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Résumé 

Cette thèse cherche à examiner les conditions optimales dans lesquelles les surfaces cornéennes 

antérieures peuvent être efficacement pré-traitées, classifiées et prédites en utilisant des techniques 

de modélisation géométriques (MG) et d’apprentissage automatiques (AU). 

La première étude (Chapitre 2) examine les conditions dans lesquelles la modélisation 

géométrique peut être utilisée pour réduire la dimensionnalité des données utilisées dans un projet 

d’apprentissage automatique. Quatre modèles géométriques ont été testés pour leur précision et leur 

rapidité de traitement : deux modèles polynomiaux (P) – polynômes de Zernike (PZ) et 

harmoniques sphériques (PHS) – et deux modèles de fonctions rationnelles (R) : fonctions 

rationnelles de Zernike (RZ) et fonctions rationnelles d’harmoniques sphériques (RSH). Il est 

connu que les modèles PHS et RZ sont plus précis que les modèles PZ pour un même nombre de 

coefficients (J), mais on ignore si les modèles PHS performent mieux que les modèles RZ, et si, de 

manière plus générale, les modèles SH sont plus précis que les modèles R, ou l’inverse. Et prenant 

en compte leur temps de traitement, est-ce que les modèles les plus précis demeurent les plus 

avantageux? Considérant des valeurs de J (nombre de coefficients du modèle) relativement basses 

pour respecter les contraintes de dimensionnalité propres aux taches d’apprentissage automatique, 

nous avons établi que les modèles HS (PHS et RHS) étaient tous deux plus précis que les modèles 

Z correspondants (PZ et RR), et que l’avantage de précision conféré par les modèles HS était plus 

important que celui octroyé par les modèles R. Par ailleurs, les courbes de temps de traitement en 

fonction de J démontrent qu’alors que les modèles P sont traités en temps quasi-linéaires, les 

modèles R le sont en temps polynomiaux. Ainsi, le modèle SHR est le plus précis, mais aussi le 

plus lent (un problème qui peut en partie être remédié en appliquant une procédure de pré-

optimisation). Le modèle ZP était de loin le plus rapide, et il demeure une option intéressante pour 

le développement de projets. SHP constitue le meilleur compromis entre la précision et la rapidité. 

La classification des cornées selon des paramètres cliniques a une longue tradition, mais la 

visualisation des effets moyens de ces paramètres sur la forme de la cornée par des cartes 

topographiques est plus récente. Dans la seconde étude (Chapitre 3), nous avons construit un atlas 

de cartes d’élévations moyennes pour différentes variables cliniques qui pourrait s’avérer utile pour 

l’évaluation et l’interprétation des données d’entrée (bases de données) et de sortie (prédictions, 

clusters, etc.) dans des tâches d’apprentissage automatique, entre autres. Une base de données 

constituée de plusieurs milliers de surfaces cornéennes antérieures normales enregistrées sous 

forme de matrices d’élévation de 101 by 101 points a d’abord été traitée par modélisation 

géométrique pour réduire sa dimensionnalité à un nombre de coefficients optimal dans une optique 

d’apprentissage automatique. Les surfaces ainsi modélisées ont été regroupées en fonction de 

variables cliniques de forme, de réfraction et de démographie. Puis, pour chaque groupe de chaque 

variable clinique, une surface moyenne a été calculée et représentée sous forme de carte 

d’élévations faisant référence à sa SMA (sphère la mieux ajustée). Après avoir validé la conformité 

de la base de donnée avec la littérature par des tests statistiques (ANOVA), l’atlas a été vérifié 

cliniquement en examinant si les transformations de formes cornéennes présentées dans les cartes 

pour chaque variable étaient conformes à la littérature. C’était le cas. Les applications possibles 

d’un tel atlas sont discutées. 

La troisième étude (Chapitre 4) traite de la classification non-supervisée (clustering) de surfaces 

cornéennes antérieures normales. Le clustering cornéen un domaine récent en ophtalmologie. La 

plupart des études font appel aux techniques d’extraction des caractéristiques pour réduire la 

dimensionnalité de la base de données cornéennes. Le but est généralement d’automatiser le 

processus de diagnostique cornéen, en particulier en ce qui a trait à la distinction entre les cornées 

normales et les cornées irrégulières (kératocones, Fuch, etc.), et dans certains cas, de distinguer 

différentes sous-classes de cornées irrégulières. L’étude de clustering proposée ici se concentre 

plutôt sur les cornées normales afin de mettre en relief leurs regroupements naturels. Elle a recours 
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à la modélisation géométrique pour réduire la dimensionnalité de la base de données, utilisant des 

polynômes de Zernike, connus pour leur interprétativité transparente (chaque terme polynomial est 

associé à une caractéristique cornéenne particulière) et leur bonne précision pour les cornées 

normales. Des méthodes de différents types ont été testées lors de prétests (méthodes de clustering 

dur (hard) ou souple (soft), linéaires or non-linéaires. Ces méthodes ont été testées sur des surfaces 

modélisées naturelles (non-normalisées) ou normalisées avec ou sans traitement d’extraction de 

traits, à l’aide de différents outils d’évaluation (scores de séparabilité et d’homogénéité, 

représentations par cluster des coefficients de modélisation et des surfaces modélisées, 

comparaisons statistiques des clusters sur différents paramètres cliniques). Les résultats obtenus 

par la meilleure méthode identifiée, k-means sans extraction de traits, montrent que les clusters 

produits à partir de surfaces cornéennes naturelles se distinguent essentiellement en fonction de la 

courbure de la cornée, alors que ceux produits à partir de surfaces normalisées se distinguent en 

fonction de l’axe cornéen. 

La dernière étude présentée dans cette thèse (Chapitre 5) explore différentes techniques 

d’apprentissage automatique pour prédire la forme de la cornée à partir de données cliniques. La 

base de données cornéennes a d’abord été traitée par modélisation géométrique (polynômes de 

Zernike) pour réduire sa dimensionnalité à de courts vecteurs de 12 à 20 coefficients, une fourchette 

de valeurs potentiellement optimales pour effectuer de bonnes prédictions selon des prétests. 

Différentes méthodes de régression non-linéaires, tirées de la bibliothèque scikit-learn, ont été 

testées, incluant gradient boosting, Gaussian process, kernel ridge, random forest, k-nearest 

neighbors, bagging, et multi-layer perceptron. Les prédicteurs proviennent des variables cliniques 

disponibles dans la base de données, incluant des variables géométriques (rayon de la sphere la 

mieux ajustée, diamètre horizontal de la cornée, profondeur de la chambre cornéenne, côté de 

l’œil), des variables de réfraction (cylindre, sphère et axe) et des variables démographiques (âge, 

genre). Un test de régression a été effectué pour chaque modèle de régression, défini comme la 

sélection d’une des 512 combinaisons possibles de variables cliniques (les prédicteurs), d’une 

méthode de régression, et d’un vecteur de coefficients de Zernike d’une certaine taille (entre 12 et 

20 coefficients, les cibles). Tous les modèles de régression testés ont été évalués à l’aide de score 

de RMSE établissant la distance entre les surfaces cornéennes prédites (les prédictions) et vraies 

(les topographies cornéennes brutes). Les meilleurs d’entre eux ont été validés sur l’ensemble de 

données randomisé 20 fois pour déterminer avec plus de précision lequel d’entre eux est le plus 

performant. Il s’agit de gradient boosting utilisant toutes les variables cliniques comme prédicteurs 

et 16 coefficients de Zernike comme cibles. Le prédicteur le plus contributif était le rayon de la 

sphere la mieux ajustée, suivi du côté de l’œil et de paramètres de réfraction. Les prédictions de ce 

modèle ont été évaluées qualitativement à l’aide d’un atlas de cartes d’élévations moyennes 

élaborées à partir des variables cliniques ayant servi de prédicteurs, qui permet de visualiser les 

transformations moyennes d’en groupe à l’autre pour chaque variables. Cet atlas a permis d’établir 

que les cornées prédites moyennes sont remarquablement similaires aux vraies cornées moyennes 

pour toutes les variables cliniques à l’étude. 

Mots-clés : cornée, polynômes de Zernike, harmoniques sphériques, fonctions rationnelles, 

topographie cornéenne, cartes d’élévations moyennes, clustering, clustering agglomératif, 

clustering en k-moyennes, clustering spectral, régression, gradient boosting, processus gaussien, 

kernel ridge, random forest, k-nearest neighbors, bagging. 
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Abstract 

This thesis aims to investigate the best conditions in which the anterior corneal surface of normal 

corneas can be preprocessed, classified and predicted using geometric modeling (GM) and machine 

learning (ML) techniques. The focus is on the anterior corneal surface, which is the main 

responsible of the refractive power of the cornea. 

Dealing with preprocessing, the first study (Chapter 2) examines the conditions in which GM 

can best be applied to reduce the dimensionality of a dataset of corneal surfaces to be used in ML 

projects. Four types of geometric models of corneal shape were tested regarding their accuracy and 

processing time: two polynomial (P) models – Zernike polynomial (ZP) and spherical harmonic 

polynomial (SHP) models – and two corresponding rational function (R) models – Zernike rational 

function (ZR) and spherical harmonic rational function (SHR) models. SHP and ZR are both known 

to be more accurate than ZP as corneal shape models for the same number of coefficients, but which 

type of model is the most accurate between SHP and ZR? And is an SHR model, which is both an 

SH model and an R model, even more accurate? Also, does modeling accuracy comes at the cost 

of the processing time, an important issue for testing large datasets as required in ML projects? 

Focusing on low J values (number of model coefficients) to address these issues in consideration 

of dimensionality constraints that apply in ML tasks, it was found, based on a number of evaluation 

tools, that SH models were both more accurate than their Z counterparts, that R models were both 

more accurate than their P counterparts and that the SH advantage was more important than the R 

advantage. Processing time curves as a function of J showed that P models were processed in quasi-

linear time, R models in polynomial time, and that Z models were fastest than SH models. 

Therefore, while SHR was the most accurate geometric model, it was the slowest (a problem that 

can partly be remedied by applying a preoptimization procedure). ZP was the fastest model, and 

with normal corneas, it remains an interesting option for testing and development, especially for 

clustering tasks due to its transparent interpretability. The best compromise between accuracy and 

speed for ML preprocessing is SHP. 

The classification of corneal shapes with clinical parameters has a long tradition, but the 

visualization of their effects on the corneal shape with group maps (average elevation maps, 

standard deviation maps, average difference maps, etc.) is relatively recent. In the second study 

(Chapter 3), we constructed an atlas of average elevation maps for different clinical variables 

(including geometric, refraction and demographic variables) that can be instrumental in the 

evaluation of ML task inputs (datasets) and outputs (predictions, clusters, etc.). A large dataset of 

normal adult anterior corneal surface topographies recorded in the form of 101×101 elevation 

matrices was first preprocessed by geometric modeling to reduce the dimensionality of the dataset 

to a small number of Zernike coefficients found to be optimal for ML tasks. The modeled corneal 

surfaces of the dataset were then grouped in accordance with the clinical variables available in the 

dataset transformed into categorical variables. An average elevation map was constructed for each 

group of corneal surfaces of each clinical variable in their natural (non-normalized) state and in 

their normalized state by averaging their modeling coefficients to get an average surface and by 

representing this average surface in reference to the best-fit sphere in a topographic elevation map. 

To validate the atlas thus constructed in both its natural and normalized modalities, ANOVA tests 

were conducted for each clinical variable of the dataset to verify their statistical consistency with 

the literature before verifying whether the corneal shape transformations displayed in the maps 

were themselves visually consistent. This was the case. The possible uses of such an atlas are 

discussed. 

The third study (Chapter 4) is concerned with the use of a dataset of geometrically modeled 

corneal surfaces in an ML task of clustering. The unsupervised classification of corneal surfaces is 

recent in ophthalmology. Most of the few existing studies on corneal clustering resort to feature 

extraction (as opposed to geometric modeling) to achieve the dimensionality reduction of the 
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dataset. The goal is usually to automate the process of corneal diagnosis, for instance by 

distinguishing irregular corneal surfaces (keratoconus, Fuch, etc.) from normal surfaces and, in 

some cases, by classifying irregular surfaces into subtypes. Complementary to these corneal 

clustering studies, the proposed study resorts mainly to geometric modeling to achieve 

dimensionality reduction and focuses on normal adult corneas in an attempt to identify their natural 

groupings, possibly in combination with feature extraction methods. Geometric modeling was 

based on Zernike polynomials, known for their interpretative transparency and sufficiently accurate 

for normal corneas. Different types of clustering methods were evaluated in pretests to identify the 

most effective at producing neatly delimitated clusters that are clearly interpretable. Their 

evaluation was based on clustering scores (to identify the best number of clusters), polar charts and 

scatter plots (to visualize the modeling coefficients involved in each cluster), average elevation 

maps and average profile cuts (to visualize the average corneal surface of each cluster), and 

statistical cluster comparisons on different clinical parameters (to validate the findings in reference 

to the clinical literature). K-means, applied to geometrically modeled surfaces without feature 

extraction, produced the best clusters, both for natural and normalized surfaces. While the clusters 

produced with natural corneal surfaces were based on the corneal curvature, those produced with 

normalized surfaces were based on the corneal axis. In each case, the best number of clusters was 

four. The importance of curvature and axis as grouping criteria in corneal data distribution is 

discussed.  

The fourth study presented in this thesis (Chapter 5) explores the ML paradigm to verify whether 

accurate predictions of normal corneal shapes can be made from clinical data, and how. The 

database of normal adult corneal surfaces was first preprocessed by geometric modeling to reduce 

its dimensionality into short vectors of 12 to 20 Zernike coefficients, found to be in the range of 

appropriate numbers to achieve optimal predictions. The nonlinear regression methods examined 

from the scikit-learn library were gradient boosting, Gaussian process, kernel ridge, random forest, 

k-nearest neighbors, bagging, and multilayer perceptron. The predictors were based on the clinical 

variables available in the database, including geometric variables (best-fit sphere radius, white-to-

white diameter, anterior chamber depth, corneal side), refraction variables (sphere, cylinder, axis) 

and demographic variables (age, gender). Each possible combination of regression method, set of 

clinical variables (used as predictors) and number of Zernike coefficients (used as targets) defined 

a regression model in a prediction test. All the regression models were evaluated based on their 

mean RMSE score (establishing the distance between the predicted corneal surfaces and the raw 

topographic true surfaces). The best model identified was further qualitatively assessed based on 

an atlas of predicted and true average elevation maps by which the predicted surfaces could be 

visually compared to the true surfaces on each of the clinical variables used as predictors. It was 

found that the best regression model was gradient boosting using all available clinical variables as 

predictors and 16 Zernike coefficients as targets. The most explicative predictor was the best-fit 

sphere radius, followed by the side and refractive variables. The average elevation maps of the true 

anterior corneal surfaces and the predicted surfaces based on this model were remarkably similar 

for each clinical variable. 

Keywords: cornea, Zernike polynomials, spherical harmonics, rational functions, corneal 

topography, atlas, average elevation map, clustering, agglomerative clustering, k-means clustering, 

spectral clustering, regression, gradient boosting, Gaussian process, kernel ridge, random forest, k-

nearest neighbors, bagging 
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INTRODUCTION 

In ophthalmology, an accurate examination of the three-dimensional corneal shape is essential 

in the diagnosis of corneal diseases, in planning surgery or for patient follow-up after treatment or 

surgery. Designed as a diagnostic aid for ophthalmologists, corneal topographers have experienced 

great technological advances in recent years, which allow them to produce increasingly accurate 

3D representations of the shape of the cornea. However, to assess the cornea of a patient, it is first 

necessary to know what the shape of a normal healthy corneal is.  

One problem with the specification of the normal cornea is that a corneal topography consists 

of tens of thousands of data points from the corneal surface. This overabundance of data requires 

dimensionality reduction to enable various applications, such as cornea-based biometric 

recognition and computer-aided corneal diagnosis. Geometric modeling can be instrumental to this 

end. Another issue is the significant variability of the shape of the cornea within a normal 

population. This variability is better studied by classifying corneal surfaces into different 

categories. This classification can be conducted under supervision by applying (manually or 

automatically) a number of clinical parameters, or otherwise without supervision, by clustering. In 

either case, statistical techniques (mean comparisons) and visualization techniques (group maps) 

can be instrumental to highlight the central tendencies that emerge from the corneal surfaces of 

different categories and follow their transformations from one category to another.  

Another problem with the specification of the normal cornea is to investigate the variability of 

the corneal shape to examine the complex relationship that holds between the corneal shape 

(conceived as a matrix of elevations) and the factors known to affect this shape, including geometric 

variables, refraction variables and demographic variables. In so doing, one should be able to predict 

the shape of the cornea based on such factors, and recent machine learning techniques of regression 

should be helpful in this regard. If the predictions are accurate, the central tendencies of corneal 

surfaces should be replicated in the predicted corneal surfaces, as visualized with the same 

visualization techniques. 

This thesis is composed of a collection of four papers that address the above problems, preceded 

by some basic notions and a review of the literature, as follows. 

Chapter 1 presents fundamental notions associated with this research and a brief review of the 

literature. Some basic concepts on the anatomy of the cornea, corneal topography, geometric 

models and machine learning methods are presented. 

Chapter 2 presents a study that explores geometric modeling as a method of dimensionality 

reduction for machine learning tasks. Four geometric models are compared for their effectiveness 

at reducing the dimensionality of a dataset of corneal surfaces. These include two polynomial 

models (Zernike polynomials and spherical harmonics) and two rational function models based on 

the former (Zernike rational functions and Spherical Harmonic rational functions). This study 

focuses on small numbers of coefficients to minimize the dimensionality of the prepared datasets. 

The goal of this study is to assess how the polynomial and rational function models under study 

perform with a small number of coefficients, considering their accuracy and processing time. The 

issue is to specify the strengths and weaknesses of each of these models for dimensionality 

reduction. 

Chapter 3 is concerned with the classification of corneal surfaces into a number of clinical 

categories (clinical classification) and with the visualization of the central tendencies of the surfaces 

in these categories using an atlas of average elevation maps. In the context of machine learning 

projects, the creation of such an atlas can be instrumental for validation purposes (ground truth), as 

concerns the inputs of machine learning (ML) tasks (to assess the conformity of the datasets after 

their preprocessing) or their outputs (to assess the clinical conformity of clusters, predictions, etc.), 

or else for interpretation purposes (to better understand the evolution, say, from one cluster to 

another). To construct such an atlas, we use a dataset of corneal surfaces previously preprocessed 

by geometric modeling to reduce their dimensionality to a small number of coefficients. The 
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modeled surfaces are then grouped in accordance with different clinical variables generated by the 

topographer. For each variable, the surfaces of each group are averaged (by obtaining the means of 

their modeling coefficients) and the average surface obtained is reconstructed based on these mean 

coefficients and represented in an elevation map. Using a gradient of colors, the average elevation 

map of each group of a clinical variable highlights the mean disparities of shape between a corneal 

surface and the sphere that fits it best and how these mean disparities evolve from one group to 

another. The atlas is then clinically verified both quantitatively, by assessing the conformity of the 

dataset of normal corneas with the clinical literature on the different clinical categories investigated, 

and qualitatively, by examining the corneal shape transformations displayed in the group average 

maps of each clinical variable. 

The two first studies dealt with the dimensionality reduction of corneal data and with the 

visualization of the effects of their clinical parameters with an atlas of average elevation maps, as 

a preparation for machine learning applications. Chapter 4 is concerned with the unsupervised 

classification of normal anterior corneal surfaces (the focus is usually on irregular surfaces) to 

identify the clinical features that best explain their distribution. Different types of clustering 

methods are examined in pretests, including hard and soft linear and nonlinear methods, and the 

modeled surfaces may have their dimensionality further reduced by feature extraction. The 

evaluation of clusters is based on scores of cluster delimitation (compactness and separation) and 

on the visualization of the average corneal surfaces of each cluster (clustering atlas) and of their 

modeling coefficients (polar and scatter plots). Once the best method is identified based on the 

above evaluation tools, the issue is to identify the best clusters, and in so doing, specify their number 

(k) and the clinical criteria on which these clusters are based. 

As a second machine learning application, Chapter 5 presents a regression study on whether 

corneal shapes can be predicted based on clinical information. Regression analyses are based on 

anterior corneal surfaces modeled with different numbers of Zernike coefficients (the targets) and 

on different combinations of geometric, refraction and demographic corneal variables (the 

predictors). The regression methods examined are nonparametric methods borrowed from the 

scikit-learn library (gradient boosting, Gaussian process, kernel ridge, random forest, k-nearest 

neighbors, bagging, and multilayer perceptron). The best model is identified based on RMSE scores 

that specify for each tested model (method + predictors + targets) the distance between the predicted 

and true surfaces. Once identified, the best model is qualitatively assessed based on an atlas of 

average elevation maps. The predictions are accurate to the extent that the RMSE scores are good 

and the average predicted surfaces of the atlas are visually similar to the true surfaces, to the extent 

that the shape transformations displayed in the atlas agree with the literature.  

The general thesis conclusion follows that suggests possible applications and future research 

directions. Figure 0.1 summarizes the main articulations of the thesis. It starts with a step of data 

acquisition in which raw topographic true corneal surfaces are acquired and cleaned in the form of 

91×91 matrices of elevations. The raw corneal surfaces are then preprocessed by geometric 

modeling to obtain a dataset of corneal surfaces modeled with J Zernike coefficients for machine 

learning projects of clustering and predictions. Different geometric models are tested in Chapter 2 

to assess their respective strengths and limitations. Although not the most accurate, Zernike 

modeling remains a good choice for exploratory studies of clustering and predictions involving 

normal corneas and will be selected for the following. As another preparatory step for machine 

learning applications, a task of (manual) supervised classification is accomplished to get an atlas 

of average elevation maps across a number of clinical categories for validation and interpretation 

purposes. Two machine learning projects are then conducted: an unsupervised classification project 

(clustering), to identify the natural groupings of normal corneal surfaces based on the distribution 

of data, and a regression project, to predict corneal surfaces based on clinical information. The 

inputs (datasets) and outputs (clusters and predictions) are validated based on a number of 

evaluation tools, including the atlas of corneal surfaces. 
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FIGURE 0.1: Flowchart of operations on corneal surfaces in the thesis. 
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CHAPTER 1: BASIC CONCEPTS AND REVIEW OF LITERATURE 

This chapter presents a number of fundamental notions associated with this research with a 

focus on the anterior surface of normal corneas. These include: the cornea and related notions, the 

geometric modeling of corneal surfaces, their clinical classification and visualization of their 

central tendencies, their clustering, and their prediction. 

1.1. The cornea and related notions 

1.1.1. The cornea 

The cornea is the external lens of the eye. It has a nearly spherical shape and covers 

approximately one-fifth of the eyeball surface, with an average diameter of 11 mm (Figure 1.1). 

Providing about 65 to 75 percent of the focusing power of the eye, it consists of a transparent tissue 

in front of the eye that refracts light and facilitates vision. This tissue involves five layers, namely, 

from front to back: the corneal epithelium, Bowman's layer, corneal stroma, Descemet's membrane, 

and corneal endothelium. Although nearly spherical, a healthy cornea can involve irregularities that 

lead to image distortion or aberration and thus to some visual defects, such as myopia or hyperopia. 

Irregularities cause light to spread out over a diffuse region of space instead of converging to a 

single point. Two categories of aberrations exist: lower-order and higher-order aberrations. Lower-

order (or second order) aberrations make up approximately 85 percent of all aberrations in an eye. 

They consist primarily of defocus – nearsightedness (myopia) and farsightedness (hyperopia) – as 

well as astigmatism. Higher-order aberrations are more complex refractive errors and comprise 

many varieties of aberrations, such as coma, trefoil and spherical aberration. 

 

 

 

 

 

 

 

FIGURE 1.1: Cross-sectional view of the eyeball. Source [1]. 
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1.1.2. The corneal topographer 

Recent progress in anterior segment imaging has improved the ability to accurately measure 

several corneal features. Corneal topography (Figure 1.2 and Figure 1.3) is a medical imaging 

technique used to obtain a precise 3D shape of a cornea as a set of 3D points of its anterior and 

posterior surfaces. From these data, topographic maps (Figure 1.2) can be derived to assist the 

ophthalmologist in the diagnosis of disorders. 

FIGURE 1.2: Typical display of a corneal topographer showing information about the corneal 3D 

shape. Source [2]. 

The anterior and posterior elevations with respect to the best-fit sphere (BFS) are shown in the 

top left and right images, while the curvature and pachymetry (thickness) are shown in the bottom 

left and right images. The BFS is the sphere that is best fitted to the corneal surface. 

Because the shape of the cornea is close to a sphere, the difference between the least-square 

BFS is shown with a colormap where warm colors indicate positive differences (outside the BFS) 

and cold colors indicate negative differences (inside the BFS) [3]. 

 

FIGURE 1.3: The corneal topographer Orbscan II. Source [4]. 

The studies presented in this thesis are based on a database that was collected using the Orbscan 

II corneal topographer [5]. The Orbscan II topographer resorts to slit scanning in combination with 
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Placido disc technologies to collect information about the elevations of the anterior surface and 

about the thickness of the cornea, allowing it to reconstruct the posterior surface as well (Bausch 

and Lomb, Rochester, NY) [3]. This database was made available for both right (OD) and left (OS) 

eyes under the supervision of Dr. Isabelle Brunette in the Department of Ophthalmology, 

Maisonneuve-Rosemont Hospital, Montreal, Quebec, Canada.1 

1.1.3. Clinical parameters – Basic definitions 

Each topography of the database of normal anterior corneal surfaces used in this study was 

associated with a number of clinical parameters, including demographic parameters (the age and 

gender of each subject for which a topographic acquisition was made) as well as corneal shape and 

refraction parameters.  

Geometric parameters. The best-fit sphere (BFS) is the sphere that best fits the particular cornea 

under study. It is characterized by a radius (BFS R) and the coordinates of its center. The white-to-

white distance, also known as the white-to-white diameter, is the limbus-to-limbus distance and 

corresponds to the white-to-white breadth of the cornea. The anterior chamber depth is the distance 

from the central anterior corneal epithelium to the anterior crystalline lens capsule. 

Refraction parameters. Refraction is the process, achieved mainly by the cornea, by which the 

light is bent to produce a focused light beam on the retina. Corneal refractive power refers jointly 

to the degree of visual acuity and to the optical properties of visual mechanisms that support vision. 

An optical aberration is a lack of refractive power caused by a failure of light rays to converge on 

the retina and to set the point of focus on it, thus creating refractive errors that result in a distorted 

image. Low-order aberrations are the most common types of optical aberrations that people may 

experience to varying degrees (85 percent of all aberrations in an eye). They include ametropia, 

which arises when the vision is out of focus (too short or too long), and astigmatism, which occurs 

when the cornea is not spherical enough. Ametropia can take either the form of myopia 

(nearsightedness, when the light beam falls short from the retina) or hyperopia (farsightedness, 

when it falls beyond the retina). Ametropia is measured in diopters in terms of spherical equivalent, 

which is calculated by adding the sphere power with half of the cylinder power: it is negative for 

myopia and positive for hyperopia. Astigmatism is measured in terms of the cylinder and axis. The 

cylinder specifies the degree of astigmatism of the eye by stating how flat or spherical it is. The 

axis, measured in degrees from 0° to 180°, gives the orientation of the astigmatism by specifying 

the angle of the main axis of the corneal deformation (the degree of corneal rotation): approximately 

0° or 180° (± 30°), the cornea is similar to a rugby ball on its side, and we have “with the rule” 

astigmatism; approximately 90° (± 30°), the cornea is similar to a rugby ball on its end, and we 

have “against the rule” astigmatism; between these values, we have oblique astigmatism. 

Other clinical parameters of corneal shape were not directly provided by the database but could 

nevertheless be qualitatively observed in the elevation maps. The corneal curvature is the overall 

steepness of the curvature of the cornea [6]. It can be measured as the radius of curvature of the 

cornea. The BFS radius can give an approximation of it. Literally, the asphericity of the cornea is 

the difference with the perfect sphere that best fits it [6]. In a more specific sense, it refers to the 

rate of change of the corneal curvature from the center to the periphery and is designated as Q. 

With an elevation map, the asphericity can be observed in relation to the BFS by a variation in 

color indicating a variation in distance [3]. 

  

                                                           
1 Given the focus of the present thesis on the anterior surface and the tasks at hand, the need for the more 

recent technology of the Pentacam was not as important as the need to have access to a sizable database of 

corneal surfaces, currently available only with the Obscan II. 
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1.1.4. Clinical parameters – Effects on the corneal shape 

The clinical parameters described above produce a number of effects on the corneal shape. 

Geometric parameters 

BFS R. The radius of the BFS of corneal surfaces is positively related to the degree of curvature 

of the horizontal and vertical at the apex (CHM and CVM) [3]. 

WTW. The white-to-white diameter (WTW), also known as horizontal corneal diameter (HCD) 

or horizontal visible iris diameter (HViD), strongly correlates with the radius of horizontal 

curvature (and thus negatively correlates with the curvature of the horizontal meridian [7]), which 

itself strongly correlates with the BFS R [3,7]. 

ACD. The anterior chamber depth (ACD) is negatively related to the keratometry (central 

corneal curvature, or K) [8], and to the spherical equivalent (SE) [9]. 

Side. Side as a predictor is associated with an interocular horizontal symmetry between OS and 

OD corneal shapes [10,11]. This property (enantiomorphism) is not affected by age, gender or 

spherical equivalent (SE). An intraocular corneal asymmetry of asphericity also arises for each eye, 

with more flattening occurring nasally than temporally [10]. 

Refraction parameters 

Ametropia. An increase in spherical equivalent (SE) from myopia to hyperopia is associated 

with a flatter curvature of the horizontal meridian (CHM) [11,12], and a shallower anterior chamber 

depth (ACD) [9,13]. From high myopia to emmetropia, an increase in SE is also associated with 

larger corneal horizontal and vertical diameters [11], themselves related to a larger best-fit sphere 

radius (BFS R) [7,14]. 

Astigmatism. “With the rule” (WTR) astigmatism arises when the axis of the cornea is rather 

horizontal (the axis angle is between 0° and 30° or between 150° and 180°). This is the case when 

the curvature of the vertical meridian (CHM) is the steepest and the curvature of the horizontal 

meridian (CHM) is the flattest [15,16]. The cornea is then similar to a rugby ball on its side. 

“Against the rule” (ATR) astigmatism arises when the axis is rather vertical (the axis angle is 90° 

± 30°). The CHM is then the steepest and the CVM the flattest. Finally, oblique astigmatism arises 

when the axis is neither roughly horizontal nor roughly vertical (the axis angle is between 30° and 

60° or between 120° and 150°). 

Demographic variables 

Age. This factor has been related to a variety of changes relative to the shape of the anterior 

surface of the cornea, including a shift from a “with the rule” to “against the rule” astigmatism that 

translates into an increase in the curvature of the horizontal meridian (CHM) and a decrease in the 

curvature of the vertical meridian (CVM) and thus an increase in the axis angle [15,16,17,18]. A 

decrease in vertical corneal diameter and white-to-white distance (VCD and WTW) is also 

observed when different age groups are compared to elderly people from 70 to 79 yo [11]. Age is 

further related to a reduction in anterior chamber depth (ACD) [8,13,20,21]. Concerning refraction, 

the prevalence of myopia is generally lower in older adults than in young adults [22]. For hyperopia, 

its prevalence starts to increase at approximately 35-40 years old until 65 years old or so [23]. 

Gender. Males have generally a wider anterior white-to-white diameter (WTW) [7,11,19] and 

thus a flatter horizontal and vertical corneal curvature [11,14,19] and a larger BFS radius [3,14], as 

well as a deeper anterior chamber depth (ACD) [8,20,24]. Besides, adult females have a higher 

prevalence of myopia than adult males and a lower prevalence of hyperopia, and thus a lower SE 

[25]. 
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1.2. Modeling the shape of the cornea 

Models of the cornea have taken many forms, evolving from conceptual models to the 

schematic eye of the Gullstrand model and then to complex computational models that integrate 

structural, biomechanical and optical representations of the corneal response. Figure 1.4 presents a 

typology of the most important types of corneal models that have been developed. 

Corneal shape
models

Static Dynamic

Conic
sections

Rational
functions

Polynomial
functions

- Global
- Zonal

Focus

Finite elements

- Zernike polynomials
- Spherical harmonics
- Bathia-Wolf

- With Zernike polynomials
- With spherical harmonics

OrthogonalNon-orthogonal

- Taylor series

 

FIGURE 1.4: Typology of corneal shape models. 

1.2.1. General distinctions 

Static vs. dynamic models. A first distinction is made between static and dynamic corneal shape 

models. Static models are geometric models that consider the cornea as a steady-state system in 

which stable input‒output relationships are established. In contrast, dynamic models are aimed at 

describing successive time-related states of the system through differential equations or through 

successive state-change equations. 

Global vs. zonal static models. In modeling the shape of the cornea, one may either consider it 

globally, producing a single model that represents the whole corneal surface, or locally, iteratively 

splitting the corneal surface into a number of modeling zones, or patches, and producing a number 

of models – one for each patch – that are integrated to represent the whole surface. The optimal 

number of patches is obtained by iteratively splitting the surface at specific control points until an 

accuracy or iteration criterion is satisfied. 

The models of corneal shape used in the studies presented in Chapter 2 are both static and global. 

They are static since we are only interested in representing the shape of the cornea as opposed to 

its evolution. They are global given that we want simple models (used for data compression) in ML 

tasks, which must be as parsimonious as possible as the number of coefficients required to achieve 

a certain degree of accuracy. Different types of static global models have been developed, including 

conic section models, polynomial models, which are of particular interest here, and rational 

function models. 
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1.2.2. Conic section models 

A conic section is obtained by cutting a cone with a plane at different angles to get different 

geometric shapes, including spheres, ellipses, hyperbolas and parabolas [26]. A typical conic 

section model of the cornea defines the profile of the cornea as an ellipse using two parameters, 

namely the apical radius R and the eccentricity parameter e, as in Equation 1.1. 

 𝑦 = 2𝑅𝑥 − (1 − 𝑒2)𝑥2 (1.1) 

A more intuitive way to formulate this expression is as follows: 

 𝑦 = 2𝑅𝑥 − 𝑝𝑥2 (1.2) 

where  

 𝑝 = 1 − 𝑒2 = (
𝑏

𝑎
)
2
   (1.3) 

in which a and b are the horizontal and vertical semi-axes of the ellipse. With this information, one 

can establish whether the elliptical shape of the cornea is circular (like a standard ball), prolate (like 

a rugby ball) or oblate (like a round cushion) as follows. Assuming that p > 0 (we then have an 

ellipse): if p < 1 then a > b and the ellipse is prolate; if p > 1 then b < a and the ellipse is oblate; if 

p = 1 then a = b and the ellipse is a circle. Related to these concepts are the notions of eccentricity 

E and asphericity Q, defined in Equations 1.4 and 1.5: 

 𝐸 = −𝑄 = 𝑒2 (1.4) 

This 2D modeling of the cornea can be extended to 3D modeling as in Equation 1.5, in which z 

is further accounted for (assuming the absence of toricity):  

 𝑥2 + 𝑦2 + 𝑝𝑧2 − 2𝑅𝑧 = 0 (1.5) 

More complex conic section models involve accounting for the toricity of the ellipse using a 

biconic model [3]. While other models, such as polynomial expansions, can be even more precise 

than conic sections (see below), they are mathematically more complex. In most cases, conic and 

biconic section models remain sufficient for the functional study of the cornea. 

1.2.3. Non-orthogonal polynomial models 

Taylor series are based on the decomposition of the corneal shape into simple radial polynomials 

[27]. However, Taylor series do not satisfy the condition of orthogonality allowing models to be 

easily expandable and interpretable, as required for ML applications based on corneal shape 

modeling. 

1.2.4. Orthogonal polynomial models 

An orthogonal polynomial function is a linear combination of terms with an orthonormal radial 

basis, as specified in Equation 1.6: 

 𝑆(𝑢𝑤 , 𝑣𝑤) =  ℎ𝑤 = ∑ 𝐶𝑔
𝐺
𝑔=1 𝑃𝑔(𝑢𝑤 , 𝑣𝑤) + 𝜖𝑤   for w = 1, 2, …, W  (1.6)  

where the corneal surface S consists of a set of W (polar or spherical) elevation 𝑆(𝑢𝑤, 𝑣𝑤) that are 

located at (polar or spherical) coordinates 𝑢𝑤 and 𝑣𝑤 for w = 1 to W. Each elevation 𝑆(𝑢𝑤, 𝑣𝑤) 
(equivalently ℎ𝑤) is modeled as the sum of the product of the gth polynomial 𝑃𝑗(𝑢𝑤, 𝑣𝑤) and 

coefficient 𝐶𝑔 for g = 1 to G, assuming error 𝜖𝑤. The first coefficient (𝐶1) specifies the mean 
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elevation of the modeled surface while the subsequent coefficients (𝐶1 to 𝐶𝑔) define its shape 

[28,29]. 

The polynomial terms of an orthogonal polynomial function are not correlated (orthogonal) and 

have the same unit length (normalized). The modeling of spheroid objects then consists solely of 

specifying the desired number of terms of the equation to be optimized to obtain the vector of 

optimal coefficients associated with these terms. As the vector of coefficients are the only elements 

that need to be stored to reconstruct a modeled quasi-spheroid surface, the step of model fitting can 

be regarded as a compression procedure.  

Three types of orthogonal polynomial functions have been extensively studied in corneal surface 

modeling, namely Zernike polynomials, spherical harmonics, and Bathia-Wolf polynomials. 

However, Bouazizi et al. (2017) have shown that while Bathia-Wolf polynomials are as effective 

as Zernike polynomials for a given radial order, they involve more coefficients for the same radial 

order and as such are less parsimonious [30]. Accordingly, this study focuses only on Zernike 

polynomials and spherical harmonics. 

Zernike polynomials 

In 1995, Schwiegerling made a clear demonstration of the interest of Zernike polynomials for 

the modeling of corneas [31], a finding replicated by Iskander et al. in 2001 when comparing this 

model to Bathia-Wolf [32]. In Zernike polynomials, the shape of the corneal surface is defined as 

a linear combination of simpler spheroid surfaces, or basis functions. This linear combination 

specifies Equation 1.6 as in Equation 1.7: 

 𝑆(𝜌𝑤 , 𝜃𝑤) =  𝑧𝑤 = ∑ 𝐶𝑔
𝐺
𝑔=1 𝑍𝑔(𝜌𝑤 , 𝜃𝑤) + 𝜖𝑤   for w = 1, 2, …, W  (1.7) 

The corneal surface S consists of W polar elevations 𝑆(𝜌𝑤 , 𝜃𝑤) (equivalently 𝑧𝑤) located at polar 

coordinates 𝜌𝑤 and 𝜃𝑤 for w = 1 to W. Each polar elevation 𝑧𝑤 is modeled by summing the product 

of the gth Zernike polynomial 𝑍𝑔(𝜌𝑤 , 𝜃𝑤) and the gth coefficient 𝐶𝑔 for g = 1 to G, assuming error 

𝜖𝑤. Each Zernike basis function 𝑍𝑔(𝜌𝑤 , 𝜃𝑤) represents a particular type of optical aberration. With 

Zernike polynomials, each polynomial term is associated with a corneal feature. Using Noll 

sequential indices, we have for g = 1: piston, 2: horizontal tilt, 3: vertical tilt, 4: defocus, 5: oblique 

astigmatism, 6: vertical astigmatism, 7: vertical coma, 8: horizontal coma, etc. As radial series 

expansions, Zernike polynomial models display properties of completeness (being potentially 

capable of accounting fully for the true surface), orthonormality (being uncorrelated and 

normalized), radiality (representing spheroids), and linearity. These properties make them easily 

interpretable, flexible for deciding the optimal number of coefficients needed, and suitable for the 

use of fast exact methods of optimization, such as least squares. However, their use may be 

problematic for the modeling of corneal surfaces presenting high-level aberrations, as for post-

surgery corneas [29,33,34]. 

Spherical harmonics 

In 2009, Iskander et al. proposed using spherical harmonics to model the cornea [34]. Similar 

to Zernike polynomials, spherical harmonics consist of a complete set of orthonormal periodic 

functions defined on the surface of a unit sphere. These functions are expressed as a sum of circular 

functions (sines and cosines) in accordance with Equation 1.8, which specifies Equation 1.6 as 

follows: 

 𝑆(𝜃𝑤 , 𝜑𝑤) =  𝜌𝑤 = ∑ 𝐶𝑔
𝐺
𝑔=1 𝑆𝐻𝑔(𝜃𝑤, 𝜑𝑤) + 𝜖𝑤   for w = 1, 2, …, W  (1.8) 

The surface S consists of W spherical elevations 𝑆(𝜃𝑤, 𝜑𝑤) positioned at spherical coordinates 𝜃𝑤 

and 𝜑𝑤 for w = 1 to W. Each spherical height 𝑆(𝜃𝑤, 𝜑𝑤) (equivalently 𝜌𝑤) is a radius modeled as 

the sum of the product of the gth spherical harmonics 𝑆𝐻𝑔(𝜃𝑤, 𝜑𝑤) and coefficient 𝐶𝑔 for g = 1 to 
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G, assuming error 𝜖𝑤. For Equation 1.8 to apply properly, corneal surface data must first be 

centered in relation to a spherical reference, the best-fit sphere (BFS), which is located on the origin 

of the coordinate system and is normalized to a unit sphere. The spherical information of the 

modeled surface is contained in the first coefficient (mean radius coefficient), while the next 

coefficients represent the relative deformations with respect to this sphere. 

In their study, Iskander et al. showed that spherical harmonics provide a better fit to true corneal 

surfaces than Zernike polynomials with the same radial order. In particular, Zernike polynomials 

were deemed to be insufficient for the modeling of complex corneal surfaces presenting higher-

order aberrations, such as those encountered in postsurgical eyes. In [34], Iskander compared SH 

polynomials with 3D polynomial functions, such as hemispherical harmonics and 3D Zernike 

(3DZ) polynomials, and found that SH achieves better accuracy in modeling the shape of the cornea 

for the same radial order and a same number of coefficients.2 However, these studies were limited 

to a relatively small number of corneas. 

1.2.5. Rational function models 

A rational function is the ratio of two polynomial surfaces acting as the numerator and 

denominator, as shown in Equation 1.9: 

 𝑆(𝑢𝑤 , 𝑣𝑤) =  ℎ𝑤 =
𝑆𝑁(𝑢𝑤,𝑣𝑤)

𝑆𝐷(𝑢𝑤,𝑣𝑤)
 + 𝜖𝑤   for w = 1, 2,…, W  (1.9) 

where the surface S consists of W polar or spherical elevations 𝑆(𝜃𝑤, 𝜑𝑤) (or equivalently ℎ𝑤) 

positioned at spherical or polar coordinates 𝑢𝑤 and 𝑣𝑤 for w = 1 to W. Each spherical height ℎ𝑤 

from 1 to W is modeled as the ratio of a modeled numerator polynomial surface 𝑆𝑁(𝑢𝑤, 𝑣𝑤) and a 

modeled denominator polynomial surface 𝑆𝐷(𝑢𝑤, 𝑣𝑤), assuming error 𝜖𝑤. In the present study, the 

numerator (N) and denominator (D) polynomial surfaces can be either Zernike polynomials 

(defined in Equation 1.7) or spherical harmonics (defined in Equation 1.8). The set of rational 

function coefficients 𝐶𝑅 is simply the union of the set of numerator coefficients and denominator 

coefficients.  

Schneider et al. (2009) found that Zernike polynomial-based rational functions outperform 

traditional Zernike polynomials with the same number of coefficients after a minimum number of 

coefficients has been reached [35]. 

1.2.6. Optimization of corneal shape models 

The best set of coefficients of a geometric model of corneal shape must be identified by solving 

a cost function F(𝜖) of the form:  

 �̂� = F(𝜖) = 𝑎𝑟𝑔 𝑚𝑖𝑛
𝐶 ∈ {𝐶}

(∑ 𝜖𝑤
2𝑊

𝑤=1 ) (1.10) 

where C is a set of coefficients among the superset of all those tested {𝐶}, �̂� is the set of coefficients 

among those tested that produces the lowest error when applying the cost function, D is the number 

of data (here, the number of elevation points of the modeled surface), and 𝜖𝑤 is the error of the wth 

modeled elevation. Each error 𝜖𝑤 is measured as the distance between the wth elevation of the 

modeled surface and that of the true surface: 

                                                           
2 The matching between the radial orders and numbers of coefficients of ZP and SHP models was achieved 

by taking only the right side of the SH coefficient pyramid. However, the finding that SHP performed better 

than ZP for the same number of coefficients was confirmed by Bouazizi et al. (2017) with both the right and 

the left sides of the SH coefficient pyramid being considered. 
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 𝜖𝑤 =  𝑆
𝑀(𝑢𝑤, 𝑣𝑤) − 𝑆

𝑇(𝑢𝑤, 𝑣𝑤)   for w = 1, 2, …, W (1.11) 

where 𝑆𝑇(𝑢𝑤 , 𝑣𝑤) is the wth elevation of the true surface 𝑆𝑀(𝑢𝑤 , 𝑣𝑤) and the wth elevation of the 

modeled surface. Each modeled surface elevation is defined as in Equation 1.6 (without 𝜖𝑤), and 

thus as in Equation 1.7 for Zernike polynomials and as in Equation 1.8 for spherical harmonics.  

Different types of optimization methods can be applied, as summarized in Figure 1.5 for those 

of the SciPy Optimize library [36]. 

Optimization methods

Iterative

- Ordinary least squares
- Weighted least squares
- Penalized least squares

DirectDerivative

- Levenberg-Marquardt
- Differential evolution
- Random search
- Simulated annealing
- Nelder-Mead

- Gradient descent 
- Newton
- Quasi-Newton        

Exact

 
FIGURE 1.5: Typology of optimization methods. 

An exact optimization method is one that can arrive directly and exactly, by simple calculus 

(usually least square calculus), to the best set of coefficients. In contrast, an iterative optimization 

method cannot do so and must instead proceed by successive approximations of the best set of 

coefficients, which are iterated until no significant progress toward this best set of coefficients can 

be made according to some stopping condition. When applicable, the use of an exact optimization 

method is always preferable, given its exactness and high speed, but this is not always the case: 

while polynomial models are suitable for this, rational function models must instead apply a much 

more demanding iterative method. 

Polynomial model optimization 

The best known exact optimization method for polynomial models is ordinary least squares, in 

which the best set of coefficients �̂� is solved by calculating the Moore–Penrose pseudoinverse: 

 �̂� = (𝑃𝑀(𝑢, 𝑣|𝐶)T 𝑃𝑀(𝑢, 𝑣|𝐶))-1 𝑃𝑀(𝑢, 𝑣|𝐶)T 𝑇(𝑢, 𝑣) (1.12) 

Ordinary least squares can be amended by adding weights (weighted least squares) and/or a penalty 

(penalized least squares, such as Lasso or ridge regression). However, such amendments do not 

produce any change with corneal modeling (as verified in preliminary tests for the study on 

compression presented in Chapter 1), so ordinary least squares is suitable for the optimization of 

polynomial models of corneal surfaces. 

Rational function model optimization 

Being nonlinearizable, rational function models cannot provide a Moore–Penrose 

pseudoinverse and must accordingly be optimized with an iterative method. Among them, 

derivative optimization methods rest on the estimation of the curvature of the cost function, using 

a Jacobian matrix, as with gradient descent methods, or else a Hessian matrix, as with Newton 

methods. When the Hessian matrix cannot be computed, it can be approximated, as with quasi-

Newton methods. Otherwise, direct optimization methods can also be used, which do not require 

any information about the gradient of the cost function but typically use a strategy that randomly 

generates variations of the design parameter vectors to directly estimate cost variations and get 

closer to the minimum. For the first article presented in this thesis in Chapter 2 about geometric 

models and compression, we examined in pretests all the applicable iterative methods available in 
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the SciPy Optimize library [36]. One of them stood out for its accuracy and speed in processing 

anterior corneal surfaces, namely Levenberg-Marquardt (LM), which is a derivative method, the 

same used and recommended by Schneider for the optimization of corneal models with rational 

function [35]. The LM algorithm is an upgraded version of the Gauss-Newton algorithm formulated 

as a trust-region algorithm that takes advantage of the gradient descent technique to solve 

unconstrained nonlinear problems [35,37]. Although it can only find a local minimum, it is more 

robust than other algorithms for small unconstrained problems if some initialization conditions 

provide a reasonable pre-estimation of the solution. 

1.3. Visualization of the effects of clinical parameters on the corneal 

shape with an atlas of average elevation maps 

A number of visualization tools have been developed over the last decades to capture and 

visualize some properties of groups of corneal surfaces (instead of focusing on a single one at a 

time). Currently, group maps include average maps, difference maps, count maps, standard deviation 

maps, t-test maps, pachymetry maps, and diagnosis maps, among others (see [38]). They have been 

used to visualize the effects produced by a few clinical parameters, including age [38], gender 

[29,30], spherical equivalent [30], and corneal diagnosis [38]. Once verified for its clinical 

conformity, an atlas can be used not only for clinical and instructional purposes but also to verify 

the conformity of datasets used or produced in ML tasks. 
Pivotal among them is the average elevation map. In an individual elevation map, a single corneal 

surface is represented in reference to the sphere that fits it the best, the best-fit sphere (BFS). Figure 
1.6 (a) shows a 3D representation of an individual anterior corneal surface (in blue) in reference to 
its BFS (spherical grid). Some areas of the cornea are above the BFS, and others are below it. This 
fact can be seen even more clearly in Figure 1.6 (c), where horizontal and vertical profile cuts of the 
same true corneal surface (the meridians) are presented. It is possible, using an elevation map, to 
represent all the elevations of the corneal surface on a 2D plane, as shown in Figure 1.6 (d) (the 
meridian elevations are represented by dotted lines). The surface points are located on the X and Y 
axes of the 91 × 91 grid, and the elevations on the Z axis are represented as a colormap. Warm colors 
hold for the elevations above the BFS, and cold colors for those below the BFS. In Figure 1.6 (e), 
the same surface is represented in an elevation map modeled with 24 Zernike polynomials (ZP). 

   (a)                         (b)             (c)        (d)                         (e) 

 
 

FIGURE 1.6: Representations of a true OD anterior corneal surface in reference to its BFS: (a) 3D map 

(the surface is in blue, the BFS is represented as a grid; (b) and (c) horizontal and vertical profile cuts 

(the surface is represented as a dashed curve, the BFS as a solid curve); (d) elevation map of the same 

true surface, (e) elevation map of the same surface modeled with 24 Zernike coefficients (a 5 mm 

fringe is radially removed to eliminate the most noisy part of the map). 
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WTW (group 1: from 10.40 to 11.36 mm, group 2: from 11.36 to 12.32 mm, group 3: from 

12.32 to 14.10 mm) 

 

 
FIGURE 1.7: Average elevation maps for WTW segmented in three groups. In the first row, the maps 

are based on natural surfaces in reference to the common BFS, and in the second row on normalized 

surfaces in reference to the normalized BFS. For each WTW group, the average corneal surface is the 

mean of the corneal surfaces of the group modeled with 16 Zernike coefficients. 

An average elevation map is a representation with an elevation map of the average surface of a 

group of surfaces. An average surface can be computed by averaging the elevations of the surfaces 

at each point of the grid, or equivalently, if the surface has been modeled, by averaging the 

modeling coefficients and constructing a surface based on the mean coefficients. The BFS of 

reference of an average elevation map is a common BFS with natural surfaces, computed as the 

mean of the group BFS, itself computed as the mean of the BFS of the individual surfaces of the 

group, or a normalized BFS with normalized surfaces, computed as the mean of the normalized 

BFSs.  

In an atlas of average elevation maps, an average map is constructed for each group of different 

clinical variables (transformed beforehand into categorical variables, if needed). By examining the 

average elevation maps of a given variable, it is possible to visualize its effect on the corneal shape 

regardless of its particular manifestations in specific surfaces. For example, Figure 1.7 shows the 

average elevation maps of WTW with natural (first row) and normalized surfaces (second row). 

While the difference of curvature caused by the differences in size of the different WTW groups is 

emphasized with natural surfaces, this difference is neutralized with normalized surfaces to 

emphasize instead the relative shape of the cornea (which does not change much from one group 

to another).  
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1.4. Unsupervised classification of corneal surfaces 

In unsupervised classification, or clustering, categories are “discovered” based on the 

distribution of data and the number of categories required (k). Once discovered, they form a set of 

k categories, or clusters, in which the data that are close to each other tend to be grouped together 

in the same category, while those that are distant from each other tend to belong to different clusters. 

A number of clustering methods are available: one can distinguish between hard methods (in which 

one cluster only is assigned to each element of the dataset) and soft methods (in which more than 

one cluster can be assigned along with a likelihood index of belonging) and between linear methods 

(in which cluster delimitations are linear) and nonlinear methods. The evaluation of the clusters 

produced by these methods can be external or internal. In external clustering evaluation, the clusters 

are evaluated in reference to groups that are already known as to their number (k) and to their 

elements: the k clusters produced are good to the extent that they are similar to the corresponding 

k groups, which are posed as ground truth. In internal clustering evaluation (adopted in this thesis), 

there are no already known reference groups posed as ground truth, so the clusters must be 

evaluated in reference to each other in terms of their delimitation. The clusters are well delimited 

to the extent that they are compact (the data of a same cluster are close to one another) and separated 

(the data of different clusters are far from each other). In this case, the number of clusters k and the 

criterion on which their grouping is based are not prespecified and must be discovered based on 

their delimitation. To evaluate the quality of this delimitation, a number of techniques are available. 

The best known, the elbow method, consists in estimating the WCSS score (within cluster sum of 

squares) for each possible number of clusters k and in locating the elbow of the resulting WCSS 

curve, where the compactness-separation relationship is optimal. To amplify and clarify the 

location of the elbow, the SPR2 (semi-partial R2) score can be used instead, either alone or in 

combination with the R2 score [39]. The SPR2 score is a measure of cluster compactness that 

computes the differences of successive WCSS scores (the elbow is located where the curve gets 

quasi-flat). As for the R2 score, it is a measure of cluster separation that computes the between 

cluster sum of squares in reference to the total sum of square (the optimal k is located at the “knee” 

of the curve). 

Whatever the type of evaluation adopted, clustering methods are designed to optimize the 

compactness-separation relationship, and their difference lies in the strategy adopted to this end. 

For example, agglomerative clustering is a hard linear bottom-up method in which clusters are built 

by recursively grouping data into pairs of clusters until a reversed tree is formed from leaves to root 

(dendrogram). The grouping of data into clusters is based on a linkage criterion used to identify the 

grouping that produces the smallest Euclidian distance. The dendrogram is like a pyramid in which 

the higher is the row of clusters, the lower is the number of clusters k.  Another hard linear method 

is k-means clustering, in which the clustering of data proceeds instead downward. The grouping 

procedure is based on a Voronoi space, which is a partition of a plane into k regions based on a 

predefined set of points. The borders of these regions are linearly set to minimize the distance 

between the within-border members, as measured by the within-cluster sum of squares (WCSS). 

Distance minimization proceeds by assigning each datum to the nearest centroid of each of the k 

regions, by computing again the location of the centroid of each region, and recursively until the 

WCSS passes below a quality criterion [40]. Spectral clustering is an example of hard nonlinear 

clustering method in which a step of feature engineering applies prior to the application of a 

standard clustering linear method such as k-means. In this step, an affinity matrix is created to 

provide a set of eigenvalues that inform about the similarity of each pair of data in the dataset. 

Clustering then proceeds by bipartioning the data in such a way as to maximize the affinity 

connections of the members of the same group and minimize those of different groups (in other 

words, by recursively cutting the weakest edges of the affinity matrix). 
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1.5. Prediction of corneal surfaces 

The issue in corneal prediction is whether it is possible to predict the shape of the cornea based 

on clinical data. To this end, one must investigate the complex relationship that holds between 

corneal shape and clinical data, which is done through regression analysis. In its traditional 

statistical modality, regression analysis requires one to make an assumption about the shape of the 

relationship that holds between the predictors and the targets, if it exists (linear, logarithmic, etc.). 

However, such an assumption rests on knowledge that is not always available. In the paradigm of 

machine learning (ML), no such assumption needs to be made. The issue is no longer whether a 

relationship does exist but what is the strongest one to take advantage of it and make the best 

predictions as possible. Such an approach, though, requires a large amount of data, but fortunately, 

big databases become increasingly available. While ML studies dealing with corneal shape have 

been conducted in recent years, most of them are aimed at classification to provide support for 

clinical diagnosis rather than regression to make predictions about the shape of the cornea. A 

number of ML regression methods have been proposed. Deep learning algorithms are generally 

regarded as being particularly effective, but they are extremely resource consuming and not 

necessarily appropriate for a first approach aimed at exploring and narrowing down the 

optimization space of regression analysis in corneal shape prediction, especially if a large database 

is not available. Other effective methods that are more convenient for such initial exploration are 

available in recent ML libraries along with ready-to-use optimization tools. Figure 1.8 presents 

such regression methods borrowed from the scikit-learn library that were implemented in the 

present study [40]. 

Regression methods

Non-parametric

StructureSingle estimator

Parametric

Single estimator Ensemble

- Gradient boosting
- AdaBoost
- Bagging
- Random forest

- Kernel ridge regression
- Gaussian process
- K-nearest kneighbors

- Multi-layer perceptron- Linear regression

 

FIGURE 1.8: Regression methods for corneal surface predictions drawn from the scikit-learn library 

implemented in the present study. 

Some of these methods are parametric, resting on a well-defined function that applies to data 

whose distribution is assumed to be known, as is the case of statistical methods. Such methods 

normally rely on a single estimator (linear regression, ridge regression). Other methods are 

nonparametric when data distribution must be discovered through some more elaborate training 

technique, as is the case of ML methods. The latter may rely on a single estimator (kernel ridge, 

Gaussian process, k-nearest neighbors), on an ensemble in which a collection of weak methods of 

the same type get their results combined by an integration function (gradient boosting, AdaBoost, 

bagging, random forest), or else on a structure in which the estimators form a complex structure 

(multi-layer perceptron). Among these regression algorithms, implemented in the scikit-learn 

library, those that proved to be applicable to the task at hand were linear regression (as a reference 

method), bagging, random forest, gradient boosting, k-nearest neighbors, kernel ridge, Gaussian 

process, and multilayer perceptron [40]. 
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Bagging is designed as an ensemble of decision trees that rests on a bagging algorithm (a set of 

independent weak regression methods) to exploit all possible subsets of features. Random forest is 

a similar method that exploits only a selection of all possible subsets of features. Adaboost is also 

an ensemble of decision trees, but it rests on a boosting algorithm (a set of dependent weak 

regression methods) to sequentially exploit the feature subsets. Gradient boosting does the same as 

AdaBoost with a gradient descent loss function instead. K-nearest neighbors, designed as a single 

estimator, applies the nearest neighbor selection algorithm (in which the k closest neighbors from 

each example are selected as a basis for the prediction to make with the example). Kernel ridge, 

also designed as a single estimator, applies a ridge regression algorithm with the kernel trick (in 

which a kernel function is applied to transform a nonlinear space in a linear space of higher 

dimension to facilitate processing). Gaussian process is a single estimator method that exploits a 

probabilistic function algorithm based on Gaussian equations. Finally, multilayer perceptron is a 

structure that supports a process of multilayer propagation, in which the data flow forward from 

layer to layer and are nonlinearly modulated before the model is retroactively adjusted 

(backpropagation) through a gradient descent loss function. 

These methods can be optimized with two cross-validated parameter search methods, namely 

RandomSearchCV and GridSearchCV. While the first proceeds by random search to narrow the 

optimization space, the second proceeds by grid search in the reduced space to get the best features 

(fine tuning). 
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Abstract 

This study aims to examine some geometric models of the corneal surface that can be used to reduce 

the dimensionality of corneal surface datasets, with a focus on normal anterior corneal surfaces. To 

this end, we looked for models that support early convergence in a reasonable processing time. 

Polynomial models such as Zernike polynomials (ZP) and spherical harmonic polynomials (SHP) 

were obvious candidates to this end, as well as their rational function counterparts, Zernike rational 

functions (ZR) and spherical harmonic rational functions (SHR, a new model for the cornea), which 

were tested for a small number of model coefficients (J). Knowing that both SHP and ZR were 

more accurate than ZP for the modeling of normal and keratoconus corneas, it was expected more 

largely that both spherical harmonics models (SHP and SHR) would be more accurate than Zernike 

models (ZP and ZR) and that both rational models (SHR and ZR) would be more accurate than 

their polynomial model counterparts (SHP and ZP, respectively) for a low dimensional space (J < 

30). This was the case, and the SH factor was found to contribute more to accuracy than the R 

factor. Considering the processing time of corneal surfaces as a function of J, a different picture 

appeared. The increase in processing time was linear for the polynomial models (with a quasi-null 

slope) but polynomial for the rational models. Zernike models were faster than spherical harmonics 

models and increasingly so in their rational model version. In sum, for dimensionality reduction 

tasks involving small J values, SHR is the most accurate model, but its processing time was 

increasingly prohibitive, indicating that the best combination must be identified before applying it 

to a large dataset. ZP is the fastest model and is reasonably accurate with normal anterior surface 

corneas, so it remains useful for exploratory studies and project development. SHP is the best 

compromise between accuracy and speed. 

Keywords: cornea, Zernike polynomials, spherical harmonics, rational functions, corneal 

topography 
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2.1. Introduction3 

In this study, an attempt is made to provide an accurate and parsimonious geometric model of 

the corneal surface for effective dimensionality reduction, often a requirement in machine learning 

or biometric projects in which dimensionality issues may arise. Current corneal shape models 

include conic section models, polynomial models, rational function models, and spline models, 

among others [26,31,41,42]. Conic section models are obtained by cutting a cone with a plane at 

different angles. In so doing, one may produce conic sections to 2D model different geometric 

shapes, including spheres, ellipses, hyperbolas, and parabolas, which may turn into 3D models by 

achieving a revolution about one axis. Such models are quite parsimonious, using only a few 

parameters to describe the global shape of the cornea [30]. However, Gatinel (2002) showed that 

this might be insufficient to describe the cornea at a local level, where surface irregularities leading 

to aberrations may lie [26]. There are no such limitations with polynomial models that rest on an 

orthogonal basis allowing the model to add or retrieve coefficients in accordance with modeling 

needs [31,34]. Rational function models can be even more accurate [35]. They are not themselves 

orthogonal, but they rest on orthogonal models whose coefficients may freely be added or retrieved. 

Finally, spline models can go even further in terms of accuracy by partitioning the corneal surface 

into patches to be fitted by so many polynomial models [31,34]. However, by multiplying the 

number of models across the surface, spline models are not parsimonious. Given the 

aforementioned drawbacks of conic and spline models, the present study focuses on polynomial 

and rational function models of the anterior corneal surface. In this work, the focus is on the anterior 

corneal surface, which is the main responsible for the refractive power of the cornea. 

2.1.1. Geometric models of corneal shape 

2.1.1.1. Polynomial models of corneal shape 

Several studies rest on the use of polynomials to model the cornea [26,30,32,34,41,43]. They 

generate corneal surface heights (aka elevations) (see Figure 2.2) that can be generally described 

as in Equation 2.1: 

 𝑆(𝑢𝑤 , 𝑣𝑤) =  ℎ𝑤 = ∑ 𝐶𝑔
𝐺
𝑔=1 𝑃𝑔(𝑢𝑤 , 𝑣𝑤) + 𝜖𝑤   for w = 1, 2, …,  W  (2.1) 

where the corneal surface S consists of W (polar or spherical) heights 𝑆(𝑢𝑤 , 𝑣𝑤) located at (polar 

or spherical) coordinates 𝑢𝑤 and 𝑣𝑤 for w = 1 to W. Each height 𝑆(𝑢𝑤 , 𝑣𝑤) (equivalently ℎ𝑤) is 

modeled as the sum of the product of the gth polynomial 𝑃𝑔(𝑢𝑤 , 𝑣𝑤) and the gth coefficient 𝐶𝑔 for g 

= 1 to G to, assuming error 𝜖𝑤. The first coefficient (𝐶1) stands for the mean height of the modeled 

surface, while the subsequent coefficients (𝐶2 to 𝐶𝐺) define its shape [28,29]. The number of 

polynomial coefficients is given by G in Equation 2.1. However, to facilitate comparisons between 

polynomial and rational function models, we will refer in the following to the number of shape 

coefficients J, given by G – 1. 

Polynomial models of the cornea include models that have no orthogonal basis, such as Taylor 

series [27], and models that do, such as Zernike, Bathia-Wolf and spherical harmonic polynomials. 

Orthogonal polynomials are more precisely orthonormal, with terms that have the same normalized 

unit length [27,32,34]. Such models were found to be more effective for corneal shape modeling 

than nonorthogonal models [31]. Among them, Bathia-Wolf polynomials were as accurate as 

Zernike polynomials for the same order, but they require twice more coefficients and so are less 

                                                           
3 Non-standard abbreviations: LM: Levenberg-Marquardt, MFS α: Minimum Fully Successful α, P: 

Polynomial, R: Rational functions, SHP: Spherical Harmonic Polynomials, SHR: Spherical Harmonics 

Rational functions, Z: Zernike, ZP: Zernike Polynomials, ZR: Zernike Rational functions. 
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parsimonious [30]. The following will therefore focus on Zernike polynomials and spherical 

harmonics. 

            

FIGURE 2.1: Pyramids of the Zernike (left) and spherical harmonic (right) basis functions up to order 

4. For each Zernike function, n and m are above each elevation map. For each spherical harmonic 

function, l and m are above each elevation map. The sequential shape index of each basis function j 

(or g – 1) is given below the elevation map. 

Zernike polynomials. Different studies have clearly demonstrated the effectiveness of the 

Zernike polynomial model (ZP) for the description of optical aberrations of the cornea  

[30,32,35,43]. In ZP modeling, Equation 2.1 becomes Equation 2.2: 

 𝑆(𝜌𝑤 , 𝜃𝑤) =  𝑧𝑤 = ∑ 𝐶𝑔
𝐺
𝑔=1 𝑍𝑔)𝜌𝑤 , 𝜃𝑤) + 𝜖𝑤   for  w = 1, 2, …,  W  (2.2) 

Modeled with Zernike polynomials, a corneal surface S consists of a set of W polar heights 

𝑆(𝜌𝑤 , 𝜃𝑤) that are located at polar coordinates 𝜌𝑤 and 𝜃𝑤 for w = 1 to W. Each polar height 

𝑆(𝜌𝑤 , 𝜃𝑤) (or 𝑧𝑤) is modeled by summing the product of the gth Zernike polynomial 𝑍𝑔(𝜌𝑤 , 𝜃𝑤) 

and the gth coefficient 𝐶𝑔 for g = 1 to G, assuming error 𝜖𝑤. Each Zernike polynomial 𝑍𝑔(𝜌𝑤 , 𝜃𝑤) 

is defined as in Equation 2.3: 

 𝑍𝑔(𝜌𝑤 , 𝜃𝑤) = (

√2(𝑛 + 1) 𝑅𝑛
𝑚(𝜌𝑤) cos(m𝜃𝑤) , g even, m ≠ 0    

√2(𝑛 + 1)𝑅𝑛
𝑚(𝜌𝑤) sin(m𝜃𝑤) , g odd, m ≠ 0      

√𝑛 + 1 𝑅𝑛
0, m = 0                                           

)  (2.3) 

where n is the radial degree (corresponding to a row in Figure 2.1 (left), m is the azimuthal 

frequency (corresponding to a position in a row), and g is the coefficient index. The radial 

polynomial 𝑅𝑛
𝑚(𝜌𝑤) is defined as in Equation 2.4: 

 𝑅𝑛
𝑚(𝜌𝑤) = ∑

(−1)𝑠(𝑛 – 𝑠)!

𝑠!(𝑛+𝑚
2

 − 𝑠)! (𝑛−𝑚
2
  − 𝑠)!

𝜌𝑤
𝑛−2𝑠

𝑛−𝑚

2
𝑠=0   (2.4) 

In this study, the Noll convention of sequential indices is adopted, in which index g relates to the 

radial degree n and to the azimuthal frequency m as follows: 
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 g = 
n(n+1)

2
 + |m| + {

0, 𝑚 > 0 ∧ 𝑛 ≡ {0,1} (𝑚𝑜𝑑 4)

0, 𝑚 < 0 ∧ 𝑛 ≡ {2,3} (𝑚𝑜𝑑 4)

1, 𝑚 ≥ 0 ∧ 𝑛 ≡ {2,3} (𝑚𝑜𝑑 4)

1, 𝑚 ≤ 0 ∧ 𝑛 ≡ {0,1} (𝑚𝑜𝑑 4)

} (2.5) 

Zernike basis functions display properties of linearity, completeness (fully accounting for any 

surface over the unit circle domain), orthonormality, and radiality (representing spheroids). As 

such, they are easily interpretable, are flexible for deciding the optimal number of coefficients 

needed as a trade-off between parsimony and accuracy, and support the use of exact linear 

optimization methods. 

Spherical harmonics. First proposed in 2009 by Iskander et al. to model the cornea spherical 

harmonic polynomial (SHP) models consist of a complete set of orthonormal periodic functions 

defined on the surface of a unit sphere [34,44]. Like the Zernike and Bathia-Wolf polynomials, 

they can be expressed as a sum of circular functions (sines and cosines) as follows: 

 𝑆(𝜃𝑤, 𝜑𝑤) =  𝜌𝑤 = ∑ 𝐶𝑔
𝐺
𝑔=1 𝑆𝐻𝑔(𝜃𝑤 , 𝜑𝑤) + 𝜖𝑤   for w = 1, 2, …,  W  (2.6) 

Modeled with spherical harmonics, the corneal surface 𝑆 consists of a set of W spherical heights 

𝑆(𝜃𝑓𝑤 , 𝜑𝑤) (equivalently 𝜌𝑤) positioned at spherical coordinates 𝜃𝑤 and 𝜑𝑤. Each spherical height 

𝜌𝑤 is a radius modeled by summing the product of the gth spherical harmonics 𝑆𝐻𝑔(𝜃𝑤, 𝜑𝑤) and 

coefficient 𝐶𝑔 for g = 1 to G, assuming error 𝜖𝑤. Each spherical harmonics 𝑆𝐻𝑔(𝜃𝑤, 𝜑𝑤) is defined 

as in Equation 2.7:4 

 𝑆𝑆𝐻(𝜃𝑤, 𝜑𝑤) = (

√2𝑁ℓ
𝑚 𝑃ℓ

𝑚(cos 𝜃𝑤) cos(m𝜑𝑤) , m > 0 

√2𝑁ℓ
𝑚 𝑃ℓ

𝑚(𝜃𝑤) sin(m𝜑𝑤) ,        m < 0 

𝑁ℓ
0  𝑃ℓ

0(cos𝜃𝑤),                         m = 0

) (2.7) 

𝑁ℓ
𝑚 is the normalization factor: 

 𝑁𝑙
𝑚 = √

(2l+1)

4π
 
(ℓ-m)!

(l+m)!
  (2.8) 

and 𝑃ℓ
𝑚 is the Legendre polynomial: 

 𝑃ℓ
𝑚(x) =

(−1)𝑚

2𝑙 ℓ!
(1 − 𝑥2)𝑚/2  

𝑑ℓ+𝑚

𝑑𝑥ℓ+𝑚
(𝑥2 − 1)ℓ                 (2.9) 

Here, ℓ is the degree (corresponding to a row in Figure 2.1, right), and m is the order (corresponding 

to a position in a row). The coefficient index g in Equation 2.6 relates to the degree ℓ and the order 

m as in Equation 2.10, assuming that |m| <= ℓ: 

 𝑔 = ℓ(ℓ + 1) + 𝑚                 (2.10) 

The corneal surface data must first be centered in relation to a spherical reference called the 

best-fit sphere (BFS), which is located on the origin of the spherical coordinate system and is 

normalized to the unit sphere [29]. The spherical information of the modeled surface (center and 

radius) is contained in the first coefficient (g = 1), while the next coefficients (g = 2 to G, or 

equivalently j = 1 to J) represent the relative deformations with respect to this sphere, thus 

specifying the details of its shape. 

Like Zernike polynomials, spherical harmonics display properties of linearity, completeness, 

and radiality, but they are not as transparently interpretable in terms of optical aberrations. Yet, 

                                                           
4 The opposite convention where 𝜃 and 𝜑 are reversed is also possible. 
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they may provide a better fit to true corneal surfaces than Zernike polynomials for the same radial 

order and for the same number of coefficients, including surfaces presenting higher-order 

aberrations [30,34]. 

2.1.1.2. Rational function models of corneal shape 

A rational function is the ratio of two surfaces produced by polynomial models, as shown in 

Equation 2.11: 

 𝑆(𝑢𝑤 , 𝑣𝑤) =  ℎ𝑤 =
𝑆𝑁(𝑢𝑤,𝑣𝑤)

𝑆𝐷(𝑢𝑤,𝑣𝑤)
 + 𝜖𝑤   for w = 1, 2, …, W (2.11) 

In rational function modeling, the corneal surface 𝑆 consists of a set of W (polar or spherical) 

heights 𝑆(𝑢𝑤 , 𝑣𝑤) positioned at (polar or spherical) coordinates 𝑢𝑤 and 𝑣𝑤 for w = 1 to W. Each 

height 𝑆(𝑢𝑤 , 𝑣𝑤) (equivalently ℎ𝑤) is modeled as the ratio of a numerator polynomial modeled 

surface 𝑆𝑁(𝑢𝑤, 𝑣𝑤) and a denominator polynomial modeled surface 𝑆𝐷(𝑢𝑤 , 𝑣𝑤), assuming error 

𝜖𝑤. In the present study, the numerator (N) and denominator (D) polynomial surfaces can be either 

Zernike polynomials, in which case they are defined as in Equations 2.2 to 2.5, or spherical 

harmonics, in which case they are defined as in Equations 2.6 to 2.10. The set of rational (R) 

coefficients 𝐶𝑅 is simply the union of the set of numerator coefficients and denominator 

coefficients: 

 𝐶𝑅 = (CN, 𝐶𝐷)  = (𝐶1
𝑁, 𝐶2

𝑁 …, 𝐶
𝐺𝑁
𝑁 , 𝐶1

𝐷, 𝐶2
𝑁 …, 𝐶

𝐺𝐷
𝐷 )   (2.12) 

The number of rational function coefficients 𝐺𝑅 is given by: 

 𝐺𝑅 = 𝐺𝑁 + 𝐺𝐷  (2.13) 

The number of rational function shape coefficients 𝐽𝑅 is accordingly 𝐺𝑅 – 2. 

2.1.2. Goal and hypotheses 

Iskander (2009) showed that spherical harmonic polynomial (SHP) models perform better than 

Zernike polynomial (ZP) models for the same number of coefficients. He observed that SHP models 

outperformed ZP models on models of orders 4, 8, and 10 and for the same number of coefficients 

by an average of 22% (Iskander, 2009). This finding, based on nonnegative m spherical harmonic 

values to insure that the SHP and ZP orders match, was confirmed by Bouazizi et al. (2017) for 

both negative and nonnegative values [30]. On the other hand, Schneider et al. (2009) showed that 

the performance of Zernike polynomials can be improved when Zernike coefficients are rearranged 

to form Zernike rational function models (ZR), in which coefficients are split into numerator and 

denominator coefficients to be used in rational functions, that is, as the ratio of two Zernike 

polynomial models [35]. There is no a priori reason why SHP models cannot likewise be integrated 

into rational function models to form SHR models, thus benefiting from being both a spherical 

harmonic (SH) model and a rational function (R) model. If so, the SH model advantage should 

extend to other models than SHP, and the R model advantage to other models than ZR. 

While ZP and SHP have been directly compared in the same study design (Iskander, 2009) and 

likewise for ZP and ZR [35], Zernike (Z) models (ZP and ZR) have never been compared directly 

to spherical harmonic (SH) models (SHP and SHR). This study aims to simultaneously compare 

these four models to assess the effectiveness of P versus R models and SH versus Z models both in 

terms of early accuracy and processing time in a (relatively) low-dimensional space (J < 30). 

  



36 
 

2.2. Method 

2.2.1. Data collection and conditioning 

This study is based on a dataset of 40 normal anterior corneal topographies selected randomly 

from a dataset of 8728 topographies acquired from 5060 consenting subjects (4427 female corneas, 

4301 male corneas, 4510 OD corneas, 4218 OS corneas). A smaller dataset of 8 keratoconus corneal 

topographies was also used to test the models on irregular surfaces. The relatively small number of 

topographies of the dataset was necessary to test rational function models, whose processing time 

increases rapidly with the number of coefficients. These datasets are drawn from the Database for 

the anatomopathological, functional and surgical characterization of the cornea (Montreal, QC, 

Canada) and produced by the Orbscan II corneal topographer (Bausch and Lomb, Rochester, NY).  

 

FIGURE 2.2: Schematic representation of the anterior corneal surface S in a 101×101 matrix of nasal to 

temporal elevations z at Cartesian positions x and y. One of these points S(x,y,z) is shown with dashed 

lines. 

Each topography came in the form of a 101×101 matrix of elevations (or heights) evenly spaced 

every 0.1 µm along the horizontal (nasal-temporal) and vertical (superior-inferior) axes (see Figure 

2.2). The matrix was first cropped into a 91×91 matrix to eliminate 0.5 mm of radius to clean up 

the noisiest part of the image fringe due to the lids, lashes, nose, etc. The remaining elevations were 

linearized into a Z vector of 8281 elevations, which was assigned X and Y vectors of the same length 

to form a three-column matrix of Cartesian coordinates x, y and z representing the dots S(x,y,z) of 

the corneal surface S. 

In preparation for model optimization, each set of Cartesian coordinates was generated by 

uniform scaling steps insuring normalization and converted into polar coordinates for Zernike 

polynomials:  

 (𝑥𝑤, 𝑦𝑤 , 𝑧𝑤) → (𝜌𝑤 , 𝜃𝑤, 𝑧𝑤) (2.14) 

and into spherical coordinates for spherical harmonics: 

 ( 𝑥𝑤 , 𝑦𝑤 , 𝑧𝑤) → (𝜌𝑤 , 𝜃𝑤 , 𝜑𝑤) (2.15) 

To estimate the repeatability error of the topographer, we collected another dataset from the 

same database for which double acquisitions of corneal measures were made. This measure was 

estimated to set an accuracy threshold when estimating the minimum best numbers of coefficients. 

This dataset contained two different acquisitions for 257 corneas, including 120 of them from right 

eyes and 137 from left eyes, and the RMSE repeatability score was computed for each of them and 

estimated as 6.18 µm for a 91×91 matrix of elevations. 
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2.2.2. Model optimization 

Polynomial models. These models were fitted with least squares, a method that offers an exact 

solution quasi-instantly provided that the pseudo-inverse of the surface matrix exists, as is the case 

here.   

Rational function models. The optimization of rational functions was based on Levenberg-

Marquardt (LM), an iterative method recommended by [35] and found here to be the most effective 

among those available in the SciPy library [36] for the task at hand. LM is a derivative method that 

takes advantage of the gradient descent technique to solve non-linear least-squares problems and 

that relies on the MINPACK library to implement gradient descent [37]. It is more robust than other 

algorithms such as Gauss-Newton and applies to unconstrained problems. The LM algorithm rests 

on the following approximation: 

 H(C + ΔC) ≈ H(C) + 𝔍(C)ΔC (2.16) 

C is a tested set of coefficients and 𝐻(𝐶) is given by 

 ℎ𝑤 = 𝑆(𝑢𝑤 , 𝑣𝑤)    for w = 1, 2, …,  W, given C  (2.17) 

𝑆(𝑢𝑤 , 𝑣𝑤) was defined in Equation 2.11. The Jacobian matrix 𝔍(C) is given by: 

 𝔍(𝐶) =  
𝜕𝐻(𝐶)

𝜕𝐶

(

 
 
 
 

𝜕

𝜕𝑐1
ℎ1(𝐶)  

𝜕

𝜕𝑐2
ℎ1(𝐶)    …     

𝜕

𝜕𝑐(𝑁+𝐷)
ℎ1(𝐶)

𝜕

𝜕𝑐2
ℎ2(𝐶)  

𝜕

𝜕𝑐2
ℎ2(𝐶) ⋯

𝜕

𝜕𝑐(𝑁+𝐷)
ℎ2(𝐶)

⋮ ⋱ ⋮
𝜕

𝜕𝑐1
ℎ𝑊(𝐶) 

𝜕

𝜕𝑐2
ℎ𝑊(𝐶) ⋯

𝜕

𝜕𝑐(𝑁+𝐷)
ℎ𝑊(𝐶))

 
 
 
 

 (2.18) 

Finally, 𝛥𝐶 is defined as: 

 𝛥𝐶 = (𝔍(𝐶)𝑇 𝔍(𝐶)  +  𝜆𝐼)−1  𝔍(𝐶)𝑇 (T – H(C))  (2.19) 

The optimal set of coefficients �̂� is estimated in accordance with the following algorithm (in which 

Equation 2.19 is applied recursively): 

1: �̂� ← 𝐶(0)  (2.20) 

2: 𝛥𝐶 ← x with x > 𝛥𝑚𝑖𝑛 

3: while |�̂� –  𝑇| > 𝜖𝑡𝑜𝑙 and 𝛥𝐶 >  𝛥𝑚𝑖𝑛 do 

4:   𝛥𝐶 ← ( 𝔍(𝐶)𝑇 𝔍(𝐶)  +  𝜆𝐼)−1  𝔍(𝐶)𝑇 (T – H(C)) 

5:   �̂� ← 𝐶 + 𝛥𝐶 

6: end while 

To ensure that the LM algorithm finds the global minimum, Schneider et al. (2009) recommends 

that the initial set of denominator coefficients 𝐶𝐷(0) be set to (1, 0, 0, …, 0)T to allow the least-

square estimator (Moore-Penrose) pseudoinverse to apply properly. We tested that LM is even 

more robust if the initial set of numerator coefficients 𝐶𝑁(0)is itself preoptimized with ordinary 

least squares to make it closer to the final solution. 

2.2.3. Model evaluation 

The effectiveness for dimensionality reduction of the four geometric models under study was 

evaluated as to their accuracy and processing time on relatively small numbers of shape coefficients 

(J values) that were deemed to be potentially optimal for machine learning (ML) tasks. Only sets 



38 
 

of shape coefficients are considered in the subsequent analyses. At least one numerator coefficient 

and one denominator shape coefficient must be present in each set of rational coefficients. 

Concerning the evaluation of modeling accuracy, the range of potentially best J values, or best 

J range, was specified by applying the elbow method (frequently used in cluster analysis) to the 

RMSE by the J curve of each model (see Figure 2.3). Each score of an RMSE curve measured the 

distance (root mean square error) between the modeled surfaces produced by a geometric model 

for a given J value and the corresponding raw topographic true surfaces (the missing dots resulting 

from the topographic acquisition flaws were excluded from the computation). For the RMSE curve 

of each model, the best J range was delimited by the minimum and maximum values of its elbow. 

The elbow of an RMSE curve starts where the bulk of the curve convergence toward the minimum 

error is achieved, and it ends where the curve starts to flatten (so that only little gain of accuracy 

can be made by further increasing the J value). Once the best J range has thus been delimited for 

each model, a common best J range was established as their best overlap to allow the models to be 

compared on their accuracy in a common low-dimensional space of optimization for ML tasks. 

Complementary to RMSE scores, performance profiles were further made to evaluate the 

proportion of corneal surfaces whose RMSE scores were better than a given value α [14] (see Figure 

2.4). 

In addition to this quantitative evaluation, a visual assessment of the models’ accuracy was made 

by comparing a series of elevation maps of the same corneal surface as reconstructed by the four 

geometric models on different J values (see Figure 2.5). Assuming that a corneal surface is 

approximately spherical,an elevation map shows the differences in height between a corneal surface 

and the sphere that fits it the best (the best-fit sphere, or BFS) at every position of the surface based 

on a gradient of colors (colormap). The BFS is computed by least square fitting to the corneal 

surface. Warm colors represent positive differences (surface regions outside the BFS), and cold 

colors represent negative differences (surface regions inside the BFS) [3,15,38]. 

The processing speed of the geometric models was estimated by measuring the average time 

they took to process a cornea (the time needed to process the whole dataset divided by its size) with 

the same predefined computer configuration for different J values (2, 5, 8, 11, 14, 17, 20, 23, 26 

and 29). The computer cluster used for this test was Narval [45], managed by Digital Research 

Alliance of Canada, and configured with 32 CPUs per task and 10 G of memory per CPU. 

2.3. Results 

2.3.1. Normal corneas 

RMSE curves. An RMSE curve larger than the best J range for normal corneas is presented 

(from J = 4 to 26) in Figure 2.3 (left) to locate its minimum and maximum J values. As can be seen, 

the bulk of the convergence is achieved somewhere between J = 6 and 12, depending on the model. 

Additionally, all the curves start to flatten around J = 24. Therefore, the (common) best J range of 

RMSE curves was set from J = 12 to 24, as shown in Figure 2.3 (right). As can be seen, for J ≥ 12, 

all curves have RMSE scores lower than the mean repeatability error of the topographer (6.2 µm). 

On average, the spherical harmonic (SH) models (SHP and SHR) are more accurate than the 

Zernike (Z) models (ZP and ZR), while the rational function (R) models (SHR and ZR) are 

somewhat more accurate than the corresponding polynomial (P) models (SHP and ZP, 

respectively). Therefore, being both an SH model and an R model is favorable for early 

convergence. However, the most effective factor between SH and R is SH, as revealed by the gaps 

between the SH and Z curves, which are more than three times larger than those between the P and 

R curves (27.8% improvement with SH vs. 8.1% with R). 
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FIGURE 2.3: Accuracy of polynomial and rational function models (SHP, ZP, SHR, ZR) from J = 4 to 26 

with normal corneas (left). Zoomed-in view of the best J range (J = 12 to 24) (right). 

Performance profiles. Figure 2.4 presents the performance profiles of the examined models for 

normal corneas with J = 16. Except for ZP with J = 12, all models achieve full success (100% of 

the data are below the success standard α) when α is below the topographer repeatability error of 

6.2 µm. Their full success arises roughly in the same order as with RMSE curves: SHP and SHR 

followed by ZR and ZP. 

 

FIGURE 2.4: Typical performance profile of SHP, ZP, SHR and ZR for J = 16 with normal corneas. 

The dashed blue vertical line represents the topographer repeatability error. 

TABLE 2.1: MFS α with normal corneas in the best J range for J = 12, 14, 16, 18, 20, 22 and 24 (in 

µm). All MFS α values are below the repeatability error of 6.2 µm. 

J SHP SHR ZP ZR 
12 4.9 4.8 6.5 5.6 
14 4.4 4.3 6.0 5.0 
16 3.4 3.7 4.3 3.9 
18 3.3 2.9 4.1 3.5 
20 3.2 2.8 4.0 3.4 
22 2.8 2.4 3.5 3.3 
24 2.6 2.3 3.5 3.2 

Mean MFS α 3.5 3.3 4.6 4.0 
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FIGURE 2.5: Elevation maps of the same OD normal corneal surface presented in raw version (first 

row) or modeled with ZP (second row), ZR (third row), SHP (fourth row) and SHR (fifth row) for J 

= 8, 16, 20 and 24. The last three J values are in the best J range. 

Table 2.1 presents the minimum fully successful (MFS) α value across the best J range, that is, 

the minimum value of α at which a model achieves full success for a given J. These performance 

profiles are consistent with the RMSE curves of Figure 2.3. On average, SH models have a lower 

MFS α than Z models (3.4 vs. 4.3 µm), and R models have a lower MFS α than P models (3.7 vs. 

4.0 µm). The SH advantage (20.1% improvement) is more important than the R advantage 

(9.6%). The best model for early convergence is SHR. 

Elevation maps. Figure 2.5 presents the elevation map of a true normal cornea and those of the 

same surface modeled by SHP, SHR, ZP and ZR with J = 8, 16, 20 and 24 (the last three J values 

RAW 

ZP 

ZR 

SHP 

SHR 

J = 8 J = 12 J = 16 J = 20 J = 24 
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are in the best J range). As expected, for each of these models, the shape of the modeled surface 

becomes progressively closer to that of the true surface as J increases, especially when they J gets 

into the best J range, as revealed by RMSE scores and by the patterns of colors displayed by the 

elevation maps.  

2.3.2. Keratoconus corneas 

Figure 2.6 presents the curves of the four models from J = 4 to 28 for keratoconus corneas. It 

can be seen that the best J range lies somewhere between J = 14 and 26 (a shift toward larger J 

values compared to normal corneas). Within that range, the RMSE scores of all models reach the 

topographer repeatability error of 6.2 µm at around J = 24. 

SHR is the most accurate model for keratoconus corneas, followed by SHP, ZR and ZP. On 

average, SH models are more accurate than Z models, and R models more than P models. Again, 

the fact of being both an SH model and an R model favors the aptitude of a model for early 

convergence. The most important factor of accuracy between SH and R in modeling keratoconus 

corneas is again SH (21.6% from SH to Z models vs. 10.9% from R to P models). 

 

FIGURE 2.6: Accuracy of polynomial and rational function models (SHP, ZP, SHR, ZR) from J = 4 to 28 

with keratoconus corneas (left). Zoomed-in view of the best J range (J = 14 to 26) (right). 

Performance profiles. As shown in Table 2.1, all models reach the topographer repeatability 

error of 6.2 µm around J ≥ 24, reaching it in the following order: 1st SHR, 2nd SHP and ZR, and 3rd 

ZP (when reached, the RMSE is boldfaced). Again, on average, SH models outperform Z models 

(MFS α of 7.15 vs. 9.15 µm), and R models outperform P models (7.3 vs. 8.95 µm). And again, the 

SH advantage (21.9%) is greater than the R advantage (17.9%). 

Table 2.2: MFS α with keratoconus corneas in the best J range (J = 14, 16, 18, 20, 22, 24 and 26, in 

µm; the MFS α is boldfaced when the repeatability error of 6.2 µm is reached). 

J SHP SHR ZP ZR 

16 7.6 13.2 13.2 9.4 

18 7.5 6.2 12.9 8.4 

20 7.0 5.6 12.8 7.0 

22 5.8 4.6 7.2 5.9 

24 4.4 2.8 6.2 5.5 

26 4.2 2.4 5.2 4.5 

28 4.1 2.1 5.1 4.1 

Mean MFS α 5.8 5.3 8.9 6.4 
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FIGURE 2.7: Elevation maps of the same keratoconus corneal surface presented in raw version (first 

row) or modeled with SHP (second row), SHR (third row), ZP (fourth row) and ZR (fifth row) for J 

= 8, 16, 20 and 24. The last three J values are in the best J range. 
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2.3.3. Processing times 

As shown in Figure 2.8 (left), R models take increasingly more time to process the anterior 

surface of a cornea than P models as J gets larger, especially for SHR. P models have a processing 

time that remains within the order of a half second even at J = 29. Meanwhile, ZR takes 550 s. to 

process a cornea at J = 17 and 3642 s. at J = 29. As for SHR, the increase is even more dramatic: 

it takes 4677 s. and 37220 s., respectively. Inverse transformations show that while P models are 

processed in quasi-linear time, R models are processed in O(x4). 

 

FIGURE 2.8: Curve of the processing time needed for SHP, ZP, SHR and ZR to process the anterior 

surface of a cornea according to J. 

2.4. Discussion 

In this study, we examined the effectiveness of a few geometric models at reducing the 

dimensionality of a dataset of corneal surfaces from about 10000 dimensions to a few only, and in 

so doing their aptitude to process large datasets of corneal surfaces. To this end, the models had to 

be parsimonious, being capable of achieving early convergence, and fast enough to process large 

datasets in a reasonable time. Eliminating from the start different types of geometric models 

deemed to be unsuitable for this task (conic section models, spline models, non-orthogonal 

polynomials, etc.), two polynomial models (SHP and ZP) and two corresponding rational function 

models (SHR and ZR) were examined. To insure low dimensionality, their performance at 

modeling normal and keratoconus corneas was assessed for relatively small numbers of 

coefficients. It was first determined, based on the elbow method, that the most promising J numbers 

ranged somewhere between J = 12 and J = 24 for normal corneas, and between J = 14 and J = 26 

for keratoconus corneas (an increase due the additional difficulty of fitting their more irregular 

shape).  

We already knew that both SHP and ZR were more accurate than ZP, especially for irregular 

surfaces [34,35]. But we did not know whether SHP was superior to ZR, and whether their 

superiority over ZP models could extend to other types of SH model (such as SHR) and R models 

(again, such as SHR). Within the best J range, for both normal and keratoconus anterior corneal 

surfaces, this was indeed the case. SH models were more accurate than Z models, and R models 

more than P models. Finally, the SH advantage was more important than the R advantage. When 

considering processing times, though, the situation was reversed: P models performed much better 

than R models (in very flat quasi-linear time vs. polynomial time), and Z models performed slightly 
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better than SH models (increasingly so in their R versions). This made the processing of R models 

for large databases increasingly impracticable as J grew larger, especially for SHR.  

Given this state of affairs, when one wants to achieve dimensionality reduction by geometric 

modeling, if speed is the main consideration and only normal corneas need to be processed (as can 

be the case in exploratory studies or in early development phases of ML projects), then ZP is the 

best choice. Given its transparent interpretability (each Zernike coefficient is assigned a corneal 

parameter correlate), it remains an excellent choice for clustering tasks where the clear 

interpretation of clusters might be an issue, especially for tasks involving normal corneas. 

If instead accuracy is the main consideration, then SHR is the best choice, especially for 

irregular corneas, provided that powerful processing resources are available and that the 

optimization procedure is alleviated to reduce the processing time. This can be done by reducing 

the optimization space of SHR before applying it to a large dataset. To this end, one can narrow 

down the best J range (in pretests) for the type of task to be conducted (for example, one may 

process SHR for only J = 16 to 18 instead of J = 12 to 24). One can also considerably simplify and 

speed up the optimization process by imposing the same set of rational coefficients to all surfaces 

(the one found to be on average the best for all surfaces in pretests). For keratoconus corneas at 

least, the results remain better in the best J range using SHR with the same set of coefficients for 

each surface (for J = 24, RMSE = 5.82 µm) than for SHP (RMSE = 6.46 µm), though indeed not 

as good as for SHR with the best coefficient set for each surface (RMSE = 5.64 µm).5 

On the other hand, if one looks for the best compromise between accuracy and speed, then SHP 

is clearly the best choice of geometric model for dimensionality reduction of corneal datasets, being 

both nearly as accurate as SHR and almost as fast as ZR. 

2.5. Conclusion 

This study has investigated how geometric modeling can be used for dimensionality reduction 

in different applications. SHP is the best compromise between accuracy and speed, but ZP remains 

an interesting option for testing and project development, and SHR is also interesting if accuracy 

is the priority, especially for irregular surfaces. However, in the case of SHR, the corneal processing 

time must be substantially reduced. A major processing cost of SHR in the present study was the 

need to determine the best combinations of numerator and denominator coefficients (the grid search 

procedure used involved running the model for each of the J – 1 possible combinations). The issue 

to be investigated in a next study with regard to SHR, then, is to what extent the best combinations 

identified with a small dataset can apply to a large dataset with a minimum of accuracy loss 

(generalizability issue). Another issue is to what extent the best combinations can be learned 

effectively in applications involving training. Besides, geometric modeling (GM) is not the only 

way to reduce the dimensionality of a dataset. Feature extraction (FE) methods (PCA, LDA, t-SNE, 

etc.) can also be used to this end. It remains to see whether linear or nonlinear FE methods should 

be used alone or in combination with GM methods for a given task, and how.  
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5 Using the same set of coefficients would simplify considerably the learning process in applications 

involving training. Otherwise, the trained model would need to learn the best proportion of numerator and 

denominator coefficients for a given J in addition to the coefficients. 
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Abstract 

The cornea is prone to significant changes in its 3D shape in the normal population. Factors of 

variability include geometric parameters (white-to-white distance, anterior chamber depth), 

refraction parameters (sphere, cylinder, axis), and demographic parameters (age, gender), among 

others. While the statistical foundations of this research are increasing, there is a need to visualize 

the effects of these factors on the corneal shape. Corneal shape analysis took a step forward when 

corneal topographic maps were developed to visualize the typical characteristics of groups of corneal 

surfaces instead of focusing on the idiosyncrasies of one single surface at a time. Thanks to these 

group maps, it is now possible to visualize globally how corneal shape is affected by clinical factors, 

regardless of individual variability. This has already been done for a few factors, but only as a proof 

of concept. The present study presents a systematic atlas of group maps (average elevation maps) of 

normal adult anterior corneal surfaces that covers the shape transformations produced by different 

clinical variables (mentioned above). Its construction involved a preprocessing step in which the 

dimensionality of the dataset is reduced by geometric modeling with Zernike polynomials. The 

corneal shape data were then grouped in accordance with the clinical variables. A centroid surface 

was constructed for each group of surfaces by averaging their modeling coefficients, which was 

represented in the form of an elevation map. The clinical effects made visible in the atlas of average 

elevation maps thus constructed were consistent with the literature on the corneal shape. The 

possible uses of such an atlas are discussed. 

Keywords: cornea, Zernike polynomials, atlas, corneal topography, elevation maps 
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3.1. Introduction6 

Shape characterization of the normal cornea is of paramount importance to better understand 

visual acuity and improve diagnostic and therapeutic assessments. Several factors influence corneal 

shape, including geometric parameters (axial length, anterior chamber depth, white-to-white 

distance, etc.), refraction parameters (axis, cylinder, spherical equivalence, etc.) and demographic 

parameters (age, sex, race, ethnicity, etc.) [11]. In this work, the focus is on the anterior corneal 

surface, which is the main responsible for the refractive power of the cornea. 

Corneal shape analysis took a step forward when group topographic maps were developed to 

visually capture the typical characteristics of groups of corneal surfaces in single maps instead of 

focusing on the idiosyncrasies of one single surface at a time. In 1994, Hayashi et al. were the first 

to develop such maps, including average maps, standard deviation maps, count maps, and average 

difference maps [46]. This toolkit of group maps was further improved over time by providing t-test 

maps [47], average and standard deviation maps applied to pachymetry (instead of elevations) [48], 

diagnosis maps (involving an individual map in reference to a corresponding group map) [38], and 

by improving the accuracy of group maps through different topography alignment algorithms 

[38,43]. Such group maps have been used to visualize and compare the characteristics of different 

clinical groups of corneal shapes, including age [38], gender [29,30], spherical equivalent [30], and 

diagnosis (e.g., keratoconus vs. normal corneas) [38], but not to assess the validity of the dataset of 

corneas itself, as required in machine learning (ML) tasks. 

The goal of this study is to develop and validate an atlas of average elevation maps to visualize 

the transformations produced by varying clinical variables known to have an effect on the shape of 

the anterior surface of normal corneas. Such a visualization tool of corneal shape transformations 

can be instrumental not only for clinical and pedagogic purposes but also as a validation and 

interpretation tool to assess the datasets used and produced in machine learning research. 

The atlas average elevation maps is based on a dataset of normal adult anterior corneal surfaces 

modeled with a moderate number of Zernike polynomials to obtain a low-dimensional dataset that 

is good enough to model normal corneas in many applications. The modeled surfaces of the dataset 

are grouped in accordance with different clinical parameters known to have a determining effect on 

the anterior surface of the normal cornea, including geometric parameters, refraction variables and 

demographic variables. The atlas of average elevation maps thus formed is then assessed in light of 

the clinical literature. 

3.1.1. Geometric parameters 

The BFS R, WTW, ACD and Side are direct measures of different aspects of the corneal shape. 

BFS R. The best-fit sphere (BFS) is the sphere that best fits the shape of the cornea under 

examination. It is specified as a radius (in mm) and a center (Cartesian coordinates). The radius of 

the BFS (BFS R) is positively related to the degree of corneal curvature of the horizontal meridian 

(CHM) and to the vertical meridian (CVM) at the apex [3,14]. 

WTW. The white-to-white distance (WTW), also known as horizontal corneal diameter (HCD) 

or visible iris diameter (HViD), measures the limbus-to-limbus distance of the cornea. It is known 

to correlate positively with the radius of curvature, the axial length and the spherical equivalent and 

negatively with the degree of corneal curvature [7]. 

ACD. The anterior chamber depth (ACD) is the distance from the central anterior corneal 

epithelium to the anterior crystalline lens capsule. It is negatively related to K, the degree of central 

curvature (keratometry) [8] and to the spherical equivalent (SE) (by which myopia is distinguished 

from hyperopia) [9,13]. 

                                                           
6 Non-standard abbreviations: CHM (Curvature of the Horizontal Meridian) and CVM (Curvature of the 

Vertical Meridian). 
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Side. The side of the cornea differentiates between right eye (OD) and left eye (OS) corneas. 

Side is associated with an interocular horizontal symmetry between OD and OS corneas 

(enantiomorphism) [10,11]. This symmetry is not affected by the age, gender or spherical 

equivalent when the dataset is balanced (involving an acquisition for the two eyes of each 

participant). Within each eye, an intraocular corneal asymmetry of asphericity is also observed 

between the temporal side and the nasal side of the corneas, with more flattening nasally than 

temporally [10]. 

3.1.2. Refraction parameters 

Refraction is the process, achieved mainly by the cornea, by which the light is bent to produce 

a focused light beam on the retina. An optical aberration is a lack of refractive power caused by a 

failure of light rays to converge on the retina and to set the point of focus on it (defocus). Low-

order aberrations are the most common types of optical aberrations, and people with normal 

corneas may experience them to varying degrees (85 percent of all aberrations in an eye). They 

include ametropia, which arises when the vision is out of focus (too short or too long), and 

astigmatism, which occurs when the cornea is not spherical enough. Contrasted with emmetropia 

(the eye is in focus), ametropia can take the form of myopia (the focus is too short) or hyperopia 

(the focus is too long). The degree of ametropia is measured in diopters in terms of spherical 

equivalent (SE), calculated by adding the sphere power with half of the cylinder. The SE is negative 

for myopia and positive for hyperopia. Astigmatism is measured in terms of the cylinder and the 

axis. The cylinder specifies the degree of astigmatism of the eye by stating how flat or spherical it 

is. The axis, measured in degrees from 0° to 180°, gives the orientation of the astigmatism by 

specifying the angle of the main axis of the corneal deformation (the degree of corneal rotation). 

The following relationships have been established between refraction parameters and corneal 

shape. 

Ametropia. An increase in spherical equivalent (SE) from myopia to hyperopia is associated 

with a flatter curvature of the central area of the cornea [12,49], a reduction in eccentricity [50], 

and a shallower anterior chamber depth (ACD) [9,13], and with a larger WTW (as mentioned 

earlier). 

Astigmatism. “With the rule” (WTR) astigmatism occurs when the axis of the cornea is roughly 

horizontal (the axis angle between 0° and 30° or between 150° and 180°). This is the case when the 

curvature of the vertical meridian is the steepest and the curvature of the horizontal meridian 

(CHM) is the flattest [15,17]. “Against the rule” (ATR) astigmatism arises when the axis is roughly 

vertical (the axis angle is between 60° and 120°). The CHM is then the steepest and the CVM the 

flattest. Otherwise, astigmatism is oblique (the axis angle is between 30° and 60° or between 120° 

and 150°). 

3.1.3. Demographic parameters 

Age. This demographic factor has been related to a variety of changes in the shape of the anterior 

corneal surface. The most often quoted one is a shift from a “with the rule” to “against the rule” 

astigmatism, which involves an increase in the curvature of the horizontal meridian (CHM) and a 

decrease in the curvature of the vertical meridian (CVM) [16]. A decrease in white-to-white 

distance (WTW) was also observed for elderly people [11]. Age is further associated with a 

reduction in the anterior chamber depth (ACD) [8,13,20,21]. Concerning refraction, the prevalence 

of myopia is generally lower in older adults than in young adults [22]. For hyperopia, its prevalence 

starts to increase at approximately 35-40 years old until 65 years old [23]. Together, these two 

refraction effects produce an overall increase in SE (with a possible slight reduction at 

approximately 70 yo) [23]. 

Gender. Males have generally a wider white-to-white distance (WTW) than females [7,11,19], 

known to correlate with the BFS R [3,14]. On the other hand, females have a steeper curvature of 
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horizontal and vertical meridian (CHM) [11,14,19] and a shallower anterior chamber depth (ACD) 

[8,20,24]. Also, in adulthood, females have a higher prevalence of myopia than males and a lower 

prevalence of hyperopia, and thus a lower SE [25]. 

3.2. Method 

3.2.1. Clinical database and topographies 

The database used in this study comprises a total of 8609 topographies of normal adult anterior 
corneal surfaces (4245 female corneas and 4364 male corneas, 4438 OD corneas and 4171 OS 
corneas) acquired from 4941 consenting subjects. These topographies, collected with the Orbscan 
II topographer (Bausch & Lomb, Rochester, NY), are part of the Database for the 
anatomopathological, functional and surgical characterization of the cornea [5], which compiles 
more than 36,000 corneal topographies. This database was screened to ensure that subjects had no 
history of ocular disease, ocular surgery, or recent contact lens wear. No topographies were recorded 
more than once for the same eye. Each topography is accompanied by information on geometric 
parameters on the cornea (white-to-white diameter, anterior chamber depth, eye side), refraction 
parameters (sphere, cylinder, axis), and demographic information (gender, age). This clinical 
information is followed by topographic information describing each corneal surface in the form of 
a string of 10201 points representing the 101×101 elevations of the corneal surface topography 
evenly spaced (every 0.1 mm) along the X (left-right) and Y (up-down) axes. The grid of elevation 
points was reduced into 91×91 matrices to eliminate 0.5 mm of radius and clean up the noisiest part 
of the image fringe (periphery) due to the lids, lashes, nose, etc. Involving human subjects, the 
experimental procedures described in this paper were approved by the Institutional Review Board. 

  (a)              (b)         (c)            (d)  
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FIGURE 3.1: (a) Elevation map of a true OD anterior corneal surface, (b) Horizontal and (c) vertical profile 

cuts of the same true surface in relation to the BFS (in green) (d) Elevation map of the same surface modeled 

with 16 Zernike coefficients (a fringe is radially removed to eliminate the most noisy part of the map). 

Elevation maps and profile cuts are all in reference to the BFS of the surface. The location of the horizontal 

and vertical profile cuts on elevation maps is indicated by dotted lines. The differences of elevation with the 

BFS in the profile cuts are amplified 10 times for better visualization. 

In an elevation map, the elevations of the corneal surfaces are presented in reference to a best-fit 
sphere (BFS): their differences at each point of the grid are visualized with a gradient of colors in 
which warm colors are for positive differences (outside the BFS), cold colors for negative 
differences (inside the BFS), and green colors for no significant differences. Figure 3.1 (a) presents 
an elevation map of a true OD anterior corneal surface along with the radius of the best-fit sphere 
(BFS R). Horizontal and vertical profile cuts of the true surface are presented in Figure 3.1 (b) and 
(c). These profile cuts correspond to the dotted lines in Figure 3.1 (a). A map of the same surface 
modeled with J = 24 Zernike terms is finally presented in Figure 3.1 (d), in which the most noisy 
fringe is radially removed (error score (RMSE) of 1.86 µm). 
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3.2.2. Dimensionality reduction 

In the reference dataset, dimensionality reduction was achieved by geometric modeling using J 
= 16 shape Zernike polynomials, where 16 was found in pretests to be in the range of optimal values 
for a variety of applications (predictions, clustering, etc.). In Zernike modeling, the corneal surface 
is modeled as a sum of least-squared fitted Zernike polynomials over the unit disk, as described in 
Equation 3.1: 

 𝑆(𝜌𝑤 , 𝜃𝑤) =  𝑧𝑤 = ∑ 𝐶𝑔
𝐺
𝑔=1 𝑃𝑔(𝜌𝑤 , 𝜃𝑤) + 𝜖𝑤   for w = 1, 2, …,  W  (3.1) 

The corneal surface S consists of a set of W elevations 𝑆(𝜌𝑤 , 𝜃𝑤) located at polar coordinates 𝜌𝑤 

and 𝜃𝑤 for w = 1 to W. Each elevation 𝑆(𝜌𝑤 , 𝜃𝑤) (equivalently 𝑧𝑤) is modeled by summing the 

product of the gth Zernike polynomial 𝑃𝑤(𝜌𝑤 , 𝜃𝑤) and the gth coefficient 𝐶𝑔 for g = 1 to G, assuming 

error 𝜖𝑤. In this study, the Gaussian polynomials were ordered in accordance with the Noll 

sequential indices. The first polynomial term (the piston), representing the mean height of the 

surface (as opposed to its shape), was not counted. Therefore, a model will be said to have J (or G 

– 1) coefficients. For more details on Zernike polynomials.  

3.2.3. Clinical variables 

The anterior corneal surfaces of the dataset were grouped in accordance with the following 

clinical parameters (described earlier): (1) geometric variables: BFS R (best-fit sphere radius), 

WTW (white-to-white diameter), ACD (anterior chamber depth), (2) refraction variables: 

Ametropia, Astigmatism, (3) demographic variables: Age, Gender. These parameters were first 

transformed into categorical variables by segmenting them into groups (when needed), as described 

in Figure 3.2. 

3.2.4. Analyses 

To evaluate the validity of the clinical classification and of the atlas based on the dataset, the 

groups of each clinical variable were compared both quantitatively and qualitatively. 

Quantitative comparison. For each clinical variable, the groups were compared using analyses 

of variance (ANOVA). The units of clinical variables are in millimeters (mm) for BFS R, WTW 

and ACD, in degrees for Axis (from 0° to 90°; the Axis values that were above 90° were 

horizontally flipped to be in the first quarter by doing Axis = 180° – Axis), in diopters (D) for SE, 

and years old (yo) for Age. The limits of the groups of each clinical variable are the same as for the 

qualitative evaluation and are described in Figure 3.2. For example, Age has 6 groups (1: 20-30, 2: 

30-40, 3: 40-50, 4: 50-60, 5: 60-70, 6: 70-), and so many means (M1 to M6) are presented in Table 

3.1 and Table 3.2.  For each effect presented, p < 0.01. 

Qualitative evaluation. An average elevation map was constructed for each group of each 

clinical variable. An average elevation map is an elevation map of the average surface of a group 

of corneal surfaces. The average surface was computed by averaging the Zernike coefficients of 

each surface of the group and by reconstructing a new surface based on the mean coefficients thus 

obtained. For each group of each clinical variable, the average surface was constructed both in 

reference to the common BFS (the BFS that applies to all groups of the variable, computed as the 

mean of the BFS of each group). The surfaces represented could be either natural (non-normalized) 

or normalized (in this case, the distinction between common and group BFS is irrelevant). 
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3.3. Results and interpretation 

3.3.1. Quantitative evaluation 

The significant results of interest are presented in Table 3.1 (size of each group of each clinical 

variable for all corneas, for OD corneas only and for OS corneas only) and in Table 3.2 (effects for 

all corneas; effects for OD and OS corneas only are not presented since no significant Side by 

Clinical variable interactions were observed). 

TABLE 3.1: Sizes of each group of each clinical variable for all corneas, OD corneas and OS corneas 

Variable/N All surfaces OD surfaces OS surfaces  
N1 N2 N3 N4 N5 N6 N1 N2 N3 N4 N5 N6 N1 N2 N3 N4 N5 N6 

WTW 861 6929 819 --- --- --- 478 3656 304 --- --- --- 384 3313 521 --- --- --- 

ACD 601 7600 408 --- --- --- 349 3894 195 --- --- --- 252 3749 217 --- --- --- 

Side 4438 4171 --- --- --- --- 4438 --- --- --- --- --- 4171 --- --- --- --- --- 

Ametropia 4974 3509 126 --- --- --- 2518 1855 65 --- --- --- 2473 1684 61 --- --- --- 

Age 1641 2961 2423 1187 222 175 836 1496 1234 611 131 130 805 1465 1189 576 91 45 

Gender 4364 4245 --- --- --- --- 2241 2197 --- --- --- --- 2149 2069 --- --- --- --- 

TABLE 3.2: Mean values of the significant main ANOVA effects with OD+OS corneal surfaces. 

CLINICAL VARIABLE MEAN PER GROUP 

IV DV M1  M2  M3  M4  M5  M6  

WTW BFS R 7.78 ± 0.23 7.92 ± 0.22 8.03 ± 0.24 -- -- -- -- -- -- 

 SE -3.60 ± 2.65 -3.40 ± 2.42 -3.32 ± 2.18       

Side BFS R 7.90 ± 0.25 7.92 ± 0.25 -- -- -- -- -- -- -- -- 

 WTW 11.89 ± 0.40 11.80 ± 0.37 -- -- -- -- -- -- -- -- 

 ACD 3.70 ± 0.37 3.67 ± 0.38 -- -- -- -- -- -- -- -- 

 Axis 27.19 ± 30.67 28.13 ± 31.68 -- -- -- -- -- -- -- -- 

 SE -3.51 ± 2.38 -3.37 ± 2.48 -- -- -- -- -- -- -- -- 

 Age 39.74 ± 10.75 40.74 ± 12.05 -- -- -- -- -- -- -- -- 

Ametr. ACD 3.76 ± 0.32 3.61 ± 0.40 3.06 ± 0.42 -- -- -- -- -- -- 

Age WTW 11.88 ± 0.41 11.86 ± 0.38 11.84 ± 0.37 11.80 ± 0.37 11.74 ± 0.46 11.72 ± 0.47 

 ACD 3.90 ± 0.28 3.79 ± 0.31 3.63 ± 0.33 3.45 ± 0.35 3.19 ± 0.36 3.02 ± 0.42 

 Axis 23.40 ± 29.71 25.20 ± 29.97 29.97 ± 31.54 34.93 ± 33.08 34.86 ± 33.78 34.99 ± 31.08 

 SE -4.06 ± 2.09 -3.74 ± 1.99 -3.57 ± 2.29 -2.64 ± 2.83 -0.39 ± 3.04 0.12 ± 3.09 

Gender  BFS R 7.97 ± 0.24 7.85 ± 0.24 -- -- -- -- -- -- -- -- 

 WTW 11.92 ± 0.39 11.76 ± 0.38 -- -- -- -- -- -- -- -- 

 ACD 3.75 ± 0.37 3.62 ± 0.37 -- -- -- -- -- -- -- -- 
 SE -3.29 ± 2.32 -3.58 ± 2.53 -- -- -- -- -- -- -- -- 

Geometric parameters 

WTW: The WTW is positively associated with the BFS R, as observed in [3,14] and with SE [7]. 

ACD: The ACD is negatively related to SE, as found in [9]. 

Side: OD and OS eye corneas present a rough interocular symmetry on the clinical variables at 

hand (BFS R, WTW, ACD, Axis). The small differences observed are comparable to those found in 

[51] and can be reduced by controlling for the significant effect of Side on Age. 

Refraction parameters 

Ametropia: From myopia to hyperopia, an increase in SE is associated with a lower ACD, as in 

[9,13]. 
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Demographic parameters 

Age: The WTW of older people (groups 5 and 6) is slightly lower than that of young adults 

(groups 1 and 2), as shown in [11]. The ACD decreases as adults aged, as shown in [8,20,21,52]. 

The Axis increases at approximately 50 yo (group 4), in accordance with the expected evolution in 

old age toward against-the rule astigmatism [16]. Finally, a progressive increase in the mean SE 

value with age in adulthood is observed, in accordance with [22] and [23]. 

Gender: Compared to men, women have a smaller BFS R [3,14] and WTW [7,11,19], a smaller 

ACD [8,20,24], and a lower SE [25]. 

Overall, these results describing statistically the clinical variables included in the dataset are 

consistent with the literature. Therefore, the atlas of average elevation maps presented next should 

also agree with the literature. 

3.3.2. Qualitative evaluation 

Figure 3.2 presents the atlas of average elevation maps for each clinical variable in reference 

to the common BFS. Each average elevation map represents the average of the natural normal 

anterior OD surfaces of each group of each clinical variable. The size of each group (N) is presented 

along with the mean BFS radius (R) of the group. As a complement, Figure 3.3 presents elevation 

maps in which the surfaces represented are normalized to cancel out the effect of size. Only the 

normalized maps that differ visually from the corresponding natural maps are represented, namely 

BFS R, WTW, Ametropia and Gender. 

Geometric parameters 

(a) Best-fit sphere radius (BFS R). In their natural version (Figure 3.2 (a)), the BFS R maps 

show a coldening of central colors along with a warming of temporal and nasal colors, and thus an 

evolution toward a flatter cornea as the BFS R increases, in accordance with Gatinel et al. (2011) 

[3]. This effect disappears almost completely in the normalized version of the BFS R maps (Figure 

3.3 (a)). This shows that the effect of flattening observed in the natural surface maps is mostly due 

to a difference in size of the corneas as the BFS R increases, as opposed to a significant difference 

in shape and asphericity that would be independent of the corneal size. 

(b) White-to-white diameter (WTW). A transition toward colder central colors and (slightly) 

warmer temporal and nasal colors is also observed in the natural WTW maps (Figure 3.2 (b)) but 

not as marked as for the BFS R maps.  This flattening effect is in agreement with the fact that the 

WTW correlates strongly with the radius of curvature [7], which is itself strongly related to the 

BFS R, and negatively to corneal curvature [7]. As for BFS maps, this flattening effect is reduced 

when the maps are constructed with normalized corneal surfaces (Figure 3.3 (b)). However, 

contrary to BFS maps, it does not disappear completely, leaving a slight flattening effect that cannot 

be due to the BFSR but should be due to the eccentricity of the corneal curvature. This is consistent 

with the finding of Hashemi et al. (2015) that the WTW is related to SE, a first-order aberration in 

which the cornea is out of focus due to some departure from the on-focus curvature. 

(c) Anterior chamber depth (ACD). The natural ACD maps (Figure 3.2 (c)) show a progression 

toward less color change in the central corneal area, indicative of a flatter cornea for a similar 

corneal size (the BFS R is around 8.0 mm). This is in agreement with the fact that the ACD is 

negatively correlated with the corneal curvature [8]. 

(d) Side. The natural OD maps and OS maps (Figure 3.2 (d)) display a quasi-perfect corneal 

horizontal symmetry [10,51]. Also, in both eyes, the warm color pattern is more present on the 

temporal side. This reveals an intraocular asymmetry of asphericity in each eye, with more 

flattening nasally (where the colors remain blue) than temporally (where they evolve rapidly from 

warm to green), as shown in [10]. 
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(a) BFS R (group 1: from 7.06 to 7.63 mm, group 2: from 7.63 to 8.19 mm, group 3: from 8.19 

to 8.99 mm) 

 
(b) WTW (group 1: from 10.40 to 11.36 mm, group 2: from 11.36 to 12.32 mm, group 3: from 

12.32 to 14.10 mm) 

 
(c) ACD (group 1: from 1.96 to 3.11 mm, group 2: from 3.11 to 4.26 mm, group 3: from 4.26 

to 6.92 mm) 

 
(d) Side (group 1: OD, group 2: OS) 
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(e) Ametriopia (group 1: moderate or high myopia, SE < -3 D, group 2: emmetropia or low 

ametropia: -3 D ≥ SE ≤ 3 D, group 3: moderate or high hyperopia: SE > 3 D) 

 
(f) Astigmatism (1: group 1: “with the rule”: the axis is between 0° and 30° or between 150° 

and 180°, 2: group 2: oblique: the axis is between 30° and 60° or between 120° and 150°, 

group 3: “against the rule”: the axis is between 60° and 90° or between 90° and 120°) 

 
(g) Age (group 1: from 20 to 29 yo, group 2: from 30 to 39 yo, group 3: from 40 to 49 yo, 

group 4: from 50 to 59 yo, group 5: from 60 to 70 yo, group 6: 70 yo and more). 
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(h) Gender (group 1: M, group 2: F) 

 
FIGURE 3.2: Atlas of average elevation maps of natural OD anterior corneal surfaces for (a) BFS R, 

(b) WTW, (c) ACD, (d) Side, (e) Ametropia, (f) Astigmatism, (g) Age and (h) Gender. The common 

BFS is used as a reference. The X and Y axes are in mm, and the Z axis (color scale) is in µm. 

 

(a) BFS R (group 1: from 7.06 to 7.63 mm, group 2: from 7.63 to 8.19 mm, group 3: from 8.19 

to 8.99 mm) 

 
(b) WTW (group 1: from 10.40 to 11.36 mm, group 2: from 11.36 to 12.32 mm, group 3: from 

12.32 to 14.10 mm) 

 
(e) Ametriopia (group 1: moderate or high myopia, SE < -3 D, group 2: emmetropia or low 

ametropia: -3 D ≥ SE ≤ 3 D, group 3: moderate or high hyperopia: SE > 3 D) 
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(h) Gender (group 1: M, group 2: F) 

 
FIGURE 3.3: Average elevation maps of normalized OD corneal surfaces for each group of BFS R in 

reference to the normalized BFS when they differ qualitatively from corresponding maps with natural 

surfaces. Axes X and Y are in mm and axis Z (color scale) is in µm. 

Refraction parameters 

(e) Ametropia (AMT). From myopic to hyperopic corneas, the natural maps display a slight 

reduction in size of warm colors centrally as the SE increases (Figure 3.2 (e)). This is consistent 

with the fact that the SE is known to be directly related with the WTW [11] and negatively with 

the corneal curvature [11,12]. Besides, the reduction of the central warm pattern in natural maps is 

the opposite of the natural ACD maps (this is even clearer with the normalized surfaces in Figure 

3.3 (e)). This is indicative of an inverse relation of SE with ACD [9,13]. 

(f) Astigmatism (AST). The astigmatism maps (Figure 3.2 (f)), in which the axis gets 

progressively more vertical, display a progressive vertical stretching of the warm central pattern, 

and thus a decrease of the curvature of the vertical meridian and increase of the curvature of the 

horizontal meridian [15,16]. 

Demographic parameters 

(g) Age. Age maps display a progressive vertical stretching of their yellow-orange pattern that 

increases more rapidly in old age (Figure 3.2 (g)). This progression is consistent with the expected 

transition from WTR to ATR astigmatism in normal corneas [15]–[18,24]. The reddening and 

narrowing of the warm central pattern is also indicative of a reduction of the ACD with age (see 

the natural ACD maps in reverse order) [8,13,20,21]. 

(h) Gender. When compared to the male map, the female map presents a larger and warmer 

central pattern of warm colors along with a smaller BFS R (Figure 3.2 (h)). Indeed, being smaller, 

female corneas are known to have a steeper curvature [11,14,19], a smaller WTW [7,11,19]. If 

Gender maps are normalized to eliminate the effect of size on the corneal curvature (Figure 3.3 

(h)), this effect is reduced, but the female map remain slightly redder than the male map, which is 

indicative of a smaller ACD (see the natural ACD maps) [8,20,24].  

In sum, the average elevation maps of the reference atlas are globally consistent with the 

literature on the shape of the normal anterior corneal surface. They also agree with or are 

complementary to the statistical results presented earlier. 

3.4. Discussion 

In this study on clinical classification, we presented an atlas of average elevation maps to 

visualize the effects of different clinical variables on the shape of the anterior surface of the normal 

cornea geometrically modeled with Zernike coefficients.  

These clinical variables covered different features of the cornea dealing with its geometric shape 

(WTW, ACD, Side), refractive power (Ametropia, Astigmatism) and demography (Age, Gender), 

instead of covering only two or three clinical features to make a proof of concept, as is usually the 



56 
 

case. The dataset was statistically evaluated, and the atlas based on this dataset was visually 

evaluated.  

From a statistical standpoint, the dataset proved to be overall consistent with the literature on 

each of the examined clinical variables. Thus, concerning geometric variables, WTW was 

positively associated with the BFS R [3,14], while the ACD was negatively related to the SE [9]. 

The Side displayed an interocular symmetry between OD and OS surfaces [51]. Concerning 

refraction variables, the increase in SE (Ametropia) was associated with a lower ACD  [9,13]. As 

for the increase of axis (Astigmatism), it is associated with a decrease of curvature of the vertical 

meridian and increase of curvature of the horizontal meridian. Regarding demographic parameters, 

Age was positively related to Axis [15]–[18,24] and to SE [22], and negatively with WTW [11] 

and ACD [8,20,21,52]. As for Gender, it was associated with a smaller BFS R [3,14] and with a 

larger corneal curvature [11,14,19], WTW [7,11,19], ACD [8,20,24] and SE [25] for women than 

for men. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

FIGURE 3.4: Average elevation maps of OD corneal surfaces for Age groups: (a) average surfaces 

modeled with 35 Zernike coefficients (first row), (b) average surfaces modeled with 35 Zernike 

coefficients and reduced to 16 principal components (second row), and (c) original average raw 

surfaces (third row). The maps are in reference with the common BFS of Age groups. Axes X and Y 

are in mm and axis Z (color scale) is in µm. 

Having shown that the dataset was consistent with the literature, it could be expected that the 

atlas would display corneal shape transformations that are also in line with the literature. The visual 

examination of the corneal shape transformations displayed in the atlas showed that this was the 

case. As expected, the BFS R maps were consistent with an evolution toward a flatter cornea as the 

BFS R increased that was not related to the shape of the cornea but to its size ([3]. The WTW maps 

Zernike 35 

Zernike 35 

with PCA 16 

Raw 
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showed a similar effect, but less pronounced, in agreement with the fact that the WTW are known 

to correlate positively with the radius of curvature [7], and thus with the BFS R (Gatinel et al., 

2011), but negatively with corneal curvature [3,7]. The ACD maps signaled a reduction of the 

corneal curvature that was not related to the corneal size [8]. The Side maps displayed a quasi-

perfect inter-ocular corneal horizontal symmetry [10,51] along with an intraocular asymmetry of 

asphericity [10]. The ametropia maps were consistent with the SE being directly related with the 

WTW [11] and negatively with the corneal curvature [11,12] and indirectly with the ACD  [9,13]. 

The astigmatism maps displayed a transition from “with the rule” to “against the rule” astigmatism 

[15,16]. The Age maps also presented a transition from “with the rule” to “against the rule” 

astigmatism [15]–[18,24] along with a reduction of the ACD [8,13,20,21]. Finally, the Gender maps 

showed that female corneas had a steeper curvature [11,14,53], a smaller WTW [7,11,19] and a 

smaller ACD [8,20,24]. 

Once verified, a corneal shape atlas can serve as a validation and interpretation tool to assess 

the datasets used and produced in a number of applications (clustering, regression, etc.). It is similar 

to an atlas that would be directly constructed by averaging raw topographic surfaces [38], as shown 

in the third row of Figure 3.4, where the average maps for WTW groups are based on raw 

topographic surfaces. It is also possible to increase the number of Zernike coefficients to gain 

accuracy, as shown in the first row of Figure 3.4, where 35 Zernike coefficients are used, or else to 

reduce the dimensionality of the dataset by applying a feature extraction algorithm on top of 

geometric modeling without losing any apparent accuracy, as shown in the second row of Figure 

3.4. 

 

 

 
 
 
 
 
 

 

 

FIGURE 3.5: First row: difference maps of OD corneal surfaces reference with Age group 1. Second 

row: difference maps of OD corneal surfaces reference with the preceding Age group. Axes X and Y 

are in mm and axis Z (color scale) is in µm. 

Allowing us to visualize the mean effects of clinical variables on the corneal shape, average 

elevation maps are indeed pivotal in the toolkit of group maps. However, other useful types of 

group maps can also be produced to highlight other aspects of the effects of clinical variables on 

the corneal shape, such as difference average maps, standard deviation maps or p value maps [38]. 

For instance, difference maps can be obtained by subtracting the elevations of two maps being 

compared to highlight their difference in elevations. Figure 3.5 (g) presents a series of difference 

maps in which Age groups 1 to 6 are presented in reference to group 1 (from 20 to 29 yo) in the 

first row and in reference to the preceding age group in the second row (pure green represents a 

total absence of change, as shown in the 1 – 1 maps). These difference maps highlight in another 

manner how and when the bulk of the transition takes place in aging from with-the-rule to against-

the-rule astigmatism. In particular, while little change takes place in middle age (see maps with 
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groups 3 and 4, between 40 and 60 yo), the bulk of the most of the change takes place in older 

groups (see maps with groups 5 and 6), as discussed above. 

3.5. Conclusion 

This study presented a clinical classification of the anterior surface of normal adult corneas 

based on a number of clinical variables known to be associated with the shape of the cornea. To 

visualize the effects of these variables on the corneal shape, an atlas of average elevation maps 

representing the average surface of each group for each parameter was constructed and verified. 

Such a visualization tool can serve not only for clinical and instructional purposes but also for 

interpretation and validation purposes as a ground truth in different biometric or machine learning 

applications (clustering, prediction, etc.). Further developments include extending the coverage of 

the clinical parameters associated with the corneal shape, constructing an atlas for other aspects of 

the cornea (posterior surface, intersurface volume) and for other types of corneas (keratoconus, 

Fuch, etc.), constructing other types of group maps (standard deviation maps, count maps, p value, 

etc.), and using the atlas as a reference to assess comparable input datasets (surfaces modeled with 

spherical harmonics and or preprocessed with feature extraction, etc.) and output datasets 

(predictions, clusters, supervised classes, etc.). 
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Abstract 

The unsupervised classification of corneal surfaces is recent in ophthalmology. Most studies have 

tried to apply clustering algorithms to datasets of corneas of different clinical types (normal, 

keratoconus, etc.) in an attempt to verify whether their classification could be automated. A few 

have also tried to classify keratoconus corneas into clinical subtypes and assess their consistency 

with standard methods of diagnosis. This automated classification task remains to be done for 

normal corneas. The present study investigated a large number of normal adult corneas in an 

exploratory attempt to identify their natural groupings. The focus was on the anterior surface, which 

is more prone to changes in a normal population. The raw corneal data were either in their natural 

(non-normalized) state or normalized. To facilitate groupings, both the natural and normalized 

corneal data had their dimensionality reduced by Zernike polynomial modeling. The resulting 

clusters were evaluated using different clustering scores (SPR2, R2), representations (coefficient 

polar charts, coefficient scatter plots, average elevation maps, average profile cuts) and statistical 

comparisons (on different clinical measures). A number of hard and soft linear and nonlinear 

clustering methods were tested in this way, but k-means proved to be the most effective for this 

task. The best number of clusters for natural and normalized corneal surface data was four, but 

while natural corneas were clustered in accordance with their curvature (Zernike coefficient of 

defocus), normalized corneal data were clustered in accordance with their axis (Zernike coefficient 

of vertical astigmatism). 

Keywords: cornea, Zernike polynomials, clustering, corneal topography, average elevation map, 

k-means 
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4.1. Introduction 

The classification of corneas is essential in ophthalmological research for accurate diagnosis or 

data preprocessing. It is traditionally done manually through the expert examination of clinical data 

(topographies, etc.). Relatively new to the domain of corneal classification, machine learning (ML) 

can contribute to the automation of this tedious process and to its accuracy through a systematic 

examination of the distribution of data that does not require any a priori knowledge of this 

distribution. Most of the time, ML classification still necessitates the manual labeling of the training 

set through expert supervision. In unsupervised categorization, however, such manual labeling is no 

longer needed (except for validation purposes), and the focus is solely on the distribution of data. 

Only a few studies have applied unsupervised classification to corneal data, most of which to 

automate the process of establishing their clinical status (diagnosis). 

In Yousefi et al. (2018) [54] and Hallet et al. (2020) [55], clustering was applied to a large number 

of clinical parameters of the corneal surface. These parameters were first reduced by feature 

extraction to only a few latent variables. A clustering method was then applied to group the corneas 

into a prespecified number of clusters in the hope of automating their diagnosis. The effectiveness 

of this clustering process was assessed in reference to a ground truth based on an established 

keratoconus typology. More precisely, in [54], feature extraction took place linearly by principal 

component analysis (PCA) and nonlinearly by manifold learning using t-distributed stochastic 

neighbor embedding (t-SNE) and allowed for the reduction of the initial 420 clinical parameters to 

two eigenvalues only. A density-based clustering approach was then applied to distinguish different 

types of keratoconus eyes and separate them from normal eyes. The accuracy of the clusters was 

assessed based on the Ectasia Status Index (ESI) to establish the ground truth using t-SNE maps to 

visualize the clusters. A true negative rate of 94.1% was obtained for distinguishing normal corneas 

from keratoconus corneas (specificity) and a true positive rate of 97.7% for distinguishing 

keratoconus corneas from normal corneas (sensitivity). In [55], feature extraction was achieved by 

variational autoencoder (VAE), a deep learning algorithm that reduced the initial set of 30 clinical 

variables to two latent variables only. Gaussian random sampling was then used to produce four 

clusters and classify so many types of keratoconus corneas in accordance with the Amsler-Krumeich 

(A-K) classification system of keratoconus corneas. The accuracy of clusters was established with 

performance under the curve (AUC) scores using a receiver operating characteristic (ROC) curve. 

The scores were 0.91, 0.87, 0.79 and 0.99 for each keratoconus type. 

In Zéboulon et al. (2020) [56] and Bouazizi et al. (2018) [14], clustering was directly based on 

the shape of corneal surfaces (as defined by a grid of elevations), instead of a set of clinical 

parameters as in the other studies, and also involved a prior step of dimensionality reduction. Like 

the former studies, Zeboulon et al. were interested in the clustering of a dataset of unlabeled normal 

and irregular corneas (corneas with keratoconus, Fuchs or refractive surgery) in an attempt to 

automate their diagnosis and identify natural subtypes of keratoconus corneas [56]. The data 

involved the elevations of the anterior surface of the cornea and of the posterior surface as well as 

the intersurface volume (pachymetry). Feature extraction was based on t-SNE and allowed for the 

reduction of the initial set of 10000 x 3 corneal surface or intersurface elevations to 3 eigenvalues 

only. Clustering was achieved using the HDBSCAN algorithm. The accuracy of the clusters was 

established in reference to the ESI score, and their success rate was 96.5% (with better results for 

normal corneas than irregular corneas). Finally, the study of Bouazizi et al. focused on normal 

corneas to identify their natural groupings based on data distribution [14]. Dimensionality reduction 

was achieved by geometric modeling (Zernike polynomials) instead of feature extraction, and the 

unsupervised classification of corneas was based on agglomerative clustering. Contrary to the other 

studies, the best number of clusters (four) was not prespecified but was discovered based on their 

degree of compactness and separation thanks to a dendrogram and clustering scores (SPR2 and R2). 

The four best clusters identified were assessed using average elevation maps and profile cuts that 

represent their average shape. The clinical variable that best reproduced the transformations of 
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average corneal shapes from cluster to cluster, as visualized with average maps and profile cuts, was 

the corneal curvature. 

The present study explores the data distribution of normal adult corneas in an attempt to identify 

their most significant groupings by achieving the non-supervised classification (clustering) of the 

corneal dataset. The focus is on the anterior corneal surface, which is the main responsible for the 

refractive power of the cornea. The first goal, pursued in pretests, is to identify an effective clustering 

method among the different types of methods available (hard and soft clustering, linear and nonlinear 

clustering, with or without feature extraction). To this end, the relevance, delimitation (compactness 

and separation), specificity and clinical conformity of the clusters produced by the examined 

methods are examined using a number of evaluation tools, including clustering scores, modeling 

coefficient representations, corneal surface representations, and clinical feature comparisons. To 

make clustering possible, the large dimensionality of the corneal dataset is first reduced by 

geometrical modeling before the clustering methods applies, with or without feature extraction, and 

with or without normalization of the corneal surfaces. Once the most effective clustering method is 

identified in pretests, it remains, as the main goal of this study, to characterize the clusters produced 

to identify the clinical features that distinguish them. It is assumed that these most discriminant 

features should play a prominent role in the distribution of anterior corneal shape data. First-order 

aberrations like defocus and astigmatism, often found in normal corneas, are good candidates. 

4.2. Method 

4.2.1. Data 

Collection and description 

The investigated dataset comprises a total of 8609 topographies of the anterior corneal surface of 

normal corneas obtained from 4941 consenting adult subjects (4245 topographies of female corneas 

and 4364 topographies of male corneas, distributed into 4438 topographies of OD corneas and 4171 

topographies of OS corneas). These topographies, generated by the Orbscan II topographer (Bausch 

& Lomb, Rochester, NY), are part of the cornea bank (database for the anatomopathological, 

functional and surgical characterization of the cornea) [5], which compiles more than 36000 corneal 

topographies. This database was screened to ensure that subjects had no history of ocular disease, 

ocular surgery, or recent contact lens wear. Each topography, recorded as a 101×101 grid of 

elevations (heights) evenly spaced (every 0.1 mm) along the X (left-right) and Y (up-down) axes, is 

accompanied by demographic information about the participant (gender, age) and geometric 

information on the shape of the cornea (white-to-white diameter, anterior chamber depth, eye side) 

and refraction information on the visual acuity of the cornea (cylinder, sphere, axis, spherical 

equivalent). No topography was recorded more than once for the same eye. The experimental 

procedures involving human subjects described in this paper were approved by the Institutional 

Review Board. More details are presented in the results section. 

Preprocessing 

The topographies of the database include some artifacts among the elevation points (e.g., missing 

data, noise) in the periphery. To address these issues, the matrices of elevation points were reduced 

into 91×91 matrices to eliminate 0.5 mm of radius and clean up the noisiest part of the surface (the 

image fringe). The resulting dimensionality of the data (8281 elevations), still substantial, had to be 

further reduced, which was achieved by geometric modeling using 16 Zernike polynomials (Zernike 

modeling), a number that provides a sufficient accuracy for producing mean surfaces while avoiding 

overfitting issues. 

Zernike polynomials (ZP) are known to be effective for the description of optical aberrations of 

normal corneas [57]. They display properties of linearity, completeness, orthonormality, and 
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radiality, with coefficients that are clinically interpretable, an asset for the interpretation of clusters. 

As shown in Equation 4.1, a Zernike model of corneal surface can be conceived as a matrix of 

elevations modeled as a sum of least-square fitted Zernike polynomials over the unit disk [57]: 

 𝑆(𝜌𝑤 , 𝜃𝑤) =  𝑧𝑤 = ∑ 𝐶𝑔
𝐺
𝑔=1 𝑃𝑔(𝜌𝑤 , 𝜃𝑤) + 𝜖𝑤   for w = 1, 2, …,  W  (4.1) 

In Zernike modeling, the corneal surface 𝑆 consists of a set of W elevations 𝑆(𝜌𝑤 , 𝜃𝑤) located at 

polar coordinates 𝜌𝑤 and 𝜃𝑤 for w = 1 to W. Each elevation 𝑆(𝜌𝑤 , 𝜃𝑤) (equivalently 𝑧𝑤) is modeled 

by summing the product of the gth Zernike polynomial 𝑃𝑔(𝜌𝑤 , 𝜃𝑤) and the gth coefficient 𝐶𝑔 for g 

= 1 to G, assuming error 𝜖𝑤. The G Zernike polynomial terms were ordered in accordance with 

Noll sequential indices: 1: piston, 2: horizontal tilt, 3: vertical tilt, 4: defocus, 5: oblique 

astigmatism, 6: vertical astigmatism, 7: vertical coma, 8: horizontal coma, etc. The first term (the 

piston), which represents the mean height of the surface (as opposed to its shape), was not used nor 

counted (having a much larger magnitude than the shape coefficients, its use in clustering pretests 

yielded irrelevant results based mainly on the mean height of corneal surfaces). Therefore, a model 

of the corneal shape will be said in this study to have J (= G – 1) coefficients. J = 16 was chosen 

as being accurate enough for the present purpose without causing overfitting issues (modeling error 

lower than the repeatability error of the topographer, RMSE = 6.18 µm for a 91×91 matrix). More 

details on Zernike polynomials can be found in [57]. 

4.2.2. Clustering method 

A number of clustering methods were examined in pretests, including two hard linear methods 

(agglomerative clustering and k-means), one hard nonlinear method (spectral clustering), and one 

soft clustering method (in which more than one cluster can be assigned with a probability of cluster 

belonging). These methods were tested with or without feature extraction (PCA for linear feature 

extraction or t-SNE for nonlinear feature extraction). They applied to anterior corneal surfaces 

reduced by geometrical modeling (with Zernike polynomials) in their natural (non-normalized) or 

normalized state. As will be exposed in the discussion, once evaluated in pretests in the way 

described in the next section, the most effective method for both natural and normalized corneal 

surfaces was found to be k-means, applied without feature extraction. This article will accordingly 

focus on the results produced by this hard linear top-down clustering method. In k-means 

clustering, data are clustered around k groups to minimize the within-cluster sum of squares 

(WCSS) of each group. Each sample is assigned to its nearest centroid, which is then recomputed, 

and recursively until the WCSS falls below a minimum. 

4.2.3. Clustering evaluation 

In this study, the success of the corneal clustering task was evaluated using different evaluation 

tools, including clustering scores, coefficient representations, surface representations and feature 

comparisons.  

Clustering scores 

The clear delimitation of clusters (compactness and separation) is largely dependent on k, the 

number of clusters produced. Following Halkidi et al. (2001) [39], the SPR2 and R2 scores were 

used to determine the best k (curves shown in Figure 4.1). 

1) SPR2 (semi-partial R2). Measuring directly the gain of compactness produced when a new 

cluster is added, the SPR2 score can be computed as the difference between two successive (WCSS) 

scores as k increases. The WCSS estimates the average distance of a cluster’s samples to its 

centroid. The SPR2 curve is easier to interpret than the WCSS curve: the best k is located at the end 

of the elbow, where the curve becomes (roughly) flat. 
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2) R2. The R2 is a direct measure of cluster separation. It is estimated as the ratio between the 

between cluster sum of square (BCSS), which measures the average distance between the cluster 

centroids, and the total cluster sum of square (TCSS), which measures the total distance between 

all samples. The best k is located at the knee of the curve. 

Coefficient representations 

1) Coefficient polar charts. These charts were used to represent the mean coefficients of the 

surfaces of a cluster. In Figure 4.2, each line relates the means of the J coefficients of a cluster (to 

help visualize the distance between them). The more the cluster lines are distinct and equally 

separated for a given coefficient (from C1 to C16), the more this coefficient is discriminant and 

effective as a clustering criterion in the clustering process.  

2) Coefficient scatter plots. Complementary to coefficient polar charts, coefficient scatter plots 

represent the distribution of the coefficients for each J across the surfaces of each cluster. Figure 

4.3 consists of two rectangle triangles separated by the diagonal that consist of a series of scatter 

plots. The lower one holds for clusters based on natural corneal surfaces and the upper one for those 

based on normalized corneal surfaces. In each of these triangles, the scatter plots represent the 

distribution of the Zernike coefficients used to model each surface of a cluster for each possible 

pair of coefficients (C1 vs. C2, C1 vs. C3, etc.). In the scatter plots, each cluster is assigned a 

particular color. The more the colors are clearly delimitated across the scatter plots for a given 

Zernike coefficient, the more this coefficient is discriminant and effective as a clustering criterion. 

Surface representations 

1) Average elevation maps. These maps were used to represent the average surface of the 

surfaces of each cluster (see Figure 4.4). An elevation map is a topographic representation of the 

elevations of a corneal surface. Assuming that the shape of the cornea is close to a sphere, the 

elevations are represented in reference to the sphere that best fits the surface, the best-fit sphere 

(BFS). The elevations that are above the BFS are pictured with warm colors, and those that are 

below the BFS with cold colors. In an average elevation map, the surface represented is an average 

surface (the average of a group of surfaces). The average surface was computed for each cluster by 

averaging the Zernike coefficients of the surfaces of the cluster and by reconstructing an average 

corneal surface on this basis (this is equivalent to computing the means of their elevations). A 

cluster BFS is the BFS of the average surface of a cluster. A common BFS is the average BFS of 

all clusters of natural surfaces, obtained by averaging their cluster BFSs. Note that for normalized 

surfaces, this distinction is irrelevant as the cluster BFSs are (about) the same. 

2) Average profile cuts. These representations are horizontal or vertical profile cuts of the 

average cluster surfaces (see Figure 4.5). They are computed as the horizontal or vertical median 

elevations of the average corneal surface of each cluster. For a better visualization, the differences 

of the cluster surface cuts with the common BFS cut and the standard deviations (in grey) are 

amplified 10 times. 

Feature comparisons 

Clusters were compared based on the clinical features known to be associated with the 

clustering criterion found to distinguish them the best. For example, if the clusters of natural 

corneas were found to be mainly distinguished by 𝑍2
0, the Zernike coefficient of defocus, they were 

compared based on clinical features associated with defocus, such as the corneal curvature and 

white-to-white. Feature comparisons of clusters were based on analyses of variance. 
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4.3. Results 

4.3.1. Clustering scores 

Figure 4.1 presents the SPR2 and R2 curves for the k-means clustering of natural (left) and 

normalized (right) anterior OD corneal surfaces modeled with 16 shape Zernike coefficients. 

Using the elbow and knee techniques, it can be seen that the best k value for a clear delimitation 

should be k = 4. 

4.3.2. Coefficient representations 

Coefficient polar charts. The first row of Figure 4.2 presents the full coefficient polar charts 

for the k-means clustering of anterior OD surfaces modeled with J = 16 and k = 4. In the left chart, 

the surfaces are natural, while they are normalized in the right chart. The second row presents a 

zoom-in view of each of these charts that focuses on the most discriminant Zernike coefficient, that 

is, C3 for natural surfaces and C5 for normalized surfaces. Indeed, for natural surfaces, the only 

coefficient where the k cluster lines are clearly distinct is C3, whereas for normalized surfaces, the 

only one is C5. Note that C3 (the coefficient of the third shape polynomial in Noll indices) is also 

known as 𝑍2
0 in double-index notation, which is the coefficient of defocus. As for C5 (the coefficient 

of the fifth shape polynomial), also known as 𝑍2
2, it is the coefficient of vertical astigmatism. 

Coefficient scatter plots. In Figure 4.3, a series of coefficient scatter plots successively present 

the distribution of pairs of coefficients (C1 vs. C2, C1 vs. C3, etc.) on the X and Y plot axes in 

clusters produced by k-means clustering for k = 4 using natural surfaces (lower rectangle triangle) 

and normalized surfaces (upper rectangle triangle) modeled with J = 16. As can be seen, with its 

clearly delimitated cluster colors, C3 is by far the most discriminating Zernike coefficient for 

natural surfaces, whereas C5 is the most discriminating one for normalized surfaces. 

4.3.3. Surface representations 

Average elevation maps. Figure 4.4 shows a series of average elevation maps of the clusters 

produced by k-means clustering with k = 4 for natural (first and second rows) and normalized (third 

row) OD surfaces. 

In the first row, the natural maps are in reference to the common BFS. As can be seen, they 

display a stark shift toward cooler colors at the center of the cornea along with a slight shift toward 

warmer colors at the nasal and temporal periphery as the BFS R gets larger from one cluster to 

another, meaning that the surfaces get on average flatter from one cluster to another. In the second 

row, the natural maps are in reference to their respective cluster BFS to cancel out the effect of the 

corneal size between clusters. As can be seen, the coldening effect is largely reduced when all 

clusters have the same average size, but it does not disappear completely: while the warm central 

pattern keeps its shape, it gets on average slightly more yellow and less red. This means that the 

reduction of corneal curvature is not entirely due to the corneal size but is in part due to a reduction 

of eccentricity. Besides, as concerns normalized surfaces (third row), the elevation maps display a 

progressive narrowing of the central warm color pattern by which the pattern passes from a 

horizontal state to a vertical state, signaling a transition from “with the rule” (WTR) to “against the 

rule” (ATR) astigmatism in which the horizontal meridian progressively steepens.   

Average profile cuts. The horizontal and vertical average profile cuts presented in Figure 4.5 in 

reference to the common BFS allow us to visualize directly the reduction of curvature from one 

cluster to another as the BFS R gets larger. 
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FIGURE 4.1: Clustering score curves for natural (left) and normalized (right) anterior OD corneal 

surfaces modeled with 16 shape Zernike coefficients.  
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FIGURE 4.2: (a) Coefficient polar chart based on 16 Zernike shape coefficients using k-means clustering with 

k = 4 for natural surfaces (left) and normalized surfaces (right). The first row presents a full view of the polar 

chart. The second row presents a zoom-in view of the chart that focuses on the most discriminant Zernike 

coefficient. 
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FIGURE 4.3: Series of pairwise coefficient scatter plots of the distribution of the 16 Zernike coefficients 

based on anterior OD corneal surfaces with k = 4 for (a) k-means clustering (complete plot series), (b) 

agglomerative clustering (excerpt) and (c) spectral clustering (excerpt). 
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FIGURE 4.4: Average cluster elevation maps for k-means clustering applying to OD surfaces modeled 

with 16 Zernike terms with k = 4. In the first row, the clusters are based on natural surfaces and the 

maps are in reference to the common BFS. In the second row, the clusters are based on natural surfaces 

and the maps are in reference to their respective cluster BFS. In the third row, the clusters are based 

on normalized surfaces and the maps are in reference to the normalized BFS. The X and Y axes are in 

mm, and the Z axis (color scale) is in µm. 
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Natural 

 

FIGURE 4.5: Average profile cuts along the vertical and horizontal meridians of natural OD mean 

corneal surfaces modeled with J = 16 shape Zernike coefficients using k-means clustering for k = 4. 

The solid curve is the common BFS. The differences of elevation between the mean cluster surfaces 

and the common BFS and the standard deviations (in grey) are amplified 10 times for a better 

visualization. 

4.3.4. Cluster comparisons on corneal features 

As seen above, the unsupervised classification of corneal surfaces produced by k-means 

clustering is related to the Zernike coefficient of defocus (𝑍2
0) for natural surfaces, and to the 

Zernike coefficient of vertical astigmatism (𝑍2
2) for normalized surfaces. The coefficient of defocus 

relates the corneal curvature, known to be associated with some of the clinical features available in 

our database, namely the radius of the mean cluster BFS (R) [3], the white-to-white diameter 

(WTW) [7], the gender [3,11,14,19], and to a lesser extent the spherical equivalent (SE) [12, 13]. 

As for the coefficient of vertical astigmatism, it is known to be associated with the corneal Axis 

[15], and secondarily with age in older groups [15]–[18,24]. Therefore, we would expect that 

the clusters of natural surfaces be associated with R, WTW, gender and SE, and the clusters of 

normalized surfaces to Axis. As shown in Table 4.1, this is the case: the mean values of clusters on 

these variables increase or decreases progressively from one to another in agreement with 

expectations.7 Each of these effects achieve significance at p < 0.0001. 
  

                                                           
7 For Gender, the score is the average of the 1 values assigned to females and the 0 values assigned to males, 

so the higher the mean gender score for a cluster, the higher the proportion of females in the cluster. 
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Table 4.1 : Effects of clustering methods on clinical variables 

Surface 

state 

Clinical 

Feature 
C1 C2 C3 C4 

Natural R* 7.54 ± 0.11 7.80 ± 0.08 8.00 ± 0.09 8.28 ± 0.13 

 WTW* 11.59 ± 0.37 11.75 ± 0.35 11.85 ± 0.35 11.96 ± 0.37 

 Gender* 0.69 ± 0.46 0.55 ± 0.50 0.44 ± 0.50 0.33 ± 0.47 

 SE* -3.98 ± 2.54 -3.59 ± 2.36 -3.08 ± 2.47 -2.99 ± 2.47 

Normalized Axis* 12.84 ± 18.32 17.44 ± 22.92 35.67 ± 33.82 56.51 ± 33.45 

 Age*  39.48 ± 9.98 38.45 ± 10.04 41.05 ± 12.17 48.01 ± 15.82 

* p < 0.0001 

4.4. Discussion 

In previous studies, the unsupervised classification of corneal surfaces has mostly been 

performed to distinguish keratoconus corneas (or other types of irregular corneas) and normal 

corneas and/or to identify theory-based subtypes of keratoconus corneas [54]–[56]. In this study, 

we examined the data distribution of normal adult anterior corneal surfaces in an attempt to identify 

their natural groupings using the most effective clustering method identified for the task in pretests 

based on a number of complementary evaluation tools, including clustering scores, modeling 

coefficient representations, corneal surface representations and clinical feature comparisons. 

Zernike polynomials were used to reduce the dimensionality of natural or normalized corneal 

surfaces to only a few coefficients, and the tested clustering methods applied directly to these 

coefficients instead of the surface itself.  

In pretests, a number of clustering methods were examined, including hard clustering methods 

to assign only one cluster per surface, which could be linear (k-means and agglomerative clustering) 

or nonlinear (spectral clustering) and soft clustering methods (Gaussian Mixture Models, or GMM). 

The surfaces clustered had their dimensionality reduced with geometrical modeling alone or in 

combination with feature extraction, which could be either linear (with PCA) or nonlinear (with t-

distributed stochastic neighbor embedding, or t-SNE). It was found that the best clusters (those that 

are evaluated as the most clearly delimitated and interpretable) were produced when a hard linear 

clustering method (k-means or agglomerative clustering) was used, with or without linear feature 

extraction, regardless of whether corneal surfaces on which clustering applied were natural or 

normalized.8 The effectiveness of linear clustering methods with or without linear feature extraction 

might be related to the fact that it applied on corneal surfaces that were linearly modeled, making 

the use of these linear clustering methods suitable and their results easily interpretable. Pretests 

showed that k-means and agglomerative clustering produced good clusters from k = 2 to k = 4, so 

we opted for k = 4 to gain definition. Geometrical modeling with Zernike polynomials supported 

the production of good clusters from J = 12 to J = 22 or so,9 with or without linear feature extraction.  

                                                           
8 More precisely, if the clustering method was nonlinear (spectral clustering) or used in combination with a 

nonlinear feature extraction method (t-SNE) to reduce further the dimensionality of the data, the clusters 

produced were not as neat and were harder to interpret (they were based on more than one clustering criterion 

and their separation was more irregular). The use of a linear feature extraction method (like PCA) did not 

perturb clustering, but it did not help either. Results were neater with geometrical modeling than without 

(using only a feature extraction method to reduce the dimensionality of the data). The soft clustering method 

tested (GMM) produced similar results to those produced with linear models, but again, not as neat. Among 

linear clustering methods, agglomerative clustering performed almost as well as k-means clustering. 
9 Below J = 12, clusters lacked accuracy. Beyond J = 22, overfitting issues started to emerge that could not 

be fixed by applying a feature extraction method. Clearly, the main clustering criteria are not among higher-

order Zernike coefficients, so their introduction is not helpful to clustering as their may introduce noise. 
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Given this state of affairs, we opted for k-means applying to corneal surfaces modeled with J 

= 16 without feature extraction (for the sake of procedural simplicity). As a compromise between 

the clear delimitation of clusters and their precision, we selected k = 4 both for natural corneas and 

for normalized corneas.  

As shown in the Results, we found that natural (non-normalized) corneas are clustered in 

accordance with C3 (aka 𝑍2
0), the Zernike coefficient of defocus. Defocus, the extent to which the 

cornea is off-focus, is related to the corneal curvature, which is itself related to the corneal radius 

(larger corneas are flatter) and to the degree of departure of the cornea from the perfect sphere 

(eccentricity). If the effect of the BFS radius is canceled out by presenting the maps in reference to 

the cluster BFS (the BFS of each cluster) instead of the common BFS, the flattening effect is 

reduced, but it still exists, and it can only be attributed to a departure of the cornea from the perfect 

sphere that fits it best, the cluster BFS. A possible explanation to these observations is the 

following. When clustering applies to centered natural corneas, the most important varying feature 

is arguably the BFS radius. The latter is associated to the WTW [3], which is itself associated to 

the spherical equivalent [9], a form of defocus linked to a departure from the corneal curvature in 

focus. This departure from the focal curvature becomes visible when the powerful effect of the BFS 

radius on the curvature is cancelled out by presenting the maps in reference to the BFS of each 

cluster. 

On the other hand, when clusters are produced on the basis of normalized corneal surfaces, in 

which the BFS radius is always about the same, the grouping can obviously not be based on the 

BFS radius. We found that the corneas are then grouped accordance with C5 (aka 𝑍2
2), the Zernike 

coefficient of vertical astigmatism, which is associated with the corneal axis, itself related to age. 

Indeed, the curvature of the horizontal meridian increases progressively from one cluster to the 

other (and the opposite for the curvature of the vertical meridian), indicating a transition from “with 

the rule” to “against the rule” astigmatism. Axis is another fundamental feature of normal corneas, 

and astigmatism another basic aberration found in these corneas. 

4.5. Conclusion 

This study tried to identify the most discriminative clinical features for differentiating normal 

corneal surfaces and their data distribution. We found that the clusters based on natural corneal 

surfaces were grouped in accordance with 𝑍2
0 while those based on normalized surfaces (in which 

the corneal size is neutralized) were grouped according to 𝑍2
2. 𝑍2

0 and 𝑍2
2 are low-order Zernike 

coefficients that relate to two fundamental features of the normal cornea: its curvature and its axis. 

And they represent the two most important types of aberrations that can be found in normal corneas: 

defocus and astigmatism. 

In the future, we intend to apply the methodology developed here to other dimensions of the 

cornea (the posterior surface and the inter-surface volume) and to irregular types of corneas 

(keratonus, Fuch, etc.). Other types of geometric models and feature extraction methods will also 

be tested. 
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Abstract 

In ophthalmology, there is a need to explore the relationships between clinical parameters and the 

corneal shape. The present study explores the paradigm of machine learning (ML) and nonlinear 

regression methods to identify the conditions in which predictions of corneal shapes from clinical 

data can effectively be made for a population of corneas to visualize their central tendencies. To 

this end, the dimensionality of a database of topographic matrices of elevations representing the 

anterior corneal surfaces of normal adult corneas was first reduced by Zernike modeling into short 

vectors of coefficients. The nonlinear regression methods examined from the scikit-learn library 

were gradient boosting, Gaussian process, kernel ridge, random forest, k-nearest neighbors, 

AdaBoost, bagging, and multilayer perceptron. Different sets of clinical variables were used as 

predictors, including geometric variables (best-fit sphere radius, eye side, white-to-white distance, 

anterior chamber depth), refraction variables (sphere, cylinder, axis) and demographic variables 

(age, gender). The targets were vectors of Zernike coefficients of different lengths (from 12 to 20, 

initial mean shape coefficient excluded). Based on RMSE scores measuring the distance between 

raw (non-modeled) topographic true surfaces and predicted surfaces, the best model (method + 

predictors + targets) was gradient boosting using all available clinical variables to predict 16 

Zernike coefficients. The most explicative predictor was the BFS radius, followed by the eye side 

and by refractive parameters. The aptitude of this model to accurately predict the central tendencies 

of the clinical variables used as predictors was further visually assessed thanks to an atlas of true 

and predicted average elevation maps. The great similarity of color patterns between the true and 

predicted average surfaces represented in these maps for different clinical variables showed that it 

is possible to effectively predict the shape of the cornea from a set of clinical variables and visualize 

their central tendencies. 

Keywords: cornea, regression, machine learning, gradient boosting, Gaussian process, Zernike, 

corneal topography, average elevation map 
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5.1. Introduction 

The cornea is the clear front surface of the eye, and it contributes to approximately 65 to 75 

percent of the refractive power of the eye. Several factors are known to influence the corneal shape, 

including geometric features such as the axial length, the best-fit sphere, the anterior chamber depth 

and the white-to-white distance; refraction features such as the spherical equivalence, the axis, and 

the cylinder; and demographic features such as the age, the sex, the race and the ethnicity [3,15]. 

Given these known relations, is it possible to predict the shape of the cornea based on clinical data? 

To address this issue, we need to take advantage of the complex relationship that holds between 

clinical data and the corneal shape.  

In the clinical literature, the traditional approach adopted to investigate this relationship is 

essentially statistical and requires prior knowledge of the form of this relationship (linear or not), 

which is not that well known and depends on prior knowledge of the features being related. In the 

machine learning (ML) paradigm, it is not necessary to have such prior knowledge, as the form of 

the relationship can be discovered by training models. The ultimate goal sought under that 

paradigm is not solely to establish whether a relationship exists but also to determine the closest 

one by systematically exploring all applicable conditions in which model optimization can take 

place, and to make maximally accurate predictions on this basis. While this necessitates a large 

amount of data, big databases become increasingly available, and an increasing number of ML 

studies dealing with corneal shape have been conducted in recent years. The vast majority of them 

are aimed at providing support for clinical diagnosis, and to this end, classification tasks are usually 

performed (as opposed to regression tasks). In corneal classification, the corneal data come in the 

form of clinical parameters (demographic, structural, refractive features of the cornea) or in the 

form of images (corneal surface elevations or inter-surface pachymetry visualized as color-coded 

maps, or topographies) [58]. Most often, these corneal data need to undergo a preprocessing step 

of dimensionality reduction that can take place by feature extraction, geometric modeling or data 

weighing. This is the case in Espinosa et al. [59], where the Gaussian process algorithm applies to 

the anterior corneal surface (modeled with Zernike coefficients) and to keratometry measures 

(weighted with neighborhood component analysis) in an attempt to predict the subjective refraction 

of the cornea. Likewise, in Lavric et al. [60], bagged trees classifiers are applied to corneal 

structural parameters along with corneal images (obtained by topography, pachymetry and optical 

coherence tomography) to predict visual field damage (as measured by the extent to which visual 

field departs from normal visual field parameters). The dimensionality of predictors is reduced by 

feature subset selection (greedy hill climbing step). In Kamiya et al. [61], a deep learning algorithm 

(CNN) takes color-coded maps of the anterior and posterior elevations to distinguish normal 

corneas from keratoconus corneas of different types. While the above studies proceed in a 

supervised manner to achieve corneal classification, it is also possible to proceed without 

supervision by applying a clustering algorithm. The input data are then quite similar to those used 

as predictors in supervised classification (clinical parameters of the cornea, as in Yousefi et al., 

[54] and in Hallett et al. [55], or topographic maps of the cornea, as in Zéboulon et al. [56] and 

Bouazizi [14]). Again, the data undergo a process of dimensionality reduction by feature extraction 

[54,55,56] or by geometric modeling [14] before the ML process can take place. 

In the present study, the perspective is different. Instead of resorting to ML algorithms to 

establish a diagnosis of the cornea from clinical parameters or from images of the cornea, it starts 

from clinical parameters in an attempt to predict the corneal shape itself, with a focus on the anterior 

corneal surface, which is the main responsible for the refractive power of the cornea. To facilitate 

corneal surface prediction, the dimensionality of the dataset of elevations is reduced by geometric 

modeling (Zernike polynomials). The main issue investigated in this study is to verify to what 

extent the whole shape of anterior corneal surfaces can be accurately predicted based on a set of 

clinical parameters for a normal adult population using an ML regression approach, If so, an atlas 
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of average elevation maps used to visualize the effects of corneal parameters on the shape of the 

predicted corneal surfaces should be similar to an atlas used to visualize the effects on the shape of 

corresponding true surfaces.  

For this exploratory study, we needed a regression method that can be applied robustly in a 

limited optimization space to a medium-size database. To this end, we focused on standard ML 

algorithms and tested each of the applicable methods of the scikit-learn library with the database 

of anterior corneal surfaces under study. The database includes different clinical variables (the 

predictors) associated with corneal surfaces represented as topographic data in the form of large 

matrices of elevations (the targets). To preprocess the data, the clinical variables acting as 

predictors were normalized. As for the associated topographic corneal surfaces acting as targets, 

they had their large dimensionality reduced by geometric modeling based on Zernike polynomials 

with different numbers of coefficients to identify the best number. Defining a regression model as 

a triplet that includes a set of clinical variables acting as predictors, a regression method, and a 

vector of Zernike coefficients of a given size acting as targets, the goal was to identify the best 

model and to verify whether and to what extent the predicted surfaces produced by this model 

agreed with the true surfaces, as verified both quantitatively with RMSE scores and qualitatively 

with average elevation maps. 

5.2. Method 

5.2.1. Data processing 

Data acquisition 

The database was collected using the Orbscan II corneal topographer (Bausch and Lomb, 

Rochester, NY). It consists of 8594 topographies of anterior surfaces of normal corneas (4356 male 

corneas and 4238 female corneas, 4430 OD (right) corneas and 4164 OS (left) corneas), coming 

from 4941 consenting adult subjects with no history of ocular diseases, ocular surgery, or recent 

contact lens wear and no repetition (only one acquisition per eye).10 Each topography was recorded 

as a 101×101 grid of elevations (heights) evenly spaced (every 0.1 mm) along the x (left-right) and 

y (up-down) axes and saved as a vector of 10201 elevations. It was associated with a number of 

clinical parameters produced by the topographer, including geometric parameters (side (OD and 

OS), white-to-white distance, and anterior chamber depth), refraction parameters (refractive sphere, 

cylinder, axis), and demographic parameters (age, gender). The experimental procedures involving 

human subjects described in this paper were approved by the Institutional Review Board.  

Data preprocessing 

Predictors. Predictors with real values were normalized in the [0, 1] range. Axis needed a special 

treatment because it is a circular variable expressed on a semi-circle (from 0⁰ to 180⁰). This involved 

multiplying Axis degrees by 2 (to extend their range to the full circle) and computing their sines 

and cosines. 

Targets. Most of the missing/noisy data are found in the periphery of corneal surface 

topographies due to acquisition artefacts (eyelid, lash or nose occlusion during scanning). A fringe 

of 5 mm was accordingly removed from the original 101×101 matrix of elevations of each surface 

to get a reduced 91×91 matrix. The dimensionality of this smaller matrix was then reduced to a 

much shorter vector of Zernike coefficients. To this end, the corneal surface was modeled as a sum 

of least-squared fitted Zernike polynomials over the unit disk, as described in Equation 5.1: 

                                                           
10 We had access to more good quality data for anterior corneal surfaces with the Orbscan II than with the 

more recent Pentacam, an important consideration for a corneal regression study. 
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 𝑆(𝜌𝑤 , 𝜃𝑤) =  𝑧𝑤 = ∑ 𝐶𝑔
𝐺
𝑔=1 𝑃𝑔(𝜌𝑤 , 𝜃𝑤) + 𝜖𝑤   for w = 1, 2, …,  W  (5.1) 

The corneal surface 𝑆 consists of a set of W elevations 𝑆(𝜌𝑤 , 𝜃𝑤) located at polar coordinates 𝜌𝑤 

and 𝜃𝑤 for w = 1 to W. Each elevation 𝑆(𝜌𝑤 , 𝜃𝑤) (or equivalently 𝑧𝑤) is modeled by summing the 

product of the gth Zernike polynomial 𝑃𝑔(𝜌𝑤 , 𝜃𝑤) and the gth coefficient 𝐶𝑔 for g = 1 to G, assuming 

error 𝜖𝑤. In this study, the G Zernike polynomials were ordered in accordance with Noll sequential 

indices. The coefficient of the first polynomial (C1) represents the mean height of the cornea, 

contrary to the following coefficients, which account for different aspects of the corneal shape. 

Being irrelevant and adding unnecessary noise to corneal shape predictions [28], it was removed 

from the dataset, leaving for the modeling of the corneal surface only the J (= G – 1) remaining 

shape coefficients. More on the Zernike modeling of corneal surfaces can be found in [57]. 

5.2.2. Regression analysis 

A regression analysis was conducted for each regression model, defined as a selection of a 

regression method, a set of predictors and a vector of shape Zernike coefficients of size J. 

Regression methods 

Taken from the scikit-learn library, the regression methods investigated included different 

nonparametric methods, namely bagging (BG), k-nearest neighbors (KNN), random forest (RF), 

kernel ridge (KR), gradient boosting (GB), Gaussian process (GP) and multilayer perceptron 

(MLP) [40]. These methods, presented in Table 5.1, were compared to two reference methods used 

to establish a minimum standard of performance (lower bound). The first one is the baseline (BL); 

this simply corresponds to the average shape of all corneas. It is used to assess the amount of 

specific learning achieved by the nonparametric methods, that is, the ability of the model to perform 

better than a common prediction that applies indistinctively to all surfaces. The second reference 

method is linear regression (LR), which is the simplest regression model able to achieve specific 

learning. It is used to assess the nonlinear contribution of the nonparametric methods being tested. 

Nonparametric methods rest on no assumption about data distribution. Table 5.1 classifies those 

that were tested in accordance with their architecture and algorithm. The architecture could be (1) 

a single estimator, (2) an ensemble (unstructured collection of “weak” methods, such as decision 

trees, whose outputs are processed by an integration function), or (3) a neural network (with input, 

output and hidden ordered layers). Different algorithms could be used: (a) ridge regression (a linear 

function is learned in the space induced by kernel-transformed data); (b) a probabilistic function (a 

stochastic algorithm is applied with respect to probability theory); (c) nearest neighbor selection 

(the observations of the training set that are the closest to the tested observation are selected for 

testing); (d) bagging (weak methods are applied independently to different subsets of the data and 

are assigned equal weights when integrated); (e) boosting (weak methods are applied sequentially 

in the same dataset and are assigned unequal fitted weights when integrated); and (f) multilayer 

propagation (the data flow forward across layers and are nonlinearly modulated before being 

retroactively adjusted by gradient descent). For more details, see [40]. 
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TABLE 5.1: Tested scikit-learn nonparametric methods for multiple multivariate regression tasks. 

Method Architecture Algorithm  

  Type Specificity 

Kernel ridge (KR) Single estimator Ridge regression Kernel trick 

Gaussian process (GP) Single estimator Probabilistic function Gaussian equations 

K-nearest neighbors (KNN) Single estimator Nearest neighbor 

selection 

Selection of k nearest neighbors 

Random forest (RF) Ensemble of decision trees Bagging Random selection of feature subsets 

Bagging (BG) Ensemble of decision trees Bagging Grid search selection of feature subsets 

AdaBoost (AB) Sequence of decision trees Boosting Iterative majority vote 

Gradient boosting (GB) Sequence of decision trees Boosting Gradient descent 

Multi-layer perceptron (MLP) Neural network structure Multilayer propagation Hidden layers, back-propagation, 

gradient descent, 

Predictors 

Each regression method was initially tested in the exploratory step of the study with all possible 

combinations of the examined clinical variables used as predictors, including (with their two-letter 

acronyms): (1) BFS (Bf), to specify the radius of the best-adjusted sphere (BFS) of the cornea, (2) 

White-to-white distance (Ww, aka horizontal corneal diameter), to specify the limbus to limbus 

distance, (3) Anterior chamber depth (Ad), to specify the depth of the corneal chamber, (4) Side 

(Si), to specify left or right eye, (5) Sphere (Sp), to specify the lens power needed to correct vision 

from nearsightedness or farsightedness, (6) Cylinder (Cy), to specify the lens power to correct 

astigmatism, (7) Sinus (2 x Axis) (Sn) and Cosinus (2 x Axis) (Co), to specify the angle of the axis 

of astigmatism. The 512 possible sets of predictors were tested in the exploratory step, and the 10 

best of them were selected for the validation step (see below), (8) Age (Ag), and (9) Gender (Ge). 

Targets 

Each regression method was applied to vectors of Zernike shape coefficients of different lengths 

(J). Preliminary tests indicated that to be optimal, J should range somewhere between 12 and 20 

coefficients, so the analyses were conducted for J = 12, 14, 16, 18, 20.  

Regression models 

Figure 5.2 summarizes the conditions in which the regression analyses were conducted. Each 

possible set of conditions defines a regression model to be tested. This involved running a test for 

each of the 25600 models that can be formed (10 regression methods × 512 sets of predictors × 5 

vector lengths of shape coefficients for each corneal surface). In running systematically all possible 

models, considering that this is the first study on this issue, we wanted to set a reference for further 

studies in which more effective predictor reduction methods are likely to be used. Computer 

clusters from the Digital Research Alliance of Canada made possible to go through this important 

load of processing in a reasonable time. 

TABLE 5.2: Tested regression models. 

Condition Description Possible values 

Regression method Reference or nonparametric method Reference method: BL, LR 

Nonparametric method: AB, BG, KNN, RF, 

KR, GB, GP, MLP 

Predictors Set of clinical variables Set from the power set of {Ag, Ge, Si, Ww, 

Sn, Co, Cy, Sp, Ad} 

Targets Set of J shape coefficients J = 12, 14, 16, 18, 20 
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Optimization of regression models 

To optimize the parameters of each tested regression model (selected method, set of predictors 

and array of target coefficients), a pipeline involving a random search (to get a rough approximation 

of the optimal model parameters) followed by a grid search (fine tuning to obtain more accurate 

estimations of optimal parameters) was applied [40]. In each case, the fitting measure R2 on the 

training set was adopted to determine the best set of parameters for each model. The random search 

was based on the scikit-learn RandomizedSearchCV algorithm and the grid search on the 

GridSearchCV algorithm. Both the RandomSearchCV and GridSearchCV algorithms applied k-

fold cross-validation with k = 5 (by default). The score obtained by combining these two search 

modali t ies was better and faster than with random search or grid search alone.  

Identification of the best regression model 

The determination of the best regression model involved a step of exploration and a step of 

validation.  

In the exploratory step, all the 25600 possible regression models were tested. To make these 

tests possible, a fast analysis procedure was used aimed to narrow down the modeling space to only 

the most promising models, to be tested more completely in the next validating step. This fast 

preliminary procedure was based on an incomplete 10-fold cross-validation procedure in which 

only 2 folds were actually processed, each of which being split in a 9 to 10 proportion to get the 

training and testing sets, as for standard 10-fold cross-validation. Based on the RMSE scores 

obtained, the exploratory step allowed us to identify for each number of coefficient J the regression 

methods that performed better than LR (the linear standard of reference), and for each of them, the 

10 best sets of predictors identified. The RMSE scores measured the distance between the predicted 

modeled surfaces and the raw topographic true surfaces. Only the available elevation data points 

were considered to compute the scores, to the exclusion of the few missing data points of the 91×91 

matrix of elevations (holes of the raw surface topography). The predicted and raw surfaces were 

previously vertically aligned to reduce the residual volume between them [29]. The most promising 

models to be kept for the full validation involved the methods that performed better than linear 

regression (the best methods), for each of them the 10 best sets of clinical variables (the best sets 

of predictors), and for each of these possibilities, the vectors of coefficients of length 12 to 20 (the 

best sets of targets). 

In the validation step, the selected models were validated using a standard 10-fold cross 

validation procedure (again in a 9/10 proportion) to gain accuracy and generalizability (in 

combination with the k-fold cross-validation applied to fit coefficients at each dataset split, an effect 

of nested cross-validation was therefore achieved). The best regression model was the one with the 

best mean RMSE scores (estimated as in the exploratory step) across the 10 cross-validation folds.  

Evaluation of the best regression model  

Once identified, the best model was evaluated as to its predictions and its predictors. 

Evaluation of predictions. In addition to be evaluated quantitatively with an RMSE score as 

described above, the best modeled was evaluated qualitatively based on average elevation map 

analysis, by which the effects produced by different clinical variables on the predicted surfaces 

(essentially, those used as predictors) can be visualized. By verifying whether the average elevation 

maps of predicted surfaces are similar to those of the corresponding true surfaces for different 

clinical variables, and by checking whether the effects displayed in these maps are consistent with 

the clinical literature on the anterior cornea, one can assess the extent to which the predictions are 

clinically valid. 

In ophthalmology, the corneal surface is usually represented in reference to a sphere since the 

corneal surface is nearly spherical (see Figure 5.1 (a)). The differences between the corneal surface 

and the sphere of reference (the sphere that best fits the surface, or BFS, for Best-Fit Sphere) are 
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often tiny, so ophthalmologists often use elevation maps in which these differences are magnified 

with a color map. The positive differences, corresponding to areas of the corneal surface above the 

BFS, are represented with warm colors; the negative differences, corresponding to areas below the 

BFS, are represented with cold colors; those directly on the BFS are in green. In Figure 5.1 (b), a 

simple elevation map is presented in which the OD anterior surface of a single cornea is represented 

in reference to its BFS. In Figure 5.1 (b), the same surface is represented after it has been modeled 

with Zernike coefficients to reduce its dimensionality. Finally, in Figure 5.1 (d), an average 

elevation map of a particular group of surfaces (surfaces whose anterior chamber depth is between 

1.96 to 3.11 mm) is represented as an average surface in reference to an average BFS (Figure 5.1 

(c)). The average surface of a group of surfaces can be obtained by averaging their Zernike 

coefficients and by reconstructing that surface based on the mean coefficients [14]. The BFS used 

here is the common BFS, obtained by averaging the mean BFS of each group of surfaces being 

compared. The common BFS is useful to highlight the differences in shape between groups of 

surfaces.  

        (a)             (b)                 (c)           (d) 
 

 

 

 

 

 

 

  

 

FIGURE 5.1: (a) 3D map of a single OD anterior corneal surface in reference to its BFS (surface in green, 

BFS as a grid; (b) Raw elevation map of the same surface in reference to its BFS, (c) Modeled elevation 

map of the same surface with 24 Zernike coefficients, (d) Average elevation map of a group of corneal 

surfaces (age group from 50 to 60 yo) modeled with 16 Zernike coefficients. Warm colors are for surface 

areas above the BFS, cold colors for those below the BFS, and green colors for those on the BFS. The X 

and Y axes are in mm, and the Z axis (color scale) is in µm. 

An atlas of average elevation maps was constructed for a number of clinical variables to assess 

the similarity of true and predicted corneal surfaces (see Figure 5.4). These clinical variables were 

categorical versions of those used as predictors in regression analyses (they were segmented in 

groups when needed). They include geometric variables: best-fit sphere (Bf), white-to-white (Ww), 

anterior chamber depth (Ad) and side (Si), as well as refraction variables: astigmatism (As) and 

ametropia (Am), and demographic variables: age (Ag) and gender (Ge). These variables were 

grouped as follows:  

(1) Bf (group 1: from 7.06 to 7.63 mm, group 2: from 7.63 to 8.19 mm, group 3: from 8.19 to 

8.99 mm),  

(2) Ww (group 1: from 10.40 to 11.36 mm, group 2: from 11.36 to 12.32 mm, group 3: from 

12.32 to 14.10 mm),  

(3) Ad (group 1: from 1.96 to 3.11 mm, group 2: from 3.11 to 4.26 mm, group 3: from 4.26 to 

6.92 mm),  

(4) Si (group 1: OD, group 2: OS),  

(5) Am (group 1: moderate or high myopia, SE < -3 D, group 2: emmetropia or low ametropia: 

-3 D ≥ SE ≤ 3 D, group 3: moderate or high hyperopia: SE > 3 D),  

(6) As (1: group 1: “with the rule”: the axis is between 0° and 30° or between 150° and 180°, 2: 

group 2: oblique: the axis is between 30° and 60° or between 120° and 150°, group 3: “against the 

rule”: the axis is between 60° and 90° or between 90° and 120°),  

(7) Ag (group 1: from 20 to 29 yo, group 2: from 30 to 39 yo, group 3: from 40 to 49 yo, group 

4: from 50 to 59 yo, group 5: from 60 to 70 yo, group 6: 70 yo and more),  
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(8) Ge (group 1: M, group 2: F). 

Evaluation of predictors. Once the best model is identified, it remains to see to what extent the 

clinical variables used as predictors in this model contributes to the predictions. This issue was 

addressed in two complementary ways: by considering their occurrences and their non-occurrences 

in the sets of predictors. With regard to their occurrences, it was assumed that the more a clinical 

variable occurs frequently in the 10 best sets of predictors for the best method and the best J, the 

more it is important as a predictor for the accuracy of predictions. With regard to their non-

occurrences, it was instead assumed that the more the accuracy loss of a clinical variable is 

important when it fails to occur for the first time in the list of set of predictors (ranked by RMSE 

score), the more this variable is important as a predictor to make accurate predictions. The accuracy 

loss of a clinical variable was computed as the difference between the RMSE score of the best 

model (the model with the best method, J value and set of predictors) and the RMSE score of the 

best similar model (the model with the same regression method and J value but not the same set of 

predictors) where this clinical variable is absent from the set of predictors. To make possible the 

evaluation of predictors in a reasonable time, only two folds of the shuffled dataset were used 

(instead of the 10 folds that would be required for full 10-fold cross-validation). 

5.3. Results 

5.3.1. Identification of the best regression model 

Exploratory step. In the exploratory step, all regression methods were tested with all 512 

possible sets of clinical variables acting as predictors on each vector of J Zernike coefficients acting 

as targets in an attempt to reduce the modeling space for further validation. Among the tested 

regression methods, four did better than linear regression (LR) and were accordingly selected for 

further testing in the validation step of the study, namely GB, GP, KR and RF along with the 

reference methods (BL and LR). 

Validation step. Figure 5.2 (left) plots the mean RMSE of each of the validated regression 

methods with their best set of predictors for each J. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 5.2: RMSE curves of the validated regression methods with their best set of predictors of each 

J (left) and zoom-in view on the curves of the three best methods (right). 

As can be seen in Figure 5.2 (left), the three best methods are, in order, GB, GP and KR. These 

three methods perform significantly better than LR on every J and much better than BL. With a 

score of RMSE = 10.87 µm, the best selection of method, predictors and targets (the best model) 

was GB using 16 coefficients and all available clinical variables as predictors (GB 16 all), closely 
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followed by GP using 16 coefficients and all available clinical variables but Ge (GB 16 all\Ge, 

RMSE = 10.88 µm) (see Figure 5.2, right). 

5.3.2. Contribution of the best model’s predictors to the predictions 

To evaluate the contribution of the clinical variables used as predictors in the best model (GB 

16 all) in predicting corneal surfaces, their occurrences and non-occurrences in the best model and 

models of the same family (in which the regression method and number of coefficients are the same 

but the sets of predictors are different) were considered.  

 

 

 

 

 

 

 

 

 

 

 

 
 

FIGURE 5.3: Occurrences of the predictors in the 10 best sets of predictors according to the RMSE 

(left) and accuracy loss of predictors when they fail to occur for the first time in a set of predictors 

(ranked by increasing RMSE scores). 

Occurrences of clinical variables as predictors.  

Figure 5.3 (left) shows the occurrences of the clinical variables in the 10 best sets of predictors 

ranked according to their RMSE. In Table 5.3, the predictors are ranked by frequency of 

occurrence. As can be seen, a group of variables appears in each the 10 best sets, namely Bf, Si, 

Co, Cy and Sn. Then, in decreasing order, we have Ww (9 times), Ad (8 times), Ag and Sp (7 

times), and Ge (6 times). 

TABLE 5.3: Frequencies of occurrences of clinical variables in the 10 best sets of predictors. 

Variable Frequency Type 

Bf 10 Corneal shape 

Si 10 Corneal shape 

Co 10 Refraction 

Cy 10 Refraction 

Sn 10 Refraction 

Ww 9 Corneal shape 

Ad 8 Corneal shape 

Ag 7 Demographic 

Sp 7 Refraction 

Ge 6 Demographic 
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FIGURE 5.4: Atlas of average elevation maps of predicted (first row) and true (second row) OD anterior 

surfaces for different clinical variables modeled with 16 Zernike coefficients. The X and Y axes are in mm, 

and the Z axis (color scale) is in µm. N is the number of surface of a group. R is the radius of the mean BFS 

of the group. 
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Non-occurrences of clinical variables as predictors. In Figure 5.3 (right), clinical variables are 

ranked in accordance with the importance of their accuracy loss when they fail to occur for the first 

time in a set of predictors of a model of the GB 16 family (ranked by increasing RMSE scores). As 

can be seen, four predictors are associated with a noticeable accuracy loss: Bf, Si, Co and Sn (the 

same that appeared in each of the 10 best sets of predictors). Among them, Bf stands out for the 

considerable importance of its accuracy loss when it is absent for the first time in a set of predictors: 

a drop of 8.00 µm (from 19.04 µm to 11.04 µm). The loss incurred by Si, Co and Sn is less important 

(0.78 µm on average) but still significant. The loss incurred by Ww, Ag, Ad, Sp, Ge is marginal 

(0.044 µm on average). 

5.3.3. Visualization of the predictions of the best regression model 

Figure 5.4 presents the true and predicted average elevation maps of Zernike modeled surfaces 

for different clinical variables, including geometric variables (Bf, Si, Ww, Ad), refraction variables 

(Am, As), and demographic variables (Ag, Ge), along with a description of their groups. The maps 

are in reference to the common BFS. For each variable, the average predicted surfaces (one for 

each group of the variable), produced with GB and modeled with 16 Zernike terms, are presented 

on the first row, and the corresponding true surfaces, also modeled with 16 Zernike terms, in the 

second row. As can be seen, the similarity of the predicted and true maps is excellent for every 

clinical variable. Difference maps representing the difference of elevations between predicted and 

true surfaces (not shown) would all be green using the same colorbar. Similar results were obtained 

with OS surfaces (maps not shown).  

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 5.5: Average elevation maps of the predicted (first row), true (second row) and raw (third row) 

OD anterior corneal surfaces of the third BFS group based on two subsets of the whole dataset (the two 

first column) and on the whole dataset (third column). The maps are in reference to the common BFS. 

The X and Y axes are in mm, and the Z axis (color scale) is in µm. N is the number of surface of a group. 

R is the radius of the mean BFS of the group. 

To assess the generalizability and robustness of predictions, predictions were also made with 

different sets of data. As an illustration, Figure 5.5 presents the average elevation maps of the third 

BFS group for raw surfaces, as scanned by the topographer (first row, missing data are not 

interpolated), for true surfaces modeled with 16 Zernike coefficients (second row) and for predicted 

True 

Predicted 

Raw 

Subset 1 Subset 2 All data 



82 
 

surfaces also modeled with 16 Zernike coefficients (third row). The first column is based on the 

training data of the first three folds, the second column on the training data of the next three folds, 

and the third column on all data. As can be seen, even with data that are different and more limited 

in number, the average elevation maps of raw, modeled and predicted corneal surfaces are much 

similar to one another.  

5.4. Discussion 

This study aimed to explore whether it is possible to predict the shape of the corneal surface 

based on different clinical variables and visualize their central tendencies. To this end, we had to 

select the best regression model among those examined, which involved the selection of a method 

(AB, BG, KNN, RF, KR, GB, GP, MLP), a set of predictors (Bf, Ww, Ad, Si, Sp, Cy, Co, Sn, Ag, Ge) 

and a set of targets formed of a vector of Zernike coefficients of a certain size (J = 12 to 20). Four 

regression methods performed better than LR (RF, KR, GB, GP) and were kept for full k-fold cross-

validation. It was found that the best regression model was GB using all examined clinical variables 

as predictors and J = 16 Zernike coefficients (GB 16 all, for short). 

GB 16 all performed much better than the random model (RMSE = 10.87 µm vs. 33.00 µm), 

in which a surface is selected at random and compared to the others, so this model effectively 

learns. It was also better than the baseline (the mean surface) (RMSE = 23.43 µm), so it can 

discriminate the specificities of different surfaces. And it performed better than linear regression 

(11.79 µm), meaning that it can take advantage of its nonparametric architecture. As shown in the 

methods’ description presented in Table 2.1, GB (gradient boosting) does not particularly 

distinguish itself from the other nonlinear regression methods examined: it is an ensemble of 

decision trees, and as such, it is not different from RF (random forest) and BF (bagging). However, 

like GP (Gaussian Process), which performed almost as well, it proceeds by gradient adjustments 

(gradient descent, while GP proceeds by gradient ascent).  

Concerning the targets of GB 16 all, the best number of Zernike coefficients (J = 16) can be 

viewed as the best compromise between a modeling constraint, for which the modeled surface is 

more accurate with more terms, and a prediction constraint, for which predicting fewer terms is 

less demanding. While this number of coefficients is rather small, the predicted surfaces 

reconstructed with J = 16 are on average remarkably similar to the modeled true surfaces modeled 

with J = 16 presented in Figure 5.4, which are themselves quite similar to the raw true surfaces 

presented in Figure 5.5, which uses different datasets of different sizes. This means that the 

predictions are on average quite accurate and robust. And notice that the learning margin was 

reduced by the repeatability error of the topographer of is 6.18 µm (estimated as the average of the 

RMSE differences between two topography acquisitions for the same individual for a 91×91 matrix 

of elevations; recall that the RMSE of GB 16 all is 10.87 µm). 

It remains to verify whether the average elevation maps presented in Figure 5.4 are themselves 

consistent with the literature. Starting with geometric variables, the best-fit sphere (Bf) maps 

display a stark transition toward colder central colors along with a slight warming of peripheral 

colors as the radius of the BFS gets larger, meaning that the cornea becomes flatter, in accordance 

with [3]. The white-to-white (Ww) maps also display a transition toward colder central colors along 

with a slight warming of peripheral colors as the white-to-white distance increases, though not as 

strong as for the BFS radius. This is consistent with the fact that the white-to-white parameter is 

known to be inversely associated with the corneal curvature [7], pushing the cornea to become 

flatter and thus the radius of corneal curvature to increase [3]. The maps for the anterior chamber 

depth (Ad) show a slight increase and coldening of the central area of the cornea, signaling a slight 

flattening of the corneal area [8]. The side (Si) maps display a quasi-perfect interocular symmetry 

of color patterns (enantiomorphism) [10,51] as well as an intraocular asymmetry in which the nasal 

area displays less color change than the temporal area [10]. Concerning refraction variables, the 

ametropia (Am) maps (in which the SE increases) display a reduction in warm colors centrally and 
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reduction of the size of the warm color pattern that signals a slight apical flattening of the cornea 

[11,12] along with a shallowing of the anterior chamber depth (see the anterior chamber depth maps 

in reverse order) [9,13]. The astigmatism (As) maps present, as the axis gets progressively more 

vertical, a transition from an egg-shaped warm-color pattern that is horizontally laid down (first 

map) to another that is vertically stretched (third map) in passing an intermediate state (second 

map). This is indicative of a progressive decrease of the curvature of the vertical meridian and 

increase of the curvature of the horizontal meridian that reflects a transition from “with the rule” to 

“against the rule” astigmatism [15,16,17]. Finally, regarding demographic variables, the age (Ag) 

maps also display a transition from with-the-rule to against-the-rule astigmatism in old age 

[15,16,17,18]. A warming of the central yellow pattern is also observed in old age, in agreement 

with the finding that, with age, the anterior chamber depth becomes shallower (see Ad maps in 

reverse order) [8,13,20,21]. As for the gender (Ge) maps, the second (female) map presents a 

warmer central color pattern than the first (male) map, along with a smaller BFS R, in agreement 

with the fact that females have a steeper curvature [11,14,19] and a smaller white-to-white distance 

(Ww) than men [7,11,19]. 

Finally, as concern the predictors of the best model, the most determining predictor was the 

BFS radius (Bf), followed by the side of the corneal shape (Si) and by three refraction variables, 

including two variables that establish the angle of the corneal axis, defined in terms of cosinus (Co) 

and sinus (Sn) and one variable that specifies the cylinder (Cy) of the corneal shape. The other 

predictors, while contributing to decrease the error, had nonetheless only a marginal effect on it. A 

straightforward explanation of this state of affair would be that in order to predict effectively the 

corneal shape, one has to establish first the radius of its BFS. Since the shape of the cornea is close 

to a sphere, doing so provides most of the information needed to specify the shape of the cornea. 

Indeed, even taken alone as a predictor, the BFS radius does much better (RMSE = 14.01 µm) than 

all of the other predictors taken together (RMSE = 19.04 µm). Once the contribution of this 

important predictor is achieved, all that remains to be done is to specify the tiny departures of the 

corneal shape from the perfect sphere: this is fine adjustment. Given that the left and right eyes are 

known to be symmetrical in their departures from the perfect sphere, a first source of departure 

from the perfect sphere is indeed the side of the eye (Si) [10,51]. Other sources are those that lead 

to optical aberrations in normal eyes, including ametropia and astigmatism, which can be 

characterized by the axis of the cornea (Co and Sn) and by the cylinder (Cy). Once this information 

is specified, the other variables become to some extent redundant. White-to-white (Ww), anterior 

chamber depth (Ad) and genre (Ge) are known to correlate closely with the BFS, and age (Ag) with 

axis, as discussed above (their relative contribution is much more important when the BFS is 

removed from the set of predictors). However, the little importance of sphericity (Sp), also needed 

to define the degree of ametropia, is somewhat of a surprise. But considering the total information 

provided by the other variables, sphericity might also be somewhat redundant for the sake of 

predicting the corneal shape.  

5.5. Conclusion 

This study shows that it is possible to make an accurate prediction of the anterior surface of 

normal adult corneas shape using a machine learning methodology based on an average size (vs. 

big) dataset. We demonstrated that even a regression algorithm that does not exploit a big 

optimization space (in contrast with some deep learning algorithms) trained with a dataset of less 

than 8000 data was able to learn effectively the connection between 10 clinical parameters (9 if 

Axis-cosinus and Axis-sinus are counted as one parameter) and the corneal shape modeled with a 

limited set of 16 Zernike shape coefficients (mean height coefficient excluded). The atlas of 

elevation maps showed a close similarity between true and predicted average corneal surfaces. This 

similarity was robust, being well maintained in smaller datasets, and generalizable from one data 

subset to another. And the maps produced were consistent with the clinical literature on the anterior 
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corneal surface. The fact that the predictions formed valid corneal categories means that they 

implicitly achieved a form of supervised clinical classification.  

Further improvements can be made to better predict the corneal shape from clinical variables 

and visualize the predictions and their central tendencies: by adding other relevant clinical 

predictors, by flipping horizontally OS corneas to get only OD corneas to predict, by testing other 

regression methods involving deep learning, by preprocessing data with other more effective 

geometric models (such as spherical harmonics or rational functions), by using a geometric model 

in combination with a linear or nonlinear feature extraction method. In so doing, it should be 

possible to extend the scope of the methodology and apply it to irregular surfaces and to other facets 

of the cornea (posterior surface, pachymetry). 
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 GENERAL CONCLUSION 

This thesis aimed to investigate the best conditions in which corneas can be preprocessed, 

classified and predicted using geometric modeling and machine learning (ML) techniques. It 

proposed a procedure in which data are preprocessed by geometric modeling and validated by atlas 

visualization to support ML tasks of clustering or prediction (among other possibilities) involving 

corneal surfaces. This procedure was examined in a series of studies about the geometric modeling 

(Chapter 2), clinical classification (Chapter 3), unsupervised classification (Chapter 4), and 

prediction (Chapter 5) of normal adult anterior corneal surfaces. 

Chapter 2 was concerned with the dimensionality reduction of normal adult corneal surface 

datasets by geometric modeling. Four types of geometric models were tested for their accuracy and 

processing time in a (relatively) low dimensional space (J < 30), including two polynomial (P) 

models (ZP and SHP) and two corresponding rational function (R) models (ZR and SHR). While 

SHP and ZR are known to be more accurate than ZP for the same number of coefficients, it was 

not clear as to whether the SH advantage was more important than the R advantage for effective 

dimensionality reduction. As expected, SHP and ZR were both more accurate than ZP in a low 

dimensional space. More generally, the two SH models performed better than the two Z models, 

and the two R models better than the two corresponding P models. On the other hand, concerning 

processing times, while the P models ran in quasi-linear time with a very low slope (especially ZP), 

the R models ran in polynomial time (with a quite steep increase in slope for SHR). Considering 

these results, if speed is privileged, the best model is ZP. Given its reasonable accuracy and 

transparent interpretability, it can advantageously be used in the development phases of ML 

projects, especially with normal corneas and when interpretability is important. If accuracy is 

critical and the prime consideration, then SHR is the best model. However, the gain of accuracy it 

provides is fairly small compared to its cost of processing time. Its processing time can be 

substantially reduced, though, by running a prior step of optimization with a small dataset to 

identify the best combinations of numerator and denominator coefficients (a major cause of 

processing time explosion) and focusing only on these combinations when modeling the whole 

dataset. But in the end, the best compromise between accuracy and speed remains SHP. 

Chapter 3 dealt with the classification of normal adult anterior corneal surfaces based different 

clinical variables and with the visualization of the effects of these variables with an atlas of average 

elevation maps. Clinical classification is a requirement to explore the variability of the corneal 

shape, which is known to be affected by a number of clinical parameters, including geometric 

variables (BFS radius, white-to-white diameter, anterior chamber depth, corneal side, etc.), 

refraction variables (astigmatism, ametropia, etc.) and demographic variables (age, gender, etc.). 

While the quantitative assessment of this variability with statistical techniques of regression and 

mean comparison is a necessity, there is a need for the visual assessment of central tendencies, and 

group maps, a relatively recent development in visualization techniques, can be instrumental to this 

end. This issue was explored in this study, and an atlas of average elevation maps was constructed 

for different clinical variables (listed above) and was validated in light of the literature. Such a 

validated tool can be useful not only for clinical or pedagogical uses but also for validation and 

interpretation purposes in ML projects. We showed that this tool can be used to validate and 

interpret output datasets of clusters (Chapter 4) and predictions (Chapter 5). 

With these preprocessing tools (geometric modeling) and this validation tool (atlas of group 

maps) in hand, the proposed procedure continued to be implemented in Chapter 4 and 5 with studies 

on ML tasks of clustering and prediction. Chapter 4 was concerned with the unsupervised 

classification of normal adult corneas based on their anterior surface. While the few existing studies 

used corneal clustering for the sake of automatic diagnosis and proceeded with a prior step of 

feature extraction to reduce the dimensionality of the dataset, we focused on normal corneas (whose 

unsupervised classification remained to be done) using geometric modeling to achieve 
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dimensionality reduction. In this study, geometric modeling was based on Zernike polynomials, 

selected for its transparent interpretability (each coefficient concerns a particular clinical feature of 

the cornea), considering its sufficient accuracy with normal corneas and convenient processing 

speed. Two linear clustering methods (agglomerative and k-means clustering) and one nonlinear 

method (spectral clustering) were tested. It was found, based on different qualitative and 

quantitative evaluation tools, that the linear methods grouped corneas essentially in terms of their 

curvature, whereas the nonlinear method did so mostly in terms of their axis. In addition to being 

effective in characterizing the natural groupings of normal adult corneas based on their anterior 

surface, the proposed clustering procedure can eventually be instrumental for the automatic 

classification of normal corneas. 

Finally, the fourth study (Chapter 5) was about the prediction of the corneal shape based on 

clinical information. Resorting to nonparametric regression methods, it could take advantage of the 

complex relationship that holds between clinical corneal features and the corneal shape itself 

without having to make any assumption as to the form of this relationship. The clinical variables 

available in the database were used as predictors, and the vector of Zernike coefficients was 

employed to reduce the dimensionality of the dataset of normal adult anterior corneal surfaces used 

as targets. The issue was to identify the regression model that best predicted the shape of the cornea 

based on the available clinical information. A regression model was defined as a selection of a set 

of clinical variables used as predictors, of a nonparametric algorithm used as regression method 

(along with parametric methods serving as reference methods), and of a vector of Zernike 

coefficients of a given size (J) as used as targets. Based on RMSE scores (to measure the distance 

between the surfaces predicted by a model and the corresponding true raw topographic surfaces), 

it was found that the best model was gradient boosting with all available clinical variables and 16 

Zernike coefficients. Using the atlas of average elevation maps as a visual validation tool, these 

predictions were found to be clinically sound, being on average surfaces that were very similar to 

the true modeled surfaces. This means that the complex relationship that holds between the 

examined clinical variables and the corneal shape is strong enough to allow sound predictions. The 

most contributive predictor was by far the BFS radius, which defines the cornea as a sphere. Then, 

other predictors contributed to specify the tiny departures of the cornea from its ideal quasi-

spherical form, including the side of the cornea, and refractive features (axis and cylinder). This 

study was exploratory and aimed at making a proof of concept to establish that it is possible to 

predict the central tendencies of corneal shape across a number of clinical conditions. However, it 

is possible to make even better or more demanding predictions by testing new regression models 

on normal and irregular corneas. For instance, known to be more accurate, spherical harmonics 

could be used instead of Zernike polynomials for dimensionality reduction, or else deep learning 

algorithms could be used in place of gradient boosting as a regression method. Given the prime 

importance of side as a predictor, it should be beneficial to dispense the algorithm with the necessity 

to distinguish between right and left corneas by taking advantage of their symmetry and by 

horizontally flip left corneas and turn them into right corneas. Finally, the dimensionality of the 

dataset can be further reduced by applying feature extraction in combination with geometric 

modeling to alleviate the prediction load. In this improvement process, the best regression model 

identified in this study (gradient boosting 16 with all clinical variables) can be regarded as the new, 

more demanding standard of reference for this research. 
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