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Résumé

Ce mémoire s’inscrit dans l’émergente globalisation de l’intelligence artificielle aux do-

maines de la santé. Par le biais de l’application d’algorithmes modernes d’apprentissage

automatique à deux études de cas concrètes, l’objectif est d’exposer de manière rigoureuse

et intelligible aux experts de la santé comment l’intelligence artificielle exploite des don-

nées cliniques à la fois multivariées et longitudinales à des fins de visualisation et de pro-

gnostic de populations de patients en situation d’urgence médicale. Nos résultats montrent

que la récente méthode de réduction de la dimensionalité PHATE couplée à un algorithme

de regroupement surpasse d’autres méthodes plus établies dans la projection en deux di-

mensions de trajectoires multidimensionelles et aide ainsi les experts à mieux visualiser

l’évolution de certaines sous-populations. Nous mettons aussi en évidence l’efficacité des

réseaux de neurones récurrents traditionnels et conditionnels dans le prognostic précoce

de patients malades. Enfin, nous évoquons l’analyse topologique de données comme piste

de solution adéquate aux problèmes usuels de données incomplètes et irrégulières aux-

quels nous faisons face inévitablement au cours de la seconde étude de cas.

Mots-clefs: Santé, Apprentissage automatique, Données multivariées longitudinales, Vi-

sualisation, Prognostic

5





Abstract

This thesis aligns with the trending globalization of artificial intelligence in healthcare.

Through two real-world applications of recent machine learning approaches, our funda-

mental goal is to rigorously and intelligibly expose to the domain experts how artificial

intelligence uses clinical multivariate time series to provide visualizations and predictions

related to populations of patients in an emergency condition. Our results demonstrate

that the recent dimensionality reduction tool PHATE combined with a clustering algorithm

outperforms other more established methods in projecting multivariate time series in two

dimensions and thus help the experts visualize sub-populations’ trajectories. We also high-

light traditional and conditional recurrent neural networks’ proficiency in the early prog-

nosis of ill patients. Finally, we allude to topological data analysis as a suitable solution to

common problems related to data irregularities and incompleteness we inevitably face in

the second case study.

Keywords: Healthcare, Machine Learning, Multivariate Time Series, Visualization, Prog-

nosis
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different outcomes. (a) Given CondRNN trained for the primary outcome, each

17
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2.16 The interpretation of the 2D PHATE embedding with respect to change in
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indicated direction. Progressions in terms of 6 features are embedded in 2

dimensions, a unique PHATE’s property allowing an easy visualization of MTS
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window is centered, in years since disease onset. The big red arrow highlights a
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Introduction

With recent advancements in computing power, learning algorithms and availability

of large datasets collected from medical records and wearable health monitors, artificial

intelligence (AI) is booming in medicine and healthcare [6]. Indeed, through machine

learning (ML), AI-based systems have the capacity to collect, examine, and derive conclu-

sions from complex and numerous data that cannot be easily processed by humans. This

can aid in patient mortality or disease prediction, which is, in the best-case scenario, a

difficult assignment for physicians. For instance, AI can help to determine the likelihood

of developing breast cancer by converting images of digital mammography into pixel-level

variables which are unrecognizable to the human and combining them with clinical data

and any known risk factors in order to limit the high number of predicted false positives

that has been observed from usual screening predictions [138]. AI applications relate to an

uncountable number of other medical tasks, including magnetic resonance imaging (MRI)

segmentation [7], assistance in diagnostic radiology [117] or the promising Google Brain

Project [61] for retinal eye diseases detection, making room for infinite possibilities.

This thesis aligns with this fast-growing machine learning trend in healthcare by fo-

cusing on the analysis of multivariate time series (MTS) medical data and their specific

challenges. First, there is a urge to exploit data sampled over time as they are more and

more available thanks to the worldwide spread of wearable intelligent devices such as

smartwatches [113] capable of recording data without clinical supervision. Then, due to

the inherent complexity of MTS data and an “AI chasm” limiting the clinical application of

more advanced machine learning models [74], clinicians tend to conform to more estab-

lished approaches. For instance, in data visualization, the common practice sticks with star

charts, parallel coordinates or scatter plot matrices [32, 144] that require mental efforts

to draw the right conclusions as the dimension grows, or that oversimplify the feature



set to counterbalance the information overload [25]. Considering MTS as a whole may

actually uncover some properties that are hardly found by breaking them into univariate

time series (UTS) because UTS may not fully capture the inherent correlations between

variables in MTS data [150]. To illustrate, MTS are able to reveal hidden correlations

between multiple predictors and outcomes, because individual predictors might seem un-

critical if considered independently, but in conjunction, can indicate an alarming condition

[25]. Unfortunately, organizing multivariate time series data for presentation to a domain

expert is a challenging task, because they are often numerous and human cannot mentally

represent data in more than three dimensions [60]. In the context of data prediction,

MTS do not naturally suit traditional predictive models in medicine such as logistic regres-

sions that can either predict on UTS or single multivariate points, but do not handle MTS

without feature hand-engineering [59].

Through two current real-world healthcare applications in collaboration with biomed-

ical domain experts and other ML scientists, this thesis first intends to show how recent

ML methods can help in the two above-mentioned important medical tasks, namely the

visualization of complex MTS to improve domain knowledge, and the prediction of future

medical events based upon multivariate historical data, useful in instant decision-making

to ensure a future well-being. Then, to a wider extent, while applying conventional and

more modern ML methods for the same purpose, we follow a comparative analysis with

the aim of showing the benefits of recent ML advancements in healthcare.

In the first chapter, we will provide the theoretical foundations of our study with ex-

planations about data visualization and predictions through machine learning, as well as

a review of the models used in our applications. This part is essential to our thesis since

we attach importance to the demystification of ML in a clinical context.

The second chapter is dedicated to a global application and evaluation of our proposed

ML models on a hypoxaemic population of patients with COVID-19 who had been taken in

charge in hospital centre to receive awake prone positioning (APP) for faster and safer re-

covery, and whose features measuring different aspects of their cardiorespiratory condition

have been collected daily up to three days post-enrolment [68, 135]. On the one hand,

we will demonstrate the efficiency of the recent dimensionality reduction method Potential
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of Heat-diffusion for Affinity-based Trajectory Embedding (PHATE) (see Section 1.7) in vi-

sualizing this time-varying database, with the intention of giving the experts new insights

into the APP response of different groups of patients and potentially find distinguishing

phenotypes that may predetermine treatment failure, that is, the intubation or the death

within 28 days post-enrolment. On the other hand, we will conduct a comparative analy-

sis of four different predictive models based upon k-Nearest Neighbours (see Section 1.4)

and Recurrent Neural Networks (see Section 1.5) that perform “trackable” outcomes pre-

dictions on newly admitted patients’ time series data from enrolment in order to provide

an early prognosis system that could be used in clinical environment as an interesting

decision-making support.

The final chapter is about the study of multiple sclerosis (MS) [3], a chronic disease

well-known for its highly varied and unpredictable course over time [51]. Considering a

database of sick patients whose magnetic resonance imaging (MRI) features and other MS

symptoms have been recorded over the past decades, we will follow the same visualization

framework as in the previous chapter and try to perform subtyping on common group pro-

gressions. However, the purpose of this chapter is rather to point out strong issues directly

related to the database, such as mixed types of variables, missing data, unevenly spaced

measurements or different time ranges, which restrict the production of interpretable vi-

sualizations and that are not easily handled by traditional data processing. After partially

solving those issues thanks to a supervised version of PHATE using random forest proxim-

ities [119], this will be the perfect occasion to state a future direction through topological

machine learning [62], an approach that bypasses frequent data irregularities by study-

ing the global shape of the collected database instead of its traditional Euclidean vector

representation.
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Chapter 1

Theoretical background

1.1. Data analysis and machine learning

In practice, multiple data scientists each specializing in one aspect of data science con-

duct data-oriented projects. In this work, as scientists with a strong mathematical back-

ground, we try to bring our own expertise with the study and application of machine

learning, one of most famous modern approaches to analyze data. Machine learning (ML),

as stated in the 1950s by artificial intelligence pioneer Arthur Samuel, is “the field of study

that gives computers the ability to learn without explicitly being programmed” [122]. It

is of course a mean to analyze data, but this definition rather classifies machine learning

as an application of artificial intelligence, a concept that refers to the capability of a com-

puter system to mimic human cognitive functions such as learning and problem-solving.

This aspect is what makes machine learning programs different from traditional ones, be-

cause their purpose is to extract knowledge from a wide variety of situations without being

specifically designed for those situations. In other words, machine learning programs are

prepared to solve the unknown, as people do when they drive in a foreign country, read

a new book or solve a mathematical equation. To explain their particular ability, we need

to dive into their construction. As ML models are every time motivated by goals of prac-

tical end-use, we are about to present two classic examples of predictive and exploratory

problems encountered by humans and present how ML models are constructed around

them.



1.2. Predictive machine learning

Prediction problems are one of the most common class of problems encountered by hu-

mans. Let us formulate a prediction problem to show how ML can help humans. Consider

a couple who purchased a house a few years ago and has just given birth to triplets. Under

this unforeseen situation, they are interested in selling their house for a bigger one. Before

contacting the estate agency, they would like to estimate their house price by themselves

to know if it is worth building an extension instead. Many parameters are known to deter-

mine house prices: square footage, number of rooms, has fitted kitchen or not, has garden

or not, location and so on. Once collected, those features represent the data of the house,

and the final price is the house label. Naturally, our couple, who does not know their house

price, wants to make use of their house properties to get an estimation. In ML terms, they

would like to predict their house label from their house data. However, sole house features

are still not sufficient to produce a good price estimation because we have nothing to rely

on. Usually, we also have to inspect the current housing market trend. Therefore, our

couple collects features and prices of surrounding houses from the local newspaper; then,

they compare their house properties with all the collected house ads and find a neighbor-

ing house with similar properties; finally, they use the latter to estimate their house price.

It is definitely one way to estimate a house value, and likely what people tend to do. Still,

it is not the only approach. One may believe that relying upon the most similar house does

not give a realistic estimation because this house price could be biased by hidden factors,

such as an overestimation of the owner. The couple should instead consider the five most

similar houses and estimate the mean of their corresponding prices to produce an esti-

mate. One may also wonder how the couple measures the similarity between two houses.

For instance, suppose their house is 2400 square feet, has four rooms, fitted kitchen and a

garden. One of the collected house is 2200 square feet, has four rooms, fitted kitchen and

similar garden, and another is 2400 square feet, has four rooms, fitted kitchen but smaller

garden. Which one of these two houses is the most similar to theirs? It is a rather difficult

question, and we only take few house features into account.

In this situation, an appropriate supervised machine learning algorithm, a type of ML

algorithms adapted for prediction problems, might help our couple to get a better price

estimation. The process of a supervised ML system is analogous, but has the benefit of
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being automated and designed by ML experts from theoretical grounds. To be more accu-

rate, a supervised ML model is defined as the resulting model from three equally important

phases, as shown in Figure 1.1:

(1) the training phase considers a labeled data set, the training set, and aims to fit an

algorithm to our current knowledge data in order to make future predictions. This

is analogous to a student learning a course to prepare an examination;

(2) the validation phase considers another set of labeled data points, the validation

data set, but does not make use of the known target variables to learn. Instead, it

consists of inputting only the predictors into our previously learnt algorithm and

comparing its output to the true targets. Usually, the learning algorithm of the

training phase is built upon a set of parameters, called hyper-parameters, which is

not internally optimized in the learning process and rarely leads to the best possible

output model. Therefore, the validation phase indicates if we need to re-run the

training phase with a different setting to output a better model. This is analogous

to a student doing a pre-examination test to decide if it is worth re-learning the

course with a new method before the final examination;

(3) the testing phase happens after the validation and picks a model which is supposed

to be the best. It also outputs a performance score based on comparisons between

predicted and true labels but is a mean to evaluate this final model as if it was the

chosen one for future applications. This is equivalent to a student taking a final

examination whose resulting grade will be the one appearing on the transcript and

being subsequently used by other people to have an idea of the student’s perfor-

mance in this discipline.

After confirmation of its test performance and its relevance to the targeted task by

domain experts, the final model is saved and ready to be used on new incoming data

points during the deployment phase.

1.2.1. Nested Cross-Validation

Nested Cross-Validation (NCV) is a training-validation-evaluation framework that per-

forms the above steps (1), (2) and (3) when setting up a predictive model, in a way that

reduces biased validation and evaluation scores. It is based upon the encapsulation of
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Fig. 1.1. Simplified scheme of the supervised learning process, inspired by a figure from [71].

two k-fold cross-validation processes [20] dedicated to the validation and the evaluation

separately. It is motivated and works as follows.

On the one hand, to determine the best hyper-parameter combination that we need to

define a model, we can perform a grid search. This is a brute force method that, given

a model architecture, a training set, a validation set and a grid of all the possible hyper-

parameters, launches the learning algorithm of the model on the training set and computes

the validation loss on the validation set for each possible hyper-parameter combination to

finally return the combination corresponding the lowest loss. While becoming very time

consuming with large hyper-parameter grids, especially on complex models like neural

networks, grid search prevails as the state of the art for hyper-parameter optimization

because of its ease of execution and parallelization and its durability in low-dimensional

spaces [99]. To reduce the bias introduced by a single train/validation split that does not

use all of our observations for testing, we perform grid search in combination with a k-

fold cross-validation [20], a technique that splits the available data into k equally sized

subsets (or folds) such that each of the k subsets is used once as the validation set and

the k − 1 remaining subsets form together the training set. Thus, grid search is performed
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on each of those k training/validation splits and the reference score to determine the best

hyper-parameter combination is now based upon the aggregation of the losses across the

k possible validation splits.

On the other hand, we need to get insights into the performance of the model with

its hypothetically optimized hyper-parameters as described above (see also the analogy in

1.2). k-fold cross validation is also popular when it comes to test a model, but we have to

be careful when hyper-parameter optimization is also involved in the process. Indeed, if we

just performed one k-fold CV to optimize hyper-parameters and measure performance at

the same time, it would automatically output an overestimated performance score because

we would test the model on “new” data that has already been observed by the model

to optimize its hyper-parameters, so the concept of evaluating a model with a real-world

situation is completely lost. To deal with this issue, we opt for a Nested Cross-Validation

(NCV), a validation/test framework for supervised ML models that fits a model iteratively

using a pair of nested loops, with the hyper-parameters adjusted to optimise a model

selection criterion in the outer loop (model selection) and the parameters set to optimise

a training criterion in the inner loop (model fitting/training) [31] (Figure 1.21).

1.3. Exploratory machine learning

Unlike supervised machine learning that makes predictions for new data outcomes

based on previous experience, unsupervised machine learning algorithms, another group

of ML algorithms, generate knowledge from unlabeled data by themselves (Figure 1.3);

they primarily help scientists to explore huge and complex data sets. To illustrate, let

us take the classic example of customer segmentation [126]. Nowadays, the shopping

ways of customers have dramatically changed, as they are more and more opting for E-

commerce platforms. Compared with traditional sales, E-commerce has a unique charac-

teristic that all the transaction information including the shopping time, items, and prices

can be tracked and stored accurately. This allows E-commerce companies to make use of

unsupervised ML models to extract knowledge from all this data in order to improve their

selling strategies. In the cited paper, the author presents a ML process which allows compa-

nies to detect groups of customers based on their collected characteristics and behaviours

1by Casper Hansen: https://mlfromscratch.com/nested-cross-validation-python-code/
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Fig. 1.2. Illustration of NCV. During one outer iteration, the inner loop optimizes the model’s hyper-

parameters on the first training data set with a grid search k-fold cross-validation and the outer loop

tests the optimized model on the remaining test data set, giving us 1 out of K scores because the

outer loop consists of K iterations (i.e. K different training-test splits of the data set). After the

K outer iterations, the mean of those K scores gives an unbiased generalization performance of the

selected model. It is important to note that the K scores from the outer loop are probably generated by

different hyper-parameter combinations, which is precisely the purpose of NCV: we want to evaluate

a model seen as an architecture rather than a combination of hyper-parameters.

and link each of them to preferences in terms of purchased products. Doing so by hand is

unthinkable, considering the enormous amount of collected data. Thus, a well-designed

unsupervised ML algorithm can provide a fast and efficient decision-making support for

E-commerce companies.

Remark 1.3.1. Sometimes, the labels of the data points may be partially or totally avail-

able. When the visualization task is led by those targeted labels, there exist supervised ML

techniques taking those targets into account in their algorithm with the aim of improving the

visualization (see Section 3.3.3 for a real-world example). In other words, not all exploratory

ML methods are unsupervised, but the task remains the same.

From now on, it is clear that these two classic examples distinguish supervised and

unsupervised ML algorithms which are, in general, respectively designed to solve two types

of problems encountered by humans: prediction and exploration. There are other types of
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Fig. 1.3. Simplified scheme of the unsupervised learning process.

ML framework, but this work is mainly about those ones. The next sections are about to

review all the main ML methods that are used in our biomedical applications. In order to

be concise and theoretically accurate in our ML algorithm descriptions, we assume some

underlying mathematical knowledge, including standard notation, differential analysis,

vector and linear algebra as well as probability.

1.4. k-Nearest Neighbours

k-Nearest Neighbours (kNN) models are simple yet widely used supervised ML algo-

rithms [81] when the goal is to predict a target variable of new data instances based on

previously known data, as in our house price prediction example in Section 1.2. This is

probably the most straightforward predictive model because it does not implement any

learning algorithm, making the learning phase trivial. Indeed, it considers that there is

no need to extract complex relationships when we can just memorize the entire training

dataset as the model. In other words, it assumes that a new incoming data point x∗ can be

labeled only with the help of the training set {x1, . . . , xm} and their labels {y1, . . . , ym}.

Assuming all our working database has been translated to N -dimensional vectors such

that each component represents an attribute, the kNN labeling of a new point x∗ ∈ RN

first needs to set k to a predefined integer value along with a measure of proximity

s : RN × RN −→ R ≥ 0 between our data points. Then, the k-neighbourhood of x∗,

Nk(x
∗), consisting of the k nearest neighbours of x∗, is computed according to s. Finally,
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Fig. 1.4. kNN prediction on 2-dimensional synthetic data, with Euclidean distance (ED) and majority

vote label assignment for different values of k (from [81], Chapter 4). Left: new data point to be

labeled “triangle” or “circle”. Center: computation of the k = 1-ED-neighbourhood. The predicted

label is “triangle”. Right: computation of the k = 3-ED-neighbourhood. The predicted label is “circle”.

a label is assigned to x∗ thanks to the labels of points in its neighbourhood Nk(x
∗) ac-

cording to a predefined labeling assignment algorithm. Each combination of k, s and

assignment algorithm is arbitrary and defines a unique kNN model. They are typical ex-

amples of hyper-parameters as mentioned in Section 1.2, and thus could be optimized

through validation depending on our specific needs. In Figure 1.4, we show how varying

the hyper-parameter k of a kNN approach affects the output label of a test record, while

the other hyper-parameters, namely s and the label assignment algorithm, are respectively

fixed to Euclidean distance (ED) and majority vote.

This flexibility in terms of hyper-parameters makes kNN able to suit many other types

of input and output data. For instance, if {y1, . . . , ym} were continuous instead of discrete

labels as shown in Figure 1.4, a labeling assignment method such as the mean label of the

k-neighbourhood would provide a consistent continuous output. This is particularly useful

when the expected label of a new point is a house price as in Section 1.2, or a probability

as in our application in Chapter 2. Moreover, one of the most important kNN’s benefits

is its ability to handle time series data, the major axis of our study. This is made possible

by setting a proximity measure s valid on sequences of N -dimensional vectors instead of

single N -dimensional points. Several measures, with their own strengths and weaknesses,

have already been proposed [4], including the ED matching which extends the standard

ED to time series by summing the distances between pairs of points recorded at the same

time step.

44



While being intelligible and easily implemented, the latter proximity measure and its

variants suffer from several drawbacks that make inappropriate their use in certain applica-

tions [30] : it only suits time series of the same length; it does not handle outliers or noise;

it is very sensitive to six signal transformations: shifting, uniform amplitude scaling, uni-

form time scaling, uniform bi-scaling, time warping and non-uniform amplitude scaling. In

other words, ED would not capture time series of similar shapes if they were subject to the

latter transformations. This is why we want to briefly introduce Dynamic Time Warping

(DTW) [76], a proximity measure being heavily used in our next applications thanks to its

robustness to the similarity computation, such as its suitability to perform early predictions

on truncated time series (Chapter 2). DTW is defined as follows: given two time series Q

and C, of lengths n and m, respectively, where

Q = q1, q2, . . . , qi, . . . , qn

C = c1, c2, . . . , cj, . . . , cm,

we first construct an n-by-m matrix where the
(
ith, jth

)
element of the matrix contains

the distance d (qi, cj) between the two points qi and cj (i.e. usually d (qi, cj) = ∥qi − cj∥2N
for N -dimensional sequences). Each matrix element (i, j) corresponds to the alignment

between the points qi and cj. This highlights the big difference between ED and DTW:

while ED restricts to (i, i) alignments, DTW allows one-to-many matching (Figure 1.5 [4]).

A warping path W is a contiguous (in the sense stated below) set of matrix elements that

defines a mapping between Q and C (Figure 1.6 [76]). The kth element of W is defined as

wk = (i, j)k. Thus, we have

W = w1, w2, . . . , wk, . . . , wK max(m,n) ≤ K < m+ n− 1

The following conditions ensure that a warping path captures a “correct” sequences of

(qi, cj) with respect to time, otherwise the time aspect of a time series comparison would

be completely lost:

(1) boundary conditions: w1 = (1, 1) and wK = (m,n), i.e. the warping path starts and

finishes in diagonally opposite corner cells of the matrix. This avoids the possibility

that the time warping degenerates to a tiny part of the sequences;
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Fig. 1.5. Comparison of ED (left) and DTW (right) distances between the same two time series in

green and orange. ED computes the distance between the two time series by summing the time-

to-time distances between matching points, while DTW allows time distortions. With its restricted

alignment, ED misses the similar shape shared by those two time series.

(2) continuity: given wk = (a, b), then wk−1 = (a′, b′), where a− a′ ≤ 1 and b− b′ ≤ 1.

This restricts the allowable steps in the warping path to adjacent cells (including

diagonally adjacent cells), as to avoid “time jumps”;

(3) monotonicity: given wk = (a, b), then wk−1 = (a′, b′), where a−a′ ≥ 0 and b−b′ ≥ 0.

This ensures that the warping path does not go backwards in time.

Finally, if W is the set of all possible warping paths between Q and C, the DTW distance

between Q and C is obtained from W ∈W minimizing the warping cost
√∑K

k=1 wk:

sDTW (Q,C) = min
W∈W


√√√√ K∑

k=1

wk

 .

Remark 1.4.1. Under the above constraints (1), (2) and (3), DTW remains symmetric [83],

that is, sDTW (Q,C) = sDTW (C,Q), so DTW provides an intuitive proximity between time

series objects and can be used similarly to ED matching in a wide range of applications.

1.5. Recurrent neural networks

A recurrent neural network (RNN) [45]2 is also a machine learning model that aims to

predict the labels of new data points. RNNs are similar to traditional feedforward neural

networks, except that they handle a memory for sequential inputs by connecting hidden

2In this work, we focus on the use of RNNs in the context of supervised classification. In reality, RNNs

are useful for many other tasks, even in unsupervised setting [78].

46



Fig. 1.6. Illustration of the Dynamic Time Warping distance computation between two 1-dimensional

time series Q and C. A) Two sequences Q and C that are similar but out of phase. B) To align the

sequences, we construct a warping matrix and search for the optimal warping path, shown with solid

squares. C) The resulting alignment.

states associated with each time step. As opposed to kNN which directly learns from the

data itself thanks to its spatial structure (non-parametric model), a RNN incorporates in-

ternal parameters that are optimized through a learning algorithm on the training data set

before making predictions on new instances (parametric model). Indeed, the output of a

RNN depends on the network weights that are far from being optimal initially because they

are previously randomly initialized to produce first estimations. Formally, in the context of

classification, we consider RNNs whose outputs {ot}Tt=0 are computed as3

ot = ϕ(Whoht) (1.5.1)

where:

• ht = Φ(Wxhxt +Whht−1);

• h−1 ∈ Rnneurons is the initial hidden state (usually random or null);

• ϕ and Φ are (non-linear) differentiable functions;

• xt ∈ Rnfeatures is the t-step input vector;

• Wxh ∈ Rnneurons×nfeatures;

• Wh ∈ Rnneurons×nneurons;

3Internal biases are omitted for simplification.
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• Who ∈ Rnlabels×nneurons;

• (nfeatures, nneurons) ∈ N2 are respectively the number of input features at each time

step t and the number of neurons in the hidden states of the RNN.

A visual representation of the RNN architecture and its equations is illustrated in Figure

1.7. Thus, the goal of the learning process is to update the weight matrices Wxh, Wh

Fig. 1.7. Schematic illustration of a basic RNN architecture, without the biases for simplification. The

trainable parameters are the weight matrices Wxh ∈ Rnneurons×nfeatures , Wh ∈ Rnneurons×nneurons

and Who ∈ Rnlabels×nfeatures . Except h−1 that needs to be initialized, each hidden state ht depends

not only upon the input, but also the previous hidden state: ht = Φ(Wxhxt + Whht−1). Φ is the

hidden activation function, usually a differentiable non-linear function to allow more complex rela-

tionships compared to basic regressions. The output cells take the value ot = ϕ(Whoht) where ϕ is a

differentiable function defined to fit the expected labels.

and Who such that the output of the network after inputting each training instance better

approximates their labels, in the sense that the new weights minimize a loss function L =
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L (Wxh,Wh,Who) predefined according to the targets of the case study. This is done in an

iterative gradient descent optimization process in which we compute the partial derivative

of the loss function with respect to each individual weight at the current configuration of

the RNN. This computation indicates the direction of each individual weight update: if the

slope is negative, we increase the weight to “go downhill", otherwise we have to decrease

it to “go uphill". In matrix notation, we iteratively update weight matrices Wxh, Wh and

Who,

Wxh ← Wxh − λ
∂L

∂Wxh

Wh ← Wh − λ
∂L

∂Wh

Who ← Who − λ
∂L

∂Who

where λ ∈ R+ is the learning rate that weight the size of the updating step. Gradients

are computed with Backpropagation Through Time (BPTT) [146], which is the time de-

pendent equivalent of the classic backpropagation for FNNs. Since BPTT precisely demon-

strates how a RNN learns from data, we want to provide more intelligible insights regard-

ing those computations because we were very unsatisfied by the inconsistency in notation

and explanations across the existing literature about BPTT. First, let us define

L =
T∑
t=0

ℓ(ot)

which is the sum of the step-wise prediction losses of the system given at the current

weight configuration after one forward pass of a single input, and let us omit biases for

simplification. If f is, as usual, the summation function, and if ϕ is the activation function

of the output layer, we can write ot = ϕ(f(Who, ht)). Note that Who does not depend on

time because weights are shared in the same layer, no matter the time step. Thus,

L =
T∑
t=0

ℓ(ϕ(f(Who))

The main ingredient in BPTT is to successively apply the chain rule backwards thanks to

the dependence between a state and the previous ones. Here, by applying the chain rule
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twice, we have
∂L

∂Who

=
T∑
t=0

∂ℓ

∂ϕ
· ∂ϕ
∂f
· ∂f

∂Who

Since f is the linear combination of the previous hidden state involving the weights Who,

that is, f = Whoht, we can re-write the last factor:

∂L

∂Who

=
T∑
t=0

∂ℓ

∂ϕ
· ∂ϕ
∂f
· ht.

All the partial derivatives of the above expression are computable, because each function

in our RNN architecture are supposed to be differentiable. For instance, in binary classifi-

cation, we use the binary cross entropy and the sigmoid functions as the loss and output

activation functions [128], and the hidden activation functions are commonly the sigmoid

or the hyperbolic tangent [42]. We can also easily evaluate them at the current weight

configuration because we already know the outputs, the summation and the hidden states

at each time step after our first forward pass. This is why BPTT is particularly efficient:

it remembers each computation at each time step, so we do not have to perform useless

computations. We can repeat the process to compute ∂L
∂Wh

and ∂L
∂Wxh

by applying the chain

rule more times to go deeper backwards into the network.

However, one could notice that some parameters are not learnt through BPTT. They

are basically hyper-parameters (see Section 1.2), and the resulting trained model may be

sub-optimal since they directly affect the learning process. An important hyper-parameter

is the above-mentioned learning rate λ, whose a too small value may lead to slow conver-

gence of the gradient descent process while a too big value may cause the loss function

to fluctuate and get stuck in a local minimum or even to diverge [13, 17, 24]. Another

hyper-parameter that does not appear in the above discussion is the batch size. When

learning through BPTT, we can either update the weights after a forward pass of a single

training instance, as we did in our example (Stochastic Gradient Descent, SGD), multiple

training instances (Mini Batch Gradient Descent, MBGD) or the whole training set (Batch

Gradient Descent, BGD). When considering multiple instances, the loss function now takes

the average of the each output loss into account. To be more accurate in our notation, if

B is the set of all batches of equal size, if B is one of those batches containing patients’

indices sampled from the data set X, if |B| is the batch size hyper-parameter setting the

size of all the batches, and if oit is the t-step output of patient i after a feedforward pass
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into the RNN with the current weight configuration, we update network weights given the

loss function

LB =
1

|B|
∑
i∈B

(
T∑
t=0

ℓ(oit)

)
and we re-iterate the update until all the batches in B have been covered with the aim of

minimizing the global loss

Lglobal =
1

N

N∑
i=1

(
T∑
t=0

ℓ(oit)

)
where N = |X| is the number of training sequences. The batch size has to be carefully

chosen because it also directly affects the learning process. Indeed, BGD is very time con-

suming but ensures convergence of the loss function to a local minimum, whereas SGD

is faster but introduces noise in the weight setting [29], so an in-between with MBGD

is often needed. There is also number of epochs, corresponding to the number of com-

plete passes through the training dataset. Even the learning algorithm can be seen as a

hyper-parameter because recent optimization methods has been proposed to improve the

convergence of the classic BPTT. For instance, one of the most recent ones is Adam [79],

in which the learning rate is adapted for each weight parameter by running averages of

both the gradients and the second moments of the gradients.

Of course, we do not want to overwhelm our thesis with the optimization of every

possible hyper-parameter. During our application in Section 2.4.3, we end up with a com-

promise by following common practice in the existing literature in our hyper-parameters

optimization.

1.6. k-means and k-medoids clustering

Clustering is an unsupervised machine learning process that seeks to find groupings, or

clusters, in data in such a way that data points within a cluster are more similar (in the

sense of a well-defined (dis)similarity measure [53]) to each other than to data points in

the other clusters [12]. It is particularly useful for large data sets described with many

features whose groupings are not easily detectable by hand, as in the customer segmen-

tation of Section 1.3 where we intuitively presented an example of clustering application.

In this work, we focus on exclusive partitioning, the most common and intelligible form of

clustering approach that assigns each data point to an exclusive cluster. As one of the most
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popular exclusive partitioning methods ([81], p. 226), k-means [88] technique identifies

clusters based on central prototype records. In k-means, the prototype record of a cluster

is its centroid, defined as the mean of its data points. Given a database X = {x1, . . . , xn},

this method aims to find a partition of k ≤ n clusters C = {C1, . . . , Ck}minimizing the sum

of squared error (SSE) of all data points in a cluster to its centroid. That is, the partitioning

C is the solution to the minimization problem

argmin
C

k∑
i=1

∑
xj∈Ci

∥xj − ci∥22

where ci is the cluster i’s centroid. This objective function may also be viewed as the

attempt to minimize the variance of the Euclidean distance of the points to their nearest

cluster centers [21], giving the output clusters a meaningful geometric property. The

traditional algorithm starts by initializing k random centroids c1, . . . , ck in the database X,

and repeats the following steps until the centroids/clusters stabilize (i.e., do not change):

(1) Assignment: perform 1-NN classification to (re)assign each x ∈ X to one of the

cluster centroids.

(2) Update: recompute each cj to be the centroid of all the points assigned to its cluster.

While convergence is guaranteed by SSE decreasing at each update, this often leads to a

local optimum highly depending on the initialized centroids ([81], p. 232), so multiple

runs are often performed to alleviate the risk of having badly representative clusters.

This clustering approach based upon iterative updates of a central prototype makes

room for derived methods such as k-medoids [1]. In contrast to the k-means algorithm,

k-medoids chooses actual data points as central prototypes (named medoids), and thereby

allows for even greater interpretability of the cluster centers than in k-means, where the

center of a cluster is not necessarily one of the input data points. The algorithm is very

similar, except that ci are now medoids and their update is performed by computing the

SSE induced by swaping ci with points in the associated cluster and selecting the one

with the lowest score. In the context of our study, we mostly use k-medoids instead of

k-means because it increases the visualization ability of our application in Section 2.3.3

by allowing the projection of the medoids into the 2-dimensional PHATE (see Section 1.7)

embedding space, which is impossible with k-means since its high dimensional centroids

do not have natural 2D counterparts. Moreover, k-medoids better suits the analysis of time
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series data because its objective function extends to non-metric distances such as DTW (see

Section 1.4). Finally, other than those specific needs, k-medoids is generally more robust

to outliers, noise and initialized centroids [11], while keeping the high interpretability of

the k-means algorithm.

1.7. Potential of Heat-diffusion for Affinity-based Trajec-

tory Embedding

Potential of Heat-diffusion for Affinity-based Trajectory Embedding (PHATE) [102] is

an unsupervised ML model specifically designed to provide a denoised, two or three-

dimensional visualization of high-dimensional branching progression structure which is of-

ten non-linear and arises from underlying biological processes such as cell differentiation.

PHATE defines this high-dimensional branching structure as multiple one-dimensional

manifolds (i.e., trajectory curves) that cross each other. The PHATE algorithm is presented

in Figure 1.8. Let X = {x1, . . . , xN} be the set of high-dimensional original vectors and

Y = {y1, . . . , yN} be the PHATE output of corresponding 2-dimensional (or 3-dimensional)

embedding vectors. The succession of all the steps in Figure 1.8 defines the PHATE em-

bedding function f that maps X onto Y : Y = f(X).

Fig. 1.8. Step-by-step summary of the PHATE algorithm [102]. In the context of our work, we also

have the diffusion power t as input in addition to k and α.

Let us point out additional information about what each of those steps is actually pro-

cessing.
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(1) D is simply the Euclidean distance matrix of X.

(2) For each vector point x in X, we compute the distance between x and its k-nearest

neighbor, namely εk(x), and save them to be used in step 3.

(3) Kk,α(x, y) transforms distances D into affinities (the “Affinity” of PHATE) similarly

to a Gaussian kernel in order to capture the local proximity between our data

points. More exactly, given two original data points x, y,

Kk,α(x, y) =
1

2
exp

(
−
(
∥x− y∥2
εk(x)

)α)
+

1

2
exp

(
−
(
∥x− y∥2
εk(y)

)α)
where 1

2
exp

(
−
(

∥x−y∥2
εk(x)

)α)
and 1

2
exp

(
−
(

∥x−y∥2
εk(y)

)α)
are equally weighted terms

derived from the traditional Gaussian kernel Kε(x, y) = exp (−∥x− y∥2/ε) incor-

porating a locally adaptive bandwidth εk(·) that emphasizes on local neighbour-

hood without being sensitive to points in sparse data regions, and a rate of decay

of the tails α that increases the discrimination between points within and outside

the bandwidth εk(·) to counterbalance very similar affinities due to big values of

εk(·).

(4) We compute

P (x, y) = Pk,α(x, y) =
Kk,α(x, y)

νk,α(x)

such that νk,α(x) =
∑
z∈X

Kk,α(x, z)

for each couple (x, y) ∈ X ×X to form a valid Markov transition matrix P where

the probability of moving from x to y in a single time step is given by Pr[x→ y] =

Pk,α(x, y). We call P the diffusion operator (see step 6).

(5) This optional step relates to the optimization of t which powers the diffusion op-

erator P t using Von Neumann Entropy [10]. Similarly to k and α, we can also

consider t as another hyperparameter to fit specific needs, as in Section 2.3.2.

(6) We raise the diffusion operator P to the power of t in order to spread the Markov

chain so that P t
k,α(x, y) is now the probability of moving from x to y in t time

steps. As k and α, t is a hyper-parameter to tweak according to the case study. In

particular, if we want to learn more about the global structure without restricting

ourselves by the locality from our single-time step affinity-based probabilities, we

should set larger values for t. This step refers to the “Heat-diffusion” in PHATE,
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because it can be intuitively thought of as the spread of heat in a room going from

a warm source (high affinities) to a less warm area (low affinities), which can be

modeled mathematically as the heat equation and whose solution is the heat kernel

[105]. Through the powering process, small probabilities are quickly reduced to

zero, providing a means of filtering or denoising the learned manifold.

(7) We take the negative log of the powered diffusion operator Ut = − log(P t) that

is used and justified in the next step. These potential representations, inspired by

information theory, refers to the “Potential” in PHATE.

(8) Instead of probability-based distances contained in P t, we make use of the potential

distance matrix DU,t defined as DU,t(x, y) = ∥U t
x−U t

y∥2, where U t
x = − log(ptx) refers

to the row x of Ut. These alternative distances intend to stabilize the embedding

near the boundaries, because DU,t(x, y) is sensitive to differences in both the tails

and the more dense regions of the diffused probabilities, resulting in a distance

which preserves both local and global relationships. To illustrate, in the synthetic

example of Figure 1.9 [102], we observe that embedding points of the half circle’s

extremities are more expanded in the PHATE embedding than in the Diffusion Maps

[41] which directly makes use of diffusion distances. Thus, we avoid embedding

branches to be squeezed and hardly detectable.

(9) The 2-dimensional (or 3-dimensional) embedding vectors Y are finally obtained

by using the potential distances as input for a non-metric multi-dimensional scal-

ing (MDS) [82], an optimization process that, given initial embedding candidates

{x̂1, . . . , x̂N} obtained randomly or with classical MDS [84], refines this embed-

ding by minimizing a stress function through an iterative process until a predefined

threshold. In PHATE, the selected stress function is the popular Kruskal normalized

stress 1 [84]

Stress1 (x̂1, . . . , x̂N) =

√∑
i,j

(f(DU,t(xi, xj))− ∥x̂i − x̂j∥)2 /
∑
i,j

∥x̂i − x̂j∥2

minimized over homologous 2D or 3D vectors x̂i of our original data points and

weakly monotone relations f : R −→ R between potential distances and embedded

Euclidean distances. This shows why PHATE makes use of this non-metric MDS
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instead of a traditional MDS. Indeed, classical MDS assumes that the distances

between high-dimensional points must be strictly equal to their homologous low-

dimensional distances, which may be overly restrictive. From the stress function,

we observe that Euclidean distances in the 2D or 3D PHATE embedding do not

necessarily reflect distances between original data points because this is not what

we are looking for. Instead, PHATE visually recovers (dis)similarities through the

connected tree structure of its output: data instances sharing very similar features

should belong to the same branch, more distant points should be located on other

branches and so on.

Fig. 1.9. Comparison of Diffusion Maps (blue) and PHATE (orange) embeddings on data (black) from

a half circle, which naturally contains two endpoints, using classical MDS for both embedding meth-

ods. The Diffusion Maps embedding exhibits instabilities that generate significantly higher densities

near the two end points. Thanks to the use of the potential distance matrix DU,t instead of diffusion

distances as in Diffusion Maps, PHATE stabilizes embedding densities, resulting in a visualization that

does not suffer from squeezed regions.

The algorithm, as described above, has 3 hyper-parameters k, α, and t that are not

meant to be theoretically optimized, but rather specifically set to balance between the lo-

cal and global structure we want to capture in the final embedding in the context of a case

56



study. The diffusion process described in steps (6), (7) and (8) has mathematical founda-

tions similar to Diffusion Maps. It has been shown in several works that manifold geome-

tries are closely related to heat diffusion such as differential Laplace-Beltrami operators

[69]. Indeed, solutions of the heat equation over a manifold capture its intrinsic properties,

while providing embeddings, affinities, and distance metrics that capture intrinsic mani-

fold relations. It has further been shown that these can be robustly discretized for empirical

observations that correlate with hidden (or latent) manifold models, e.g., by considering

diffusion maps embedding of the data [103, 104]. PHATE extends the Diffusion Maps

approach by considering an underlying geometry consisting of multiple one-dimensional

manifolds that cross each other while alleviating boundary-condition instabilities (see Fig-

ure 1.9). This is done by assuming that the distribution p of the data X is the steady state

solution of the stochastic differential equation (SDE) ẋ = −∇U(x) +
√
2ẇ where U(x)

is a potential and w(x) be an d-dimensional Brownian motion process. Since the SDE is

governed by Fokker-Planck equations, the PHATE potential distances DU,t(x, y) naturally

originate from the steady state solution of the SDE which satisfies U(x) = − log(p(x)).

Practical benefits of using PHATE on time varying data have been observed through

single-cell data examples [102]. In these examples, PHATE successfully identified differ-

ent cell differentiation stages as branches on the 2-dimensional embedding (Figure 1.10

[102]). Still, as a relatively new method, PHATE remains of a niche use. In our work,

we aim to supplement what has been done so far to potentially make PHATE a strong

alternative in time series medical data visualization.
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Fig. 1.10. Example of PHATE applied on time varying data. Top left: 2D PHATE plot of a database

consisting of multiple gene expressions levels (features) of a human embryonic stem cell population

at different time steps (samples) using single-cell RNA sequencing [66], colored by detected branches.

Top right: same plot, colored by sample batch number (i.e. recording time). Bottom: gene expression

matrix of the cells in each detected branch. Trajectories are associated with different gene expression

levels as well as different time, which is biologically interpreted as an initial cell population splitting in

different differentiation stages over time. This shows how PHATE can be used to highlight meaningful

progressions.
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Chapter 2

Awake prone positioning for COVID-19:

short-term meta-analysis of treatment response

2.1. Context and motivation

Our first example of a real-world machine learning application is about the study of

hypoxaemic patients with COVID-19 who had been taken in charge in hospital centre

and subject to awake prone positioning (APP). By favoring a more homogeneous distribu-

tion of tidal volume and involving the recruitment of dorsal areas of lungs, APP improves

oxygenation, lung compliance, and ventilation/perfusion matching [54, 55, 67]. Those

biological benefits naturally motivates the use of APP in the context of the COVID-19 pan-

demic to improve the outcome of the hypoxaemic patient flow in emergency departments.

In a meta-trial combining data from six open label superiority trials of patients requiring

high flow nasal oxygen for COVID-19, Ehrmann et al. [135] found that APP significantly

reduced the risk of intubation or death compared to standard care. In parallel, a new prag-

matic randomised controlled trial conducted by Fralick and al. [47] found no differences

in the primary outcome (death, invasive mechanical ventilation, or worsening respiratory

failure requiring at least 60% fraction of inspired oxygen) between the APP group and the

control group. Nevertheless, Barker et al. [15] did not interpret those contradictory con-

clusions as an argument against a systematic use of APP on COVID-19 patients. Indeed,

they tried to explain this discrepancy by underlying factors that significantly differed be-

tween the two studies. In particular, they primarily observed a much higher APP duration



and disease severity in the meta-trial. In this direction, Ibarra-Estrada et al. [68] per-

formed a predictive analysis on cut-off values for different predictors on patients subject to

APP after hospital enrolment and concluded that longer daily duration of APP, lower respi-

ratory rate before APP, and positive response to APP in the first three days post-enrolment

were associated with more treatment success. To sum up, APP may be helpful, but the

existing literature to properly supervise its use in patients with COVID-19 remains very

scarce. Thus, additional contributions to understand the different treatment responses

that may occur between APP patients are required for the establishment of a unified APP

protocol that better fits the needs of targeted sub-populations.

Through the analysis of the database from Ehrmann et al.’s meta-trial [135], this chap-

ter intends to supplement Ibarra-Estrada et al.’s work on the discovery of success/failure

predictors [68] regarding patients subject to APP. With a general machine learning point-

of-view, our task is to provide domain experts with other visualization and predictive tools

on APP patients’ follow-up data since their hospital enrolment. In other words, we do

not pretend to set exhaustive frameworks, but rather show how the medical domain could

benefit from recent methods that have not been yet significantly applied in the existing

literature. Our methodology aims to reconsider the problem as a whole multivariate time

series data analysis unlike the related paper [68] which overall misses either the multivari-

ate nature or the time component of the data. Indeed, in the second figure of the official

Mexican study [68], we only keep track of each predictor separately across different time

steps since enrolment, thus missing a global visualisation of all the variables at the same

time which would better highlight common progressions among the variables or simulta-

neous correlations with the targets. Moreover, on the predictive side, only conventional

logistic regressions [112] have been performed. Thus, we propose recent machine learning

methods for both visualization and prediction, and compare them to more conventional

approaches to better demonstrate the current advancements in machine learning.

2.2. Description of the database

The database comes from the aggregation of the participating research groups in six

different countries: USA, Canada, Ireland, France, Spain and Mexico [135]. Each country

collected follow-up data of patients subject to the APP treatment from the day of their
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hospital enrolment. The numbers of participating patients in each country are respectively

112, 7, 12, 200, 17 and 216. We summarize a detailed the descriptions of the collected

features in Appendix A.1. They can be separated in 3 types:

• the longitudinal features, namely SpO2, FiO2, RR, SF , ROX and TimePP mea-

surements, recorded at day 0 (D0), day 1 (D1), day 2 (D2) and day 3 (D3), such

that D0 is the day of admission at hospital center. All of them are clinically and

biologically motivated since they measure different aspects of the cardiorespiratory

condition of patients with hypoxemia. SpO2 (percentage) refers to the peripheral

oxygen saturation monitoring by pulse oximetry which estimates the oxygen satu-

ration of arterial blood, that is, the proportion of hemoglobin in the blood which

is carrying oxygen [34]. FiO2 (decimal) is an estimation of the oxygen content

a person inhales and is thus involved in gas exchange at the alveolar level [49].

RR refers to the respiratory rate (number of breaths per minute). SF and ROX

respectively refers to the SpO2 to FiO2 ratio and the SF to RR ratio. They have

already been confirmed as strong predictors of treatment failure/intubation in pre-

vious studies [8, 121]. TimePP (minutes, or hours) refers to the total time of all

prone sessions during a day. These features are considered as the six main fea-

tures of our study, because they are the only ones recorded on a daily basis, thus

describing multivariate time series;

• the static features, consisting of demographic features (Gender1, Age...), co-

morbidities or other features somehow describing patient’s condition during the

trial;

• the three outcomes of interest, namely Death28d, Intub and Primary_out.

Death28d (0/1) indicates death before 28 days post enrolment. Intub (0/1)

indicates intubation before 28 days post enrolment. Primary_out (0/1), the

combined outcome, indicates intubation or death before 28 days post enrolment.

Remark 2.2.1. Some prefixes originating from the original labels of our working database,

in the form X∗_, may appear when referring to features during experiments.

1To be more accurate, Gender should be written as Sex. We choose to follow the notations of the original

study [135] anyway.
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Formally, if N and K are respectively the number of considered patients and longitudi-

nal features, our working multivariate time series data set is denoted by

X = {Xi}Ni=1

such that Xi = {xi
j}3j=0 ⊂ RK encodes the K-dimensional time series of length 4 for

the ith patient, starting from day j = 0 to day j = 3. In other words, xi
j represents K

longitudinal features of patient i collected at day j. To be concise, we refer to every xi
j as

a single patient’s recording day. Additionally, each time series Xi is linked to a vector of its

corresponding static features Ci ∈ RKstatic, where Kstatic is the number of considered static

features, as well as its binary outcomes of interest Yi = {yiD, yiI , yiP}.

Furthermore, we separate the visualization and predictions on the database in three

groups: the Mexican, the non-Mexican and the whole group. This distinction is motivated

by two major considerations. First, it has been observed, in the previous analysis of the

predictors [68], that TimePP has a strong positive correlation with the primary outcome,

which is not the case in the non-Mexican data. After expert investigation of the protocol

in the different countries, we suspect, co-jointly with I. Pavlov, one of the contributors,

that it could be due to a very different APP protocol within the Mexican trial. Indeed, it

appears that the Mexican patients were compelled to execute prone positioning whereas

it was only suggested in other countries. Consequently, the Mexican data is more likely

to have its own structure, and we aim to observe this difference by comparing its output

with the outputs of the non-Mexican and the whole population. A second consideration,

and not the least, is the restricted data sharing. Indeed, even though all the necessary has

been attempted to get a copy of the whole database, strict legal and ethical requirements

to protect patient privacy, a broad concern of ML applications in the medical domain [70],

limit us to a local copy of the Mexican database and a remote access for the rest via E.

Tavernier, the authorized data holder. Consequently, we perform extensive experiments on

the Mexican data and then provide the script to run with E. Tavernier on the non-Mexican

and the whole database. These permission issues dramatically complicate the analysis of

the whole data, especially the visualization, but we hope to get access to the rest of the

data in the near future.
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2.3. Visualization methodology

Detecting subgroups of patients associated with treatment failure would allow domain

experts to investigate their phenotype and find underlying causes of failure. Ultimately,

this would lead the specialists to reconsider their awake prone positioning protocol to bet-

ter suit those sensitive phenotypes. To this end, we need to provide a visual representation

of each patient’s response to the APP treatment after enrolment. In the APP paper [135],

APP response has been primarily measured through changes in terms of SpO2, FiO2, RR,

SF and ROX. In addition, TimePP appeared to be strongly correlated with treatment

success, especially in the Mexican database [68], where a longer APP duration has been

concluded to provide better treatment success, so we have a total of six predictors mea-

sured periodically after enrolment to describe each patient. Instead of describing patients’

progressions with separate univariate time series of each predictor or simple after−before

deltas, our approach is to take into account those six variables simultaneously to get the

most out of our multivariate time series data. Since SpO2, FiO2, RR, SF and ROX have

been recorded daily up to day 3 after enrolment, and TimePP up to day 14, our database

naturally provides a description of each patient in the form of a 6-dimensional time series

of length 4, one time point for day 0, day 1, day 2 and day 3 respectively. Still, because of

their high dimensionality, we cannot visually extract information from those MTS. Hope-

fully, reasons mentioned in Section 1.6, such as the ability to catch groupings with medoids

and project them onto a lower-dimensional representation space, naturally motivates the

use of k-medoids on the multi-factorial patients’ trajectories in combination with PHATE.

Thus, we propose a two-step process to increase the interpretability of our MTS data.

First, we flatten X to consider a data set in which each data instance is a single patient’s

recording day instead of its full time series,

Xflattened = {xi
j} ⊂ R6,

where i is the patient identifier and j ∈ {0, 1, 2, 3} the jth recording day. We need to

consider each single recording day instead of time series because PHATE does not accept

time series as input; instead, we can input Xflattened into PHATE to reduce and project all
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patients’ data on the 2-dimensional Euclidean space. Consequently, each patient’s record-

ing day xi
j ∈ R6 is associated with an homologous 2-dimensional vector x̃i

j ∈ R2. Addition-

ally, each formerly 6-dimensional time series Xi = {xi
j}3j=0 ⊂ R6 now has a corresponding

X̃i = {x̃i
j}3j=0 ⊂ R2 in two dimensions. Finally, thanks to the PHATE branching structure,

we apply k-medoids (Section 1.6) on the original high dimensional time series and project

the resulting clusters of time series on the 2-dimensional PHATE embedding to highlight

common group progressions. Thanks to a proper coloring for each cluster, we are then able

to track and distinguish common group progressions over the four days after enrolment.

An outline of this 2-step visualization framework is illustrated in Figure 2.1.

Fig. 2.1. Scheme of our visualization steps.
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2.3.1. Data processing

We remove patients whose SpO2 and RR are outside their respective realistic ranges

60 − 100% and 5 − 60 breaths/min. The database contains few missing values (about 7%

of the database) and evenly spaced daily measurements. Moreover, those missing values

are mainly caused by patients failing the trial very early, i.e. intubated or dying before

the third day post-enrolment. To prevent having medoids of fewer than 4 time points that

do not properly reflect a temporal trend, we impute this small amount of missing values

with forward filling. That is, we impute the tail of the incomplete time series with the last

available feature value. For our purpose, this imputation is completely safe as it does not

alter the visualization of the database (Appendix A.1). Compared to Z-transformation, its

direct alternative, namely Min-Max scaling x 7→ x−min(x)
max(x)−min(x)

is by definition more sensitive

to outliers or a lot of unusual spread in the data because the minimum and the maximum

of a distribution often are outliers [96]. This is a concern in our data because abnormal

values of TimePP have been observed at Day 0: some values are either very small due

to the bias of having way shorter enrolment days than the next full days, or exceeding

the duration of Day 0 itself, a phenomenon that remains unexplained at the moment.

Moreover, it is important to note that Z-transformation does not require normality to be

useful. It effectively more or less squishes or expands the data to fit a standard deviation

of 1, but the the original distribution is not affected. This is why we finally choose to

Z-transform the data before inputting it into PHATE.

Finally, because our emphasis is on visualizing temporal patterns, we only consider

longitudinal features as input. However, as opposed to our prediction task (see Section

2.4.4), data processing in the context of exploratory data analysis is not subject to a strict

feature selection. In fact, exploratory data analysis can be seen as an early step after

data collection and pre-processing (i.e. the latter paragraphs), where the data is simply

visualized, plotted, manipulated, without any assumptions, in order to help assessing the

quality of the data and building models [80]. Thus, all the 6 main longitudinal features

TimePP, F iO2, SpO2, RR, SF and ROX that have been suspected in the former APP stud-

ies to be potential predictors are considered as input into our PHATE embedding.
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2.3.2. Embedding data in two dimensions with PHATE

After processing, we have respectively a total of 216 and 310 patients for the Mexican

and the non-Mexican intervention populations, respectively. In matrix notation, multiply-

ing by the number of days, we consider the flattened Mexican, global and non-Mexican

input data

XMEX
flattened ∈ R864×6

XALL
flattened ∈ R2106×6

XNOMEX
flattened ∈ R1240×6

where rows are patients’ vector representations of the 6 recorded features during a single

day. It is important to notice that we input single days (matrix rows), not patients’ full time

series, because PHATE does not handle time series as input. In other words, each single

point in a PHATE embedding is associated with a single patient’s recording day, and a full

patient’s time series is thus associated with four embedding points.

2.3.3. Drawing trajectories with projected DTW k-medoids clusters

Once we have successfully embedded patients’ time points with PHATE, all the informa-

tion of the 6 variables of interest is visually accessible in the 2-dimensional space. However,

because we have only plotted discrete time points, we still miss the time component of our

database that is contained in each patient’s underlying time series in terms of the 6 longi-

tudinal variables. Moreover, we are rather interested in exhibiting common progressions

among patients than drawing individual trajectories.

To this end, we can perform a clustering algorithm on our patients’ time series such that

the output shows groups of patients with common progressions. Since clustering methods

directly inherit properties within a data set and since PHATE’s algorithm ineluctably dis-

torts data, we preferably apply clustering on the 6-dimensional processed data instead of

its 2-dimensional PHATE representation. Reasons mentioned in Section 1.6, especially the

ability to map cluster prototypes (i.e. medoids) onto the corresponding 2D PHATE em-

bedding, naturally lead us to perform k-medoids on the 6-dimensional processed patients’
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time series. After projecting the k medoids time series on the 2-dimensional PHATE em-

bedding, we label each of their time steps according to the corresponding day so that we

have a proper idea of the global motion within each cluster. Thus, those k medoids can be

interpreted as reference trajectories from Day 0 to Day 3 of k sub-populations. Distances

between original time series are computed with DTW because of its increased flexibility

as opposed to a strict ED time-to-time matching (see Section 1.4), and we refer this time

series clustering method to “DTW k-medoids”. To better understand how we produce and

visualize the clusters of trajectories, our general visualization framework is synthesized in

Figure 2.1.

The choice of the parameter k, which determines the number of expected groups of

trajectories to be detected, remains strictly arbitrary and mostly depends upon some do-

main experts’ expectations, but we can already have a rough idea just by inspecting the 2D

PHATE embedding. For instance, since the Mexican plot is structured in four connected

clusters, k = 4 looks like a good first guess, because we expect trajectories along the edges.

Performing a k = 4-medoids clustering (Figure 2.5) results in 4 clusters of almost equal

size and with distinctive enough patterns, so we decided to base our cluster analysis on

this clustering. For the global data (Figure 2.7), given that the Mexican and non-Mexican

populations seemingly originate from very different distributions, we expect more groups

of trajectories and k = 6 looks like a good compromise to look at both trajectories specific

to the Mexican and non-Mexican data as well as non-specific global trajectories. For the

non-Mexican population only (Figure 2.9), we also use k = 4 even though the clusters of

trajectories are clearly not as defined as in the Mexican population, indicative of noisier

and more heterogeneous data. Along with the resulting plots of trajectories, we provide

insightful statistical descriptions of each cluster through box plots (Figures A.12, A.15,

A.18), bar plots (Figures A.13, A.16, A.19) and tables (Figures A.14, A.17, A.20). Note

that TimePP are in minutes for the Mexican population only.

Remark 2.3.1. The degree of freedom related to the desired number of clusters of trajectories

k is the essence of exploratory analysis. Low values of k are prone to show a zoomed out

overview of the data while big values are meant to increase the resolution of the exploration

by breaking the big trajectories into smaller ones and potentially uncover subtle differences

between distinct responses. As a first step into our data exploration, since there are few
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assumptions about the data, we need to set a relatively small k value to avoid dealing with

noisy patients while keeping it big enough to show interesting patterns that have not been

observed yet in the former APP studies [135][68]. This is why our k values are mostly chosen

between 4 and 6, a good “in-between” to discover generalized patterns and more subtle ones

that need further investigation.

2.3.4. Evaluation

We evaluate two main aspects of our visualization framework: the ability of PHATE to

embed the high-dimensional structure into a 2D phase space on which trajectories can be

properly drawn, and the clinical relevance of the k-medoids clusters of trajectories.

On the one hand, we show the benefit from using PHATE over other existing methods

in visualizing high-dimensional time series. To do so, we compare it with more commonly

used approaches in the existing literature, namely Principal Component Analysis (PCA)

[97], t-distributed Stochastic Neighbour Embedding (t-SNE) [139] and Uniform Manifold

Approximation and Projection for Dimension Reduction (UMAP) [98] (with random ini-

tialization), applied on the exact same processed data, with the aim of pointing out how

PHATE excels in plotting high-dimensional data in a branching structure, even on rela-

tively small data sets. To lighten the number of figures, we only compare the different

embeddings on the Mexican intervention group (Appendices A.6, A.7, A.8, A.9, A.10 and

A.11).

On the other hand, because the database has already been studied, we can make use

of this background knowledge to assert the quality of our groups of trajectories. For in-

stance, the goodness of the resulting clusters can be quantitatively asserted thanks to their

homogeneity with respect to the available labels [56], and, at the same time, we need to

retrieve well-known groups of trajectories among our clusters to gain the confidence of the

domain experts.

2.4. Prediction methodology

We provide alternatives to the logistic regression with memory-based ML models such

as kNN with DTW distance and RNN variants to predict the death, intubation and com-

bined outcome of new patients in a “trackable” way. This “trackable” predictive process is
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defined as follows: let f be a classification model, let X := x0 ∈ RK be a newly admit-

ted patient described by some K features recorded at day 0, including SpO2, FiO2 and

respiratory rate RR in our case, and let Y be the binary outcome of interest, let us say

the combined outcome, with Y = 1 if the patient is intubated or dies before 28 days after

enrolment, Y = 0 otherwise. We would like f to predict the outcome of the patient as a

likelihood,

f(X) = p0 ∈ [0, 1],

where p0 estimates the probability that Y = 1 at day 0. From the clinician point-of-view,

the value of p0 helps a lot to decide what to do next with this patient: should we keep

performing APP or directly transfer to reanimation and intubate? Generally, a high value

of p0 means that X would be prone to fail the APP treatment and X should be intubated

directly; at the same time, we need to restrict unnecessary transfers to reanimation because

the intensive care unit capacity is limited and patients with more serious conditions would

better benefit from APP. There is no perfect threshold for p0 to deal with this crucial trade-

off: it is up to the clinician to use p0 as a prognostic support only and consider external

variables such as the available space in reanimation to tip the scales in favor of one decision

over another. This is why we should extend awake prone positioning on patient X to an

extra day for sufficiently small values of p0 according to the clinician. In that case, the

same K features of X are re-recorded by the end of day 1, let’s say x1 ∈ RK , and f should

also outputs a probability of failure from those features to know if we keep awake prone

positioning or transfer to reanimation after day 1. However, instead of considering only x1

as input for f , we conduct our study with the intuition that keeping track of past patients’

features has an influence on its current prognosis. Thus, after day 1, we also include day

0 measurements to describe patient X ’s condition that now consists of a K-dimensional

time series of length two: X := {x0, x1} ⊂ RK . Afterwards, we input the new description

of patient X into f again to get another estimation p1 of the failure probability after day 1,

f(X) = f({x0, x1}) = p1 ∈ [0, 1]

and we repeat the procedure: we either stop APP or extend to day 2 depending on the

value of p1 etc. Our “trackable” predictive process is then made possible thanks to an

appropriate classifier f allowing different input lengths, and we perform a kind of early
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prognosis, because f outputs a prognostic support as soon as the patient has been enrolled

at the hospital, without the need of having its full time series.

Unfortunately, logistic regressions do not suit early prognosis for two main reasons.

First, they require inputs of the same length for both training and testing: a test data in-

stance must be padded to the same length as the training data set, implying that we cannot

predict the outcome of a newly arrived patient without imputing its features for the follow-

ing days. Moreover, they do not naturally handle time series that are multivariate, because

fitting the model requires to embed each training instance into a single multidimensional

vector. Different means such as concatenation [64] or time series feature extraction [123]

have been studied to feed multivariate time series into logistic regressions, but they still

do not directly train on multivariate time series and could not encode all relationships

between variables or temporal patterns related to our specific database. Beyond these is-

sues related to the structure of the database, another downside of logistic regression is the

linearity in the logit for continuous variables which is often not met in many papers that

make this assumption [133]. Our non-linear models derived from kNN and RNN do not

make this assumption and allow more complex relationships.

Ultimately, in addition to this “trackable” process, our RNN-based models, called Con-

ditional Recurrent Neural Networks (CondRNNs), allow static features as input. The rele-

vance of adding this background information into a predictive system is going to be verified

by a rigorous cross validation process in which all our proposed methods are confronted

to each other.

2.4.1. Early prognosis with kNN

Our very first strategy to predict the endpoint of a newly admitted patient is a kNN

lazy classifier (see Section 1.4). At first glance, this approach seems naive, but kNN al-

gorithms are still widely used and are considered to be among the top-10 data mining

algorithms [148]. They are easy to understand and implement and due to the sensitivity

of making decisions in emergency cases, medical personnel tends to have trust in data sci-

entists employing comprehensible methods. Thus, even if more advanced models such as

neural networks have already demonstrated high performance in many domains, they still

struggle to be accepted as a common support in medicine. kNN classifiers are known to
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be among the most robust and well-performing methods on a wide array of data sets [94],

and are often used as a baseline to validate the efficiency of more advanced methods such

as neural networks [9], especially in time series classification [14]. Therefore, we claim

that it would be a mistake not to consider a kNN classifier as a solid starting point in our

predictive analysis.

Additionally, we use DTW as the proximity measure for multiple reasons. First, in the

context of our early prognosis objective, DTW is a natural choice when it comes to classify a

new patient automatically even with its first time step whereas ED requires to truncate the

available time series or impute missing values since it is a strict time-to-time comparison.

Moreover, on small data sets, elastic measures such as DTW are empirically more accurate

than the Euclidean distance [149].

The main downside is about the inclusion of the static features, which may potentially

improve the model performance. Unlike RNNs which automatically balance the impor-

tance of the features in the learning process, we have to be careful when adding this static

information into a kNN classifier. Indeed, since kNN has no learning algorithm and only

takes the data Euclidean structure into account, the only way to also consider static infor-

mation is to add the static features as stationary features of the time varying data, either

by directly adding each feature to the existing time series or by empirically aggregating

them into a single feature (without knowing exactly how to aggregate them). Because

of the distance-based classification algorithm of kNN, this might overemphasize on static

features that are not as relevant as longitudinal ones to predict an outcome. This is why

we provide other approaches based upon RNNs to properly include static information in

the next section.

2.4.2. Early prognosis with variants of recurrent neural networks

Another way to predict the endpoint of a new patient as early as possible is to make

use of RNNs. RNNs and their more advanced variants Long Short-Term Memory (LSTM)

[63] or Gated Recurrent Unit (GRU) [36] have already demonstrated state-of-the-art per-

formance in similar clinical applications, such as heart failure early detection [35] or pre-

dictions of kidney rejection/loss or death on patients with transplanted kidney [46]. It has

also been empirically checked that standard RNNs cannot remember events that occurred
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around five to ten time steps into the past [100]. Since we would like to remember se-

quences of length up to four (from D0 to D3), it is not necessary to make use of the common

alternatives LSTM or GRU that were specifically designed to remember longer sequences.

Thus, we believe that constructing a RNN-based model looks like a good start to expect

high performance, but also to be used for comparison with other models. We still have to

keep in mind that our working database is relatively small. Whereas it may be true that

neural networks do not perform well on small data in general [22, 77, 86], that does not

mean it is the case in our specific study. Shaikhina and Khovanova [125] even proposed

an efficient framework to train neural networks on small medical data sets consisting of

less than 10 observations per predictor variable, which is far below the size/dimensionality

ratio of our database. In the end, experimenting on our data remains the best way to check

those hypothetical conclusions, and this is our direction.

Due to their nature, medical data will always contain both static and dynamic features,

and therefore it is fundamental to develop algorithms that can combine and exploit both

types of data. Esteban et al. [46] proposed a very similar early prognosis study in which

they found the highest performance for predicting endpoints on patients that underwent a

kidney transplantation with an architecture combining a RNN with an independent Feed-

forward Neural Network (FNN) that processes the static information. This was done by

concatenating the hidden states of both networks and providing this information to the

output layer before its activation.

Here, we prefer a less intrusive architecture, named Conditional Recurrent Neural Net-

work (CondRNN), a RNN-based model that also handles static features as input, depicted

by Karpathy and Fei-Fei [72] and Vinyals et al. [142]. To the best of our knowledge, no

clinical application using this approach has been officially published yet, contributing to

the novelty of our thesis. The idea is to reshape the vector of static features (or conditions)

with an independent neural net through linear transformations in order to fit the dimen-

sion of the RNN’s hidden layers. Thus, we can use this new vector to initialize the very

first hidden state of our RNN instead of affecting zeros as usual. This results in a more

theoretically correct modelling of the conditional probabilities p(yt | x0, . . . , xt, conditions)

for 0 ≤ t ≤ T , since it properly conditions the RNN on non-temporal inputs, naturally
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solves the shape problem, and also avoids polluting inputs timesteps with additional non-

temporal information so that static features are appropriately handled as background in-

formation. Formally, the equation for CondRNN is the same as the equation 1.5.1 for RNN,

except that, instead of being randomly initialized set to zero, the initial hidden state is

computed as h−1 = W3 · Conc(W1c1,W2c2) where, as shown in Figure 2.2,

• c1 ∈ {0, 1}ncat and c2 ∈ Rncont are the static categorical and continuous input vec-

tors, respectively;

• W1 ∈ Rnneurons×ncat;

• W2 ∈ Rnneurons×ncont;

• W3 ∈ Rnneurons×(ncat+ncont);

• Conc(·, ·) is the concatenation function;

• (ncat, ncont) ∈ N2 are respectively the numbers of static categorical and continuous

input features.

Our second model is a modified version of the previous one, called Binary CondRNN,

with the same conditional structure but now operating on discretized inputs. We also take

this inspiration from Esteban et al. [46] who produce the best results with this approach.

The idea is to generate three binary variables for each feature representing three different

levels of intensity. For instance, feature SF splits into SF Low, SF Medium and SF High. If

the originally collected value of SF is considered “low”, then SF Low = 1 and SF Medium =

SF High = 0. We use each feature’s mean and standard deviation of the training database

to generate the three different levels. In our example, let µSF and σSF be the mean and

standard deviation of the attribute SF among patients in the training database, and let

XSF be the attribute domain. To have a consistent definition of what should be a “low”,

a “medium” or a “high” SF value of a patient based upon the known database, Esteban

et al. assume that the three levels of intensity are defined by the partition XSF = PLow ∪

PMedium ∪PHigh, where

PLow = {x ∈ XSF | x ≤ µSF − σSF}

PMedium = {x ∈ XSF | µSF − σSF < x ≤ µSF + σSF}

PHigh = {x ∈ XSF | µSF + σSF < x}
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Fig. 2.2. Schematic illustration of our conditional RNN architecture, inspired by Philippe Remy [118].

Categorical and continuous static features are first embedded to fit hidden states’ size, here nneurons =

6 to simplify. Then, we concatenate those latent representations before merging them to the same

dimension. Finally, we use those values to initialize the neurons of the initial hidden state h−1 of our

RNN block.

Therefore, a “low” value x of SF happens when x ≤ µSF − σSF, a “medium” value when

µSF − σSF < x ≤ µSF + σSF and a “high” value when µSF + σSF < x. This strategy has two

main benefits. First of all, if the binarization thresholds were clearly defined and valid

on any unseen patient, it would allow the clinician to categorize measurements quickly

and give its own estimation of the new patient’s condition. To illustrate a practical case,
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if a new patient’s SF is measured slightly above the “low” threshold − thus falling into

the “medium” category −, the clinician may put it into the “low” category instead to not

underestimate the patient’s condition, since a low SF generally indicates bad condition.

However, doing so excessively may lead to a higher false positive rate, so the clinician

should be aware of the hospital’s surge capacity as well as the measuring instrument’s error

before qualifying any new patient’s measured feature. Finally, since missing measurements

are naturally translated by a zero value in each subcategory, it gets around the problem of

setting an appropriate imputation method.

Our third and final model is a traditional RNN (see Section 1.5), named SimpleRNN,

with equation 1.5.1. This is a mandatory baseline that is compared to the above conditional

architectures and assert their usefulness.

The three above-mentioned approaches have only been presented as conceptual archi-

tectures and we still need their underlying hyper-parameters (learning rate, number of

neurons, loss function etc.) to fully define them. In Section 2.4.3, we propose a rigorous

framework to optimize them such that the resulting model satisfies a minimum validation

loss. However, hyper-parameter optimization is itself an important research field in ma-

chine learning with its own challenges and advancements, so we wisely refer the reader

to specific papers for a more detailed study [151, 154]. That being said, even though

hyper-parameter tuning is a often a necessary step in evaluating architectures like RNNs

defined by many hyper-parameters, please keep in mind that we do not want to focus on

hyper-parameter optimization and are aware of possible improvements in this direction

(see Section 2.8). Therefore, we have to assume some hyper-parameters in our above-

mentioned RNN architectures.

To this end, we set fundamental hyper-parameters that suit binary classification prob-

lems, similarly to the study of Esteban et al. [46]. The numbers of input and output units

are respectively nfeatures = 3 (see Section 2.4.4) and nlabels = 1. For CondRNN and Binary

CondRNN only, ncat = 1 and ncont = 5 (see Section 2.4.4). Since all our RNN models are

supposed to output probabilities, we use the sigmoid as the output activation function ϕ.

The step-wise loss function ℓ guiding the iterative weight update of the learning algorithm

naturally inclines towards the binary cross-entropy, which, for all t ∈ {0, 1, 2, 3} and for all
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patients’ indices i, has the form

ℓ(oit) = −yi log
(
oit
)
− (1− yi) log

(
1− oit

)
where oit and yi are respectively the step-wise predicted outputs and the true binary end-

point of patient i. As in [46], we also set the hidden activation function Φ to the default

hyperbolic tangent.

Moreover, even though many optimizers have been proposed to train RNNs, such as

the vanilla gradient descent through BPTT (see Section 1.5), we stay with Adam [79] for

its high speed [37] and even better training and test losses than other existing methods in

some RNN applications [115].

Finally, we also make use of early stopping [116], a popular regularization method

which stops the learning process when the validation loss starts increasing. Its main goal

is to prevent overfitting that often occurs when the number of training epochs is too high.

Figure 2.3 [152] motivates the use of early stopping by showing the overfitting phenome-

non occurring after too much epochs: while the training loss keeps decreasing, the test loss

starts increasing, because the learning algorithm is fitting noisy points of the training set,

resulting in a trained model that do not generalize well on new data. Early stopping tries

to avoid this by inputting the holdout validation set into the model at the end of each train-

ing epoch and stopping the learning process when this validation loss starts increasing. To

do so, we introduce patience iterations and minimum delta value parameters defining the

number of epochs of stagnancy before stopping and the minimum change in the validation

loss to qualify as an improvement. As stated by Goodfellow, Bengio and Courville, early

stopping regularization is so easy to use that there is no doubt that it “should be used

almost universally” [52]. However, it is important to note that, in our case, we primar-

ily use early stopping for its reduced running time since our inner k-fold cross-validation

implementation (see Section 2.5) already keeps the number of epochs with the lowest val-

idation loss. It may appear artificial to use early stopping in our case, but we found it

useful when it came to reproduce experiments multiple times. Besides the benefits of early

stopping, using it in the inner loop may bias the hyper-parameter optimization as it takes

advantage of the validation folds to find the stopping points. According to Prechelt [116],

early stopping should take place apart in a distinct validation process, but our database

is rather limited and it would over-complicate our framework. Therefore, we assume that
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this bias is small enough to produce reasonable results when performed in the inner loop;

still, we are aware of this bias and its consequences when it comes to interpret any result.

The patience iterations and minimum delta value parameters for early stopping are set to

10 and 0.0001 in our experiments. In this setting, we observe that early stopping never

occurs above 100 epochs across different folds and hyper-parameter combinations, with

peak values around 70-80 epochs. This is why we set the maximum number of epochs to

100 in the hyper-parameter grid (see Section 1.2).

Fig. 2.3. Idealized progressions of the training (blue) and validation (red) losses versus the number

of epochs. In most neural networks, training loss keeps decreasing with the number of epochs whereas

validation loss reaches a minimum value from which the model starts overfitting. Early stopping is a

popular method to determine this minimum point.

2.4.3. Validation and evaluation

Each of our proposed strategies in Sections 2.4.1 and 2.4.2 includes a lot of hyper-

parameters, and we think that the optimization is crucial since several studies show that a

set of optimal hyper-parameters improves model performance [18, 130]. Once each model

has found its best hyper-parameter combination, we evaluate its performance at predicting

on unseen data. In other words, we need to properly define the validation phase and the

testing (or evaluation) phase of our four predictive models (see Section 1.2).

In practice, the validation and testing of each model is performed with NCV (Section

1.2.1) with the following features. We set the number of folds for the outer testing loop

to 10 which ensures a reasonable running time while estimating an unbiased prediction

error in most cases [127], and is also the standard value used in a very similar prognosis

study with a less than a thousand patients [106]. The number of folds for the inner val-

idation loop lowers to 5 because we do not want to overemphasize on hyper-parameter

optimization. Folds are determined by stratified random sampling so that the class ratios
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are preserved to avoid the bias induced by learning, validating and testing on highly un-

balanced folds that are not representative of the general case. For the grid search of the

inner validation loop, the hyper-parameter grids of our three neural networks and kNN

are respectively

number of hidden units nneurons: [16, 32, 64]

learning rate: [0.1, 0.01]

number of epochs: 100

batch size: [25, 50]

recurrent dropout: [0, 0.1]

&

number of neighbours k: [5, 10, 25]

classification method: [majority vote,weight adjusted vote],

where the recurrent dropout is the fraction of the hidden units to drop for the linear trans-

formation of the recurrent state, a well-known regularization technique to prevent overfit-

ting [132], and where the weight classification method of kNN chooses between majority

vote using uniform neighbours’ weights and an adjusted majority vote that weight points

by the inverse of their distance, such that closer neighbours of a query point will have a

greater influence than neighbours which are further away. This choice of hyper-parameter

grid results from the combination of common practice in hyper-parameter optimization

[46, 129, 132], computational limitations, and truncated experiments in which we track

the test losses of the best combinations on different validation folds in order to have a

global idea of what should be “good” range of possible values. The best hyper-parameter

combination provided by one inner loop is the one with the highest mean validation loss

over all the 5 possible training/validation splits, except for kNN where it is the one with

the highest mean accuracy.

The evaluation metric of the outer loop is the traditional Area Under Receiver Oper-

ating Characteristic Curve (AUROC) [57], a gold standard in medicine also used in the

former APP predictive analysis [68]. To evaluate our models at predicting early prognosis,

i.e. our “trackable” process as described in Section 2.4, AUROC scores are computed on
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cropped test data. More precisely, for any outer test fold Xtest, given that each data instance

X ∈ Xtest has the form of a multivariate time series X = {x0, x1, x2, x3} with a correspond-

ing binary true label y, we truncate X such that we have XD0 = {x0}, XD1 = {x0, x1},

XD2 = {x0, x1, x2} and XD3 = {x0, x1, x2, x3} that represent patient X as if we only had its

measurements up to Day 0, Day 1, Day 2 and Day 3 respectively. Then, we successively

input the four truncated time series into the optimized and trained model and only keep

the last step outputs (i.e. o0 for XD0, o1 for XD1, o2 for XD2 and o3 for XD3) as the reference

predicted labels to be compared with the true label y and produce the step-wise AUROC

scores. In order to provide AUROC scores for the kNN as well, we switch from (weighted)

majority vote to (weighted) class proportion within the k neighbours such that we prop-

erly output probabilities. After the completion of the outer loop, the final step-wise model

performance is defined as the mean of the step-wise AUROC scores over the 10 folds. For

the sake of simplicity, we refer to the final step-wise model performances as AUROC scores,

even though they are technically averaged AUROC scores.

2.4.4. Data processing

First, we have to decide which features to include in our predictive models. Ideally, we

would like to include the input variables resulting in the best performing model after the

validation process. A direct approach is to optimize the selection of features by including

it into our NCV in which each possible combination of features is another hyper-parameter

of the inner grid search [143]. Despite being exhaustive in the sense that we train and

test over every possible combination of features and hyper-parameters, including a set

of features F into our grid search would multiply the initial number of combinations to

check by 2#F , resulting in a huge increase in running time–even for small sets of features–

that we cannot afford. Hopefully, unlike hyper-parameters, we have at least some expert

knowledge about a subset of features that seem important or not in predicting our three

targets. This is why we instead select features as part of data processing and first start

by considering the same six time series features as for the visualization in Section 2.3.1:

{RR, SpO2, F iO2, SF,ROX, T imePP}. However, we can reduce this set and get even

better results. Indeed, although SF and ROX contain more information on a patient’s

condition than single RR, SpO2 or FiO2 measures, they are still computed from the latter
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ground features. Thus, by using all features in a training process, we would implicitly

emphasize on some features through redundancies. In parallel, since we want to make the

input of our model as easy as possible to allow on the fly use by a clinician, the number of

input variables must be small. After simplified experiments, that is, with a reduced hyper-

parameter space and number of folds, and by comparing NCV scores of models trained

on the three non-redundant longitudinal features subsets {RR, SpO2, F iO2, T imePP},

{RR, SF, T imePP} and {ROX, T imePP}, the first set slightly outperforms the others,

so we choose to consider those four features in the final evaluation. Note that this con-

clusion is not surprising, because non-linear models are prone to recover the relationships

captured by SF and ROX during the training phase. In addition, for our conditional

RNN models, we also include the static binary feature {X04_Gender} and the 5 continous

variables

{X05_Age,

Nb_Comorbidities,

X44b_Delta_Post_PP_RR,

X45a_Delta_Post_PP_SpO2,

X45b_Delta_Post_PP_FiO2}.

where X04_Gender is a binary indicator for Male (0) and Female (1), X05_Age

denotes the age of the patient at inclusion, Nb_Comorbidities counts the number

of existing comorbidities in a patient among 7 selected diseases/disorders (see Ap-

pendix A.1.2), and X44b_Delta_Post_PP_RR, X45a_Delta_Post_PP_SpO2 and

X45b_Delta_Post_PP_FiO2 refer respectively to the difference between respiratory

rate, SpO2 and FiO2 values after and before the first prone positioning session. As

previously mentioned, this selection is not meant to be a priori optimal. In contrast to

the main time varying features that are selected with some strong expert knowledge and

other validation experiments, we basically select the static features based upon more

hypothetical relevance. In fact, the point is to know, through experiments, if learning

from a set of static variables results in better predictions, no matter the intrinsic predictive

quality of this set.
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Moreover, while learning through BPTT does not require normalized inputs, it could

improve performance [28]. As a distance-based classifier, DTW-kNN also needs normal-

ized inputs. We choose to be consistent with the visualization and decide to Z-transform

features before inputting them into our four predictive models. However, as described in

Section 1.2, the supervised learning process splits the available database into training and

evaluation/test sets in order to simulate new incoming data points. Consequently, we can-

not scale the whole database all at once as in the visualization, otherwise we would use

information from validation/test splits which are supposed to be unknown prior training.

This phenomenon is a form of data leakage, defined as the use of information in the model

training process which would not be expected to be available during the test prediction,

causing the predictive scores to be overestimated and not reflecting a reliable performance

[73]. To avoid this, data scaling is instead performed separately on the training and valida-

tion/test sets: on each training set, we fit the scaling method, save the scaling parameters

µ and σ and transform the data before inputting it into the learning process; afterwards,

incoming data points from the complementary validation/test set are scaled with µ and σ,

assuming they originate from the same distribution as the training set.

Finally, we have to deal with patients missing clinical attributes. Unlike kNN (see Sec-

tion 2.4.1) and Binary CondRNN (see Sections 2.4.2), SimpleRNN and CondRNN require

data imputation for training. We cannot simply exclude those missing attributes because

data points have to be in the same dimension to be exploitable by any machine learning

algorithm. Moreover, we may not completely remove recording days with missing values

because our RNN implementation only accepts a fixed number of time steps as training

input and we would like to take advantage of the other available attributes. Thus, we re-

quire data imputation. To determine how to perform it, let us take a close look on missing

values. We observe that they only occur on some patients’ last recording days, suggesting

that values are missing for an underlying reason. Indeed, referring to the original study

[135], missing recording days are most often related to patients being intubated or dying

prematurely. That is, missing values are mainly associated with bad outcomes and must

be treated as relevant information for better predictions. Making use of generic imputa-

tion methods like forward filling as in Section 2.3.1 or mean imputation would not take

this contextual meaning into account. A solution is to replace missing values with a fixed

81



numerical value highlighting the absence of data, as long as it is not already a meaningful

value [38]. Lipton, Kale and Wetzel [87] achieved top results in a similar study by imput-

ing with zeros. Instead of zeros, we similarly imputed with −4. Since we standard scaled

our variables and observed that this value was not reached by any of the available data

points, our choice is motivated by the intuition that a −4 value sufficiently distinguishes

the absence of measurements for all the features without being too discriminating, which

would disturb the learning process.

2.4.5. Measuring model confidence

Even though CondRNN is seemingly the best candidate to get accurate early prognoses

for incoming patients (see Section 2.7.2 for our empirical proof), it still needs further

investigation to be approved and potentially deployed for clinical use. Indeed, the non-

linearity of deep learning models makes the optimization process difficult to follow by

non-ML experts, in contrast to linear methods such as linear regressions which are now

admitted as reliable options in medical research [153]. Moreover, this reluctance to use

“black-box” models is even more present in healthcare where they are to affect patient

care directly, leading more and more studies to emphasize on building trust in complex

models that not only goes through the demonstration of high performance but also their

interpretability [2]. Thus, in the hope of deploying our model for effective early prognosis,

we need to add metrics which unroll the complexity of CondRNN and fit current domain

specific research.

One way to do so is input feature perturbation [114]. Given a trained CondRNN model

over a training set of time series Xtrain = {x1, . . . , xN | xi ∈ RT×K} and their associated

binary labels Ytrain = {y1, . . . , yN}, input feature perturbation consists of adding white

noise to each input feature data to observe the effect of a small feature perturbation to

the model output. More formally, it consists of first feeding the trained model with Xtrain

to produce the output Ŷ = {ŷ1, . . . , ŷN}. Note that the latter are not the real labels that

were used to train the model: they are the step-wise outputs ŷi = {oit}Tt=0 of the training

patients and aim to show how the model transforms the inputs to approximate the real

labels. Then, we add a small Gaussian perturbation to the kth column of each x1, . . . , xN

to form K new data sets X̃(1), . . . , X̃(K), where each X̃(k) = {x̃(k)
1 , . . . , x̃

(k)
n } differs from

82



Xtrain only in its perturbed data entries of the kth feature. Finally, we input each X̃(k) into

the model, store their output Ỹ (k) = {ỹ(k)1 , . . . , ỹ
(k)
n } and measure the importance of the kth

feature with the root mean squared error RMSE(k) =

√∑N
i=1

(
ỹ
(k)
i −ŷi

)2

N
. Since CondRNN

returns T step-wise outputs for each data instance, it implies that the final RMSE(k) is a

T−dimensional vector. Thus, the T entries of RMSE(k) quantify the importance of the kth

feature for different step-wise predictions.

Remark 2.4.1. Each RMSE(k) does not provide the intrinsic importance of a variable be-

cause it does not confront the perturbed outputs to the real labels yi. In other words, a single

RMSE(k) value does not help us determine if the kth feature is important. As stated in [114],

“the resulting change in a chosen error metric for each input perturbation represents the rela-

tive importance of each input variable”. This implies that a variable importance computed this

way is only relevant when compared to other ones. Moreover, input perturbation is a model

specific approach showing variable importances in the context of one model. Therefore, the

resulting importance scores on a bad performing model would be prone to highlight important

variables in making bad predictions, which is obviously not reliable. Hopefully, our model has

already shown high performance, which allows us to proceed this way.

The motivation behind this choice comes from its high interpretability in itself, which

was already mentioned above as being an important criteria when building confidence

metrics, but also its fast and easy implementation. Unlike methods such as backward step-

wise elimination or forward stepwise addition [114] consisting of measuring prediction

differences when removing or adding one variable at a time, input perturbation does not

need to re-train our model.

83



2.4.6. Deployment

Of course, our predictive analysis is motivated by a potential practical use in clinical

environment. We would like to give the clinician the ability to input a new patient’s fea-

tures into a program returning the associated prediction. Unfortunately, at the cost of

giving a generalized comparison between different models, our NCV does not output a set

of best performing hyper-parameters because the optimal combination may vary across

outer loops. This implies that we still cannot implement the program we want to provide,

because the ML predictive models (DTW-kNN or RNN-based) need hyper parameters to

be fully defined before training. The only reason to use our NCV framework is to decide

which model architecture to use among our four proposed solutions, which overall seems

to be CondRNN (see Section 2.7.2). Thus, to make it workable for practical use, since we

no longer compare models, we set a random seed and re-run a simple cross validation, i.e.

without the outer test loop, with the same hyper parameter grid search. Once the optimal

combination is found, we can use it to train the CondRNN model on the full available data

set, so that our model is ready to be used on “true” incoming data, i.e. not artificially

introduced as we did for the cross validations.

Remark 2.4.2. Note that the considered training data may vary depending on the location

of use. Of course, in general, it is be better to build a single flexible model trained on all

the available data to better generalize, but since we have pointed out a specific APP protocol

in Mexico, we should probably train the model exclusively on the Mexican data if we plan

to apply it locally, because incoming patients in Mexico might be subject to that specific APP

protocol as well.

2.5. Experimental setup

Both visualization and prediction have been implemented in the programming lan-

guage Python [140], version 3.9, in the integrated development environment (IDE) Py-

Charm2. Although we preferably emphasized on methodological explanations because of

the context of the thesis, the hidden programming process was probably the most costly in

time aspects of our work, full of experimental trials-errors and extensive documentation

2https://www.jetbrains.com/pycharm/
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research. This is why we mention and acknowledge the authors of the respective general

data analysis Python tools and other more specific third-party libraries that we have in-

cluded in our implementation, without whom the applied dimension of this thesis would

be tremendously missing:

• pandas [110][147] and numpy [58] for general data extraction and matrix manip-

ulation;

• phate [102] for the PHATE embedding;

• tslearn [134] for the DTW distances computation between trajectories and

pyclustering [107] to perform k-medoids on those distances;

• sktime [92][93] for other time series manipulations;

• tensorflow’s keras module [39] for setting up our RNN-based classifiers and its

implementation of the Adam optimizer;

• scikit-learn [111] for standard scaling, for the PCA and t-SNE embeddings, for

setting up our DTW kNN classifier and its NCV pipeline, as well as the calculation

of the AUROC scores;

• cond-rnn [118] for its original implementation of the conditional RNN variant;

• keras-hypetune3 for handling grid search on our multi-input conditional RNNs,

which is impossible with scikit-klearn’s GridSearchCV4;

• matplotlib [65] and seaborn [145] for plotting.

Our project is also publicly available at https://github.com/AdaGHub/prone-positioning

for a more detailed overview of its structure and transparency with respect to the above-

mentioned libraries.

3https://github.com/cerlymarco/keras-hypetune
4This forces us to build our own NCV pipeline for the conditional RNN models with scikit-klearn’s

StratifiedKFold in contrast to the all-in-one encapsulation provided by scikit-klearn’s GridSearchCV

for kNN.
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2.6. Results

2.6.1. PHATE embedding plots and projected trajectory clusters

The resulting 2D PHATE embedding plots after inputting XMEX
flattened, XALL

flattened and

XNOMEX
flattened (Section 2.3.2) into the PHATE algorithm with the above-mentioned parame-

ters are depicted in Figures 2.4, 2.6 and 2.8, respectively. The 2-dimensional PHATE plots

for the Mexican, global and non-Mexican processed inputs are respectively produced with

the triplets (k = 30, t = 60, α = 10), (k = 20, t = 40, α = 15) and (k = 20, t = 60, α = 30),

along with the square root potential instead of the log potential. Each of them consists

of 6 sub-plots illustrating the corresponding 2D PHATE embedding that have been colored

according to the values of the 6 inputs features. This coloring allows us to understand how

PHATE organizes its 2-dimensional embedding points such that the separability in terms of

the 6 inputs features is preserved and embedded in a single plot. In addition (see (Appen-

dices A.3, A.4, A.5), we color the PHATE embedding according to the outcomes and other

features that have not been included as input in order to quickly spot some input-target

correlations.

Remark 2.6.1. Thanks to PHATE’s robustness to perturbations of its parameters [102], the

overall data structure extracted from different parameter combinations remains visually sim-

ilar. Thus, it is safe for a clinician that uses PHATE naively to stick with the default PHATE

input parameters and still get the same overall structure (Appendix A.2).

Projected time series clusters following our DTW k-medoids approach (Section 2.3.3)

on each of the Mexican, global and non-Mexican intervention groups are shown Figures

2.5, 2.7 and 2.9, respectively.
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Fig. 2.4. 2-dimensional PHATE embedding of XMEX
flattened following our processing steps in Section

2.3.1. Each of the six sub-plots represents the same PHATE embedding, except that the embedding

points are colored differently according to the six main input features as described in Section 2.2 and

Appendix A.1.1.

Fig. 2.5. Groups of trajectories of the Mexican intervention group detected by 4-medoids and pro-

jected on our 2-dimensional PHATE embedding, with the associated medoids in bold lines.
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Fig. 2.6. 2-dimensional PHATE embedding of XALL
flattened following our processing steps in Section

2.3.1. Each of the six sub-plots represents the same PHATE embedding, except that the embedding

points are colored differently according to the six main input features as described in Section 2.2 and

Appendix A.1.1.

Fig. 2.7. Groups of trajectories of the whole intervention group detected by 6-medoids and projected

on our 2-dimensional PHATE embedding, with the associated medoids in bold lines.
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Fig. 2.8. 2-dimensional PHATE embedding of XNOMEX
flattened following our processing steps in Section

2.3.1. Each of the six sub-plots represents the same PHATE embedding, except that the embedding

points are colored differently according to the six main input features as described in Section 2.2 and

Appendix A.1.1.

Fig. 2.9. Groups of trajectories of the non-Mexican intervention group detected by 4-medoids and

projected on our 2-dimensional PHATE embedding, with the associated medoids in bold lines.

89



2.6.2. Performance scores of the four predictive models

We now present the resulting step-wise AUROC scores of each predictive model (kNN,

RNN, CondRNN and Binary CondRNN) from our NCV process. Due to the random splits

of folds as well as the randomly initialized weights of the recurrent neural networks, re-

sults vary between each NCV run. To this end, for the Mexican database, we run the NCV

ten times and averaged the AUROC scores to provide a more trustworthy comparison. In

each run, we fixed a different random seed instead of making it random because the splits

should always be the same across experiments; otherwise, our four models are not evalu-

ated in the same conditions, which would potentially disadvantage a model over another.

This also allows the reader to reproduce our analyses for verification purpose. For the NCV

of the non-Mexican and global databases, we are unfortunately restricted to a single run

due to the lack of locally accessible data. The dotted red and cyan lines are respectively

associated with the performance of kNN and traditional RNN, our selected baseline meth-

ods. The royal blue and the dark blue lines represent the step-wise performance of our

proposed conditional RNN variants, respectively Binary CondRNN and CondRNN.
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(a) Primary outcome (b) Intubation outcome

(c) Death outcome

Fig. 2.10. Step-wise performance comparison between four different models on the Mexican database.

(a) Each row represents the AUROC scores of a given model after NCV such that the model is trained

for the primary outcome and the testing patients’ time series are reduced to day 0 (column “after day

0”), days 0–1 (column “after day 1”), days 0–2 (column “after day 2”), and days 0–3 (column “after

day 3”) values in order to measure early prognosis performance. The above graph plots the content

of the table for an easier comparison between the four models: the red dotted line plots the kNN row,

the dark blue line plots the CondRNN row, the royal blue line plots the Binary CondRNN row and the

cyan line plots the SimpleRNN row. Sub-figures (b) and (c) are similarly built, except that models

are trained for the intubation and the death outcomes, respectively. Overall, CondRNN is the best

performing model for an early prognosis on the Mexican database.
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(a) Primary outcome (b) Intubation outcome

(c) Death outcome

Fig. 2.11. Step-wise performance comparison between four different models on the global database.

(a) Each row represents the AUROC scores of a given model after NCV such that the model is trained

for the primary outcome and the testing patients’ time series are reduced to day 0 (column “after day

0”), days 0–1 (column “after day 1”), days 0–2 (column “after day 2”), and days 0–3 (column “after

day 3”) values in order to measure early prognosis performance. The above graph plots the content

of the table for an easier comparison between the four models: the red dotted line plots the kNN row,

the dark blue line plots the CondRNN row, the royal blue line plots the Binary CondRNN row and the

cyan line plots the SimpleRNN row. Sub-figures (b) and (c) are similarly built, except that models

are trained for the intubation and the death outcomes, respectively. Overall, CondRNN is the best

performing model for an early prognosis on the global database.
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(a) Primary outcome (b) Intubation outcome

(c) Death outcome

Fig. 2.12. Step-wise performance comparison between four different models on the non-Mexican

database. (a) Each row represents the AUROC scores of a given model after NCV such that the model

is trained for the primary outcome and the testing patients’ time series are reduced to day 0 (column

“after day 0”), days 0–1 (column “after day 1”), days 0–2 (column “after day 2”), and days 0–3 (column

“after day 3”) values in order to measure early prognosis performance. The above graph plots the

content of the table for an easier comparison between the four models: the red dotted line plots the

kNN row, the dark blue line plots the CondRNN row, the royal blue line plots the Binary CondRNN

row and the cyan line plots the SimpleRNN row. Sub-figures (b) and (c) are similarly built, except that

models are trained for the intubation and the death outcomes, respectively. Although CondRNN seems

to remain the best option for early prognosis in the non-Mexican data, high variability is observed in

the results, preventing any confident comparison.
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2.6.3. Feature importances in CondRNN

In this section, we present the feature importances in our CondRNN model. We took

advantage of the 10 training-test outer splits of our NCV to apply input perturbation on

each training set, and the overall variable importances are obtained by averaging the 10

resulting RMSE. This saved considerable running time while still providing generalized

variable importances by going through multiple training sets. Figures 2.13, 2.14 and

2.15 show our CondRNN’s feature importances of the Mexican, global and non-Mexican

databases trained separately for each of three outcomes of interest. The mean and stan-

dard deviation of the Gaussian noise have been set to 0 and 0.1 respectively. Since the

number of input features is K = 9 (4 longitudinal features and 5 static features, excluding

the gender because it is binary) and T = 3, each figure consists of 9 RMSE bar plots

subdivided into 4 RMSE bars with respect to step-wise outputs for Day 0, Day 1, Day 2

and Day 3 after enrolment.
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(a) Primary outcome (b) Intubation outcome

(c) Death outcome

Fig. 2.13. Variable importances of CondRNN trained on the Mexican database for the three different

outcomes. (a) Given CondRNN trained for the primary outcome, each group of 4 bar plots (from light

to darker colors) refers to the four values of the below column showing the RMSE of a specific feature

(in grey) subject to Gaussian noise. Each bar color is associated with the RMSE between the step-wise

original and perturbed predictions on the training data set: RMSE of the outputs at Day 0 (first row),

Day 1 (second row), Day 2 (third row) or Day 3 (fourth row). (b) and (c) are built similarly, except

that CondRNN is trained for the intubation and death outcomes, respectively.
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(a) Primary outcome (b) Intubation outcome

(c) Death outcome

Fig. 2.14. Variable importances of CondRNN trained on the global database for the three different

outcomes. (a) Given CondRNN trained for the primary outcome, each group of 4 bar plots (from light

to darker colors) refers to the four values of the below column showing the RMSE of a specific feature

(in grey) subject to Gaussian noise. Each bar color is associated with the RMSE between the step-wise

original and perturbed predictions on the training data set: RMSE of the outputs at Day 0 (first row),

Day 1 (second row), Day 2 (third row) or Day 3 (fourth row). (b) and (c) are built similarly, except

that CondRNN is trained for the intubation and death outcomes, respectively.
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(a) Primary outcome (b) Intubation outcome

(c) Death outcome

Fig. 2.15. Variable importances of CondRNN trained on the non-Mexican database for the three dif-

ferent outcomes. (a) Given CondRNN trained for the primary outcome, each group of 4 bar plots

(from light to darker colors) refers to the four values of the below column showing the RMSE of a

specific feature (in grey) subject to Gaussian noise. Each bar color is associated with the RMSE be-

tween the step-wise original and perturbed predictions on the training data set: RMSE of the outputs

at Day 0 (first row), Day 1 (second row), Day 2 (third row) or Day 3 (fourth row). (b) and (c) are

built similarly, except that CondRNN is trained for the intubation and death outcomes, respectively.
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2.7. Discussion

This section discusses the results in Section 2.6 related to our proposed exploratory

and predictive machine learning models (Sections 2.3 and 2.4) in order to demonstrate

whether the latter provide clinically interesting insights into patients’ APP treatment re-

sponse, as well as an efficient and confident early prognosis of treatment failure.

2.7.1. Quality of the trajectory visualization with PHATE

The 2D Mexican PHATE embedding is organized in connected clusters forming four

big branches allowing easy visualization of changes in terms of the six input variables

when looking at the input coloring in parallel (Figure 2.4). In other words, we properly

embed the original 6-dimensional state phase into the 2-dimensional Euclidean space in

which patients’ longitudinal features at time t are living and any patient’s motion between

t and t′ can be explained in terms of the six input features through a simple 2-dimensional

investigation (Figure 2.16). The four resulting clusters of trajectories (Figure 2.5) fully

benefit from this embedding method. Indeed, since the four representative medoids stand

sufficiently apart from each other and their motion follows the branching structure, we can

immediately spot four significantly different APP responses within the Mexican population.

As for the other embedding algorithms, we do not retrieve the same structural quality.

Indeed, the PCA plot (Appendix A.6) does not show any interesting structure but a single

big cluster where differences in terms of the six features are very hazily separated. t-

SNE (Appendix A.8) manages to create clusters, but the connections between them is

not well-defined and we end up with micro-clusters having their own specific structure,

preventing from forming a coherent whole with smooth transitions. This may be due to

the inherent purpose of its algorithm which only preserves locality [139] and is prone

to fail our visualization since we are interested in global trends. UMAP (Appendix A.10)

should fix it by preserving both local and global distances [98], but it results in an isolated

cluster that also has its own structure and does not connect with the main cluster. Those

structural issues inevitably impact the projected k-medoids clusters (Appendices A.7, A.9

and A.11), where none of the alternative embeddings plot trajectories following uniform

patterns that show temporal trends associated with each group. We come to the conclusion
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Fig. 2.16. The interpretation of the 2D PHATE embedding with respect to change in the six predictors

along the branching structure. Red, grey and blue colors mean increase, stagnation and decrease of the

corresponding features with the indicated direction. Progressions in terms of 6 features are embedded

in 2 dimensions, a unique PHATE’s property allowing an easy visualization of MTS data.

that PHATE is, by far, the most convenient method to visualize different high-dimensional

APP responses.

Let us now discuss about the clinical meaning of the drawn trajectories with PHATE.

There is a lot of information contained in the drawn trajectories and associated box plots,

bar plots and tables, but some observations draw our attention, particularly in the four

Mexican trajectories (Figure 2.5). Indeed, there are two pairs of time series clusters of

balanced populations with very similar outcomes: clusters 0 and 2 fail the APP treatment

with respectively 84.62% and 87.5% (see Table A.14 for a summary of the frequencies

within each cluster) of positive primary outcomes (i.e. Primary_out =1), whereas clus-

ters 1 and 3 are largely successful with APP treatment, with respectively 2.33% and 0%
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of positive primary outcomes. At the same time, all the four clusters follow very distinc-

tive progressions (see Figure 2.5). Cluster 0 consists of patients starting with the worst

features (low SpO2, SF , ROX, and high FiO2, RR) that remain stable after enrolment.

Conversely, cluster 3 mostly consists of patients starting in a very good condition (high

SpO2, SF , ROX, and low FiO2 and RR) that remain stable after enrolment, even though

some boundary patients start in a slightly worse condition from the top-right of the graph

to evolve better along the right branch. Although those two clusters are not very insightful

in the sense that they relate to typical grouped progressions leading to treatment failure

and success, their presence allows us to retrieve what has been observed so far in the for-

mer APP study and assert the quality of the visualization. There is much more to say about

the in-between clusters 1 and 2. Cluster 2 consists of people in average condition (high

SpO2, medium FiO2, SF , ROX, and low FiO2 and RR) that progressively deteriorates

towards the “sick” left branch and mostly fail the treatment. In contrast, patients in cluster

1 start in a worse condition than cluster 2 (much worse SF and even a slightly worse

ROX), but their progressions along the bottom branch reflect a good response to APP de-

spite their former very bad condition, and the treatment is successful for almost everybody.

This difference in treatment response between clusters 1 and 2 is something that, accord-

ing to I. Pavlov, has not been easily observed with the regressions of the former APP study

and justifies the contribution brought by our proposed visualization. We also note that,

except a slight increase in ROX, the progression of cluster 1 mostly translates to a gradual

increase in TimePP across post-enrolment days. Thus, the positive outcome of this group

of patients has probably been uniquely determined by intensifying their APP treatment,

which still needs to be clinically explained. Moreover, it is not clear what prevented the

clinicians from intensifying APP for the cluster 2, because clusters 1 and 3 endure more

and more TimePP during post-enrolment days despite starting in both worse and better

conditions than cluster 2. All those interesting interrogations related to the APP protocol

and hidden secondary predictors define the main topic the future directions (see Section

2.8).

In the global drawn trajectories (Figure 2.7), we also establish what has been observed

in the former APP study, especially the difference in the APP protocol between the Mexican

patients and the others, while keeping the interesting Mexican trajectories. Indeed, cluster
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1 consists of non-Mexican patients starting in very good condition (high SpO2, SF , ROX,

and low FiO2 and RR) that quickly recover from the disease (10.38% of primary outcome,

see Table A.17), whereas cluster 5 mostly consists of Mexican patients (probably from the

cluster 3 of the Mexican plot) that also follow the same healthy trend, except that cluster 1

is not subject to a gradual increase in TimePP . That is, cluster 1 is the non-Mexican coun-

terpart of cluster 5 and agrees with the former observation that APP is performed very

differently in the Mexican and non-Mexican populations, where it is mostly associated

with success in the Mexican population and with failure in the non-Mexican population.

The non-Mexican cluster 4 follows the exact same trajectory as cluster 1 along the right

branch, except that it starts from the bottom of the graph in a worse condition (lower SF

and ROX) and stops its route in the middle of the right branch, which naturally reflects

a slightly lower success (26% of primary outcome). Clusters 0 and 2 respectively refer to

clusters 0 and 1 from the Mexican plot. Cluster 3 stands as the most unclear grouped tra-

jectory, consisting of both Mexican and non-Mexican patients that do not follow a healthy

trend and mostly fail the treatment. Since TimePP is mitigated in this cluster, it should

probably contain most of the cluster 2 from the Mexican plot, but TimePP still remains

higher than the healthy non-Mexican right branch, which does not contradict the observed

correlation between high TimePP and failure within the non-Mexican population. To

sum up, despite the lack of data access, this global visualization with PHATE provides a

compact and insightful macroscopic overview of sub-populations’ progressions, and prop-

erly highlight huge differences in the APP protocol between the Mexican and non-Mexican

cohort.

Finally, the lack of clear definition in the non-Mexican plot (Figure 2.9) prevents any

confident interpretation. Indeed, apart from cluster 1 which represents people in originally

very condition that greatly overcome the disease (3.33% of positive primary outcome, see

Table A.20), the three others consist of mixed endpoints and their trajectories do not follow

well-defined patterns along a branching structure. Thus, this population primarily needs

further investigation regarding the APP protocol, and, possibly, a refinement of clustering.
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2.7.2. Comparison of the four predictive models

In general, regarding the Mexican and global populations, we observe that the AUROC

scores increase with the waiting time. This agrees with the clinical intuition that waiting

for a while before determining the outcome of a patient provides a better prognosis since a

patient’s response in terms of longitudinal features during the first days of APP treatment

should be a factor of success/failure. At the same time, the variances remain relatively low

and decrease over time so we can make observations and comparisons with confidence.

Since the domain experts need a model to be accurate as soon as possible for a fast

clinical decision, let us first draw attention to the performances for waiting times up to

Day 0 and Day 1 post-enrolment, i.e. the first two time steps of the plots. In the Mexican

and global plots, we observe that CondRNN outperforms all the other methods in all cases,

except when trained for the death outcome where SimpleRNN does better after Day 1

(Figure 2.10 (c)) or right from enrolment day (Figure 2.11 (c)). When considering longer

waiting times, CondRNN’s scores are either similar to SimpleRNN or the highest ones,

except for the death in the Mexican database where the SimpleRNN remains above (Figure

2.10 (c)). As for the Binary CondRNN, it never reaches the top score but still compete with

the other methods despite the drastic binarization, especially in the global population.

Finally, our non-binarized RNNs outperform kNN at each time step, especially after Day 0,

which demonstrates the powerful use of more complex NN models over a straightforward

kNN. Even though Binary CondRNN falls below kNN in some Mexican plots, this does not

invalidate our latter conclusion since this performance gap is rather due to the input type

than the model architecture.

APP is performed very differently on the non-Mexican population, where it seems to

be applied according to the clinician diagnosis of each individual. This obviously compro-

mises the construction of a general rule in terms of the dynamic variables that are directly

affected to the ongoing APP protocol, and it reflects on the model performances. Indeed,

AUROC scores are overall very low, even below the random classifier for the death out-

come, and the extremely high variances do not even allow us to state a proper ranking.

Moreover, the expected trend increasing with the waiting time disappears. The most rele-

vant solution is to include additional variables that accurately explains how APP is applied

to each patient, so that other dynamic features make more sense together with them.
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To sum up, within the Mexican and global population, we have proven the benefit

from implementing a trackable prognosis with standard and conditional RNNs over the

baseline kNN, as well as the interest in incorporating static features along with dynamic

ones by comparing CondRNN with SimpleRNN. Unfortunately, our Binary CondRNN fails

to present as a reliable solution due to some lower scores than kNN in the Mexican popula-

tion, unless a strong clinical importance is given to binarized inputs. This makes CondRNN

the best overall candidate for early prognosis in the Mexican and global populations. Re-

garding the Mexican population, due to the high variability of the results, we cannot es-

tablish a fair ranking, and due to significantly lower scores than in the Mexican and global

populations, we do not recommend any of the four models for a potential deployment in

clinical environment.

2.7.3. Analysis of the important features in CondRNN

For the Mexican cohort (Figure 2.13), the hierarchy remains stable across the three

outcomes, with RR, TimePP and DeltaRR as the leading features, followed by FiO2.

This agrees with the former predictors study on the Mexican population, where TimePP

and ROX has been stated as being the most powerful variables [68]. Another interest-

ing observation is the decreasing in RMSE with the waiting time without altering the

importance hierarchy. This means that the more we wait to deliver a prognosis, the less

the resulting score is subject to uncertainty, which is exactly how we want the model to

behave. For the non-Mexican cohort (Figure 2.15), due to the poor performance and high

variability of the model, it is difficult to interpret the bar plot. One thing is however blind-

ingly obvious: the importance of the dynamic variables is below the importance of the

static variables. The only explanation we can provide is directly linked to the different

APP protocol between the Mexican and non-Mexican populations. Indeed, when TimePP

is pushed to a maximum bearable, as within the Mexican population, TimePP and the

other dynamic features that are affected by the proning sessions become a fitness test

that better evaluates the prognosis of a patient than other background features, because

they directly estimate its physiological ability that may also depends on the age and other

background features. APP is performed very differently on the non-Mexican population

where APP seems to be performed with respect to each individual, which may justify this
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reversed scenario. Finally, the global population (Figure 2.14) is less concerned with the

degenerated importances of the non-Mexican population because we find good signs of a

confident early prognosis of patients subject to APP, such as RR being the most important

features in all cases and and a relatively high importance of the other dynamic features.

Still, static features are almost as important as the dynamic ones compared to the Mexican

database and the hierarchy is much more hazy, raising doubts about the relevance of the

main dynamic features and the stability of the model. In other words, we properly face

in-between importance plots that coincide with our above-mentioned remarks regarding

the Mexican and non-Mexican importance plots.

We conclude that our perturbation analysis builds enough confidence to clinically de-

ploy CondRNN for the Mexican population, but not enough to deploy it for the non-

Mexican and global populations.

2.8. Future directions

On the exploratory side, future directions involve going deeper into the explanation

of the different trajectory groups; that is, clinically and biologically determining causal

effects between some groups’ features and trajectories. Since we do not have the necessary

domain knowledge to assert the relevance of some differences in terms of features that may

appear between those different groups of patients, we need input from domain experts.

However, thanks to our detailed descriptions of each group in Appendices A.12, A.13, A.14,

A.15, A.16, A.17, A.18, A.19 and A.20, we believe that we provided experts with enough

tools to investigate in this direction. In addition, from a more macroscopic point-of-view,

the highlighted differences in the APP protocol between the Mexican population and the

rest of the cohort should be extensively investigated to determine if they have an influence

on the patients’ outcomes and head towards a local or global revision of the APP protocol.

Last, and not least, we are looking forward to getting local access to the global and non-

Mexican databases in order to have more control on them and facilitate exploration tasks

that have been remotely performed with difficulty.

On the predictive side, since we were limited by computational resources, global data

accessibility as well as the scope of our study, important aspects were not covered in our
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research. Considering the heavily applied dimension of our work, one of the most inter-

esting subjects to deal with in depth is the deployment of our predictive model. In Section

2.4.6, we simply mentioned how we can set up a direct workable CondRNN for clinical use,

and we did not actually provide an appropriate solution. In reality, setting up such a clini-

cal ML software induces other domain complications that are far beyond the scope of our

study, such as the integration into existing clinical workflows and infrastructure [75] that

involves skills from experts in programming and system architecture. There also remains

much to be done in making our system more interpretable. Indeed, the added Gaussian

noise of our proposed approach in Section 2.4.5 may result in out-of-domain feature values

for specific individuals and can lead to explanations that are not reflective of the system-

atic behavior of the model [33]. A lot of alternatives worth trying have been suggested

to mitigate those downsides, such as Augmented Feature Occlusion (AFO) [136], where

features are replaced with samples from the bootstrapped distribution p(xi) for each fea-

ture i instead of white noise perturbations to avoid generating out-of-distribution samples.

Moreover, potential validation improvements naturally go along with all the inevitable as-

sumptions of our NCV framework (see Section 2.4.3). For instance, grid search, although

being a simple and exhaustive method, is extremely time consuming. Other methods, such

as Randomized Search or Bayesian Optimization [131], have been proposed to fix this is-

sue. Bergstra and Bengio [19] even found that neural networks configured by randomized

search are able to determine models that are “as good or better within a small fraction of

the computation time” compared to networks configured by pure grid search. Extending

computational resources might also be interesting to fine tune parameters with a more

detailed parameter grid or to reduce the bias of our NCV results with an increased number

of folds. Finally, since missing values have an underlying meaning (see Section 2.4.2),

Lipton et al. [87] suggest in their clinical study to complement padding imputation with

binary indicators of missingness to get a more accurate distinction between imputed and

non-imputed data.
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Chapter 3

Multiple sclerosis long-term analysis: a more

complex visualization case

3.1. Context and motivation

This chapter is another case study [3] about multiple sclerosis (MS). Accurately classify-

ing the course of MS into sub-types is very important for communication, prognostication,

design and recruitment of clinical trials, and treatment decision-making [90]. Physicians

widely rely on the evaluation framework proposed by Lublin et al. [90] which categorizes

MS in two dominant types: Relapsing-Remitting MS (RRMS) and Secondary Progression

MS (SPMS). Other targets, such as worsening scores based on overall disease progres-

sion over some period of time, have also been used to classify patients’ courses. How-

ever, none of these methods results in an accurate classification of MS because its course

is well-known for being highly varied and unpredictable over time [51]. Moreover, any

physician’s retrospective evaluation is inherently subjective and limited to few longitudi-

nal descriptors. Thus, there is a need to automatically group and visualize 15-dimensional

MS patients’ follow-up data in order to suggest a new or revised MS classification.

In this study, unlike the previous chapter, the purpose is not to rigorously demonstrate a

practical use of ML on MTS medical data from start to finish. Focusing on the exploratory

side, we are instead going to provide visual insights into the data by roughly following

the same PHATE framework of Chapter 2, and dive into the unfortunate reality of ML

in healthcare by observing the negative impact of highly irregular MTS database on our

resulting visualizations.



3.2. Description of the database

The data consists of patients subject to a medical follow-up in which many features used

to describe the course of MS disease have been recorded during clinical and radiological

sessions after the disease onset. The database is split into two parts: the clinical database

and the radiological database. The first contains a cohort of about 16 000 clinical recording

days with respect to 600 patients whereas the second one is about 6 300 radiological

recording days with respect to 1 500 patients. There are 9 clinical features:

– the Expanded Disability Status Scale (EDSS) feature, the most commonly used

scale in MS patients. It provides effective and reliable evaluation at every stage of

the disease. The scale ranges from 0 to 10 in half unit increments, and its compu-

tation is based on the clinical evaluation of 8 functional systems whose scores are

provided by the 8 following features;

– the Pyramidal Score feature, which ranges from 0 to 5 in unit increments, evaluates

muscle weakness or difficulty moving limbs;

– the Cerebellar Score feature, which ranges from 0 to 5 in unit increments, evaluates

the loss of balance, coordination or tremor;

– the BrainStem Score feature, which ranges from 0 to 5 in unit increments, evaluates

problems with speech, swallowing and nystagmus (uncontrolled, repetitive eye

movements);

– the Sensory Score feature, which ranges from 0 to 6 in unit increments, evaluates

superficial senses, vibration sensation and position sense;

– the Bowel Score feature, which ranges from 0 to 6 in unit increments, evaluates

urinary retention, urgency and incontinence;

– the Visual Score feature, which ranges from 0 to 6 in unit increments, evaluates

problems with sight such as visual acuity, visual field, and optical disc status;

– the Mental Score feature, which ranges from 0 to 5 in unit increments, evaluates

problem with thinking and memory, such as depression, euphoria, mentation status

and fatigue;

– the Ambulation Score, which ranges from 0 to 9 in unit increments, evaluates

mobility following a 500-meter walking test.
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Remark 3.2.1. For more details related to the computation of EDSS from the 8 functional

systems’ scores, please refer to [124].

The 6 radiological features describe different types of cerebral lesions in terms of their

number and localization recorded during MRI sessions:

– the Number of Lesions T2 feature (integer number) counts the number of lesions

using the T2 imaging method [137].

– the Number of New or Enlarging Lesions feature (integer number) counts

new/enlarging lesions with reference to a baseline scan;

– the McDonald Lesions T2 feature, taking a categorical value among

{“0”, “1–2”, “3–8”, “9+”}, counts the number of lesions using the T2 imag-

ing method. Categories are used instead of numbers to fit the McDonald criteria

for MS diagnosis [95];

– the McDonald Lesions Infratentorial feature, which takes a categorical value among

{“0”, “1+”}, counts the number of lesions located in the infratentorial brain re-

gion. Categories are used instead of numbers to fit the McDonald criteria for MS

diagnosis;

– the McDonald Lesions Juxtacortical feature, which takes a categorical value among

{“0”, “1+”}, counts the number of lesions located in the juxtacortical brain region.

Categories are used instead of numbers to fit the McDonald criteria for MS diagno-

sis;

– the McDonald Lesions Periventricular feature, which takes a categorical value

among {“0”, “1–2”, “3+”}, counts the number of lesions located in the periven-

tricular brain region. Categories are used instead of numbers to fit the McDonald

criteria for MS diagnosis.

Along with those time varying features, some MS outcomes commonly used to classify MS

severity based on historical clinical and radiological data after disease onset have been

associated with each patient:

– the type of MS: either Relapsing-Remitting MS (RRMS) or Secondary Progressive

MS (SPMS). According to the official classification provided by Lublin et al. [90],

RRMS is a type of MS with relapses (symptoms getting worse) followed by recovery,

without overall disease worsening. This form can (but not always) progress to
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SPMS during which neurological symptoms continue to get worse without clear

periods of remission. In that case, SPMS type is assigned to the patient;

– the Annualized Relapse Rate (ARR). In many clinical trials, the relapse frequency,

measured by the ARR, is a primary endpoint, because relapses are meaningful as

they reflect how individuals experience fluctuations in symptoms that are central

to relapsing MS;

– the worsening after one, two, five and ten years since disease onset. The worsening

Wi after a period of i years is a clinically motivated binary (0/1) worsening score,

defined from EDSS as

Wi =


1 if ∆EDSS ≥ 1 and EDSSt0 ≤ 5.5

1 if ∆EDSS ≥ 0.5 and EDSSt0 > 5.5

0 otherwise

where ∆EDSS = EDSSt0 − EDSSti. In the database, only worsening labels after

i = 1, 2, 5, 10 years have been included, and we refer to W1,W2,W5 and W10 as

wors1year, wors2years, wors5years and wors10years respectively throughout this

study.

Figure 3.1 summarizes all the input and target variables.

Fig. 3.1. Table of the most relevant input and target features according to domain experts’ knowledge.

In blue: longitudinal features that are meant to be inputted into the PHATE algorithm. In red: the

target features used to discover correlations with groups of patients’ long-term MTS.
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3.3. Methodology

3.3.1. Data processing

As stated in Section 2.3.1, we want to input as many relevant longitudinal features as

possible in our PHATE embedding. This is why we start with all the clinical and radiolog-

ical features of Figure 3.1 in blue color. Some features are still missing among patients’

clinical and radiological recording days. We impute missing clinical features with linear

interpolation [5] because we have no particular assumption related to their existence and

this is the most simple and straightforward way to guess a value with respect to the tempo-

ral gap between the two nearest available values. However, this method does not apply to

MRI features because most of them are strictly categorical. For instance, McDonald Lesions

T2 are categorized as {“0”, “1–2”, “3–8”, “9+”}, and McDonald Lesions Infratentorial sim-

ply as {“0”, “1+”}. Fortunately, thanks to their natural ordering, the trick is to map each

category into its respective integer in {0, 1, 2, . . .}, apply linear interpolation and round

the imputed value to the nearest integer. This is far from being the smartest imputation

method, but this is the best one we found that keeps enough data for now.

Moreover, the whole database is split into two sets because the clinical and radiolog-

ical recording days do not take place at the same time. Also, patients do not completely

intersect the two splits. To make each recording day a combination of both clinical and

radiological features, domain experts recommended to build the combined data from the

clinical sessions and associate them with the nearest radiological sessions that happened

no more than 6 months apart. Clinical sessions without associated radiological exam are

removed from the data set.

Finally, time between patients is normalized by setting the origin t0 to the date of

disease onset. In other words, the time t of a patient’s recording day corresponds to the

number of days between the date of the session and date of disease onset. Thus, t refers

to the days since disease onset (ddo), and we also include it into the set of input features

in order to accentuate the temporal structure in the PHATE embedding.

To sum up, our data processing results in a similar multi-dimensional time series data-

base X as in the previous chapter, X = {Xi}Ni=1 except that Xi ⊂ RK could be unevenly

spaced time series of different lengths. We have a total of 1606 recording days with respect
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to N = 197 patients, and K = 16 input features. In matrix notation, the flattened data

has the form Xflattened ∈ R1606×16 such that each row is a patient’s recording day in terms

of the 15 clinical and radiological features as well as the ddo. As usual, each column is

Z-transformed before the production of the 2D PHATE embedding.

3.3.2. PHATE trajectory visualization with k-medoids and sliding win-

dows

Since the available data is far more complex than in the previous chapter (larger data-

base, more missing data, longer time periods...) and multiple sclerosis is in itself a chal-

lenge, we focus on the visualization of the database to explain and understand long-term

outcomes related to MS. More specifically, in terms of both clinical and radiological fea-

tures, we basically want to discover distinct temporal patterns of groups of patients that

correlate with different outcomes. To this end, we are mostly going to follow the same

visualization framework as in the APP chapter, including the production of a 2D PHATE

embedding for Xflattened and the projection of clusters of trajectories with DTW k-medoids.

However, we will quickly figure out that our previous visualization framework does not fit

this database. Instead of grouping trajectories in a totally unsupervised way and associ-

ating clusters with target features, we suggest to directly make use of patients’ targets of

interest (worsening, ARR...) to first separate the population in different groups and then

try to describe their respective courses over time with the aim of spotting distinct trends.

As depicted in Figure 3.2, this is done with a sliding window approach, in which we define

a window size w (in years) and a step size s ≤ w causing an overlap percentage between

windows. Those two parameters generate a sequence of windows W0,Ws,W2s, . . . that

average 2D PHATE coordinates of the patients’ recording days falling into their respective

window time period and plot them along with the former 2D PHATE embedding.

3.3.3. Supervised visualization with RF-PHATE

RF-PHATE [119] is a supervised visualization technique inspired by the original unsu-

pervised PHATE [102] and Random Forests (RF) [23]. The RF-PHATE algorithm is similar

to PHATE (Figure 1.8) except that it builds the affinity matrix from random forest proxim-

ities [119]. The random forest proximity between a pair of instances x and y is obtained
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Fig. 3.2. Scheme of the computation of a group’s average trajectory with a sliding window approach.

For the purpose of the example, the window and step sizes have been set to w = 365 days since disease

onset and s = 183 days since disease onset respectively. The connected sequence of averaged windows

W0 → W0.5 → . . . → W5 corresponds to the global trajectory of the wors5years = 1 sub-population

up to 5 years after disease onset.

by inputting them into a trained RF and measuring the proportions of trees where x and

y share the same terminal node. This approach naturally takes advantage of an outcome

of interest, because patients sharing the same label are prone to be similar in term of RF

proximity. Since it has also been empirically checked that RF-PHATE retains both the local

and global structure of the data while emphasizing the important variables in the visual-

ization [119], it should mitigate the above-mentioned negative effects of some categorical

inputs without neglecting the structure induced by the other important variables. To this

end, we propose to transform Xflattened along with the corresponding wors5years labels

using the RF-PHATE algorithm.

3.4. Results

The 2D PHATE embedding colored by inputs and the projected DTW k-medoids with

k ∈ {2, 3, 4} are shown in Appendix B.1 and Figure 3.3. Figures 3.4 and 3.5 show average

trajectories with sliding windows of the two groups of patients wors5years = 0, 1 using

PHATE and RF-PHATE embeddings, respectively.
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Fig. 3.3. DTW k-medoids clusters of trajectories projected on the 2D MS PHATE embedding with

k = 2 (top left), k = 3 (top right) and k = 4 (bottom center). Medoids are in bold lines and labeled

according to the ddo of their time steps. None of those attempts result in a satisfactory visualization

of temporal trends.
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Fig. 3.4. Average PHATE trajectories with sliding windows of the two wors5years groups of patients.

The dotted red line plots the average trajectory of the group undergoing disease worsening after 5

years (i.e. wors5years = 1). The dotted blue line plots the average trajectory of the group without

disease worsening after 5 years (i.e. wors5years = 0). Labels represent the time on which each

window is centered, in years since disease onset.
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Fig. 3.5. Average RF-PHATE trajectories with sliding windows of the two wors5years groups of pa-

tients. The dotted red line plots the average trajectory of the group undergoing disease worsening

after 5 years (i.e. wors5years = 1). The dotted blue line plots the average trajectory of the group

without disease worsening after 5 years (i.e. wors5years = 0). Labels represent the time on which

each window is centered, in years since disease onset. The big red arrow highlights a temporal trend

of the worsening group that was previously undetectable with a standard PHATE plot.
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3.5. Discussion

Despite attempts with different k values, there is a strong lack of interpretation re-

garding the plotted groups of trajectories. Indeed, there is no clear trend following the

branching structure of the embedding and clusters tend to mix up. Moreover, medoids are

definitely not suitable to reflect long-term groups of trajectories, because they may only

consist of very few time steps. Indeed, the longest medoid comprises four time steps and

the shortest one only two (Figure 3.3 with k = 3, cluster 1). Obviously, we cannot study

temporal trends over 5, 10 or even 20 years if we know so few time steps.

The average trajectories with sliding windows are also questionable: they are not really

distinguished from each other and no trend in terms of features is easily detectable when

looking at the input coloring in parallel (Figure B.1), especially the blue trajectory that

looks like a compact block. We believe that one of the main reasons behind those spuri-

ous trajectories is the existence of categorical features among the inputs. By its nature,

the PHATE algorithm leans towards continuous variables to properly diffuse distances and

reflect smooth transitions. If we analyze the input feature coloring, we observe that the

top and bottom branches only differ in terms of the binary MRI feature McDonald Lesions

Infratentorial; yet, the proportions of wors5years is identical between the two branches

(Figure 3.6). This indicates that PHATE overemphasizes on the importance of feature Mc-

Donald Lesions Infratentorial that is not much correlated with wors5Y ears. Thus, PHATE

spreads class labels artificially, disturbing the visualization of global trends with sliding

windows in Figure 3.4.

We observe that RF-PHATE does help keep only the most correlated variables with

the target of interest. For instance, McDonald Lesions Infratentorial have no structural

consequences (Figure B.2) while the wors5years outcome clearly divides its two labels

among the right and bottom branches (Appendix B.3). This reflects a proper elimination

of uncorrelated variables, resulting in a more visible temporal trend of the worsening

population (Figure 3.5). Similarly to the last chapter, we also provide a visualization of the

average group trajectories using the three common unsupervised alternatives: PCA, t-SNE

and UMAP (Appendix B.4). In addition, we make use of the supervised counterparts of

PCA and UMAP, namely Supervised PCA [16] and Supervised UMAP [50] (Appendix B.5),

as we did with PHATE and RF-PHATE. We observe that none of these alternatives results
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Fig. 3.6. Illustration of the consequences of categorical features on the PHATE branching structure.

Two big branches only differ in this category, but the wors5years distribution remains the same within

each branch.

in a clear distinction between the worsening and no worsening groups, except Supervised

UMAP. However, the latter leans so much towards group separation and compactness that

we cannot associate the worsening group with a spatio-temporal pattern. In other words,

RF-PHATE remains the most promising approach to visualize trends with respect to sub-

populations of interest.

Even though the drawn trajectories along with RF-PHATE give us a hint about a po-

tential interesting trend, they are still subject to high variability because they only rely

on spatial averages. Appendix B.6 visually demonstrates this high variability within each

wors5years group by plotting individual colored trajectories on the RF-PHATE embedding.

In particular, we observe that many worsening patients do not follow the red trend de-

picted in Figure 3.5. Therefore, we cannot interpret the resulting trends with confidence

and need to find a more stable representation of each window.

3.6. Experimental setup

We have experimented within the same setup environment as in Section 2.5, except the

addition of the rf-phate [119] Python package related to the supervised RF-PHATE plots.
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3.7. Future directions

A beautiful way to overcome the inherent complexity of our database is to make use

of Topological Data Analysis (TDA) (see definition in Appendix B.2.1). TDA presents as a

solid future direction thanks to its natural ability to provide a denoised representation of

a specific group of patients’ trajectories by computing an abstract object, called persistence

diagram, on each sliding window. Indeed, the fundamental stability theorem [40] ensures

that the topological representation of the data through persistence diagrams remains the

same in the presence of small perturbations. Moreover, the production of a persistence

diagram for each window results in sliding windows that are much more representative of a

grouped motion. To illustrate, if a window contained a lot of very similar vectors for patient

a but one single vector for patient b, which is very likely to happen because sessions are

unequally recorded among patients, vectors of patients a would be seen as noisy points and

imply topological features of short lifetime. In other words, unlike our above-mentioned

averaged trajectories, patients a and b would equally contribute to the production of the

window’s persistence diagram despite the fact the window is overwhelmed by patient a’s

recording days. A sketched idea of a future practical use is depicted in Appendix B.2.2.
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Conclusion

From our positive results regarding the greater ability of PHATE and conditional neural

networks over more traditional methods to respectively visualize sick patients’ multivari-

ate progressions and provide them with a confident early prognosis, we have demonstrated

the proficiency of recent ML research with MTS data in healthcare. More specifically, on

the exploratory side in Chapter 2, we have provided domain experts with a 2-dimensional

PHATE visualization of trajectory clusters to improve the understanding of patients’ re-

sponses to APP treatment in terms of 6 clinical factors simultaneously, and we have shown

that other popular embedding methods do not perform as well as PHATE in this task. On

the predictive side in Chapter 2, we have empirically proven the benefits of the flexibility

of recurrent neural networks to provide real-time likelihood scores related to incoming pa-

tients’ outcomes based upon both longitudinal and background features by showing that a

conditional variant of a RNN classifier outperforms kNN and traditional RNN in the Mexi-

can and global populations. Moreover, input feature perturbations in our conditional RNN

mostly retrieved the hierarchy of the most important features that have been clinically es-

tablished by domain experts for early prognosis. Unfortunately, high heterogeneity within

the non-Mexican cohort prevented any conclusive exploratory and predictive results. Fi-

nally, we faced the reality on the ground with strong data-related constraints in Chapter

3 confirming that there is no universal formula of a successful ML framework and that it

is rather a matter of fitting each specific study case independently. This conclusion origi-

nates from a noisy, non-distinguishable visualization of MS patients’ trajectories using the

same PHATE approach as in Chapter 2. However, a supervised version of this visualiza-

tion approach, based upon RF-PHATE and sliding windows, gave us a hint about potential

multi-factorial MS trends. To sum up, we contributed to the ongoing development of AI-

based systems in healthcare relying upon strong scientific foundations that have nothing



to do with “black magic”, and which are rather meant to augment physicians instead of re-

placing the essential physician–patient relationship [6]. Still, the significance of our work

should be received with modesty: we do not pretend to revolutionize ML or overvalue its

benefits, and the bridge between ML and the reality of its initial purpose in healthcare is

far from being completed [89].

Among exploratory future directions, besides the obvious need to solve data accessibil-

ity issues, box plots, bar plots and tables in Appendix A related to the APP visualization

in Chapter 2 would make domain experts able to discover potential background factors

that could explain the different APP responses depicted by the detected patients’ trajec-

tory clusters. Moreover, PHATE highlighted a huge difference in APP treatment between

the Mexican population and the rest of the cohort, pointing out further investigation into

the explanation and the consequences of this difference in order to suggest an improved

APP protocol. Because of the flexibility and complexity of our NCV framework and con-

ditional RNN model, our predictive results are also subject to many future improvements.

For instance, the interpretability could be extended by using Augmented Feature Occlusion

[136] or more advanced methods such as Shapley Additive Explanations [91], which have

been specifically developed to better reflect feature importances and recently used in some

ML medical studies [109]. Randomized Search or Bayesian Optimization [131] are strong

alternatives to Grid Search hyperparameter optimization to find as good or better combina-

tions within a smaller fraction of time. In addition, expert knowledge in programming and

system architecture will be required to effectively deploy our predictive model in a clinical

environment, an essential step for practical use. Another interesting direction would be

to take advantage of PHATE’s ability to deal with time-varying data with geometry reg-

ularized autoencoders [43] in order to simulate PHATE embeddings for new incoming

instances and potentially improve RNNs’ performance by considering PHATE embeddings

as input. Pre-processing could also increase model performance thanks to indicators of

missingness proposed by Lipton et al. [87]. Ultimately, the mitigated conclusions in Chap-

ter 3 will hopefully lead us to a promising future direction through Persistent Homology

which appears to be a more generalizable approach as it naturally lowers the strong data-

related constraints and allows a more reliable data analysis. Even though we introduced

Topological Data Analysis in Chapter 3 as a circumstantial solution, there is much more to
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do in this direction, such as a robust and denoised visualization of MS trajectory clusters

through persistence landscapes (Appendix B.2.3).
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Appendix A

APP for COVID-19: complementary information

A.1. Description of each feature

A.1.1. Longitudinal features

– X20_ROX_enrol: ROX index (SF/RR) at day 0 (D0)

– ROX_D1: ROX index at day 1 (D1)

– ROX_D2: ROX index at day 2 (D2)

– ROX_D3: ROX index at day 3 (D3)

– X200_SF_enrol: SF ratio at D0

– SF_D1: SF ratio (SpO2/F iO2) at D1

– SF_D2: SF ratio at D2

– SF_D3: SF ratio at D3

– X50_TimePP0: total time of all prone sessions with day 0 being time from enroll-

ment to midnight (minutes or hours)

– X51_TimePP1: total time of all prone sessions with day 1 being first full day post

enrolment (midnight to midnight) (minute or hours)

– X52_TimePP2: total time of all prone sessions with day 2 being second full day

post enrolment (midnight to midnight) (minutes or hours)

– X53_TimePP3: total time of all prone sessions with day 3 being third full day post

enrolment (midnight to midnight) (minutes or hours)

– X12_SpO2_enrol: SpO2 (oxygen saturation measured by pulse oximetry) if avail-

able at or around enrolment or prior to first proning session (%)



– X65_SpO2_D1: SpO2 during morning period (or first supine period if prone in

AM) of first day of enrolment (%)

– X66_SpO2_D2: SpO2 during morning period (or first supine period if prone in

AM) of second day of enrolment (%)

– X67_SpO2_D3: SpO2 during morning period (or first supine period if prone in

AM) of third day of enrolment (%)

– X14_FiO2_enrol: FiO2 (fraction of inspired oxygen) if available at or around en-

rolment or prior to first proning session (fraction decimal)

– X68_FiO2_D1: FiO2 during morning period (or first supine period if prone in AM)

of first day of enrolment (fraction decimal)

– X69_FiO2_D2: FiO2 during morning period (or first supine period if prone in AM)

of second day of enrolment (fraction decimal)

– X70_FiO2_D3: FiO2 during morning period (or first supine period if prone in AM)

of third day of enrolment (fraction decimal)

– X18_RR_enrol: RR (respiratory rate) if available at or around enrolment or prior

to first proning session (RR/min)

– X74_RR_D1: RR during morning period (or first supine period if prone in AM) of

first day of enrolment (RR/min)

– X75_RR_D2: RR during morning period (or first supine period if prone in AM) of

second day of enrolment (RR/min)

– X76_RR_D3: RR during morning period (or first supine period if prone in AM) of

third day of enrolment (RR/min)

A.1.2. Static features

– Total_Time_PP :
∑3

i=0 X5i_TimePPi

– Mexican_trial: patient is from the Mexican trial (0/1)

– X04_Gender: encoded as 0 for Male, 1 for Female

– X05_Age: age at inclusion

– X08_BMI: body mass index

– X22_CCD: chronic cardiac disease: history of HTN, Ischemic heart disease, con-

gestive heart failure
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– X23_CLD: patient has known or suspected Chronic Obstructive or restrictive lung

Disease (0/1)

– X24_DM : patient has known type 1 or type 2 diabetes mellitus (0/1)

– X25_CKD: patient has known chronic renal failure with a creatinine clearance

less than 60 milliliters per minute prior to hospialisation (0/1)

– X26_Cancer: active solid organ or hematological malignancy requiring treatment

(0/1)

– X27_Obesity: obesity defined as a BMI>30kg/m2. Provided as mentioned in the

patient’s file. Precise weight, height missing for some patients (0/1)

– X28_CLF : check if the patient has chronic liver disease with a calculated Child

Pugh score≥10 or severe liver disease as per Charlson comorbdity index (0/1)

– Nb_Comorbidities: sum of the 7 above-mentioned co-morbidities

– X30_Steroid: known use of dexamethasone or equivalent steroid for treatment of

COVID-19 (0/1)

– X33d_Delta_Per_PP_SF : difference between SF values during and before first

PP session

– X33e_Delta_Post_PP_SF : difference between SF values after and before first PP

session

– X44a_Delta_Per_PP_RR: difference between RR values during and before first

PP session

– X44b_Delta_Post_PP_RR: difference between RR values after and before first

PP session

– X45a_Delta_Post_PP_SpO2: difference between SpO2 values after and before

first PP session

– X45b_Delta_Post_PP_FiO2: difference between FiO2 values after and before

first PP session

– X48d_Delta_Per_PP_ROX: difference between ROX values during and before

first PP session

– X48e_Delta_Post_PP_ROX: difference between ROX values after and before

first PP session

– X49_Duration_D0: duration of the enrolment day (minutes or hours)
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Outcomes:

– X81_Primary_out: death or intubation within 28 days of enrolment (0/1)

– X83_Death28d: death before 28 days post enrolment (0/1)

– X84_Intub: intubation before 28 days post enrolment (0/1)
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A.2. Additional plots

Fig. A.1. 2-dimensional PHATE embedding of the Mexican database following our processing steps in

Section 2.3.1 without the forward filling imputation. Each of the six sub-plots represents the same

PHATE embedding, except that the embedding points are colored differently according to the six main

input features as described in Section 2.2 and Appendix A.1.1. In comparison with Figure 2.4, the

structure of the embedding remains the same, with 810 embedding points with respect to 216 patients

in place of 864 embedding points with respect to 216 patients following our data processing steps in

Section 2.3.1. This indicates a safe way to make the clustering produce representative medoids while

preserving the structure of the data.
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(a) 2-dimensional PHATE embedding of the Mexican database following our processing

steps in Section 2.3.1 with default PHATE input parameters. Each of the six sub-plots repre-

sents the same PHATE embedding, except that the embedding points are colored differently

according to the six main input features as described in Section 2.2 and Appendix A.1.1.

(b) Four main groups of Mexican trajectories detected by 4-medoids on the original 6-

dimensional space of patients’ time series and projected on the 2-dimensional PHATE em-

bedding (default parameters), with the associated medoids in bold lines.

Fig. A.2. Resulting Mexican plots from our visualization methodology using default PHATE parameters

(i.e. k = 5, α = 15, t set with Von Neumann Entropy, and PHATE log potential). In comparison

with Figures 2.4 and 2.5, the PHATE embedding (a) possesses the same overall branching structure,

allowing the production of similar visualizations of 4 groups of trajectories (b). Still, in Section 2.6.1,

we choose custom PHATE input parameters to avoid the slightly overlapping clusters of trajectories.
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Fig. A.3. 2-dimensional PHATE embedding of the Mexican database following our processing steps

in Section 2.3.1. Each of the 22 sub-plots represents the same PHATE embedding, except that the

embedding points are colored differently according to the values of 22 external features, as described

in Appendix A.1.2.
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Fig. A.4. 2-dimensional PHATE embedding of the global database following our processing steps in

Section 2.3.1. Each of the 22 sub-plots represents the same PHATE embedding, except that the em-

bedding points are colored differently according to the values of 22 external features, as described in

Appendix A.1.2.
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Fig. A.5. 2-dimensional PHATE embedding of the non-Mexican database following our processing

steps in Section 2.3.1. Each of the 22 sub-plots represents the same PHATE embedding, except that the

embedding points are colored differently according to the values of 22 external features, as described

in Appendix A.1.2.
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Fig. A.6. 2-dimensional PCA embedding of the Mexican database following our processing steps in

Section 2.3.1. Each of the six sub-plots represents the same PCA embedding, except that the embed-

ding points are colored differently according to the six main input features as described in Section 2.2

and Appendix A.1.1.

Fig. A.7. Four main groups of Mexican trajectories detected by 4-medoids and projected on the 2-

dimensional PCA embedding, with the associated medoids in bold lines.
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Fig. A.8. 2-dimensional t-SNE embedding of the Mexican database following our processing steps

in Section 2.3.1. Each of the six sub-plots represents the same t-SNE embedding, except that the

embedding points are colored differently according to the six main input features as described in

Section 2.2 and Appendix A.1.1.

Fig. A.9. Four main groups of Mexican trajectories detected by 4-medoids and projected on the 2-

dimensional t-SNE embedding, with the associated medoids in bold lines.
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Fig. A.10. 2-dimensional UMAP embedding of the Mexican database following our processing steps

in Section 2.3.1. Each of the six sub-plots represents the same UMAP embedding, except that the

embedding points are colored differently according to the six main input features as described in

Section 2.2 and Appendix A.1.1.

Fig. A.11. Four main groups of Mexican trajectories detected by 4-medoids and projected on the 2-

dimensional UMAP embedding, with the associated medoids in bold lines.
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Fig. A.12. Box plots (first, second and third quartiles, whiskers and outliers) of the Mexican inter-

vention group, describing the distribution of some continuous variables described in Appendix A.1

within each of the 4 clusters of trajectories depicted in Figure 2.5. Labels in gray indicates a successful

Kruskal-Wallis test, a rank-based nonparametric test that determines if there are statistically significant

differences between at least two groups of an independent variable on a continuous or ordinal depen-

dent variable [85], with a significance level of 0.05. p-values are reported on the top-right corner of

each box plot.
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Fig. A.13. Bar plots of the Mexican intervention group, describing the frequency of the outcomes and

other categorical static variables described in Appendix A.1 within each of the 4 clusters of trajectories

depicted in Figure 2.5.
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MEXICAN - APP

CLUSTER_0 CLUSTER_1 CLUSTER_2 CLUSTER_3
Nb_Patients 52 43 48 73

Total_Time_PP_Median 1426 2765 1312.5 2623
Total_Time_PP_IQR 423.17 534.48 531.78 517.28
Mexican_trial_Perc 100 100 100 100
X04_Female_Perc 61.54 60.47 64.58 58.9
X05_Age_Median 64.5 62 61.5 56
X05_Age_IQR 16.25 23 22 24

X08_BMI_Median 28.4 28.7 29.55 28.6
X08_BMI_IQR 6.1 4.7 7 6.3

X17_MAP_enrol_Mean 83.52 82 82.88 82.41
X17_MAP_enrol_SD 7.44 6.64 7.22 7.61
X18_RR_enrol_Mean 28.25 22.16 28.52 22.18
X18_RR_enrol_SD 2.96 3 2.71 3.28

X20_ROX_enrol_Mean 3.32 4.62 5.46 7.9
X20_ROX_enrol_SD 0.46 0.84 0.98 1.46
X200_SF_enrol_Mean 92.84 100.71 154.39 171.54
X200_SF_enrol_SD 7.88 12.93 22.49 20.08
X22_CCD_Perc 30.77 30.23 25 28.77
X23_CLD_Perc 11.54 2.33 8.33 9.59
X24_DM_Perc 30.77 25.58 33.33 28.77
X25_CKD_Perc 5.77 16.28 12.5 10.96

X26_Cancer_Perc 0 0 4.17 1.37
X27_Obesity_Perc 34.62 37.21 45.83 41.1
X28_CLF_Perc 3.85 2.33 2.08 0

Nb_Comorbidities_Mean 1.17 1.14 1.31 1.21
Nb_Comorbidities_SD 1.04 1.06 1.11 0.96

X281_1+_Comorbidities_Perc 67.31 69.77 70.83 73.97
X282_2+_Comorbidities_Perc 36.54 27.91 43.75 36.99
X283_3+_Comorbidities_Perc 13.46 13.95 12.5 8.22
X284_4+_Comorbidities_Perc 0 2.33 4.17 1.37
X285_5+_Comorbidities_Perc 0 0 0 0
X286_6+_Comorbidities_Perc 0 0 0 0
X287_7+_Comorbidities_Perc 0 0 0 0

X30_Steroid_Perc 94.23 74.42 93.75 76.71
X48_ROX_change_Mean 0.54 1.31 1.19 3.01
X48_ROX_change_SD 0.54 0.82 1.56 2.46
X81_Primary_out_Perc 84.62 2.33 87.5 0
X83_Death28d_Perc 71.15 0 70.83 0
X84_Intub_Perc 63.46 2.33 64.58 0

Fig. A.14. Quantitative description of the Mexican intervention group for each of the 4 clusters of

trajectories depicted in Figure 2.5 in terms of features described in Appendix A.1.
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Fig. A.15. Box plots (first, second and third quartiles, whiskers and outliers) of the global interven-

tion group, describing the distribution of some continuous variables described in Appendix A.1 within

each of the 6 clusters of trajectories depicted in Figure 2.7. Labels in gray indicates a successful

Kruskal-Wallis test, a rank-based nonparametric test that determines if there are statistically signifi-

cant differences between at least two groups of an independent variable on a continuous or ordinal

dependent variable [85], with a significance level of 0.05. p-values are reported on the top-right cor-

ner of each box plot.
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Fig. A.16. Bar plots of the global intervention group, describing the frequency of the outcomes and

other categorical static variables described in Appendix A.1 within each of the 6 clusters of trajectories

depicted in Figure 2.7.
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ALL - APP

CLUSTER_0 CLUSTER_1 CLUSTER_2 CLUSTER_3 CLUSTER_4 CLUSTER_5
Nb_Patients 64 59 49 148 100 106

Total_Time_PP_Median 22.65 4.83 45.92 13.88 3.82 42.32
Total_Time_PP_IQR 8.81 7.57 12.33 17.16 6.44 13.56
Mexican_trial_Perc 82.81 0 81.63 31.76 2 69.81
X04_Female_Perc 32.81 20.34 42.86 34.46 28 39.62
X05_Age_Median 66 59 61 66 64 56.5
X05_Age_IQR 15.25 15.5 17 18 12.5 19.75

X08_BMI_Median 28.4 29.04 28.71 29.34 28.39 29
X08_BMI_IQR 6.71 4.52 4.54 6.64 5.75 6.16

X17_MAP_enrol_Mean 84.06 93.05 83.67 88.64 91.91 85.17
X17_MAP_enrol_SD 8.39 13.55 9.04 13.11 12.68 10.49
X18_RR_enrol_Mean 28.23 22.22 22.8 26.91 23.89 22.86
X18_RR_enrol_SD 3.1 5.51 4.38 4.63 5.34 4.32

X20_ROX_enrol_Mean 3.38 9.38 4.62 5.48 7.1 7.74
X20_ROX_enrol_SD 0.51 3.13 0.94 1.51 2.16 1.99
X200_SF_enrol_Mean 94.33 196.89 102.22 143.48 161.95 171.24
X200_SF_enrol_SD 10.43 43.81 13.83 31.33 38.17 31.71
X22_CCD_Perc 31.25 13.56 32.65 17.57 13 25.47
X23_CLD_Perc 12.5 11.86 6.12 12.84 16 6.6
X24_DM_Perc 28.12 25.42 28.57 34.46 31 34.91
X25_CKD_Perc 6.25 6.78 14.29 8.11 4 10.38

X26_Cancer_Perc 3.12 8.47 2.04 6.76 17 3.77
X27_Obesity_Perc 37.5 38.98 36.73 41.89 35 43.4
X28_CLF_Perc 3.12 3.39 2.04 1.35 1 0

Nb_Comorbidities_Mean 1.22 1.08 1.22 1.23 1.17 1.25
Nb_Comorbidities_SD 1 1.02 1.12 1 1.04 0.96

X281_1+_Comorbidities_Perc 71.88 64.41 71.43 72.97 70 75.47
X282_2+_Comorbidities_Perc 37.5 33.9 30.61 37.84 35 37.74
X283_3+_Comorbidities_Perc 12.5 8.47 16.33 10.14 8 10.38
X284_4+_Comorbidities_Perc 0 1.69 4.08 2.03 4 0.94
X285_5+_Comorbidities_Perc 0 0 0 0 0 0
X286_6+_Comorbidities_Perc 0 0 0 0 0 0
X287_7+_Comorbidities_Perc 0 0 0 0 0 0

X30_Steroid_Perc 95.31 96.61 73.47 90.54 91 72.64
X48_ROX_change_Mean 0.49 0.57 1.15 0.4 0.95 2.67
X48_ROX_change_SD 0.73 3.5 0.97 1.99 2.27 2.57
X81_Primary_out_Perc 81.25 3.39 14.29 66.89 26 10.38
X83_Death28d_Perc 64.06 3.39 2.04 37.84 9 1.89
X84_Intub_Perc 57.81 1.69 14.29 54.73 25 10.38

Fig. A.17. Quantitative description of the global intervention group for each of the 6 clusters of tra-

jectories depicted in Figure 2.7 in terms of features described in Appendix A.1.
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Fig. A.18. Box plots (first, second and third quartiles, whiskers and outliers) of the non-Mexican

intervention group, describing the distribution of some continuous variables described in Appendix

A.1 within each of the 4 clusters of trajectories depicted in Figure 2.9. Labels in gray indicates a

successful Kruskal-Wallis test, a rank-based nonparametric test that determines if there are statistically

significant differences between at least two groups of an independent variable on a continuous or

ordinal dependent variable [85], with a significance level of 0.05. p-values are reported on the top-

right corner of each box plot.
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Fig. A.19. Bar plots of the non-Mexican intervention group, describing the frequency of the outcomes

and other categorical static variables described in Appendix A.1 within each of the 4 clusters of trajec-

tories depicted in Figure 2.9.
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NON-MEXICAN - APP

CLUSTER_0 CLUSTER_1 CLUSTER_2 CLUSTER_3
Nb_Patients 98 60 40 112

Total_Time_PP_Median 3.5 4.92 38.83 7.88
Total_Time_PP_IQR 5.42 8.64 26.81 12.64
Mexican_trial_Perc 0 0 0 0
X04_Female_Perc 29.59 21.67 35 31.25
X05_Age_Median 64.5 60 58.5 67
X05_Age_IQR 13.5 14.25 14.5 15

X08_BMI_Median 28.51 28.73 30.57 29.21
X08_BMI_IQR 6.01 4.65 4.46 6.36

X17_MAP_enrol_Mean 91.93 93 92.07 90.94
X17_MAP_enrol_SD 12.81 13.53 14.06 13.85
X18_RR_enrol_Mean 23.73 22.13 25.35 26.36
X18_RR_enrol_SD 5.32 5.55 6.07 5.08

X20_ROX_enrol_Mean 7.15 9.54 6.62 5.27
X20_ROX_enrol_SD 2.13 3.24 2.45 1.68
X200_SF_enrol_Mean 162.37 198.63 159.06 133.56
X200_SF_enrol_SD 37.36 43.68 48.74 33.76
X22_CCD_Perc 14.29 13.33 17.5 16.96
X23_CLD_Perc 16.33 11.67 5 15.18
X24_DM_Perc 32.65 25 50 31.25
X25_CKD_Perc 4.08 6.67 2.5 8.04

X26_Cancer_Perc 16.33 8.33 10 9.82
X27_Obesity_Perc 36.73 36.67 52.5 38.39
X28_CLF_Perc 1.02 3.33 0 0.89

Nb_Comorbidities_Mean 1.21 1.05 1.38 1.21
Nb_Comorbidities_SD 1.05 1.03 1 0.94

X281_1+_Comorbidities_Perc 71.43 61.67 82.5 75
X282_2+_Comorbidities_Perc 36.73 33.33 37.5 35.71
X283_3+_Comorbidities_Perc 9.18 8.33 15 8.93
X284_4+_Comorbidities_Perc 4.08 1.67 2.5 0.89
X285_5+_Comorbidities_Perc 0 0 0 0
X286_6+_Comorbidities_Perc 0 0 0 0
X287_7+_Comorbidities_Perc 0 0 0 0

X30_Steroid_Perc 90.82 96.67 57.5 92.86
X48_ROX_change_Mean 0.71 0.73 -0.12 -0.19
X48_ROX_change_SD 2.27 3.38 3.03 1.98
X81_Primary_out_Perc 26.53 3.33 42.5 57.14
X83_Death28d_Perc 9.18 3.33 7.5 23.21
X84_Intub_Perc 25.51 1.67 42.5 48.21

Fig. A.20. Quantitative description of the non-Mexican intervention group for each of the 4 clusters

of trajectories depicted in Figure 2.9 in terms of features described in Appendix A.1.
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Appendix B

MS long-term visualization: complementary

information

B.1. Additional plots



Fig. B.1. 2-dimensional PHATE embedding of the MS database following our processing steps in Sec-

tion 3.3.1. Each of the 16 sub-plots represents the same PHATE embedding, except that the embedding

points are colored differently according to the 16 input features as described in Section 3.2.
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Fig. B.2. 2-dimensional RF-PHATE embedding of the MS database using the target feature wors5years

and following our processing steps in Section 3.3.1. Each of the 16 sub-plots represents the same RF-

PHATE embedding, except that the embedding points are colored differently according to the 16 input

features as described in Section 3.2.
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Fig. B.3. 2-dimensional RF-PHATE embedding of the MS database using the target feature wors5years

and following our processing steps in Section 3.3.1. Each of the 6 sub-plots represents the same RF-

PHATE embedding, except that the embedding points are colored differently according to 6 external

features as described in Section 3.2.
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Fig. B.4. Average trajectories with sliding windows of the two wors5years groups of patients using

three unsupervised 2-dimensional embeddings: PCA (top left), t-SNE (top right) and UMAP (bottom

center). The dotted red line plots the average trajectory of the group undergoing disease worsening

after 5 years (i.e. wors5years = 1). The dotted blue line plots the average trajectory of the group

without disease worsening after 5 years (i.e. wors5years = 0). Labels represent the time on which

each window is centered, in years since disease onset.
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Fig. B.5. Average trajectories with sliding windows of the two wors5years groups of patients using

two supervised 2-dimensional embeddings: supervised PCA (top) and supervised UMAP (bottom).

The dotted red line plots the average trajectory of the group undergoing disease worsening after 5

years (i.e. wors5years = 1). The dotted blue line plots the average trajectory of the group without

disease worsening after 5 years (i.e. wors5years = 0). Labels represent the time on which each

window is centered, in years since disease onset.
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Fig. B.6. 2-dimensional RF-PHATE projection of each individual patient’s trajectory. Trajectories in

blue refer to patients without MS worsening after 5 years since disease onset (i.e. wors5years=0)

whereas trajectories in red refer to patients with MS worsening after 5 years since disease onset (i.e.

wors5years=1)
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B.2. Topological Data Analysis

B.2.1. Definition

TDA can be seen as the bridge between the strong theory of algebraic topology and

its computational application. Whereas the early stages of TDA date back to the 1990s

[48][120], it was definitely introduced in 2000, when Edelsbrunner, Letscher and Zomoro-

dian [44] released a paper which formalized an idea of TDA through the use of Persis-

tent Homology (PH). PH defines topological structures as connected components, holes or

rings, and uses them to characterize the shape of data at multiple scales [108]. The basic

idea of PH is to make use of a filtration function such as the Vietoris–Rips filtration [141]

which, given a resolution scale parameter r, converts a n-dimensional point cloud data set

X ⊂ Rn into a more abstract algebraic structure Xr called simplicial complex on which the

above-mentioned features (connected components, holes etc.) are rigorously defined as k-

dimensional holes referring to elements of the corresponding k-homology groups (Figure

B.7 [26]). Finally, the persistence of a k-dimensional hole is defined as its lifetime during

the filtration process, that is, how long it lasts between its scale of appearance (or birth)

r = b and its scale of disappearance (or death) r = d. For each k, the persistence of all the

k-dimensional holes are summarized in a persistence diagram Dk.

Remark B.2.1. To lighten the section, we do not detail the theoretical foundations of PH, in-

cluding the fundamental definition of the k-homology groups. Instead, we provide an intuitive

idea of the process and rather focus on its practical usefulness.

The steps of the algorithm leading to the production of the k-homology persistence

diagrams Dk is performed as follows:

(1) create n-dimensional balls of increasing diameter r with each data point as their

centre;

(2) build a Vietoris–Rips filtration: for each value of r, connect with an edge pairs of

points that are no further apart than r and add in complete simplices if multiple

points are in the same r-neighbourhood;

(3) apply homology to the resulting simplicial complex for all values of r to detect any

k-dimensional holes (Figure B.8, (b)-(e)[108]);
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(4) follow the persistence of any k-dimensional hole as the value of r increases and

create persistent diagram. Here, the persistence interval of a hole corresponds

to [b, d) for which b and d are the values of r where the hole is born and dies,

respectively (Figure B.8, (f) [108]).

Fig. B.7. Topological representation of a steering wheel through some filtration function that segments

the original point cloud at three different resolution scales with an agglomeration of simplexes, a gen-

eralized notion of triangles. (a) Largest resolution scale of the filtration in which only 1 hole has been

properly reconstructed. (b) Decreasing the resolution results in the appearance of another hole. (c)

Finest resolution in which the three typical rings of the steering wheel have been reconstructed. Per-

sistent homology considers all of those scales to detect holes that persist across the filtration, because

long-lasting holes are generally associated with the most interesting topological features to retrieve

from a point cloud.

Fig. B.8. Production of the 1-homology group persistence diagram D1 –informally, loops, or rings–

through Vietoris–Rips filtration. (a) Input point cloud data. (b) Point cloud and discs of increasing

diameters with r = b1, (c) r = b2, (d) r = d2 and (e) r = d1. (f) D1.

B.2.2. Sketched idea of the use of TDA

More practically, let us focus on the task of determining distinct temporal patterns for

the binary outcome wors5years in terms of all the K available variables, both continuous
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and categorical. We have two groups of patients’ trajectories G0 and G1 corresponding to

the endpoints wors5years = 0 and wors5years = 1 respectively. To be consistent with the

outcome, we apply a time cutoff of T ≤ 5 years since disease onset on trajectories such

that

G0 = {P T
1 , . . . , P

T
m}

G1 = {QT
1 , . . . , Q

T
n}

where P T
i and QT

j for 1 ≤ i ≤ m and 1 ≤ j ≤ n are patients’ i and j K-dimensional

time series up to T years since disease onset. In our previous approach, we described G0

and G1 with spatial averages on sliding windows. Here, we keep the sliding windows but

suggest to describe G0 and G1 thanks to sequences of persistence diagrams encoding the

topological structure of each window. In other words, with predefined values for w and

s ≤ w, we first generate the two sequences of windows

Gwin
0 = {W 0

0 ,W
0
s ,W

0
2s, . . . ,W

0

⌈Ts ⌉s}

Gwin
1 = {W 1

0 ,W
1
s ,W

1
2s, . . . ,W

1

⌈Ts ⌉s}

where W j
i ⊂ RK is the aggregation of all patients’ K-dimensional recording days of group

j within the time period [i−w/2, i +w/2], i.e. a window of size w centered at time t = i

ddo. In this way, we no longer consider individual patients’ time series; instead, Gwin
j can

be seen as an aggregate of the global motion of the group of patients’ trajectories Gj. Still,

we have no control over the patients’ recording days included into W 0
i and W 1

i point clouds

that contain all the original noise and outliers as they simply take the data set as it is and

put it into boxes. In fact, those sliding windows are neither suitable for visualizing group

trajectories (see our average trajectories in the previous sections), nor for quantitatively

comparing the temporal trends of G0 and G1, because we cannot choose a meaningful

(dis)similarity measure between the global trajectories Gwin
0 and Gwin

1 if the windows W j
i

differ a lot in size and/or in number of patients.

Therefore, we need to provide an alternative representation for each V j
i and our di-

rection inclines towards TDA. For each window V j
i ⊂ RK , we first construct its distance

matrix Mj
i with a predefined distance f : RK ×RK → R+, such as the Euclidean distance.
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Then, we generate Kj
i =

(
D0(M

j
i ), D1(M

j
i )
)

where Dk maps a distance matrix to its corre-

sponding persistence diagram of the k-homology class by Vietoris–Rips filtration. Thus, we

have managed to describe G0 and G1 with the sequences

Gdiag
0 = {K0

0,K0
s ,K0

2s, . . . ,K0

⌈Ts ⌉s}

Gdiag
1 = {K1

0,K1
s ,K1

2s, . . . ,K1

⌈Ts ⌉s}.

Technically, Kj
i is a pair of persistence diagrams: one for the 0-homology class (connected

components) and the other for the 1-homology class (loops). However, we can combine

those diagrams so that Kj
i can be seen as a single diagram summarizing the persistence

of multiple homology classes. We can also extend the number of homology classes to

explore more structure; however, because of lengthy computations of Vietoris–Rips com-

plexes [155], it is often a good idea to start with the first homology classes.

As a first step into our MS time series exploration with TDA, we can compare the

temporal trends of G0 and G1 through their topological sequences Gdiag
0 and Gdiag

1 along

with an appropriate (dis)similarity measure between sequences of diagrams. Since we

already know a robust distance d between persistence diagrams, such as the Bottleneck

distance that has been used in the stability theorem [40], we can make use of it to extend

to sequences of diagrams. For instance, one could define the local distance between two

pairs of diagrams (K0
i ,K1

i ) as the averaged distance between diagrams of the respective

homology classes,

LocalDist(K0
i ,K1

i ) =
d (D0(M

0
i ), D0(M

1
i )) + d (D1(M

0
i ), D1(M

1
i ))

2
,

and the global distance between the two sequences as the step-wise average of the local

distances over the windows 0 ≤ i ≤
⌈
T
s

⌉
s:

GlobalDist(Gdiag
0 ,Gdiag

1 ) =
1⌈

T
s

⌉
+ 1

(∑
i

LocalDist(K0
i ,K1

i )

)
.

Of course, the comparison of those two groups of patients is not inherently insightful since

there is no interpretation of a single resulting distance. In fact, the interesting part arises

when considering a lot of different groups and comparing their pairwise global distances

through heat maps, a task that is left for future directions.
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B.2.3. Visual representation with persistence landscapes

Instead of describing grouped motions with sequences of persistence diagrams which

cannot be easily visualized, there have been novel advancements to directly describe

grouped motions with sequences of persistence landscapes [27]. Informally, given a ho-

mology class k, a persistence landscape is a set of piecewise linear functions containing the

amount of topological structure in a persistence diagram Dk, from which metrics quantify-

ing this amount can be derived using Lp-norms. Thus, a sequence of persistence landscapes

depicts the evolution of a group of patients’ MTS over time with a single UTS that preserves

the invariant and stable properties of TDA (Figure B.9)! However, one question suddenly

Fig. B.9. Synthetic scheme of the topological signals associated with two groups of patients’ MTS. Left:

two groups of patients’ MTS according to some outcome of interest, such as worsening/no worsening.

Right: corresponding topological UTS representations of the two groups, obtained through persistence

landscapes on sliding windows for some k-homology class.

comes out: how is a topological UTS clinically insightful? Since some papers observe that

topological descriptors can reveal interesting hidden structures that were not previously

studied [101], we believe that there may exist underlying pattern correlations between

the topological UTS and the MS progression of a group of patients. Still, due to the lack

of persistence landscape applications among the existing literature, the best way to face

those unanswered questions is through future experimentation on our MS data and other

healthcare projects.
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