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Abstract— Looking for new arm strategies for better twisting
performances during a backward somersault is of interest for the
acrobatic sports community while being a complex mechanical
problem, due to the non-linearity of the dynamics involved. As
the pursued solutions are not intuitive, computer simulation
is a relevant tool to explore a wider variety of techniques.
Simulations of twisting somersaults have mainly been realized
with planar arm motions. The aim of this study was to explore
the outcomes of using 3D techniques, with the demonstration
that increasing the fidelity of the model does not increase the
level of control complexity on the real system. Optimal control
was used to maximize twists in a backward straight somersault
with both types of models. A multi-start approach was used
to find large sets of near-optimal solutions. The robustness of
these solutions was then assessed by modeling kinematic noise
during motion execution. The possibility of using quaternions for
representing orientations in this numerical optimization problem
was discussed. Optimized solutions showed that 3D techniques
generated about two additional twists compared to 2D techniques.
The robustness analysis revealed clusters of highly-twisting and
stable 3D solutions. This study demonstrates the superiority of
3D solutions for twisting in backward somersault, a result that
could help acrobatic sports athletes to improve their twisting
performance.

Keywords – Rigid Body Dynamics, Biomechanics;
Optimal Control; Numerical Optimization, Sports
Performance

I. INTRODUCTION

Twist rotations during aerial somersaults in acrobatic sports
have been frequently studied in biomechanics [1], [2], [3].
Apart from contact techniques which involve a twisting
angular momentum at takeoff, there exist two main categories
of techniques which have sparked researchers interest, namely
aerial and cat-twist techniques [4]. Understanding the motor
strategies underlying these approaches is an interesting
challenge because they involve complex sequences of actions
subject to highly non-linear dynamics. Pure aerial techniques–
as opposed to cat twists–are of particular interest in acrobatic
sports since they can be performed using only arm motions,
leaving the rest of the body in a straight configuration,
which is often preferred for aesthetic reasons, and simpler to
model in simulation. In most of the acrobatic/artistic activities
(trampoline, diving, gymnastics, freestyle skiing, etc.), the
number of twists during somersaults is considered as a part of
the sports performance. Looking for innovative arm strategies
which enhance the twisting performance during a somersault
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Fig. 1: Model definition with the 10 DOFs being: antero-
posterior (qrtx), transverse (qrty), and longitudinal (qrtz)
translations of the root, antero-posterior axis (qrrx, tilt),
transverse axis (qrry, somersault), and longitudinal axis (qrrz ,
twist) rotations of the root, right arm (qrael ) and left arm (qlael )
abduction/adduction (elevation), right arm (qracp ) and left arm
(qlacp) abduction/adduction change of plane.

is therefore both an enticing dynamics problem and a relevant
matter for the acrobatic sports community.

Computer simulation is a relevant tool for innovating in
sports and especially in disciplines in which new techniques
can increase the risk of acute injuries, which is precisely the
case in acrobatic sports. In this context, numerical trajectory
optimization methods are frequently used as they are efficient
means of finding innovative techniques, in compliance with
a set of sport-related specifications. There are essentially four
main parameters to be considered in order to discuss the results
of scientific studies on sports performance that made use of
trajectory optimization: the numerical model of the body, the
parametrization of the problem, the cost function paired with
a set of constraints and the nature of the solver.

Concerning the model first, the many studies in which
computer simulation was used to investigate twist rotation
in acrobatic sports using arms techniques [5], [3], [6]
only modeled arm lowering/rising in the frontal plane
(i.e., abduction/adduction), ignoring the change in plane
of elevation. Because of several non-linear effects due to
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rotations, putting aside the possibility of changing the plane
of abduction/adduction does not necessarily simplify the
movement from a motor control point of view. Indeed, the
fact that the body is moving freely in space implies that
the gravity is not always pushing on the arm in the same
orientation, and that Coriolis effect pushes the arm in a
direction perpendicular to its trajectory. Therefore, abducting
the arm during a twisting somersault requires additional joint
torques compared to abducting the arm in a static position
[7]. In order to numerically quantify this additional amount of
torque and to demonstrate the improvements brought by 3D
motions of the arms for generating twists during somersault
(see Figs. 4, 5), two models were selected and compared in this
study. In accordance with the literature, the first one included
a free floating base and one degree of freedom (DoF) at each
shoulder (6 + 2 = 8 DoFs total), whereas the second one
includes two DoFs at each shoulder (6 + 4 = 10 DoFs total).

Once a model has been selected, comes the question
of the optimization problem parametrization. In particular,
what are the variables chosen for the optimization and
how to discretize all the continuous functions that appear
in the problem statement? The goal of this phase, called
transcription, is to transform a specific trajectory optimization
problem into a generic non-linear program (NLP) that will be
solved using a dedicated algorithm. A first family of methods
comes from numerical optimal control and are known as
direct methods. They consist in straightforwardly choosing
the state and/or the control as optimization variables at a
given number of points along the trajectory and they rely
on explicit or implicit integration for enforcing the dynamics
between these points. For instance, direct multiple shooting
was applied to the aerial phase of twisting somersaults in
diving giving satisfying results [2], however the goal was not
to maximize performance, but to minimize the joint torques for
given sports performances in terms of somersaults and twists.
Direct collocation methods have also shown their efficiency
in several studies investigating human motion [8], [9], but
their convergence might be challenging, as both the state and
the control must be provided as initial guesses. Other choices
can be made, as in [10], where the optimization variables are
instants at which a switch in the motor strategy occurs, using
polynomials function (4th, 5th order) in-between. Thus, this
kind of parametrization requires an a priori knowledge about
entire pieces of the state trajectory which is not suitable in
the quest of innovative strategies. In [11], the optimization
variables are the coefficients of fourth order polynomial
approximations of the states, with linking conditions to enforce
the continuity of the controls. Avoiding large variations of
joints torques at discretization points is not a major concern
of the present study, in which the search for innovative
motor strategies is favored. Thus, a classical direct multiple
shooting optimal control problem (OCP) was implemented,
with optimization variables being the joints torques.

Then, concerning the cost functions in sports performance
optimization studies, various objectives were already
proposed: minimal time of execution [12], minimal joint
torques [2], maximal execution score [13], etc. Since the

aim of the present work was to compare two families of
techniques (2D versus 3D) for generating twist rotations, we
were interested in the best performance possible regarding
this particular task. Thus, the main objective function
was to maximize the number of twists during a straight
backward somersault. As detailed further (see section II-B),
additional penalties were added to this main objective, in
order to regularize the problem and to yield more realistic
solutions. The proposed OCP was constrained by acrobatic-
sports-related initial and terminal requirements such as the
take-off and landing positions and velocities of the segments.
Kinematic and kinetic path constraints were also added
to reflect realistic positions, velocities and torques of the
numerical avatar. When parameterized with Euler angles
(termed as somersault, tilt and twist [14]), rotations of the root
segment during somersault combined with twists are likely to
yield gimbal lock resulting in numerical instabilities. Thus,
in a first approach, the second Euler angle of the sequence
(i.e. tilt) was bounded in order to avoid such a situation. In
order to investigate whether this restriction might prevent the
solver from finding more optimal solutions, the root segment
was also parametrized using quaternions and both approaches
are discussed in section II-C.

Regarding the nature of the solver, lots of options exist
in the literature for solving NLPs and some of them are
available as third party software. In several studies, the
simulated annealing algorithm was employed to optimize
the movement and find a global optimum [10], [15]. This
method has shown its efficiency, but is restrictive as only
a few parameters can be optimized ([16]). For instance,
it is well suited for optimizing a reduced set of high-
level parameters such as the key moments at which the
motor strategy should be changed [10]. Sequential quadratic
programming and quasi-Newton algorithms have been tested
on biomechanical problems with convergence issues due to
their high sensitivity to variable scaling [17]. Interior point
methods led to satisfying results ([18], [19]), their main
limiting factor being an important computational time. The
aim of the present study being to explore new techniques, the
initial conditions and scaling factors are unknown (especially
for the control), thus the resolution method should not be too
sensitive to them. To explore a wide variety of techniques,
the problem’s complexity has to be preserved, therefore
making strong assumptions about the mathematical properties
of the solutions or reducing the number of parameters to be
optimized are not reasonable compromises to make. Because
the goal of this study was not to optimize in real time,
reasonably longer computational time could be afforded. For
these reasons, the interior point method was more appropriate
than simulated annealing, sequential quadratic programming
or quasi-Newton algorithm. Having in mind that gradient
based optimizers do not guarantee convergence towards a
global extremum, when optimizing human movements, a
series of local extrema might represent satisfying compromises
leading to more robust techniques without compromising a
lot the performance. This is particularly the case in this
study, where the robustness analysis is not part of the
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Fig. 2: Snapshots of the most-twisting 2D technique, without penalization on the hands trajectories. The final number of twists
achieved by this technique is 2.94. For a visualization of the corresponding arms trajectories, see Fig. 8 in Appendix.

optimized objective, but rather studied a posteriori, as detailed
in Sec. II-E. Therefore, in this context, considering near-
optimal solutions gives an opportunity to explore a wider
range of techniques. To maximize the amount of solutions
found, multiple optimizations can be run in parallel with
slight varations in the initial guesses and in the settings
of the problem. Here, a multi-start strategy was used to
generate several techniques as in [20]. Aside from technical
considerations, another aspect of our problematic comes from
the fact that even elite athletes can experience little variations
in the execution of their skills from one trial to another [21]. To
make sure that the proposed optimal techniques can actually be
executed by athletes, it is needed to evaluate their robustness,
as techniques needing infinite precision are of no interest to the
sports community. To simulate athletes technique variations,
noise can be added to the positions of the model’s segments
[22]. Thus, after optimization, Gaussian noise was added to
each joint in order to modify the optimal techniques and
evaluate the impact of this disturbance on the performance
criterion.

The purpose of this study was to optimize 3D arm
techniques for generating twist rotations during a backward
somersault and compare the results with state-of-the-art
2D techniques. For this purpose, different optimization
problems were designed and solved using a multiple-shooting
formulation and a NLP solver. The paper is organized as
follow: first, the numerical models of the body are described
(Sec. II-A), followed by a presentation of the OCPs settings,
with an emphasis on the choice of the cost functions and
regularization terms (Sec. II-B). After that, we provide an
original discussion on the choice between Euler angles and
quaternions for the parametrization of the root segment
(Sec. II-C). Then, the multi-start approach and a method for
computing the robustness of the solutions post-optimization
are described (Sec. II-D, II-E). Afterwards, we present an
analysis of the torques induced by non-linear effects during

somersault, which justifies the choice of our model (Sec. II-F).
The contribution of this work is twofold : first it demonstrates
that 3D arm techniques outperform 2D ones in terms of
twist performance, secondly it shows that for a same level
of performance, 3D arm techniques are simpler than 2D ones,
which should be of interests to acrobatic sports athletes and
coaches.

II. METHODS

A. Skeletal Model

The dynamic models of the body were developed in
Biorbd [23], a RBDL-based [24] C++ library according to
the spatial vector algebra described in [25] to compute the
equations of motion. The first model was composed of three
rigid bodies (8 DoFs total) connected with inelastic joints: the
root segment that includes the head, trunk and legs, the right
upper-limb and the left upper-limb, both with extended elbows
(Fig. 1). The root segment was modeled with six DoFs to allow
3D translations and 3D rotations of the whole body in space,
and each shoulder was modeled with one DoF for abducting
and adducting the arms. It is further referred to as the 2D
model, because of the planar motion of the arms. The second
model was based on the first one, with the addition of one
extra DoF per shoulder (for changing the plane of elevation),
bringing the total number of DoFs to 10. It is further referred
to as the 3D model. Masses and inertia matrices of the models
were computed from 95 anthropometric measurements of one
participant [14].

B. Optimal control formulation

The 2D (resp. 3D) model was driven by 2 (resp. 4) torque
actuators corresponding to the DOFs of the shoulders. In this
study, the models being in free fall conditions, only gravity and
non-linear forces coming from rotations are considered. The
model dynamics is given by the following equation, including
the motion of the free-floating base:
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Fig. 3: Snapshots of the most-twisting 3D technique, without penalization on the hands trajectories. The final number of twists
achieved by this technique is 4.90. For a visualization of the corresponding arms trajectories, see Fig. 9 in Appendix

[
06×1

τ

]
=M(q)q̈ +N(q, q̇) +G(q), (1)

where τ is the joint-torque vector, M is the mass matrix.
q, q̇ and q̈ are the base and joints positions, velocities and
accelerations vectors, all in generalized coordinates. N(q, q̇)
represents the Coriolis and centrifugal effects and G(q)
represents the effects of gravity. Let x =̂ [q(t), q̇(t)] be the
state of the system. Let u =̂ [τ ] be the control applied to the
system. Let us denote the time evolution of a variable , i.e. its
trajectory, by underlining it (x = [x(0)..x(T )]). The forward
dynamics which solves ẋ = f(x,u), can be derived from
Eq. (1), as it amounts to compute q̈ as:

q̈ =M(q)−1[τ −N(q, q̇)−G(q)]. (2)

In order to find an optimal control law which maximizes
the number of twists while satisfying the dynamics and the
constraints of the problem, an optimal control problem (OCP)
of the following form was set up:

min
x,u,T

C(x,u) =
∫ T

0

`(x,u)dt+m(x(T )) (3a)

s.t. ∀t, ẋ = f(x,u) (3b)
∀t, u ∈ U (3c)
∀t, x ∈ X (3d)

x(0) = x0 (3e)
x(T ) = xT (3f)

where Eq. (3a) is the cost function to be minimized, with
a Lagrange term `(x,u) and a Mayer term m(x(T )), both
discussed later on. T , the duration of the motion, is also
an optimization variable. Eq. (3b) is the forward dynamics
equation of the system. Eq. (3c) enforces that the control stays

within a specified domain U , typically umin < u < umax.
Eq. (3d) enforces that the joints positions stay within their
kinematic domain X , typically for i ∈ [0..N ], qimin < q

i <
qimax, with N the number of degrees of freedom of the model.
Eqs. (3e) and (3f) constrain the initial and terminal states
of the system, respectively. During the whole simulation the
positions, velocities and torques of the arms were bounded to
anatomically feasible movements (see Tab. I). The constraints
applied to the model at the end point of the simulation were
to finish the backward straight somersault at same level as the
takeoff, with similar tilt (q5) and arms above the head:

• Somersault rotation of the pelvis (qrry(T )) in 360± 10◦

• Tilt of the pelvis (qrrx(T )) in 0± 15◦

• Arms abduction (qrael (T ) and qlael (T )) in 160± 5◦

Other constraints at the beginning and during the motion are
listed in Tab. IV in appendix. All these constraints are derived
from trampoline, enforcing the technique to be purely aerial
(q̇rrz(0) = 0) and ensuring successful landings consisting in
upright position with arms above the head, for athletes to be
prepared for the next movement of the routine. This optimal
control problem was discretized using a direct multiple-
shooting formulation, and then solved using CasADi [26]
connected to the non-linear programming solver IPOPT [27].

The first component of the Mayer term of the cost function
m(x(T )) (Eq. (3a)) was the pelvis twist rotation at the
end of the motion (qrrz(T )). Hence, minimizing it amounts
to maximize the number of negative (i.e. right) twists of
the model. The second component of the Mayer term was
the initial somersault velocity which was expected to be
enough to yield an entire somersault with twist rotations
but not too large, in order to obtain realistic solutions. The
Lagrange term `(x,u) was either a regularization terms
on the control variable u (`UHP ) or a combination of the
latter and of a penalization term on the distance traveled
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TABLE I: Kinematic and torque constraints applied to the 3D
and 2D models for solving the OCP. Arm position bounds
reflect feasible range of motion [28], arm velocities and
torques bounds are arbitrary high. However as torques are
minimized, it is hypothesised that velocities ans torques should
not get to nonphysiological values.

2D model

3D model

qrrz qrael & qlael qracp & qlacp

position (◦) [−45, 45] [0, 180] [−135, 45]

velocity (◦/s) − [−5730, 5730] [−5730, 5730]

torque (Nm) − [−100, 100] [−100, 100]

by each hand (`PHP ). The solutions resulting from the first
penalization are further called ”Unpenalized Hand Path”
(UHP) techniques, whereas the ones resulting from the second
type of penalization are further called ”Penalized Hand Path”
(PHP) techniques. Weighting scalars were used to modulate
the relative penalty of the Mayer and Lagrange terms (see
Tab. (II)). Specifically, let the time t range from 0 to T (takeoff
to landing), α, βqi , γ and δ be the weighting coefficients. Let
N be the number of shooting nodes and τij the control of the
ith DoF at the jth node. Let Pk be the kth hand path in space.
The following equation presents the discretized cost function
C that is to be minimized:

CUHP = αqrrz(T ) + γq̇rry(0) +

Nτ∑
i=1

βqi

N∑
j=0

τ2ij , (4)

CPHP = αqrrz(T ) + γq̇rry(0) +

Nτ∑
i=1

βqi

N∑
j=0

τ2ij + δ

2∑
k=1

∫ÙPk ds, (5)

where Nτ = 2 (resp. 4) for the 2D (resp. 3D) model. βqi
are coefficients for tuning the penalization of the control
depending on the DoF considered. Finally, the

∫ Û. symbol in
the last term denotes a line integral along a path, which, in
our case, represents the distance traveled by each hand.

TABLE II: Weighting coefficients of the Lagrange and Mayer
terms used in the cost function of the optimal control problem
for PHP techniques. For the 8-dofs model, βqracp and βqlael are
left blank because these DoFs are not included. For UHP
techniques the coefficients are the same except for the δ
column which becomes null.

α βqra
el

βqla
el

βqracp βqla
el

γ δ

8-dofs model −1e4 1e−4 1e−4 − − 1 1e−2

10-dof model −1e4 1e−4 1e−4 1e−2 1e−2 1 1e−2

C. Quaternion modeling of the pelvis orientation

Unlike Euler angles, the description of 3D orientations by
means of quaternions (q) is free of singularities, which is why
they are ideal mathematical tools for the computer graphics
(visualization) or the robotics (control) communities. In order

to avoid such singularities in the Euler angles representation
presented above, the second angle of the pelvis rotation
sequence was bounded to a domain excluding the possibility
of gimbal lock (qrry(T ) in 360±10◦). However, this constraints
is only met at the shooting nodes and might still lead to
singularity during integration between two nodes. In addition
to jeopardizing convergence this extra constraint might lead to
less relevant solutions, although it is only a numerical artifice
which has nothing to do with the kinematics or the dynamics
of the problem.

In order to investigate to what extent this constraint
could affect the Euler-angle-based solutions, we chose to
implement a quaternion-based version of the optimal control
problem introduced in Sec. II-B. Using such a representation
requires to deal with numerical integration of quaternions
which is a problem widely addressed in the literature [29],
[30], [31]. Indeed, when representing orientations, quaternions
must be unitary and thus belong to a constrained manifold
(namely, the unit 3-sphere S3). However, classical numerical
integration schemes such as Runge-Kutta methods treat unit
quaternions as if they were arbitrarily defined in R4. There
exist at least two ways of addressing this problem: either
perform a normalization step after each Runge-Kutta iteration
to project the non-unitary quaternion onto S3 (RKN) or
using Crouch-Grossman methods which essentially use the
exponential map of the Lie algebra instead of regular addition
and multiplications. As shown in [32], for sufficiently small
time steps, the performances of Crouch-Grossman and RKN
methods are similar. We compared the RKN methods in our
framework (i.e. time step imposed by the number of nodes
of the OCP, and a constant rotation velocity (ω ≈ 10 rad/s)
against an exact integration solving the first order differential

equation q̇ =
1

2
q ⊗ ω. The RKN integration error was

of the order of 1e−8 for 1 second of integration which is
approximately the duration of our problem. In view of this
acceptable error, we used RKN because it yields simpler
relationships between the state variables and the control
(integration of Eq. 3b) and facilitates the convergence of the
optimization problem.

Since quaternions represent orientation and not rotation, the
twist Mayer term of the objective function (qrrz(T ), in the
Euler version of the OCP), eventually greater than one full
rotation, was replaced by a discretized Lagrange term on the
twisting velocity:

CQUAT = γ ˙qrry(0) +

nbτ∑
i=1

βqi

N∑
j=0

τ2ij + α

N∑
j=0

q̇rrz(T ).

Both the quaternion and the Euler angles version of the
problem were solved for the 8-DoF model, and did not show
any change in the exploitation of the tilt angle of the root
and the overall performance. Even if not constrained, the
quaternion solution did not exceed ±π/6 rad (same as for
the Euler solution), with gimbal lock being at ±π/2 rad.

The strategies differed slightly, which can be explained by
the numerical discrepancies in the formulation of the two
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Fig. 4: Mean (± 95% confidence interval) shoulder torques
integrated over the full motion for 400 optimizations of a
backward twisting somersault for the 2D model. Both the
active and passive contributions of the shoulder joint are
displayed for PHP and UHP techniques.

problems. One drawback of the quaternion approach is that it
makes it impossible to directly express the cumulative number
of rotations of the root (which is one of the Mayer terms of
the cost function), therefore, to compute this quantity it was
necessary to keep track of the instantaneous twisting velocity
of the root and integrate it to yield its final orientation in
Euler angles. In the rest of the study, the Euler approach was
preferred merely because the resulting rotations are easier to
interpret in terms of twisting performances.

D. Multi-start approach

The first varying parameter of the multi-start approach
was the number of shooting nodes (N ∈ [295, 305] ⊂ N).
This range of seemingly high shooting nodes numbers was
chosen experimentally to obtain the best compromise between
convergence rate and optimization time. The other parameters
were related to the initial guess provided to the gradient-based
solver (see Fig. 11 in appendix), which can yield different
(sub-)optimal solutions:

• The twist rotation (qrrz) linearly increasing from 0 to
qrrz(T ) ∈ [2, 5] ⊂ N,

• Uniform random arm elevation trajectories (qrael , q
la
el ∈

X ),
• Uniformly distributed random arm torques u on U

Each parameter was modified while the others were kept
constant and the resulting grid of solutions was kept for
results analysis (400 optimized solutions per model and per
technique).

E. Robustness analysis of the optimal solutions

Robustness of the optimized techniques was tested by
adding 10◦ gaussian noise to the positions of the arms
at the shooting nodes. The resulting noised state trajectory
were then interpolated with quartic splines ([33]) in order
to be differentiated and to compute the torques resulting
from these ”kinematics errors”, using inverse dynamics. After
applying the forward dynamics using these noised torques, the
resulting number of twists were compared to the original ones,
yielding a level of robustness for each noised solution. Keeping
track of these twist deviations allows to gain insight in the

Fig. 5: Mean (± 95% confidence interval) final number of
twists generated by the optimal techniques according the
model (2D vs 3D) and the objective function used in the
optimization (PHP vs UHP). These statistics are computed on
the best optimized solutions (leading to the highest number
of twists) for each number of nodes. Therefore, each point
represents the best-performing solution for a given model, a
given objective type and a given number of nodes.

relevance of the optimal solutions. Indeed, ideal solutions are
highly twisting and can be executed by athletes with different
deviations from the optimal trajectory with approximately the
same outcome in terms of number of twists (see Fig 7).

F. Uncontrolled torques analysis

In the following, we highlight the fact that neglecting
the change of plane of elevation at the shoulder is not a
simplification from a motor control point of view. Indeed,
numerically locking a DoF implies that no motion can be made
around it, but it does not imply that the torques needed to meet
this constraint are zero. In the case of human movement, every
torques would result from muscle activations. In simulation,
these uncontrolled torques are actually passively produced by
the joint structure of the model, as opposed the controlled ones
actively produced by the joint actuator. This is particularly
the case in motions with fast rotations, as the expressions of
torques in local frames attached to the joints include non-
linear effects (gravity, Coriolis, centrifugal). Consequently, a
motion restricted to one axis of a 2-DoF joint may still require
joint torques on the two axes of the joint. Therefore, applying
an active motor strategy from a simplified model to a model
with a higher number of DoFs might lead to completely
different whole-body behaviors. For this reason, we quantified
the amount of passive joint torque at the shoulder during a
backward twisting somersault on a 2D model.

Joints acceleration of the 2D model q̈2D were computed
using the forward dynamics equation (Eq. 2). Then, the
kinematics of the 2D model (q2D, q̇2D, q̈2D) was mapped to
the 3D model (q3D, q̇3D, q̈3D) by imposing a null kinematics
to the extra DoFs:{

q3D[1..8], q̇3D[1..8], q̈3D[1..8]
}
=

{
q2D, q̇2D, q̈2D

}
, (6a){

q3D[9, 10], q̇3D[9, 10], q̈3D[9, 10]
}
= {0,0,0} , (6b)

where q3D=̂[qrtx, q
r
ty, q

r
tz, q

r
rx, q

r
ry, q

r
rz, q

ra
el , q

la
el , q

ra
cp , q

la
cp]

T .
The passive torque absorbed by the structure of the joint in
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Fig. 6: Kernel density estimation representation of the
distribution of twists generated by the optimal techniques in
function of the model (2D vs 3D) and of the objective function
used in the optimization (PHP vs UHP). These statistics are
computed on every optimized solutions which yielded at least
one twist. Note: the scales of the y-axis are different for the
sake of readability.

the 2D case can then be computed using the inverse dynamics
function (Eq. 1), on the kinematics of the 3D model.

τ 3D =M(q3D)q̈3D +N(q3D, q̇3D) +G(q3D) (7a)

= [τ 2D
root, τ

2D
active, τ

2D
passive]

T (7b)

Fig. 4 depicts the integral of active and passive torques
produced/absorbed by the joint for the 2D model during a
backward twisting somersault for 400 optimizations of both
PHP and UHP techniques. Interestingly, the mean passive
torque integrated during this motion is of the same order
of magnitude as the active one. It is therefore not simpler,
from a motor control point of view, to consider 2D kinetic
strategies requiring torque control on 2 DoFs, rather than
taking advantage of 3D kinetic strategies for the same level of
control complexity. It is worth noticing that one consequence
of penalizing the hand path (PHP vs UHP) is to limit the
amount of both passive and active torques needed to execute
the motion, leading to more relevant solutions (from a sports
perspective), but less twists.

III. RESULTS

Fig. 2 (resp. Fig. 3) is an animation of the most twisting
solution obtained with the 2D (resp. 3D) model. This first
result highlights that the best 3D solution (4.90 twists) is better
than the best 2D solution (2.94 twists). The corresponding
arms trajectories are displayed in Appendix (Figs. 8 and 9).
The arms trajectories of another 3D solution yielding about the
same number of twists (3.10) than the best 2D one is presented
in Fig. 10 for comparison purposes. For a more systematic
analysis, solutions generating the highest number of twist for
each number of shooting nodes (N ∈ [295, 305]) were kept
for further analysis (Fig. 5). Overall, good 3D techniques
generated more twists than good 2D techniques whether
penalized for their complexity or not, validating our hypothesis
about the improvement brought by the addition of an extra
DoF at each shoulder. Optimized solutions convergence rate,

Fig. 7: Logarithmic heatmaps of the twist deviation as a
function of the optimal number of twist. Each optimal solution
was randomly noised 500 times and the resulting performances
(final number of twist) were computed. These performances
were compared to the original one, giving a number of
twist deviations (positive is more). These computations are
performed on every optimized solutions which yielded at least
one twist.

mean optimization duration and mean number of twists are
presented in Tab. III. These results show that the 3D problem
is harder to solve than the 2D one (higher convergence times
and lower convergence rates) but yields better performances
in terms of twists. Although lower than in the 2D case, 3D
convergence rates remain reasonably high to be used in a
multi-start approach. Adding a penalization on the hand path
(PHP vs UHP) also complicated the problem (see Tab. III)
and yielded lower number of twist but more realistic solutions
(less arm motion).

TABLE III: Optimization statistics for each model and each
type of cost function. The convergence rate and the mean time
of convergence are given for all the optimized solution (400
per line). The number of twist is given for the best twisting
solutions per number of nodes, as in Fig. 5.

Model Cost Convergence Time (s) Twists ± (95% ci)

2D UHP 99.1% 294 1.9± 0.5
3D UHP 73.9% 1214 4.5± 0.3
2D PHP 97.7% 387 1.4± 0.1
3D PHP 69.5% 1226 3.6± 0.4

Fig. 6 displays a kernel density estimation of the distribution
of twists generated by the optimal techniques in function of
the model (2D vs 3D) and of the objective function used in the
optimization (PHP vs UHP). First, this representation allows
to note that there are clusters of solutions, which correspond
to local minima of the constrained objective function. These
clusters are narrower with the 2D model regardless of the
hand path penalization. Secondly, regardless of the model,
the most performing UHP techniques led to higher number of
twists (2D: 1.6, 3D: 4.7) than the most performing PHP ones
(2D: 1.3, 3D: 4), with more clusters of near-optimal solutions.
Finally, as already revealed, with the 3D model, there exist
clusters of solutions yielding higher number of twists than the
best clusters of the 2D model (see also Fig. 5). It is worth
noticing the really low density of 2D solution yielding more
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than 1.75 twists, illustrating the importance of multistart via
the impact of the initial guess on the optimized solution.

Fig. 7 presents logarithmic heatmaps of the twist deviation
due to the introduced kinematic noise, as a function of
the number of twist generated by the initial solution. The
higher the heatmaps, the higher the number of solutions in
the underlying discretized area. The main result from this
representation is the existence of robust clusters of solutions,
corresponding to warm-colored cells on the 0-twist-deviation
horizontal line. For instance, for the 2D model, Fig. 7 shows
a high concentration of solutions initially producing around
1 twist which remain stable (around 0 twist deviation). For
the same model, there also exist solutions with higher initial
number of twist (2.4), of which a substantial part remains
stable. For the 3D model, looking at the 0-twist-deviation
horizontal line reveals high-twisting clusters of stable solutions
(2.2, 3, 3.5 and 4 twists).

IV. DISCUSSION

The main objective of this work was to study optimal 3D
arm strategies for maximizing twist rotation during the single
back layout somersault of a multibody model.

Indeed, in acrobatic sports, it is commonly admitted that
twists in backward somersaults are generated mainly with 2D
motion of the arm [34]. Overall, considering change of plane
of abduction/adduction at the shoulder significantly increased
the twisting performance, by about two twists compared
to abduction/adduction only. Apart from pure performance,
another interesting outcome of this investigation lies in the
comparison between 2D and 3D strategies yielding similar
number of twists (about 3; see Figs. 8 and 10). It reveals
that exploiting 3D arms trajectories can result in completely
different solutions (less arm abd/abduction, compensated for
by elevation change of plane) for a similar final performance.

Thus, our results temper the consensus about 2D arms
strategies for twisting somersaults. We suggest that athletes
would gain in performance if they used 3D motion in a
proper manner. Moreover, studies maximizing twists with 2D
models disregard the dimensionality of the torques needed to
execute these planar trajectories [5], [3]. In the present work,
it is shown that these torques are not negligible, but of the
same order as the controlled ones. For all this reasons, we
believe that adding an extra DoF at each shoulder is a relevant
modeling approach.

As shown in this study, the optimal control formulation
(Eq. 4) gives a wide flexibility in the choice of the cost
function, allowing one to maximize the performance of the
system while penalizing too complex and thus unrealistic
solutions. For instance, the minimization of segment trajectory
is used in sports such as barbell lifting [35], where the
underlying goal is to minimize the work done by the athlete.
In the present study, we have shown its relevance in artistic
sports to control movement complexity. Indeed, two cost
functions (PHP and UHP) were implemented and the analysis
of the results reveals that, as expected, when penalized in
complexity, the optimal solutions resulted in 35% (resp. 20%)
less twists with the 2D (resp. 3D) model (Fig. 5), but were
less demanding in terms of joints torques (Fig. 4).

The multiple shooting transcription of the problem
combined with the non-linear solver IPOPT was a relevant
choice as it enabled us too develop a multi-start approach
with poor initial guesses and a lot of room for the solver
to find innovative solutions. We believe that this strategy was
particularly interesting as it resulted in different clusters of
near-optimal solutions (see Fig. 6), which will be qualitatively
studied and explained in a near-future study. The existence of
very low-density clusters of solutions illustrates the relevance
of the multistart approach because it highlights the impact of
the initial guess on the optimized solution. When looking for
innovative motor strategies, as in sports sciences for instance,
this kind of approach should be preferred as it enables a
minimal amount of a priori knowledge (from the coaches, the
community, etc...) to be fed into the solver, leaving random
starts and gradient-based descents the chance to discover new
techniques [20]. Of course, a direct drawback of such an
implementation is its computational cost which is constantly
reducing thanks to the advances in numerical optimization. In
particular, the number of shooting nodes used for discretizing
the optimization problem was relatively important because it
reduces the integration time between two nodes and thus limits
the risk of reaching a singularity on the root orientation during
integration.

As pointed out already, techniques needing infinite precision
to achieve targeted performances are irrelevant to any human-
related application scenario (particularly acrobatic sports)
because of the variability inherent to human motion [22]. In
this regard, robustness of the optimized solution was studied
after optimization to determine whether errors during the
execution of the solution would lead to noticeable changes
in its performance. Our choice was to introduce the errors
at a kinematic level, which could be discussed from a motor
control point of view, but remains a relevant test for robustness.
The results show that, if a part of the solutions are not robust
to the noise introduced (see dispersion in Fig. 7), there exist
clusters of stable solutions. Interestingly, some of the highly-
twisting solutions (3 or more twists) optimized with the 3D
model are robust to kinematic noise, demonstrating a clear
advantage over 2D solutions whose stable cluster generates
only a bit more than one twist. This is a promising result
since an ideal solution would score a high performance while
being robust to execution errors. Before concluding on the
transferability of such techniques to the sports community
however, a more in-depth analysis of the robustness should
be conducted (e.g. violation of the problem constraints after
adding noise). The fact remains that, according to the results
obtained in the present work, considering 3D trajectories of the
shoulder for twisting somersault is a better choice on all fronts.
Moreover, it was numerically demonstrated that increasing the
kinematic fidelity of the model does not increase the level
of control complexity on the real system, which is another
argument in favor of using the 3D model.

Another point concerns the use of quaternions for modeling
joints rotations in a context of numerical optimal control.
This was shown to be feasible, with no implications on the
nature of the solution when applied at the root segment of
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the model. Although our model permits 3D arm motions, it
remains relatively simple and improvable especially by adding
hip or thorax joints known to be used in optimal techniques
[6]. In future works, it would also be relevant to add one
flexion at each elbow, but this would require to add another
rotation at the shoulder to control the full 3D orientation of the
arm. Therefore, Gimbal lock problem could occur with Euler
angles representation, a situation which could be avoided using
a quaternion representation of the orientation at the shoulder
[36]. Also, although self-collision of the arms with the body
where avoided thanks to kinematic constraints, future work
could involve general non-crossing segment constraints, in
order to avoid arms collisions for instance.

In conclusion, 3D arms techniques during backward
somersault are relevant since they produce more twist
than 2D ones without increasing the complexity of the
underlying motor control. The contributions of this work
should be of interest to acrobatic sports coaches and to the
biomechanics community, as the presented approach (large
batch optimization, selection of the solutions, robustness
analysis) could be generalized to other motion simulations.
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[27] A. Wächter and L. T. Biegler, “On the implementation of an interior-
point filter line-search algorithm for large-scale nonlinear programming,”
Mathematical programming, vol. 106, no. 1, pp. 25–57, 2006.

[28] S. Namdari, G. Yagnik, D. D. Ebaugh, S. Nagda, M. L. Ramsey, G. R.
Williams Jr, and S. Mehta, “Defining functional shoulder range of
motion for activities of daily living,” Journal of shoulder and elbow
surgery, vol. 21, no. 9, pp. 1177–1183, 2012.

[29] P. E. Crouch and R. Grossman, “Numerical integration of ordinary
differential equations on manifolds,” Journal of Nonlinear Science,
vol. 3, no. 1, pp. 1–33, 1993.

[30] M. Boyle, “The integration of angular velocity,” Advances in Applied
Clifford Algebras, vol. 27, no. 3, pp. 2345–2374, 2017.

[31] L. Seelen, J. Padding, and J. Kuipers, “Improved quaternion-based
integration scheme for rigid body motion,” Acta Mechanica, vol. 227,
no. 12, pp. 3381–3389, 2016.

[32] M. S. Andrle and J. L. Crassidis, “Geometric integration of quaternions,”
Journal of Guidance, Control, and Dynamics, vol. 36, no. 6, pp. 1762–
1767, 2013.

[33] G. Bessonnet, P. Seguin, and P. Sardain, “A parametric optimization
approach to walking pattern synthesis,” The International Journal of
Robotics Research, vol. 24, no. 7, pp. 523–536, 2005.

[34] M. R. Yeadon, Twisting somersaults. SB & MC, 2015.
[35] S. L. Nejadian, M. Rostami, and F. Towhidkhah, “Optimization of

barbell trajectory during the snatch lift technique by using optimal
control theory,” American Journal of Applied Sciences, vol. 5, no. 5,
pp. 524–531, 2008.

[36] C. Kuhlmann, T. L. Milani, et al., “Investigation of shoulder kinematics
in volleyball spikes,” in ISBS-Conference Proceedings Archive, 2008.

9

https://github.com/pyomeca/biorbd
https://github.com/pyomeca/biorbd
http://dx.doi.org/10.1007/s10514-016-9574-0


APPENDIX

TABLE IV: Summary table of the kinematics and kinetics bounds enforced by the optimization problem at the start, during
the skill and at the end of it. − stands for infinite bounds

2D model

3D model

st
ar

t

qrtx qrty qrtz qrrx qrry qrrz qrael & qlael qracp & qlacp

position (◦ or m) 0 0 0 0 0 0 [160, 180] [−135, 45]
velocity (◦/s or m/s) [−10, 10] [−10, 10] [5.89, 6.09] 0 − 0 [−5730, 5730] [−5730, 5730]

torque (Nm) 0 0 0 0 0 0 [−100, 100] [−100, 100]

sk
ill

position (◦ or m) − − − [−45, 45] − − [0, 180] [−135, 45]
velocity (◦/s or m/s) − − − − − − [−5730, 5730] [−5730, 5730]

torque (Nm) 0 0 0 0 0 0 [−100, 100] [−100, 100]

en
d

position (◦ or m) [−0.1, 0.1] [−0.1, 0.1] [−0.1, 0.1] [−15, 15] [350, 370] − [155, 165] [−135, 45]
velocity (◦/s or m/s) 0 0 0 0 0 0 [−5730, 5730] [−5730, 5730]

torque (Nm) 0 0 0 0 0 0 [−100, 100] [−100, 100]

Fig. 8: Right and left arm abd/adduction (elevation)
of the most-twisting 2D solution (2.94 twits), without
penalization on the hand trajectory.

Fig. 9: Right and left arm abd/adduction (elevation) and
elevation change of plane of the most-twisting 3D solution
(4.90 twits), without penalization on the hand trajectory.

Fig. 10: Right and left arm abd/adduction (elevation) and
elevation change of plane of another 3D solution (3.10
twits), with penalization on the hand trajectory.

variable initial guess

T 1.2s
u uniformly distributed random arm

torques in [−10, 10] Nm
qrtx, qrty
q̇rtx, q̇rty
qrtz free fall parabolic trajectory for

initial velocity of 6.0m/s
q̇rtz free fall affine trajectory for initial

velocity of 6.0m/s

2D qrrx
q̇rrx

3D qrry linear increase from 0◦ to 360◦

q̇rry 300◦/s

qrrz linear increase from 0◦ to qrrz(T )
q̇rrz qrrz(T )/T

qrael , qlael uniformly distributed random arm
elevation in [0, 180] ◦

q̇rael , q̇lael
qracp , qlacp
q̇racp , q̇lacp

Fig. 11: Initial guesses of each optimization variable, for
the 3D and 2D models. Empty field means initialization
to 0.
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