,
Irina Rish, to name a few with whom I had the privilege to exchange. And the students,
Victor, Tegan, David, Ezekiel, Salem, Muawiz, Michael, Nikolaus and so many more, with
whom I share precious memories and who influenced my research and vision for the future.

Finally, I want to thank my parents, who always believed in this endeavor, provided
me with everything I needed, and helped me to take a step back from time to time. My
friends, with whom I could vent the horrors and beauties of graduate research. And my wife,
Gabriela, who carried this PhD with me. She shared the burden, finding the right words
at each setback, taking upon her during the days, weeks, months before a deadline, and
enduring the nights I woke up at 3 AM with an idea I needed to note, now, now, or I would
forget. She knew all my presentations by heart, after having been the supportive public of
many practice rounds. She celebrated every little success, and took care to show me at every
step the advances I had accomplished. I want her to know that we achieved this together.

26



Introduction

To build an autonomous agent which takes decisions in an intelligent manner, there are
two paradigms. In the first, the developers must design instructions that the agent will
follow. These rules are based on the programmers’ knowledge of the task the agent must
achieve, and on algorithms developed particularly for this task. Each module of the agent
must be carefully designed and engineered. Depending on the complexity of the task, it
can be straightforward or extremely difficult. This limits this classical approach: it can
require a prohibitive amount of work for engineers to design an algorithm which will act
correctly in every possible situation. For some tasks, a satisfying algorithm is even yet to be
found. Engineered algorithms also scale poorly in quantity: it would be very expensive to
build many different autonomous agents. Finally, these algorithms must be adapted if the
environment changes, requiring further engineering work.

The other paradigm is machine learning. In machine learning, the agents learn the rules
by themselves, based on data and experience. The branch of machine learning adapted to
sequential decision making is reinforcement learning (RL): an agent learns by trial and error
in an unknown environment, receiving a reward as a feedback signal. This paradigm has
several advantages: it does not require that the programmers have a detailed knowledge
of the environment, nor that they design an algorithm to solve the task. An agent is also
able to learn continuously, and thus to adapt to environmental changes. While RL is a
promising framework, its development is challenging. For decades, researchers struggled to
make it work on complex environments with high dimensional or infinite state or action
spaces. However, since the recent (2014) arrival of powerful neural network models, RL has
taken a giant leap and showcased its immense potential. Trained agents could suddenly beat
expert players at the games of Go and Dota 2. More recently, RL was used to fine-tuning a
large language model for human preferences.

RL however has not yet been widely applied on agents which enact decisions in the real
world. One difficulty is that neural network decisions are extremely difficult to explain. It is
thus currently impossible to formally guarantee performance or safety from a trained agent,
which is problematic in safety-critical applications of robotics. Another major challenge is
that training an agent demands an enormous amount of experience. For virtual agents in



video games, this is not an issue: agents can safely train in accelerated time in parallel. The
limiting factor is the amount of computing power available. For real world agents however,
gathering experience cannot be accelerated or done in parallel. In addition, the real world is
not safe for trial and error. A promising idea is to train an agent in a simulator and deploy it
in the real world. However, this brings its own challenges, because simulators never exactly
represent reality: there is often a significant sim-to-real gap in the environment dynamics as
well as in the modelling of the sensor measurements observed by the agent. These obstacles
currently impede the deployment of RL in the real world, and they are the key elements I
tackle in this thesis.

In the first part, I focus on the issue of sample efficiency of deep RL algorithms. Reducing
the amount of samples needed to reach a satisfying performance would reduce the costs and
risks associated with training agents in the real world. I propose to improve this efficiency
using the tool of probabilistic representations, i.e. modelling the variables’ probability distri-
butions. The RL process is inherently stochastic, but most algorithms overlook this aspect.
However, as is the case in probabilistic robotics, using a Bayesian framework to represent
random variables can lead to significant performance improvements for algorithms dealing
with randomness. Indeed, probabilistic representations are richer and allow better informed
decisions. The idea to use probabilities distributions in RL is not new, but it is complex
to implement because of the lack of prior knowledge about the environment does not allow
to quantify the information carried by every sample/experience. In the case of deep RL,
there is an additional challenge: while neural networks are powerful as a deterministic tool,
using them to handle probability distributions is intricate. Yet, methods to quantify the
uncertainty of neural networks predictions have recently been developed, paving the way to
the work I propose in this thesis.

RL algorithms typically use temporal difference learning. A neural network learns to
predict a value in a regression setting where the labels, named targets, are predicted by
another neural network. These labels are thus noisy, and the noise is heteroscedastic: its
distribution is different for every label. Noisy labels reduce the amount of information in
the dataset, and therefore slow the learning process. Leveraging state-of-the-art uncertainty
prediction methods for neural networks, it is possible to quantify the noise variance for each
predicted labels. Taking this quantity into account can mitigate the impact of the noise:
this is the object of the first article of this thesis, Batch inverse-variance weighting for
deep heteroscedastic regression. In this paper, a new loss function called batch inverse-
variance (BIV) accounts for the variance of each noisy label in the training process of the
neural network, reducing the impact of the noise. Because there are many neural regression
settings where noisy labels are provided with a known variance, BIV was framed as a general

28



method and demonstrated on simple noisy regression tasks. It served as a proof of concept
for a key element of my research project in RL.

The second article of this thesis, Sample efficient deep reinforcement learning
via uncertainty estimation, tackles the problem directly. Through a detailed analysis
of the sources of uncertainty in deep RL, we selected the relevant uncertainty estimation
techniques for the targets. Combining these with BIV, we crafted a new approach called
inverse-variance reinforcement learning (IV-RL), which can be applied on common deep RL
algorithms such as deep Q-networks or soft actor-critic. IV-RL results in significantly faster
training and better overall performance, especially in the case of control tasks.

The next objective of my thesis was to show that RL can be applied to a real world
agent problem which engineered approaches have not solved. I chose the field of power grids,
for two main reasons. First, because power grids are a very interesting domain for RL. It
showcases many difficult optimization problems where current hand-engineered algorithms
are not optimal. It also benefits precise simulations of dynamics and low dimensional obser-
vations, making the sim-to-real gap simpler to handle than for most real world agents, such
as mobile robots. Second, I believe the role of research is to develop solutions to society’s
problems. One of the biggest challenges today is the transition from fossil fuels to renewable
energy sources to fight global warming. Renewable sources are hard to control, and bring
new algorithmic challenges to power grid control.

In the third article of this thesis, Multi-Agent Reinforcement Learning for
Fast-Timescale Demand Response of Residential Loads, I worked in collaboration
with field experts. We propose a solution to the high frequency intermittency of renewable
energy sources such as solar panels or windmills. Through the paradigm of demand response,
we suggest to balance power supply and demand by coordinating multiple flexible loads
such as air conditioners. Air conditioners are present in many households and consume a
significant amount of power. They also are able to satisfy the user’s thermal preferences
while being flexible on the exact moment they are ON or OFF. They are however discretely
controlled, and subject to hardware dynamic constraints which impedes scalable engineered
approaches. This problem also combines several challenges for state-of-the-art MARL
algorithms: coordination, communication and scaling. We developed several decentralized
multi-agent reinforcement learning (MARL) algorithms. The policies trained with few
agents reached good performance even when deployed on arbitrarily high number of agents,
demonstrating that the decentralized MARL approach is promising for the large scale
control of agents in the power grid context.

The three articles presented in this thesis are aimed as steps towards the deployment of
deep RL methods on real world agents. They do not solve every obstacle towards unlocking

29



the potential of deep RL. I hope they can still be some of the proverbial small bricks in
humanity’s cathedral of knowledge, and that they may support a world were real world
autonomous agents assist humans with the significant challenges ahead.

This thesis starts with the background content necessary to understand the contribu-
tions. Each article is then presented, accompanied by a prologue detailing the context of
its conception and publication, and of my particular contributions. The thesis ends with a
discussion chapter, detailing the impact and the limitations of these works as well as further
directions of research. After the bibliography, the reader will finally find in appendix the
supplementary material for each article.

30



Chapter 1

Background

In this chapter, I will provide the background necessary to understand the contributions
I present in this thesis. We will first focus on uncertainty in regression with deep neural
networks. In particular, we will define predictive uncertainty, explain its sources, and have
an overview of the existing methods to estimate it. Then, we will go through an overview
of RL. We will start with the tabular case, with finite and low-dimensional state and action
spaces, to better understand the base concepts of RL. We will then move towards function
approximation using deep neural networks. Finally, we will discuss applying reinforcement
learning to multiple agents, the particular challenges it brings, and the existing approaches
to tackle them.

1.1. Uncertainty in regression with deep neural net-
works

In supervised learning, regression is the task of predicting a continuous value – as opposed
to classification, where the predictions are of discrete nature. As regression using deep
neural networks becomes an increasingly common part of complex pipelines, such as robotics
systems or deep reinforcement learning (DRL), quantifying the uncertainty of the network’s
prediction can be instrumental to improve the pipeline’s efficiency and robustness.

1.1.1. Objective of regression

The objective of regression is to find the parameters θ of a parameterized function f̂θ(x)
such that f̂θ(x) approximates the maximum likelihood f(x) of an unknown probability dis-
tribution pY (y|x).

Often, a Gaussian distribution N (µy, σy) is assumed for pY (y|x). In this case, f̂θ(x)
approximates the maximum likelihood f(x) of the distribution if it predicts its mean µy. It
can be proven that this is equivalent to minimizing the expected value of the L2 loss over



the joint distribution of inputs x and labels y:

θ∗ = arg min
θ

Ex,y

[(
y − f̂θ(x)

)2
]

(1.1.1)

In regression, we assume that we have access to a dataset of input-label pairs D =
{(xk, yk)} where yk ∼ pY (y|xk), ∀k. The objective is to use this dataset D to find the
parameters θ∗. The expected error minimized in equation (1.1.1) is called the risk J(θ).

1.1.2. Neural networks optimization for regression

Neural networks, or perceptrons, are a powerful parameterized model for regression, as
they have useful properties in terms of flexibility as well as ease of training. We superficially
cover their optimization in this section. The interested reader can refer to [56] for more
details and insights.

1.1.2.1. Defining a neural network. Neural networks consist of a sequence of opera-
tions h(i)(·) where i is the layer’s number. We have:

f̂θ(x) = h(n)
(
h(n−1) . . .

(
h(1)(x)

))
(1.1.2)

In the simplest case of multi-layer perceptrons, operations h(i) consist of a linear matrix
operation with weights wi and bias bi, followed by a non-linear activation function g(·). The
last layer h(n) is sometimes activated by a different function, gn(·). Thus,

f̂θ(x) = gn

(
wT

(n−1)

(
g
(
wT

(n−2) · · ·
(
g
(
wT

(1)x + b1
)
· · ·+ b(n−2)

)
+ b(n−1)

)))
(1.1.3)

There are several options for the activation function – often, the rectified linear unit
(ReLU) function is used successfully. ReLU is defined by:

gReLU(x) =

 x if x ≤ 0,

0 otherwise.
(1.1.4)

The last layer’s function gn(·) depends on the range of acceptable y’s. For example, it
can be the identity function if y ∈ R, a ReLU function if y ∈ R+, or a sigmoid if y ∈ [0, 1].

The parameters θ of the model are its set of weights and biases, {w(i), bi}.

1.1.2.2. Training a neural network. To optimize the parameters towards θ∗, the
neural network is trained over dataset D = {(xk, yk)} of size N . Using stochastic gradient
descent (SGD), or a SGD-based optimizer such as Adam [78], we seek to minimize the
empirical risk Ĵ(θ). The empirical risk in regression is the average L2 loss, or mean squared
error (MSE), over the whole dataset. It approximates the true risk J(θ) described in eq.
(1.1.1). We therefore seek parameters θ̂∗ such that:

32



θ̂∗ = arg min
θ

Ĵ(θ) (1.1.5)

= arg min
θ

1/N
∑

(x,y)∈D

(
y − f̂θ(x)

)2
(1.1.6)

In single batch gradient descent, the parameters are updated through gradient steps:

θ̂ ←− θ̂ − α∇θĴ(θ) (1.1.7)

where α is the step size, also called learning rate.
To compute the empirical risk’s gradient ∇θĴ(θ) with respect to the parameters, we

use chain derivation. Starting from the end node of the neural network, the derivative is
back-propagated through the network’s computational graph until it is evaluated for every
parameter.

In SGD, the dataset D is divided into mini-batches of size mmini. We then update the
parameters using a sequence of gradients of the empirical risk Ĵmini(θ) computed on these
mini-batches. SGD is more flexible than single batch gradient descent as it is not necessary
to optimize the parameters on the whole dataset at once. While the estimated gradient is
less precise because it is based on less data, using SGD also helps avoid local minima in
non-convex optimization landscapes.

Some more advanced optimizers, such as RMSProp [160] or Adam [78], build over SGD
and propose adaptive learning rates α based on the gradient’s moments. They usually lead
to more stable and robust training processes.

1.1.3. Predictive uncertainty

Predictive uncertainty is the uncertainty of the output of the model in supervised regres-
sion. It quantifies the confidence we can have in the output f̂θ(x) in relation to the actual
value y we aim to predict.

In regression with L2 loss, we usually assume that f̂θ(x) ∼ N (y, σ2
p), i.e. the prediction

is unbiased around the true label, but follows a Gaussian with standard deviation σp. By
estimating this standard deviation, the predictive uncertainty quantifies the expected loss
[72].

When measuring the performance of a model on a validation dataset, we measure its
predictive uncertainty averaged over the whole dataset. However, in some cases, it can be
useful to quantify the uncertainty of a given prediction. There may be some inputs inside
the dataset for which the expected loss is higher than others. It can also happen that
inputs given to a deployed model are out-of-distribution with respect to the training and
validation datasets, in which case the performance measurements on the validation set is not
trustworthy.

33



1.1.4. Sources of predictive uncertainty in supervised regression

There are two main sources of error, and thus uncertainty, between f̂θ(x) and y [70]. (1)
The model may not be optimal to predict the maximum likelihood function f(x), in which
case, there is epistemic uncertainty. Epistemic uncertainty can be reduced with a better
model. (2) Predicting f(x) outputs the maximum likelihood of the original distribution
pY (y|x). The uncertainty due to the average error between y and f(x) is irreducible, and is
called aleatoric uncertainty.

1.1.4.1. Aleatoric uncertainty. In regression, aleatoric uncertainty is often expressed
as the variance of the distribution of labels given an input, pY (y|x). Following a Bayesian
perspective, aleatoric uncertainty is due to the lack of information in the input x to predict
the label y precisely, even with the best possible model [70, 175]. Quantifying aleatoric
uncertainty is therefore related to quantifying the mutual information between the input
and the label.

For example, a task of predicting the sum a + b given x = (a, b) has no aleatoric un-
certainty: there is only one answer and pY (y|x) is a delta Dirac at a + b. In a task such
as predicting the age y of a person given a picture x of their face, there is some aleatoric
uncertainty: while the image contains some information about the person’s age, time does
not affect the appearance of everyone’s face the same way, and there are other elements than
y that may have had impacts x too. As a result, no model has enough information from
someone’s facial picture x to predict their age y with an arbitrary accuracy. The aleatoric
uncertainty would be even higher if the x was a picture of someone’s face hidden behind a
pillar. If in that picture we do not see any piece of the person’s body, there is no information
in x with respect to y. At maximum, aleatoric uncertainty can reach the uncertainty of the
prior over the labels distribution p(y); in our last example, it would be the variance of the
general distribution of people’s age.

For a given task, aleatoric uncertainty can vary depending on the input x; this is called
heteroscedastic aleatoric uncertainty. For example, predicting the age of a new-born given
a picture of their face allows for a higher accuracy - to the scale of days or weeks - than
predicting the age of an elderly person - which can be in the dozen of years.

Note that aleatoric uncertainty is agnostic to the model we use, as it is a characteristic of
the input and the task. This is why it is irreducible, because without additional information
in the input, no model can reduce this uncertainty.

1.1.4.2. Epistemic uncertainty. Epistemic uncertainty, on the other hand, character-
ize the distribution of the error due to the accuracy of the model.

For example, an inaccurate model giving a constant value of 40 years for the task of
predicting the age of someone based on a picture of their face will often be very wrong,

34



and this error will lead to a high epistemic uncertainty. A better performing model will by
definition reduce the epistemic uncertainty.

In the case of a model trained through a machine learning algorithm, there are several
reasons the model can be inaccurate. First, it can be parameterized in a way which does not
have enough representation power for the task. For example, a linear model may not have
the representation power to accurately to predict someone’s age from their picture. Second,
the training dataset may not contain enough information for the model to accurately infer
the label of a given input. For example, the dataset may be too small, leading to an over-
fitting of the model. A region in the input space can also lack support in the dataset. In
this case, the model may not be able to correctly predict the label of an input from this
region. Finally, the optimization algorithm may not update the parameters optimally from
the dataset. In the extreme case, a random optimizer would not lead to any learning. In
the common case where a recognized optimizer, such as Adam [78] or RMSProp [160], is
correctly implemented, its performance will depend on its hyperparameters. Even with the
optimal hyperparameters, it may converge at a local optimum, missing the global optimum,
as the optimization landscape may not be convex.

These three factors - representation power, amount of information in the dataset, and
optimization - can lead to errors in the prediction due to the model. Quantifying epistemic
uncertainty means estimating the expected error of a prediction due to these factors. Sim-
ilarly to aleatoric uncertainty, epistemic uncertainty can be heteroscedastic. Some areas of
the input space may be less well represented by the parameterization, have lower support
from the dataset, or be disadvantaged by the optimization process. For example, an im-
balanced dataset with significantly more pictures of women than men could lead to higher
epistemic uncertainty on men’s age predictions.

1.1.4.3. Noisy labels. Learning with noisy labels is a settings in which, in the dataset,
the labels are subject to noise, i.e. they are not the true label. One example in regression
would be that a 0-mean Gaussian noise δi with variance σ2

i is added to every label yi. The
noisy labels ỹ = yi + δi create a noisy dataset D̃ = {x, ỹ}.

It is important to differentiate noisy labels and aleatoric uncertainty, as they are some-
times confused in the literature [77, 116]. As an example, the task of summing two num-
bers does not have aleatoric uncertainty, as the sum of two numbers is deterministic. A
dataset could still have noisy labels, for example with the following inputs and labels:
{(1,1; 3), (1,2; 2), (1,1; 1), (1,2; 4)}. On the other hand, a task with aleatoric uncertainty
without noisy labels could be predicting someone’s age from a picture of their face, in which
the labels in the dataset are the persons’ exact ages.

In some particular cases, aleatoric uncertainty can cause noisy labels. This can happen
if during the labeling process the label generator only has access to the input x. Consider

35



the example where a human being is asked to label people’s faces with their age to create
the dataset on which a model is trained. If given only images of faces, the labeler will make
errors which, at minimum, will be due to aleatoric uncertainty. However, they could also
have access to the people’s birth date and the date the picture was taken, in which case they
can compute the exact age.

Because it reduces the amount of information in a dataset, noise on the labels can lead to
a less well trained model, and thus induce epistemic uncertainty. Noisy labels can affect the
learning process and lead to overfitting. With enough data and unbiased noise, the model
can however learn to predict the mean of the noisy labels, i.e. the true label [137]: this
uncertainty is not irreducible. In the above example of a noisy dataset for the sum of two
numbers, a model trained with the two first samples would have a high epistemic uncertainty
on inputs (1,1) and (1,2). Training with all samples would however balance the errors out
and the model would predict the right label.

When the noise applied on the labels is biased, it also induces epistemic uncertainty, as
the model is not trained correctly for the task. Better data is then needed to reduce the
epistemic uncertainty.

1.1.5. Measuring uncertainty in deep supervised regression

To measure the uncertainty about a model’s prediction is particularly challenging. Some
machine learning techniques allow to do so in a theoretically grounded manner: Gaussian
processes, for example, are able to estimate the epistemic uncertainty of a prediction based
on the support of the dataset in the input space region [22]. However, this requires strong
assumptions: a known task structure, low dimensional inputs, and explainable models.

Unfortunately, in most cases where deep neural networks are used, none of these assump-
tions is respected. Rigorously measuring the mutual information between an input and its
true label, given an input and its prediction, is particularly challenging. Similarly, estimating
the expected amount of error that is due to the model itself is difficult, for example because
neural networks parameters do not encode the level of support a prediction has from the
training dataset.

Although these issues are deeply rooted in the problem of quantifying aleatoric and
epistemic uncertainties, several estimation methods have been proposed. We will review
some here, explain how they work, as well as the assumptions they are based upon - and
thus, their potential failure cases.

1.1.5.1. Estimating aleatoric uncertainty with neural networks. Most methods
estimating aleatoric uncertainty in regression with neural networks are based on the same
idea: instead of predicting the value f(x) at maximum likelihood of pY (y|x), they aim at
learning the whole probability distribution.

36



In regression, a common assumption is that pY (y|x) is a Gaussian, in which case it can be
characterized by its mean µy(x) and its variance σ2

y(x). Both can be estimated by a neural
network whose parameters θ are optimized to maximize the likelihood of µθ(x) and σ2

θ(x):

θ∗ = arg min
θ

Ex,y

[
(y − µθ(x))2

σ2
θ(x) + ln σ2

θ(x)
]

(1.1.8)

Equation (1.1.8) is obtained by expressing the maximization of the likelihood as the mini-
mization of the negative log-likelihood. This approach is often referred to as loss attenuation
[77].

In practice, the dynamics of this loss function can be intuitively understood as follows.
The neural network predicts µθ(x) and compares it with the label to compute the error.
Then, it adjusts σ2

θ(x) to scale down this error in the loss function, until it is balanced by the
ln σ2

θ(x) term. At the end of the training, σ2
θ(x) should predict the expected squared error

between µθ(x) and the label.
This correctly evaluates σ2

y(x), and thus aleatoric uncertainty, under three major assump-
tions:

(1) the training dataset is rich enough to represent the full probabilistic distribution
pY (y|x) in every relevant region of the input space. Otherwise, the neural network
cannot characterize the right distribution;

(2) there is no epistemic uncertainty, i.e. µθ(x) ≈ µy(x). Failing this, the expected error
will be overestimated. This means, among other things, that the neural network
must have trained sufficiently long for σ2

θ(x) to be trustworthy;
(3) the labels do not have noise, as this method cannot differentiate noisy labels and

aleatoric uncertainty. For example, with the {(1,1; 3), (1,2; 2), (1,1; 1), (1,2; 4)} noisy
dataset to learn to sum two numbers, σ2

θ(1,1) would be predicted as 1 whereas, as
previously mentioned, this task has a 0 aleatoric uncertainty and µ2

θ(1,1) would give
the right answer, 2.

There exist other methods to estimate aleatoric uncertainty in regression. Again assuming
a Gaussian distribution, calibration loss aims at predicting σ2 as the average squared error
(µθ(xk)− y(xk))2 [46]. Other approaches avoid the Gaussian distribution assumption for
pY (y|x). With quantile regression [28], the neural networks outputs different values trained
with different pinball losses so that they are biased towards a given quantile of the label
distribution. Conformal quantile regression adjusts the predicted quantiles by empirically
sorting the labels in an additional dataset in the vicinity of a given x. SampleNet [63]
predicts different labels approximating a distribution by minimizing the energy score. To
avoid overfitting, these are regularized by minimizing an optimal transport cost between
these samples and a prior distribution.

37



All these methods are based on similar assumptions than loss attenuation, i.e. a rich
training dataset, no epistemic uncertainty, and no noise in the labels. As such, they suffer
from the same failure modes.

1.1.5.2. Epistemic uncertainty. To estimate epistemic uncertainty with neural net-
works, most existing approaches assume that the main source of epistemic uncertainty is
the dataset. This is a reasonable assumption: wide and deep neural networks tend towards
universal approximators, reducing the probability that the model underfits the data due
to a poor representation power. Existing optimizers are also robust and perform well, and
with good practices it can be assumed that the network’s parameters are trained to reach
near-optimal performance given the dataset.

To evaluate epistemic uncertainty in a particular region of the input space, one could
imitate Gaussian processes and compute a density estimation of training data in the input
space. The model’s epistemic uncertainty should be lower where the density of data is
higher. This strategy however suffers from the necessity of finding a distance measurement,
or kernel, which correctly characterizes the similarity or difference between high dimensional
data relatively to a given task. Manually engineering this kernel is challenging for unknown
tasks or high dimensional inputs, whereas learning such distance measurement between two
inputs, for example by measuring the distance between their latent representations in the
network’s hidden layers, requires support in the region, and thus only works in regions with
low epistemic uncertainty.

The most successful methods to estimate epistemic uncertainty instead aim at producing
a likelihood distribution for the model given the dataset. The Bayesian neural network
approaches [57, 23, 103, 169] consider the weights of the network as random variables
following a Gaussian distribution characterized by its mean and variance. These parameters
are trained using variational inference. The epistemic uncertainty on a given prediction can
be obtained in closed form or by computing the sample variance of several models randomly
generated from the weights distributions.

Because Bayesian neural networks are difficult to train on large datasets or complex model
architectures [128], other approaches approximate the distribution with the bootstrapping
principle. Considering that the learning process is stochastic, several models are trained
differently on the same task with the same dataset. At deployment, the different models’
predict different outputs for the same input x. Epistemic uncertainty is then measured as
the sample variance of the different predictions. These different models can be partially
or completely separated, such as with ensembles [90], or techniques such as Monte Carlo
dropout (MC dropout) [52]. Intuitively, diversity between the networks is encouraged such
that the networks would predict different values in regions of the input space where they

38



have not been trained. On the other hand, in the regions they are trained, all the networks
should converge to the same prediction.

In practice, these approaches have shown good results but they are not very reliable.
Indeed, they assume a diversity in the model predictions, which is not always respected. We
will take for example the case of ensembles, but it also applies to MC dropout. Diversity can
be encouraged by initializing the neural networks differently, training on masked datasets,
or applying adversarial training [90, 92]. However, neural networks’ parameters are usually
initialized so that the optimization is stable and robust, methods such as He [66] or Xavier
[53] initialization. These methods usually lead to neural networks initially predicting random
values around 0 with small scale variations depending on the input - the amplitude of which
depends on the network’s architecture. As such, even before any training, all the networks
of the ensemble seem to agree, and bootstrapping leads to a very low epistemic uncertainty
prediction. This apparent paradox is only possible because the assumption that encouraging
diversity leads to purely random training processes is not satisfied. It prevents estimating
the epistemic uncertainty of a model during the training process - which is problematic, as
identifying the areas where training is necessary is an important use case of epistemic uncer-
tainty prediction. It also raises the question of the process leading to diversity once trained:
networks give different values at an unseen input regions only because they extrapolate dif-
ferently from their training on other regions. There is no reason, or guarantee, that the
sample standard deviation between the networks estimates the actual expected error of the
networks in an unseen region of the state space. As an example, several networks trained to
predict a constant value of 1 in a single input region A could extrapolate and predict values
around 1 in unseen region B, leading to a low variance, even if labels in region B could be
very far from 1.

1.1.5.3. Estimating predictive uncertainty. We already underlined the difficulties
to separately estimate aleatoric and epistemic uncertainties. Estimating their combination,
predictive uncertainty, is not straightforward. Not only most aleatoric estimation methods
assume the absence of epistemic uncertainty - it is also not clear how these two quantities
interact without strong assumptions.

Often in the literature, one or the other type of uncertainty is prioritized and considered
as the only relevant one to estimate. Nevertheless, some approaches combine bootstrapping
and negative log likelihood through mixture of Gaussians to output a predictive uncertainty
estimation. [90] propose variance ensembles combining ensembles for epistemic uncertainty
and loss attenuation for aleatoric uncertainty. Each network in the ensemble is trained using
the negative log-likelihood loss of equation (1.1.8). The predicted distributions are then
bundled as a mixture of Gaussians for which the mean and the variance are computed in

39



closed form, leading to state-of-the-art uncertainty predictions [128]. [77] follow the same
logic, but they use MC dropout instead of ensembles.

Because of their strong assumptions and multiple failure modes, the different methods
we described to estimate aleatoric, epistemic, or predictive uncertainty are usually not con-
sidered reliable enough for critical applications, where they would be very needed. They
can however bring precious information in cases where the accuracy or the calibration of
the uncertainty prediction are not critical. We will give an example in the next section,
where some of these methods are used successfully in Bayesian approaches to reinforcement
learning, as well as in the second paper of this thesis.

1.2. Reinforcement Learning
RL is a machine learning paradigm aiming at learning a policy performing in a previously

unknown environment. The agent is able to train in the environment, gathering experience
from which it can optimize its policy. As they do not assume a model of the environment, RL
methods can be deployed in very large set of sequential decision-making problems. However,
the implementation of RL on real world tasks is challenging, among other things because its
training is expensive, risky, and sample inefficient.

In this section, we will first formulate the objectives of RL. We will then describe the
setting of online RL and the policy iteration approach used to solve it. The first two sections
are mainly based on the excellent book by Sutton and Barto [154]. We will then give a
broad overview of the main deep reinforcement learning methods which combine RL with
deep neural networks, leading to powerful algorithms for larger state and action spaces.
We will finish by exploring different probabilistic DRL algorithms, which use probabilistic
formulations to tackle some of the main challenges in DRL.

1.2.1. Problem formulation

The sequential decision making problems where RL is deployed can usually be modelled
by Markov decision processes (MDPs) [17, 69] or one of their variants. A MDP is defined
by the tuple ⟨S,A,R,P , γ⟩ where S represents the state space, A the action space, R the
reward space, P the dynamics of the MDP, and γ ∈ [0, 1] its discount factor .

At time step t, the agent observes the environment’s state st ∈ S. It then takes action at ∈
A according to its current policy π: at ∼ π(at|st). The environment is then updated based
on its dynamics P : a new state st+1 and a reward rt+1 are sampled from p(st+1, rt+1|st, at).

In RL, we try to find for each state st the action at which maximizes the expected sum
of rewards after time t, which is named the expected return Gt. The return is more precisely

40



defined as:
Gt =

∞∑
k=0

γkrt+k+1 (1.2.1)

We differentiate MDPs with finite episodes, where the time stops at a given horizon H

after which rt>H = 0, and MDPs with infinite episodes, where t can go to infinity. In the
latter case, the discount factor γ must be strictly smaller than 1 for the return to be finite.
Importantly, the return follows a recursive relationship which can be proven by developing
equation 1.2.1:

Gt = Rt+1 + γGt+1 (1.2.2)

The return from state st depends on the agent’s trajectory in the future steps, and therefore
on policy π. We define the value V π(st) as the expected return when following policy π from
state st:

V π(st) = Eπ[Gt|st] (1.2.3)

=
∫

at

π(at|st)
∫

st+1

∫
rt+1

p(st+1, rt+1|st, at)[rt+1 + γV π(st+1)]drt+1dst+1dat (1.2.4)

Equation 1.2.4 is called the Bellman’s expectation equation and links the value at time step t

to the value of future states. It is can be obtained from the recursive property of the return.
In case the action, reward and/or the state spaces are discrete, the integrals can be replaced
by sums. We can also define the Q-value Qπ(st, at), as the expected return when following
policy π after having taken action at at state st.

Qπ(st, at) = Eπ[Gt|st, at] (1.2.5)

= Eπ[rt+1 + γV π(st+1)|st, at] (1.2.6)

For a given MDP, there exist an optimal value V ∗ at each state s. There also exists at
least one optimal policy π∗ for which value V π∗ is equal to V ∗ at every state s.

Finding the optimal policy π∗ may demand very high computational costs and an enor-
mous amount of experience. Instead, we usually aim at finding a policy which approximates
π∗, i.e. for which, on most states st, value V π(st) is close to V ∗(st).

1.2.2. Online reinforcement learning

In the online reinforcement learning context, the agent has no previous knowledge of the
MDP, and it must learn the policy by evolving in the environment and gathering experience.
This is in opposition to offline RL, where the agent must learn from previously gathered
experience upon which it has no control. In this thesis, we focus on model-free online RL:
the agent does not seek to model the MDP. Instead, it learns the best policy based on the
value at each state, through the process of policy iteration.

41



This section will cover the basics of online, model-free reinforcement learning, under the
assumption that the state and action spaces are discrete and small. Large or continuous
spaces are discussed in section 1.2.3.

1.2.2.1. Generalized Policy iteration. Behind most model-free RL algorithms is the
idea of generalized policy iteration. It consists of a two step cyclic process: evaluate the
policy, improve the policy, evaluate the new policy, improve it, etc. It is can be proven that,
under certain conditions, generalized policy iteration always leads to a better policy, and
ultimately converges to the optimal policy [69].

1.2.2.2. Policy evaluation. Evaluating a policy π is the process of learning the value
V π(s) by an estimator V̂ π(s). There are two main strategies to do so: Monte-Carlo roll-outs
and Temporal-Difference learning.

In both cases, we evaluate the value function from target T (s), which is an approximation
of the return. In discrete state space environments, we compute the average of the targets:

V̂ π(s) = 1/N
N∑
i

Ti(s) (1.2.7)

where Ti(s) is evaluated every time step i the agent encounters state s. A state can be
encountered several times in the same trajectory, or in different trajectories, also called
episodes, experienced by the agent in the training process.

Monte-Carlo roll-outs. An approach to compute target Ti(s) at a given state is to sample the
return of a trajectory after visiting state s. This is called the Monte-Carlo roll-out return
[154], and it is computed using equation 1.2.1 by "rolling out" the policy for the next time
steps until the horizon – or, in the case of infinite environments, enough time for the discount
factor to be close enough to 0. While this gives an unbiased sample of the return, it demands
a lot of experience as the policy must be rolled over all the trajectory for the target to be
computed.

T MC
t (st) =

∞∑
k=0

γkrt+k+1 (1.2.8)

Temporal Differences. An alternative strategy, which allows more flexible updates of the
policy’s evaluation, uses a bootstrapping approach called temporal differences (TD) learning
[153]. The recursive nature of the value function allows to use Bellman’s equation (1.2.4).
It can be proven that, given a MDP, Bellman’s equation is satisfied for a given policy π if
and only if the evaluation V̂ π is equal to the true value V π of the policy. As such, the target
is generated by enforcing the recursive relationship between the values at the current and
next states:

42



T TD
t (st) = rt+1 + γV̂ π(st+1) (1.2.9)

TD learning has the advantage of allowing to update the value estimation of a state one
step only after visiting that state. However, because it is based on current value estimations,
which may be wrong, the target is less informative than Monte Carlo roll-out.

Exploration. In both cases, the agent needs to visit state s to gather the information necessary
to update its evaluation. To do so, it must choose actions to reach s, following exploration
policy πexplor. A state that has not been visited enough may therefore be badly evaluated.

Because it is usually intractable to try all possible trajectories, πexplor must trade-off
between gathering more experience through exploration, and building upon known successful
seen trajectories through exploitation. Too much exploration can lead to inefficient training.
On the contrary, too much exploitation can instead converge to sub-optimal policies because
unexplored states could have better values than the current evaluation.

To explore, the behaviour during training must be stochastic, adding some noise on the
optimal, exploitable action. This can be done uniformly: for example, ϵ-greedy exploration
is done by choosing the current best action with a probability 1 − ϵ, or with probability ϵ

to uniformly sample an action among the action space, at each time step t. It can also be
guided by encouraging the agent towards states where the value estimation is uncertain, such
as in Thompson sampling or upper confidence bounds (UCB). To do so, a belief distribution
must be estimated for the value at each state. In UCB [12, 11], which follows the optimism
under uncertainty paradigm, πexplor selects greedily based on the sum of the value belief’s
mean and standard deviation, giving an advantage to states with uncertain values. In
Thompson sampling [158, 139], actions are randomly selected based on their probability
of being the best, according to the belief: states with more uncertain values have a broader
distribution and thus a higher probability to be selected. However, a major issue when
applying these methods is the difficulty to update the belief by correctly quantifying the in-
formation received when visiting a state and accounting for the non-stationarity of the policy.

On-policy and off-policy algorithms. When computing the target, the next steps taken by the
agent count: the Monte Carlo target needs samples from the whole subsequent trajectory,
while the TD target needs at least st+1 and rt+1 for TD. An agent following an exploration
strategy with a stochastic policy will not be representative of a deployed agent, which will
instead be greedy and always choose the best action based on its evaluation.

This leads to a contradiction: during training, the agent evaluates policy πexplor. Once
the training is over and the agent is deployed, it will use another policy, πgreedy, which is
not exactly the one that was evaluated. In on-policy learning, this contradiction is accepted

43



and assumed. The agent evaluates and improves πexplor, as this should lead to a better
πgreedy. In off-policy learning, we decouple both policies. πexplor is abstracted and the agent
directly evaluates πgreedy, using strategies such as importance sampling to deal with the
difference between them when calculating the target. Off-policy allows more flexibility in the
exploration strategy, and it gives the possibility to keep and re-use previous trajectories in
memory. On the other hand, data gathered from πexplor is less informative relatively to πgreedy.

Q-learning. A very popular off-policy evaluation algorithm is Q-learning, a TD approach
where the value is computed over a greedy policy at the next time step [167]. To learn
the Q-value Q̂(st, at), the target T QL

t (st, at) is computed using the action with the maximal
Q-value at this state, instead of the action chosen by πexplor.

T QL
t (st, at) = rt+1 + γ max

at+1
Q̂(st+1, at+1) (1.2.10)

1.2.2.3. Policy improvement. Once the value of a state is estimated, the policy can
be improved by being greedy on the new value estimations: the agent must choose the action
that leads to the best value. With discrete state and action spaces, this can be done through
a simple table lookup.

Once the policy is improved, it has changed and the value estimation must therefore be
repeated. It is worth noting that policy evaluation does not have to be complete before
improving the policy. Policy improvement can be done after any number of steps of policy
evaluation. In TD learning, it is therefore possible to update the policy at every single time
step, after updating the value estimation. The inverse also works: policy improvement does
not need to be complete for a new policy evaluation step to be ran.

1.2.3. Deep Reinforcement Learning

While the above cited approaches are suited to small and discrete action and state spaces,
they need to be adapted when these spaces are continuous and/or larger. This is because,
in these cases, it is not possible to explore every state and every action. The key to adapt
to such environments is function approximation: instead of learning the value for each state
and action, the agent learns a function that can generalize on states it has never seen before.

There are many function approximation methods, from discretization to memory-based
to linear parameterization. However, the most recent successes of reinforcement learning
came with function approximation through deep neural networks, used to parameterize the
value estimator V̂ (s) or Q̂(s,a), and/or the policy π(s).

These algorithms, grouped into the field of deep reinforcement learning (DRL), can be
divided in two families. Deep Q-learning algorithms approaches, such as DQN [115], put the
emphasis on learning Q-values estimators, from which the policy is derived. Policy-gradient

44



methods, such as proximal policy optimization (PPO) [142], instead focus on learning a
policy by approximating their gradient. Some algorithms are in between both approaches,
such as soft actor-critic (SAC) [61]. An overview of these algorithms will be given in this
section, as they are all used in this thesis.

Many of the latest advanced in DRL have been reached by incorporating probabilistic
representations in the algorithms. This can help to guide exploration, to weigh updates, or
to better represent the distributions of values. These will be reviewed in the last part of this
section.

1.2.3.1. Deep Q-Learning. Deep Q-learning algorithms are based on the Q-learning
approach described in section 1.2.2.2. The most popular deep Q-learning method is deep Q-
networks (DQN) [115]. DQN works for continuous state but discrete action spaces. It learns
the Q-value of a given state-action pair by optimizing the parameters θ of its value predictor
Q̂θ(s,a) to predict the Q-learning target computed according to equation (1.2.10). Q̂θ(s,a)
is a neural network which only takes state s as an input. It then outputs a Q-value for each
discrete action a. The training is done through the same regression process as presented in
section 1.1.2. The greedy policy is then simply chosen by selecting the action with maximal
predicted value. Exploration is usually managed through ϵ-greedy.

To cope with known instabilities with offline TD learning with function approximation,
DQN introduces several features. A target network, which follows the Q-network but with
a delay, produces the Q-value estimation when computing the target. Memory is kept in
a replay buffer, which is shuffled when training the network’s parameters to reduce the
correlation between steps from the same trajectory.

DQN is a simple yet powerful DRL algorithm. Several improvements exist, such as
Double-Q learning to prevent the algorithm to overestimate the value of certain actions [64],
or prioritized experience replay [141] which improves the selection of samples in the replay
buffer. RainbowDQN [68] applies a combination of several improvements on DQN. DQN is
however limited to discrete action spaces. A different framework, deep deterministic policy
gradient (DDPG), can be considered as an extension of DQN to continuous action spaces.

1.2.3.2. Policy-gradient methods. These methods instead parameterize the policy
πϕ(s), and directly optimize parameters ϕ through gradient descent. They are usually on-
policy, as the gradient is computed from the current policy’s experience. Because it is
on-policy, the policy πϕ(at|st) must be stochastic to handle exploration. For discrete action
spaces, πϕ(at|st) can be represented by a discrete probability distribution - for example, by
adding a soft-max at the last layer of the neural network for each of the action space dimen-
sions. They can also handle continuous action spaces, where πϕ(at|st) is often represented
by a Gaussian, and the neural network outputs a mean and a variance for each dimension of
the action space.

45



The parameters ϕ are updated based on the estimated gradient of a performance measure
J(ϕ):

ϕ← ϕ + α∇̂ϕJ(ϕ) (1.2.11)

This measure J(ϕ) can be the value, or expected return, of the policy V π
ϕ (s) at any state

s. In this case, it is possible to prove that:

∇ϕJ(ϕ) = E
[

T∑
t=0
∇ϕ log πϕ(at|st)Gt

]
(1.2.12)

Because we do not have access to the expected value, we estimate it with a mean com-
puted on the set D of collected trajectories:

∇̂ϕJ(ϕ) =
∑
D

T∑
t=0
∇ϕ log πϕ(at|st)Gt (1.2.13)

The sampled return Gt can have a lot of variance, making the learning difficult. It can
be shown however that any value that only depends on the state st can be removed from
Gt in equation (1.2.13). This is called a baseline, and can be used to stabilize the return.
A popular choice of baseline is the value estimation V̂ πϕ(st). This allows to optimize the
advantage J(ϕ) = Aπϕ(st, at) = Qπϕ(st, at) − V πϕ(st), where Qπϕ(st, at) is approximated
by Monte-Carlo using the return Gt experienced by the agent after taking action at at st.
To compute V πϕ(st), it is however necessary to learn a parameterized model for policy
value. The type of architecture where both policy and value are learned models is called
Actor-Critic. The actor is the policy model, trained through policy gradient, while the critic
is the value model, trained through supervised regression.

Proximal policy optimization. A commonly used policy-gradient method is proximal policy
optimization (PPO) [142]. It tackles one of the main problems of using equation (1.2.13):
if the gradient is too high, the policy changes too much, which can destabilize the learning
process.

PPO therefore limits the divergence between the old and the new policies. There are
several versions of PPO, but the simplest - and most used - one uses a clipping function
over the gradient, based on the ratio between the old and new πϕ(at|st). Because PPO is
on-policy, its policy updates rely only on experience gathered since the last policy update.

1.2.3.3. Soft-actor critic. Soft actor-critic (SAC) [61] is an off-policy actor-critic al-
gorithm which uses a part of Q-learning, as its critic learns the Q-value of state-action pairs
based on Q-targets. To cope with continuous action spaces, it however takes in input both
the state and the action, and outputs a single value as prediction. Similarly to DDPG, it
then trains a parameterized policy to optimize the Q-value estimation.

46



An important feature of SAC is that it is entropy-regularized, i.e. that it gives an
additional reward term at each time step to promote higher entropy on the policy. This guides
the trade-off between exploration and exploitation, and is a key factor in the algorithm’s
good performance. The policy’s stochasticity is parameterized as the hyperbolic tangent of
a Gaussian with mean µϕ(s) and standard deviation σϕ(s). It is possible to compute the
policy’s entropy H(πϕ(·|s)) = −Ea log(π(a|s).

The value V πϕ(s) is modified to include the entropy bonus:

V πϕ(st) = Eπϕ

[ ∞∑
k=0

γk (rt+k+1 + αH(π(·|st+k))) |st

]
(1.2.14)

Another important difference with Q-learning is that the action selection for SAC’s target
is not the one maximizing the Q-value, as in DQN or DDPG, but is instead sampled from
the current policy. The critic therefore learns by supervised regression over the entropy-
regularized target, which is sampled as:

T πϕ(st,at) = rt+1 + γ
(
Q̂πϕ(st+1,at+1)− α log πϕ(at+1|st+1)

)
, at+1 ∼ πϕ(·|st+1) (1.2.15)

As the critic and the entropy are differentiable with respect to actions, we use gradient
ascent with respect to the policy parameters ϕ to optimize:

ϕ = max
ϕ

Est∈D[V πϕ(st)] (1.2.16)

= max
ϕ

Est∈D,at∈A[Q̂θ(st, at)− α log πϕ(at|st)] (1.2.17)

where D is the dataset of trajectories, A is the action space, and at ∼ πϕ(·|st).

1.2.4. Bayesian Deep Reinforcement Learning

In the algorithms presented until now, stochastic exploration policies were the only ele-
ments with a probabilistic representation. However, because the DRL algorithms are inher-
ently stochastic, several works have demonstrated the advantage of learning the distributions
of the random variables sampled in these algorithms. Probabilistic representations are richer
than sampled values, and they allow for better informed actions or updates.

In this section, we will focus on the use of probabilistic representations to improve the
performance of DRL algorithms on common metrics such as expected return after training
and sample efficiency. There also exists a body of works exploring the use of probabilistic
representations for safe or robust policies – we will not discuss these questions here.

1.2.4.1. Distributional DQN. The first distributional RL algorithm, Categorical DQN
[16] aims at learning a distribution of returns instead of the value function. It defines the
value distribution Zπ

θ (st,at), a random variable mapping state-action pairs to distributions
over returns.

47



Zπ
θ (st,at) is discretely supported by N atoms zi separated by constant intervals, and

ranging from preset minimum and maximum. Each parameter θi is mapped to atom zi such
that the probability distribution is:

Zπ
θ (st,at) = zi with probability pi(st, at) = exp θi(st,at)∑

j exp θj(st,at)
(1.2.18)

Parameters θ are updated by projecting the targets computed by Q-learning from
Zπ

θ (st+1,at+1) to the support of Zπ
θ (st,at). To select actions greedily, the agent maximizes

the expected value Qπ
θ (st, at) = E[Zπ

θ (st,at)] = ∑
i zipi(st, at).

Learning such distributions allows to stabilize the optimization process, to better han-
dles handling multimodal return distributions, and overall lead to significant improvements
in performance. Empirically, N = 51 atoms has led to good results, and the resulting algo-
rithm is named Categorical 51 (C51). Applying quantile regression to distributional learning
has shown to perform even better, among other reasons because the distribution support au-
tomatically covers the range of all values [37]. While C51 was built over DQN, it has been
adapted to other Q-learning algorithms such as DDPG [15] or SAC [106], also leading to
better performance or allowing for risk-sensitive policies.

1.2.4.2. Epistemic uncertainty estimation for exploration. Exploration is a key
challenge in RL: a bad exploration strategy can significantly reduce the sample efficiency
of the algorithm or converge to sub-optimal policies. On-policies algorithms such as PPO
inherently manage exploration through policy stochasticity, whereas off-policy algorithms
such as DQN need explicit exploration strategies such as ϵ-greedy.

However, these approaches are not guided, in the sense that they do not seek to explore
regions of the state-action space which are unknown and could bring valuable experience,
compared to well visited state space regions. To guide exploration, for example through UCB
or Thompson sampling as explained in section 1.2.2.2, it is necessary to maintain a belief
over the value estimation, i.e. represent it as a probability distribution. This is very different
from Categorical RL, which aims at estimating the stochasticity of the return. Here, the
belief instead represents the agent’s current epistemic uncertainty of the value, which is not
a random variable as it is an expectation.

There are several tools to estimate epistemic uncertainty in regression, as presented in
section 1.1.5.2. Several algorithms use ensembles to do so. In [32, 92], an ensemble of Q-
networks is maintained and used to estimate the mean and variance of the value estimation.
The algorithm then uses UCB to guide exploration. In Bootstrapped DQN [125], an ensem-
ble of Q-networks is also used; however, exploration is done by choosing a different, single
Q-network at the beginning of each episode. Under the assumption that the Q-networks will
give arbitrary values in region spaces where they have not been trained, this can be linked to
Thompson sampling. Because this assumption is not respected at initialization as explained

48



in section 1.1.5.2, it can be beneficial to add a prior. This is proposed by randomized prior
functions (RPF) [127], where the output of a fixed, differently initialized neural network is
added to each Q-network’s output in the ensemble.

While there are many other works on probability distribution for exploration in DRL, they
mostly propose the same approach. Such strategies lead to better performance, especially in
the case of environments with sparse rewards where exploration is key.

1.2.4.3. Out of distribution detection. In off-policy DRL algorithms such as DQN
and SAC, the TD target is computed by bootstrapping from a current value estimation.
However, the current value estimation is not always trustworthy, especially when the state-
action pair at the next time step is out of distribution for the model, i.e. in an input
region where the model has not been trained. To prevent these values from misleading the
learning process, epistemic uncertainty estimation can be used as a threshold under which
some updates are rejected. This is done in SUNRISE [92] in on-policy learning, where the
uncertainty is estimated with ensembles, as well as in UWAC [171] in off-policy learning,
estimating epistemic uncertainty with MC dropout.

1.3. Multi-agent reinforcement learning for decentral-
ized collaboration

It is possible to using RL for autonomous sequential decision making in contexts where
there are more than one agent. When the other agents have stationary policies, they can
be considered by the learning agent as part of the environment’s dynamics P . However, it
is often the case that other agents learn too, and that the task is to train the set of agents
together. This adds different layers of complexity to the RL problem, such as non-stationary
environments, coordination and communication, or scalability.

In this section, we define the multi-agent reinforcement learning (MARL) problem, iden-
tify the main challenges to MARL, and discuss the existing approaches to overcome them.
We will focus on MARL for decentralized collaboration. A significant body of works exist on
competitive MARL but is not particularly relevant for this thesis. On the other hand, cen-
tralized MARL where a single entity controls every agent to maximize a common reward can
be simply formulated as a single agent RL problem with a multi-dimensional action space.
A major source for this section is the survey on MARL by Gronauer and Diepold [58]. We
also consulted the selective overview by Zhang et al [182]. We advise the interested reader
to consult these two excellent sources for details and further approaches and methods.

49



1.3.1. Problem definition

The decentralized MARL problem differs from the single agent RL settings. When several
agents learn together in the environment, its dynamics P become non-stationary environment
from the perspective of a single agent. Every agent can seek to optimize a different return,
which can consist of individual and shared elements, leading to collaborative, competitive, or
mixed dynamics. The agents can also have access from different communication structures
depending on the use case and if they are being trained or deployed.

1.3.1.1. Problem formulation. In the general case, the decentralized MARL problem
can be formulated as a Markov game, an MDP defined by the tuple ⟨S,A,R,P , γ⟩ as in
section 1.2.1, where the action spaceA is a joint action space, divisible between several agents
i: A = ΠN

i=1Ai. The reward space is also separated between every agent: R = ΠN
i=1Ri. The

environment dynamics P include the reward ri distributions for each agent, conditioned
on the state s and the joint actions {ai} [58]. This formulation assumes that every agent
observes the full environment, for example in chess games where each agent can take an
action once every second time step.

However, it is often the case that agents do not have complete access to the state st

of the environment. They can observe a part of this state, through their own observations
oi

t. This is the case, for example, of autonomous cars, where each car has its own sensors
and selects its actions according to their measurements. This setting is modelled by a
decentralized, partially observable MDP (Dec-POMDP) [18, 122], characterized by the
tuple ⟨S,O,A,R,P , γ⟩. S is the global state of the environment. O = ΠN

i=1Oi is the joint
observation space, where Oi is a partial observation of S. Similarly to the Markov game
formulation, A = ΠN

i=1Ai a joint action space, and R = ΠN
i=1Ri the joint reward space.

The environment dynamics P include the observation oi and reward ri distributions for each
agent, conditioned on the state s and the joint actions {ai}.

1.3.1.2. Environment characteristics. When selecting or designing a MARL method
to learn to apply to a Dec-POMDP, it is important to look at different other aspects of
the problem. Identifying some aspects of the environment, such as training communication
paradigm, agents’ homogeneity, and reward structure, can help understand its challenges
and opportunities.

Training communication paradigm. Even if the execution happens in a decentralized way,
the agents can be trained in a centralized or a distributed manner.

In a distributed training, decentralized execution (DTDE) paradigm, the agents have to
learn independently based only on their own experience. This happens when agents have
to learn in an environment where they do not have additional means of communication

50



compared to the deployment environment. DTDE is a difficult paradigm [111], which scales
poorly in number of agents [59].

In the centralized training, decentralized execution (CTDE) paradigm, we instead
assume that the agents can share additional information during training [81]. This can
happen when training in a simulator, or in an environment with additional communication
infrastructures compared to the deployment environment. It allows, for example, to share
experience, to account for other agents’ observations and action intentions, or even to
share policy parameters. Such strategies, which we will detail in subsequent sections, allow
for higher sample efficiency and more stable training, and lead to state of the art performance.

Agent homogeneity. Homogeneous agents are agents whose observation and action spaces,
as well as overall objectives, are similar. This allows for additional simplifications, compared
to heterogeneous agents.

MARL reward structures. As every agent receives a different reward, they can have different
objectives. We distinguish cooperative, competitive, and mixed settings.

In fully cooperative settings, all agents receive in common the exact same common reward,
and they must therefore collaborate to increase the reward together. For example, a team of
mobile robots handling products in a warehouse can have for objective the maximization of
efficiency and productivity for the whole warehouse. Cooperative rewards is a relaxed version
where agents may not receive the same reward but benefit from collaborating. For example,
autonomous cars can aim at carrying their individual passenger from their current location
to their objective as fast as legally possible, but they also need to collaborate with other cars
to prevent accidents.

In fully competitive settings, the agents play a zero-sum game where they can only win
as much as the other agents lose. They must therefore compete against the others. For
example, a game of chess is fully competitive as only one player wins. The more relaxed
competitive setting relates to environments which are not zero-sum but where agents can
still benefit from reducing the others’ reward. For example, an environment where agents
must manage companies will see agents competing against other for a given market, but also
acting together to expand this market.

Because many environments do not perfectly fit in these categories, the more general
mixed settings encompasses the other possibilities. For example, in a team game such as
soccer, agents have fully collaborative goals with agents on their team, but fully competitive
goals with respect to the other team.

51



1.3.2. Challenges particular to MARL

As previously mentioned, MARL leads to several challenges. We will detail some of them
here, focusing on collaborative settings.

1.3.2.1. Non-stationarity. Single agent RL approaches are based on the assumption
that the environment dynamics, characterized by P in the MDP tuple, are stationary. This
means that they do not evolve in time, making it possible for an agent to evaluate and improve
a policy based on previous experience. Other agents can fit in this framework if they have
stationary policies: they are then considered as part of the environment’s dynamics.

In MARL, the other agents are learning, and therefore their policies are not stationary.
From a single agent’s perspective, the environment dynamics changes every time the policies
are updated. This can lead to high instability in the learning process, as values and policies
learned on previous environment dynamics may be completely unfit to the new dynamics.

1.3.2.2. Partial observation. In a Dec-POMDP, the agents are not able to individ-
ually fully observe the state of the environment. This breaks the Markov assumption over
the environment. On the policy side, it adds aleatoric uncertainty as the input has less
information to choose the best action. This is also true on the critic side, where it is harder
to learn the state value based on a partial state observation.

1.3.2.3. Credit assignment. In collaborative settings, several agents take actions at a
given time step, and this leads to a high, or low, common reward at current and later time
steps. This leads to a difficult problem on the agent side: how to differentiate the impact of
its own action from the others’ actions? This issue is called the credit assignment problem
and can lead to confusing feedback for the agent.

1.3.2.4. Coordination. In collaborative environments, the agents need to learn to co-
ordinate. However, exploration for coordination may be tricky. As an example with two
agents: if one agent follows an optimal coordination policy but the other one does not, it
may lead to a low reward and send negative feedback to the first agent, who will reduce
the probability of doing this action. Coordination therefore suffers from the combination of
non-stationary dynamics and credit assignment issues.

1.3.2.5. Communication. It is sometimes necessary to share information between
agents to better coordinate. It is possible to engineer the messages from the emitter’s obser-
vations [55]. This strategy means that the receiver only must learn to interpret the messages.
It is equivalent to increasing the observability of the state by the agents. However, it is lim-
ited in flexibility and does not allow agents to indicate their intentions.

Instead, it is also possible to learn to communicate. Agents must develop a communi-
cation protocole alongside their policy [152]. This allows more flexibility, but it leads to a

52



similar issue than learning to coordinate. The emitter needs to learn to communicate the
right information, and the receiver to understand it. If one of these two agents acts the
right way but the other one does not, both will be penalized, and the first agent will receive
negative feedback for communicating correctly.

1.3.2.6. Scaling in number of agents. Most challenges previously mentioned become
harder when scaling in number of agents. The environment becomes less stationary, and
a single agent observes less of the relevant state information. Credit assignment naturally
becomes a harder problem, making coordination and communication more difficult to learn
too. On the top of these issues, training with more agents can be expensive, as it multiplies
the computational power needed in simulation, or the efforts and risks in the case of real
world agents.

1.3.3. MARL approaches

Many approaches have been developed to tackle the specific challenges of MARL. We
will describe here the most relevant ones for this thesis.

1.3.3.1. Parameter sharing. In a CTDE setting, it is possible for the agents’ actors
and critics to share some model parameters [59, 34]. This reduces the amount of parameters
to train, allowing for a better scalability of the learning process. The more similar are the
agents, the more they can share parameters. Homogeneous agents can even share their whole
learning model, making the learning process arbitrarily scalable in terms of number of agents.

1.3.3.2. Shared experience. In CTDE settings, homogeneous agents can also share
their experience, as it can be valuable to the others. This can increase the scalability of the
learning process, as the number of gathered samples is multiplied by the number of agents.
It is naturally implemented in the case of full parameter sharing.

1.3.3.3. Centralized critics. In some actor-critic algorithms such as PPO, the critic
is not deployed and only serves to stabilize the training, as seen in section 1.2.3.2. As
such, in a CTDE setting, it is possible to have centralized critics which are given more
information than the actor [81]. Centralized critics are aware of the observations and actions
of the other agents. They predict the value V̂ π(o1

t , ..., oN
t , a1

t , ..., aN
t ) where the action of the

current agent ai
t is not given as an input – otherwise it would be the Q-value. Including the

other agents’ observations reduces the impact of partial observations, while conditioning the
prediction on the other agents’ actions marginalizes their policies and reduces the impact of
non-stationarity [49, 24].

1.3.3.4. Mean field RL. In environments with numerous agents, an agent can consider
the mean of all other agents’ impacts on itself as a single, global agent with which it has a
bilateral interaction. It is then possible to model the interactions between a single agent and

53



the others as a mean-field environment with two agents. This approach, called mean-field
RL, allows to reduce the complexity when scaling the number of agents [177, 151, 30].

1.3.3.5. Reduced communications. In some environments, deployment constraints
impose a structure, such as locally constrained communication where agents only talk to
neighbors [183]. This forced local coordination can still be sufficient depending on the task,
and may even allow better scalability.

Even without constraints, reducing the number of other agents each agent communicates
with can lower the complexity of learning communications. Neighborhood weighted com-
munications can be relevant if there exists a relevant measure of distance between agents to
characterize the impact of each other on their rewards [33]. For example, it is more relevant
for autonomous cars to communicate with other cars in their vicinity. Attention mechanisms
can also be used, to decide when to communicate [74], or with whom [39]. A recent survey
about communications in MARL is available in [186].

1.3.3.6. Common MARL algorithms. The relevance of the approaches presented in
the previous section strongly depends on the environment characteristics. They are usually
implemented on the top of single agent DRL algorithms.

Multi-agent PPO (MA-PPO), in particular, is often regarded as a state-of-the-art base-
line for MARL with Dec-POMDPs [179, 123]. In its most common implementation, a
centralized critic is added to single agent PPO. Because it is on-policy, its experience always
represents the current environment dynamics, making it less vulnerable to non-stationarity
than off-policy alternatives. However, it needs significant amounts of experience, which can
be expensive to scale in MARL settings.

Off-policy algorithms, such as multi-agent DQN (MA-DQN), MA-Rainbow DQN [14]
and their continuous action counterpart multi-agent DDPG (MA-DDPG) [104], have been
proposed when computational resources are limited. Off-policy algorithms allow to reuse
experience but they suffer more than on-policy algorithms from the non-stationarity of envi-
ronments, as the experience they re-use may not be representative of the latest environment
dynamics after other agents update their policies. In addition, Q-learning algorithms such
as MA-DQN use their critic in deployment, which prevents centralizing the critic in CTDE
settings.

54



Chapter 2

Prologue to Article 1

This article was accepted and presented at the Thirty-eighth International Conference on
Machine Learning (ICML) 2021, at the Workshop on Uncertainty & Robustness in Deep
Learning. It was a joint work with Waleed Khamies and Liam Paull. Waleed Khamies was
an intern at the Robotics and Embodied AI Lab.

In this article, we propose a new loss function to mitigate the effect of noisy labels in
regression with deep neural networks, when the noise is heteroscedastic and its variance
known for each label. While this paper could be relevant to many different use cases, it is a
key element towards the second paper in this thesis.

Contribution statement: The problem tackled by this paper was identified and de-
fined by myself, and I designed the method we propose. The experiments were conceived,
implemented, ran and analyzed together with Waleed Khamies, under the guidance of Liam
Paull. I prepared the manuscript, which was reviewed by both Waleed and Liam. After
acceptance, Waleed ensured the code was available open source, tested extensively, and well
documented.





Chapter 3

Article 1: Batch Inverse-Variance Weighting:
Deep Heteroscedastic Regression

Résumé
Dans la tâche d’apprentissage supervisé de régression hétéroscédastique, chaque étiquette

est sujette à un bruit provenant d’une distribution distincte. Le générateur d’étiquettes
peut estimer la variance de la distribution du bruit pour chaque étiquette, ce qui constitue
une information utile pour atténuer son impact. Nous adaptons une erreur quadratique
moyenne pondérée par la variance inverse, basée sur le théorème de Gauss-Markov, pour la
descente de gradient sur les réseaux neuronaux. Nous introduisons la fonction de perte BIV
(Batch Inverse-Variance), qui est robuste aux échantillons sans bruit et permet de contrôler
le taux d’apprentissage effectif. Nos résultats expérimentaux montrent que BIV améliore
significativement les performances des réseaux sur deux ensembles de données bruyantes,
par rapport à la perte L2, à la pondération de la variance inverse et à une méthode de
référence basée sur le filtrage.
Mots clés: régression hétéroscédastique, étiquettes bruitées

Abstract
In the supervised learning task of heteroscedastic regression, each label is subject to noise

from a different distribution. The label generator may estimate the variance of the noise
distribution for each label, which is useful information to mitigate its impact. We adapt
an inverse-variance weighted mean square error, based on the Gauss-Markov theorem, for
gradient descent on neural networks. We introduce Batch Inverse-Variance, a loss function
which is robust to near-ground truth samples, and allows to control the effective learning
rate. Our experimental results show that BIV improves significantly the performance of
the networks on two noisy datasets, compared to L2 loss, inverse-variance weighting, and a



filtering-based baseline.
Key words: heteroscedastic regression, noisy labels

3.1. Introduction
In supervised learning, a central assumption is that the samples in the training dataset,

used to train the model, and the samples in the testing set, used to evaluate the model,
are sampled from identical distributions. Formally, for input x and label y, this assumption
implies that ptrain(x,y) = ptest(x,y). This can be decomposed as the product ptrain(x) ·
ptrain(y|x) = ptest(x) · ptest(y|x), which is true if :

(1) The training dataset is representative and the features in both datasets are sampled
from the same distribution: ptrain(x) = ptest(x).

(2) The labels in both datasets are sampled from the same conditional distribution:
ptrain(y|x) = ptest(y|x). If this condition is violated, the training labels are noisy.

One case of noisy labels is when the labelling process induces uncertainty about the
labels. In this case, ptrain(y|x) encapsulates the uncertainty of the labelling process, whereas
the ground truth ptest(y|x), over which we seek to optimize the performance of the model,
are drawn from a Dirac delta distribution, even though it may be impossible to collect such a
dataset in practice. In this case, the performance of the deployed model may decrease since
the training process did not actually optimize the model’s parameters based on the correct
data [10, 76].

In this paper, we examine the case where we have some additional information about
ptrain(y|x). More specifically, we focus on the task of regression with a deep neural network
when labels are corrupted by heteroscedastic noise: ptrain(y|x) ∼ N (µy,σy) where µy is the
ground truth label and σy is different for each sample. We assume that we have access to
at least an estimate of the variance σy for each corrupted each label. This information is
available if the labels are being generated by some stochastic process that is capable of also
reporting uncertainty. We examine how the knowledge of the estimate of the label noise
variance can be used to mitigate the effect of the noise on the learning process of a deep
neural network. We refer our method as Batch Inverse-Variance (BIV)1, which is based on
inverse-variance weighting for linear regression (IV). We show that applying the inverse-
variance loss allows for a strong empirical advantage over the standard L2 loss. However, it
is unstable in presence of near ground-truth labels and not appropriate for all optimizers.
BIV includes two mechanisms to stabilize the learning process in this case.

Our claimed contributions are threefold:
(1) An analysis of the labelling process giving rise to a heteroscedastic regression problem

in supervised learning.

1https://github.com/montrealrobotics/BIV

58

https://github.com/montrealrobotics/BIV


(2) We present BIV, a loss function which uses the noise variance to minimize the per-
formance loss due to the noise in a robust and reliable way while keeping control on
the learning rate.

(3) An experimental study comparing the performances of BIV over L2 loss, IV, as well
as over a threshold-based filtering method.

How best to use the information of the variance of heteroscedastically noisy labels in
neural networks has not been studied in detail in the literature, maybe because neural
networks are usually robust to strong label noise [137] or because the datasets traditionally
do not include such information. We believe however that (1) the recent usage of deep neural
networks in fields in which uncertainty plays a major role, such as robotics [159], as well as
(2) the combined advances in uncertainty estimation of the neural network output [77, 90]
and in complex deep learning systems such as deep reinforcement learning where the labels
are provided by another neural network [115, 61], make this problem highly relevant.

The outline of the paper is as follows: In section 2, we describe the task of regression
with heteroscedastic noisy labels. In section 3, we position our work among the existing
literature on learning with noisy labels. In section 4, we explain the challenges of using IV
in neural networks, and introduce BIV as an approach to improve its robustness. In section
5, we describe the setup for the experiments we made to validate the benefits of using BIV,
and we present and analyze the results in section 6.

3.2. Heteroscedastic noisy labels in regression
Consider an unlabelled dataset with inputs {xi}. To label it, one must apply to each

input xi an instance of a label generator LGj which should provide its associated true label
yi. This label generator has access to some features zi ∈ Z correlated to xi. We define
LGj : Z −→ R . When the labelling process is not exact and causes some noise on the label,
the noisy label of xi provided by LGj is defined as ỹi,j. Noise on a measured or estimated
value is often represented by a Gaussian distribution, based on the central limit theorem, as
most noisy processes are the sum of several independent variables. Gaussian distributions
are also mathematically practical, although they present some drawbacks as they can only
represent uni-modal and symmetric noise. We model:

ỹi,j = yi + δyi,j
with δyi,j

∼ N(0, σ2
i,j) (3.2.1)

σ2
i,j can be a function of zi and LGj, without any assumption on its dependence on one

or the other. We finally assume that the label generator is able to provide an estimate of
σ2

i,j, therefore being re-defined as LGj : Z −→ R × R≥0. The training dataset is formed of
triplets (xi, σ2

i,j, ỹi,j), renamed (xk, σ2
k, ỹk) for triplet k for simplicity. This setup describes

many labelling processes, such as:

59



Crowd-sourced labelling. In the example case of age estimation from facial pictures, labellers
Alice and Bob are given zi = xi the picture of someone’s face and are asked to estimate
the age of that person. Age is harder to estimate for older people come (5 and 15 years
of age are harder to confuse than 75 and 85) suggesting a correlation between σ2

i,j and zi.
But Alice and Bob may also have been given different instructions regarding the precision
needed, inducing a correlation between σ2

i,j and LGj. Finally, there may be some additional
interactions between zi and LGj, as for example Alice may know Charlie, recognize him on
the picture and label his age with lower uncertainty. Both labellers can provide an estimation
of the uncertainty around their labels, for example with a plus-minus range which can be
used as a proxy for standard deviation.
Labelling from sensor readings, population studies, or simulations. Imagine you want build
a dataset of pictures xi from a camera on the ground labelled with the position yi of a drone
in the sky. To estimate the position of the drone at the moment the picture was taken, you
could use state estimation algorithms based on the Bayes’ filter [159]. These algorithms
take as an input zi the measurements from the drone’s sensors, and provide a full posterior
distribution over the state, sometimes under a Gaussian assumption for Kalman filters for
example. The uncertainty depends on the precision of the sensors, the observability of a
given state, the precision of the dynamic model, and the time since sensor signals were
received. Similarly, studies based on population such as polling or pharmaceutical trials
have quantified uncertainties based on the quantity and quality of their samples. It is also
possible to train on simulators, as in climate sciences [133] or in epidemiology [7], and some
of them provide their estimations’ uncertainty based on the simulation procedure and the
inclusion of real measurements in the model.

(
(s, a), σ2

T , T (s,a)
)

Using predictions from a neural network in complex neural architectures. In deep reinforce-
ment learning for example, the critic network learns to predict a value from a state-action
pair under the supervision of the heteroscedastic noisy output of a target network plus the
reward [114, 61]. While the estimation of the uncertainty of the output of a neural network
is not an easy task, it is an active field of research [52, 130]. There, zi is the state-action
pair at the next step, and LGj the target network being updated over time. The prediction
is a mix of aleatoric and epistemic uncertainties as defined by [77] which are dependent on
both zi and LGj.

We could not find any current dataset that provides such label uncertainty information
for regression. However, as it is precious information, we argue that it should actually be
provided when possible. In classification, [174, 173] took a step in this direction by providing
a “confidence” score from 0 to 255 for each pixel in the KITTI-360 dataset.

60



3.3. Related work
Noise on labels amounts to a loss of information. When the noise is significant enough, it

leads to overfitting and lower model performance [102, 181]. This effect is more prevalent
in small data settings [161]. Four possible strategies exist in the literature to tackle this
problem for neural networks: detection, correction, robustness, or re-weighting.

• Detection consists of identifying noisy labels and ignoring them in the learning pro-
cess. These methods are often based on the observation that neural networks first
fit on consistent, non-noisy data [10], thus converging to a higher loss on the noisy
samples [134, 144]. Other methods use several neural networks to co-teach each
other [62, 180] or dropout to estimate the consistency of the data [134]. However,
in the case of imbalanced training datasets, higher loss can also be the signature of
a non-noisy but rare sample. [29] address this ambiguity by regularizing different
regions of the input space differently.
• Correction strategies go further: once noise is detected, the noisy labels are changed

to probability distributions. Such an operation requires a noise model. [54, 82, 107,
156, 178] learn it jointly with the parameters, assuming a correlation between the
noise and the input, the labels, or both.
• Robust loss functions are less sensitive to noise. [102] proposed to avoid overfit-

ting due to noise by ignoring samples during the training when the prediction error
is reasonable. [118] compute the loss assuming knowledge of example-independent
mislabelling probabilities in binary classification, and then optimize these hyperpa-
rameters with cross-validation. More recent works are based on reverse cross-entropy
[165] or curriculum loss [105]. Others leverage a distillate of the information gathered
from a subset of clean labels to guide training with noisy labels [97].
• Re-weighting the samples is another efficient method for mitigating noise in datasets.

[101] estimate the effective label probabilities as well as noise rates for a given input
and use these estimates to weigh the samples using importance sampling. [145] go
one step further by learning the weighting function through a meta-learning method.
[73] control overfitting by adjusting sample weights in the training and validation
mini-batches, increasing robustness to overfitting on noisy labels.

While most works that address noisy labels consider classification tasks [148], only some
of these strategies can be generalized to regression. Heteroscedastic regression occurs when
each label’s noise is sampled from a different distribution. [120] tackle this problem in neural
networks by jointly training a variance estimator based on the maximum likelihood of an un-
derlying Gaussian model. [77] use the same idea to estimate the aleatoric (input-dependant)
uncertainty of the network’s prediction, while using dropout as a Bayesian approximation for

61



the epistemic uncertainty (due to the learning process) as in [52]. [140] use a re-weighting
approach to regression, identifying noisy samples using the Parzen windowing method.

Similarly to [140], our method tackles heteroscedastic regression in neural networks using
a re-weighting approach. The main distinction between our work and most of the related
literature is that, while we do not require that the noise variance is a function of the input or
of the label, we do assume that we have access to the noise variance, or at least an estimate
of it. In addition, we do not seek to regress the variance of the model’s prediction. This is
significant compared to the previous works in both regression and classification as it proposes
to answer the question: how to best use this additional information to train a deep neural
network model?

Note that other regression models, such as Gaussian processes, have the ability to take
the uncertainty of the label into account built into their framework. However, they require
the design of a kernel to define distances between inputs, which is difficult in high dimensional
inputs such as images. Additionally, they scale poorly with the number of samples [22].

3.4. Batch Inverse-Variance Weighting
3.4.1. Inverse variance for linear models

The task of heteroscedastic linear regression, where the model is linear, is solved by
optimizing a weighted mean square error (WMSE) with inverse-variance weights, which is
the optimal solution as per the Gauss-Markov theorem [143]:

WMSE =
n∑

k=0

(yk − xk · β)2

σ2
k

(3.4.1)

where β is the vector of parameters used as linear coefficients. This is also the solution to
maximum likelihood estimation for parameters β given the training examples [47].

While the solution to such an optimization is known for linear regression (β∗ =
(xT wx−1)xT wy), we could apply it to gradient-based methods for neural networks by using
the Inverse Variance (IV) loss function for each sample:

LIV(xk, ỹk, θ) = (f(xk, θ)− ỹk)2

σ2
k

(3.4.2)

However, using LIV(xk, ỹk, θ) in a gradient descent setup brings two problems:
(1) Near ground-truth samples, with very small σ2

k, have a disproportionate learning rate
with respect to the others. They risk to cause overfitting while other samples are
ignored.

(2) In gradient-based optimizers, the learning rate impacts the optimization process and
should be controllable by the practitioner. In IV loss, the average of the sample

62



weights 1/σ2
k acts as a constant multiplied to the learning rate, making such control

harder. While this would be less important in adaptive learning rate optimizers such
as Adam [78] as any constant multiplied to the loss is cancelled, it would still be
problematic in continual or reinforcement learning tasks where the noise variance
distribution can evolve.

3.4.2. Batch Inverse-Variance weighting for heteroscedastic noisy
labels

To address these issues, we introduce the Batch Inverse-Variance (BIV) loss function:

LBIV(Di, θ) =
(

K∑
k=0

1
σ2

k + ϵ

)−1 K∑
k=0

L (f(xk, θ),ỹk)
σ2

k + ϵ
(3.4.3)

The first distinction with respect to the IV loss of (3.4.2) is that it is computed on the
whole batch instead of only being defined on a single sample. This allows to normalize the
loss based on the weights of the other samples in the batch. The gradient’s scale is thus in
dependent from the noise variance distribution, allowing better learning rate control and to
use BIV in methods relying on the dynamics of the learning process.

Note that consistency is verified as, when σ2
k is identical for each sample, this formulation

leads to empirical risk minimization normalized by the number of samples in the mini-batch.
Another difference with the IV loss is the smooth lower bound on the variance, ϵ, which

allows to incorporate samples with (near) ground-truth labels without ignoring the other
samples. ϵ allows to control the effective batch size EBS, which, according to [79], is equal
to

EBS =

(∑N
i wi

)2

∑N
i w2

i

=

(∑N
i

1
(σ2

i + ϵ)

)2

∑N
i ( 1

(σ2
i + ϵ))2

(3.4.4)

A higher ϵ increases EBS by reducing the relative difference between the weights, thus
reducing the effect of BIV. We found that ϵ can be set between 0.01 and 0.1 for normalized
losses. More details can be found in appendix A.2.1.

These two elements allow us to overcome the challenges related to inverse variance weight-
ing applied to gradient descent described in section 3.4.1.

3.4.3. Cutoff: filtering heteroscedastic noisy labels

In order to compare the BIV approach to a baseline, we introduce the Cutoff loss. As
we do not assume that there is a correlation between xk and σ2

k, most correction and re-
weighting algorithms as presented in Section 3.3 are not applicable. Additionally, most

63



robust loss functions are specifically designed for classification problems. We thus compare
BIV to a detection and rejection strategy.

In heteroscedastic regression, an important difference from classification with noisy labels
is that all labels are corrupted, albeit not at the same scale. Defining which labels to ignore
is therefore a matter of putting a threshold on the variance. As we have access to this
information, detection strategies such as the ones used in section 3.3 are not necessary.
Instead, we simply use an inverse Heaviside step function as a weight in the loss function:

wk = 1σ2
k

<C (3.4.5)

where the threshold C is a hyper-parameter. Similarly to equation (3.4.3), we normalize
the loss in the mini-batch by the sum of the weights, equal here to the number of samples
considered as valid. As this filtering is equivalent to cutting off a part of the dataset, we
refer to this method as ‘Cutoff’, and consider it to be a relevant baseline to compare BIV
against.

3.5. Experimental Setup
To test the validity of the BIV loss (3.4.3) approach, we compared its performance with

the classical L2 loss as well as cutoff loss (3.4.5) on two datasets. We refer to ground-truth
(GT) labels when training with L2 on noise-less data as the best performance that could be
achieved on this dataset.

Unfortunately, we did not find any existing dataset for regression where label uncertainty
is associated to the samples. We therefore used two UCI datasets [42] for regression cases,
and artificially added noise to them. UTKFace Aligned&Cropped [149] (UTKF), is a dataset
for image-based age prediction. In the Bike Sharing dataset [45], the task is to predict the
number of bicycles rented in Washington D.C., from structured data containing the date,
hour, and weather conditions. For UTKF, a convolutional neural network was used to predict
the age, while a simple multi-layer perceptron was used for BikeSharing. More details about
the datasets and models can be found in appendix A.1.

3.5.1. Noise generation

To produce the datasets {xk,σ2
k, ỹk} with noise as described in section 3.2, we use a

two-step process which does not assume any correlation between the noise and the state.
(1) The noise variance σ2

k is sampled from a distribution P (σ2) which only has support
for σ2 ≥ 0

(2) ỹk is sampled from a normal distribution N (yk, σ2
k).

P (σ2) has a strong effect on the impact of BIV or Cutoff. For example, if it is a Dirac
delta and all variances are the same, BIV becomes L2. We evaluate BIV on three different

64



types of P (σ2). The average noise variance µP was chosen empirically so that the lowest
test loss achieved by L2 is doubled compared to the ground-truth label case: µP = 2000 for
UTKF and 20000 for BikeSharing.
Uniform distribution. The uniform distribution is characterized by its bounds a,b. Its ex-
pected value µP is the average of its bounds, and its variance V = (b− a)2/12 . As P only
has support for σ2 ≥ 0, the maximum variance Vmax is when a = 0 and b = 2µP . While such
a distribution is not realistic, it is simple conceptually and allows for interesting insights.
“Binary uniform” . A more realistic distribution, which can also help us understand the
effects of BIV, is when the data is generated from two regimes: low and high noise. We call the
“binary uniform” distribution a mixture of two uniform distributions balanced by parameter
p. With probability p, the label is in a low noise regime: σ2 ∼ U(0,1), with expected value
µl = 0.5. With probability 1 − p, the label is in a high noise regime: σ2 ∼ U(ah,bh). ah

and bh are chosen such that the average is µh and the variance of the high-noise distribution
is determined by Vh ∈ [0, Vmax]. Note that, if we want a given expected value of the whole
distribution µP , the value of µh changes depending on p: µh = (µP − pµl)/(1− p)

Therefore, the high-noise expected value µh of the noise variance σ2 in a distribution
with high p will be higher than the one for a low p, for the same value of µP . In other words,
a higher p means more chance to be in the low-noise regime, but the high-noise regime is
noisier.
Gamma distributions. While the mixture of 2 uniform distributions ensures support in the
low noise region, it is not continuous. We therefore also propose to use a Gamma distribution
with shape parameter α. If we want to control the expected value µP , we adjust β = α/µP .

For a fixed expected value µP , lower α and β mean that there is a stronger support
towards low variance noise, but the tail of the distribution spreads longer on the high-noise
size. In other words, a lower α means more chances to have low-noise samples, but when
they are noisy, the variance is higher. When α ≤ 1, the highest support is at σ2 = 0.

3.5.2. Evaluating the performance of the model

The objective of BIV is to improve the performance at predicting the true label yi.
While a non-noisy test dataset may not be available in a real application, we aimed here at
determining if BIV performs better than L2, and therefore measured the performance of the
network using mean square error on ground-truth test data.

65



3.6. Experimental Results and Analysis
3.6.1. For L2 loss, mean variance is all that matters

Before looking at the results for BIV, we share an interesting insight for L2 loss with noisy
labels which helps simplifying the analysis of the results. Under the unbiased, heteroscedastic
Gaussian-based noise model presented in section 3.5.1, the only parameter of distribution
P (σ) that mattered to describe the performance of the L2 loss is its average µP , which is also
the variance of the overall noise distribution. Independently of the distribution type, and
the values of V , p and Vh, or α, as long as µP is equal, the L2 loss trained neural networks
had the same performance. This is shown in Figure 1. For the sake of clarity, all the curves
in this section were smoothed using moving average with a 35 steps window, and the shaded
area represents the standard deviation over several runs.

Fig. 1. Similar performance of the L2 loss on UTKF for different P (σ2) with constant
µP = 2000. No matter the distribution type or parameters, the performance is similar.

3.6.2. High and low variance noise regimes: BIV acts as a filter

With the binary uniform distribution, the noise is split in two regimes, with high or low
variances. In this case, our results show that BIV performs better than L2, and actually
similarly to the cutoff loss presented in section 3.4.3 with a threshold C = 1.

Figure 2 compares the test losses on UTKF with different values of p for Vh = 0. While
the L2 curves are strongly impacted by the noise, both the BIV and cutoff losses lead to
better and very similar performances for a given p. When p = 0.3, there are not a lot of
information that can be used, and the performance is still impacted by the noise. When
p = 0.9, there is nearly as much near-ground-truth data as in the noiseless case, and the
performance is comparable.

In the case of binary uniform distributions, BIV is acting as a filter, cutting off labels
which are too noisy to contain any useful information.

66



Fig. 2. Comparison between BIV, Cutoff and L2 losses for binary uniform distributions of
variance with different ps for µP = 2000 and Vh = 0 on UTKF.

3.6.3. Continuous, decreasing noise variance distribution: the ad-
vantage of BIV

On Gamma distributions, there is no clear threshold to define which information to use.
When α ≤ 1, BIV shows a strong advantage compared to both L2 and cutoff. Figure 3
shows the results in both the BikeSharing and the UTKF datasets for Gamma distributions
with α = 1.

Fig. 3. Comparison between the performances of BIV, L2, and different cutoff values on
both datasets where the noise variance follows a Gamma distribution with α = 1.

In both datasets, when the cutoff parameter C is too low (µP /4 and µP /2), there is not
enough data to train the model. When C is too high (2µP and 5µP ), the data is too noisy
and the curves go close to the original L2 loss. Even at the best case (C = µP ), cutoff
is not better than BIV. This is because, in contrast to cutoff, BIV is able to extract some
information from noisier samples while avoiding to over-fit on them.

67



In Table 1, we present the lowest value of the test loss curves for the different methods
with other α parameters for the Gamma distributions over both datasets. BIV consistently
leads to the best performances, regardless of P (σ2). The plots showing these runs can be
found in the appendix A.2.3.1. BIV is less sensitive to hyperparameters than cutoff, as it
avoids the need to choose the right cutoff parameter for each distribution P (σ2). BIV’s own
hyperparameter ϵ can be set between 0.01 and 0.1 for any dataset with a normalized output,
as shown in appendix A.2.1, and be ready to use. As ϵ can be seen as a minimal variance,
scaling it for other label distributions is straightforward: it suffices to multiply it by the
variance of the label distribution. Here, it was set at 0.05.

Table 1. Lowest test loss for different α on two datasets, for BIV, L2 and several cutoff
losses. The test loss with standard deviation is computed as the average over 5 runs. In
every case, BIV loss led to the lowest value. The best C value differs based on α.

α = 1 α = 0.5 α = 0.25
UTKF Bike UTKF Bike UTKF Bike

C = µP /20 0.79±.08 0.327±.056 0.48±.04 0.125±.010 0.38 ±.05 0.092±.008
C = µP /4 0.55±.04 0.135±.016 0.45±.04 0.097±.006 0.39±.03 0.085±.006
C = µP 0.50±.04 0.111±.009 0.48±.04 0.097±.008 0.43±.03 0.088±.006
C = 5µP 0.55±.06 0.120±.009 0.54±.05 0.111±.012 0.51±.04 0.107±.009

L2 0.56±.05 0.122±.010 0.56±.05 0.116±.011 0.55±.05 0.119 ±.012
BIV (ours) 0.46±.03 0.096±.006 0.40±.03 0.088±.006 0.33±.02 0.079±.006

IV 0.99±.03 0.120±.021 1.65±.03 0.554±.041 N.A. N.A.
GT labels 0.25±.02 0.066±.004 0.25±.02 0.066±.004 0.25±.02 0.066±.004

The benefit of BIV over L2 is clearly higher when α is lower. This is due to an increase in
the support for low-variance noise in P (σ2). The more BIV can count on low-noise elements
and differentiate them from high noise ones, the better it can perform. This is consistent
with results from section 3.6.2, and with other experiments we have run. For example,
when α > 1, the highest support of P is not at σ2 = 0. BIV was less able to improve the
performance compared to L2.

We also ran the experiment with uniform distributions: the performance is better when
variance V is closer to Vmax (and a to 0). But even when V = Vmax, as there is less support
in low noise variance than for Gamma distributions with α ≤ 1, the improvement is less
important.

In all cases, BIV was performing consistently better than L2 and at least better than
cutoff in all the experiments we ran. More details on these results can be found in appendix
A.2.2.

68



3.6.4. Ablation study: comparison to IV

While we have shown in the previous parts that inverse variance weighting is indeed
performing better than L2 or cutoff, we focus here on the role of both normalization and ϵ

in BIV loss (3.4.3) compared to a simple IV loss (3.4.2) using an ablation study. The results
of using IV on a Gamma distributions with α values of 1, 0.5 and 0.25 are shown in table 1.
It is clear that BIV performs better, but also that IV is struggling when α is small, which is
when there is a higher probability that a sample’s variance is very close to zero. Actually, the
training process would diverge for α = 0.25 on every seed for both BikeSharing and UTKF
datasets.

Fig. 4. Ablation study for ϵ and normalization for both datasets where P (σ2) is a Gamma
distribution with α = 1.

Fig. 5. Training loss for ablation study for ϵ and normalization for both datasets where
P (σ2) is a Gamma distribution with α = 1. Note that, because the normalization value
depends on ϵ, these curves should not be compared quantitatively but quantitatively, by
looking at their respective variability.

More details can be seen in figure 4. Here, the advantage of BIV, with ϵ and normaliza-
tion, is clear over IV, without ϵ nor normalization. The effect of ϵ is significant. It induces
not only the lowest test loss, but also learns faster by preventing low-variance samples to
create high variability in the training loss. In figure 5 showing the training loss, it is evident
that with ϵ, the variability of the loss is smaller. The impact of normalization is more subtle.

69



In this case, the optimizer we used was Adam [78]. Such optimizers are insensitive to a
constant multiplied to the loss function, which is cancelled in the update process. Therefore,
if the normalization constant is actually similar in every batch, it is equivalent to simply
normalizing with the number of samples. This is what is happening when ϵ ̸= 0: the size
of the minibatches and the limited variation in the noise variances makes this normalization
close to effect-less. However, this is not the case when ϵ = 0, where some mini-batches
include such a small-variance sample that it makes the sum of the weights a lot higher than
in other batches, which are actually ignored. With normalization, the effect of this near-
ground truth sample is limited to the minibatch itself, which still allows for some learning
when mini-batches are reshuffled and the samples have a chance to be taken into account at
another epoch.

In the case of another optimizer such as stochastic gradient descent, the effect of normal-
ization could be a lot more important, as it would also regulate the learning rate, regardless
of the average sum of weights, and thus the distribution of noise variances in the dataset.

3.6.5. Robustness

We identified two factors that may impact the performances of BIV: the size of the mini-
batches and the accuracy of the noise variance estimation. We tested the robustness of BIV
when these factors are different than during the previous experiments.
Size of the mini-batches. In equation 3.4.3, each weight is normalized based on the assump-
tion that the distribution of noise variances in the mini-batch is representative of the whole
training dataset. With smaller mini-batches, the variability of the normalization constant
between mini-batch should be bigger. However, this does not affect BIV, which still performs
very well in these cases, as presented in section A.2.4.1.
Noisy variances. Because the noise variance σ2

i is often estimated, the method needs to be
robust to errors in σ2

i ’s. A model for the noise of σ2
i can be a Gaussian for which the variance

is proportional to σ2
i . In this case, results show that the effect of moderate to high levels of

noise on BIV is not significant. More details can be seen in section A.2.4.2

3.7. Conclusion
We have proposed Batch Inverse-Variance, a mini-batch based approach to account for

the variance of the label noise in heteroscedastic regression tasks for neural networks. BIV
is able to extract more information from the noisy dataset than L2 loss or threshold-based
filtering approaches, and consistently outperforms them on both structured and unstruc-
tured datasets, by learning faster and reaching a lower test loss. The method is robust
to low-variance, near ground-truth samples, which is not the case for naively applying an

70



inverse-variance loss. It also enables reliable control of the learning rate, which is partic-
ularly important in tasks such as continual or reinforcement learning. BIV can be easily
implemented in any regression setup, making it a versatile and ready to use algorithm.

An element which would need further investigation is the impact of such weights on the
performance of the model when the noise distribution is not uniformly distributed in the
input space, to ensure that some regions of the input space are not doubly penalized by a
higher level noise and a slower learning compared to the other regions.

71





Chapter 4

Prologue to Article 2

This article was published and presented as a spotlight paper at the Tenth International
Conference on Learning Representations (ICLR) 2022. A preliminary version was presented
at the RL4RealLife workshop at ICML 2021. It was a joint work with Kaustubh Mani and
Liam Paull. Kaustubh Mani was then an intern at the Robotics and Embodied AI Lab.

In this article, we propose to use uncertainty prediction in regression and the BIV loss
presented in Article 1 to improve the sample efficiency of deep reinforcement learning.

The idea for this paper came after following the reinforcement learning class of Prof.
Doina Precup at McGill University. With my background in state estimation for robotics, I
could not help but notice the parallels between the policy evaluation update from a target
in RL and the belief update from a measurement in a recursive estimator such as a Kalman
filter. Recursive estimation measurement updates are significantly more precise when they
consider the uncertainty of the measurement This paper aims at applying the same concept
to RL.

Contribution statement: I produced the core idea behind this work and developed
the BIV loss as a first step towards this project. The algorithm was developed jointly with
Kaustubh Mani. We implemented it step-by-step, testing every design choice before moving
forward. Kaustubh mainly worked on the code, while I was designing, running and analyzing
the intermediate experiments. The final experiments and analyzis were doing jointly with
Kaustubh. Liam Paull supervised the process, provided guidance and advice, and gave
several ideas. I prepared the manuscript and the rebuttal, reviewed by Kaustubh and Liam.
Kaustubh prepared the code so that it is open source, tested, and documented. Finally, I
prepared the poster and videos presenting the paper online at ICML’s workshop and ICLR
2022.





Chapter 5

Article 2: Sample Efficient Deep
Reinforcement Learning via Uncertainty

Estimation

Résumé
Dans les algorithmes d’apprentissage par renforcement (RL) profonds sans modèle,

l’utilisation d’estimations de valeur bruitées pour superviser l’évaluation et l’optimisation
des politiques nuit à l’efficacité en matière d’échantillonnage. Comme ce bruit est hétéroscé-
dastique, ses effets peuvent être atténués en utilisant des pondérations basées sur l’incertitude
dans le processus d’optimisation. Les méthodes existantes reposent sur des ensembles échan-
tillonnés, qui ne capturent pas tous les aspects de l’incertitude. Nous fournissons une analyse
systématique des sources d’incertitude dans la supervision bruyante qui se produit en RL,
et nous introduisons le RL à variance inverse, un cadre bayésien qui combine les ensembles
probabilistes et la pondération Batch Inverse Variance. Nous proposons une méthode où
deux méthodes complémentaires d’estimation de l’incertitude tiennent compte à la fois de
l’incertitude sur la valeur Q et de la stochasticité de l’environnement afin de mieux atténuer
les impacts négatifs de la supervision bruitée. Nos résultats montrent une amélioration signi-
ficative en termes d’efficacité en matière d’échantillonnage sur des tâches de contrôle discrètes
et continues.
Mots clés: apprentissage par renforcement, efficacité en matière d’échantillonage, estima-
tion d’incertitude

Abstract
In model-free deep reinforcement learning (RL) algorithms, using noisy value estimates to

supervise policy evaluation and optimization is detrimental to the sample efficiency. As this
noise is heteroscedastic, its effects can be mitigated using uncertainty-based weights in the



optimization process. Previous methods rely on sampled ensembles, which do not capture
all aspects of uncertainty. We provide a systematic analysis of the sources of uncertainty
in the noisy supervision that occurs in RL, and introduce inverse-variance RL, a Bayesian
framework which combines probabilistic ensembles and Batch Inverse Variance weighting.
We propose a method whereby two complementary uncertainty estimation methods account
for both the Q-value and the environment stochasticity to better mitigate the negative im-
pacts of noisy supervision. Our results show significant improvement in terms of sample
efficiency on discrete and continuous control tasks.
Key words: reinforcement learning, sample efficiency, uncertainty estimation

5.1. Introduction
Deep reinforcement learning (DRL) methods have proven to be powerful at solving se-

quential decision-making tasks across domains [147, 123]. Combining the flexibility of the
reinforcement learning framework with the representational power of deep neural networks
enables policy optimization in complex and high-dimensional environments with unknown
dynamics models to maximize the expected cumulative reward [154].

An important limitation of DRL methods is their sample inefficiency: an enormous
amount of data is necessary and makes training expensive. This makes applying DRL in
the real world challenging, for example in robotics [155, 43]. In tasks like manipulation,
sample collection is a slow and costly process [100]. It is even more expensive in risk-averse
applications like autonomous driving [80].

Among the current state-of-the-art approaches to improve learning efficiency, a promising
direction is to exploit the prevalence of uncertainty in the underlying DRL algorithm. By
adopting a Bayesian framework, we can consider the sampled quantities in DRL as random
variables and leverage information about their distributions to improve the learning process
[124]. In this paper, we consider the particular problem of unreliable supervision in the
temporal difference update and the policy optimization process. In DRL, value predictions
are used to supervise the training: in temporal difference-based algorithms, they are included
in bootstrapped target values which are used as labels; in actor-critic frameworks, the policy
is trained to optimize them. That these value predictions are noisy slows the learning and
brings instability [84, 85]. The amount of noise in the supervision depends on the uncertainty
of the value prediction, which evolves during the training process and depends on the state
(and action) evaluated. It is therefore heteroscedastic.

While there is an extensive body of literature focused on using the uncertainty of the
value prediction to guide the exploration/exploitation trade-off [40, 150, 125, 129, 32,
124, 50, 127, 48, 36, 72, 9], there are very few works focused on leveraging it to mitigate
the impact of unreliable supervision.

76



Distributional RL [16] considers the value function as a distribution to be learned as
such. It is orthogonal to our proposition: we consider the uncertainty of the labels used
to learn a scalar value function. In the offline RL setting, where the dataset is limited,
uncertainty-weighted actor-critic (UWAC) [171] uses inverse-variance weighting to discard
out-of-distribution state-action pairs using Monte Carlo dropout [52] for uncertainty esti-
mation.

Closer to our work, [92] propose SUNRISE, in which each sample of the Bellman backup
in the TD update step is weighted to lower the importance of the targets which have a
high standard deviation. The weights w(s′,a′) are computed based on a sigmoïd of the
negative standard deviation Q̂std(s′,a′) scaled by a temperature hyperparameter T , and then
offset such that they are between 0.5 and 1: w(s,a) = σ(−Q̂std(s′,a′) ∗ T ) + 0.5. The
uncertainty of the target is estimated by sampled ensembles. While SUNRISE proposes
other contributions such as an exploration bonus, the heuristic weighting scheme and the
limitations of sampled ensembles in capturing the predictive uncertainty leave space for
improvement in the mitigation of the effects of unreliable supervision.

We propose inverse-variance reinforcement learning (IV-RL). IV-RL also uses weights to
reduce the importance of uncertain targets in training. It does so by addressing the problem
from two viewpoints. First, we use variance networks [77], whose loss function for regression
is the negative log-likelihood instead of the L2 distance. For a given state-action pair (s,a),
the network learns the target’s noise, due for example to the stochasticity of the environment
or the update of the policy. It then naturally down-weights the highly noisy samples in the
training process. Second, we use variance ensembles [90] to estimate the uncertainty of the
target due to the prediction of Q(s′,a′) during the temporal-difference update. We merge
the predicted variances of several variance networks through a mixture of Gaussians, which
has been shown to be a reliable method to capture predictive uncertainty [128]. We then
use Batch Inverse-Variance (BIV) [109], which has been shown to significantly improve the
performance of supervised learning with neural networks in the case of heteroscedastic regres-
sion. BIV is normalized, which makes it ideal to cope with different and time-varying scales
of variance. We show analytically that these two different variance predictions for the target
are complementary and their combination leads to consistent and significant improvements
in the sample efficiency and overall performance of the learning process.

In summary, our contribution is threefold:
(1) We present a systematic analysis of the sources of uncertainty in the supervision of

model-free DRL algorithms. We show that the variance of the supervision noise can
be estimated with two complementary methods: negative log-likelihood and variance
ensembles.

77



(2) We introduce IV-RL, a framework that accounts for the uncertainty of the supervisory
signal by weighting the samples in a mini-batch during the agent’s training. IV-RL
uses BIV, a weighting scheme that is robust to poorly calibrated variance estimation.1

(3) Our experiments show that IV-RL can lead to significant improvements in sample ef-
ficiency when applied to Deep Q-Networks (DQN) [113] and Soft-Actor Critic (SAC)
[61].

In section 5.2, we introduce BIV as a weighting scheme for heteroscedastic regression,
and variance ensembles as an uncertainty estimation method. We analyse the sources of
uncertainty in the target in section 5.3, where we also introduce our IV-RL framework. We
finally present our experimental results in section 5.4.

5.2. Background and preliminaries
5.2.1. Batch Inverse-Variance Weighting

In supervised learning with deep neural networks, it is assumed that the training dataset
consists of inputs xk and labels yk. However, depending on the label generation process, the
label may be noisy. In regression, we can model the noise as a normal distribution around
the true label: ỹk = yk + δk with δk ∼ N (0, σ2

k). In some cases, the label generation process
leads to different variances for the label noises. When these variances can be estimated, each
sample is a triplet (xk, ỹk, σ2

k).
Batch Inverse-Variance (BIV) weighting [109] leverages the additional information σ2

k,
which is assumed to be provided, to learn faster and obtain better performance in the case
of heteroscedastic noise on the labels. Applied to L2 loss, it optimizes the neural network
parameters θ using the following loss function for a mini-batch D of size K 2:

LBIV(D, θ) =
(

K∑
k=0

1
σ2

k + ξ

)−1 K∑
k=0

(fθ(xk)− ỹk)2

σ2
k + ξ

(5.2.1)

This is a normalized weighted sum with weights wk = 1/(σ2
k + ξ). Normalizing in the mini-

batch enables control of the effective learning rate, especially in cases where the training
data changes over time, such as in DRL. By focusing on the relative scale of the variances
instead of their absolute value, it also provides robustness to poor scale-calibration of the
variance estimates.

As explained in [109], ξ is a hyperparameter that is important for the stability of the
optimization process. A higher ξ limits the highest weights, thus preventing very small
variance samples from dominating the loss function for a mini-batch. However, by controlling
the discrimination between the samples, ξ is also key when the variance estimation is not
1The code for IV-RL is available at https://github.com/montrealrobotics/iv_rl.
2We replaced ϵ in [109] with ξ to avoid confusion with the reinforcement learning conventions.

78

https://github.com/montrealrobotics/iv_rl


completely trusted. It provides control of the effective mini-batch size EBS, according to:

EBS =

(∑K
k wk

)2

∑K
k w2

k

=

(∑K
k

1
(σ2

k + ξ)

)2

∑K
k

1
(σ2

k + ξ)2

(5.2.2)

For example, imagine a mini-batch where most samples have very high variances, and only
one has a very low variance. If ξ = 0, this one low-variance sample is effectively the only one
to count in the mini-batch, and EBS tends towards 1. Increasing ξ would give more relative
importance to the other samples, thus increasing EBS. With a very high ξ compared to the
variances, all weights are equal, and EBS tends towards K; in this case, the BIV loss tends
towards L2.
Tuning the ξ parameter . The simplest way to set ξ is to choose a constant value as an
additional hyperparameter. However, the best value is difficult to evaluate a priori and can
change when the profile of variances changes during a task, as is the case in DRL.

It is instead possible to numerically compute the value of ξ which ensures a minimal EBS

for each mini-batch. This method allows ξ to automatically adapt to the different scales of
variance while ensuring a minimal amount of information from the dataset is accounted for
by the algorithm. The minimal EBS is also a hyper-parameter, but it is easier to set and to
transfer among environments, as it is simply a fraction of the original batch size. As such,
it can be set as a batch size ratio.

5.2.2. Estimating the uncertainty of a neural network prediction

The predictive uncertainty of a neural network can be considered as the combination of
aleatoric and epistemic uncertainties [77]. Aleatoric uncertainty is irreducible and character-
izes the non-deterministic relationship between the input and the desired output. Epistemic
uncertainty is instead related to the trained model: it depends on the information available
in the training data, the model’s capacity to retain it, and the learning algorithm [70]. There
is currently no principled way to quantify the amount of task-related information present in
the input, the training data, or the model. The state of the art for predictive uncertainty
estimation instead relies on different sorts of proxies. These sometimes capture other ele-
ments, such as the noise of the labels, which we can use to our advantage. We focus here on
the relevant methods to our work.

5.2.2.1. Sampled ensembles. Several networks independently train an ensemble of
size N that can be interpreted as a distribution over predictions. The expected behaviour
is that different networks will only make similar predictions if they were sufficiently trained
for a given input. The sampled variance of the networks’ outputs is thus interpreted as
epistemic uncertainty. It is possible to include a random Bernoulli mask of probability p to

79



each training sample, to ensure that each network undergoes different training. This method,
used by [36] and [92], has the same principle as single network Monte-Carlo dropout [52]. As
the variance is sampled, the standard deviation is usually on the same scale as the prediction.

When used at the very beginning of the training process, sampled ensembles present one
particular challenge: as the networks are initialized, they all predict small values. The initial
variance, instead of capturing the lack of knowledge, is then underestimated. To address
this problem, Randomized Prior Functions (RPFs) enforce a prior in the variance by pairing
each network with a fixed, untrained network which adds its predictions to the output [127].
RPFs ensure a high variance at regions of the input space which are not well explored, and
a lower variance when the trained networks have learned to compensate for their respective
prior and converge to the same output. The scale of the prior is a hyper-parameter.3

5.2.2.2. Variance networks. With variance networks, the uncertainty is predicted us-
ing loss attenuation [120, 77]. A network outputs two values in its final layer given an input
x: the predicted mean µ(x) and variance σ2(x). Over a minibatch D of size K, the network
parameters θ are optimized by minimizing the negative log-likelihood of a heteroscedastic
Gaussian distribution:

LLA(D, θ) =
K∑

k=0

1
K

(µθ(xk)− y(xk))2

σ2
θ(xk) + ln σ2

θ(xk) (5.2.3)

Variance networks naturally down-weight the labels with high variance in the optimiza-
tion process. The variance prediction is trained from the error between µθ(x) and y(x).
Hence, noise on the labels or changes in the regression task over time will also be cap-
tured by loss attenuation. As the variance is predicted by a neural network, it may not be
well-calibrated and may be overestimated [83, 96, 20]. This can (1) give wrong variance es-
timates but also (2) affect the learning process by ignoring a sample if the variance estimate
is too high.

5.2.2.3. Variance ensembles. Variance ensembles, or deep ensembles [90], are ensem-
bles composed of variance networks. The predictive variance is given by a Gaussian mixture
over the variance predictions of each network in the ensemble. This method, when trained,
is able to capture uncertainty more reliably than others [128], with N = 5 networks in
the ensemble being sufficient. Similarly to sampled ensembles, variance ensembles suffer
from underestimated early epistemic variance estimation. However, compared to variance
networks, they seem empirically less prone to calibration issues (1) in the final variance es-
timation because the mixture of Gaussians dampens single very high variances, and (2) in
the learning process because even if one network does not learn correctly, the others will.

3Using RPFs in the context of DRL can destabilize the exploration due to a significant initial bias added
to the value of each state-action. It must be compensated for with uncertainty-aware exploration, such as
Bootstrap [125], where it leads to a significant improvement in performance for exploration-based tasks.

80



For better readability, we will use the terms var-network and var-ensemble in the rest of
the paper.

5.2.3. Uncertainty and exploration in DRL

While our work focuses on using uncertainty estimates to mitigate the impact of un-
reliable supervision, we can take advantage of the structure in place to better drive the
exploration/exploitation trade-off. In particular, we used BootstrapDQN [125] for explo-
ration. In this method, a single network is sampled from an ensemble at the beginning of
each episode to select the action. This method is improved with the previously described
RPFs [124]. In continuous settings, we instead followed [92] and added an Upper Confidence
Bound (UCB) exploration bonus based on uncertainty prediction. As the variance in UCB
is added to Q-values, it must be calibrated: we evaluate it with sampled ensembles. Possible
interactions between exploration strategies and IV-RL are discussed in Appendix B.9.

5.3. Inverse-Variance Reinforcement Learning
5.3.1. Target uncertainty in Reinforcement Learning

Many model-free DRL algorithms use temporal difference updates. In methods such as
DQN [113], PPO [142] and SAC [61], a neural network is trained to predict the Q-value of
a given state-action pair Qπ(s,a) 4 by minimizing the error between the target T (s,a) and
its prediction Q̂(s, a). T (s,a) is computed according to Bellman’s equation:

T (s,a) = r + γQ̄(s′, a′) (5.3.1)

s′ and r are sampled from the environment given (s,a), and a′ is sampled from the current
policy given s′. Q̄(s′, a′) is predicted by a copy of the Q-network (called the target network)
which is updated less frequently to ensure training stability. The neural network’s parameters
θ are optimized using stochastic gradient descent to minimize the following L2 loss function:

Lθ =
∣∣∣∣∣∣T (s, a)− Q̂θ(s,a)

∣∣∣∣∣∣2 (5.3.2)

5.3.1.1. The target as a random variable. The target T (s,a) is a noisy approxima-
tion of Qπ(s,a) that is distributed according to its distribution pT (T |s,a). The generative
model used to produce samples of T (s,a) is shown in Figure 1, and has the following com-
ponents:

(1) if the reward r is stochastic, it is sampled from pR(r|s,a) 5;
(2) if the environment dynamics are stochastic, the next state s′ is sampled from

pS′(s′|s,a);
4In this paper, we focus on Q-values, although the principle can also apply to state values.
5Stochastic reward can happen for example if the reward is corrupted or estimated [138, 27]

81



Fig. 1. Bayesian network representing the target sampling process

(3) if the policy is stochastic a′ is sampled from the policy π(a′|s′);
(4) Q̄ is a prediction from a var-network pQ̄(Q̄|s′,a′);
(5) T is deterministically generated from r and Q̄ by equation (5.3.1).
As the variance of the noise of T (s,a) is not constant, training the Q-network using Lθ

as in equation (5.3.2) is regression on heteroscedastic noisy labels.

5.3.1.2. Variance of the target. As seen in section 5.2.1, BIV can be used to reduce
the impact of heteroscedastic noisy labels in regression, provided estimates of the label
variances. We thus aim to evaluate σ2

T (T |s,a) based on the sampling process described in
section 5.3.1.1. r and Q-value estimation are independent given s and a, hence:

σ2
T (T |s,a) = σ2

R (r|s,a) + γ2σ2
S′A′Q̄

(
Q̄|s,a

)
(5.3.3)

where pS′A′Q̄ is the compound probability distribution based on components 2-4 in Figure 1:

pS′A′Q̄(Q̄|s,a) =
∫∫

pQ̄(Q̄|s′,a′)pS′A′(s′,a′|s,a)da′ds′ (5.3.4)

where pS′A′(s′,a′|s,a) = pA′(a′|s′)pS′(s′|s,a). Using the law of total variance, the variance of
Q̄ is given by:

σ2
S′A′Q̄

(
Q̄|s,a

)
= ES′A′

[
σ2

Q̄

(
Q̄|s′,a′

)
|s,a

]
+ σ2

S′A′

(
EQ̄

[
Q̄|s′,a′

]
|s,a

)
(5.3.5)

Plugging (5.3.5) into (5.3.3) gives:

σ2
T (T |s,a) = γ2

(
ES′A′

[
σ2

Q̄

(
Q̄|s′,a′

)
|s,a

])
︸ ︷︷ ︸
Predictive variance of Q-network

+ γ2
(
σ2

S′A′

(
EQ̄

[
Q̄|s′,a′

]
|s,a

))
+ σ2

R(r|s,a)︸ ︷︷ ︸
Policy and environment induced variance

(5.3.6)

We can identify two distinct components in equation 5.3.6 that contribute to the overall
variance of the target. The first is the (expectation of the) variance that is due to the

82



uncertainty in the neural network prediction of the value function, ES′A′ [σ2
Q̄

(
Q̄|s′,a′

)
]. The

second is the uncertainty due to the stochasticity of the environment and of the policy,
σ2

R(r|s,a) + γ2σ2
S′A′

(
EQ̄

[
Q̄|s′,a′

])
.

Uncertainty in neural network prediction. For a given policy π and a given s′,a′, the agent
may not have seen enough samples to have an accurate approximation of Qπ(s′,a′). This
corresponds to an epistemic source of uncertainty that should be captured by sampled en-
sembles. However, as π is updated, the regression target, Qπ(s′,a′), is also changing. This
can be interpreted as variability in the underlying process which will be captured by var-
networks. We can thus combine both sampling-based and var-network methods and evaluate
σ2

Q̄

(
Q̄(s′,a′)

)
with var-ensembles.

We assume that the estimate of σ2
Q̄

(Q̄|s′,a′) given a sampled (s′,a′) is unbiased and can
therefore use it to directly approximate the expectation ES′A′ [σ2

Q̄

(
Q̄|s′,a′

)
]. These values

are used in the BIV loss LBIV (equation 5.2.1) across a mini-batch sampled from the replay
buffer. In this case, ξ is used to control the trust in the variance estimation, as explained in
section 5.2.1.
Stochastic environment and policy. The other potential source of variance in the target is
the result of the stochasticity of the environment encapsulated by pR (r|s,a) and pS′(s′|s,a)
and of the policy represented by π(a′|s′). Note that in model-free RL, we have no explicit
representation of pR (r|s,a) or pS′(s′|s,a), which are necessary to estimate this source of
uncertainty.

Qπ(s,a) is defined as the expected value of the return. As a result, even in the case where
Q̄(s′,a′) = Qπ(s,a) in (5.3.1), there is still noise over the value of the target that is being
used as the label due to the stochasticity of the environment and policy that generate r, a′

and s′. Assuming a zero mean and normally distributed noise, this underlying stochasticity
of the generating process is well-captured by a var-network with a loss attenuation using the
negative log-likelihood formulation described in equation (5.2.3).

5.3.1.3. Loss function for IV-RL. Based on the motivation above, we propose our
IV-RL loss over minibatch D of size K as a linear combination of LBIV and LLA, balanced
by hyperparameter λ:

LIVRL(D, θ) = LBIV(D, θ) + λLLA(D, θ)

=
K∑

k=0


 K∑

j=0

1
γ2σ2

Q̄,j
+ ξ

−1 (
µQ̂θ

(sk, ak)− T (sk,ak)
)2

γ2σ2
Q̄,k

+ ξ

+ λ

K


(
µQ̂θ

(sk, ak)− T (sk,ak)
)2

σ2
Q̂θ

(sk, ak) + ln σ2
Q̂θ

(sk, ak)


 (5.3.7)

83



The var-network with parameters θ predicts both µQ̂θ
(sk,ak) and σ2

Q̂θ
(sk,ak) for each

element k of the mini-batch. σ2
Q̄,k

is instead provided by the target var-ensemble which
predicts Q̄(s′

k,a′
k) when estimating the target T (sk, ak). In LBIV of equation (5.2.1), σ2

k is
replaced by γ2σ2

Q̄,k
according to equation (5.3.6). Empirically, the value of λ is usually

optimal around 5 or 10. Its impact is studied more in details in appendix B.4. High-variance
samples generated from the target estimation will be down-weighted in the BIV loss, while
high-variance samples due to the stochasticity of the underlying environment and policy will
be down-weighted in the LA loss. In the remainder of the paper, we show how this loss can
be applied to different architectures and algorithms, and demonstrate that in many cases it
significantly improves sample efficiency.

5.3.2. Q-value uncertainty and actor-critic structures

In section 5.3.1, we discussed how the target’s uncertainty can be quantified and how
the Bellman update can then be interpreted as a heteroscedastic regression problem. This
is applicable in most model-free DRL algorithms, whether they are based on Q-learning or
policy optimization. In the special case of actor-critic algorithms, the state-values or Q-
values predicted by the critic network are also used to train the policy πϕ’s parameters by
gradient ascent optimization. An estimate of their variance can also be used to improve the
learning process.

The objective is to maximize the expected Q-value:

Es∼D,a∼πϕ(s)[Q(s,a)] (5.3.8)

where D is the state distribution over the probable agent trajectories. The expectation is
computed by sampling a mini-batch of size K from a replay buffer containing state-action
pairs (sk, ak). The Q-value is approximated by the critic as Q̂(sk,ak). The actor’s parameters
ϕ are then trained to maximize the unweighted average:

1/K
K∑

k=0
Q̂(sk,ak) (5.3.9)

If we instead consider the critic’s estimation Q̂(sk,ak) as a random variable sampled from
pQ̂(Q̂|s, a), with mean µQ̂(sk,ak) and variance σ2

Q̂
(sk,ak), we can instead infer the expected

value in equation (5.3.8) using Bayesian estimation [117]:(
K∑

k=0
1/σ2

Q̂
(sk,ak)

)−1 K∑
k=0

1
σ2

Q̂
(sk,ak)µQ̂(sk,ak) (5.3.10)

The normalized inverse-variance weights are a direct fit with the BIV loss in equation 5.2.1:
we therefore also use BIV to train the actor. As the target and the Q-networks have the

84



same structure, σ2
Q̂

(sk,ak) can be estimated using the same var-ensembles used in section
5.3.1.2.

5.3.3. Algorithms

We have adapted IV-RL to DQN and SAC to produce IV-DQN and IV-SAC. Compre-
hensive pseudo-code, as well as implementation details for each algorithm, can be found in
appendix B.2.

5.4. Results
We have tested IV-RL across a variety of different environments, using IV-DQN for

discrete tasks and IV-SAC for continuous tasks. To determine the effects of IV-RL, we
compare its performance to the original DQN and SAC, but also the ensemble-based baselines
upon which IV-DQN and IV-SAC were built: BootstrapDQN and EnsembleSAC. We also
include SUNRISE [92].

All ensemble-based methods use an ensemble size of N = 5. Unless specified otherwise,
each result is the average of runs over 25 seeds: 5 for the environment × 5 for network
initialization. The hyperparameters are the result of a thorough fine-tuning process explained
in appendix B.3. As it uses ensembles, IV-RL is computationally expensive: computation
time is discussed in Appendix B.5.

5.4.1. IV-DQN

We tested IV-DQN on discrete control environments selected to present different charac-
teristics. From OpenAI Gym [25], LunarLander is a sparse reward control environment and
MountainCar is a sparse reward exploration environment. From BSuite6 [126], Cartpole-
Noise is a dense reward control environment. The BootstrapDQN baseline follows [124] as
explained in section 5.2.3. The reported SUNRISE results are obtained by applying the
SUNRISE weights to BootstrapDQN. The learning curves are shown in figure 2, where the
results are averaged on a 100 episode window.

IV-DQN significantly outperforms BootstrapDQN and SunriseDQN on control-based en-
vironments. However, in the exploration-based Mountain-Car where the challenge is to
find the state that produces some reward, there is very little additional information in every
other state for IV-DQN to improve over BootstrapDQN. All weighting schemes thus perform
comparably.

Table 1 shows the median number of episodes necessary to reach a given score for which
the environment is considered as solved. IV-DQN shows a clear improvement over baselines

6The results from BSuite are averaged over 20 runs with different environment and network seeds

85



Fig. 2. Using IV-RL shows improved performance over baseline methods in Cartpole Noise
and LunarLander, and does not impact MountainCar.

in sample efficiency in both control-based environments but fails to improve the exploration
in Mountain Car.

Table 1. 25th - 50th - 75th percentiles of the number of episodes necessary for the return
averaged with a 100-episode window to reach the solved score on different environments.
IV-DQN shows significant improvements in sample efficiency when the environment is not
exploration-based.

LunarLander (200) Cartpole-Noise (750) MountainCar (-150)
DQN 296 - 316 - 349 171 - 193 - max 304 - 333 - 403

BootstrapDQN 287 - 305 - 317 160 - 174 - 196 134 - 149 - 206
SunriseDQN 291 - 309 - 368 155 - 165 - 175 152 - 197 - 257

IV-DQN (ours) 220 - 227 - 239 105 - 112 - 117 142 - 163 - 200

In Figure 3 we perform an ablation study for LunarLander and Cartpole-Noise. In L2
+ VarEnsembleDQN, the loss function LBIV in equation 5.3.7 is replaced by the L2 loss. In
BIV + BootstrapDQN, sampled ensembles are used instead of var-ensembles, and trained
only with LBIV. More details about these ablations are found in appendix B.2. In both
cases, the use of BIV or var-ensembles improves the performance, and their combination
leads to the best sample efficiency. In Cartpole-Noise, var-ensembles carry most of the
improvement, maybe because the low amount of states leads to low epistemic uncertainty.
We also show that using one single var-network as opposed to var-ensembles is sub-optimal.
This is likely due to the unstable nature of the single uncertainty estimate, which affects the
learning process. More details are shown in appendix B.6 and B.8. The use of var-ensembles
stabilizes the variance estimation, as explained in section 5.2.2.3.

5.4.2. IV-SAC

IV-SAC was applied to different continuous control environments from OpenAI Gym [25]
as implemented by MBBL [164]. EnsembleSAC is a baseline using ensembles with an UCB
exploration bonus [92]. Table 2 shows the average return after 100k and 200k steps on 25

86



Fig. 3. Ablation study: depending on the environment, the BIV or the var-ensemble com-
ponent is the most important factor of improvement.

seeds. We note that the addition of an ensemble instead of a single network, along with the
uncertainty-based exploration bonus, already allows the performance to increase compared
to SAC. Except in Ant, the SUNRISE weights do not seem to lead to consistently better
results. In comparison, IV-SAC leads to significant improvements in performance.

Table 2. Performance at 100K and 200K time steps (100 and 200 episodes) for several
robotics environments in OpenAI Gym. The results show the mean and standard error over
25 runs.

Walker HalfCheetah Hopper Ant SlimHuman.

10
0k

st
ep

s SAC -392 ± 187 3211 ± 136 322 ± 177 724 ± 29 815 ± 74
EnsembleSAC -389 ± 209 3938 ± 112 1597 ± 152 852 ± 27 1043 ± 31
SunriseSAC 46 ± 213 3879 ± 204 1618 ± 195 834 ± 130 1077 ± 41

IV-SAC (ours) 857 ± 231 4260 ± 118 2237 ± 116 948 ± 46 1122 ± 34

20
0k

st
ep

s SAC 371 ± 189 3978 ± 148 1635 ± 162 985 ± 82 1020 ± 52
EnsembleSAC 1337 ± 278 4757 ± 92 2652 ± 91 981 ± 65 1294 ± 39
SunriseSAC 1423 ± 295 4785 ± 228 2572 ± 119 1462 ± 154 1383 ± 56

IV-SAC (ours) 3009 ± 193 5451 ± 151 2889 ± 50 1281 ± 101 2023 ± 114

This improvement in performance after a fixed amount of training steps can be explained
by an improved sample efficiency. This can be seen in figure 4. Even when IV-SAC’s return
is not significantly better than the baselines at 200k steps, such as in Ant or Hopper, it
clearly is learning faster, which is also reflected by the scores at 100k steps.

Similarly to IV-DQN, we can separate the contribution from BIV and loss attenuation,
as shown in the two first plots of figure 5. While both BIV and var-ensembles alone have a
significant impact in Walker, it’s only their combination that brings the most improvement
in HalfCheetah. Similarly to the discrete control case, a simple var-network leads to a small
improvement over SAC, which is discussed in appendix B.8. We also show in figure 5 that the
BIV weights provided with var-ensemble variance estimations than the SUNRISE weights,
or even the inverse variance weights of UWAC [171]. The normalization of BIV allows it to
better cope with changes in the variance predictions, as seem in appendices B.6 and B.7.

87



Fig. 4. IV-SAC learns faster and leads to significantly better results than the baselines.

Fig. 5. Ablation Study: (first two figures) Impact of using different uncertainty estimation
methods (last two figures) Comparing different weighting schemes with var-ensembles.

5.5. Conclusion
We present Inverse Variance Reinforcement Learning (IV-RL), a framework for model-

free deep reinforcement learning which leverages uncertainty estimation to enhance sample
efficiency and performance. A thorough analysis of the sources of noise that contribute
to errors in the target motivates the use of a combination of Batch Inverse Variance (BIV)
weighting and variance ensembles to estimate the variance of the target and down weight the
uncertain samples in two complementary ways. Our results show that these two components
are beneficial and that their combination significantly improves the state of the art in terms of
learning efficiency, in particular for control tasks. We applied IV-RL to DQN and SAC, but
it can be adapted to any model-free algorithm. Model-based, active or continuous learning
could also benefit from the underlying ideas presented in this paper. We thus believe that
IV-RL is a significant step to enable the application of DRL to real-world problems such as
robotics, where sample efficiency is the main challenge.

88



Chapter 6

Prologue to Article 3

This article was submitted at the 22nd International Conference on Autonomous Agents and
Multiagent Systems (AAMAS) 2023. Preliminary versions were presented at the NeurIPS
2021 Workshop: Tackling Climate Change with Machine Learning and the NeurIPS 2022
Workshop: Reinforcement Learning for Real Life. It was a joint work with Philippe Maison-
neuve, Tianyu Zhang, Hadi Nekoei, Jorge Montalvo Arvizu, Liam Paull and Antoine Lesage
Landry. Philippe was a master student supervised by Antoine, a professor at the electrical
engineering department of Polytechnique Montreal. Tianyu and Hadi were PhD students
at Université de Montréal and Mila, supervised respectively by Yoshua Bengio and Sarath
Chandar. Jorge was a PhD student at University of Liège (Belgium) with Louis Wehenkel.

As I wanted to move towards applied research in RL, I looked for an application which
would focus on one of the biggest challenges of our time – climate change. Antoine’s research
focused on algorithms to tackle the challenges of integrating renewable energy sources in
power grids. This had been identified as a key field where RL could be used to tackle climate
change [136]. After discussion, we decided to launch a project of MARL for fast-timescale
demand response with air conditioners.

Contribution statement: Antoine and I identified the problem. I formalized it, based
on Antoine’s domain expertise. I designed and programmed most of the simulator, together
with Philippe for signal simulation. Philippe implemented the baseline classical algorithms.
Tianyu Zhang supported the project definition and implemented baseline learning algorithms
together with Jorge and Hadi. I implemented the final learning algorithms. I designed all
experiments, and ran most of them, except the robustness ones which were ran by Philippe.
I analyzed the results, but discussed them with the whole group. I prepared the manuscript
with the help of Tianyu and Philippe for figures and the appendix. Tianyu, Hadi, Liam and
Antoine reviewed it. Antoine and Liam globally supervised the project and gave advice. I
prepared the poster and videos presenting the paper at the different workshops.





Chapter 7

Article 3: Multi-Agent Reinforcement
Learning for Fast-Timescale Demand

Response of Residential Loads

Résumé
Pour intégrer de grandes quantités de ressources énergétiques renouvelables, les réseaux

électriques doivent être capables de faire face à des variations rapides et de grande amplitude
de la production d’électricité. La régulation de la fréquence par la réponse à la demande
offre la possibilité de coordonner des charges temporellement flexibles, comme les clima-
tiseurs, pour contrer ces variations. Les approches existantes pour le contrôle discret avec
des contraintes dynamiques ont du mal à fournir des performances satisfaisantes pour la
sélection d’actions à échelle de temps rapide avec des centaines d’agents. Nous proposons un
agent décentralisé entraîné avec une optimisation de politique proximale multi-agents avec
une communication localisée. Nous explorons deux cadres de communication : l’un conçu
manuellement, l’autre appris par une communication multi-agents ciblée. Les politiques ré-
sultantes sont performantes et robustes pour la régulation de fréquence, et s’adaptent de
manière fluide à un nombre arbitraire de maisons pour des temps de traitement constants.
Mots clés: apprentissage par renforcement multi-agents, réseaux électriques, énergies re-
nouvelables, réponse par la demande, régulation de fréquence

Abstract
To integrate high amounts of renewable energy resources, electrical power grids must be

able to cope with high amplitude, fast timescale variations in power generation. Frequency
regulation through demand response has the potential to coordinate temporally flexible loads,
such as air conditioners, to counteract these variations. Existing approaches for discrete con-
trol with dynamic constraints struggle to provide satisfactory performance for fast timescale



action selection with hundreds of agents. We propose a decentralized agent trained with
multi-agent proximal policy optimization with localized communication. We explore two
communication frameworks: hand-engineered, or learned through targeted multi-agent com-
munication. The resulting policies perform well and robustly for frequency regulation, and
scale seamlessly to arbitrary numbers of houses for constant processing times.
Key words: multi agent reinforcement learning, power grids, renewable energy, demand
response, frequency regulation

7.1. Introduction
To achieve the United Nations’ climate change target of limiting global warming at +1.5

◦C, global electricity generation must transition from fossil fuels to renewable energy sources
such as wind turbines and solar panels. In 2019, according to the International Energy
Agency, electricity and heat production accounted for 40% of global emissions [3], as 64%
of it is generated from burning fossil fuel [1]. The electricity sector must thus move from a
conventional, fuel-burning paradigm to a renewable, natural phenomenon-based generation,
e.g., wind turbines and solar photovoltaics. Renewable energy generation is subject to short-
term, high-amplitude variations, referred to as intermittency. As an example, a cloud passing
will lead to a sudden drop in the solar-based generation, followed by a sharp increase when
the sky becomes clear again. These changes can happen at the scale of a few seconds, and
create major challenges for power grid operators: to ensure the stability of the electric grid,
a near-perfect balance between the power demand and the generation is critical [86]. In
other words, power generation and consumption must be equal at all times. Hence, trading
a constant, deterministic generation for an intermittent, uncertain one exacerbates the need
for power balancing. At the second timescale, this balancing task is referred to as frequency
regulation [19, 157].

On the power generation side, solutions such as stocking the excess energy in batteries
or supporting it with fossil fuel plants require large investments and are not renewable
respectively. Alternatively, demand response programs [146] can be introduced to mitigate
renewable intermittency [157]. The demand response approach aims at adjusting the power
demand to meet the supply by coordinating loads temporally. These loads must be flexible,
i.e., capable of modulating their consumption while fulfilling their own purpose. This does
not apply to, for example, computer monitors, which must be fully powered when they are in
use. Thermostatic loads, such as heating, air conditioning or water heaters, are instead ideal
candidates: they usually do not need to be turned on at all times, as long as the temperature
of the air/water is within the user’s preference range [26]. They are also widely deployed
and they represent a significant part of global power consumption [2, 110]. The frequency
regulation objective differs from peak-shaving for which the objective is load shifting over,

92



e.g., a day. In our case, the goal is to leverage the loads’ flexibility to balance out high-
frequency variations in power generation.

In this paper, we focus on the task of fast timescale demand response for frequency
regulation using residential air conditioners. This presents several physical and algorithmic
constraints: (1) air conditioners are discretely powered, i.e., on or off, which limits the
control flexibility; (2) they are subject to hardware dynamic constraints such as lockout:
once turned off, they must wait some time before being allowed to turn back on to protect
the compressor; (3) as the context is residential, privacy is important and communications
should be limited; (4) to provide enough power flexibility to the grid, a large aggregation of
loads must be considered: the method must be scalable; (5) for easier implementation, the
control should also be decentralized with localized communications ; (6) the decisions
must be taken at a few seconds timescale; and finally (7) the control algorithm should be
able to cope with uncertainty in the future regulation signal.

These constraints impede the deployment of classical methods. Greedy algorithms are
centralized and have difficulty accounting for long-term dynamic constraints [95]. Standard
model predictive control is also centralized, and even decentralized versions solve a multi-
period combinatorial optimization problem that does not scale with the number of agents
[75, 31]. We propose to tackle this problem by using multi-agent reinforcement learning
(MARL) to learn decentralized and scalable policies (4) with discrete and constrained con-
trol (1, 2) and limited and localized communications (3, 5). Once learned, these policies can
take the best decisions in real time (6) based on expected value over uncertainty (7). As
this problem combines the most important current challenges of MARL, i.e., communica-
tion, long-term credit assignment, coordination, and scalability [58], it is also an interesting
benchmark for MARL algorithms. We train our agents with Multi-Agent Proximal Policy
Optimization (MA-PPO) [179] with Centralized Training, Decentralized Execution (CTDE).
[81]. Two local communication frameworks are tested – hand-engineered and learned – and
both outperform the baselines. Our main contributions are threefold:

• an open source, multi-agent environment1 simulating the real-world problem of fre-
quency regulation through demand response at the second timescale. The simulator
is compatible with the OpenAI Gym [25] framework.
• two decentralized, fast-responding agent trained by MA-PPO. The first one has a

hand-engineered communication strategy, whereas the second one learns what data
to share through Targeted Multi-Agent Communication (TarMAC) [39]. Both agents
outperform baselines on two-day simulations.
• an in-depth analysis of the dynamics, communications, scalability and robustness of

the trained agents.

1The code will be made available at https://github.com/ALLabMTL/MARL_for_fast_timescale_DR.

93

https://github.com/ALLabMTL/MARL_for_fast_timescale_DR


In the next section, we describe prior work in the field of demand response and MARL.
In Section 7.3, we describe the environment and formulate the problem. The classical and
learning-based methods are described in Section 7.4. Finally, Section 7.5 presents the experi-
mental results and analyses of the agents’ performance, dynamics, robustness, and scalability.

7.2. Related Works
Frequency regulation through demand response is commonly tackled by model predic-

tive control (MPC) [170, 93, 121, 75, 108, 110], where the best action is chosen based
on trajectory prediction over a given horizon, sometimes combined with machine learning
[44, 91, 4]. Apart from [99], these works do not consider short-term dynamic constraints
such as lockout. MPC approaches rely on mixed-integer programming, which does not scale
sustainably with higher numbers of agents, preventing control at fast timescales. Moreover,
these works generally require a centralized entity to access residences’ data, leading to confi-
dentiality issues. An alternative method of multipliers-based distributed MPC approach was
proposed in [31]. This approach did not consider the lockout constraint and is not compat-
ible with fast timescale decision-making as it requires multiple centralized communication
rounds at each time step in addition to solving several optimization problems and converting
continuous setpoints to binary actions.

To tackle these problems, online optimization (OO) approaches [94, 185] have been
used because of their high computational efficiency and scalability. In particular, [95] de-
ploys OO for frequency regulation with binary control settings as is the case for ACs. How-
ever, these methods rely on greedy optimization and their lack of foresight leads to limited
performance when facing dynamic constraints. Reinforcement learning (RL) methods have
been developed to address the longer timescale power balance problems such as peak shav-
ing through demand response [6] or coordination of loads and generators [135, 176]. The
CityLearn environment [162] proposes a standard environment for multi-agent RL (MARL)
for demand response, upon which are developed methods such as [131] to regulate the
voltage magnitude in distribution networks using smart inverters and intelligent energy stor-
age management, and [163] for load shaping of grid-interactive connected buildings. The
AlphaBuilding ResCommunity environment [166] then implements detailed thermal mod-
els. Both CityLearn and AlphaBuilding ResCommunity, however, consider longer timescale
control, which makes them inadequate for high-frequency regulation and removes the ACs’
lockout and binary constraints. The PowerGridworld [21] environment, a more flexible alter-
native to CityLearn, allows fast-timescale simulation but does not provide a detailed thermal
model of loads, options for lockout or binary control, or classical baseline approaches to com-
pare with. High-frequency regulation has been addressed by MARL, but only on the power
generation side [172]. We are unaware of any example in the literature deploying MARL

94



for frequency regulation with demand response, with second-timescale control and flexible
binary loads such as ACs which are subject to hardware dynamic constraints like a lockout.

More generally, MARL has been developed for collaboration both in virtual environments
such as Dota 2 [123], Hide and Seek [13] or Hanabi [51], and in real-world environments
such as traffic light control [168], single-house energy management [5] or ride-sharing [132].
MARL problems pose several additional challenges to the RL settings [58], such as the non-
stationarity of the environment, the need to learn coordination and communication, or the
scaling of the training and deployment. Multi-agent adaptations of known RL algorithms,
such as online PPO [142, 179], or offline DDPG [98, 104] and DQN [115], have led to
strong performance in many problems. However, some particular problems, such as the ones
requiring communication with large numbers of agents, need specialized algorithms [74].
TarMAC [39], for example, uses an attention mechanism to aggregate messages based on
their importance.

7.3. Problem Formulation
7.3.1. Environment

The environment is a simulation of an aggregation of N houses, each equipped with a
single air conditioning (AC) unit. The outdoor temperature To,t is assumed to be the same
for every house, i.e., they are co-located in the same geographical region, and is simulated
as sinusoidal with a one-day period. Unless otherwise specified, the maximal temperature
of 34 ◦C is reached at 6 pm and the minimal temperature of 28 ◦C at 6 am. To,t is thus
always above the target indoor temperature TT of 20 ◦C so that the household can offer its
flexibility to the grid. The environment model is updated every 4 seconds. Thermostatic
loads modeled as multi-zone units and equipped with more than a single AC [8] is a topic
for future work. More details about the environment are given in Appendix C.3. A notation
table is provided in Appendix C.1.

7.3.1.1. House thermal model. Each house i = 1,2, . . . , N is simulated using a second-
order model based on Gridlab-D’s Residential module user’s guide [71]. At time t, the
indoor air temperature T i

h,t and the mass temperature T i
m,t are updated given the house

characteristics θi
T (wall conductance U i

h, thermal mass Ci
m, air thermal mass Ci

h and mass
surface conductance H i

m), the outdoor temperature To,t, and the heat Qi
a,t removed by the

AC. By default, the thermal characteristics are the same for each house and model a 100
square meter, 1-floor house with standard isolation. During training and deployment, the
initial mass and air temperatures are set by adding a positive random noise over the target
temperature. Although it is not used by default, the solar gain Qs,t can also be added to the
simulation, as seen in Appendix C.3.1.1.

95



7.3.1.2. Air conditioners. Once again based on Gridlab-D’s guide [71], air conditioner
i’s heat removal capacity Qi

a,t and power consumption P i
a,t are simulated based on the AC

characteristics θi
a, which include their cooling capacity Ki

a, their coefficient of performance
COP i

a and the latent cooling fraction Li
a. The model and parameters are also described in

Appendix C.3.2. Additionally, a hard dynamic constraint is set to protect the compressor:
after being turned off, it needs to wait a given amount of time before being allowed to
turn on again [184]. This constraint is referred to as the lockout. By default, the lockout
duration li

max is set to 40 seconds.

7.3.1.3. Regulation signal. The power system operator sends to the aggregator a sig-
nal ρt, which covers the complete aggregated load consumption: the systems we cannot
control such as computers, washing machines, or lights, and the flexible power consumption,
in our case, the ACs. Let, ρt = Do,t + st where Do,t is the power demand for the non-
controllable loads and st is the objective aggregated AC power consumption, i.e., the flexible
load. We define Da,t as the power needed by the ACs to satisfy their thermal objectives,
i.e., to keep the temperature around the target. To focus on the high-frequency variations
of the power generation, we assume that st is well behaved at low frequencies, i.e., its mean
in the 5 minutes scale is Da,t. A 0-mean, high-frequency variation δs,t is added to represent
renewable intermittency the aggregator wants to mitigate. We model the regulation signal
as st = Da,t + δs,t.

The aggregation flexible power consumption is the sum of all of the ACs’ consumption:
Pt = ∑N

i P i
a,t. The objective is to coordinate the ACs in the aggregation so that Pt tracks st.

Base signal. To compute the average needed power Da,t, we created a dataset of the average
power needed over a 5-minute period by a bang-bang controller without lockout – which is
optimal for temperature – for all combinations of discrete sets of the relevant parameters. At
each time step, we interpolate the average power demand of each AC from this dataset and
sum them to compute Da,t. In practice, the base signal would be estimated or obtained from
historical data. The aggregator would then consider its value when committing to track a
signal st. This ensures that the required power adjustment is enough to maintain the houses
at acceptable temperatures while providing flexibility to the grid.
Modelling high-frequency variations. The high-frequency variation δs,t is modelled with 1-D
Perlin noise [89], a smooth, procedurally generated 0-mean noise. The Perlin noise produces
δp,t ∈ [−1, 1], and we have δs,t = Da,tβpδp,t where βp is an amplitude parameter set to 0.9.
Our Perlin noise is defined by 5 octaves and 5 octave steps per period of 400 seconds; it thus
is the sum of noises with periods of 80, 40, 20, 10 and 5 seconds. More details are given in
Appendix C.3.3.2.

7.3.1.4. Communication between agents. To achieve coordination between agents,
they must be able to communicate. For the agent implementation to be decentralized,

96



flexible, and privacy-preserving, we consider limited and localized communications. This
enables, for example, devices communicating with simple radio-frequency emitters, without
the need for any further infrastructure. As such, we limit the communication to a number
Nc of neighbours. This is in line with the low-deployment investment argument for using
demand response for frequency regulation.

7.3.2. Decentralized Partially Observable Markov Decision Process

In this section, we formalize the above environment as a decentralized, partially observ-
able Markov decision process (Dec-POMDP) characterized by the tuple ⟨S,A,O,P ,R, γ⟩.
Let S be the global state, A = ∏N

i=1Ai the joint action space, and O = ∏N
i=1Oi the joint

observation space. Oi partially observes S. P describes the environment’s transition proba-
bilities, R the reward function for each agent and γ the discount parameter.

7.3.2.1. State, transition probabilities and actions. The state of the environment
X ∈ S and its transition probabilities P are unknown to the agent. They are simulated
by the environment dynamics described in Section 7.3.1. Each agent i’s action ai

t ∈ Ai is a
binary decision to control the AC status. If the remaining lockout time li

t is above zero, the
on action will be ignored by the AC. In practice, a backup controller within the AC would
prevent the on decision from being implemented.

7.3.2.2. Observations and communications. By default, agent i receives observa-
tion oi

t = {T i
h,t, T i

m,t, T i
T , ωi

t, li
t, st/N, Pt/N} at time step t, where T i

h,t, T i
m,t and T i

T are the
indoor air, mass, and target temperatures, ωi

t is the on or off status of the AC, li
t is its

remaining lockout time, st/N is the per-agent regulation signal and Pt/N is the per-agent
total consumption of the aggregation.

Each agent i communicates with its Nc neighbours. The messages’ sizes are not hard
limited but should be small, and their contents are not constrained. We define the set of
all of agent i’s Nc neighbours as M i. By default, we organize the agents in a 1-dimensional
structure: M i = {i− ⌊Nc/2⌋, i− ⌊Nc/2⌋+ 1, . . . , i, . . . , i + ⌊Nc/2⌋ − 1, i + ⌊Nc/2⌋}\{i}.

7.3.2.3. Reward. For each agent i, the reward ri
t is computed as the weighted sum of

the penalties due to its air temperature being different from the target, which is unique
to the agent, and to signal tracking, which is common across all agents. This scenario is
therefore cooperative with individual constraints. We normalize the reward with αtemp = 1
and αsig = 3 × 10−7: a 0.5 ◦C variation is penalized as much as a 912 W per-agent error
(each agent consumes 6000 W).

ri
t = −

(
αtemp

(
T i

h,t − T i
T,t

)2
+ αsig

(
Pt − st

N

)2)

97



7.4. Classical and learning-based algorithms
7.4.1. Classical baselines

To the best of our knowledge, there is no classical baseline that performs well under all
the constraints enumerated in Section 7.1. However, simple algorithms can optimize selected
objectives, and we use them as baselines for the results of the MARL agent.

7.4.1.1. Bang-bang controller. The bang-bang controller (BBC) turns the AC on
when the air temperature T i

h,t is higher than the target T i
T , and off when it is lower. This

is a decentralized algorithm, which does not consider demand response but near-optimally
controls the temperature. When the lockout duration li

max is 0, the BBC optimally controls
the temperature, but does not account for the signal. As the base signal s0,t is computed to
allow optimal temperature control, BBC’s signal tracking error is mainly due to the high-
frequency variations of the signal.

7.4.1.2. Greedy myopic. The greedy controller is a centralized algorithm that solves
a knapsack problem [38] where the size of the collection is the regulation signal, the weight
of each AC is its consumption P i

h,t, and its value is the temperature difference T i
h,t − T i

T . At
each time step, ACs are chosen based on a value priority computed by (T i

h,t−T i
T )/P i

h,t, until
the aggregation’s consumption Pt is higher than the regulation signal st. Because it does not
plan for the future, the greedy myopic approach quickly runs out of available ACs as most
of them are in the lockout. However, with a 0-lockout duration li

max, it is optimal to track
the signal st, and controls the temperature in second priority. We implement the greedy
myopic approach as it is better adapted to these settings than the OO approach described
in Section 7.2. Indeed, OO only uses past state information and must be implemented in a
strictly online fashion. Both frameworks are myopic, and struggle similarly with the lockout
constraint.

7.4.1.3. Model predictive control. Model predictive control, or MPC, in its nominal
form is a centralized algorithm modeling the environment and identifying the actions which
will lead to the highest sum of rewards over a given time horizon of H time steps. As the
signal is randomly generated, MPC assumes a constant future signal over horizon H, and
optimally solves the trajectory with lockout. However, because it is a large-scale combinato-
rial optimization problem, it scales poorly with the number of agents N and with a horizon
H. In the best case the complexity is polynomial, but it is exponential in the worst case. As
a result, we were not able to run the MPC for more than 10 agents for H = 60s, and had
to increase the time step between each action to 12 seconds. More details are provided in
Appendix C.4.1.

98



7.4.2. Learning-based methods

We deploy two algorithms using deep reinforcement learning, namely MA-DQN and
MA-PPO, both using the CT-DE paradigm. While MA-DQN only uses hand-engineered
communications, MA-PPO was implemented with two communications paradigms: hand-
engineered and learned. Details about the architectures and hyperparameters are provided
in Appendix C.4.2.

7.4.2.1. Centralized Training, Decentralized Execution. The CT-DE paradigm
[81] assumes that information is shared during the training of the agents, while they execute
actions only based on their decentralized observations. This reduces the non-stationarity of
the environment [58] and stabilizes the training. In our case, all agents are homogeneous,
which allows the use of parameter sharing [59]. As such, all ACs are controlled by identical
instances of the same policy trained from the shared experience of all agents.

7.4.2.2. MA-DQN. Multi-agent Deep Q-Network (MA-DQN) is the CT-DE adaptation
of DQN [115], an off-policy algorithm made for discrete action spaces. A DQN agent mainly
consists of a Q-network predicting the Q-value of action-observation pairs (ai

t, õi
t) for every

possible ai
t. During training, at time step t, the transition Θi

t = {õi
t, ai

t, ri
t, õi

t+1} of every agent
is recorded in a common replay buffer. This replay buffer is sampled to train the Q-network to
predict Q(ai

t, õi
t) supervised with target T (ai

t, õi
t) according to Bellman’s optimality equation:

T (ai
t, õi

t) = ri
t + γ max

a
Q(a,õi

t+1).

Actions are selected as ai
t with maximal predicted Q-value given an input õi

t. ϵ-greedy
exploration is added during training.

7.4.2.3. MA-PPO. Multi-agent Proximal Policy Optimization (MA-PPO) [179] is the
CT-DE adaptation of clipped PPO [142], an on-policy, policy-gradient algorithm. The agent
jointly learns a policy πθ(ai

t|õi
t), also called an actor, and a value function Vϕ(õi

t), also called
a critic. At each epoch, the policy is fixed and the transitions Θi

t = {õi
t, ai

t, πθt(ai
t|õi

t), ri
t}

for all agents are recorded together for one or several episodes of length H. For each Θi
t,

a return Gi
t = ∑H−t

τ=0 γτ ri
t+τ is computed based on future experience. Then, the new policy

parameters θt+1 are trained over the stored memory to optimize the clipped PPO objective
L(õi

t, ai
t, θt+1, θt), maximizing the advantage Aπθt (õi

t, ai
t) = Gi

t − Vϕ(õi
t) under the constraint

of proximity around the previous policy. The critic parameters ϕ are then trained so that
Vϕ(õi

t) predicts the return Gi
t. The memory is erased and a new epoch starts.

Exploration is handled by the inherent stochasticity of the policy. In the CT-DE setting,
Vϕ, which is only used during training, is given additional information about the states of
other agents.

7.4.2.4. Communications.

99



Hand-engineered communications. For MA-DQN and the hand-engineered MA-PPO, the
messages are designed based on the state of each agent, effectively providing a wider observ-
ability of the general state. Agent j’s message mj,t contains the current difference between its
air and target temperatures T j

h,t−T j
T , its remaining lockout time lj

t , and its current status ωj
t .

The messages {mi
j,t}∀j∈Mi

from agents j ∈ M i are concatenated with the observations oi
t to

create the input õi
t of the neural networks. Message mi

j,t from agent j to agent i is at a fixed
place in the õi

t vector based on its relative position i − j. MA-PPO with hand-engineered
communication will be referred to as MA-PPO-HE.
Targeted Multi-Agent Communication. To allow agents to learn to communicate, we imple-
ment TarMAC [39] in MA-PPO. TarMAC is an attention-based targeted communication
algorithm where each agent outputs a key, a message and a query. The key is sent along
with the message to the other agents, which then multiply it with their query to compute
the attention they give to the message. All messages are then aggregated using the atten-
tion as a weight. The three modules – key, message, query – are trained. TarMAC allows
more flexibility to the agents: it does not restrict the contents of the communication, and
it allows agents to communicate with a different number of houses than they were commu-
nicating with during training. More details are available in Appendix C.4.2.1. We refer to
this version as TarMAC-PPO.
No communication. It is also possible to train agents without communication. In this case,
it only observes oi

t. This agent is referred to as MA-PPO-NC.

7.4.2.5. Agent training. The learning agents were trained on environments with Ntr =
{10, 20, 50} houses and communicating with Nctr = {9, 19, 49} other agents. We trained every
agent on 16 different seeds: 4 for environment and 4 for network initialization. They were
trained on 3286800 time steps, equivalent to 152 days, divided in 200 episodes. Each episode
is initialized with each house having a temperature higher than the target, sampled from
the absolute value of a 0-mean Gaussian distribution with σ = 5◦C. We carefully tuned the
hyperparameters through a grid search, as shown in Appendix C.4. The contribution of this
paper is to demonstrate that learning-based methods can lead to high performance on the
problem of high frequency regulation. We therefore do not compile statistics over the trained
agents; instead, for each situation, we selected the two best agents over the seeds based on
test return, and report the best score from these two over the benchmark environment.

7.5. Results and analysis
7.5.1. Metrics of performance

We deploy the agents on a benchmark environment with Nde houses on trajectories of
43200 steps, i.e., two full days. We measure their performance with the per-agent root mean

100



Table 1. Performance of the different agents, computed over 10 environment seeds.

Nde = 10 Nde = 50 Nde = 250 Nde = 1000
Per-agent Signal T. Max T. Signal T. Max T. Signal T. Max T. Signal T. Max T.

RMSE (W) (◦C) (◦C) (W) (◦C) (◦C) (W) (◦C) (◦C) (W) (◦C) (◦C)

No l.o Greedy 194 ± 1 0.04 0.06 70 ± 1 0.03 0.05 63 ± 1 0.03 0.052 63 ± 1 0.03 0.05
BBC 806 ± 147 0.02 0.03 392 ± 50 0.02 0.04 310 ± 11 0.02 0.03 272 ± 12 0.02 0.03

40s l.o

Greedy 2668 ± 14 0.87 0.93 3166 ± 12 1.09 1.15 3313 ± 12 1.16 1.22 3369 ± 15 1.18 1.24
BBC 830 ± 207 0.05 0.09 426 ± 63 0.05 0.10 318 ± 7 0.05 0.10 296 ± 4 0.05 0.10
MPC 344 ± 96 0.07 0.12 - - - - - - - - -

MA-DQN 541 ± 86 0.05 0.09 321 ± 24 0.05 0.10 246 ± 8 0.05 0.11 234 ± 4 0.05 0.12
MA-PPO-HE 253 ± 1 0.04 0.08 161 ± 8 0.04 0.08 127 ± 2 0.04 0.11 122 ± 3 0.05 0.13
TarMAC-PPO 247 ± 3 0.04 0.07 158 ± 2 0.04 0.09 115 ± 1 0.05 0.13 101 ± 2 0.05 0.14
MA-PPO-NC 434 ± 2 0.06 0.08 215 ± 1 0.06 0.14 132 ± 1 0.06 0.16 107 ± 1 0.06 0.17

square error (RMSE) between the regulation signal st and aggregated power consumption
Pt. We also measure the temperature RMSEs – one (T.) for all agents, one (Max T.) of the
maximal temperature error of the aggregation – to evaluate thermal control. Every house’s
temperature is initialized differently, so we start computing the RMSE when the temperature
is controlled, after 5000 steps. For context, a single AC consumes 6000 W when turned on.
Due to the MPC’s computing time, its performance is evaluated differently, as explained
in Appendix C.4.1. Unless mentioned otherwise, the results are the mean and standard
deviation over 10 environmental seeds.

7.5.2. Performance of agents

Table 1 shows the performance of different agents in environments with and without
lockout with Nde of 10, 50, 250 and 1000 houses.

The per-agent signal RMSE generally goes down when Nde increases. This is due to
the lower relative discretization error, but also because, with more agents, errors have more
chances to cancel each other, as explained in Appendix C.5. As expected, BBC controls the
temperature well, but does not track the signal. Without lockout, the greedy myopic shows
near-optimal signal tracking, where errors are due to discretization. It also maintains good
control of the temperature. With lockout, however, it fails, as it runs out of available agents.
The MPC gives good results for 10 agents, but its performance is limited by the lower control
frequency of 12 seconds. It could not be run on Nde = 50 for computing time reasons. DQN
controls the temperature well but is only slightly better than BBC on the signal. Both PPO
agents show significantly better performance, and TarMAC-PPO outperforms MA-PPO-HE
at high Nde. The results without communication will be discussed in Section 7.5.5.

Figure 1 shows the behaviour of each agent over two days for 50 houses. The mean
offset captures the error’s bias by averaging the differences such that positives and negatives
cancel each other, while the mean error is the mean of the absolute differences. The signal
and consumption are very high at the beginning due to the initial situation, and then follow
the sinusoidal pattern of the outdoor temperature when the indoor temperature is regulated.
Without lockout, the BBC shows low temperature and signal offsets, with a significant signal

101



Fig. 1. MA-PPO-HE and TarMAC-PPO outperform DQN and BBC for signal and tem-
perature over 2 days with Nde = 50 agents.

Fig. 2. Both MA-PPO policies scale seamlessly in the number of agents: signal and con-
sumption on 800s for Nde = 50 and 1000.

error, as it does not track high-frequency variations of the signal. With the lockout, it under-
consumes as explained in Section 7.4.1.1, leading to a positive temperature offset, and the
base signal rises to compensate. As the signal variation amplitude is high, this does not
strongly affect the error.

The DQN agent has a smaller signal offset and error, especially at night when the am-
plitude of the signal variations is lower. During the day, the signal error is still significant.
Both MA-PPO agents, on the other hand, have a near-0 offset in signal and temperature.
Their signal error is also significantly lower than the others, because they are able to track
the high-frequency variations.

7.5.3. Scalability with number of agents

As can be seen in Table 1, the PPO agents, and TarMAC-PPO especially, scale gracefully
with the number of agents. Figure 2 shows the consumption and signal over 800 seconds
for both types of agents deployed over Nd = 50 and 1000 over 800 seconds. For Nd = 50,
the agents do not perfectly match the signal. However, the same agent does better on
1000 houses. Indeed, as the environment is homogeneous, the local strategy scales smoothly
by averaging out errors. The best performing agents for TarMAC-PPO were trained on
environments with Ntr = 10 houses. With MA-PPO-HE, it is often the agents trained on
Ntr = 20 houses that had the best results. Training with Ntr = 50 houses probably makes
the credit assignment harder. This is shown in Figure 3.

102



Fig. 3. Training with more agents Ntr does not lead to better performance, even when
deployed on large Nde.

7.5.4. PPO agents’ dynamics

As visualized in Figure 4, both MA-PPO-HE and TarMAC-PPO policies keep the ACs
in lockout or on, and never off. This is optimal for temperature control: an agent needing
to be off to warm up after lockout, would not have had the time to warm up during the
lockout and was thus on for too long beforehand. The agents turn on as soon as they can,
but control when they turn off based on the context and the messages of other agents.

(a) MA-PPO-HE (b) TarMAC-PPO

Fig. 4. State of 20 houses controlled with two different PPO agents. The number on the
top right is the remaining lockout time. (Left) Two different agents of MA-PPO-HE with
Ncde = 19 show a “20-house” (up) and a “3-house” (down) pattern. (Right) Two different
TarMAC-PPO agents show no such pattern.

A fascinating feature of the learned policies is the cyclic behaviour used by MA-PPO-HE
agents for coordination. As shown in Figure 4, the ACs turn on one after the other based on
their positions in the aggregation, with a repetition pattern. This happened for each MA-
PPO-HE agent we trained, although the pattern period or moving direction was different.
These patterns allow the agents to coordinate thanks to the stable message structure, i.e.,
the fixed relative position of agent j’s message to agent i in the õi

t vector. The TarMAC-
PPO agents, on the other hand, do not seem to follow a pattern in their collective behavior.
Indeed, as the messages are aggregated, they do not contain information about the structure
of the neighbours. The coordination is done through flexible message contents.

103



7.5.5. Communications

The agents need communications to coordinate and get the best results. In theory, the
more agents to communicate with, the better the performance because the observability of
the environment is improved. In practice, this is not always the case, as shown in Figure 5.
For TarMAC-PPO, communicating with 9 neighbours often leads to the best performance.
Higher values of Ncde can lead to a reduction of the weight of important messages in the
aggregation. For MA-PPO-HE, communicating with 19 agents yields better results than
with 49. Indeed, in MA-PPO-HE, the agents must communicate with the same amount of
neighbours at deployment than during training: Ncde = Nctr . During training, communi-
cating with more agents increases the credit assignment difficulty as it increases the input
size with non-controllable elements. It is also clear in Figure Figure 5 that agents trained to
communicate do not cope well when not communicating. Figure 6 shows the performance
of a TarMAC agent trained with Ntr = 10 houses and Nctr = 9 neighbours deployed on an
environment with Nde = 50 houses, when changing the number Ncde of neighbours it can
communicate with. The performance is bad at low communication but stabilizes around 7
or 8 agents.

Fig. 5. TarMAC-PPO’s performance does not increase after Ncde = 9 neighbours, while
MA-PPO-HE is better with Ncde = 19 neighbours, for Nde = 250 houses.

Fig. 6. A TarMAC-PPO agent performs well as long as it communicates with Ncde = 7
neighbours or more, on Nde = 50 houses.

104



It is, however, possible to train an agent without communication to do better than
Bang-Bang control, as shown by the performance of MA-PPO-NC in Table 1. Without
coordinating with the others, an agent can learn to act well on average to minimize the
signal error. When there are only a few agents, as when Nde = 10 or 50, this does not
perform very well. However, the performance gap decreases when Nde increases: a good
average policy will do well when applied on many agents. Another way to see this is that,
with large Nde, each agent’s importance becomes negligible in the final result. As such, the
group can be seen as a single average agent, and the problem cam be posed as a mean field
game [177, 151].

Interestingly, MA-PPO-HE at high Nde does better with communication defects. This
may be because the MA-PPO-HE coordination leads to locally biased policies, which do not
benefit from the averaging effect reducing the relative error when Nde increases.

7.5.6. Robustness

All the results presented were produced under certain assumptions, such as homogeneous
houses and ACs, consistent outdoor temperature and signal profiles, and faultless commu-
nication. If such agents were to be deployed in the real world, they would be confronted
with situations where these conditions are not satisfied. In this section, we evaluate the
robustness of our trained agents to different disturbances in the deployment conditions.

7.5.6.1. Faulty communications. As previously demonstrated, communications are
key for good performance of the agents. In this robustness test, we simulate defective com-
munications. At every time step, each message mi

j is defective with a probability pd. In
the case of TarMAC-PPO, this leads to the message not being received. For MA-PPO-HE,
every element of the message is set to 0. We tested the best agents for Nde = 10, 50, 250 and
1000 houses with pd = 0.1 and 0.5, as seen in Table 2. MA-PPO-HE agents’ coordination
is based on their stable communication structure. As a result, it copes badly with defective
communications. Interestingly, when Nde is higher, the impact decreases, even leading to
better performance at Nde = 1000 houses. This may be due to the fact that the resulting
policies cannot coordinate locally and are less locally biased. The TarMAC-PPO handles
perfectly temporary defects in communication as its messages are aggregated. This is the
case even with pd = 0.5 and when the agent communicates with Nctr = 9 neighbours only.

7.5.6.2. Heterogeneous houses and ACs. In reality, different houses have different
thermal characteristics. The ACs also do not always have the same rated cooling power or
lockout duration. We deployed the best trained MA-PPO-HE and TarMAC-PPO agents
for 50-house environments that do not comply with these assumptions on different scales,
to evaluate their robustness to separate disturbances. We also trained new agents on envi-
ronments with these conditions, to see if the agents could learn to cope with heterogeneity.

105



Table 2. Performance under faulty communication (5 seeds)

Nde = 10 Nde = 50 Nde = 250 Nde = 1000
Per-agent Signal T. Max T. Signal T. Max T. Signal T. Max T. Signal T. Max T.

RMSE (W) (◦C) (◦C) (W) (◦C) (◦C) (W) (◦C) (◦C) (W) (◦C) (◦C)

MA-PPO-HE
pd = 0 253 ± 1 0.04 0.08 161 ± 8 0.04 0.08 127 ± 2 0.04 0.11 122 ± 3 0.05 0.13

pd = 0.1 504 ± 2 0.07 0.14 207 ± 1 0.04 0.11 138 ± 2 0.05 0.13 118 ± 1 0.05 0.14
pd = 0.5 597 ± 2 0.10 0.19 274 ± 1 0.06 0.15 148 ± 1 0.06 0.151 115 ± 2 0.06 0.17

TarMAC-PPO
pd = 0 247 ± 3 0.04 0.07 158 ± 2 0.04 0.09 115 ± 1 0.05 0.13 101 ± 2 0.05 0.14

pd = 0.1 246 ± 2 0.04 0.07 158 ± 2 0.04 0.09 115 ± 2 0.05 0.12 101 ± 1 0.05 0.14
pd = 0.5 248 ± 2 0.04 0.07 159 ± 3 0.04 0.09 115 ± 2 0.05 0.13 101 ± 1 0.05 0.14

Table 3. Performance under house and AC heterogeneity

MA-PPO-HE MA-PPO-HE-T
Per-agent Signal Max T. Signal Max T.

RMSE (W) (◦C) (W) (◦C)
Without heterogeneity 161 ± 8 0.08 - -

House thermal parameters 285 ± 8 0.17 222 ± 7 0.11
AC cooling power 292 ± 3 0.15 181 ± 3 0.14
Lockout duration 324 ± 9 0.15 246 ± 4 0.09

TarMAC-PPO TarMAC-PPO-T
Without heterogeneity 158 ± 2 0.09 - -

House thermal parameters 184 ± 2 0.12 174 ± 2 0.11
AC cooling power 187 ± 2 0.16 185 ± 9 0.16
Lockout duration 192 ± 3 0.09 251 ± 4 0.08

The characteristics in question were observed by both agents as part of oi
t, and part of the

messages mi
j in MA-PPO-HE. These agents are referred to with the -T suffix. The thermal

characteristics heterogeneity was simulated by adding a Gaussian noise to element of θi
h for

each house. This noise has a standard deviation of 50% of the original value (the final val-
ues cannot be negative). Heterogeneity in the ACs cooling capacities Ki

a was simulated by
uniformly selecting for each house a value between 10, 12.5, 15, 17.5 and 20 kW. Finally,
heterogeneity in the lockout duration lmax was tested by sampling uniformly between 32, 36,
40, 44 and 48 seconds.

The results are shown in Table 3. TarMAC-PPO is much more robust to heterogeneity
in agents than MA-PPO-HE. This is because in MA-PPO-HE the coordination scheme is
based on the stable dynamics of the agent’s neighbours, especially with the lockout duration.
TarMAC-PPO is instead more flexible with respect to different dynamics. For both agents, it
is possible to reduce the effect of heterogeneity by training the agents on such environments
and allowing them to observe the characteristics. This is different for heterogenity on the
lockout duration, where TarMAC-PPO did not seem able to train satisfactorily on such
conditions. An interesting observation is that the best TarMAC-PPO results were obtained
when communicating with Nctr = 49 neighbours. When agents are heterogeneous, more
neighbours are needed to have a representative input.

106



Table 4. Robustness on environment changes (5 seeds)

MA-PPO-HE TarMAC-PPO
Per-agent Signal Max T. Signal Max T.

RMSE (W) (◦C) (W) (◦C)
Same as training 161 ± 8 0.08 158 ± 2 0.09

Solar gain 190 ± 6 0.09 174 ± 2 0.10
Outdoor T. + 4◦C 203 ± 4 0.11 198 ± 2 0.11
Outdoor T. - 4◦C 170 ± 1 0.09 184 ± 2 0.12

Signal average + 30% 401 ± 2 0.11 302 ± 2 0.14
Signal average - 30% 337 ± 4 0.10 317 ± 1 0.11

Signal noise amplitude + 30% 188 ± 5 0.08 179 ± 3 0.09
Signal noise frequency + 100% 200 ± 4 0.08 198 ± 5 0.09

7.5.6.3. Other environments. We also tested our agents on environments differing
from the training environment, with different outdoor temperature To, solar gain Qs, too
low or high average signal Da, and higher or faster signal variations δs. As can be seen in
Table 4, both agents are quite robust to such changes, with TarMAC-PPO usually leading to
better results. The only case where the performance is strongly affected is when the signal is
misbehaved, i.e., it is too low or too high to allow correct control of the temperature. In this
case, there is a tradeoff between the signal and the temperature objectives. MA-PPO-HE
seems to give higher priority to temperature control, leading to higher signal RMSE but a
lower temperature error.

7.5.7. Processing time

In Table 5, we report the processing time for action selection of the baseline and trained
agents. The results are shown for 25 times steps (100 seconds of simulation), except for the
MPC which simulated 100 seconds with 10-time steps. They were computed on the 12-core,
2.2 GHz Intel i7-8750H CPU of a laptop computer.

Table 5. Computation time (s) for action selection, for 100 seconds of simulation. We
report the time per-agents for a decentralized system and for the whole system otherwise.

Agent Decentralized Nde = 10 Nde = 1000
TarMAC-PPO Yes 0.002 0.001
MA-PPO-HE Yes 0.006 0.006

DQN Yes 0.003 0.002
BBC Yes 0.00001 0.00001

Greedy myopic No 0.1 3.7
MPC - H = 40s No 92.6680 -

107



As the decentralized, learned agents only need a single forward pass in a relatively small
neural network, the time for action selection is sufficiently low for control when using 4-
second time steps. Centralized approaches such as greedy myopic scale badly with many
agents. MPC, already simplified with time steps of 12 seconds instead of 4, and a short
horizon of 40 seconds, takes an unacceptable amount of time for more than 10 agents.

7.6. Conclusion
In this paper, we tackle the problem of high-frequency regulation with demand response

by controlling discrete and dynamically constrained residential loads equipped with air con-
ditioners with a decentralized, real-time agent trained by MA-PPO. We test two frameworks
for local communication – fixed hand-engineered messages and learned targeted communica-
tion. The policies trained with few agents perform significantly better than baselines, scale
seamlessly to large numbers of houses, and are robust to most disturbances. Our results
show that MARL can be used successfully to solve some of the complex multi-agent prob-
lems induced by the integration of renewable energy in electrical power grids. Future works
towards the application of such algorithms on real power systems could include sim2real
transfer, integration of more complex flexible loads, as well as power grid safety issues.

108



Conclusion

The path towards performing and reliable real world autonomous agents will pass through
deep reinforcement learning. The evident potential of this machine learning approach has
not yet been realized. The recent successes of deep neural networks, combined with the
always more affordable computation power and the constantly increasing gathering of data,
have boosted its capabilities in the last decade. Tremendous research efforts are currently
undertaken to tackle one of the current bottlenecks to its application on real world agents:
training agents is expensive and risky.

In this thesis, I presented three pieces of work in this direction. In the first two articles,
I proposed to improve sample efficiency of DRL algorithms through the probabilistic repre-
sentation of its variables. The BIV loss developed in Batch inverse-variance weighting
for deep heteroscedastic regression is a key ingredient in the IV-RL approach presented
in Sample efficient deep reinforcement learning via uncertainty estimation. In
Multi-agent reinforcement learning for fast-timescale demand response with res-
idential loads, I show that DRL can be successfully applied to real world agent cases in
power grid problems where engineered algorithms do not perform well.

As with most research projects, these three papers have limitations and open many
questions for future work. They could also have broader applications than the objectives
for which they were developed in this thesis.

In the first paper, BIV is inspired from the Gauss Markov theorem, which is optimal
in linear regression. However, it is not proven optimal for stochastic gradient descent with
neural networks. In addition, we introduce a new hyperparameter, ϵ, which needs to be
optimized for better performance.

BIV however proved that accounting for the variance of the labels as an additional infor-
mation allows to mitigate the effect of noisy labels on the learning process. It can be applied
to any heteroscedastic regression problem where the label noise variances are known. This
applies, for example, to measured labels, where uncertainty comes from sensor reading or
population studies. It also describes the situation where labels are created from imperfect



models, such as hand-crafted simulators or in complex machine learning pipelines where
labels are created by other models – DRL is an instance of the latter category.

Further research could improve BIV, for example by automating the selection of ϵ. Better
performing solutions to the problem of heteroscedastic regression with known variance noise
could come out of stronger theoretical analysis of the optimization problem.

In the second paper, IV-RL suffers from the complexity and the lack of reliability of cur-
rent uncertainty estimation methods for deep neural networks predictions. It needed heavy
engineering to ensure stability and robustness to over- or under-estimations. Its loss function,
LIVRL, needs at the same time to train the variance networks through loss attenuation and
to take into account the variance of the target using BIV. As a result, it does not combine
both as an unique target uncertainty, as would have been optimal according to our analysis.

Despite this, IV-RL’s results are yet another proof that the use of probabilistic represen-
tations in DRL is a key direction towards better performing and sample efficient algorithms.
It adds to a body of many recent works who took different angles at the same question, and
are steps towards a holistic Bayesian pipeline for DRL.

More reliable and information-theory grounded uncertainty estimation methods for
regression with deep neural networks are a key to such probabilistic formulation for DRL.
It would not only improve the performance, but also allow safer exploration and risk-aware
deployment of DRL agents. DRL algorithms come in many flavors, from Q-learning to
policy gradient and even model-based RL. An interesting research direction is to examine
how probabilistic formulations can be applied to each of these families.

In the third paper, we did not deploy our MARL agents on real air conditioners. While
we are confident that the agents are robust enough to imperfections in the simulator, this was
not tested. We also made important efforts to ensure the infrastructure assumptions behind
our project were realistic. They would need to be demonstrated on real world deployed
agents.

Our approach however demonstrates the potential of MARL for complex problems in
power-grid systems coping with the introduction of renewable energy sources. While these
environments can be very well understood, the complexity and stochasticity of their dynamics
may impede hand-crafted solutions to perform in a satisfying manner. In this case, RL can
be a powerful tool, and could be a key factor in the energetic transition.

To increase the demand response potential of the approach, further work would consider
the addition of additional flexible loads, such as water heaters or charging electric vehicles.
In addition, to ensure a scalable and successful integration of such agents in power grids,
safety issues must be taken into account, as well as their interactions with other, longer
timescale programs for demand response. This may require solving more complex MARL

110



problems with heterogeneous or asymmetric agents.

Final remarks This thesis was built on state-of-the-art approaches in many different but
currently blooming fields: supervised learning and regression with deep neural networks, un-
certainty prediction and Bayesian deep learning, deep reinforcement learning and its Bayesian
extensions, cooperative multi agents reinforcement learning, attention mechanisms...

I consider that the opportunity I was given, to explore such impressive advances, and to
combine some of them to create something new, was an extraordinary privilege. Early in
my academic career, I studied physics. I often wondered if the researchers of the beginning
of the XXth century, when modern physics was being discovered, realized that they were at
the forefront of a scientific revolution. Their research deeply transformed our society.

The research presented in this thesis allowed me to witness the same kind of historical
moments. Since I started in 2018, every one of the fields I encountered has advanced by
gigantic strides. The methods which were discussed and designed two years ago are now
proven with astonishing large scale demonstrations. They are being quickly consolidated
and readied for massive deployment. While there are still important challenges, I have no
doubt the powerful algorithms developed in research laboratories will soon be found in many
aspects of our daily lives. This will profoundly transform our society. I hope that the work
in this thesis contributes to this transformation being for the better.

111





References

[1] International Energy Agency : Energy statistics data browser – data tools. Available on: https://
www.iea.org/data-and-statistics/data-tools/energy-statistics-data-browser (Accessed on
Sept 15, 2022).

[2] International Energy Agency : The Future of Cooling. 2018.
[3] International Energy Agency : Greenhouse Gas Emissions from Energy: Overview. 2021.
[4] Roya Ahmadiahangar, Tobias Häring, Argo Rosin, Tarmo Korõtko et João Martins : Residen-

tial load forecasting for flexibility prediction using machine learning-based regression model. In 2019
IEEE International Conference on Environment and Electrical Engineering and 2019 IEEE Industrial
and Commercial Power Systems Europe (EEEIC / I&CPS Europe), pages 1–4, 2019.

[5] Mehdi Ahrarinouri, Mohammad Rastegar et Ali Reza Seifi : Multiagent reinforcement learning
for energy management in residential buildings. IEEE Transactions on Industrial Informatics, 17(1):
659–666, Jan 2021.

[6] Sally Aladdin, Samah El-Tantawy, Mostafa M. Fouda et Adly S. Tag Eldien : Marla-sg: Multi-
agent reinforcement learning algorithm for efficient demand response in smart grid. IEEE Access,
8:210626–210639, 2020.

[7] Hannah Alsdurf, Yoshua Bengio, Tristan Deleu, Prateek Gupta, Daphne Ippolito, Richard
Janda, Max Jarvie, Tyler Kolody, Sekoul Krastev, Tegan Maharaj et et al. : Covi white
paper. arXiv:2005.08502 [cs], May 2020.

[8] Uzma Amin, MJ Hossain et E Fernandez : Optimal price based control of hvac systems in multizone
office buildings for demand response. Journal of Cleaner Production, 270:122059, 2020.

[9] Siddharth Aravindan et Wee Sun Lee : State-aware variational Thompson sampling for deep Q-
networks. In Proceedings of the 20th International Conference on Autonomous Agents and MultiAgent
Systems, AAMAS ’21, page 124–132. International Foundation for Autonomous Agents and Multiagent
Systems, 2021.

[10] Devansh Arpit, Stanisław Jastrzębski, Nicolas Ballas, David Krueger, Emmanuel Bengio,
Maxinder S. Kanwal, Tegan Maharaj, Asja Fischer, Aaron Courville, Yoshua Bengio et et al.
: A closer look at memorization in deep networks. arXiv:1706.05394 [cs, stat], Jul 2017.

[11] Jean-Yves Audibert, Rémi Munos et Csaba Szepesvári : Exploration–exploitation tradeoff using
variance estimates in multi-armed bandits. Theoretical Computer Science, 410(19):1876–1902, Apr
2009.

[12] Peter Auer, Nicolò Cesa-Bianchi et Paul Fischer : Finite-time analysis of the multiarmed bandit
problem. Machine Learning, 47(2):235–256, May 2002.

 https://www.iea.org/data-and-statistics/data-tools/energy-statistics-data-browser
 https://www.iea.org/data-and-statistics/data-tools/energy-statistics-data-browser


[13] Bowen Baker, Ingmar Kanitscheider, Todor Markov, Yi Wu, Glenn Powell, Bob McGrew et
Igor Mordatch : Emergent tool use from multi-agent autocurricula. Feb 2020. arXiv:1909.07528 [cs,
stat].

[14] Nolan Bard, Jakob N. Foerster, Sarath Chandar, Neil Burch, Marc Lanctot, H. Francis Song,
Emilio Parisotto, Vincent Dumoulin, Subhodeep Moitra, Edward Hughes, Iain Dunning, Shibl
Mourad, Hugo Larochelle, Marc G. Bellemare et Michael Bowling : The hanabi challenge: A
new frontier for ai research. Artificial Intelligence, 280:103216, Mar 2020. arXiv:1902.00506 [cs, stat].

[15] Gabriel Barth-Maron, Matthew W. Hoffman, David Budden, Will Dabney, Dan Horgan,
Dhruva TB, Alistair Muldal, Nicolas Heess et Timothy Lillicrap : Distributed distributional
deterministic policy gradients. (arXiv:1804.08617), Apr 2018. arXiv:1804.08617 [cs, stat].

[16] Marc G. Bellemare, Will Dabney et Rémi Munos : A distributional perspective on reinforcement
learning. In Proceedings of the 34th International Conference on Machine Learning, volume 70 de
Proceedings of Machine Learning Research, pages 449–458. PMLR, 06–11 Aug 2017.

[17] Richard Bellman : A markovian decision process. Journal of Mathematics and Mechanics, 6(5):
679–684, 1957.

[18] Daniel S. Bernstein, Robert Givan, Neil Immerman et Shlomo Zilberstein : The complexity of
decentralized control of markov decision processes. Mathematics of Operations Research, Nov 2002.

[19] Hassan Bevrani, Arindam Ghosh et Gerard Ledwich : Renewable energy sources and frequency
regulation: survey and new perspectives. IET Renewable Power Generation, 4(5):438–457, 2010.

[20] Dhaivat Bhatt, Kaustubh Mani, Dishank Bansal, Krishna Murthy, Hanju Lee et Liam Paull
: f -Cal: Calibrated aleatoric uncertainty estimation from neural networks for robot perception.
arXiv:2109.13913, Sep 2021.

[21] David Biagioni, Xiangyu Zhang, Dylan Wald, Deepthi Vaidhynathan, Rohit Chintala, Jennifer
King et Ahmed S. Zamzam : Powergridworld: A framework for multi-agent reinforcement learning in
power systems, 2021.

[22] Christopher M. Bishop : Pattern recognition and machine learning. Information science and statistics.
Springer, 2006.

[23] Charles Blundell, Julien Cornebise, Koray Kavukcuoglu et Daan Wierstra : Weight uncer-
tainty in neural networks. (arXiv:1505.05424), May 2015. arXiv:1505.05424 [cs, stat].

[24] Guillaume Bono, Jilles Steeve Dibangoye, Laëtitia Matignon, Florian Pereyron et Olivier Si-
monin : Cooperative multi-agent policy gradient. In Michele Berlingerio, Francesco Bonchi,
Thomas Gärtner, Neil Hurley et Georgiana Ifrim, éditeurs : Machine Learning and Knowledge
Discovery in Databases, Lecture Notes in Computer Science, page 459–476, Cham, 2019. Springer
International Publishing.

[25] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie
Tang et Wojciech Zaremba : Openai gym, Jun 2016.

[26] Duncan S Callaway : Tapping the energy storage potential in electric loads to deliver load following
and regulation, with application to wind energy. Energy Conversion and Management, 50(5):1389–
1400, 2009.

[27] Jeffrey S. Campbell, Sidney N. Givigi et Howard M. Schwartz : Handling stochastic reward de-
lays in machine reinforcement learning. In 2015 IEEE 28th Canadian Conference on Electrical and
Computer Engineering (CCECE), pages 314–319, 2015.

[28] Alex J. Cannon : Quantile regression neural networks: Implementation in r and application to pre-
cipitation downscaling. Computers & Geosciences, 37(9):1277–1284, Sep 2011.

114



[29] Kaidi Cao, Yining Chen, Junwei Lu, Nikos Arechiga, Adrien Gaidon et Tengyu Ma : Heteroskedas-
tic and imbalanced deep learning with adaptive regularization. arXiv:2006.15766 [cs, stat], Jun 2020.

[30] René Carmona, Mathieu Laurière et Zongjun Tan : Model-free mean-field reinforcement learning:
Mean-field mdp and mean-field q-learning. (arXiv:1910.12802), Oct 2019. arXiv:1910.12802 [cs, math].

[31] Bingqing Chen, Jonathan Francis, Marco Pritoni, Soummya Kar et Mario Bergés : Cohort:
Coordination of heterogeneous thermostatically controlled loads for demand flexibility. In Proceed-
ings of the 7th ACM International Conference on Systems for Energy-Efficient Buildings, Cities, and
Transportation, page 31–40, Nov 2020. arXiv:2010.03659 [cs, eess].

[32] Richard Y. Chen, Szymon Sidor, Pieter Abbeel et John Schulman : UCB exploration via Q-
ensembles. arXiv:1706.01502, Nov 2017.

[33] Tianshu Chu, Sandeep Chinchali et Sachin Katti : Multi-agent reinforcement learning for networked
system control. (arXiv:2004.01339), Apr 2020. arXiv:2004.01339 [cs, stat].

[34] Xiangxiang Chu et Hangjun Ye : Parameter sharing deep deterministic policy gradient for cooperative
multi-agent reinforcement learning. (arXiv:1710.00336), Oct 2017. arXiv:1710.00336 [cs].

[35] CIBSE : Guide A: Environmental Design. Chartered Institution of Building Services Engineers, 8th
édition, 2015.

[36] William R. Clements, Bastien Van Delft, Benoît-Marie Robaglia, Reda Bahi Slaoui et Sébastien
Toth : Estimating risk and uncertainty in deep reinforcement learning. arXiv:1905.09638, Sep 2020.

[37] Will Dabney, Mark Rowland, Marc G. Bellemare et Rémi Munos : Distributional reinforcement
learning with quantile regression. 2017.

[38] George B. Dantzig : Discrete-variable extremum problems. Operations Research, 5(2):266–288, Apr
1957.

[39] Abhishek Das, Théophile Gervet, Joshua Romoff, Dhruv Batra, Devi Parikh, Mike Rabbat et
Joelle Pineau : Tarmac: Targeted multi-agent communication. In Proceedings of the 36th International
Conference on Machine Learning, page 1538–1546. PMLR, May 2019.

[40] Richard Dearden, Nir Friedman et Stuart J. Russel : Bayesian Q-learning. 1998.
[41] Steven Diamond et Stephen Boyd : CVXPY: A Python-embedded modeling language for convex

optimization. Journal of Machine Learning Research, 2016. To appear.
[42] Dheeru Dua et Casey Graff : UCI machine learning repository, 2017.
[43] Gabriel Dulac-Arnold, Daniel Mankowitz et Todd Hester : Challenges of real-world reinforce-

ment learning. arXiv:1904.12901, Apr 2019.
[44] Ivana Dusparic, Colin Harris, Andrei Marinescu, Vinny Cahill et Siobhán Clarke : Multi-agent

residential demand response based on load forecasting. In 2013 1st IEEE Conference on Technologies
for Sustainability (SusTech), pages 90–96, 2013.

[45] Hadi Fanaee-T et Joao Gama : Event labeling combining ensemble detectors and background knowl-
edge. Progress in Artificial Intelligence, pages 1–15, 2013.

[46] Di Feng, Lars Rosenbaum, Claudius Glaeser, Fabian Timm et Klaus Dietmayer : Can we trust
you? on calibration of a probabilistic object detector for autonomous driving. (arXiv:1909.12358), Sep
2019. arXiv:1909.12358 [cs].

[47] G. R. Fisher : Maximum likelihood estimators with heteroscedastic errors. Review of the International
Statistical Institute, 25(1/3):52, 1957.

[48] Sebastian Flennerhag, Jane X. Wang, Pablo Sprechmann, Francesco Visin, Alexandre
Galashov, Steven Kapturowski, Diana L. Borsa, Nicolas Heess, Andre Barreto et Razvan
Pascanu : Temporal difference uncertainties as a signal for exploration. arXiv:2010.02255, Oct 2020.

115



[49] Jakob Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli et Shimon White-
son : Counterfactual multi-agent policy gradients. Proceedings of the AAAI Conference on Artificial
Intelligence, 32(1), Apr 2018.

[50] Meire Fortunato, Mohammad Gheshlaghi Azar, Bilal Piot, Jacob Menick, Ian Osband, Alex
Graves, Vlad Mnih, Remi Munos, Demis Hassabis, Olivier Pietquin et et al. : Noisy networks
for exploration. arXiv:1706.10295, Jul 2019.

[51] Andrew Fuchs, Michael Walton, Theresa Chadwick et Doug Lange : Theory of mind for deep
reinforcement learning in hanabi. Jan 2021. arXiv:2101.09328 [cs].

[52] Yarin Gal et Zoubin Ghahramani : Dropout as a bayesian approximation: Representing model un-
certainty in deep learning. In Proceedings of The 33rd International Conference on Machine Learning,
volume 48, pages 1050–1059. PMLR, 20–22 Jun 2016.

[53] Xavier Glorot et Yoshua Bengio : Understanding the difficulty of training deep feedforward neu-
ral networks. In Proceedings of the Thirteenth International Conference on Artificial Intelligence and
Statistics, page 249–256. JMLR Workshop and Conference Proceedings, Mar 2010.

[54] Jacob Goldberger et Ehud Ben-Reuven : Training deep neural-networks using a noise adaptation
layer. In 5th International Conference on Learning Representations, 2017.

[55] C. V. Goldman et S. Zilberstein : Decentralized control of cooperative systems: Categorization
and complexity analysis. Journal of Artificial Intelligence Research, 22:143–174, Nov 2004.

[56] Ian Goodfellow, Yoshua Bengio, Aaron Courville et Yoshua Bengio : Deep learning, volume 1.
MIT Press, 2016.

[57] Alex Graves : Practical variational inference for neural networks. In J. Shawe-Taylor, R. Zemel,
P. Bartlett, F. Pereira et K. Q. Weinberger, éditeurs : Advances in Neural Information Pro-
cessing Systems, volume 24. Curran Associates, Inc., 2011.

[58] Sven Gronauer et Klaus Diepold : Multi-agent deep reinforcement learning: a survey. Artificial
Intelligence Review, Apr 2021.

[59] Jayesh K. Gupta, Maxim Egorov et Mykel Kochenderfer : Cooperative Multi-agent Control
Using Deep Reinforcement Learning, volume 10642 de Lecture Notes in Computer Science, page 66–83.
Springer International Publishing, Cham, 2017.

[60] Gurobi Optimization, LLC : Gurobi Optimizer Reference Manual, 2022.
[61] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel et Sergey Levine : Soft actor-critic: Off-policy

maximum entropy deep reinforcement learning with a stochastic actor. In International Conference on
Machine Learning, pages 1861–1870. PMLR, Aug 2018.

[62] Bo Han, Quanming Yao, Xingrui Yu, Gang Niu, Miao Xu, Weihua Hu, Ivor Tsang et Masashi
Sugiyama : Co-teaching: Robust Training of Deep Neural Networks with Extremely Noisy Labels.
arXiv e-prints, page arXiv:1804.06872, avril 2018.

[63] Ali Harakeh, Jordan Hu, Naiqing Guan, Steven L. Waslander et Liam Paull : Estimating regres-
sion predictive distributions with sample networks. (arXiv:2211.13724), Nov 2022. arXiv:2211.13724
[cs].

[64] Hado van Hasselt, Arthur Guez et David Silver : Deep reinforcement learning with double q-
learning. In Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, AAAI’16, page
2094–2100. AAAI Press, 2016.

[65] Kaiming He, Xiangyu Zhang, Shaoqing Ren et Jian Sun : Deep residual learning for image recogni-
tion. arXiv:1512.03385 [cs], Dec 2015.

116



[66] Kaiming He, Xiangyu Zhang, Shaoqing Ren et Jian Sun : Delving deep into rectifiers: Surpass-
ing human-level performance on ImageNet classification. In 2015 IEEE International Conference on
Computer Vision (ICCV), pages 1026–1034, 2015.

[67] Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup et David Meger
: Deep reinforcement learning that matters. In Proceedings of the AAAI conference on artificial intel-
ligence, volume 32, 2018.

[68] Matteo Hessel, Joseph Modayil, Hado van Hasselt, Tom Schaul, Georg Ostrovski, Will Dab-
ney, Dan Horgan, Bilal Piot, Mohammad Azar et David Silver : Rainbow: Combining improve-
ments in deep reinforcement learning. (arXiv:1710.02298), Oct 2017. arXiv:1710.02298 [cs].

[69] Ronald A. Howard : Dynamic programming and markov processes. 1960.
[70] Eyke Hüllermeier et Willem Waegeman : Aleatoric and epistemic uncertainty in machine learning:

an introduction to concepts and methods. Machine Learning, 110(3):457–506, Mar 2021.
[71] Betelle Memorial Institute : Gridlab-d wiki. http://gridlab-d.shoutwiki.com/wiki/Main_Page

(Accessed on: Sept 15, 2022).
[72] Moksh Jain, Salem Lahlou, Hadi Nekoei, Victor Butoi, Paul Bertin, Jarrid Rector-Brooks,

Maksym Korablyov et Yoshua Bengio : DEUP: Direct epistemic uncertainty prediction.
arXiv:2102.08501, Feb 2021.

[73] Simon Jenni et Paolo Favaro : Deep bilevel learning. arXiv:1809.01465 [cs, stat], Sep 2018.
[74] Jiechuan Jiang et Zongqing Lu : Learning attentional communication for multi-agent cooperation. In

Advances in Neural Information Processing Systems, volume 31. Curran Associates, Inc., 2018.
[75] Jin, Mohammed Olama, Teja Kuruganti, James Nutaro, Christopher Winstead, Yaosuo Xue et

Alexander Melin : Model predictive control of building on/off hvac systems to compensate fluctua-
tions in solar power generation. In 2018 9th IEEE International Symposium on Power Electronics for
Distributed Generation Systems (PEDG), pages 1–5, 2018.

[76] Kenji Kawaguchi, Leslie Pack Kaelbling et Yoshua Bengio : Generalization in deep learning.
arXiv:1710.05468 [cs, stat], Jul 2020.

[77] Alex Kendall et Yarin Gal : What uncertainties do we need in bayesian deep learning for computer
vision? Advances in Neural Information Processing Systems, 30:5574–5584, 2017.

[78] Diederik P. Kingma et Jimmy Ba : Adam: A method for stochastic optimization. In 3rd International
Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference
Track Proceedings, 2015.

[79] L. Kish : Survey Sampling. Wiley, 1965.
[80] Parth Kothari, Christian Perone, Luca Bergamini, Alexandre Alahi et Peter Ondruska : Driver-

gym: Democratising reinforcement learning for autonomous driving. arXiv:2111.06889, Nov 2021.
[81] Landon Kraemer et Bikramjit Banerjee : Multi-agent reinforcement learning as a rehearsal for

decentralized planning. Neurocomputing, 190:82–94, May 2016.
[82] Jan Kremer, Fei Sha et Christian Igel : Robust active label correction. volume 84 de Proceedings

of Machine Learning Research, pages 308–316, Playa Blanca, Lanzarote, Canary Islands, 09–11 Apr
2018. PMLR.

[83] Volodymyr Kuleshov, Nathan Fenner et Stefano Ermon : Accurate uncertainties for deep learn-
ing using calibrated regression. In International Conference on Machine Learning, pages 2796–2804.
PMLR, 2018.

117

http://gridlab-d.shoutwiki.com/wiki/Main_Page


[84] Aviral Kumar, Justin Fu, Matthew Soh, George Tucker et Sergey Levine : Stabilizing off-policy
Q-learning via bootstrapping error reduction. Advances in Neural Information Processing Systems,
32:11784–11794, 2019.

[85] Aviral Kumar, Abhishek Gupta et Sergey Levine : DisCor: Corrective feedback in reinforcement
learning via distribution correction. Advances in Neural Information Processing Systems, 33, 2020.

[86] Prabha Kundur : Power system stability. Power system stability and control, pages 7–1, 2007.
[87] Alexandre Lacoste, Alexandra Luccioni, Victor Schmidt et Thomas Dandres : Quantifying the

carbon emissions of machine learning. arXiv:1910.09700, 2019.
[88] Alexandre Lacoste, Alexandra Luccioni, Victor Schmidt et Thomas Dandres : Quantifying the

carbon emissions of machine learning. (arXiv:1910.09700), Nov 2019. arXiv:1910.09700 [cs].
[89] A. Lagae, S. Lefebvre, R. Cook, T. DeRose, G. Drettakis, D.S. Ebert, J.P. Lewis, K. Perlin

et M. Zwicker : A survey of procedural noise functions. Computer Graphics Forum, 29(8):2579–2600,
Dec 2010.

[90] Balaji Lakshminarayanan, Alexander Pritzel et Charles Blundell : Simple and scalable predic-
tive uncertainty estimation using deep ensembles. Advances in Neural Information Processing Systems,
30, Nov 2017. arXiv: 1612.01474.

[91] Fiorella Lauro, Fabio Moretti, Alfonso Capozzoli et Stefano Panzieri : Model predictive control
for building active demand response systems. Energy Procedia, 83:494–503, 2015. Sustainability in
Energy and Buildings: Proceedings of the 7th International Conference SEB-15.

[92] Kimin Lee, Michael Laskin, Aravind Srinivas et Pieter Abbeel : SUNRISE: A simple unified frame-
work for ensemble learning in deep reinforcement learning. In International Conference on Machine
Learning, pages 6131–6141. PMLR, 2021.

[93] Young M Lee, Raya Horesh et Leo Liberti : Optimal hvac control as demand response with on-site
energy storage and generation system. Energy Procedia, 78:2106–2111, 2015.

[94] Antoine Lesage-Landry et Joshua A Taylor : Setpoint tracking with partially observed loads. IEEE
Transactions on Power Systems, 33(5):5615–5627, 2018.

[95] Antoine Lesage-Landry, Joshua A Taylor et Duncan S Callaway : Online convex optimization
with binary constraints. IEEE Transactions on Automatic Control, 2021.

[96] Dan Levi, Liran Gispan, Niv Giladi et Ethan Fetaya : Evaluating and calibrating uncertainty
prediction in regression tasks. arXiv:1905.11659, Feb 2020.

[97] Yuncheng Li, Jianchao Yang, Yale Song, Liangliang Cao, Jiebo Luo et Li-Jia Li : Learning from
noisy labels with distillation. arXiv:1703.02391 [cs, stat], Apr 2017.

[98] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval
Tassa, David Silver et Daan Wierstra : Continuous control with deep reinforcement learning.
arXiv:1509.02971, Jul 2019. arXiv:1509.02971 [cs, stat].

[99] M Liu et Y Shi : Model predictive control of aggregated heterogeneous second-order thermostatically
controlled loads for ancillary services. IEEE Trans. on Power Systems, 31(3):1963–1971, 2015.

[100] Rongrong Liu, Florent Nageotte, Philippe Zanne, Michel de Mathelin et Birgitta Dresp-
Langley : Deep reinforcement learning for the control of robotic manipulation: A focussed mini-
review. Robotics, 10(1):22, Jan 2021. arXiv: 2102.04148.

[101] Tongliang Liu et Dacheng Tao : Classification with noisy labels by importance reweighting.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 38(3):447–461, Mar 2016. arXiv:
1411.7718.

118



[102] Z. P. Liu et J. P. Castagna : Avoiding overfitting caused by noise using a uniform training mode.
In IJCNN’99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339),
volume 3, pages 1788–1793 vol.3, 1999.

[103] Christos Louizos et Max Welling : Multiplicative normalizing flows for variational bayesian neural
networks. (arXiv:1703.01961), Jun 2017. arXiv:1703.01961 [cs, stat].

[104] Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, Pieter Abbeel et Igor Mordatch : Multi-agent
actor-critic for mixed cooperative-competitive environments. Mar 2020. arXiv:1706.02275 [cs].

[105] Yueming Lyu et Ivor W. Tsang : Curriculum loss: Robust learning and generalization against label
corruption. arXiv:1905.10045 [cs, stat], Feb 2020.

[106] Xiaoteng Ma, Li Xia, Zhengyuan Zhou, Jun Yang et Qianchuan Zhao : Dsac: Distributional soft
actor critic for risk-sensitive reinforcement learning. (arXiv:2004.14547), Jun 2020. arXiv:2004.14547
[cs].

[107] Xingjun Ma, Yisen Wang, Michael E. Houle, Shuo Zhou, Sarah M. Erfani, Shu-Tao Xia,
Sudanthi Wijewickrema et James Bailey : Dimensionality-driven learning with noisy labels.
arXiv:1806.02612 [cs, stat], Jul 2018.

[108] Mehdi Maasoumy, Borhan M Sanandaji, Alberto Sangiovanni-Vincentelli et Kameshwar
Poolla : Model predictive control of regulation services from commercial buildings to the smart
grid. In 2014 American Control Conference, pages 2226–2233. IEEE, 2014.

[109] Vincent Mai, Waleed Khamies et Liam Paull : Batch inverse-variance weighting: Deep heteroscedas-
tic regression. arXiv:2107.04497, Jul 2021.

[110] J L Mathieu, S Koch et D S Callaway : State estimation and control of electric loads to manage
real-time energy imbalance. IEEE Trans. on Power Systems, 28(1):430–440, 2012.

[111] Laetitia Matignon, Guillaume J. Laurent et Nadine Le Fort-Piat : Independent reinforcement
learners in cooperative markov games: a survey regarding coordination problems. The Knowledge
Engineering Review, 27(1):1–31, Feb 2012.

[112] Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi Mirza, Alex Graves, Timothy P. Lillicrap,
Tim Harley, David Silver et Koray Kavukcuoglu : Asynchronous methods for deep reinforcement
learning. arXiv:1602.01783 [cs], Jun 2016. arXiv: 1602.01783.

[113] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra et Martin Riedmiller : Playing Atari with deep reinforcement learning. NIPS, page 9,
2013.

[114] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G.
Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski et et al.
: Human-level control through deep reinforcement learning. Nature, 518(7540):529–533, Feb 2015.

[115] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G.
Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig
Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran,
Daan Wierstra, Shane Legg et Demis Hassabis : Human-level control through deep reinforcement
learning. Nature, 518(75407540):529–533, Feb 2015.

[116] Aryan Mobiny, Pengyu Yuan, Supratik K. Moulik, Naveen Garg, Carol C. Wu et Hien
Van Nguyen : Dropconnect is effective in modeling uncertainty of bayesian deep networks. Scientific
Reports, 11(11):5458, Mar 2021.

[117] Kevin P. Murphy : Machine learning: a probabilistic perspective. Adaptive computation and machine
learning series. MIT Press, 2012.

119



[118] Nagarajan Natarajan, Inderjit S Dhillon, Pradeep K Ravikumar et Ambuj Tewari : Learning
with noisy labels. In C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani et K. Q. Wein-
berger, éditeurs : Advances in Neural Information Processing Systems, volume 26, page 1196–1204.
Curran Associates, Inc., 2013.

[119] J. A. Nelder et R. Mead : A Simplex Method for Function Minimization. The Computer Journal,
7(4):308–313, 01 1965.

[120] D. A. Nix et A. S. Weigend : Estimating the mean and variance of the target probability distribution.
In Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN’94), volume 1, pages
55–60 vol.1, 1994.

[121] Mohammed M. Olama, Teja Kuruganti, James Nutaro et Jin Dong : Coordination and control
of building hvac systems to provide frequency regulation to the electric grid. Energies, 11(7), 2018.

[122] Frans A. Oliehoek et Christopher Amato : A Concise Introduction to Decentralized POMDPs.
SpringerBriefs in Intelligent Systems. Springer International Publishing, Cham, 2016.

[123] OpenAI, Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemysław
Dębiak, Christy Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Chris Hesse, Rafal
Józefowicz, Scott Gray, Catherine Olsson, Jakub Pachocki, Michael Petrov, Henrique P.
d O. Pinto, Jonathan Raiman, Tim Salimans, Jeremy Schlatter, Jonas Schneider, Szymon
Sidor, Ilya Sutskever, Jie Tang, Filip Wolski et Susan Zhang : Dota 2 with large scale deep
reinforcement learning. arXiv:1912.06680, Dec 2019. arXiv: 1912.06680.

[124] Ian Osband, John Aslanides et Albin Cassirer : Randomized prior functions for deep reinforcement
learning. In Advances in Neural Information Processing Systems, 2018.

[125] Ian Osband, Charles Blundell, Alexander Pritzel et Benjamin Van Roy : Deep exploration via
bootstrapped dqn. Advances in Neural Information Processing Systems, 29:4026–4034, 2016.

[126] Ian Osband, Yotam Doron, Matteo Hessel, John Aslanides, Eren Sezener, Andre Saraiva,
Katrina McKinney, Tor Lattimore, Csaba Szepesvari, Satinder Singh et et al. : Behaviour suite
for reinforcement learning. arXiv:1908.03568, Feb 2020.

[127] Ian Osband, Benjamin Van Roy, Daniel J. Russo et Zheng Wen : Deep exploration via randomized
value functions. Journal of Machine Learning Research, 20(124):1–62, 2019.

[128] Yaniv Ovadia, Emily Fertig, Jie Ren, Zachary Nado, D Sculley, Sebastian Nowozin, Joshua
Dillon, Balaji Lakshminarayanan et Jasper Snoek : Can you trust your model’s uncertainty?
evaluating predictive uncertainty under dataset shift. Advances in Neural Information Processing Sys-
tems, 32:13991–14002, 2019.

[129] Deepak Pathak, Pulkit Agrawal, Alexei A Efros et Trevor Darrell : Curiosity-driven exploration
by self-supervised prediction. In International Conference on Machine Learning, pages 2778–2787.
PMLR, 2017.

[130] Valentin Peretroukhin, Brandon Wagstaff et Jonathan Kelly : Deep probabilistic regression of
elements of so(3) using quaternion averaging and uncertainty injection. In CVPR Workshops, 2019.

[131] Aisling Pigott, Constance Crozier, Kyri Baker et Zoltan Nagy : Gridlearn: Multiagent reinforce-
ment learning for grid-aware building energy management, 2021.

[132] Zhiwei Qin, Hongtu Zhu et Jieping Ye : Reinforcement learning for ridesharing: An extended survey.
Aug 2022. arXiv:2105.01099 [cs].

[133] Stephan Rasp, Michael S. Pritchard et Pierre Gentine : Deep learning to represent subgrid pro-
cesses in climate models. Proceedings of the National Academy of Sciences, 115(39):9684–9689, Sep
2018.

120



[134] Scott Reed, Honglak Lee, Dragomir Anguelov, Christian Szegedy, Dumitru Erhan et Andrew
Rabinovich : Training deep neural networks on noisy labels with bootstrapping. arXiv:1412.6596
[cs], Apr 2015.

[135] Martin Roesch, Christian Linder, Roland Zimmermann, Andreas Rudolf, Andrea Hohmann et
Gunther Reinhart : Smart grid for industry using multi-agent reinforcement learning. Applied Sci-
ences, 10(19), 2020.

[136] David Rolnick, Priya L. Donti, Lynn H. Kaack, Kelly Kochanski, Alexandre Lacoste, Kris
Sankaran, Andrew Slavin Ross, Nikola Milojevic-Dupont, Natasha Jaques, Anna Waldman-
Brown, Alexandra Luccioni, Tegan Maharaj, Evan D. Sherwin, S. Karthik Mukkavilli,
Konrad P. Kording, Carla Gomes, Andrew Y. Ng, Demis Hassabis, John C. Platt, Felix
Creutzig, Jennifer Chayes et Yoshua Bengio : Tackling climate change with machine learning.
(arXiv:1906.05433), Nov 2019. arXiv:1906.05433 [cs, stat].

[137] David Rolnick, Andreas Veit, Serge Belongie et Nir Shavit : Deep learning is robust to massive
label noise. arXiv:1705.10694 [cs], Feb 2018.

[138] Joshua Romoff, Peter Henderson, Alexandre Piché, Vincent François-Lavet et Joelle Pineau :
Reward estimation for variance reduction in deep reinforcement learning. (CoRL):1–26, 2018.

[139] Daniel Russo, Benjamin Van Roy, Abbas Kazerouni, Ian Osband et Zheng Wen : A tutorial on
thompson sampling. (arXiv:1707.02038), Jul 2020. arXiv:1707.02038 [cs].

[140] Y. Sai, R. Jinxia et L. Zhongxia : Learning of neural networks based on weighted mean squares
error function. In 2009 Second International Symposium on Computational Intelligence and Design,
volume 1, page 241–244, Dec 2009.

[141] Tom Schaul, John Quan, Ioannis Antonoglou et David Silver : Prioritized experience replay.
CoRR, abs/1511.05952, 2015.

[142] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford et Oleg Klimov : Proximal
policy optimization algorithms. arXiv:1707.06347, Aug 2017.

[143] Cosma Rohilla Shalizi : Advanced Data Analysis from an Elementary Point of View, 2019. (Accessed
November 13th, 2020).

[144] Yanyao Shen et Sujay Sanghavi : Learning with bad training data via iterative trimmed loss mini-
mization. arXiv:1810.11874 [cs, stat], Feb 2019.

[145] Jun Shu, Qi Xie, Lixuan Yi, Qian Zhao, Sanping Zhou, Zongben Xu et Deyu Meng : Meta-weight-
net: Learning an explicit mapping for sample weighting. arXiv:1902.07379 [cs, stat], Sep 2019.

[146] Pierluigi Siano : Demand response and smart grids—a survey. Renewable and sustainable energy
reviews, 30:461–478, 2014.

[147] David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George van den
Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot
et et al. : Mastering the game of Go with deep neural networks and tree search. Nature, 529:484–489,
Jan 2016.

[148] Hwanjun Song, Minseok Kim, Dongmin Park et Jae-Gil Lee : Learning from noisy labels with deep
neural networks: A survey. arXiv:2007.08199 [cs, stat], Jul 2020.

[149] Yang Song et Zhifei Zhang : UTKFace, Large Scale Face Dataset, 2017. (Accessed June 11, 2020).
[150] Malcolm Strens : A bayesian framework for reinforcement learning. Proceedings of the Seventeenth

International Conference on Machine Learning, 02 2001.

121



[151] Jayakumar Subramanian, Raihan Seraj et Aditya Mahajan : Reinforcement learning for mean-field
teams. In Workshop on Adaptive and Learning Agents at the International Conference on Autonomous
Agents and Multi-Agent Systems, 2018.

[152] Sainbayar Sukhbaatar, Arthur Szlam et Rob Fergus : Learning multiagent communication with
backpropagation. Advances in Neural Information Processing Systems, page 2252–2260, 2016.

[153] Richard S. Sutton : Learning to predict by the methods of temporal differences. Machine Learning,
3(1):9–44, Aug 1988.

[154] Richard S. Sutton et Andrew G. Barto : Reinforcement learning: an introduction. Adaptive com-
putation and machine learning series. The MIT Press, second edition édition, 2018.

[155] Niko Sünderhauf, Oliver Brock, Walter Scheirer, Raia Hadsell, Dieter Fox, Jürgen Leitner,
Ben Upcroft, Pieter Abbeel, Wolfram Burgard, Michael Milford et et al. : The limits and
potentials of deep learning for robotics. The International Journal of Robotics Research, 37(4–5):
405–420, Apr 2018.

[156] Ryutaro Tanno, Ardavan Saeedi, Swami Sankaranarayanan, Daniel C. Alexander et Nathan
Silberman : Learning from noisy labels by regularized estimation of annotator confusion. In 2019
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), page 11236–11245.
IEEE, Jun 2019.

[157] Josh A Taylor, Sairaj V Dhople et Duncan S Callaway : Power systems without fuel. Renewable
and Sustainable Energy Reviews, 57:1322–1336, 2016.

[158] William R. Thompson : On the likelihood that one unknown probability exceeds another in view of
the evidence of two samples. Biometrika, 25(3/4):285, Dec 1933.

[159] Sebastian Thrun, Wolfram Burgard et Dieter Fox : Probabilistic Robotics. Intelligent robotics and
autonomous agents. MIT Press, 2006.

[160] T. Tieleman et G. Hinton : RMSProp: Divide the gradient by a running average of its recent
magnitude., 2012.

[161] Grant Van Horn, Steve Branson, Ryan Farrell, Scott Haber, Jessie Barry, Panos Ipeirotis,
Pietro Perona et Serge Belongie : Building a bird recognition app and large scale dataset with citizen
scientists: The fine print in fine-grained dataset collection. In 2015 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), page 595–604. IEEE, Jun 2015.

[162] Jose R. Vazquez-Canteli, Sourav Dey, Gregor Henze et Zoltan Nagy : Citylearn: Standardizing
research in multi-agent reinforcement learning for demand response and urban energy management.
Dec 2020. arXiv:2012.10504 [cs].

[163] Jose R. Vazquez-Canteli, Gregor Henze et Zoltan Nagy : Marlisa: Multi-agent reinforcement learn-
ing with iterative sequential action selection for load shaping of grid-interactive connected buildings.
In Proceedings of the 7th ACM International Conference on Systems for Energy-Efficient Buildings,
Cities, and Transportation, BuildSys ’20, page 170–179, New York, NY, USA, 2020. Association for
Computing Machinery.

[164] Tingwu Wang, Xuchan Bao, Ignasi Clavera, Jerrick Hoang, Yeming Wen, Eric Langlois, Shunshi
Zhang, Guodong Zhang, Pieter Abbeel et Jimmy Ba : Benchmarking model-based reinforcement
learning. arXiv:1907.02057, Jul 2019.

[165] Yisen Wang, Xingjun Ma, Zaiyi Chen, Yuan Luo, Jinfeng Yi et James Bailey : Symmetric cross
entropy for robust learning with noisy labels. arXiv:1908.06112 [cs, stat], Aug 2019.

[166] Zhe Wang, Bingqing Chen, Han Li et Tianzhen Hong : Alphabuilding rescommunity: A multi-agent
virtual testbed for community-level load coordination. Advances in Applied Energy, 4:100061, 2021.

122



[167] Chris Watkins et Peter Dayan : Q-learning. Machine Learning, May 1992.
[168] Hua Wei, Nan Xu, Huichu Zhang, Guanjie Zheng, Xinshi Zang, Chacha Chen, Weinan Zhang,

Yanmin Zhu, Kai Xu et Zhenhui Li : Colight: Learning network-level cooperation for traffic signal
control. In Proceedings of the 28th ACM International Conference on Information and Knowledge
Management, CIKM ’19, page 1913–1922, New York, NY, USA, Nov 2019. Association for Computing
Machinery.

[169] Anqi Wu, Sebastian Nowozin, Edward Meeds, Richard E. Turner, José Miguel Hernández-
Lobato et Alexander L. Gaunt : Deterministic variational inference for robust bayesian neural
networks. (arXiv:1810.03958), Mar 2019. arXiv:1810.03958 [cs, stat].

[170] Xiaoyu Wu, Jinghan He, Yin Xu, Jian Lu, Ning Lu et Xiaojun Wang : Hierarchical control of
residential hvac units for primary frequency regulation. IEEE Transactions on Smart Grid, 9(4):3844–
3856, 2018.

[171] Yue Wu, Shuangfei Zhai, Nitish Srivastava, Joshua M Susskind, Jian Zhang, Ruslan Salakhutdi-
nov et Hanlin Goh : Uncertainty weighted actor-critic for offline reinforcement learning. In Proceedings
of the 38th International Conference on Machine Learning, volume 139, pages 11319–11328. PMLR,
18–24 Jul 2021.

[172] Lei Xi, Jianfeng Chen, Yuehua Huang, Yanchun Xu, Lang Liu, Yimin Zhou et Yudan Li : Smart
generation control based on multi-agent reinforcement learning with the idea of the time tunnel. Energy,
153:977–987, 2018.

[173] Jun Xie, Martin Kiefel, Sun Ming-Ting et Andreas Gieger : Kitti-360, 2020.
[174] Jun Xie, Martin Kiefel, Ming-Ting Sun et Andreas Geiger : Semantic instance annotation of street

scenes by 3d to 2d label transfer. In Conference on Computer Vision and Pattern Recognition (CVPR),
2016.

[175] Aolin Xu et Maxim Raginsky : Minimum excess risk in bayesian learning. (arXiv:2012.14868), Dec
2020. arXiv:2012.14868 [cs, math, stat].

[176] Yaodong Yang, Jianye Hao, Yan Zheng, Xiaotian Hao et Bofeng Fu : Large-scale home energy
management using entropy-based collective multiagent reinforcement learning framework. In Proceed-
ings of the 18th International Conference on Autonomous Agents and MultiAgent Systems, AAMAS
’19, page 2285–2287, Richland, SC, May 2019. International Foundation for Autonomous Agents and
Multiagent Systems.

[177] Yaodong Yang, Rui Luo, Minne Li, Ming Zhou, Weinan Zhang et Jun Wang : Mean field multi-
agent reinforcement learning. Feb 2018.

[178] Kun Yi et Jianxin Wu : Probabilistic end-to-end noise correction for learning with noisy labels.
arXiv:1903.07788 [cs], Mar 2019.

[179] Chao Yu, Akash Velu, Eugene Vinitsky, Yu Wang, Alexandre Bayen et Yi Wu : The surprising
effectiveness of ppo in cooperative, multi-agent games. Jul 2021. arXiv:2103.01955 [cs].

[180] Xingrui Yu, Bo Han, Jiangchao Yao, Gang Niu, Ivor W. Tsang et Masashi Sugiyama : How does
disagreement help generalization against label corruption? arXiv:1901.04215 [cs, stat], May 2019.

[181] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht et Oriol Vinyals : Understanding
deep learning requires rethinking generalization. arXiv:1611.03530 [cs], Feb 2017.

[182] Kaiqing Zhang, Zhuoran Yang et Tamer Başar : Multi-agent reinforcement learning: A selective
overview of theories and algorithms. (arXiv:1911.10635), Nov 2019. arXiv:1911.10635 [cs, stat].

123



[183] Kaiqing Zhang, Zhuoran Yang, Han Liu, Tong Zhang et Tamer Başar : Fully decentralized multi-
agent reinforcement learning with networked agents. (arXiv:1802.08757), Feb 2018. arXiv:1802.08757
[cs, math, stat].

[184] Wei Zhang, Jianming Lian, Chin-Yao Chang et Karanjit Kalsi : Aggregated modeling and control
of air conditioning loads for demand response. IEEE transactions on power systems, 28(4):4655–4664,
2013.

[185] X Zhou, E Dall’Anese et L Chen : Online stochastic optimization of networked distributed energy
resources. IEEE Trans. on Automatic Control, 65(6):2387–2401, 2019.

[186] Changxi Zhu, Mehdi Dastani et Shihan Wang : A survey of multi-agent reinforcement learning with
communication. (arXiv:2203.08975), Mar 2022. arXiv:2203.08975 [cs].

124



Appendix A

Batch Inverse-Variance weighting:
Supplementary material

In this appendix, we provide details about the datasets and neural network training used in
Article 1. We also present additional results about the influence of ϵ, the behavior of BIV on
different variance distributions, and the robustness of BIV on variance errors and mini-batch
size.

A.1. Data sets and Neural Networks
A.1.1. UTKFace

A.1.1.1. Dataset description. The UTKFace Aligned&Cropped dataset [149] consists
of 20,000 pictures of faces labelled with their age, ranging from 0 to 116 years. We use it in
a regression setting: the network must predict the age of a person given the photo of their
face. Unless described otherwise, 16,000 images were used for training, and 4,000 for testing.

Some images are in black and white and some are in color. The pixel dimension of each
image is 200x200.

Both the pixels and the labels were normalized before the training, so that their mean is 0
and standard deviation is 1 over the whole dataset. The noise variances were correspondingly
scaled, as well as the cutoff threshold if applicable.

A.1.1.2. Neural network and training hyper-parameters. The model that we used
was a Resnet-18 [65], not pretrained. It was trained with an Adam optimizer [78], a learning
rate of 0.001 over 20 epochs. A batch size of 256 was used in order to ensure the best
performance for the L2 method with noisy labels as well as to reduce the time necessary to
the training process.



A.1.2. Bike Sharing Dataset

A.1.2.1. Dataset description. The Bike Sharing Dataset [45] consists of 17,379 sam-
ples of structured data. It contains, for nearly each hour of the years 2011 and 2012, the
date, season, year, month, hour, day of the week, a boolean for it being a holiday, a boolean
for it being a working day, the weather situation on a scale of 4 (1: clear and beautiful,
4: stormy or snowy), the temperature, the feeling temperature, the humidity, and the wind
speed, in the city of Washington DC. It also contains the number of casual, registered, and
total bike renters for each hour as recorded on the Capital Bikeshare system.

We use it in a regression setting: the network must predict the total number of bike
renters given the time and weather information. Unless described otherwise, 7,000 samples
were used for training, and 3,379 for testing. We used less samples than available for training
because the low-data situation, noise has a stronger effect on the performance. The minimal
test loss achieved with 7000 noiseless samples was very close to the one with 14000 samples,
hinting that the additional samples did not give a lot of additional information.

We applied some pre-processing on the data to make it easier for the network to learn.
First, the date was normalized from a scale between day 1 to day 730 to a scale between 0
and 4π. Then, we provided the network with the cosine and the sine of this number. This
allowed to have the same representation for the same days of the year, while having the same
distance between any two consecutive days, keeping the cyclic nature of a year. A similar
idea was applied to hours, normalized from 0 to 2π instead of 0 to 24, and with the cosine
and sine given to the network. The day of the week, being a category, was given as a one-hot
vector of dimension 7. We also removed the season and the month as it was redundant
information with the date.

Overall, the number of features was 19:
1 Year

2-4 Date (sine and cos)
4-5 Hour (sine and cos)

6-12 Days of the week (one-hot vector)
13 Holiday boolean
14 Working day boolean
15 Weather situation
16 Temperature
17 Felt temperature
18 Humidity
19 Wind speed

We observed that the network was learning significantly faster and better provided with this
format for the data.

126



Both the features and the labels were normalized before the training, so that their mean
is 0 and standard deviation is 1 over the whole dataset. The noise variances were corre-
spondingly scaled, as well as the cutoff threshold if applicable.

A.1.2.2. Neural network and training hyper-parameters. The model that we used
was a multi-layer perceptron with 4 hidden layers, the first one with 100 neurons, then 50,
20, and 10. The activation function was ReLU. We did not use any additional technique
such as batch normalization as it did not improve the performances.

The model was trained over 100 epochs on mini-batches of size 256 for similar reasons
than explained in section A.1.1.2, using the Adam optimizer with learning rate 0.001.

A.2. Additional experiments
A.2.1. The influence of ϵ

In this section, we provide experimental results justifying our recommendation of the
range of [10−2; 10−1] for ϵ. In the experiments presented in this article, we have mainly used
ϵ = 5 × 10−2, and sometimes ϵ = 10−1. ϵ must be chosen as part of a trade-off between
mitigating the effect of BIV with near ground-truth labels while keeping its effect with noisy
labels. To better understand these results, it is important to remember that ϵ is added to
the variance that is used in the loss function. When the labels are normalized - which is the
case in our work -, the noise and its variance for each label is normalized too. The value we
recommend for ϵ should therefore be valid for any normalized set of labels.

The main role of ϵ is to set a maximal weight to the samples and prevent a near-zero
variance sample to effectively reducing the minibatch to itself, thus ignoring the other po-
tentially valid samples. We tested several values of ϵ on both the UTKF and BikeSharing
datasets, with P (σ2) being Gamma distributions with α = 1 and µP = 2000 and µP = 20000
respectively.

The resulting graph can be seen in figures 1 and 2
In both experiments, the optimal value for ϵ is 0.05. Between 0.02 and 0.1, the perfor-

mances are acceptable. When ϵ is too small, the learning process gives too much importance
to the low-noise samples, as seen in section 3.6.4. When it is too high, it leans too much
towards L2.

This can be seen in figure 3, which applies BIV with different value for ϵ on a binary
distribution on UTKF.

The fact that in the three, the same values for ϵ are optimal, even though tasks as well
as the noise distribution are different, shows that these values are valid for most cases with
normalized labels.

127



Fig. 1. Results of running BIV with different values of ϵ on UTKF with P (σ2) as a Gamma
distribution with α = 1, µP = 2000.

Fig. 2. Results of running BIV with different values of ϵ on BikeSharing with P (σ2) as a
Gamma distribution with α = 1, µP = 20000.

Fig. 3. Impact of ϵ when training with highly noisy labels using BIV loss on UTKF dataset.
The variance was sampled through a binary uniform distribution with p = 0.5, µP = 2000,
and Vh = 0. Very high ϵ shows a loss of performance as BIV approaches the L2 results.

128



A.2.2. BIV on different distributions

A.2.2.1. Uniform distributions. We present in figure 5 the results of the experiment
with uniform distributions in more details.

As explained in section 3.6.3, we observe that BIV and L2 have the same performances
when V = 0 (and a = b = µP ). This is to be expected, as all samples have the exact same
noise variance and thus the same weights. When V = Vmax (a = 0 and b = 2µP ), BIV has an
advantage, as it is able to differentiate the samples and use the support of low-noise labels.
When V = Vmax/2 (a = 0.293µP and b = 1.707µP ), the difference between the samples is
less important, and BIV only does a bit better than L2 on BikeSharing. On UTKF, the
process has more variability and it is difficult to detect this effect.

In all cases, the benefit from using BIV is less important than with Gamma distributions
with α ≤ 1, where the support on low-noise samples is higher.

A.2.3. BIV on Gamma distributions

A.2.3.1. α ≤ 1. As described in section 3.6.3, the smaller α, the better the performance
of BIV and cutoffs. We show in figures 7 and 8 the curves that led to the numbers in Table
1. BIV consistently outperforms the other methods. The performance of cutoff methods
strongly depends on C, and the best value of C is not the same for every distribution P .

Fig. 4. Test loss on the UTKF dataset for L2 and BIV learning on Gamma function with
α ≥ 1.

A.2.3.2. α > 1. When α > 1, the highest support of P (σ2) shifts towards µP . This
makes the samples less distinguishable for BIV and therefore the benefits of using it are
reduced. This is shown in Figure 4 on UTKF.

A.2.4. Robustness of BIV

A.2.4.1. Size of the mini-batches. In equation (3.4.3), the normalization constant is
computed from the samples in the mini-batch. If the distribution of the noise variances in

129



mini-batch is representative of the whole training dataset, the relative weight given to each
sample with respect to the others is the same than if the normalization was made over the
whole dataset. The larger the mini-batch, the more representative it is. In our experiments,
we used a size of 256, which is arguably high. We tested our algorithm with lower batch
sizes, from 16 to 128, to see if it was a critical factor in the performances.

The results are presented in figure 9. In UTKF, the batch size does not make any
significant difference in the performance with respect to the amount of samples seen, except
for a slightly steeper overfitting once the best loss has been achieved. In BikeSharing, a
smaller batch size makes the training faster with respect to the amount of samples, but with
a higher minimal loss, for both L2 and BIV. While a larger batch size leads to a lower loss
function, the effect of BIV compared to the corresponding L2 curve is not compromised by
smaller batch-sizes.

Two main factors may explain this robustness. First, a mini-batch of size 16 seems to
be already representative enough of the whole dataset for the purpose of normalization.
Second, the fact that the mini-batches are populated differently at every epoch improves the
robustness as a sample who would have been in a non-representative batch at one epoch may
not be at another epoch. In any case, the size of the mini-batch is not a critical factor for
BIV.

A.2.4.2. Noisy variance estimation. In many scenarios, the variance σ2 from which
the noise was sampled is estimated, or inferred from a proxy, and therefore prone to be noisy
itself. We tested the robustness of our method to such variance noise. In this experimental
setup, the value given to the BIV algorithm is disturbed by noise δσ2

i
. We modelled this noise

on σ2
i to be sampled from a normal distribution whose standard deviation is proportional to

σ2
i with a coefficient of variance disturbance Dv:

δσ2
i
∼ N (0, Dvσ2

i /9) (A.2.1)

Dividing σ2
i by 9 allows to scale Dv so that, when Dv = 1, δσ2

i
< −σ2

i is at 3 standard
deviations from the mean.

We then compute the noisy variance, which needs to be positive, as σ̃2
i =

∣∣∣σ2
i + δσ2

i

∣∣∣. The
noise is therefore biased, but when Dv ≤ 1, this is negligible as it happens with probability
less than 0.15%.

The results presented in figure 10 show that, when Dv ≤ 1, BIV is robust to such noise.
While a higher Dv leads to lower performance, the impact is small compared to the effect
of BIV. However, when Dv = 2, which is an arguably high level of noise and leads to bias
as explained previously, the beneficial effect of BIV is significantly affected in BikeSharing,
and completely disappears in UTKF.

130



Fig. 5. Test loss for L2 and BIV learning on uniform with different variances V .

Fig. 6. On BikeSharing with µP = 20000, using cutoff is not helpful in the uniform setting.
This is due to the significant loss of information induced by such a strategy.

Fig. 7. Test loss on the BikeSharing dataset, with α ≤ 1

In this setting, we also show as shown in figure 6 that cutting off the noisy data is not a
good strategy, as it always performs worse than L2.

131



Fig. 8. Test loss on the UTKF dataset, with α ≤ 1

Fig. 9. BIV with different batch sizes in both UTKF and BikeSharing datasets.

Fig. 10. Robustness of BIV to noise in the variance with different disturbance coefficients
Dv.

132



Appendix B

Sample efficient reinforcement learning via
uncertainty estimation: Supplementary

material

In this appendix, we provide supplementary material for Article 2. We first provide an
accounting of the carbon emissions of this research project. We then describe each algorithm
in details. We also provide the hyperparameters used to train them, we discuss the influence
of λ in LIVRL and the computation time of our algorithm. We discuss the evolution of
variance estimation, compare different weighting schemes and evaluate the performance of
single variance networks. We finally discuss on the relationship between IVRL and optimism
in face of uncertainty.

B.1. Carbon emissions of the research project
As a significant amount of electricity has been used to train and run the models for this

work, we publish its estimated carbon footprint.
Experiments were conducted using a private infrastructure, which has a carbon efficiency

of 0.028 kgCO2eq/kWh. A cumulative of 12367 days, or 296808 hours, of computation was
mainly performed on the hardware of type RTX 8000 (TDP of 260W). We assume full power
usage of the GPUs, although this was not always the case. Total emissions are estimated to
be 2160.76 kgCO2eq of which 0 percents were directly offset. This is equivalent to 8730 km
driven by an average car, or 1.08 metric tons of burned coal.

Estimations were conducted using the MachineLearning Impact calculator presented in
[87].

https://mlco2.github.io/impact#compute


B.2. Appendix - Algorithms in details
In this section, we are detailing the different algorithms described in the paper, and

explaining the design choices that we made.

B.2.1. BootstrapDQN

BootstrapDQN [125], improved with Randomized Prior Function (RPF) [124], is an
ensemble-based modification of DQN [113]. Instead of a Q- and a target network, we use a
Q-ensemble and a target ensemble. It is the base algorithm upon which IV-DQN is built.
The detailed steps at training are presented in algorithm 11.
Network architecture. The Q-ensemble and the target ensemble are initialized identically
with N = 5 neural networks. We used multi-layer perceptrons with 2 ReLU-activated
hidden layers of 64 nodes.
TD update. Following the implementation of [125], the networks are paired one to one
between the Q- and the target networks during the TD update. The system can be considered
as several DQNs working in parallel. At training time, the best action a′ for each Q-network
is selected based on the corresponding target network.
Exploration. During exploration at training time, one network of the ensemble is used to
predict the best action for a whole episode. This follows [125], and is an approximation of
Thompson sampling [158]. We added random prior functions [124] to tackle the variance
underestimation at early training.

At test time, the best action a′ is instead selected by a vote from the networks in the
ensembles. Ties are broken randomly. Using the mean value across the ensemble was also
tested, with slightly lower performances.
Masked replay buffer. To mask the replay buffer, each step saved in the replay buffer is
associated with a N -sized boolean vector m which is used as a mask during training. Each
element of m indicates if the corresponding network in the Q-ensemble should be trained
using this sample. These elements of m are independently generated when the sample is
saved, using a Bernoulli distribution with probability pm. They are kept fixed during the
training. The role of the mask is to ensure variability in the training of the different networks
of the Q-ensemble and thus maintain a significant variance prediction.

B.2.2. IV-DQN

IV-DQN is built upon BootstrapDQN. The main differences are the use of var-networks
in the ensemble, the computation of the variance in the TD update, and the use of LIVRL

when training the networks’ parameters commonly used to represent epistemic uncertainty

1The presentation of algorithms is optimized for readability. During the implementation, many for-loops are
replaced by tensor computation or parallel computing.

134



Algorithm 1 BootstrapDQN - Training
1: Input: RPF scale δRPF, minibatch size K, mask probability pm, ensemble of N Q-

networks Q, ensemble of N target-networks T , ensemble of N prior-networks P
2: for each episode do
3: Pick a Q-network from Q using i ∼ Uniform (1..N) ▷ [125]
4: for each time step do
5: a←− arg maxα (Qi(s, α) + δRPFPi(s, α)) ▷ Random prior [124]
6: Collect next-state s′ and reward r from the environment by taking action a
7: Sample bootstrap mask M = ml ∼ {Bernoulli(pm)|l ∈ 1, ...,N}
8: Add (s, a, s′, r, M) in buffer B
9: s←− s′

10: Sample minibatch D from replay buffer B
11: for j in [1 . . . N ] do ▷ Each member of the ensemble
12: for each tuple (sk, ak, s′

k, rk, Mk) in minibatch D do ▷ Computing the targets
13: Q̂k ←− Qj(ak, sk) + δRPFPj(sk, ak)) ▷ Expected Q-value
14: a′

k ←− arg maxa (Tj(s′
k, a) + δRPFPj(s′

k, a))
15: Tk ←− rk + γ(Tj(s′

k, a′
k) + δRPFPj(s′

k, a′
k)) ▷ Target

16: end for
17: Mask minibatch D using Mj

18: Update Qj’s parameters θj by minimizing L2 loss: (Q̂− T )2 over D

19: Soft update of the Tj’s parameters θ̄j ←− (1− τ)θ̄j + τθj

20: end for
21: end for
22: end for

in ML. The pseudo-code for IV-DQN is given in algorithm 2, where the differences with
BootstrapDQN are highlighted. At test time, action selection for IV-DQN is same as Boot-
strapDQN.
Var-networks architecture. Similar to BootstrapDQN, we used ensembles consisting of N = 5
networks. The var-networks were also multi-layer perceptrons with 2 ReLU-activated hidden
layers of 64 nodes. The only difference is that, instead of a single head for a given (s,a), these
networks now provide 2 heads to predict the mean µθ and the variance σ2

θ of the Q-value.
To differentiate these outputs of network N given a state-action pair (s,a), we write N µ(s,a)
and N σ2(s,a).
Computing the uncertainty of Q̄(s′,a′). As justified in section 5.3, variance σ2

Q̄(s′,a′) is esti-
mated using var-ensembles. For each (s′

k, a′
k) pair used to train a single Q-network Qj in

ensemble Q, the value of Q̄(s′
k, a′

k) is the mean µk,j predicted by the corresponding target-
network Tj. However, to evaluate σ2

Q̄
, every target-network Tl in the target ensemble predicts

a mean µk,l and a variance σ2
k,l for Q̄(s′

k, a′
k). Then, σ2

Q̄,k
(s′

k, a′
k) is computed as the variance

of the mixture of Gaussians composed of all the µk,l and σ2
k,l:

σ2
Q̄,k = 1

N

N∑
l=1

σ2
k,l + µ2

k,l − µ2
k,all (B.2.1)

135



where µ2
k,all is the average of all µ2

k,l’s.
Using LIVRL. Given σ2

Q̄
, each network can now learn to predict mean µ and variance σ2

during the TD update using LIVRL instead of L2. To select the value of ξ, we specify a
minimal effective batch size MEBS. We use equation (5.2.2) to determine if, for the values
of σ2

Q̄,k
and ξ = 0, the effective batch size EBS is lower than MEBS. If this is the case, ξ

is increased until EBS ≥MEBS using a Nelder Mead optimization method [119].

Algorithm 2 IV-DQN - Training. In red, the differences with BootstrapDQN.
1: Input: RPF scale δRPF, minibatch size K, mask probability pm, LA weight λ, minimal

effective batch size MEBS, initial state s, var-ensemble of N Q-var-networks Q, var-
ensemble of N target-var-networks Q, var-ensemble of N prior-var-networks P

2: for each episode do
3: Pick a Q-network from Q using i ∼ Uniform (1..N) ▷ [125]
4: for each time step do
5: a←− arg maxα (Qi(s, α) + δRPFPi(s, α)) ▷ Random prior [124]
6: Collect next-state s′ and reward r from the environment by taking action a
7: Sample bootstrap mask M = ml ∼ {Bernoulli(pm)|l ∈ 1, ...,N}
8: Add (s, a, s′, r, M) in buffer B
9: s←− s′

10: Sample minibatch D from replay buffer B
11: for j in [1 . . . N ] do
12: for each tuple (sk, ak, s′

k, rk, Mk) in mini-batch D do
13: µQ̂,k ←− Q

µ
j (ak, sk) + δRPFPj(sk, ak)) ▷ Expected Q-value

14: a′
k ←− arg maxa (Tj(s′

k, a) + δRPFPj(s′
k, a))

15: Tk ←− rk + γ(Tj(s′
k, a′

k) + δRPFPj(s′
k, a′

k)) ▷ Target
16: for l in [1 . . . N ] do ▷ µ and σ2 for each network of the ensemble
17: µk,l ←− T µ

l (s′
k, a′

k) + δRPFP µ
l (s′

k, a′
k)

18: σ2
k,l ←− T σ2

l (s′
k, a′

k)
19: end for
20: µk,all ←− 1/N

∑N
l=1 µk,l ▷ Average of the mean predictions

21: σ2
Q̄,k
←− 1/N

∑N
l=1 σ2

k,l + µ2
k,l − µ2

k,all ▷ Variance of mixture of Gaussians
22: end for
23: Estimate ξ based on all σ2

Q̄,k
so that EBS ≥MEBS using Eq. (5.2.1)

24: Mask minibatch using Mj

25: Train Qj’s parameters θj with LIVRL (5.3.7) using µQ̂, T , ξ and σ2
Q̄

on D

26: Soft update of Tj’s parameters θ̄j ←− (1− τ)θ̄j + τθj

27: end for
28: end for
29: end for

B.2.3. Ablations for IV-DQN

In the ablation study presented in section 5.4.1, 4 new algorithms are presented. We
detail here their differences with IV-DQN and algorithm 2.

136



BIV + BootstrapDQN. In BIV + BootstrapDQN, the networks used in the ensembles are
single-head networks, similar to BootstrapDQN. Thus, these are sampled ensembles. σ2

Q̄,k
is

thus computed as the sampled variance of the networks’ predictions. Additionally, instead
of LIVRL, we simply use LBIV.

Compared to algorithm 2, lines 1 to 17 are the same. Line 18 is removed. Line 21 is
changed by:
σ2

Q̄,k
←− 1/N

∑N
l=1(µQ̄,l − µQ̄,all)2. Finally, in line 25, LIVRL is changed to LBIV.

L2 + VarEnsembleDQN. In L2 + VarEnsembleDQN, we do not apply BIV weights. The
difference with IV-DQN is that we simply change LBIV for the L2 loss in LIVRL. The
networks are still var-networks trained with the LLA part of the LIVRL loss, and the rest of
the algorithm is the same as algorithm 2. In practice, the computation of σ2

Q̄,k
and ξ are

now useless, and lines 16 to 21 as well as line 23 can be removed.
BIV + VarNetworkDQN. In BIV + VarNetworkDQN, we use a single var-network instead
of a var-ensemble. Concretely, N = 1. This means that at line 21, σ2

Q̄,k
is effectively the

variance output by the single target network.
Additionally, masks and RPF do not make sense here, so they are not applied. As the

BootstrapDQN exploration cannot apply either, an ϵ-greedy strategy is used instead.
L2 + VarNetworkDQN. L2 + VarNetworkDQN is BIV + VarNetworkDQN, without BIV
weights. LBIV is replaced by the L2 loss in LIVRL.

B.2.4. IV-SAC

IV-SAC is built upon EnsembleSAC, which is inspired by SUNRISE [92]. We describe
here the main elements of IV-SAC, and present the detailed process in algorithm 3.
Network architecture. The variance networks used in IV-SAC are multilayer perceptrons with
flattened inputs and 2 ReLU-activated hidden layers of 256 nodes. Our implementation is
based on rlkit2.
Critic. SAC is a complex DRL algorithm with several details which are orthogonal to IV-RL,
for example, the accounting of policy entropy in the definition of the Q-value. On the critic
side, the implementation of IV-RL is mostly similar to IV-DQN’s TD update.
Actor. Following the example of [92], we use an ensemble for the actor-network when using
ensembles for the critic. Each network in the actor is linked to a pair of networks in the critic.
When training, the Q-value and its variance for each state-action are computed similarly as
when training the critic. As justified in section 5.3.2, we also apply the BIV loss function
when training the actor. However, instead of the L2 error shown in equation (5.2.1), we use
the SAC loss function for the actor. For a minibatch D of size K, we have:

2https://github.com/rail-berkeley/rlkit

137

https://github.com/rail-berkeley/rlkit


Lactor(D, ϕ) =
 K∑

k=0

1
σ2

Q̂
(sk, ak) + ξ

−1
K∑

k=0

1
σ2

Q̂
(sk, ak) + ξ

(α ln(πϕ(ak|sk))− µQ̂(sk, ak))

(B.2.2)
Action selection. The use of an ensemble for the d allows for different methods to select the
next action given a state. In this respect, we follow again the example of [92].

During the training of the Q-network, we pair each Q-network with its corresponding
actor. To encourage exploration, we additionally take advantage of the ensemble to imple-
ment UCB. Each policy network outputs an action. The mean Q-value µQ(s,a) and variance
σ2

Q(s,a) for each action a are computed by sampling over all networks of the critic. The
chosen action has the highest UCB score: a∗ = arg maxawhere ΛUCB is a hyperparameter.

To estimate the standard deviation for UCB, we use sampled ensembles: this is because,
for UCB, the variance estimation must be calibrated, in order to be correctly scaled with
the Q-values. Var-ensembles are therefore disqualified.

During testing, the agent takes the average action, as sampled from the output of the
mean prediction by the policy networks.

B.2.5. Ablations for IV-SAC

We also do ablation studies with our IV-SAC model (presented in section 5.4.2) where
we show 6 additional variations. We detail here their differences with IV-SAC with respect
to algorithm 3.
EnsembleSAC. EnsembleSAC is the base on which IV-SAC is built. It uses regular networks
as critics instead of variance networks in the ensemble, and it does not consider uncertainty.
Compared to algorithm 4, lines 1 to 17, and 20, 21, 26 to 29 are identical. Lines 18, 19, 22
and 24 are removed. In line 23 and 25, the usual losses of SAC are used instead of Lactor and
LBIV.
BIV+EnsembleSAC. Similar to EnsembleSAC, this version uses regular networks as critic
instead of variance networks in the ensemble. However, it is uncertainty aware: it estimates
the variance of the prediction using sampled ensembles. It is thus similar to SunriseSAC [92],
but with BIV weights instead of SUNRISE weights. σ2

Q̄,k
and σ2

Q̂,k
being computed as the

sampled variance of the networks’ predictions, we change these lines compared to algorithm
3:

• line 18 to: σ2
Q̂,k
←− 1/N

∑N
l=1(µQ̂,l − 1/N

∑N
m=1 µQ̂,m)2

• line 19 to: σ2
Q̄,k
←− 1/N

∑N
l=1(µQ̄,l − 1/N

∑N
m=1 µQ̄,m)2

Additionally, instead of LIVRL, we use LBIV for the critic at line 25.
L2 + VarEnsembleSAC. Here, we do not apply BIV weights to both actor and critic losses.
The critic networks are still var-networks trained with the LLA part of the LIVRL loss, and

138



Algorithm 3 IV-SAC - Training
1: Input: LA weight λ, UCB ΛUCB, minimal effective batch size MEBS, policy networks

π, ensemble of N Q-var-networks Q, ensemble of N target-var-networks T
2: for each episode do
3: for each time step do
4: Collect the action samples: A ←− {ai ∼ πi(a|s)|i ∈ {1,...,N}}
5: a←− arg maxai∈A[µ(Q(s, ai)) + ΛUCBσ(Q(s, ai))] ▷ UCB exploration
6: Collect next-state s′ and reward r from the environment by taking action a
7: Sample bootstrap mask M ←− {ml ∼ Bernoulli(pm)|l ∈ {1, ...,N}}
8: Store tuple (s, a, s′, r, M) in buffer B
9: s←− s′

10: end for
11: for each optimization step do
12: Sample minibatch D from the replay buffer B
13: for j in [1 . . . N ] do ▷ Each member of the ensemble
14: for each tuple (sk, ak, s′

k, rk, Mk) in minibatch D do ▷ Computing the targets
15: Sample next-action: a′

k,j ∼ πj(a′|s′
k)

16: Compute Expected Q-value: µQ̂,k ←− Q
µ
j (ak,sk)

17: Compute Target: Tk ←− rk + γT µ
j (s′

k, a′
k,j)

18: σ2
Q̂,k
←− Predictive-Variance(Q,sk,ak,j) ▷ Algorithm 4

19: σ2
Q̄,k
←− Predictive-Variance(T ,s′

k,a′
k,j) ▷ Algorithm 4

20: end for
21: Mask minibatch D using Mj

22: Estimate ξa so that EBS(σ2
Q̂

) ≥MEBS using Eq. (5.2.2)
23: Update πj’s parameters ϕj with Lactor (B.2.2) using µQ̂, πj, ξa and σ2

Q̂

24: Estimate ξc so that EBS(σ2
Q̄

) ≥MEBS using Eq. (5.2.2)
25: Update Qj’s parameters θj with LIVRL (5.3.7) using µQ̂, T , ξc and σ2

Q̄
on D

26: Soft update of Tj’s parameters θ̄j ←− (1− τ)θ̄j + τθj

27: end for
28: end for
29: end for

Algorithm 4 Variance Estimation for IV-SAC
1: procedure Predictive-Variance(N ,s,a)
2: Input: Var-networks ensemble: N , State: s, Action: a
3: for l in {1...N} do
4: µl ←− N µ

l (s,a)
5: σ2

l ←− N σ2
l (s,a)

6: end for
7: µN ←− 1/N

∑N
l=1 µl ▷ Average of the mean predictions

8: σ2
N ←− 1/N

∑N
l=1 σ2

l + µ2
l − µ2

N ▷ Variance of mixture of Gaussians
9: return σ2

N
10: end procedure

139



the rest of the algorithm is the same as algorithm 3. In practice, the computation of σ2
Q̄,k

and ξ are now useless, and lines 18, 19, 22 and 24 can be removed.
BIV + VarNetworkSAC. We use a single var-network instead of a var-ensemble as the critic.
Concretely, N = 1. This means that at lines 18 and 19, σ2

Q̂,k
and σ2

Q̄,k
are effectively the

variance output by the single-target network.
L2 + VarNetworksAC. VarNetwork is BIV + VarNetwork, without BIV weights in both
actor and critic losses. LBIV is replaced by the L2 loss in LIVRL.
UWAC + VarEnsemble. Here we change the weighing scheme in IV-SAC to the one proposed
in [171], keeping everything else the same.
Sunrise + VarEnsemble. For this version we modify the weighing scheme in IV-SAC to the
one proposed in [92], keeping everything else the same.

B.3. Appendix - Hyperparameter tuning
Deep reinforcement learning algorithms are known to be particularly difficult to evaluate

due to the high stochasticity of the learning process and the dependence on hyperparam-
eters. To thoroughly compare different algorithms, it is important to carefully tune the
hyperparameters, based on several environments and network initialization seeds [67].

For every result presented in this paper, the hyperparameters for each algorithm were
tuned using grid search. Each combination of hyperparameters was run five times, with
different seeds on both initialization and environment. The best 3 or 4 configurations were
then selected to be run 25 times - this time, the combinations of 5 environment and 5
initialization seeds. The configuration selected to be shown in the paper is the best of these
configurations based on the 25 runs.

Table 1 describes the type and sets of parameters that were optimized for the relevant
algorithms. Note that the learning rate lr, discount rate γ and target new update rate τ

are also relevant for SAC. Because there was too many hyperparameters to tune, we kept
for all SAC experiments the default values used in rlkit3 implementation : actorlr = 0.0003,
criticlr = 0.0003, γ = 0.99 and τ = 0.005.

The hyperparameters used for each curve can be found in the configuration file of the
code submitted as additional material.

B.4. Appendix - λ in LIVRL

As expressed in equation (5.3.7), the LIVRL loss function we use to train the Q-value
estimation is a combination of two components, LBIV and LLA, balanced by hyperparameter
λ.

3https://github.com/rail-berkeley/rlkit

140



Table 1. List and set of hyperparameters that were tuned when testing the algorithm.

Hyperparameter Relevant algorithms Set

Effective minibatch size All {32, 64, 128, 256} for DQN+
{256, 512, 1024} for SAC+

Learning rate lr DQN+ {0.0005, 0.001, 0.005, 0.01}
Discount rate γ DQN+ {0.98, 0.99, 0.995}

Target net update rate τ DQN+ {0.001, 0.005, 0.01, 0.05}

e-decay DQN+ with
e-greedy exploration {0.97, 0.98, 0.99, 0.991, 0.995}

Mask probability All with masked
ensembles {0.5, 0.7, 0.8, 0.9, 1}

RPF prior scale All with RPF {0.1, 1, 10}
Loss attenuation weight λ All with loss attenuation {0.01, 0.1, 0.5, 1, 2, 5}

Minimal EBS ratio All with minimal EBS {16/32, 24/32, 28/32, 30/32, 31/32} for DQN+
{0.5, 0.9, 0.95, 0.99} for SAC+

Minimal variance ϵ All with constant ϵ {0.5, 1, 5, 100, 1000, 10000}

UCB weight λUCB
All SAC+ with UCB
(0 means Bootstrap) {0, 1, 10} as suggested in [92]

SUNRISE temperature All with SUNRISE {10, 20, 50} as suggested in [92]
UWAC β All with UWAC {0.8, 1.6, 2.5} as suggested in [171]

We use Adam [78] optimizer: any constant multiplied to the loss function is absorbed
and does not impact the gradient. Therefore, λ effectively controls the ratio between LBIV

and LLA.
The sensitivity to the value of λ depends on the scale of the return, the stochasticity of

the environment, and the learning dynamics. As can be seen in figure 1, changing the values
of λ between 1 and 10 lead to different results in LunarLander, HalfCheetah and Ant, while
in SlimHumanoid, Walker and Hopper, the performance stays very similar.

In figure 2, we analyze how the performance of IV-RL methods change when λ is set
to extreme values. Very high values of λ lead to sub-optimal results, first because LBIV is
practically ignored, but also because using variance ensembles alone may lead to a slower or
less stable learning curve. Very low values of λ, on the other hand, also bring the perfor-
mance down, first as LLA is ignored, but also as the variance prediction is not trained: the
uncertainty estimates provided to LBIV are less reliable.

From figure 2, we can see that the effect of λ depends on the environment. For Lu-
narLander, smaller λ leads to slower learning and sub-optimal performance in comparison
to λ = 10. On the other hand, very high λ leads to poor performance and never reach the
goal score of 200. For SlimHumanoid, both extremes show inferior performance to when
λ = 10, but, although there are differences in the dynamics, they reach similar a score after
200k steps. In Walker, high λ is also slower, however, the impact of low λ is less important.

141



Fig. 1. IV-RL with λ values around the range of 1 to 10.

This can be attributed to the fact that, for Walker, the BIV component contributes more to
performance than the LA component of IV-RL loss, as seen in figure 5.

Fig. 2. IV-RL with extreme values of λ

B.5. Appendix - Computation time
As IV-RL uses ensembles, the computation time necessary for the training of the agents

is significantly increased compared to single-network algorithms such as SAC or DQN. This
can be seen in tables 2 and 3.

142



The computation of ξ for MEBS as well as additional forward passes to evaluate the
variance add some computational load compared to other ensemble-based methods such as
BootstrapDQN and SunriseDQN.

While this can limit the applicability of IV-RL, we consider the cases where computation
time is secondary to sample efficiency. This is the case when samples are the more expensive
element, such as in the real world.

Table 2. Average training time for 1000 steps on walker2d environment.

SAC EnsembleSAC SunriseSAC IV-SAC (ours)
Runtime/1000 steps (s) 8.34 62.16 62.1 74.56

Table 3. Average training time per episode on LunarLander-v2 environment

DQN BootstrapDQN SunriseDQN IV-DQN (ours)
Runtime/ episode (s) 0.51 1.5 1.53 1.87

B.6. Appendix - Variance estimation
The difference of performance between IV-RL with sampled ensembles and variance en-

sembles is sometimes significant. Looking at the variance prediction can allow us to better
understand this result.

B.6.1. IV-DQN

In figure 3, we show the mean of the sample variance estimations per mini-batch, de-
pending on the variance estimation method.

Different profiles can be seen in LunarLander and Cartpole-Noise. In the first environ-
ment, the scale of the variance predicted by sampled ensembles with BootstrapDQN and
variance ensembles does not differ significantly. In Cartpole-Noise however, the variance
ensembles quickly capture much more uncertainty. This explains the difference in dynamics
that can be seen in figure 3.

Although we do not have results for single variance networks in Cartpole-Noise, we can
see in LunarLander why single variance networks are less reliable than variance ensembles.
The mean variance they predict is very high, but, as can be seen in figure 4, the median is a
lot lower. The mean is thus driven by extremely high variance predictions. Instead, sampled
and variance ensembles show similar profiles for mean and median variance. The low median
variance confirms that single variance networks fail to capture epistemic uncertainty, but also
that they have very high volatility.

143



Fig. 3. Mean target variance predictions for discrete environments

Fig. 4. Median target variance predictions on discrete environments

Fig. 5. Mean target variance predictions on continuous environments

B.6.2. IV-SAC

In the continuous control environments, the story is different, as can be seen in figures 5
and 6.

The first thing to notice is the volatility of the mean of the variance produced by variance
ensembles. Although the scale is not completely unreasonable and is still close to the median,
(on the opposite of variance networks in DQN), it still suffers from some calibration issues.

144



Fig. 6. Median target variance predictions on continuous environments

Second, we see that the epistemic variance in EnsembleSAC is higher than the one in BIV
+ EnsembleSAC. One hypothesis to explain this is that using IV reduces the impact of very
noisy supervision which may confuse the networks and increase the variance in the ensemble.
Variance ensembles do not seem to suffer from this.

B.7. Appendix - Weighting schemes
The study on the variance allows a better understanding of the advantage of the BIV

weights [109] compared to the UWAC weights [171] and SUNRISE weights [92].
In these works, the weight wk of a sample k in a minibatch of size K is given by:

wBIV,k =
 K∑

j=1

1
σ2

j + ξ

−1
1

σ2
k + ξ

(B.7.1)

wUWAC,k = 1/K min
(

β

σ2
k

, 1.5
)

(B.7.2)

wSUNRISE,k = 1/KSigmoid(−σk ∗ T ) + 0.5 (B.7.3)

Figure 7 shows the result of applying such weights to variance ensembles. Note that the
first two plots are repeated from figure 5 in section 5.4.2.

It is clear that the SUNRISE weights, which are based on a heuristic, are not optimal
compared to the more theoretically grounded UWAC and BIV weights.

However, we can note that UWAC weights perform much better than SUNRISE, but are
still somewhat inferior to BIV weights. Our understanding is that this is due to the changes
in the scale of the variance estimation along the learning process, as seen in figures 3 and 5.

In UWAC, this first leads to continuous changes in the effective learning rate. For ex-
ample, multiplying the variances by 2 divides the weights accordingly by 2. While the
multiplication of the loss by a constant is captured by optimizers such as Adam [78] in the
long term, it can still cause short term disturbances in the learning process. In comparison,
the normalization of the BIV weights ensures the stability of the loss function.

145



Fig. 7. Comparing BIV, UWAC and SUNRISE weights with var-ensemble

UWAC weights are also hard-clipped by the value 1.5, after being scaled by a constant
hyperparameter β. When the scale of the variances changes, this can disturb the control
over the discriminatory power of the weights. For example, if all variances are smaller than
β, all weights are clipped and become identical at 1.5, and the weighting scheme does not
discriminate between certain and uncertain samples. On the other hand, if most variances
are very high compared to β, the weights will be very low. A single low-variance sample may
thus completely outweigh all other samples, which will get ignored in the gradient update.
The discrimination is then too strong. BIV instead uses ξ, which is dynamically computed
to maintain a minimal effective batch size MEBS as explained in section 5.2.1. The relative
weights of the samples are thus preserved if the variances are multiplied by a constant. As
such, the BIV weights maintain a stable discriminatory power in the face of changing variance
scales along the learning process, leading to better results.

Note that the curves here present the combination of UWAC and SUNRISE with var-
ensembles, which is different from the original works proposed by [171] (using MC-Dropout)
and [92] (using sampled ensembles).

B.8. Appendix - Variance networks
What if, instead of using predictive ensembles, we simply replaced the Q-network by a

variance network and trained it using the IV-RL loss?
Figure 8 shows the performances on 4 continuous environments, compared to SAC. We

can see a slight improvement, but it is not statistically significant. Based on the insights
given in section B.6, we make the hypothesis that it is due to the volatility of the variance
estimation with a single variance network.

146



Fig. 8. Single variance networks combined with BIV lead to a very slight improvement.

B.9. Appendix - IV-RL and Optimism in the Face of
Uncertainty

A question that arose during this research is how does IV-RL interact with the principle
of Optimism in the Face of Uncertainty (OFU), which is often used to drive exploration in
reinforcement learning, for example with Upper Confidence Bounds (UCB).

The principle behind IV-RL is to down-weight highly uncertain samples during the TD-
update; the idea of OFU is to encourage the agent to choose actions with high uncertainty
during exploration. Do these two approach go against each other?

First, we would like to distinguish the uncertainty of the value estimation at state-action
pair Q(s,a) used by OFU, and the uncertainty of the value estimation of the target T (s,a)
used by IV-RL. They are separate: we tell the agent to go where the Q(s,a) is uncertain, and
then to sample a target T (s,a) by projecting over the next time step with Q(s′,a′). T (s,a)
has its own uncertainty, which is not that of Q(s,a). If the agent believes T (s,a) is highly
uncertain, it should not give it too much weight. T (s,a) may also have low uncertainty: the
agent will then give it more importance.

However, two factors come and blur this distinction. First, in the context of reinforcement
learning where the experience is built with trajectories, the information the agent has received
at (s′,a′) is correlated to the information it received at (s,a). Second, the use of function
approximation may cause the uncertainty of Q(s,a) and the uncertainty of Q(s′,a′) to be
similar, especially if (s,a) is close to (s′,a′) on the state-action space. These correlations may
induce interactions between IV-RL and OFU, which may not be completely decoupled.

Another element needs to be considered: in both IV-DQN and IV-SAC, exploration
is made following the Q-networks, whereas the value of Q(s′,a′) to compute the target is
estimated by target networks, which are delayed compared to Q-networks. This reduces the
correlations between the uncertainties of Q(s,a) and T (s,a).

As an empirical element to this answer, we show in the paper that OFU and IV-RL work
together: the IV-SAC experiments include a UCB bonus for exploration. It is to be noted
that, if these two strategies can conflict, IV-RL proposes the use of hyperparameter MEBS

147



which allows us to control the intensity of its discrimination. By increasing the MEBS, one
can give more importance to high-variance samples, and find an optimal balance.

Nevertheless, we believe this question is important for all strategies based on weighting
samples according to variance in DRL and could be an interesting line of future investigation.

148



Appendix C

Multi-gent reinforcement learning for
fast-timescale demand response of residential

loads: supplementary material

In this appendix, we provide supplementary material for Article 3. We first present a notation
table, as well as an estimation of the carbon footprint of running our experiments. We then
provide details for the environment and the algorithms. We finish with a discussion of the
effect of the number of agents in the environment on the performance measurement.

C.1. Notation
Tables 1 and 2 contain the different notations we use in this paper.

C.2. Carbon emissions of the research project
As a significant amount of electricity has been used to train and run the models for this

work, we publish its estimated carbon footprint.
Experiments were conducted using a private infrastructure, which has a carbon efficiency

of 0.049 kgCo2eq/kWh. A cumulative of 10895 days, or 261480 hours, of computation was
mainly performed on CPU of type Intel Xeon Processor E5-2683 v4 (TDP of 120W). We
assume on average a power usage of half the TDP for CPUs.

The total emissions are estimated to be 628 kgCO2eq of which 0% were directly offset.
This is equivalent to 2550 km driven by an average car, or 314 kg of burned coal.

These estimations were conducted using the MachineLearning Impact calculator [88].

https://mlco2.github.io/impact/#compute


Table 1. Notation table - Part 1

Number of agents

N Number of houses in cluster (general)
Ntr Number of houses in training environment
Nde Number of houses in test environment
Nctr Number of agents for communication during training
Ncde Number of agents for communication at deployment

Temperatures

Th Indoor air temperature
Tm Indoor mass temperature
To Outside temperature
TT Target indoor temperature

Signal and power

s0 Base signal
ρ Power system operator signal
s Regulation signal

Da Average power needed by the ACs
Do Power needed by non flexible loads
δs Signal variation
δp Perlin noise
βp Variation amplitude parameter
P Total cluster power consumption

AC state

ω Status (on or off)
l Time left for lockout

Pa Power consumption
Qa Heat removed by the AC

House thermal model

θh House thermal characteristics
Uh Outside walls conductance
Cm House thermal mass
Ch Air thermal mass
Hm Mass surface conductance
θs House lightning characteristics
Qs Solar gain

AC model

θa AC characteristics
Ka Cooling capacity

COPa Coefficient of performance
La Latent cooling fraction

lmax lockout duration

C.3. Environment details
C.3.1. Detailed house thermal model

The air temperature in each house evolves separately, based on its thermal characteristics
θh, its current state , the outdoor conditions such as outdoor temperature and solar gain,
and the status of the air conditioner in the house. The second-order model is based on
Gridlab-D’s Residential module user’s guide [71].

150



Table 2. Notation table - Part 2

POMDP

a,A Action, action space
o,O Observation, observation space
S,S State, state space
r,R Reward, reward function
P Transition probabilities
M Set of communicating agents
mi

j Message from j to i
õ Concatenated observation and messages
γ Discount factor

αtemp, αsig Weights in the reward function

Algorithms

H Horizon
Θ Transition

Q(a, o), T (a, o) Q-value prediction (with Q or target network)
πθ Policy parameterized by θ
Vϕ Critic parameterized by ϕ
G Return
Aπ Advantage for policy π

Using Gridlab-D’s module, we model an 8×12.5 m, one level rectangular house, with a
ceiling height of 2.5 m, 4 1.8-m2, 2-layer, aluminum windows, and 2 2-m2 wooden doors,
leading to the following values presented in Table 3.

Table 3. Default house thermal parameters θh

Uh 2.18× 102 W/K
Cm 3.45× 106 J/K
Ch 9.08× 105 J/K
Hm 2.84× 103 W/K

To model the evolution of the house’s air temperature Th,t and its mass temperature Tm,t,
we assume that this temperature is homogeneous and do not consider the heat propagation
in the house. We define the following variables:

a =CmCh/Hm

b =Cm(Uh + Hm)/Hm + Ch

c =Uh

d =Qa,t + Qs,t + UhTo,t

dTA0/dT = (HmTm,t − (Uh + Hm)Th,t

+UhTo,t + Qh,t + Qs,t) /Ch.

151



The following coefficient are then computed:

r1 =(−b +
√

b2 − 4ac)/2a

r2 =(−b−
√

b2 − 4ac)/2a

A1 =(r2Ta,t − dTA0/dT − r2d/c)/(r2− r1)

A2 =Th,t − d/c− A1

A3 =(r1Ch + Uh + Hm)/Hm

A4 =(r2Ch + Uh + Hm)/Hm.

These coefficients are finally applied to the following dynamic equations:

Ta,t+1 =A1e
r1δt + A2e

r2δt + d/c

Tm,t+1 =A1A3e
rtδt + A2A4e

r2δt + d/c.

C.3.1.1. Solar gain. It is possible to add the solar gain to the simulator. It is computed
based on the CIBSE Environmental Design Guide [35].

The house’s lighting characteristics θS, which include the window area and the shading
coefficient of 0.67 are needed to model the solar gain, Qs,t.

Then, the following assumptions are made:
• The latitude is 30◦.
• The solar gain is negligible before 7:30 am and after 5:30 pm at such latitude.
• The windows are distributed evenly around the building, in the 4 orientations.
• All windows are vertical.

This allows us to compute the coefficients of a fourth-degree bivariate polynomial to
model the solar gain of the house based on the time of the day and the day of the year.

C.3.2. Detailed air conditioner model

Once again based on the Gridlab-D Residential module user’s guide [71], we model the
air conditioner’s power consumption Pa,t when turned on, and the heat retrieved from the air
Qa,t, based on its characteristics θH , such as cooling capacity Ka, coefficient of performance
COPa, and the latent cooling fraction La.

COPa and La are considered constant and based on default values of the guide: COPa =
2.5 and La = 0.35. We have:

Qa,t = − Ka

1 + La

Pa,t = Ka

COPa

.

152



We set Ka to 15 kW, or 50 000 BTU/hr, to be able to control the air temperature even
with high outdoor temperatures. This is higher than most house ACs, but allows to have
sufficient flexibility even at high outdoor temperatures (a 5kW AC would have to be always
on to keep a 20◦C temperature when it is 38◦C outside). This choice does not significantly
affect our results: with lower outdoor temperatures, the problem is equivalent with lower
AC power.

C.3.3. Regulation signal

C.3.3.1. Interpolation for the base signal. As described in Section 7.3.1.3, we es-
timate Da,t by interpolation. A bang-bang controller is ran without lockout for 5 minutes,
and we compute the average power that was consumed. This gives a proxy for the amount
of power necessary in a given situation.

A database was created by estimating Da,t for a single house for more than 4 million
combinations of the following parameters: the house thermal characteristics θh, the differ-
ences between its air and mass temperatures Ta,t and Tm,t and the target temperature TT ,
the outdoor temperature To,t, and the AC’s cooling capacity Ka. If the solar gain is added
to the simulation, the hour of the day and the day of the year are also considered.

When the environment is simulated, every 5 minutes, Da,t is computed by summing the
interpolated necessary consumption of every house of the cluster. The interpolation process
is linear for most parameters except for the 4 elements of θh and for Ka, which are instead
using nearest neighbours to reduce the complexity of the operation.

C.3.3.2. Perlin noise. 1-D Perlin noise is used to compute δΠ,t, the power generation
high-frequency element. Designed for the field of computer image generation, this noise has
several interesting properties for our use case.

Perlin noise is most of the time generated by the superposition of several sub-noises called
octaves. It is possible to restrict the span of the values that they can take. Thus, it is possible
to test the agents in an environment taking into account several frequencies of non-regular
noise, but whose values are restricted within realistic limits. Moreover, the average value of
the noise can be easily defined and does not deviate, which ensures that for a sufficiently
long time horizon, the noise average is 0.

Each octave is characterized by 2 parameters: an amplitude and a frequency ratio. The
frequency represents the distance between two random deviations. The amplitude represents
the magnitude of the variation. Normally the frequency increases as the amplitude decreases.
This way, high-amplitude noise is spread over a wider interval and lower amplitude noise is
more frequent and compact.

In our case, we use 5 octaves, with an amplitude ratio of 0.9 between each octave and a
frequency proportional to the number of the octave.

153



Fig. 1. Illustration of how several octaves add up to form Perlin noise. The frequency of
the octaves increases as their amplitude decreases.

C.4. Algorithm details
C.4.1. Model Predictive Control

Our MPC is based on a centralized model. At each time step, information about the
state of the agents is used to find the future controls that minimize the reward function over
the next H time steps. The optimal immediate action is then communicated to the agents.
At each time step, the algorithm calculates the ideal control combination for the H-time
step horizon.

The cost function for both the signal and the temperature to minimize being the RMSE,
the problem is modeled as a quadratic mixed-integer program. The solver used to solve
the MPC is the commercial solver Gurobi [60] together with CVXPY [41]. Gurobi being a
licensed solver, its exact internal behavior is unknown to us and it acts as a black box for our
MPC. However, we know that it solves convex integer problems using the branch and bound
algorithm. The speed of resolution depends mainly on the quality of the solver’s heuristics.

The computation time required for each step of the MPC increases drastically with the
number of agents and/or H. To be able to test this approach with enough agents and a
rolling horizon allowing to have reasonable performance, it was necessary to increase the
time step at which the agents make decisions to 12 seconds (instead of 4 for other agents).

It was impossible to launch an experiment with the MPC agent for 48 hours in a reason-
able time. To compensate, we launched in parallel 200 agents having been started at random
simulated times. In order to reach quickly the stability of the environment, the noise on the

154



temperature was reduced to 0.05◦C. We then measured the average RMSE over the first 2
hours of simulation for each agent.

Despite this, it was impossible to test the MPC with more than 10 agents while keeping
the computation time reasonable enough to be used in real time. That is to say, in a time
shorter than the duration between two-time steps.

At each time step, the MPC solves the following optimization problem :

min
a∈{0,1}N×H

∑
t∈H

αsig(
∑
iϵN

Pi,t − s0)2 + αtemp
∑
iϵN

(Th,t,i − Tt,t,i)2,

such that it obeys the following physical constraints of the environment:

Th,t,i, Tm,t,i = F1(ai,t, Th,t−1,i,Tm,t−1,i) ∀ t ∈ H, i ∈ N

Ph,t,i = ai,tF2(θi
a) ∀ t ∈ H, i ∈ N,

and the lockout constraint:

lmax(ai,t − ωi,t−1)−
lmax∑
k=0

(1− ωi,t−k) ≤ 0 ∀ t ∈ H, i ∈ N,

where F1 and F2 are convex functions that can be deduced from the physical equations given
in Section C.3.

C.4.2. Learning-based methods

C.4.2.1. TarMAC and MA-PPO. The original implementation of TarMAC [39] is
built over the Asynchronous Advantage Actor-Critic (A3C) algorithm [112]. The environ-
ments on which it is trained have very short episodes, making it possible for the agents to
train online over the whole memory as one mini-batch.

This is not possible with our environment where training episodes last around 16000 time
steps. As a result, we built TarMAC over our existing MA-PPO implementation. The same
loss functions were used to train the actor and the critic.

The critic is given all agents’ observation as an input.
The actor’s architecture is described in Figure 2. Agent i’s observations are passed

through a first multi-layer perceptron (MLP), outputting a hidden state x. x is then used
to produce a key, a value, and a query by three MLPs. The key and value are sent to the
other agents, while agent i receives the other agents’ keys and values. The other agents’
keys are multiplied using a dot product with agent i’s query, and passed through a softmax
to produce the attention. Here, a mask is applied to impose the localized communication
constraints and ensure agent i only listen to its neighbours. The attention is then used as
weights for the values, which are summed together to produce the communication vector for
agent i. For multi-round communication, the communication vector and x are concatenated
and passed through another MLP to produce a new x, and the communication process is

155



Fig. 2. Architecture of the TarMAC-PPO actor

repeated for the number of communication hops. Once done, the final x and communication
vector are once more concatenated and passed through the last MLP, the actor, to produce
the action probabilities.

We take advantage of the centralized training approach to connect the agents’ communi-
cations in the computational graph during training. Once trained, the agents can be deployed
in a decentralized way.

C.4.2.2. Neural networks architecture and optimization. For MA-DQN as well
as for MA-PPO-HE, every neural network has the same structure, except for the number of
inputs and outputs. The networks are composed of 2 hidden layers of 100 neurons, activated
with ReLU, and are trained with Adam [78].

For TarMAC-PPO, the actor’s obs2hidden, hidden2key, hidden2val, hidden2query and
actor MLPs (as shown in Figure 2) all have one hidden layer of size 32. obs2hidden and actor
are activated by ReLU whereas the three communication MLPs are activated by hyperbolic
tangent. The hidden state x also has a size of 32.

The centralized critic is an MLP with two hidden layers of size 128 activated with ReLU.
The input size is the number of agents multiplied by their observation size, and the output
size is the number of agents.

For all networks, the inputs are normalized by constants to facilitate the training. The
networks are optimized using Adam.

156



C.4.2.3. Hyperparameters. We carefully tuned the hyperparameters through grid
searches. Table 4 shows the hyperparameters selected for the agents presented in the paper.

Table 4. Training hyperparameters

Hyperparameter TarMAC-PPO MA-PPO DQN
Learning rate 0.001 0.001 0.0001

Mini-batch size 256 512 256
Clip parameter 0.2 0.2 -
Max grad norm 0.5 0.5 -
Number epochs 200 200 -
Number updates 10 10 -
Number episodes 200 200 -
Discount factor γ 0.99 0.99 0.99
Key vector size 4 or 8 - -

Comm. vector size 8 - -
Number comm. rounds 1 - -

Buffer capacity - - 65536
ϵ decay - - 0.995
Min ϵ - - 0.01

C.5. Nde and per-agent RMSE
In this section, we discuss the relation between the per-agent signal RMSE of an aggre-

gation of N homogeneous agents if N is multiplied by an integer k ∈ N.
We consider the aggregation of size kN as the aggregation of k homogeneous groups gj

of N agents which consumes a power P j
g,t = ∑N

i P i
a,t. We have: Pt = ∑kN

i P i
a,t = ∑k

j P j
g,t.

We assume that each group tracks an equal portion of the signal sj
t = st/k. We assume

that the tracking error P j
g,t − sj

t follows a 0-mean Gaussian of standard deviation σg. This
Gaussian error is uncorrelated to the noise of other groups.

It follows from the properties of Gaussian random variables that the aggregation signal
error Pt − st follows a Gaussian distribution of mean µk = 0 and standard deviation σk =√

kσg for all k ≥ 1 with k ∈ N.
Hence the signal’s RMSE of a group of kN agents, which is a measured estimation of σk,

is approximately
√

k times the RMSE of a group of N agents, which estimates σg. Finally,
the per-agent RMSE is computed as the group’s RMSE divided by the number of agents.
We therefore have that the per-agent RMSE of kN agents is approximately

√
k/k = 1/

√
k

times the RMSE of N agents.
This discussion provides an intuitive explanation for the diminution of the relative RMSE

when the number of agents increases. However, it is based on the assumption that the error
of each group is not biased, which is not necessarily true with our agents. This explains why
the RMSEs are not 10 times lower passing from Nde = 10 to Nde = 1000.

157


	Résumé
	Abstract
	Contents
	List of tables
	List of figures
	List of acronyms and abbreviations
	Acknowledgments
	Introduction
	Chapter 1. Background
	1.1. Uncertainty in regression with deep neural networks
	1.1.1. Objective of regression
	1.1.2. Neural networks optimization for regression
	1.1.2.1. Defining a neural network
	1.1.2.2. Training a neural network

	1.1.3. Predictive uncertainty
	1.1.4. Sources of predictive uncertainty in supervised regression 
	1.1.4.1. Aleatoric uncertainty
	1.1.4.2. Epistemic uncertainty
	1.1.4.3. Noisy labels

	1.1.5. Measuring uncertainty in deep supervised regression
	1.1.5.1. Estimating aleatoric uncertainty with neural networks
	1.1.5.2. Epistemic uncertainty
	1.1.5.3. Estimating predictive uncertainty


	1.2. Reinforcement Learning
	1.2.1. Problem formulation
	1.2.2. Online reinforcement learning
	1.2.2.1. Generalized Policy iteration
	1.2.2.2. Policy evaluation
	1.2.2.3. Policy improvement

	1.2.3. Deep Reinforcement Learning
	1.2.3.1. Deep Q-Learning
	1.2.3.2. Policy-gradient methods
	1.2.3.3. Soft-actor critic

	1.2.4. Bayesian Deep Reinforcement Learning
	1.2.4.1. Distributional DQN
	1.2.4.2. Epistemic uncertainty estimation for exploration
	1.2.4.3. Out of distribution detection


	1.3. Multi-agent reinforcement learning for decentralized collaboration
	1.3.1. Problem definition
	1.3.1.1. Problem formulation
	1.3.1.2. Environment characteristics

	1.3.2. Challenges particular to MARL
	1.3.2.1. Non-stationarity
	1.3.2.2. Partial observation
	1.3.2.3. Credit assignment
	1.3.2.4. Coordination
	1.3.2.5. Communication
	1.3.2.6. Scaling in number of agents

	1.3.3. MARL approaches
	1.3.3.1. Parameter sharing
	1.3.3.2. Shared experience
	1.3.3.3. Centralized critics
	1.3.3.4. Mean field RL
	1.3.3.5. Reduced communications
	1.3.3.6. Common MARL algorithms



	Chapter 2. Prologue to Article 1
	Chapter 3. Article 1: Batch Inverse-Variance Weighting: Deep Heteroscedastic Regression
	Résumé
	Abstract
	3.1. Introduction
	3.2. Heteroscedastic noisy labels in regression
	3.3. Related work
	3.4. Batch Inverse-Variance Weighting
	3.4.1. Inverse variance for linear models
	3.4.2. Batch Inverse-Variance weighting for heteroscedastic noisy labels
	3.4.3. Cutoff: filtering heteroscedastic noisy labels 

	3.5. Experimental Setup
	3.5.1. Noise generation
	3.5.2. Evaluating the performance of the model

	3.6. Experimental Results and Analysis
	3.6.1. For L2 loss, mean variance is all that matters
	3.6.2. High and low variance noise regimes: BIV acts as a filter
	3.6.3. Continuous, decreasing noise variance distribution: the advantage of BIV
	3.6.4. Ablation study: comparison to IV
	3.6.5. Robustness

	3.7. Conclusion

	Chapter 4. Prologue to Article 2
	Chapter 5. Article 2: Sample Efficient Deep Reinforcement Learning via Uncertainty Estimation
	Résumé
	Abstract
	5.1. Introduction
	5.2. Background and preliminaries
	5.2.1. Batch Inverse-Variance Weighting
	5.2.2. Estimating the uncertainty of a neural network prediction
	5.2.2.1. Sampled ensembles
	5.2.2.2. black Variance networks
	5.2.2.3. Variance ensembles

	5.2.3. Uncertainty and exploration in DRL

	5.3. Inverse-Variance Reinforcement Learning
	5.3.1. Target uncertainty in Reinforcement Learning
	5.3.1.1. The target as a random variable
	5.3.1.2. Variance of the target
	5.3.1.3. Loss function for IV-RL

	5.3.2. Q-value uncertainty and actor-critic structures
	5.3.3. Algorithms

	5.4. Results
	5.4.1. IV-DQN
	5.4.2. IV-SAC

	5.5. Conclusion

	Chapter 6. Prologue to Article 3
	Chapter 7. Article 3: Multi-Agent Reinforcement Learning for Fast-Timescale Demand Response of Residential Loads
	Résumé
	Abstract
	7.1. Introduction
	7.2. Related Works
	7.3. Problem Formulation
	7.3.1. Environment
	7.3.1.1. House thermal model
	7.3.1.2. Air conditioners
	7.3.1.3. Regulation signal
	7.3.1.4. Communication between agents

	7.3.2. Decentralized Partially Observable Markov Decision Process
	7.3.2.1. State, transition probabilities and actions
	7.3.2.2. Observations and communications
	7.3.2.3. Reward


	7.4. Classical and learning-based algorithms
	7.4.1. Classical baselines
	7.4.1.1. Bang-bang controller
	7.4.1.2. Greedy myopic
	7.4.1.3. Model predictive control

	7.4.2. Learning-based methods
	7.4.2.1. Centralized Training, Decentralized Execution
	7.4.2.2. MA-DQN
	7.4.2.3. MA-PPO
	7.4.2.4. Communications
	7.4.2.5. Agent training


	7.5. Results and analysis
	7.5.1. Metrics of performance
	7.5.2. Performance of agents
	7.5.3. Scalability with number of agents
	7.5.4. PPO agents' dynamics
	7.5.5. Communications
	7.5.6. Robustness
	7.5.6.1. Faulty communications
	7.5.6.2. Heterogeneous houses and ACs
	7.5.6.3. Other environments

	7.5.7. Processing time

	7.6. Conclusion

	Conclusion
	References
	Appendix A. Batch Inverse-Variance weighting: Supplementary material
	A.1. Data sets and Neural Networks
	A.1.1. UTKFace
	A.1.1.1. Dataset description
	A.1.1.2. Neural network and training hyper-parameters

	A.1.2. Bike Sharing Dataset
	A.1.2.1. Dataset description
	A.1.2.2. Neural network and training hyper-parameters


	A.2. Additional experiments
	A.2.1. The influence of 
	A.2.2. BIV on different distributions
	A.2.2.1. Uniform distributions

	A.2.3. BIV on Gamma distributions
	A.2.3.1. 1
	A.2.3.2. > 1

	A.2.4. Robustness of BIV
	A.2.4.1. Size of the mini-batches
	A.2.4.2. Noisy variance estimation



	Appendix B. Sample efficient reinforcement learning via uncertainty estimation: Supplementary material
	B.1. Carbon emissions of the research project
	B.2. Appendix - Algorithms in details
	B.2.1. black BootstrapDQN
	B.2.2. IV-DQN
	B.2.3. Ablations for IV-DQN
	B.2.4. IV-SAC
	B.2.5. Ablations for IV-SAC

	B.3. Appendix - Hyperparameter tuning
	B.4. Appendix -  in LIVRL
	B.5. Appendix - Computation time
	B.6. Appendix - Variance estimation
	B.6.1. IV-DQN
	B.6.2. IV-SAC

	B.7. Appendix - Weighting schemes
	B.8. Appendix - black Variance networks
	B.9. Appendix - IV-RL and Optimism in the Face of Uncertainty

	Appendix C. Multi-gent reinforcement learning for fast-timescale demand response of residential loads: supplementary material
	C.1. Notation
	C.2. Carbon emissions of the research project
	C.3. Environment details
	C.3.1. Detailed house thermal model
	C.3.1.1. Solar gain

	C.3.2. Detailed air conditioner model
	C.3.3. Regulation signal
	C.3.3.1. Interpolation for the base signal
	C.3.3.2. Perlin noise


	C.4. Algorithm details
	C.4.1. Model Predictive Control
	C.4.2. Learning-based methods
	C.4.2.1. TarMAC and MA-PPO
	C.4.2.2. Neural networks architecture and optimization
	C.4.2.3. Hyperparameters


	C.5. Nde and per-agent RMSE


