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Résumé

La géométrie moléculaire, également connue sous le nom de conformation, est la représenta-
tion la plus intrinsèque et la plus informative des molécules. Cependant, prédire des confor-
mations stables à partir de graphes moléculaires reste un problème difficile et fondamental en
chimie et en biologie computationnelles. Les méthodes expérimentales et computationelles
traditionnelles sont généralement coûteuses et chronophages. Récemment, nous avons assisté
à des progrès considérables dans l’utilisation de l’apprentissage automatique, en particulier
des modèles génératifs, pour accélérer cette procédure. Cependant, les approches actuelles
basées sur les données n’ont généralement pas la capacité de modéliser des distributions
complexes et ne tiennent pas compte de caractéristiques géométriques importantes. Dans
cette thèse, nous cherchons à construire des modèles génératifs basés sur des principes pour
la génération de conformation moléculaire qui peuvent surmonter les problèmes ci-dessus.
Plus précisément, nous avons proposé des modèles de diffusion basés sur les flux, sur l’énergie
et de débruitage pour la génération de structures moléculaires. Cependant, il n’est pas
trivial d’appliquer ces modèles à cette tâche où la vraisemblance des géométries devrait avoir
la propriété importante d’invariance par rotation par de translation. Inspirés par les progrès
récents de l’apprentissage des représentations géométriques, nous fournissons à la fois une
justification théorique et une mise en œuvre pratique sur la manière d’imposer cette propriété
aux modèles. Des expériences approfondies sur des jeux de données de référence démontrent
l’efficacité de nos approches proposées par rapport aux méthodes de référence existantes.

Mots-clés: Génération de conformation moléculaire, modèles génératifs profonds, flux
continu de normalisation, modèles basés sur l’énergie, modèles probabilistes de diffusion

5





Abstract

Molecular geometry, also known as conformation, is the most intrinsic and informative
representation of molecules. However, predicting stable conformations from molecular
graphs remains a challenging and fundamental problem in computational chemistry and
biology. Traditional experimental and computational methods are usually expensive and
time-consuming. Recently, we have witnessed considerable progress in using machine
learning, especially generative models, to accelerate this procedure. However, current
data-driven approaches usually lack the capacity for modeling complex distributions and fail
to take important geometric features into account. In this thesis, we seek to build principled
generative models for molecular conformation generation that can overcome the above prob-
lems. Specifically, we proposed flow-based, energy-based, and denoising diffusion models for
molecular structure generation. However, it’s nontrivial to apply these models to this task
where the likelihood of the geometries should have the important property of rotational and
translation invariance. Inspired by the recent progress of geometric representation learning,
we provide both theoretical justification and practical implementation about how to impose
this property into the models. Extensive experiments on common benchmark datasets
demonstrate the effectiveness of our proposed approaches over existing baseline methods.

Keywords: Molecular conformation generation, deep generative models, continuous nor-
malizing flow, energy-based models, diffusion probabilistic models
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Chapter 1

Introduction

Recently, we have witnessed huge success of machine learning for molecular modeling, and
especially, with deep learning (Goodfellow et al., 2016). Various deep learning models have
shown effective in a variety of applications, such molecular property prediction (Gilmer
et al., 2017), molecule generation (Jin et al., 2018; Shi et al., 2020b), and retrosynthesis
prediction (Dai et al., 2019; Shi et al., 2020a). However, these models typically treat
molecules as discrete graphs, where atoms are annotated as nodes and covalent chemical
bonds as edges. Despite the empirical effectiveness, a more intrinsic and natural way to
represent molecule is the 3D geometry, also known as molecular conformations, where
atoms are characterized by their 3D Cartesian coordinates. Molecular geometry contains
much more critical information beyond graph representations like bond lengths and angles,
which can directly determine many vital biological and physical properties, such as charge
distribution and therapeutic interactions with proteins (Thomas et al., 2018; Jing et al.,
2021). Indeed, recently a handful of studies have shown the effectiveness of using molecular
conformations for molecular modeling tasks, e.g., property prediction (Kearnes et al., 2016)
and energy modeling (Behler and Parrinello, 2007; Rupp et al., 2012; Smith et al., 2017).

Though conformations play a key role in so many computational chemistry and biology
applications, obtaining stable 3D structures of these molecules is still a challenging task.
Traditional experimental methods by expensive crystallography are very slow and costly,
and how to predict valid low-energy conformations efficiently and accurately has become
an emerging and active research topic in modern computational chemistry. With decades of
studies, current computational approaches are typically based on molecular dynamics (MD)
or Markov chain Monte Carlo (MCMC) (De Vivo et al., 2016), which propose conformations
by running simulations through expensive quantum calculations or approximate empirical
potential (Ballard et al., 2015). Despite the progress that has been achieved, these
methods are still either time-consuming (Ballard et al., 2015) or less accurate, making the
performance not satisfying enough.



Recently, there are more and more efforts devoted to developing machine learning ap-
proaches, especially with deep generative model (Goodfellow et al., 2014; Kingma and Dha-
riwal, 2018; Song and Ermon, 2019), to accelerate this process (Mansimov et al., 2019; Simm
and Hernández-Lobato, 2020). The problem is typically formulated as a conditional genera-
tive task, which aims to learn the conditional distribution p(R|G) of stable conformations R

given the molecular graph representation G. Such a model can be trained with just a collec-
tion of molecules with available stable conformations. Specifically, Mansimov et al. (2019)
proposed to use Variational auto-encoders (VAE) (Kingma and Welling, 2013) models to di-
rectly predict the atomic coordinates. It first uses a message passing neural network (Gilmer
et al., 2017) to extract atom representations from the molecular graph, then further generate
the positions based on these atom embeddings. However, this method suffers the limitation
of failing to impose the roto-translational invariance of molecular geometries. To overcome
this problem, Simm and Hernández-Lobato (2020) propose to predict the distances between
atoms instead of the 3D coordinates, and then generate molecular conformations by solving
the distance geometry algorithm (Liberti et al., 2014). Since atomic pairwise distances will
not be affected by rotation and translation, such approaches can effectively enjoy the roto-
translational invariance of molecular conformations and therefore achieved promising results.

Despite the huge progress we have achieved, the current performance is still not
satisfying enough and there remains a significant space for further improvement. This is
mainly because of several challenges of the task. Firstly, the distribution of conformations
is highly complex and multi-modal that each molecule usually has multiple diverse and
stable conformations, which require a strong density modeling capacity of the probabilistic
models. Secondly, the molecular conformations are complex geometries, which contain lots
of essential geometric information, e.g., pairwise relative direction tensors. However, naive
graph neural networks are incapable of taking this important information into consideration.

In this thesis, we study how to tackle the above challenges and specifically propose
two principled novel probabilistic models for molecular conformations. First, the previous
methods (Mansimov et al., 2019; Simm and Hernández-Lobato, 2020) are mainly based on
VAE models, which typically show inferior distribution modeling performance compared
with more recent generative models (Vahdat et al., 2021). To this end, in this thesis, we
explore introducing more advanced generative models to improve the generation capacity,
including flow-based models (Dinh et al., 2017), energy-based models (Du and Mordatch,
2019), and diffusion models (Ho et al., 2020). However, how to build these models for
molecular conformation generation is a non-trivial problem, where the learned likelihood
is required to be roto-translationally invariant. Besides, the models also need to be
parameterized with more advanced neural networks to incorporate the high-order features
within the molecular geometries. In our work, we provide both theoretical justification
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for imposing invariance properties into the generative models, and practical solutions for
parameterizing the models by the recent progress of geometric representation learning.

To facilitate further developments in this area, we also provide a suite of benchmark
metrics to evaluate the quality of generated molecular conformations. The comprehensive
benchmarks can measure both the quality and diversity of generated samples. We conduct ex-
tensive experiments to compare our proposed methods with competitive baseline approaches
on the benchmarks. Results show that our model can significantly outperform existing
data-driven methods, which demonstrates the effectiveness of our proposed approach.

1.1. Contributions
The main contributions of the thesis are summarized as follows:

• In this thesis, we propose two works (both have been accepted as publications at
machine learning conferences) about deep generative models for molecular confirma-
tion generation. We provide prologues of the two articles in Chap. 2 and Chap. 4
respectively, and elaborate the article details in Chap. 3 and Chap. 5. In the two
works, we propose novel flow-based, energy-based, and denoising diffusion models
for molecular geometry generation. We provide both the theoretical foundation and
practical implementation of all these methods, combining the recent progress of both
deep generative models and geometric representation learning.

• We provide several standardized benchmarks for evaluating the molecular confirma-
tion generation models. We adopt the recently released dataset GEOM (Axelrod and
Gomez-Bombarelli, 2020) and provide the benchmark setup compatible with several
major deep learning frameworks that can evaluate both the quality and diversity of
generated confirmations.

• We conduct comprehensive experiments to evaluate our methods as well as rela-
ted state-of-the-art baselines on the benchmark. Results show that our method can
consistently achieve better performance with a significant improvement, which de-
monstrates the effectiveness of our proposed approaches.
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Chapter 2

Prologue to First Article

2.1. Article Details
Learning Neural Generative Dynamics for Molecular Conformation Genera-

tion. Minkai Xu*, Shitong Luo*, Yoshua Bengio, Jian Peng, Jian Tang. 9th International
Conference on Learning Representations, 2021.

2.2. Personal Contribution
(*) denotes co-first authorship. I came up with the idea of combining flow-based and

energy-based model to design a new class of generative models, and specifically use this
model for molecular conformation generation. Shitong Luo implemented the prototype of
the model. Shitong Luo and I iterated on the model to improve the performance step by
step. Jian Tang provide supervision for the whole project, and we also receive important
feedback from Yoshua Bengio and Jian Peng during the process. I wrote up the first version
of the paper. Shitong Luo and Jian Tang significantly helped improve its presentation, while
Yoshua Bengio and Jian Peng also helped to polish the paper.





Chapter 3

Geometric Neural Generative Dynamics
Models

3.1. Introduction
Recently, we have witnessed the success of graph-based representations for molecular

modeling in a variety of tasks such as property prediction (Gilmer et al., 2017) and molecule
generation (You et al., 2018; Shi et al., 2020b). However, a more natural and intrinsic re-
presentation of a molecule is its 3D structure, commonly known as the molecular geometry
or conformation, which represents each atom by its 3D coordinate. The conformation of a
molecule determines its biological and physical properties such as charge distribution, steric
constraints, as well as interactions with other molecules. Furthermore, large molecules tend
to comprise a number of rotatable bonds, which may induce flexible conformation changes
and a large number of feasible conformations in nature. Generating valid and stable confor-
mations of a given molecule remains very challenging. Experimentally, such structures are
determined by expensive and time-consuming crystallography. Computational approaches
based on Markov chain Monte Carlo (MCMC) or molecular dynamics (MD) (De Vivo et al.,
2016) are computationally expensive, especially for large molecules (Ballard et al., 2015).

Machine learning methods have recently shown great potential for molecular conforma-
tion generation by training on a large collection of data to model the probability distribution
of potential conformations R based on the molecular graph G, i.e., p(R|G). For example,
Mansimov et al. (2019) proposed a Conditional Variational Graph Autoencoders (CVGAE)
for molecular conformation generation. A graph neural network (Gilmer et al., 2017) is
first applied to the molecular graph to get the atom representations, based on which 3D
coordinates are further generated. One limitation of such an approach is that by directly
generating the 3D coordinates of atoms it fails to model the rotational and translational
invariance of molecular conformations. To address this issue, instead of generating the 3D



coordinates directly, Simm and Hernández-Lobato (2020) recently proposed to first model
the molecule’s distance geometry (i.e., the distances between atoms)—which are rotationally
and translationally invariant—and then generate the molecular conformation based on the
distance geometry through a post-processing algorithm (Liberti et al., 2014). Similar to
Mansimov et al. (2019), a few layers of graph neural networks are applied to the molecular
graph to learn the representations of different edges, which are further used to generate the
distances of different edges independently. This approach is capable of more often generating
valid molecular conformations.

Although these new approaches have made tremendous progress, the problem remains
very challenging and far from solved. First, each molecule may have multiple stable confor-
mations around a number of states which are thermodynamically stable. In other words,
the distribution p(R|G) is very complex and multi-modal. Models with high capacity are
required to model such complex distributions. Second, existing approaches usually apply a
few layers of graph neural networks to learn the representations of nodes (or edges) and then
generate the 3D coordinates (or distances) based on their representations independently.
Such approaches are necessarily limited to capturing a single mode of p(R|G) (since the co-
ordinates or distances are sampled independently) and are incapable of modeling multimodal
joint distributions and the form of the graph neural net computation makes it difficult to
capture long-range dependencies between atoms, especially in large molecules.

Inspired by the recent progress with deep generative models, this paper proposes a no-
vel and principled probabilistic framework for molecular geometry generation, which ad-
dresses the above two limitations. Our framework combines the advantages of normalizing
flows (Dinh et al., 2014) and energy-based approaches (LeCun et al., 2006), which have a
strong model capacity for modeling complex distributions, are flexible to model long-range
dependency between atoms, and enjoy efficient sampling and training procedures. Similar
to the work of Simm and Hernández-Lobato (2020), we also first learn the distribution of
distances d given the graph G, i.e., p(d|G), and define another distribution of conformations
R given the distances d, i.e., p(R|d,G). Specifically, we propose a novel Conditional Graph
Continuous Flow (CGCF) for distance geometry (d) generation conditioned on the molecular
graph G. Given a molecular graph G, CGCF defines an invertible mapping between a base
distribution (e.g., a multivariate normal distribution) and the molecular distance geometry,
using a virtually infinite number of graph transformation layers on atoms represented by a
Neural Ordinary Differential Equations architecture (Chen et al., 2018). Such an approach
enjoys very high flexibility to model complex distributions of distance geometry. Once the
molecular distance geometry d is generated, we further generate the 3D coordinates R by
searching from the probability p(R|d,G).

Though the CGCF has a high capacity for modeling complex distributions, the distances
of different edges are still independently updated in the transformations, which limits its
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capacity for modeling long-range dependency between atoms in the sampling process. The-
refore, we further propose another unnormalized probability function, i.e., an energy-based
model (EBM) (Hinton and Salakhutdinov, 2006; LeCun et al., 2006; Ngiam et al., 2011),
which acts as a tilting term of the flow-based distribution and directly models the joint
distribution of R. Specifically, the EBM trains an energy function E(R, G), which is ap-
proximated by a neural network. The flow- and energy-based models are combined in a novel
way for joint training and mutual enhancement. First, energy-based methods are usually
difficult to train due to the slow sampling process. In addition, the distribution of conforma-
tions is usually highly multi-modal, and the sampling procedures based on Gibbs sampling
or Langevin Dynamics (Bengio et al., 2013a,b) tend to get trapped around modes, making it
difficult to mix between different modes (Bengio et al., 2013a). Here we use the flow-based
model as a proposal distribution for the energy model, which is capable to generate diverse
samples for training energy models. Second, the flow-based model lacks the capacity to
explicitly model the long-range dependencies between atoms, which we find can however be
effectively modeled by an energy function E(R, G). Our sampling process can be therefore
viewed as a two-stage dynamic system, where we first take the flow-based model to quickly
synthesize realistic conformations and then used the learned energy E(R, G) to refine the
generated conformations through Langevin Dynamics.

We conduct comprehensive experiments on several recently proposed benchmarks, inclu-
ding GEOM-QM9, GEOM-Drugs (Axelrod and Gomez-Bombarelli, 2020) and ISO17 (Simm
and Hernández-Lobato, 2020). Numerical evaluations show that our proposed framework
consistently outperforms the previous state-of-the-art (GraphDG) on both conformation ge-
neration and distance modeling tasks, with a clear margin.

3.2. Problem Definition and Preliminaries
3.2.1. Problem Definition

Notations. Following existing work (Simm and Hernández-Lobato, 2020), each molecule
is represented as an undirected graph G = ⟨V , E⟩, where V is the set of nodes representing
atoms and E is the set of edges representing inter-atomic bonds. Each node v in V is
labeled with atomic properties such as element type. The edge in E connecting u and v is
denoted as euv, and is labeled with its bond type. We also follow the previous work (Simm
and Hernández-Lobato, 2020) to expand the molecular graph with auxiliary bonds, which
is elaborated in Appendix 3.6.2. For the molecular 3D representation, each atom in V is
assigned with a 3D position vector r ∈ R3. We denote duv = ∥ru − rv∥2 as the Euclidean
distance between the uth and vth atom. Therefore, we can represent all the positions {rv}v∈V
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as a matrix R ∈ R|V|×3 and all the distances between connected nodes {duv}euv∈E as a vector
d ∈ R|E|.

Problem Definition. The problem of molecular conformation generation is defined
as a conditional generation process. More specifically, our goal is to model the conditional
distribution of atomic positions R given the molecular graph G, i.e., p(R|G).

3.2.2. Preliminaries

Continuous Normalizing Flow. A normalizing flow (Dinh et al., 2014; Rezende and
Mohamed, 2015) defines a series of invertible deterministic transformations from an ini-
tial known distribution p(z) to a more complicated one p(x). Recently, normalizing flows
have been generalized from discrete number of layers to continuous (Chen et al., 2018;
Grathwohl et al., 2018) by defining the transformation fθ as a continuous-time dynamic
∂z(t)

∂t
= fθ(z(t), t). Formally, with the latent variable z(t0) ∼ p(z) at the start time, the

continuous normalizing flow (CNF) defines the transformation x = z(t0) +
∫ t1

t0
fθ(z(t),t)dt.

Then the exact density for pθ(x) can be computed by:

log pθ(x) = log p(z(t0)) −
∫ t1

t0
Tr
(

∂fθ

∂z(t)

)
dt (3.2.1)

where z(t0) can be obtained by inverting the continuous dynamic z(t0) = x+
∫ t0

t1
fθ(z(t), t)dt.

A black-box ordinary differential equation (ODE) solver can be applied to estimate the
outputs and inputs gradients and optimize the CNF model (Chen et al., 2018; Grathwohl
et al., 2018).

Energy-based Models. Energy-based models (EBMs) (Dayan et al., 1995; Hinton and
Salakhutdinov, 2006; LeCun et al., 2006) use a scalar parametric energy function Eϕ(x) to
fit the data distribution. Formally, the energy function induces a density function with the
Boltzmann distribution pϕ(x) = exp(−Eϕ(x))/Z(ϕ), where Z =

∫
exp(−Eϕ(x)) dx denotes

the partition function. EBM can be learned with Noise contrastive estimation (NCE) (Gut-
mann and Hyvärinen, 2010) by treating the normalizing constant as a free parameter. Given
the training examples from both the dataset and a noise distribution q(x), ϕ can be estimated
by maximizing the following objective function:

J(ϕ) = Epdata

[
log pϕ(x)

pϕ(x) + q(x)
]

+ Eq

[
log q(x)

pϕ(x) + q(x)
]
, (3.2.2)

which turns the estimation of EBM into a discriminative learning problem. Sampling from
Eϕ can be done with a variety of methods such as Markov chain Monte Carlo (MCMC)
or Gibbs sampling (Hinton and Salakhutdinov, 2006), possibly accelerated using Langevin
dynamics (Du and Mordatch, 2019; Song et al., 2020b), which leverages the gradient of the
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EBM to conduct sampling:

xk = xk−1 − ϵ

2∇xEϕ (xk−1) +
√

ϵω, ω ∼ N (0, I), (3.2.3)

where ϵ refers to the step size. x0 are the samples drawn from a random initial distribu-
tion and we take the xK with K Langevin dynamics steps as the generated samples of the
stationary distribution.

3.3. Method
3.3.1. Overview

We first present a high-level description of our model. Directly learning a generative
model on Cartesian coordinates heavily depends on the (arbitrary) rotation and transla-
tion (Mansimov et al., 2019). Therefore, in this paper we take the atomic pairwise distances
as intermediate variables to generate conformations, which are invariant to rotation and
translation. More precisely, the cornerstone of our method is to factorize the conditional
distribution pθ(R|G) into the following formulation:

pθ(R|G) =
∫

p(R|d,G) · pθ(d|G) dd, (3.3.1)

where pθ(d|G) models the distribution of inter-atomic distances given the graph G and
p(R|d,G) models the distribution of conformations given the distances d. In particular,
the conditional generative model pθ(d|G) is parameterized as a conditional graph continuous
flow, which can be seen as a continuous dynamics system to transform the random ini-
tial noise to meaningful distances. This flow model enables us to capture the long-range
dependencies between atoms in the hidden space during the dynamic steps.

Though CGCF can capture the dependency between atoms in the hidden space, the
distances of different edges are still independently updated in the transformations, which
limits the capacity of modeling the dependency between atoms in the sampling process.
Therefore we further propose to correct pθ(R|G) with an energy-based tilting term Eϕ(R, G):

pθ,ϕ(R|G) ∝ pθ(R|G) · exp(−Eϕ(R, G)). (3.3.2)

The tilting term is directly defined on the joint distribution of R and G, which explicitly
captures the long-range interaction directly in observation space. The tilted distribution
pθ,ϕ(R|G) can be used to provide refinement or optimization for the conformations gene-
rated from pθ(R|G). This energy function is also designed to be invariant to rotation and
translation.

In the following parts, we will firstly describe our flow-based generative model pθ(R|G) in
Section 3.3.2 and elaborate the energy-based tilting model Eϕ(R,G) in Section 3.3.3. Then we
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Fig. 3.1. Illustration of the proposed framework. Given the molecular graph, we 1) first
draw latent variables from a Gaussian prior, and transform them to the desired distance
matrix through the Conditional Graph Continuous Flow (CGCF); 2) search the possible
3D coordinates according to the generated distances and 3) further optimize the generated
conformation via a MCMC procedure with the Energy-based Tilting Model (ETM).

introduce the two-stage sampling process with both deterministic and stochastic dynamics
in Section 3.3.4. An illustration of the whole framework is given in Fig. 3.1.

3.3.2. Flow-based Generative Model

Conditional Graph Continuous Flows pθ(d|G). We parameterize the conditional
distribution of distances pθ(d|G) with the continuous normalizing flow, named Conditional
Graph Continuous Flow (CGCF). CGCF defines the distribution through the following
dynamics system:

d = Fθ(d(t0), G) = d(t0) +
∫ t1

t0
fθ(d(t), t; G)dt, d(t0) ∼ N (0, I) (3.3.3)

where the dynamic fθ is implemented by Message Passing Neural Networks (MPNN) (Gilmer
et al., 2017), which is a widely used architecture for representation learning on molecular
graphs. MPNN takes node attributes, edge attributes and the bonds lengths d(t) as input
to compute the node and edge embeddings. Each message passing layer updates the node
embeddings by aggregating the information from neighboring nodes according to its hidden
vectors of respective nodes and edges. Final features are fed into a neural network to compute
the value of the dynamic fθ for all distances independently. As t1 → ∞, our dynamic can
have an infinite number of steps and is capable to model long-range dependencies. The
invertibility of Fθ allows us to not only conduct fast sampling, but also easily optimize the
parameter set θ by minimizing the exact negative log-likelihood:

Lmle(d, G; θ) = −Epdata log pθ(d|G) = −Epdata

[
log p(d(t0)) +

∫ t1

t0
Tr
(

∂fθ,G

∂d(t)

)
dt

]
. (3.3.4)
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Closed-form p(R|d,G). The generated pair-wise distances can be converted into 3D
structures through postprocessing methods such as the classic Euclidean Distance Geometry
(EDG) algorithm. In this paper, we adopt an alternative way by defining the conformations
as a conditional distribution:

p(R|d, G) = 1
Z

exp
{

−
∑

euv∈E
αuv

(
∥ru − rv∥2 − duv

)2
}

, (3.3.5)

where Z is the partition function to normalize the probability and {αuv} are parameters
that control the variance of desired Cartesian coordinates, which can be either learned or
manually designed according to the graph structure G. With the probabilistic formulation,
we can conduct either sampling via MCMC or searching the local optimum with optimization
methods. This simple function is fast to calculate, making the generation procedure very
efficient with a negligible computational cost.

Compared with the conventional EDG algorithm adopted in GraphDG (Simm and
Hernández-Lobato, 2020), our probabilistic solution enjoys following advantages: 1)
p(R|d, G) enables the calculation for the likelihood pθ(R|G) of Eq. 3.3.1 by approximation
methods, and thus can be further combined with the energy-based tilting term Eϕ(R,G) to
induce a superior distribution; 2) GraphDG suffers the drawback that when invalid sets of
distances are generated, EDG will fail to construct 3D structure. By contrast, our method
can always be successful to generate conformations by sampling from the distribution
p(R|d,G).

3.3.3. Energy-based Tilting Model

The last part of our framework is the Energy-based Tiling Model (ETM) Eϕ(R,G), which
helps model the long-range interactions between atoms explicitly in the observation space.
Eϕ(R,G) takes the form of SchNet (Schütt et al., 2017), which is widely used to model the
potential-energy surfaces and energy-conserving force fields for molecules. The continuous-
filter convolutional layers in SchNet allow each atom to aggregate the representations of
all single, pairwise, and higher-order interactions between the atoms through non-linear
functions. The final atomic representations are pooled to a single vector and then passed
into a network to produce the scalar output.

Typically the EBMs can be learned by maximum likelihood, which usually requires the
lengthy MCMC procedure and is time-consuming for training. In this work, we learn the
ETM by Noise Contrastive Estimation (Gutmann and Hyvärinen, 2010), which is much
more efficient. In practice, the noise distribution is required to be close to data distribution,
otherwise the classification problem would be too easy and would not guide Eϕ to learn much
about the modality of the data. We propose to take the pre-trained CGCF to serve as a
strong noise distribution, leading to the following discriminative learning objective for the
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ETM2:

Lnce(R,G; ϕ) = − Epdata

[
log 1

1 + exp(Eϕ(R,G))
]

− Epθ

[
log 1

1 + exp(−Eϕ(R,G))
]
. (3.3.6)

3.3.4. Sampling

We employ a two-stage dynamic system to synthesize a possible conformation given the
molecular graph representation G. In the first stage, we first draw a latent variable ẑ from
the Gaussian prior N (0,I), and then pass it through the continuous deterministic dynamics
model Fθ defined in Eq. 3.3.3 to get d̂0 = Fθ(ẑ0,G). Then an optimization procedure such
as stochastic gradient descent is employed to search the realistic conformations R with local
maximum probability of p(R|d,G) (defined in Eq. 3.3.5). By doing this, an initial conforma-
tion R(0) can be generated. In the second stage, we further refine the initial conformation
R(0) with the energy-based model defined in Eq. 3.3.2 with K steps of Langevin dynamics:

Rk = Rk−1 − ϵ

2∇REθ,ϕ (R|G) +
√

ϵω, ω ∼ N (0, I),

where Eθ,ϕ(R|G) = − log pθ,ϕ(R|G) = Eϕ(R,G) − log
∫

p(R|d,G)pθ(d|G)dd.
(3.3.7)

where ϵ denotes the step size. The second integration term in Eθ,ϕ can be estimated through
approximate methods. In practice, we use Monte Carlo Integration to conduct the approxi-
mation, which is simple yet effective with just a few distance samples from the CGCF model
pθ(d|G).

3.4. Experiments
3.4.1. Experiment Setup

Evaluation Tasks. To evaluate the performance of proposed model, we conduct expe-
riments by comparing with the counterparts on: (1) Conformation Generation evaluates
the model’s capacity to learn the distribution of conformations by measuring the diversity
and accuracy of generated samples (section 3.4.2); (2) Distribution over distances is
first proposed in Simm and Hernández-Lobato (2020), which concentrate on the distance
geometry of generated conformations (section 3.4.2).

Benchmarks. We use the recent proposed GEOM-QM9 and GEOM-Drugs (Axelrod
and Gomez-Bombarelli, 2020) datasets for conformation generation task and ISO17 data-
set (Simm and Hernández-Lobato, 2020) for distances modeling task. The choice of different
datasets is because of their distinct properties. Specifically, GEOM datasets consist of stable
conformations, which is suitable to evaluate the conformation generation task. By contrast,
ISO17 contains snapshots of molecular dynamics simulations, where the structures are not
2Detailed derivations of the training loss can be found in Appendix 3.6.6.
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equilibrium conformations but can reflect the density around the equilibrium state. There-
fore, it is more suitable for the assessment of similarity between the model distribution and
the data distribution around equilibrium states.

More specifically, GEOM-QM9 is an extension to the QM9 (Ramakrishnan et al., 2014)
dataset: it contains multiple conformations for most molecules while the original QM9 only
contains one. This dataset is limited to 9 heavy atoms (29 total atoms), with small molecular
mass and few rotatable bonds. We randomly draw 50000 conformation-molecule pairs from
GEOM-QM9 to be the training set, and take another 17813 conformations covering 150
molecular graphs as the test set. GEOM-Drugs dataset consists of much larger drug
molecules, up to a maximum of 181 atoms (91 heavy atoms). It also contains multiple
conformations for each molecule, with a larger variance in structures, e.g., there are the
6.5 rotatable bonds in average. We randomly take 50000 conformation-molecule pairs from
GEOM-Drugs as the training set, and another 9161 conformations (covering 100 molecular
graphs) as the test split. ISO17 dataset is also built upon QM9 datasets, which consists
of 197 molecules, each with 5000 conformations. Following Simm and Hernández-Lobato
(2020), we also split ISO17 into the training set with 167 molecules and the test set with
another 30 molecules.

Baselines. We compared our proposed method with the following state-of-the-art confor-
mation generation methods. CVGAE (Mansimov et al., 2019) uses a conditional version
of VAE to directly generate the 3D coordinates of atoms given the molecular graph. Gra-
phDG (Simm and Hernández-Lobato, 2020) also employs the conditional VAE framework.
Instead of directly modeling the 3D structure, they propose to learn the distribution over
distances. Then the distances are converted into conformations with an EDG algorithm.
Furthermore, we also take RDKit (Riniker and Landrum, 2015) as a baseline model, which
is a classical EDG approach built upon extensive calculation collections in computational
chemistry.

3.4.2. Conformation Generation

In this section, we evaluate the ability of the proposed method to model the equilibrium
conformations. We focus on both the diversity and accuracy of the generated samples. More
specifically, diversity measures the model’s capacity to generate multi-modal conformations,
which is essential for discovering new conformations, while accuracy concentrates on the
similarity between generated conformations and the equilibrium conformations.

Evaluation. For numerical evaluations, we follow previous work (Hawkins, 2017; Mansi-
mov et al., 2019) to calculate the Root-Mean-Square Deviation (RMSD) of the heavy atoms
between generated samples and reference ones. Precisely, given the generated conforma-
tion R and the reference R∗, we obtain R̂ by translating and rotating R∗ to minimize the
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Tableau 3.1. Comparison of different methods on the COV and MAT scores. Top 4 rows:
deep generative models for molecular conformation generation. Bottom 5 rows: different
methods that involve an additional rule-based force field to further optimize the generated
structures.

Dataset GEOM-QM9 GEOM-Drugs

Metric COV∗ (%) MAT (Å) COV∗ (%) MAT (Å)
Mean Median Mean Median Mean Median Mean Median

CVGAE 8.52 5.62 0.7810 0.7811 0.00 0.00 2.5225 2.4680
GraphDG 55.09 56.47 0.4649 0.4298 7.76 0.00 1.9840 2.0108
CGCF 69.60 70.64 0.3915 0.3986 49.92 41.07 1.2698 1.3064
CGCF + ETM 72.43 74.38 0.3807 0.3955 53.29 47.06 1.2392 1.2480

RDKit 79.94 87.20 0.3238 0.3195 65.43 70.00 1.0962 1.0877
CVGAE + FF 63.10 60.95 0.3939 0.4297 83.08 95.21 0.9829 0.9177
GraphDG + FF 70.67 70.82 0.4168 0.3609 84.68 93.94 0.9129 0.9090
CGCF + FF 73.52 72.75 0.3131 0.3251 92.28 98.15 0.7740 0.7338
CGCF + ETM + FF 73.54 72.58 0.3088 0.3210 92.41 98.57 0.7737 0.7616
* For the reported COV score, the threshold δ is set as 0.5Å for QM9 and 1.25Å for Drugs. More

results of COV scores with different threshold δ are given in Appendix 3.6.8.

Fig. 3.2. Visualization of generated conformations from the state-of-the-art baseline (Gra-
phDG), our method and the ground-truth, based on four random molecular graphs from the
test set of GEOM-Drugs. C, O, H, S and Cl are colored gray, red, white, yellow and green
respectively.

following predefined RMSD metric:

RMSD(R, R̂) =
( 1

n

n∑
i=1

∥Ri − R̂i∥2
) 1

2
, (3.4.1)

where n is the number of heavy atoms. Then the smallest distance is taken as the evaluation
metric. Built upon the RMSD metric, we define Coverage (COV) and Matching (MAT)
score to measure the diversity and quality respectively. Intuitively, COV measures the frac-
tion of conformations in the reference set that are matched by at least one conformation in
the generated set. For each conformation in the generated set, its neighbors in the reference
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set within a given RMSD threshold δ are marked as matched:

COV(Sg(G),Sr(G)) = 1
|Sr|

∣∣∣∣{R ∈ Sr

∣∣∣RMSD(R, R′) < δ, ∃R′ ∈ Sg

}∣∣∣∣, (3.4.2)

where Sg(G) denotes the generated conformations set for molecular graph G, and Sr(G)
denotes the reference set. In practice, the number of samples in the generated set is two
times of the reference set. Typically, a higher COV score means the a better diversity
performance. The COV score is able to evaluate whether the generated conformations are
diverse enough to cover the ground-truth.

While COV is effective to measure the diversity and detect the mode-collapse case, it is
still possible for the model to achieve high COV with a high threshold tolerance. Here we
define the MAT score as a complement to measure the quality of generated samples. For
each conformation in the reference set, the RMSD distance to its nearest neighbor in the
generated set is computed and averaged:

MAT(Sg(G),Sr(G)) = 1
|Sr|

∑
R′∈Sr

min
R∈Sg

RMSD(R, R′). (3.4.3)

This metric concentrate on the accuracy of generated conformations. More realistic generated
samples lead to a lower matching score.

Results. Tab. 3.1 shows that compared with the existing state-of-the-art baselines, our
CGCF model can already achieve superior performance on all four metrics (top 4 rows). As
a CNF-based model, CGCF holds much the higher generative capacity for both diversity
and quality compared than VAE approaches. The results are further improved when com-
bined with ETM to explicitly incorporate the long-range correlations. We visualize several
representative examples in Fig. 3.2, and leave more examples in Appendix 3.6.7. A meaning-
ful observation is that though competitive over other neural models, the rule-based RDKit
method occasionally shows better performance than our model, which indicates that RDKit
can generate more realistic structures. We argue that this is because after generating the ini-
tial coordinates, RDKit involves additional hand-designed molecular force field (FF) energy
functions (Rappé et al., 1992; Halgren, 1996a) to find the stable conformations with local
minimal energy. By contrast, instead of finding the local minimums, our deep generative
models aim to model and sample from the potential distribution of structures. To yield a
better comparison, we further test our model by taking the generated structures as initial
states and utilize the Merck Molecular Force Field (MMFF) (Halgren, 1996a) to find the
local stable points. A more precise description of about the MMFF Force Field algorithms
in RDKit is given in Appendix 3.6.9. This postprocessing procedure is also employed in
the previous work (Mansimov et al., 2019). Additional results in Tab. 3.1 verify our conjec-
ture that FF plays a vital role in generating more realistic structures, and demonstrate the
capacity of our method to generate high-quality initial coordinates.
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Tableau 3.2. Comparison of distances density modeling with different methods. We com-
pare the marginal distribution of single (p(duv|G)), pair (p(duv,dij|G)) and all (p(d|G)) edges
between C and O atoms. Molecular graphs G are taken from the test set of ISO17. We take
two metrics into consideration: 1) median MMD between the ground truth and generated
ones, and 2) mean ranking (1 to 3) based on the MMD metric.

Single Pair All
Mean Median Mean Median Mean Median

RDKit 3.4513 3.1602 3.8452 3.6287 4.0866 3.7519
CVGAE 4.1789 4.1762 4.9184 5.1856 5.9747 5.9928
GraphDG 0.7645 0.2346 0.8920 0.3287 1.1949 0.5485
CGCF 0.4490 0.1786 0.5509 0.2734 0.8703 0.4447
CGCF + ETM 0.5703 0.2411 0.6901 0.3482 1.0706 0.5411

3.4.3. Distributions Over Distances

Tough primarily designed for 3D coordinates, we also following Simm and Hernández-
Lobato (2020) to evaluate the generated distributions of pairwise distance, which can be
viewed as a representative element of the model capacity to model the inter-atomic interac-
tions.

Evaluation. Let p(duv|G) denote the conditional distribution of distances on each edge
euv given a molecular graph G. The set of distances are computed from the generated
conformations R. We calculate maximum mean discrepancy (MMD) (Gretton et al., 2012)
to compare the generated distributions and the ground-truth distributions. Specifically, we
evaluate the distribution of individual distances p(duv|G), pair distances p(duv, dij|G) and all
distances p(d|G). For this benchmark, the number of samples in the generated set is the
same as the reference set.

Results. The results of MMD are summarized in Tab. 3.2. The statistics show that
RDKit suffers the worst performance, which is because it just aims to generate the most stable
structures as illustrated in Section 3.4.2. For CGCF, the generated samples are significantly
closer to the ground-truth distribution than baseline methods, where we consistently achieve
the best numerical results. Besides, we notice that ETM will slightly hurt the performance in
this task. However, one should note that this phenomenon is natural because typically ETM
will sharpen the generated distribution towards the stable conformations with local minimal
energy. By contrast, the ISO17 dataset consists of snapshots of molecular dynamics where
the structures are not equilibrium conformations but samples from the density around the
equilibrium state. Therefore, ETM will slightly hurt the results. This phenomenon is also
consistent with the observations for RDKit. Instead of generating unbiased samples from
the underlying distribution, RDKit will only generate the stable ones with local minimal
energy by involving the hand-designed molecular force field (Simm and Hernández-Lobato,
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Tableau 3.3. Conformation Diversity. Mean and Std represent the corresponding mean and
standard deviation of pairwise RMSD between the generated conformations per molecule.

RDKit CVGAE GraphDG CGCF CGCF +ETM
Mean 0.083 0.207 0.249 0.810 0.741
Std 0.054 0.187 0.104 0.223 0.206

2020). And as shown in the results, though highly competitive in Tab. 3.1, RDKit also
suffers much weaker results in Tab. 3.2. The marginal distributions P (duv|G) for pairwise
distances in visualized in Appendix 3.6.11, which further demonstrate the superior capacity
of our proposed method.

We also follow Mansimov et al. (2019) to calculate the diversity of conformations gene-
rated by all compared methods, which is measured by calculating the mean and standard
deviation of the pairwise RMSD between each pair of generated conformations per molecule.
The results shown in Tab. 3.3 demonstrate that while our method can achieve the lowest
MMD, it does not collapse to generating extremely similar conformations. Besides, we ob-
serve that ETM will slightly hurt the diversity of CGCF, which verifies our statement that
ETM will sharpen the generated distribution towards the stable conformations with local
minimal energy.

3.5. Conclusion and Future Work
In this paper, we propose a novel probabilistic framework for molecular conformation

generation. Our generative model combines the advantage of both flow-based and energy-
based models, which is capable of modeling the complex multi-modal geometric distribution
and highly branched atomic correlations. Experimental results show that our method out-
performs all previous state-of-the-art baselines on the standard benchmarks. Future work
includes applying our framework on much larger datasets and extending it to more challen-
ging structures (e.g., proteins).

3.6. Appendix
3.6.1. Related Works

Conformation Generation. There have been results showing deep learning speeding
up molecular dynamics simulation by learning efficient alternatives to quantum mechanics-
based energy calculations (Schütt et al., 2017; Smith et al., 2017). However, though accelera-
ted by neural networks, these approaches are still time-consuming due to the lengthy MCMC
process. Recently, Gebauer et al. (2019) and Hoffmann and Noé (2019) propose to directly
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generate 3D structures with deep generative models. However, these models can hardly cap-
ture graph- or bond-based structure, which is typically complex and highly branched. Some
other works (Lemke and Peter, 2019; AlQuraishi, 2019; Ingraham et al., 2019; Noé et al.,
2019; Senior et al., 2020) also focus on learning models to directly generate 3D structure,
but focus on the protein folding problem. Unfortunately, proteins are linear structures while
general molecules are highly branched, making these methods not naturally transferable to
general molecular conformation generation tasks.

Energy-based Generative Model. There has been a long history for energy-based
generative models. Xie et al. (2016) proposes to train an energy-based model parameterized
by modern deep neural network and learned it by Langevin based MLE. The model is called
generative ConvNet since it can be derived from the discriminative ConvNet. In particular,
this paper is the first to formulate modern ConvNet-parametrized EBM as exponential tilting
of a reference distribution, and connect it to discriminative ConvNet classifier. More recently,
Du and Mordatch (2019) implemented the deep EBMs with ConvNet as energy function and
achieved impressive results on image generation.

Different from the previous works, we concentrate on molecular geometry generation,
and propose a novel and principled probabilistic framework to address the domain-specific
problems. More specifically, we first predict the atomic distances through the continuous
normalizing flow, and then convert them to the desired 3D conformation and optimize it with
the energy-based model. This procedure enables us to keep the rotational and translational
invariance property. Besides, to the best of our knowledge, we are the first one to combine
neural ODE with EBMs. We take the ODE model to improve the training of EBM, and
combine both to conduct the two-stage sampling dynamics.

3.6.2. Data Preprocess

Inspired by classic molecular distance geometry (Crippen et al., 1988), we also generate
the confirmations by firstly predicting all the pairwise distances, which enjoys the invariant
property to rotation and translation. Since the bonds existing in the molecular graph are not
sufficient to characterize a conformation, we pre-process the graphs by extending auxiliary
edges. Specifically, the atoms that are 2 or 3 hops away are connected with virtual bonds,
labeled differently from the real bonds of the original graph. These extra edges contribute
to reducing the degrees of freedom in the 3D coordinates, with the edges between second
neighbors helping to fix the angles between atoms, and those between third neighbors fixing
dihedral angles.

3.6.3. Network Architecture

In this section, we elaborate on the network architecture details of CGCF and ETM.
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3.6.3.1. Continuous Graph Flow. In CGCF, the dynamic function fθ defined in Eq. 3.3.3 is
instanced with a message passing neural networks. Given the node attributes, edge attributes
and intermediate edge lengths as input, we first embed them into the feature space through
feedforward networks:

h(0)
v = NodeEmbedding(v), v ∈ V ,

heuv = EdgeEmbedding(euv, duv(t0)), euv ∈ E .
(3.6.1)

Then, the node and edge features along are passed sequentially into L layers message passing
networks with the graph structure G:

h(ℓ)
v = MLP

(
h(ℓ−1)

v +
∑

u∈NG(v)
σ(h(ℓ−1)

u + heuv)
)

, ℓ = 1 . . . L, (3.6.2)

where NG(v) denotes the first neighbors in the graph G and σ is the activation function.
After L message passing layers, we use the final hidden representation h(L) as the node
representations. Then for each bond, the corresponding node features are aggregated along
with the edge feature to be fed into a neural network to compute the value of the dynamic
fθ:

∂duv

∂t
= NN(hu, hv, heuv , t). (3.6.3)

3.6.3.2. Energy-based Tilting Model. The ETM is implemented with SchNet. It takes
both the graph and conformation information as input and output a scalar to indicate the
energy level. Let the atoms are described by a tuple of features Xl = (xl

1, . . . , xl
n), where n

denote the number of atoms and l denote the layer. Then given the positions R, the node
embeddings are updated by the convolution with all surrounding atoms:

xl+1
i =

(
X l ∗ W l

)
i

=
natoms∑

j=0
xl

j ◦ W l (rj − ri) , (3.6.4)

where "o" represents the element-wise multiplication. It is straightforward that the above
function enables to include translational and rotational invariance by computing pairwise
distances instead of using relative positions. After L convolutional layers, we perform a
sum-pooling operator over the node embeddings to calculate the global embedding for the
whole molecular structure. Then the global embedding is fed into a feedforward network to
compute the scalar of the energy level.

3.6.4. Two-stage Dynamic System for Sampling

3.6.5. Implementation Details

Our model is implemented in PyTorch (Paszke et al., 2017). The MPNN in CGCF is
implemented with 3 layers, and the embedding dimension is set as 128. And the SchNet
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Algorithm 1 Sampling Procedure of the Proposed Method
Input: molecular graph G, CGCF model with parameter θ, ETM with parameter ϕ, the
number of optimization steps for p(R|d,G) M and its step size r, the number of MCMC

steps for Eθ,ϕ N and its step size ϵ
Output: molecular conformation R

1: Sample d(t0) ∼ N (0,I)
2: d = Fθ(d(t0),G)
3: for m = 1,...,M do
4: Rm = Rm−1 + r∇R log p(R|d,G)
5: end for
6: for n = 1,...,N do
7: Rn = Rn−1 − ϵ

2∇REθ,ϕ(R|G) +
√

ϵω, ω ∼ N (0, I),
8: end for

in ETM is implemented with 6 layers with the embedding dimension set as 128. We train
our CGCF with a batch size of 128 and a learning rate of 0.001 until convergence. After
obtaining the CGCF, we train the ETM with a batch size of 384 and a learning rate of 0.001
until convergence. For all experimental settings, we use Adam (Kingma and Ba, 2014) to
optimize our model.

3.6.6. Detailed Derivations of Energy-based Model

Here we present the detailed derivations of the training objective function of Energy-based
Tilting Model (ETM) in Eq. 3.3.6:

Lnce(R,G; ϕ) = − Epdata

[
log pθ,ϕ(R|G)

pθ,ϕ(R|G) + pθ(R|G)
]

− Epθ

[
log pθ(R|G)

pθ,ϕ(R|G) + pθ(R|G)
]

= − Epdata

[
log pθ(R|G) exp(−Eϕ(R,G))

pθ(R|G) exp(−Eϕ(R,G)) + pθ(R|G)
]

− Epθ

[
log pθ(R|G)

pθ(R|G) exp(−Eϕ(R,G)) + pθ(R|G)
]

= − Epdata

[
log 1

1 + exp(Eϕ(R,G))
]

− Epθ

[
log 1

1 + exp(−Eϕ(R,G))
]
.

(3.6.5)

3.6.7. More Generated Samples

We present more visualizations of generated 3D structures in Fig. 3.3, which are generated
from our model (CGCF + ETM) learned on both GEOM-QM9 and GEOM-Drugs datasets.
The visualizations demonstrate that our proposed framework holds the high capacity to
model the chemical structures in the 3D coordinates.
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Fig. 3.3. Visualizations of generated graphs from our proposed method. In each row, we
show multiple generated conformations for one molecular graph. For the top 5 rows, the
graphs are chosen from the small molecules in GEOM-QM9 test dataset; and for the bottom
4 rows, graphs are chosen from the larger molecules in GEOM-Drugs test dataset. C, O, H,
S and CI are colored gray, red, white, yellow and green respectively.

3.6.8. More Results of Coverage Score

We give more results of the coverage (COV) score with different threshold δ in Fig. 3.4.
As shown in the figure, our proposed method can consistently outperform the previous
state-of-the-art baselines CVGAE and GraphDG, which demonstrate the effectiveness of our
model.

3.6.9. Implementation for MMFF

In this section, we give a more precise description of the MMFF Force Field implemen-
tation in the RDKit toolkit (Riniker and Landrum, 2015).
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Fig. 3.4. Curves of the averaged coverage score with different RMSD thresholds on GEOM-
QM9 (left two) and GEOM-Drugs (right two) datasets. The first and third curves are results
of only the generative models, while the other two are results when further optimized with
rule-based force fields.

In MMFF, the energy expression is constituted by seven terms: bond stretching, angle
bending, stretch-bend, out-of-plane bending, torsional, van der Waals and electrostatic. The
detailed functional form of individual terms can be found in the original literature (Halgren,
1996a). To build the force field for a given molecular system, the first step is to assign
correct types to each atom. At the second step, atom-centered partial charges are computed
according to the MMFF charge model (Halgren, 1996b). Then, all bonded and non-bonded
interactions in the molecular system under study, depending on its structure and connectivity,
are loaded into the energy expression. Optionally, external restraining terms can be added to
the MMFF energy expression, with the purpose of constraining selected internal coordinates
during geometry optimizations. Once all bonded and non-bonded interactions, plus optional
restraints, have been loaded into the MMFF energy expression, potential gradients of the
system under study can be computed to minimize the energy.

3.6.10. More Evaluations for Conformation Generation

Junk Rate. The COV and MAT score in Section 3.4.2 do not appear to explicitly
measure the generated false samples. Here we additionally define Junk rate measurement.
Intuitively, JUNK measures the fraction of generated conformations that are far away from
all the conformations in the reference set. For each conformation in the generated set, it will
be marked as a false sample if its RMSD to all the conformations of reference set are above
a given threshold δ:

JUNK(Sg(G),Sr(G)) = 1
|Sg|

∣∣∣∣{R ∈ Sg

∣∣∣RMSD(R, R′) > δ, ∀R′ ∈ Sr

}∣∣∣∣, (3.6.6)

Typically, a lower JUNK rate means better generated quality. The results are shown in
Tab. 3.4. As shown in the table, our CGCF model can already outperform the existing
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state-of-the-art baselines with an obvious margin. The results are further improved when
combined with ETM to explicitly incorporate the long-range correlations.

Tableau 3.4. Comparison of different methods on the JUNK scores. Top 4 rows: deep
generative models for molecular conformation generation. Bottom 5 rows: different methods
that involve an additional rule-based force field to further optimize the generated structures.

Dataset GEOM-QM9 GEOM-Drugs

Metric JUNK∗ (%) JUNK∗ (%)
Mean Median Mean Median

CVGAE 71.59 100.00 100.00 100.00
GraphDG 61.25 66.26 97.83 100.00
CGCF 55.24 57.24 77.82 90.00
CGCF + ETM 52.15 54.23 75.81 88.64

RDKit 17.07 5.90 45.51 45.94
CVGAE + FF 62.92 71.21 72.01 78.44
GraphDG + FF 45.53 46.35 55.50 61.54
CGCF + FF 43.01 46.69 37.48 36.63
CGCF + ETM + FF 41.63 43.97 36.16 33.05
* For the reported JUNK score, the threshold δ is set as 0.5Å

for QM9 and 1.25Å for Drugs.

3.6.11. Distance Distribution Visualization

In Fig. 3.5, we plot the marginal distributions p(duv|G) for all pairwise distances bet-
ween C and O atoms of a molecular graph in the ISO17 test set. As shown in the figure,
though primarily designed for 3D structure generation, our method can make much better
estimation of the distances than GraphDG, which is the state-of-the-art model for molecular
geometry prediction. As a representative element of the pairwise property between atoms,
the inter-atomic distances demonstrate the capacity of our model to capture the inter-atomic
interactions.
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Fig. 3.5. Marginal distributions p(duv|G) of ground-truth and generated conformations bet-
ween C and O atoms given a molecular graph from the test set of ISO17. In each subplot,
the annotation (u − v) indicates the atoms connected by the corresponding bond duv. We
concentrate on the heavy atoms (C and O) and omit the H atoms for clarity.
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Chapter 4

Prologue to Second Article

4.1. Article Details
GeoDiff: a Geometric Diffusion Model for Molecular Conformation Genera-

tion. Minkai Xu, Lantao Yu, Yang Song, Chence Shi, Stefano Ermon, Jian Tang. 10th
International Conference on Learning Representations, 2022.

4.2. Personal Contribution
I came up with the idea of introducing denoising diffusion generative models for general

3-dimensional geometry generation, and specifically tackle the molecular conformation gene-
ration problem for experimental part. I received lots of important suggestions and discussions
from Lantao Yu, Yang Song, Chence Shi, Stefano Ermon, and Jian Tang. I wrote up the
code base for the proposed model, further improved model to achieve better performances,
and run experiments on widely-adopted benchmarks. I wrote the majority of the paper, and
Chence helped to render several figures in the paper. Jian Tang significantly contributed to
improving the writing, and the others have also helped polishing the paper.





Chapter 5

Geometric Denoising Diffusion Generative
Models

5.1. Introduction
Graph representation learning has achieved huge success for molecule modeling in va-

rious tasks ranging from property prediction (Gilmer et al., 2017; Duvenaud et al., 2015)
to molecule generation (Jin et al., 2018; Shi et al., 2020b), where typically a molecule is
represented as an atom-bond graph. Despite its effectiveness in various applications, a more
intrinsic and informative representation for molecules is the 3D geometry, also known as
conformation, where atoms are represented as their Cartesian coordinates. The 3D struc-
tures determine the biological and physical properties of molecules and hence play a key role
in many applications such as computational drug and material design (Thomas et al., 2018;
Gebauer et al., 2021; Jing et al., 2021; Batzner et al., 2021). Unfortunately, how to predict
stable molecular conformation remains a challenging problem. Traditional methods based on
molecular dynamics (MD) or Markov chain Monte Carlo (MCMC) are very computationally
expensive, especially for large molecules (Hawkins, 2017).

Recently, significant progress has been made with machine learning approaches, especially
with deep generative models. For example, Simm and Hernández-Lobato (2020); Xu et al.
(2021b) studied predicting atomic distances with variational autoencoders (VAEs) (Kingma
and Welling, 2013) and flow-based models (Dinh et al., 2017) respectively. Shi et al. (2021)
proposed to use denoising score matching (Song and Ermon, 2019, 2020) to estimate the
gradient fields over atomic distances, through which the gradient fields over atomic coor-
dinates can be calculated. Ganea et al. (2021) studied generating conformations by pre-
dicting both bond lengths and angles. As molecular conformations are roto-translational
invariant, these approaches circumvent directly modeling atomic coordinates by leveraging
intermediate geometric variables such as atomic distances, bond and torsion angles, which



are roto-translational invariant. As a result, they are able to achieve very compelling perfor-
mance. However, as all these approaches seek to indirectly model the intermediate geometric
variables, they have inherent limitations in either training or inference process (see Sec. 5.2
for a detailed description). Therefore, an ideal solution would still be directly modeling the
atomic coordinates and at the same time taking the roto-translational invariance property
into account.

In this paper, we propose such a solution called GeoDiff, a principled probabilistic
framework based on denoising diffusion models (Sohl-Dickstein et al., 2015). Our approach is
inspired by the diffusion process in nonequilibrium thermodynamics (De Groot and Mazur,
2013). We view atoms as particles in a thermodynamic system, which gradually diffuse
from the original states to a noisy distribution in contact with a heat bath. At each time
step, stochastic noises are added to the atomic positions. Our high-level idea is learning
to reverse the diffusion process, which recovers the target geometric distribution from the
noisy distribution. In particular, inspired by recent progress of denoising diffusion models
on image generation (Ho et al., 2020; Song et al., 2020a), we view the noisy geometries at
different timesteps as latent variables, and formulate both the forward diffusion and reverse
denoising process as Markov chains. Our goal is to learn the transition kernels such that
the reverse process can recover realistic conformations from the chaotic positions sampled
from a noise distribution. However, extending existing methods to geometric generation is
highly non-trivial: a direct application of diffusion models on the conformation generation
task lead to poor generation quality. As mentioned above, molecular conformations are
roto-translational invariant, i.e., the estimated (conditional) likelihood should be unaffected
by translational and rotational transformations (Köhler et al., 2020). To this end, we first
theoretically show that a Markov process starting from an roto-translational invariant prior
distribution and evolving with roto-translational equivariant Markov kernels can induce an
roto-translational invariant density function. We further provide practical parameterization
to define a roto-translational invariant prior distribution and a Markov kernel imposing the
equivariance constraints. In addition, we derive a weighted variational lower bound of the
conditional likelihood of molecular conformations, which also enjoys the roto-translational
invariance and can be efficiently optimized.

A unique strength of GeoDiff is that it directly acts on the atomic coordinates and
entirely bypasses the usage of intermediate elements for both training and inference. This
general formulation enjoys several crucial advantages. First, the model can be naturally trai-
ned end-to-end without involving any sophisticated techniques like bilevel programming (Xu
et al., 2021b), which benefits from small optimization variances. Besides, instead of solving
geometries from bond lengths or angles, the one-stage sampling fashion avoids accumulating
any intermediate error, and therefore leads to more accurate predicted structures. Moreo-
ver, GeoDiff enjoys a high model capacity to approximate the complex distribution of
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conformations. Thus, the model can better estimate the highly multi-modal distribution
and generate structures with high quality and diversity.

We conduct comprehensive experiments on multiple benchmarks, including conformation
generation and property prediction tasks. Numerical results show that GeoDiff consistently
outperforms existing state-of-the-art machine learning approaches, and by a large margin on
the more challenging large molecules. The significantly superior performance demonstrate
the high capacity to model the complex distribution of molecular conformations and generate
both diverse and accurate molecules.

5.2. Related Work
Recently, various deep generative models have been proposed for conformation genera-

tion. Among them, CVGAE (Mansimov et al., 2019) first proposed a VAE model to directly
generate 3D atomic coordinates, which fails to preserve the roto-translation equivariance
property of conformations and suffers from poor performance. To address this problem, the
majority of subsequent models are based on intermediate geometric elements such as atomic
distances and torsion angles. A favorable property of these elements is the roto-translational
invariance, (e.g. atomic distances does not change when rotating the molecule), which has
been shown to be an important inductive bias for molecular geometry modeling (Köhler et al.,
2020). However, such a decomposition suffers from several drawbacks for either training or
sampling. For example, GraphDG (Simm and Hernández-Lobato, 2020) and CGCF (Xu
et al., 2021a) proposed to predict the interatomic distance matrix by VAE and Flow respec-
tively, and then solve the geometry through the Distance Geometry (DG) technique (Liberti
et al., 2014), which searches reasonable coordinates that matches with the predicted dis-
tances. ConfVAE further improves this pipeline by designing an end-to-end framework
via bilevel optimization (Xu et al., 2021b). However, all these approaches suffer from the
accumulated error problem, meaning that the noise in the predicted distances will misguide
the coordinate searching process and lead to inaccurate or even erroneous structures. To
overcome this problem, ConfGF (Shi et al., 2021; Luo et al., 2021) proposed to learn the
gradient of the log-likelihood w.r.t coordinates. However, in practice the model is still aided
by intermediate geometric elements, in that it first estimates the gradient w.r.t interatomic
distances via denoising score matching (DSM) (Song and Ermon, 2019, 2020), and then
derives the gradient of coordinates using the chain rule. The problem is, by learning the
distance gradient via DSM, the model is fed with perturbed distance matrices, which may
violate the triangular inequality or even contain negative values. As a consequence, the mo-
del is actually learned over invalid distance matrices but tested with valid ones calculated
from coordinates, making it suffer from serious out-of-distribution (Hendrycks and Gimpel,
2016) problem. Most recently, another concurrent work (Ganea et al., 2021) proposed a
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highly systematic (rule-based) pipeline named GeoMol, which learns to predict a minimal
set of geometric quantities (i.e. length and angles) and then reconstruct the local and global
structures of the conformation in a sophisticated procedure. Besides, there has also been
efforts to use reinforcement learning for conformation search Gogineni et al. (2020). Ne-
vertheless, this method relies on rigid rotor approximation and can only model the torsion
angles, and thus fundamentally differs from other approaches.

5.3. Preliminaries
5.3.1. Notations and Problem Definition

Notations. In this paper each molecule with n atoms is represented as an undirected
graph G = ⟨V , E⟩, where V = {vi}n

i=1 is the set of vertices representing atoms and E =
{eij | (i, j) ⊆ |V| × |V|} is the set of edges representing inter-atomic bonds. Each node
vi ∈ V describes the atomic attributes, e.g., the element type. Each edge eij ∈ E describes
the corresponding connection between vi and vj, and is labeled with its chemical type. In
addition, we also assign the unconnected edges with a virtual type. For the geometry,
each atom in V is embedded by a coordinate vector c ∈ R3 into the 3-dimensional space,
and the full set of positions (i.e., the conformation) can be represented as a matrix C =
[c1, c2, · · · , cn] ∈ Rn×3.

Problem Definition. The task of molecular conformation generation is a conditional
generative problem, where we are interested in generating stable conformations for a provided
graph G. Given multiple graphs G, and for each G given its conformations C as i.i.d samples
from an underlying Boltzmann distribution (Noé et al., 2019), our goal is learning a generative
model pθ(C|G), which is easy to draw samples from, to approximate the Boltzmann function.

5.3.2. Equivariance

Equivariance is ubiquitous in machine learning for atomic systems, e.g., the vectors of
atomic dipoles or forces should rotate accordingly w.r.t. the conformation coordinates (Tho-
mas et al., 2018; Weiler et al., 2018; Fuchs et al., 2020; Miller et al., 2020; Simm et al.,
2021; Batzner et al., 2021). It has shown effectiveness to integrate such inductive bias into
model parameterization for modeling 3D geometry, which is critical for the generalization
capacity (Köhler et al., 2020; Satorras et al., 2021a). Formally, a function F : X → Y is
equivariant w.r.t a group G if:

F ◦ Tg(x) = Sg ◦ F(x), (5.3.1)

where Tg and Sg are transformations for an element g ∈ G, acting on the vector spaces X
and Y , respectively. In this work, we consider the SE(3) group, i.e., the group of rotation,
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Fig. 5.1. Illustration of the diffusion and reverse process of GeoDiff. For diffusion process,
noise from fixed posterior distributions q(Ct|Ct−1) is gradually added until the conformation is
destroyed. Symmetrically, for generative process, an initial state CT is sampled from standard
Gaussian distribution, and the conformation is progressively refined via the Markov kernels
pθ(Ct−1|G,Ct).

translation in 3D space. This requires the estimated likelihood unaffected with translational
and rotational transformations, and we will elaborate on how our method satisfy this property
in Sec. 5.4.

5.4. GeoDiff Method
In this section, we elaborate on the proposed equivariant diffusion framework. We first

present a high level description of our 3D diffusion formulation in Sec. 5.4.1, based on recent
progress of denoising diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020). Then we
emphasize several non-trivial challenges of building diffusion models for geometry generation
scenario, and show how we technically tackle these issues. Specifically, in Sec. 5.4.2, we
present how we parameterize pθ(C|G) so that the conditional likelihood is roto-translational
invariant, and in Sec. 5.4.3, we introduce our surgery of the training objective to make the
optimization also invariant of translation and rotation. Finally, we briefly show how to draw
samples from our model in Sec. 5.4.4.

5.4.1. Formulation

Let C0 denotes the ground truth conformations and let Ct for t = 1, · · · ,T be a sequence
of latent variables with the same dimension, where t is the index for diffusion steps. Then
a diffusion probabilistic model (Sohl-Dickstein et al., 2015) can be described as a latent
variable model with two processes: the forward diffusion process, and the reverse generative
process. Intuitively, the diffusion process progressively injects small noises to the data C0,
while the generative process learns to revert the diffusion process by gradually eliminating
the noise to recover the ground truth. We provide a high-level schematic of the processes in
Fig. 5.1.

Diffusion process. Following the physical insight, we model the particles C as an
evolving thermodynamic system. With time going by, the equilibrium conformation C0

will gradually diffuse to the next chaotic states Ct, and finally converge into a white noise
distribution after T iterations. Different from typical latent variable models, in diffusion
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model this forward process is defined as a fixed (rather than trainable) posterior distribution
q(C1:T |C0). Specifically, we define it as a Markov chain according to a fixed variance schedule
β1, . . . ,βT :

q(C1:T |C0) =
T∏

t=1
q(Ct|Ct−1), q(Ct|Ct−1) = N (Ct;

√
1 − βtCt−1,βtI). (5.4.1)

Note that, in this work we do not impose specific (invariance) requirement upon the diffusion
process, as long as it can efficiently draw noisy samples for training the generative process
pθ(C0).

Let αt = 1−βt and ᾱt = ∏t
s=1 αs, a special property of the forward process is that q(Ct|C0)

of arbitrary timestep t can be calculated in closed form q(Ct|C0) = N (Ct;
√

ᾱtC0,(1 − ᾱt)I)2.
This indicates with sufficiently large T , the whole forward process will convert C0 to whitened
isotropic Gaussian, and thus it is natural to set p(CT ) as a standard Gaussian distribution.

Reverse Process. Our goal is learning to recover conformations C0 from the white noise
CT , given specified molecular graphs G. We consider this generative procedure as a reverse
dynamics of the above diffusion process, starting from the noisy particles CT ∼ p(CT ). We
formulate this reverse dynamics as a conditional Markov chain with learnable transitions:

pθ(C0:T −1|G, CT ) =
T∏

t=1
pθ(Ct−1|G,Ct), pθ(Ct−1|G,Ct) = N (Ct−1; µθ(G, Ct,t), σ2

t I). (5.4.2)

Herein µθ are parameterized neural networks to estimate the means, and σt can be any user-
defined variance. The initial distribution p(CT ) is set as a standard Gaussian. Given a graph
G, its 3D structure is generated by first drawing chaotic particles CT from p(CT ), and then
iteratively refined through the reverse Markov kernels pθ(Ct−1|G,Ct).

Having formulated the reverse dynamics, the marginal likelihood can be calculated by
pθ(C0|G) =

∫
p(CT )pθ(C0:T −1|G,CT )dC1:T . Herein a non-trivial problem is that the likelihood

should be invariant w.r.t translation and rotation, which has proved to be a critical inductive
bias for 3D object generation (Köhler et al., 2020; Satorras et al., 2021a). In the following
subsections, we will elaborate on how we parameterize the Markov kernels pθ(Ct−1|G,Ct)
to achieve this desired property, and also how to maximize this likelihood by taking the
invariance into account.

5.4.2. Equivariant Reverse Generative Process

Instead of directly leveraging existing methods, we consider building the density pθ(C0)
that is invariant to rotation and translation transformations. Intuitively, this requires the

2Detailed derivations are provided in the Appendix 5.7.1.
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likelihood to be unaffected by translations and rotations. Formally, let Tg be some roto-
translational transformations of a group element g ∈ SE(3), then we have the following
statement:
Proposition 1. Let p(xT ) be an SE(3)-invariant density function, i.e., p(xT ) = p(Tg(xT )).
If Markov transitions p(xt−1|xt) are SE(3)-equivariant, i.e., p(xt−1|xt) = p(Tg(xt−1)|Tg(xt)),
then we have that the density pθ(x0) =

∫
p(xT )pθ(x0:T −1|xT )dx1:T is also SE(3)-invariant.

This proposition indicates that the dynamics starting from an invariant standard density
along an equivariant Gaussian Markov kernel can result in an invariant density. Now we
provide a practical implementation of GeoDiff based on the recent denoising diffusion
framework (Ho et al., 2020).

Invariant Initial Density p(CT ). We first introduce the invariant distribution p(CT ),
which will also be employed in the equivariant Markov chain. We borrow the idea from
Köhler et al. (2020) to consider systems with zero center of mass (CoM), termed CoM-free
systems. We define p(CT ) as a “CoM-free standard density” ρ̂(C), built upon an isotropic
normal density ρ(C): for evaluating the likelihood ρ̂(C) we can firstly translate C to zero
CoM and then calculate ρ(C), and for sampling from ρ̂(C) we can first sample from ρ(C) and
then move the CoM to zero.

We provide a formal theoretical analysis of ρ̂(C) in Appendix 5.7.1. Intuitively, the isotro-
pic Gaussian is manifestly invariant to rotations around the zero CoM. And by considering
CoM-free system, moving the particles to zero CoM can always ensure the translational
invariance. Consequently, ρ̂(C) is constructed as a roto-transitional invariant density.

Equivariant Markov Kernels p(Ct−1|G, Ct). Similar to the prior density, we also consi-
der equipping all intermediate structures Ct as CoM-free systems. Specifically, given mean
µθ(G, Ct, t) and variance σt, the likelihood of Ct−1 will be calculated by ρ̂(Ct−1−µθ(G,Ct,t)

σt
). The

CoM-free Gaussian ensures the translation invariance in the Markov kernels. Consequently,
to achieve the equivariant property defined in Proposition 1, we focus on the rotation equi-
variance.

Then in general, the key requirement is to ensure the means µθ(G, Ct, t) to be roto-
translation equivariant w.r.t Ct. Following Ho et al. (2020), we consider the following para-
meterization of µθ:

µθ(Ct, t) = 1
√

αt

(
Ct − βt√

1 − ᾱt

ϵθ(G, Ct, t)
)

, (5.4.3)

where ϵθ are neural networks with trainable parameters θ. Intuitively, the model ϵθ learns to
predict the noise necessary to decorrupt the conformations. This is analogous to the physical
force fields (Schütt et al., 2017; Zhang et al., 2018; Hu et al., 2021; Shuaibi et al., 2021),
which also gradually push particles towards convergence around the equilibrium states.

Now the problem is transformed to constructing ϵθ to be roto-translational equivariant.
We draw inspirations from recent equivariant networks (Thomas et al., 2018; Satorras et al.,
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2021b) to design an equivariant convolutional layer, named graph field network (GFN). In
the l-th layer, GFN takes node embeddings hl ∈ Rn×b (b denotes the feature dimension) and
corresponding coordinate embeddings xl ∈ Rn×3 as inputs, and outputs hl+1 and xl+1 as
follows:

mij = Φm

(
hl

i, hl
j,∥xl

i − xl
j∥2, eij; θm

)
(5.4.4)

hl+1
i = Φh

(
hl

i,
∑

j∈N (i)
mij; θh

)
(5.4.5)

xl+1
i =

∑
j∈N (i)

1
dij

(ci − cj) Φx (mij; θx) (5.4.6)

where Φ are feed-forward networks and dij denotes interatomic distances. N (i) denotes
the neighborhood of ith node, including both connected atoms and other ones within a
radius threshold τ , which enables the model to explicitly capture long-range interactions
and support molecular graphs with disconnected components. Initial embeddings h0 are
combinations of atom and timestep embeddings, and x0 are atomic coordinates. The main
difference between proposed GFN and other GNNs lies in equation 5.4.6, where x is updated
as a combination of radial directions weighted by Φx : Rb → R. Such vector field xL enjoys
the roto-translation equivariance property. Formally, we have:
Proposition 2. Parameterizing ϵθ(G,C,t) as a composition of L GFN layers, and take the
xL after L updates as the output. Then the noise vector field ϵθ is SE(3) equivariant w.r.t
the 3D system C.

Intuitively, given hl already invariant and xl equivariant, the message embedding m will
also be invariant since it only depends on invariant features. Since x is updated with the
relative differences ci − cj weighted by invariant features, it will be translation-invariant and
rotation-equivariant. Then inductively, composing ϵθ with L GFN layers enables equivariance
with Ct. We provide the formal proof of equivariance properties in Appendix 5.7.1.

5.4.3. Improved Training Objective

Having formulated the generative process and the model parameterization, now we consi-
der the practical training objective for the reverse dynamics. Since directly optimizing the
exact log-likelihood is intractable, we instead maximize the usual variational lower bound
(ELBO)3:

E
[
log pθ(C0|G)

]
= E

[
logEq(C1:T |C0)

pθ(C0:T |G)
q(C1:T |C0)

]

≥ −Eq

[ T∑
t=1

DKL(q(Ct−1|Ct,C0)∥pθ(Ct−1|Ct,G))
]

:= −LELBO (5.4.7)

3The detailed derivations and full proofs are provided in Appendix 5.7.1.
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where q(Ct−1|Ct,C0) is analytically tractable as N (
√

ᾱt−1βt

1−ᾱt
C0 +

√
αt(1−ᾱt−1)

1−ᾱt
Ct, 1−ᾱt−1

1−ᾱt
βt)3. Most

recently, Ho et al. (2020) showed that under the parameterization in equation 5.4.3, the
ELBO of the diffusion model can be further simplified by calculating the KL divergences
between Gaussians as weighted L2 distances between the means ϵθ and ϵ3. Formally, we
have:
Proposition 3. (Ho et al., 2020) Under the parameterization in equation 5.4.3, we have:

LELBO =
T∑

t=1
γtE{C0,G}∼q(C0,G),ϵ∼N (0,I)

[
∥ϵ − ϵθ(G,Ct,t)∥2

2

]
(5.4.8)

where Ct =
√

ᾱtC0 +
√

1 − ᾱtϵ. The weights γt = βt

2αt(1−ᾱt−1) for t > 1, and γ1 = 1
2α1

.
The intuition of this objective is to independently sample chaotic conformations of dif-

ferent timesteps from q(Ct−1|Ct,C0), and use ϵθ to model the noise vector ϵ. To yield a better
empirical performance, Ho et al. (2020) suggests to set all weights γt as 1, which is in line
with the the objectives of recent noise conditional score networks (Song and Ermon, 2019,
2020).

As ϵθ is designed to be equivariant, it is natural to require its supervision signal ϵ to be
equivariant with Ct. Note that once this is achieved, the ELBO will also become invariant.
However, the ϵ in the forward diffusion process is not imposed with such equivariance, vio-
lating the above properties. Here we propose two approaches to obtain the modified noise
vector ϵ̂, which, after replacing ϵ in the L2 distance calculation in equation 5.4.8, achieves
the desired equivariance:

Alignment approach. Considering the fact that ϵ can be calculated by Ct−
√

ᾱtC0
√

1−ᾱt
, we can

first rotate and translate C0 to Ĉ0 by aligning w.r.t Ct, and then compute ϵ̂ as Ct−
√

ᾱtĈ0
√

1−ᾱt
. Since

the aligned conformation Ĉ0 is equivariant with Ct, the processed ϵ̂ will also enjoy the equi-
variance. Specifically, the alignment is implemented by first translating C0 to the same CoM
of Ct and then solve the optimal rotation matrix by Kabsch alignment algorithm (Kabsch,
1976).

Chain-rule approach. Another meaningful observation is that by reparameterizing the
Gaussian distribution q(Ct|C0) as Ct =

√
ᾱtC0 +

√
1 − ᾱtϵ, ϵ can be viewed as a weighted

score function
√

1 − ᾱt∇Ct q(Ct|C0). Shi et al. (2021) recently shows that generally this score
function ∇Ct q(Ct|·) can be designed to be equivariant by decomposing it into ∂Ctdt ∇dtq(Ct|·)
with the chain rule, where dt can be any invariant features of the structures Ct such as the
inter-atomic distances. We refer readers to Shi et al. (2021) for more details. The insight is
that as gradient of invariant variables w.r.t equivariant variables, the partial derivative ∂Ctdt

will always be equivalent with Ct. In this work, under the common assumption that d also
follows a Gaussian distribution (Kingma and Welling, 2013), our practical implementation
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is to first approximately calculate ∇dtq(Ct|C0) as dt−
√

ᾱtd0

1−ᾱt
, and then compute the modified

noise vector ϵ̂ as
√

1 − ᾱt ∂Ctdt(dt−
√

ᾱtd0

1−ᾱt
) = ∂Ct dt·(dt−

√
ᾱtd0)√

1−ᾱt
.

5.4.4. Sampling

Algorithm 2 Sampling Algorithm of GeoDiff.
Input: the molecular graph G, the learned reverse model

ϵθ.
Output: the molecular conformation C.

1: Sample CT ∼ p(CT ) = N (0,I)
2: for s = T,T − 1, · · · ,1 do
3: Shift Cs to zero CoM
4: Compute µθ(Cs,G,s) from ϵθ(Cs,G,s) using equa-

tion 5.4.3
5: Sample Cs−1 ∼ N (Cs−1; µθ(Cs,G,s), σ2

t I)
6: end for
7: return C0 as C

With a learned reverse dy-
namics ϵθ(G,Ct,t), the transi-
tion means µθ(G,Ct,t) can be
calculated by equation 5.4.3.
Thus, given a graph G, its
geometry C0 is generated by
first sampling chaotic par-
ticles CT ∼ p(CT ), and then
progressively sample Ct−1 ∼
pθ(Ct−1|G,Ct) for t = T,T −
1, · · · ,1. This process is Mar-
kovian, which gradually shifts
the previous noisy positions towards equilibrium states. We provide the pseudo code of the
whole sampling process in Algorithm 2.

5.5. Experiment
In this section, we empirically evaluate GeoDiff on the task of equilibrium conformation

generation for both small and drug-like molecules. Following existing work (Shi et al., 2021;
Ganea et al., 2021), we test the proposed method as well as the competitive baselines on two
standard benchmarks: Conformation Generation (Sec. 5.5.2) and Property Prediction
(Sec. 5.5.3). We first present the general experiment setups, and then describe task-specific
evaluation protocols and discuss the results in each section. The implementation details are
provided in Appendix 5.7.3.

5.5.1. Experiment Setup

Datasets. Following prior works (Xu et al., 2021a,b), we also use the recent GEOM-
QM9 (Ramakrishnan et al., 2014) and GEOM-Drugs (Axelrod and Gomez-Bombarelli, 2020)
datasets. The former one contains small molecules while the latter one are medium-sized
organic compounds. We borrow the data split produced by Shi et al. (2021). For both data-
sets, the training split consists of 40,000 molecules with 5 conformations for each, resulting
in 200,000 conformations in total. The valid split share the same size as training split. The
test split contains 200 distinct molecules, with 22,408 conformations for QM9 and 14,324
ones for Drugs.
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Baselines. We compare GeoDiff with 6 recent or established state-of-the-art base-
lines. For the ML approaches, we test the following models with highest reported perfor-
mance: CVGAE (Mansimov et al., 2019), GraphDG (Simm and Hernández-Lobato, 2020),
CGCF (Xu et al., 2021a), ConfVAE (Xu et al., 2021b) and ConfGF (Shi et al., 2021).
We also test the classic RDKit (Riniker and Landrum, 2015) method, which is arguably the
most popular open-source software for conformation generation. We refer readers to Sec. 5.2
for a detailed discussion of these models.

5.5.2. Conformation Generation

Evaluation metrics. The task aims to measure both quality and diversity of generated
conformations by different models. We follow Ganea et al. (2021) to evaluate 4 metrics built
upon root-mean-square deviation (RMSD), which is defined as the normalized Frobenius
norm of two atomic coordinates matrices, after alignment by Kabsch algorithm (Kabsch,
1976). Formally, let Sg and Sr denote the sets of generated and reference conformers respec-
tively, then the Coverage and Matching metrics (Xu et al., 2021a) following the conventional
Recall measurement can be defined as:

COV-R(Sg, Sr) = 1
|Sr|

∣∣∣∣{C ∈ Sr| RMSD(C, Ĉ) ≤ δ, Ĉ ∈ Sg

}∣∣∣∣, (5.5.1)

MAT-R(Sg, Sr) = 1
|Sr|

∑
C∈Sr

min
Ĉ∈Sg

RMSD(C, Ĉ), (5.5.2)

where δ is a pre-defined threshold. The other two metrics COV-P and MAT-P inspired by
Precision can be defined similarly but with the generated and reference sets exchanged. In
practice, Sg is set as twice of the size of Sr for each molecule. Intuitively, the COV scores
measure the percentage of structures in one set covered by another set, where covering
means the RMSD between two conformations is within a certain threshold δ. By contrast,
the MAT scores measure the average RMSD of conformers in one set with its closest neighbor
in another set. In general, higher COV rates or lower MAT score suggest that more realistic
conformations are generated. Besides, the Precision metrics depend more on the quality,
while the Recall metrics concentrate more on the diversity. Either metrics can be more
appealing considering the specific scenario. Following previous works (Xu et al., 2021a;
Ganea et al., 2021), δ is set as 0.5Å and 1.25Å for QM9 and Drugs datasets respectively.

Results & discussion. The results are summarized in Tab. 5.1 and Tab. 5.5 (left
in Appendix. 5.7.4). As noted in Sec. 5.4.3, GeoDiff can be trained with two types of
modified ELBO, named alignment and chain-rule approaches. We denote models learned
by these two objectives as GeoDiff-A and GeoDiff-C respectively. As shown in the
tables, GeoDiff consistently outperform the state-of-the-art ML models on all datasets
and metrics, especially by a significant margin for more challenging large molecules (Drugs
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Tableau 5.1. Results on the GEOM-Drugs dataset, without FF optimization.

COV-R (%) ↑ MAT-R (Å) ↓ COV-P (%) ↑ MAT-P (Å) ↓
Models Mean Median Mean Median Mean Median Mean Median
CVGAE 0.00 0.00 3.0702 2.9937 - - - -
GraphDG 8.27 0.00 1.9722 1.9845 2.08 0.00 2.4340 2.4100
CGCF 53.96 57.06 1.2487 1.2247 21.68 13.72 1.8571 1.8066
ConfVAE 55.20 59.43 1.2380 1.1417 22.96 14.05 1.8287 1.8159
GeoMol 67.16 71.71 1.0875 1.0586 - - - -
ConfGF 62.15 70.93 1.1629 1.1596 23.42 15.52 1.7219 1.6863
GeoDiff-A 88.36 96.09 0.8704 0.8628 60.14 61.25 1.1864 1.1391
GeoDiff-C 89.13 97.88 0.8629 0.8529 61.47 64.55 1.1712 1.1232

* The COV-R and MAT-R results of CVGAE, GraphDG, CGCF, and ConfGF are
borrowed from Shi et al. (2021). The results of GeoMol are borrowed from a most recent
study Zhu et al. (2022). Other results are obtained by our own experiments. The results
of all models for the GEOM-QM9 dataset (summarized in Tab. 5.5) are collected in the
same way.

dataset). The results demonstrate the superior capacity of GeoDiff to model the multi
modal distribution, and generative both accurate and diverse conformations. We also notice
that in general GeoDiff-C performs slightly better than GeoDiff-A, which suggests that
chain-rule approach leads to a better optimization procedure. We thus take GeoDiff-C as
the representative in the following comparisons. We visualize samples generated by different
models in Fig. 5.2 to provide a qualitative comparison, where GeoDiff is shown to capture
better both local and global structures.

On the more challenging Drugs dataset, we further test RDKit. As shown in Tab. 5.2,
our observation is in line with previous studies (Shi et al., 2021) that the state-of-the-art ML
models (shown in Tab. 5.1) perform better on COV-R and MAT-R. However, for the new
Precision-based metrics we found that ML models are still not comparable. This indicates
that ML models tend to explore more possible representatives while RDKit concentrates
on a few most common ones, prioritizes quality over diversity. Previous works (Mansimov
et al., 2019; Xu et al., 2021b) suggest that this is because RDKit involves an additional
empirical force field (FF) (Halgren, 1996b) to optimize the structure, and we follow them
to also combine GeoDiff with FF to yield a more fair comparison. Results in Tab. 5.2
demonstrate that GeoDiff +FF can keep the superior diversity (Recall metrics) while also
enjoy significantly improved accuracy ((Precision metrics)).

5.5.3. Property Prediction

Evaluation metrics. This task estimates the molecular ensemble properties (Axelrod
and Gomez-Bombarelli, 2020) over a set of generated conformations. This can provide an
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Reference

ConfGF

GeoDiff

GraphDG

Graph

Fig. 5.2. Examples of generated structures from Drugs dataset. For every model, we show
the conformation best-aligned with the ground truth. More examples are provided in Ap-
pendix 5.7.5.

Tableau 5.2. Results on the GEOM-Drugs dataset, with FF optimization.

COV-R (%) ↑ MAT-R (Å) ↓ COV-P (%) ↑ MAT-P (Å) ↓
Models Mean Median Mean Median Mean Median Mean Median

RDKit 60.91 65.70 1.2026 1.1252 72.22 88.72 1.0976 0.9539
GeoDiff + FF 92.27 100.00 0.7618 0.7340 84.51 95.86 0.9834 0.9221

direct assessment on the quality of generated samples. In specific, we follow Shi et al. (2021)
to extract a split from GEOM-QM9 covering 30 molecules, and generate 50 samples for each.
Then we use the chemical toolkit Psi4 (Smith et al., 2020) to calculate each conformer’s
energy E and HOMO-LUMO gap ϵ, and compare the average energy E, lowest energy Emin,
average gap ∆ϵ, minimum gap ∆ϵmin, and maximum gap ∆ϵmax with the ground truth.

Tableau 5.3. MAE of predicted ensemble proper-
ties in eV.

Method E Emin ∆ϵ ∆ϵmin ∆ϵmax

RDKit 0.9233 0.6585 0.3698 0.8021 0.2359
GraphDG 9.1027 0.8882 1.7973 4.1743 0.4776
CGCF 28.9661 2.8410 2.8356 10.6361 0.5954
ConfVAE 8.2080 0.6100 1.6080 3.9111 0.2429
ConfGF 2.7886 0.1765 0.4688 2.1843 0.1433

GeoDiff 0.25974 0.1551 0.3091 0.7033 0.1909

Results & discussions. The mean
absolute errors (MAE) between calcu-
lated properties and the ground truth
are reported in Tab. 5.3. CVGAE
is excluded due to the poor perfor-
mance, which is also reported in Simm
and Hernández-Lobato (2020); Shi et al.
(2021). The properties are highly sen-
sitive to geometric structure, and thus
the superior performance demonstrate that GeoDiff can consistently predict more accurate
conformations across different molecules.

5.6. Conclusion
We propose GeoDiff, a novel probabilistic model for generating molecular conforma-

tions. GeoDiff marries denoising diffusion models with geometric representations, where
we parameterize the reverse generative dynamics as a Markov chain, and novelly impose
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roto-translational invariance into the density with equivariant Markov kernels. We derive
a tractable invariant objective from the variational lower bound to optimize the likelihood.
Comprehensive experiments over multiple tasks demonstrate that GeoDiff is competitive
with the existing state-of-the-art models. Future work includes further improving or accele-
rating the model with other recent progress of diffusion models, and extending our method
to other challenging structures such as proteins.

5.7. Appendix
5.7.1. Proofs

5.7.1.1. Properties of the Diffusion Model. We include proofs for several key properties
of the probabilistic diffusion model here to be self-contained. For more detailed discussions,
please refer to Ho et al. (2020). Let {β0,...,βT } be a sequence of variances, and αt = 1 − βt

and ᾱt = ∏t
s=1 αs. The two following properties are crucial for deriving the final tractable

objective in equation 5.4.8.
Property 1. Tractable marginal of the forward process:

q(Ct|C0) =
∫

q(C1:t|C0) dC1:(t−1) = N (Ct;
√

ᾱtC0, (1 − ᾱt)I).

Démonstration. Let ϵi’s be independent standard Gaussian random variables. Then, by
definition of the Markov kernels q(Ct|Ct−1) in equation 5.4.1, we have

Ct = √
αtCt−1 +

√
βtϵt

= √
αtαt−1Ct−2 +

√
αtβt−1ϵt−1 +

√
βtϵt

= √
αtαt−1αt−1Ct−3 +

√
αtαt−1βt−2ϵt−2 +

√
αtβt−1ϵt−1 +

√
βtϵt

= · · ·
=

√
ᾱtC0 +

√
αtαt−1 · · · α2β1ϵ1 + · · · +

√
αtβt−1ϵt−1 +

√
βtϵt

(5.7.1)

Therefore q(Ct|C0) is still Gaussian, and the mean of Ct is
√

ᾱtC0, and the variance matrix
is (αtαt−1 · · · α2β1 + · · · + αtβt−1 + βt)I = (1 − ᾱt)I. Then we have:

q(Ct|C0) = N (Ct;
√

ᾱtC0, (1 − ᾱt)I).

This property provides convenient closed-form evaluation of Ct knowing C0:

Ct =
√

ᾱtC0 +
√

1 − ᾱtϵ,

where ϵ ∼ N (0, I).
Besides, it is worth noting that,

q(CT |C0) = N (CT ;
√

ᾱT C0, (1 − ᾱT )I),
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where ᾱT = ∏T
t=1(1 − βt) approaches zero with large T , which indicates the diffusion process

can finally converge into a whitened noisy distribution. □

Property 2. Tractable posterior of the forward process:

q(Ct−1|Ct, C0) = N (Ct−1;
√

ᾱt−1βt

1 − ᾱt

C0 +
√

αt(1 − ᾱt−1)
1 − ᾱt

Ct,
(1 − ᾱt−1)

1 − ᾱt

βtI).

Démonstration. Let β̃t = 1−ᾱt−1
1−ᾱt

βt, then we can derive the posterior by Bayes rule:

q(Ct−1|Ct,C0) = q(Ct|Ct−1) q(Ct−1|C0)
q(Ct|C0)

= N (Ct; √
αtCt−1,βtI) N (Ct−1;

√
ᾱt−1C0,(1 − ᾱt−1)I)

N (Ct;
√

ᾱtC0,(1 − ᾱt)I)
= (2πβt)− d

2 (2π(1 − ᾱt−1))− d
2 (2π(1 − ᾱt))

d
2 ×

exp
(

−
∥Ct − √

αtCt−1∥2

2βt

− ∥Ct−1 −
√

ᾱt−1C0∥2

2(1 − ᾱt−1)
+ ∥Ct −

√
ᾱtC0∥2

2(1 − ᾱt)

)

= (2πβ̃t)− d
2 exp

− 1
2β̃t

∥∥∥∥∥Ct−1 −
√

ᾱt−1βt

1 − ᾱt

C0 −
√

αt(1 − ᾱt−1)
1 − ᾱt

Ct

∥∥∥∥∥
2


(5.7.2)

Then we have the posterior q(Ct−1|Ct,C0) as the given form. □

5.7.1.2. Proof of Proposition 1. Let Tg be some roto-translational transformations of a
group element g ∈ SE(3), and let p(xT ) be a density which is SE(3)-invariant, i.e., p(xT ) =
p(Tg(xT )). If the Markov transitions p(xt−1|xt) are SE(3)-equivariant, i.e., p(xt−1|xt) =
p(Tg(xt−1)|Tg(xt)), then we have that the density pθ(x0) =

∫
p(xT )pθ(x0:T −1|xT )dx1:T is also

SE(3)-invariant.

Démonstration.

pθ(Tg(x0)) =
∫

p(Tg(xT ))pθ(Tg(x0:T −1)|Tg(xT ))dx1:T

=
∫

p(Tg(xT ))ΠT
t=1pθ(Tg(xt−1)|Tg(xt))dx1:T

=
∫

p(xT )ΠT
t=1pθ(Tg(xt−1)|Tg(xt))dx1:T (invariant prior p(xT ))

=
∫

p(xT )ΠT
t=1pθ(xt−1|xt)dx1:T (equivariant kernels p(xt−1|xt))

=
∫

p(xT )pθ(x0:T −1|xT )dx1:T

= pθ(x0)

(5.7.3)

□

5.7.1.3. Proof of Proposition 2. In this section we prove that the output x of GFN defined
in equation 5.4.4, 5.4.5 and 5.4.6 is translationally invariant and rotationally equivariant with
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the input C. Let g ∈ R3 denote any translation transformations and orthogonal matrices
R ∈ R3×3 denote any rotation transformations. let Rx be shorthand for (Rx1, · · · , RxN).
Formally, we aim to prove that the model satisfies:

Rxl+1, hl+1 = GFN(Rxl, RC + g, hl). (5.7.4)

This equation indicates that, given xl already rotationally equivalent with C, and hl already
invariant, then such property can propagate through a single GFN layer to xl+1 and hl+1.

Démonstration. Firstly, given that hl already invariant to SE(3) transformations, we have
that the messages mij calculated from equation 5.4.4 will also be invariant. This is because it
sorely relies on the distance between two atoms, which are manifestly invariant to rotations
∥Rxl

i − Rxl
j∥2 = (xl

i − xl
j)⊤R⊤R(xl

i − xl
j) = (xl

i − xl
j)⊤I(xl

i − xl
j) = ∥xl

i − xl
j∥2. Formally, the

invariance of messages in equation 5.4.4 can be written as:

mi,j = Φm

(
hl

i, hl
j,
∥∥∥Rxl

i − Rxl
j

∥∥∥2
, eij

)
= Φm

(
hl

i, hl
j,
∥∥∥xl

i − xl
j

∥∥∥2
, eij

)
. (5.7.5)

And similarly, the ht+1 updated from equation 5.4.5 will also be invariant.
Next, we prove that the vector x updated from equation 5.4.6 preserves rotational equi-

variance and translational invariance. Given mij already invariant as proven above, we have
that:∑

j∈N (i)

1
dij

(Rci + g − Rcj − g) Φx (mi,j) = R
∑

j∈N (i)

1
dij

(ci − cj) Φx (mi,j) = Rxl+1
i . (5.7.6)

Therefore, we have that rotating and translating c results in the same rotation and no
translation on xl+1 by updating through equation 5.4.6.

Thus we can conclude that the property defined in equation 5.7.4 is satisfied. □

Having proved the equivariance property of a single GFN layer, then inductively, we can
draw conclusion that a composition of L GFN layers will also preserve the same equivariance.
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5.7.1.4. Proof of Proposition 3. We first derive the variational lower bound (ELBO) ob-
jective in equation 5.4.7. The ELBO can be calculated as follows:

E log pθ(C0|G) = E logEq(C1:T |C0)

[
pθ(C0:T −1|G,CT ) × p(CT )

q(C1:T |C0)

]

≥ Eq log pθ(C0:T −1|G,CT ) × p(CT )
q(C1:T |C0)

= Eq

[
log p(CT ) −

T∑
t=1

log pθ(Ct−1|G,Ct)
q(Ct|Ct−1)

]

= Eq

[
log p(CT ) − log pθ(C0|G,C1)

q(C1|C0) −
T∑

t=2

(
log pθ(Ct−1|G,Ct)

q(Ct−1|Ct,C0) + log q(Ct−1|C0)
q(Ct|C0)

)]

= Eq

[
log p(CT )

q(CT |C0) − log pθ(C0|G,C1) −
T∑

t=2
log pθ(Ct−1|G,Ct)

q(Ct−1|Ct,C0)

]

= −Eq

[
KL

(
q(CT |C0)∥p(CT )

)
+

T∑
t=2

KL
(
q(Ct−1|Ct,C0)∥pθ(Ct−1|G, Ct)

)
− log pθ(C0|G,C1)

]
.

(5.7.7)

It can be noted that the first term KL
(
q(CT |C0)∥p(CT )

)
is a constant, which can

be omitted in the objective. Furthermore, for brevity, we also merge the final term
log pθ(C0|G,C1) into the second term (sum over KL divergences), and finally derive that
LELBO = ∑T

t=1 DKL(q(Ct−1|Ct,C0)∥pθ(Ct−1|G,Ct)) as in equation 5.4.7.
Now we consider how to compute the KL divergences as the proposition 3. Since both

q(Ct−1|Ct,C0) and pθ(Ct−1|G,Ct) are Gaussian share the same covariance matrix β̃tI, the KL
divergence between them can be calculated by the squared ℓ2 distance between their means
weighed by a certain weights 1

2β̃t
. By the expression of q(Ct|C0), we have the reparameteri-

zation that Ct =
√

ᾱtC0 +
√

1 − ᾱtϵ. Then we can derive:

Eq KL (q(Ct−1|Ct,C0)∥pθ(G,Ct−1|Ct))

= 1
2β̃t

EC0

∥∥∥∥∥
√

ᾱt−1βt

1 − ᾱt

C0 +
√

αt(1 − ᾱt−1)
1 − ᾱt

Ct − 1
√

αt

(
Ct − βt√

1 − ᾱt

ϵθ(Ct,G,t)
)∥∥∥∥∥

2

= 1
2β̃t

EC0,ϵ

∥∥∥∥∥
√

ᾱt−1βt

1 − ᾱt

· Ct −
√

1 − ᾱtϵ√
ᾱt

+
√

αt(1 − ᾱt−1)
1 − ᾱt

Ct − 1
√

αt

(
Ct − βt√

1 − ᾱt

ϵθ(Ct,G,t)
)∥∥∥∥∥

2

= 1
2β̃t

· β2
t

αt(1 − ᾱt)
EC0,ϵ

∥∥∥0 · Ct + ϵ − ϵθ(Ct,G,t)
∥∥∥2

= β2
t

21−ᾱt−1
1−ᾱt

βtαt(1 − ᾱt)
EC0,ϵ

∥∥∥ϵ − ϵθ(Ct,G,t)
∥∥∥2

= γtEC0,ϵ

∥∥∥ϵ − ϵθ(Ct,t)
∥∥∥2

,

(5.7.8)

where γt represent the wights βt

2αt(1−ᾱt−1) . And we finish the proof.
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5.7.1.5. Analysis of the invariant density in Sec. 5.4.2. Given a geometric system x ∈
RN ·3, we obtain the CoM-free x̂ by subtracting its CoM. This can be considered as a linear
transformation:

x̂ = Qx, where Q = I3 ⊗
(
IN − 1

N
1N1T

N

)
(5.7.9)

where Ik denotes the k × k identity matrix and 1k denotes the k-dimensional vector filled
with ones. It can be noted that Q is a symmetric projection operator, i.e., Q2 = Q and
QT = Q. And we also have that rank[Q] = (N − 1) · 3. Furthermore, let U represent the
space of CoM-free systems, we can easily have that Qy = y for any y ∈ U since the CoM of
y is already zero.

Formally, let n = N · 3 and set Rn with an isotropic normal distribution ρ = N (0, In),
then the CoM-free density can be formally written as ρ̂ = N (0, QInQT ) = N (0, QQT ). Thus,
sampling from ρ̂ can be trivially achieved by sampling from ρ and then projecting with Q.
And ρ̂(y) can be calculated by ρ(y) since for any y ∈ U we have ∥y∥2

2 = ∥Qy∥2
2, and thus

ρ(y) = ρ̂(y).
And in this paper, with the SE(3)-equivariant Markov kernels of the reverse process,

any CoM-free system will transit to another CoM-free system. And thus we can induce a
well-defined Markov chain on the subspace spanned by Q.

5.7.2. Other related work

Protein structure generation. There has also been many recent works working on
protein structure folding. For example, Boltzmann generators Noé et al. (2019) use flow-
based models to generate the structure of protein main chains. AlQuraishi (2019) uses
recurrent networks to model the amino acid sequences. Ingraham et al. (2019) proposed
neural networks to learn an energy simulator to infer the protein structures. Most recently,
AlphaFold Senior et al. (2020); Jumper et al. (2021) has significantly improved the perfor-
mance of protein structure generation. Nevertheless, proteins are mainly linear backbone
structures while general molecules are highly branched with various rings, making protein
folding approaches unsuitable for our setting.

Point cloud generation. Recently, some other works (Luo and Hu, 2021; Chibane et al.,
2020) has also been proposed for 3D structure generation with diffusion-based models, but
focus on the point cloud problem. Unfortunately, in general, point clouds are not considered
as graphs with various atom and bond information, and equivariance is also not widely
considered, making these methods fundamentally different from our model.

5.7.3. Experiment details

In this section, we introduce the details of our experiments. In practice, the means ϵθ are
parameterized as compositions of both typical invariant MPNNs (Schütt et al., 2017) and the

64



proposed equivariant GFNs in Sec. 5.4.2. As a default setup, the MPNNs for parameterizing
the means ϵθ are all implemented with 4 layers, and the hidden embedding dimension is set
as 128. After the MPNNs, we can obtain the informative invariant atom embeddings, which
we denote as h0. Then the embeddings h0 are fed into equivariant layers and updated with
equation 5.4.4, equation 5.4.5, and equation 5.4.6 to obtain the equivariant output. For the
training of GeoDiff, we train the model on a single Tesla V100 GPU with a learning rate
of 0.001 until convergence and Adam (Kingma and Welling, 2013) as the optimizer. The
practical training time is around 48 hours. The other hyper-parameters of GeoDiff are
summarized in Tab. 5.4, including highest variance level βT , lowest variance level βT , the
variance schedule, number of diffusion timesteps T , radius threshold for determining the
neighbor of atoms τ , batch size, and number of training iterations.

Tableau 5.4. Additional hyperparameters of our GeoDiff.

Task β1 βT β scheduler T τ Batch Size Train Iter.
QM9 1e-7 2e-3 sigmoid 5000 10Å 64 1M
Drugs 1e-7 2e-3 sigmoid 5000 10Å 32 1M

5.7.4. Additional experiments

5.7.4.1. Results for GEOM-QM9. The results on the GEOM-QM9 dataset are reported
in Tab. 5.5.

5.7.4.2. Ablation study with fewer diffusion steps. We also test our method with fewer
diffusion steps. Specifically, we test the setting with T = 1000, β1 =1e-7 and βT =9e-3. The
results on the more challenging Drugs dataset are shown in Tab. 5.6. Compared with the
results in Tab. 5.1, we can observe that when setting the diffusion steps as 1000, though
slightly weaker than the performance with 5000 decoding steps, the model can already out-
performs all existing baselines. Note that, the most competitive baseline ConfGF (Shi et al.,
2021) also requires 5000 sampling steps, which indicates that our model can achieve better
performance with fewer computational costs compared with the state-of-the-art method.

5.7.5. More Visualizations

We provide more visualization of generated structures in Fig. 5.3. The molecules are
chosen from the test split of GEOM-Drugs dataset.
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Tableau 5.5. Results on the GEOM-QM9 dataset, without FF optimization.

COV-R (%) ↑ MAT-R (Å) ↓ COV-P (%) ↑ MAT-P (Å) ↓
Models Mean Median Mean Median Mean Median Mean Median
CVGAE 0.09 0.00 1.6713 1.6088 - - - -
GraphDG 73.33 84.21 0.4245 0.3973 43.90 35.33 0.5809 0.5823
CGCF 78.05 82.48 0.4219 0.3900 36.49 33.57 0.6615 0.6427
ConfVAE 77.84 88.20 0.4154 0.3739 38.02 34.67 0.6215 0.6091
GeoMol 71.26 72.00 0.3731 0.3731 - - - -
ConfGF 88.49 94.31 0.2673 0.2685 46.43 43.41 0.5224 0.5124
GeoDiff-A 90.54 94.61 0.2104 0.2021 52.35 50.10 0.4539 0.4399
GeoDiff-C 90.07 93.39 0.2090 0.1988 52.79 50.29 0.4448 0.4267

Tableau 5.6. Additional results on the GEOM-Drugs dataset, without FF optimization.

COV-R (%) ↑ MAT-R (Å) ↓ COV-P (%) ↑ MAT-P (Å) ↓
Models Mean Median Mean Median Mean Median Mean Median

GeoDiff (T=1000) 82.96 96.29 0.9525 0.9334 48.27 46.03 1.3205 1.2724

66



Graph Conformations

Fig. 5.3. Visualization of drug-like conformations generated by GeoDiff.
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Chapter 6

Conclusion

In this thesis, we propose CGCF, ETM, and GeoDiff, three principled probabilistic
models for molecular conformation generation. Our methods novelly combine the progress
of geometrical representation learning and deep generative models. Specifically, we intro-
duced flow-based, energy-based, and denoising diffusion generative models to this scenario,
and keep the property of roto-translational invariance by parameterizing the models
with equivariant graph neural networks. Our generative model can extract informative
geometric features from the complex conformations, and enjoy a high capacity for modeling
multi-modal distributions. Comprehensive experiments demonstrate that our methods can
achieve consistent improvement over previous baselines on several benchmarks. Future work
includes exploring other probabilistic models in the context of geometry generation and
extending our method to other more challenging structures such as proteins and catalysts.
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