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Résumé

L’expression musicale requiert le contrôle sur quelles notes sont jouées ainsi que comment elles
se jouent. Les synthétiseurs audios conventionnels offrent des contrôles expressifs détaillés,
cependant au détriment du réalisme.

La synthèse neuronale en boîte noire des audios et les échantillonneurs concaténatifs sont
capables de produire un son réaliste, pourtant, nous avons peu de mécanismes de contrôle.

Dans ce travail, nous introduisons MIDI-DDSP, un modèle hiérarchique des instruments
musicaux qui permet tant la synthèse neuronale réaliste des audios que le contrôle sophistiqué
de la part des utilisateurs.

À partir des paramètres interprétables de synthèse provenant du traitement différentiable
des signaux numériques (Differentiable Digital Signal Processing, DDSP), nous inférons les
notes musicales et la propriété de haut niveau de leur performance expressive (telles que le
timbre, le vibrato, l’intensité et l’articulation).

Ceci donne naissance à une hiérarchie de trois niveaux (notes, performance, synthèse) qui
laisse aux individus la possibilité d’intervenir à chaque niveau, ou d’utiliser la distribution
préalable entraînée (notes étant donné performance, synthèse étant donné performance) pour
une assistance créative. À l’aide des expériences quantitatives et des tests d’écoute, nous
démontrons que cette hiérarchie permet de reconstruire des audios de haute fidélité, de
prédire avec précision les attributs de performance d’une séquence de notes, mais aussi de
manipuler indépendamment les attributs étant donné la performance. Comme il s’agit d’un
système complet, la hiérarchie peut aussi générer des audios réalistes à partir d’une nouvelle
séquence de notes.

En utilisant une hiérarchie interprétable avec de multiples niveaux de granularité, MIDI-
DDSP ouvre la porte aux outils auxiliaires qui renforce la capacité des individus à travers
une grande variété d’expérience musicale.

mots-clés: Synthèse Audio, Modèles Génératif, Hiérarchique, DDSP,
Musique, Audio, Modèles Structurés
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Abstract

Musical expression requires control of both what notes are played, and how they are per-
formed. Conventional audio synthesizers provide detailed expressive controls, but at the
cost of realism. Black-box neural audio synthesis and concatenative samplers can produce
realistic audio, but have few mechanisms for control. In this work, we introduce MIDI-
DDSP a hierarchical model of musical instruments that enables both realistic neural audio
synthesis and detailed user control. Starting from interpretable Differentiable Digital Signal
Processing (DDSP) synthesis parameters, we infer musical notes and high-level properties
of their expressive performance (such as timbre, vibrato, dynamics, and articulation). This
creates a 3-level hierarchy (notes, performance, synthesis) that affords individuals the option
to intervene at each level, or utilize trained priors (performance given notes, synthesis given
performance) for creative assistance. Through quantitative experiments and listening tests,
we demonstrate that this hierarchy can reconstruct high-fidelity audio, accurately predict
performance attributes for a note sequence, independently manipulate the attributes of a
given performance, and as a complete system, generate realistic audio from a novel note
sequence. By utilizing an interpretable hierarchy, with multiple levels of granularity, MIDI-
DDSP opens the door to assistive tools to empower individuals across a diverse range of
musical experience.

Keywords: Audio Synthesis, Generative Models, Hierarchical, DDSP, Music,
Audio, Structured Models
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Chapter 1

Introduction

Music is one of the human’s oldest art forms and is one that is closely related to technological
advances: the manufacturing and electronic technology that creates new music instruments
such as electronic guitar; the electronic and computer technology that enables recording
and playing equipment which deeply shapes the music industry; the electronic, computer
and software improvements that give the world analog and digital synthesizers, effect unit,
auto-tune, and digital audio workstation (DAW), etc.

As a quickly advancing technology, deep-learning based artificial intelligence (AI) models
are transforming the way people create music. Deep-learning based models are powerful, on
account of their capability to extract knowledge and pattern from an ample amount of data.
Nowadays, deep-learning based models have exceeded human-level performance in certain
tasks and are able to generate realistic data such as text, image, or speech. In the music
domain, deep-learning based models show their potential to help people compose music with
machine creativity, creating new types of sound and timbre, or synthesizing realistic music
audio.

However, current deep-learning based models are awkward for music creation. Most of
the models are designed to be “end-to-end”: meaning the models directly generate output
from input, lacking the interpretability and controllability of the generative process. Just as
conductors give detailed suggestions in rehearsal, the music creation process requires control-
ling the generation process with iterative editing. For example, as presented in Figure 1.1, a
holistic process of music creation is often not end-to-end. It is separated into different stages,
each with its workflow. For example (third column in Figure 1.1), when composing the song,
one would create and edit the chord progression, arrangement, and melody in consecutive
steps. An end-to-end generative model would generate a full song in one shot, leaving no
room for controlling and adjusting the workflow. A more useful model would generate dif-
ferent steps in the workflow such as chord progression, arrangement, and melody separately
while allowing detailed control for each step.



Fig. 1.1. Flowchart of the creation process in the AI Song Contest 2022 entry “A to I”
(https://www.aisongcontest.com/participants-2022/3i). This flowchart shows an ex-
ample of how music creation is compose of different stage (present in different color) where
each stage has its own workflows (present in each column).

1.1. AI Song Contest: Workflow of Music Creators
The AI Song Contest1 [59] is an international music competition starting in 2020 for

songs that have been composed using artificial intelligence (AI). Teams participating in the
AI Song Contest will create a song using AI as part of their songwriting process. AI Song
Contest is a good place to observe how people create music, what are their workflow, and
how they use the current deep learning-based AI models. The author of this thesis teamed
up with two other team members, Yuxuan Wu and Yi Deng, to participate in the AI Song
Contest 2022. The entry of their team, “A to I”, won 3rd place in the contest2. The song
“A to I” is about the first-person perspective of an AI model born from chaos, growing
up and learning to greet the world, doubts its existence but finally embraces the original
intention of humans: to develop more intelligent machines that make humans better lives.
In the song, they explore using AI models not only as tools but also as collaborators, song
and lyrics writers, performers, storytellers, and even the mentor and first-person narrator.
In this section, we will present the creation process of the song “A to I” as a typical music
creation workflow to show why controllable approaches are more helpful.

1https://www.aisongcontest.com/
2https://www.aisongcontest.com/participants-2022/3i
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The division of work in the team follows their complementary background: Yuxuan Wu,
with rich experience in music composition and songwriting, compose the song and contributes
the solo; Yi Deng, with a background in music and sound engineering, is responsible for using
and controlling the models to generate samples, recording the vocal as well as mixing and
mastering; the role of Yusong Wu, the author of this thesis is to search and develop tools
and models for the other two team members to use, as well as generate samples from those
models for the other two team members.

Figure 1.1 shows a flowchart of the creation process. The creation process consists of four
stages (theme, lyrics, symbolic music, audio), where each stage has its own detailed workflow.
We first work on the outline and theme of the song, then generate all the lyrics using AI
models. After that, we start composing the chords, making arrangements (accompaniments),
and writing the melody line. Last, we record vocal and generate instrumental accompaniment
before applying the final mixing and mastering.

We choose the creation process to be modular as we want to have total control of each
step in the song creation, thus ensuring the song is of high quality musically. Inside each
step, we also want the model we use to enable detailed control over the generative process.
With control, we can accurately realize our creative ideas while saving time in selecting and
editing results output by models without control.

To conclude, an ideal generative model for music creators would fit in the creative work-
flow (modular) and be controllable.

1.2. Problem Definition: Controllable Music Perfor-
mance Synthesis

In this thesis, we aim to make generative models controllable under the scope of music
performance synthesis. Music performance synthesis is a process that commonly generates
audio of music instrument playing (or ensemble of music instruments) given music score. The
music performance synthesis models are often also referred to as score-to-audio generation
models.

A music performance synthesis model, similar to a human player, needs to learn both
what to play and how to play. The music score written by the composer, in its symbolic
and discrete form, in most cases only indicates notes which consist of what pitch to play,
when to play, and how long the note should be playing. Besides rendering the timbre, pitch,
and timing of the instrument playing, performance synthesis models need to also infer and
render the expressive performance. To perform the score, a human player would interpret
these notes through expressive performance: a myriad of nuanced, sub-second choices about
articulation, dynamics, and expression. In audio synthesis, those expressive gestures will be
realized as short-time pitch and timbre changes of the physical vibration of the instrument.
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Thus, the challenge of music performance synthesis is to synthesize audio waveform with
realistic timbre, pitch, timing, and expressive performance. Further, the challenge of con-
trolling the music performance synthesis process lies in how to enable control and what to
select for control.

1.3. MIDI-DDSP: Controllable Music Performance
Synthesis via Hierarchical Modelling

In this thesis, we present our core contribution, a controllable music performance syn-
thesis model named MIDI-DDSP. MIDI-DDSP is a hierarchical generative model of musical
performance to provide both realism and control. MIDI-DDSP is built on a similar 3-level
hierarchy (notes, performance, synthesis) with interpretable representations at each level
(Figure 1.2, left). Compared to conventional methods and previous neural network models,
MIDI-DDSP enables both realistic neural audio synthesis and detailed user control (Fig-
ure 1.2, right).

Formally, our contributions is as follows:

• We propose MIDI-DDSP, a 3-level hierarchical generative model of music (notes,
performance, synthesis), and train a single model capable of realistic audio synthesis
for 13 different instruments.

• Expression Attributes: We introduce heuristics to extract mid-level per-note expres-
sion attributes from low-level synthesis parameters.

• User Control: Quantitative studies confirm that manipulating the expression at-
tributes creates a corresponding effect in the synthesizer parameters, and we quali-
tatively demonstrate the detailed control that is available to users manipulating all
three levels of the hierarchy.

• Assistive Generation: Reconstruction experiments show that MIDI-DDSP can make
assistive predictions at each level of the hierarchy, accurately resynthesizing au-
dio, predicting synthesis parameters from note-wise expression attributes, and auto-
regressively predicting note-wise expression attributes from a note sequence.

• Realistic Note Synthesis: An extensive listening study finds that MIDI-DDSP can
synthesize audio from new note sequences (not seen during training) with higher real-
ism than both comparable neural approaches and professional concatenative sampler
software.

• Automatic Music Generation: We demonstrate that pairing MIDI-DDSP with a pre-
trained note generation model enables full-stack automatic music generation. As an
example, we use Coconet [57] to generate and synthesize novel 4-part Bach chorales
for a variety of instruments.
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Fig. 1.2. (Left) The MIDI-DDSP architecture. MIDI-DDSP extracts interpretable features
at the performance and synthesis levels, building a modeling hierarchy by learning feature
generation at each level. Red and blue components indicate encoding and decoding respec-
tively. Shaded boxes represent modules with learned parameters. Both expression features
and notes are extracted directly from synthesis parameters. (Right) Synthesizers have wide
range of control, but struggle to convey realism. Neural audio synthesis and concatenative
samplers can produce realistic audio, but have limited control. MIDI-DDSP enables both
realistic neural audio synthesis and detailed user control.

MIDI-DDSP has been shown to be an effective tool for generating and controlling music
performance. In our AI Song Contest entry, MIDI-DDSP is used as a tool for rendering
accompaniment performance in the later stage of creation (Figure 1.1, third row in the
right-most column).

1.4. Resources and Supplementary Materials
• AI Song Contest 2022 entry “A to I”: https://www.aisongcontest.com/

participants-2022/3i
• Audio examples of MIDI-DDSP: https://midi-ddsp.github.io/
• Code of MIDI-DDSP: https://github.com/magenta/midi-ddsp
• Colab notebook demo of using and controlling MIDI-DDSP: https:

//colab.research.google.com/github/magenta/midi-ddsp/blob/main/midi_
ddsp/colab/MIDI_DDSP_Demo.ipynb
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1.5. Thesis Layout
Chapter 2 introduces core concepts and backgrounds to understand the paper presented in

this thesis, including generative models, music theory, and music generation models. Chapter
3 and 4 present MIDI-DDSP, our contributions toward enabling detailed control in music
synthesis models. Chapter 5 includes conclusions drawn from this thesis as well as proposals
for future works.
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Chapter 2

Background

This chapter will introduce core concepts and basic background to understand the topic
of this thesis. Our work lies at the intersection of the domain generative modelling and
music generation. In this chapter, we first introduce common types of generative models,
and then we introduce basic music theory. Last, we include a section introducing works of
music generation using deep learning. We assume the readers have basic knowledge of deep
learning, including the basic techniques and terminology such as stochastic gradient descent,
regularization, optimization, feed-forward, convolutional, and recurrent neural networks. For
readers unfamiliar with deep learning, we recommend reading the book Deep Learning [42].

2.1. Deep Generative Models
Generative models are one of the most important families of models in modern deep

learning whose goal is to realistically generates data distribution. Formally, given a dataset
D from which data x and optionally target y are sampled. Different from discriminative
models which aims to model p(y | x), the target of generative models with parameter θ often
are modelling pθ(x) or pθ(x, y). Modelling directly pθ(x) in most cases is more challenging
than model p(y | x). However, in addition to enabling authentic data generation, learning
a good generative model could also capture salient features to help other tasks such as
classification, representation learning, semi-supervised learning, denoising, impainting, etc.
As generative models aim to learn pθ(x), it relieves the need for target y, which is often
manually annotated and could effectively leverage a large amount of noisy data without
labels. For example, recent advances in generative training (pre-training generative models
on a large amount of data) have proven to be an effective technique for models to learn a
good representation which benefits down-stream tasks [5, 6, 11, 17, 26, 50].

With recent research advances, deep neural network-based generative models can con-
vincingly generate data such as text, image, speech, music, video, and more. In this section,
we introduce the types of generative models commonly used in deep generative models and



are essential for understanding the model presented in this thesis. Specifically, we introduce
Auto-regressive Models, Variational Autoencoders, Generative Adversarial Networks, Diffu-
sion and Score-based Models. This section is by no mean a complete survey of generative
models: we only introduce some of the most popular family of models while not includ-
ing other such as Flow-based Models [30, 31], Energy Based Models [77, 115] (Restricted
Boltzmann Machines [53], Deep Boltzmann Machines [105]), Vector Quantised-Variational
AutoEncoder (VQ-VAE) [121] or State-space Models [43, 44]. For each section, we present
only a few key papers while omitting other equally important research works. We refer
readers to the reference of each method for further understanding.

2.1.1. Auto-regressive Models

Auto-regressive models are a type of directed probabilistic model that estimates the joint
distribution by factorization into a chain of conditionals.

pθ(x) =
n∏

i=1
pθ(xi | x<i) (2.1.1)

where we define x<1 = ∅. For example, consider data as high-dimensional random variable
x ∈ Rd, an auto-regressive model for such data can learn p(x) as ∏d

i=1 pθ(xi | x<i).
Auto-regressive models make no conditional independence of the factors and can be

viewed as fully visible Bayes Networks. Unlike other models, generative models can explicitly
estimate the likelihood of the sample. In auto-regressive models, usually, the same network
and same set of parameters are used to model all the conditional probabilities, such that auto-
regressive models have the benefit of saving the parameters to model the joint distribution
and enable weight sharing. In some problems, modelling probability condition on infinite
past ∏n

i=1 pθ(xi | x<i) is computational expensive, whereas a common modification is to
condition on fix-length context ∏n

i=1 pθ(xi | xi−1:i−n) where n is the context length.
The directed factorization in auto-regressive models is natural for sequential data. Thus

auto-regressive models are most common in learning sequential data such as natural language,
time series, audio, or music. Although for some data such as image, defining a conditional
chain is not salient and will cause a very long chain (e.g., a chain of 64 × 64 × 3 for an RGB
image of resolution 64 × 64), recent studies show that one can learn a good generative model
on tasks traditionally hard for auto-regressive models such as image generation [17, 40, 97,
107, 120] or reinforcement learning [16, 98] if the problem can be defined as a conditional chain
in a specific order. Some works also propose learning an order-less conditional chain [57, 75].

In dealing with sequential data, Recurrent Neural Networks (RNN) and Transformers
are often used to model the conditional probability for their nature to model sequential
data. In other cases, Convolutional Neural Networks (CNN) are also used as the back-bone
network [107, 119, 120].
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The training of auto-regressive models usually uses maximum likelihood estimation on
each conditional probability as it is explicit. In inference time, auto-regressive models often
sample each factor one at a time according to the order in the conditional chain. Because of
sequential sampling, auto-regressive models are often slow to sample from. This is especially
the case for auto-regressive models for audio waveform, as waveform consists of tens of thou-
sands of points per second. Some researchers propose various techniques for improving sam-
pling speed in auto-regressive models via parallel sampling [93], output decomposition [131],
or more efficient model for faster single-step inference [62].

2.1.2. Variational Autoencoders

The variational autoencoders (VAE) proposed by Kingma and Welling [69], Rezende
et al. [102] is a stochastic variational model for efficient approximate inference of the data.
Readers are encouraged to read [70] for in-depth introduction of VAE.

VAEs use a latent variable z to factorize the distribution of data:

pθ(x) =
∫

pθ(x, z)dz. (2.1.2)

Variational autoencoder consists of an encoder (approximate posterior) qϕ(z | x), a prior
p(z) and a decoder (generator) pθ(x | z). The aim of the VAE is to maximize the evidence
lower bound (ELBO):

log pθ(x) ≥ Ez∼qϕ(z|x) log pθ(x | z) − DKL [qϕ(z | x)∥pθ(z)] , (2.1.3)

where the first term on the RHS of the Equation 2.1.3 can be viewed as reconstruction
loss, while the second term is the Kullback-Leibler divergence between encoder’s output
qϕ(z | x) and the prior distribution p(z).

ϕ and θ are parameters of the encoder network and decoder network, and they are trained
with reparameterization tricks using back-propagation. The prior distribution p(z) is often
chosen as isotropic Gaussian. Inference in VAEs is very simple: first sample from prior
distribution p(z) and then run through decoder pθ(x | z) to get data.

VAEs can be used to generate image [18, 69], speech [101], symbolic music [104, 126].
One of the advantages of VAEs is they often learn a good manifold of latent representation
through training. Thus VAEs are often used for representation learning. For example, there
are works that suggest that variants of VAEs could learn disentangled representation of latent
factors in data [52, 88].

Traditionally one of the major shortcomings of VAEs is considered to be generating
smoothed data points, such as blurry images. Recent advance in VAE [18] shows that
sufficiently deep networks can generate sharp images and outperforms their auto-regressive
counterparts.
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2.1.3. Generative Adversarial Networks

Generative Adversarial Networks (GAN) [41] is a type of implicit generative model that is
based on differentiable generators. GAN consists of a generator network G(z, θg) that maps
a noise prior p(z) to the data space X, and a discriminator network D(x, θd) that is trained
to distinguish samples from the generator distribution pmodel(x) from real data. GANs aim
to use the discriminator to “compete" with the generator and let the generator eventually
be able to “fool" the discriminator, thus generating realistic data. Goodfellow et al. [41]
formalize this into a two-player zero-sum minimax game with value function V (G, D):

min
G

max
D

V (D, G) = Ex∼pdata (x)[log D(x)] + Ez∼pz(z)[log(1 − D(G(z)))]. (2.1.4)

In training, the generator and discriminator are updated iteratively. When the minimax
game converges and such equilibrium is achieved, we can consider the generator generates
samples that cannot be distinguished from the true data distribution. By that time, the
discriminator can be discarded, and we can sample data from the generator by inputting
prior distribution, which is usually a uniform noise.

Since the GAN was proposed, it has been widely used and has become one type of the
most successful generative model algorithms. GANs can generate realistic image [40, 64, 65],
audio [74], speech [78], music [33, 37, 128] and video [23, 118].

GANs do not need approximate inference or variational inference and have very little
constraint on the architecture of the neural network, thus making them very flexible to
implement. Different from auto-regressive models or diffusion models, GANs do not have
constraints on modelling in inference time (such as conditional chain and iterative denoising).
Thus they often can generate data in parallel, resulting in fast inference speed. This is
especially useful when generating sequential data such as audio or music.

Although GANs have various advantage, the original GAN suffers from bad training sta-
bility and convergence. To improve convergence of GAN, many works propose new training
objective such as Least Squares Generative Adversarial Networks [86] that use least square
objective, or Wasserstein Generative Adversarial Networks (WGAN) [2] that use Wasserstein
loss and constrain the range of model weights. Also, feature matching [106] is proposed that
adds the additional training objective of matching the feature vector of the discriminator
between real data and generated data

∥∥∥Ex∼pdata f(x) − Ez∼pz(z)f(G(z))
∥∥∥2

2
.

Others propose various network architectures for improving GAN training and generation
quality. Those improvements includes using a CNN as the generator network [96], multi-scale
generation and discrimination [63], proposing a style-based generator [64].
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2.1.4. Diffusion and Score-based Models

Denoising Diffusion Probabilistic Models (DDPM) [54], often referred to as diffusion
models, are a family of models which generate data by reversing a Gaussian diffusion process
that turns data x to noise ϵ ∼ N (0, I) by incrementally adding noise. The forward diffusion
process is defined as a Markov chain:

q (xt | xt−1) = N
(

xt;
√

1 − βtxt−1, βtI
)

q (x1:T | x0) =
T∏

t=1
q (xt | xt−1) , (2.1.5)

where x0 ∼ p(x) is the data distribution we want to model. The forward diffusion process
is defined such that T → ∞, xT is equivalent to an isotropic Gaussian distribution.

The reverse diffusion process is defined as:

pθ (x0:T ) = p (xT )
T∏

t=1
pθ (xt−1 | xt) pθ (xt−1 | xt) = N (xt−1;µθ (xt, t) , Σθ (xt, t)) . (2.1.6)

A model pθ is learned to estimate the conditional probabilities on the chain to reverse
the process. Studies proposed different objectives to train the model, however the common
used objective is predicting the added noise given noisy data in certain step on the Markov
chain by minimizing an L1 objective:

E
x,c,ϵ,t

wt ∥ϵθ (xt, t) − ϵ∥1
1 , (2.1.7)

where wt is a weighting term for loss on different timesteps in the diffusion process.
Training in diffusion models consists of first sampling a random timestep from the diffusion
process, then adding noise to the original data according to the noise schedule defined in
Equation 2.1.6, in the end, run through the model and update network parameters according
to the objective. To sample from a diffusion model, one starts from an isotropic Gaussian
noise, then run through the backward diffusion process that uses model to gradually denoise
and generate the output.

Score-based models [113] are a type of models that are similar to diffusion models. The
training objective in score-based models is to match the score function of the distribution
sθ(x) ≈ ∇x log p(x). Similar to diffusion models, in inference time, score-based models use
Langevin dynamics to draw samples from score function. Ho et al. [54] shows the objective
for diffusion models are equivalent to the weighted combination of the objectives used in
score-based models.

Despite the need for performing iterative denoising during sampling, diffusion models
and score-based models are successful in generating images [27, 91, 114], speech [73], and
music [48, 82] with on par or even better generation quality than GANs. The way the
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modelling and sampling process formed in diffusion and score-based models facilitates inverse
problem solving such as inpainting, image colorization, or image super-resolution. It also
makes them suitable for guiding by external models who could provide gradients to the
output. For example, in text-to-image generation, one could use an image-text contrastive
learning model to provide extra guidance to the generation process [91].

2.2. Music
Music is the art of arranging sound [92] and plays a key role in human activities and

entertainment. In this section, we introduce the basics of music that are fundamental to
understanding the contributions in this thesis. We first introduce basic music theory and
notation to represent music. Then, we present the hierarchy present in music. In the
next section, we describe common music representation used in computer music and music
generation research.

This section is by no means a detailed introduction to music, and we will only cover the
basics needed to understand this thesis. For readers interested in this subject, we recommend
the book The Cambridge history of Western music theory [21].

2.2.1. Music Theory and Notation

Different systems and theories of music exist across different cultures and throughout
history. Here, we present the basic theory based on diatonic scale and the commonly used
music system today in most western music. One of the basic elements in music is the note.
The note is a basic unit to describe a sound in music. The basic elements of notes are pitch
which denotes the frequency of the sound, and duration, which describes how long the sound
lasts. In some cases, a note will also have velocity, which defines how loud the note is played.
We will introduce the concepts related to pitch and duration below.

The perceived pitch of a note typically corresponds to the fundamental frequency f0. In
the music system used in this thesis and commonly used today, pitch in music is discrete in
frequency space, meaning there is a limited number of music pitches that exist in continuous
frequency space. The way in which the pitch is arranged in frequency space is called tuning
system. The tuning system commonly used is 12 tone equal temperament which divides the
octave (the interval between two notes such that the higher note has double the frequency
than the lower note) into 12 parts, all of which are equal on a logarithmic scale. The
interval between each part among 12 parts is called a semitone. The concert pitch is the
reference pitch A4 in 440 Hz. Given the concert pitch, the frequency of the pitch that is i

semitones apart from the concert pitch is fi = 440 · 2i/12. The scale defines a set of pitches
among the 12 semitones in an octave. The scale used in the thesis is diatonic scale often
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written as “C–D–E–F–G–A–B", where the semitone between pitch in scale are arranged as
“2–2–1–2–2–2–1". Figure 2.1 shows a C major scale.

Fig. 2.1. The C major scale.

The length of time for a note to play is determined according to the relative duration
of the note represented in note type and the tempo denoted in Beats Per Minute (BPM).
The longest note is called the whole note, and the common note types are half note, quarter
note, eighth note, and sixteenth note, each occupies 1

2 , 1
4 , 1

8 , 1
16 duration of the whole note.

Figure 2.2 shows the common note duration types.

Fig. 2.2. Common note duration types and their staff notation.

The music is often written in a score using staff notation. The staff consists of a set of
five horizontal lines and four spaces in between that each represents a different musical pitch.
The vertical bars segmenting the staff are called measures, which denote a fixed duration
defined by the Time signature. The staff is written to be read in the same order in the
western text. Figure 2.3 shows a music score in staff notation.

2.2.2. Music Hierarchy

Just like the hierarchical syntax graph in natural language or the hierarchy of object,
substructure, and texture in an image, hierarchy exists in music. This hierarchy is also a
consequence of the music creation process: the composer first composes a music piece in
the form of a score, and the performers perform their instruments according to the score.
The kinetic action of the performer will cause the musical instrument to sound according to
its acoustic characteristic, which results in a series of vibrations perceived by humans. The
hierarchy in music starts with the piece of music and ends with the vibration in the audio
signal that is eventually perceived by humans. A way of dividing music hierarchy can be
described as: genre, phrase (a segment of music), motif (short patterns), chord (combination
of pitch set), note, expressive performance (the way the music is performed), fundamental
frequency and timbre, and audio signal.
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Fig. 2.3. An example music score in staff notation.

Figure 2.4 shows a piece of music and the zoom-in for different levels of hierarchy.
The higher level, more abstract part of the music hierarchy, such as genre, phrase, chord,

or note, is usually referred to as symbolic music for its discrete nature. The lower level part
of the music hierarchy that more close to sound, such as fundamental frequency, timbre, or
audio, is often called the acoustic aspect of music.

As we introduced above, music has a deep hierarchy containing both symbolic and acous-
tic essence. Thus, modelling music, especially directly from audio form, is very challenging.

2.3. Music Generation using Deep Learning
This section will introduce the basics of music generation using deep learning models.

We will first describe common music representation used in deep learning models and then
introduce music generation works for symbolic and acoustic music. Again, this section is by
no means a detailed survey of music generation. Readers are encouraged to [51] and [117]
for a more comprehensive survey.

2.3.1. Symbolic Music Representation

Symbolic music is a sequence where a note is its basic element. Thus, the natural way
of representing symbolic music is a sequence of notes where each note is a tuple containing
pitch and duration. However, this representation only works in monophonic music, where
at most one note is played at a time. In polyphonic music, where multiple notes will play
simultaneously and overlap, it is hard to define the order of note sequence tuple.
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(a)

(b)

(c)

(d)

(e)

Fig. 2.4. The music hierarchy of the same music piece “phantom of the opera". From top
to bottom: (a) the full score of the piece for symphony orchestra (excerpt from https:
//www.youtube.com/watch?v=G4kk88oSv7I), (b) the score of part of the core melody, (c)
the melody of (b) played in violin, visualized as spectrogram, (d) the melody of (b) played
in violin, visualized as audio waveform, (e) the zoom-in of sub-structure appears in audio
waveform of (d).
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Fig. 2.5. An example music score in pianoroll representation. Figure from https://
magenta.tensorflow.org/performance-rnn.

In such a case, a natural way of representing symbolic polyphonic music is the pianoroll.
Pianoroll gets its name from the roll of paper that is fed into a self-playing piano or music
box. In its simplest form can be seen as a binary matrix x ∈ Rn×t where n is the total
number of pitches, and t is the number of total timesteps, often quantized to the smallest
unit. The element with 1 in pianoroll denotes pitch present in the current timestep and vice
versa. Figure 2.5 shows the pianoroll notation.

Although pianoroll is a very intuitive representation, it is not always best for deep learn-
ing models to model. The quantization of timesteps often makes the resulting time dimension
unnecessarily long, resulting from a small quantization unit. Also, the pianoroll represen-
tation does not explicitly distinguish between the onset of the note and the sustain of the
note, making it difficult to separate between two consecutive notes in the same pitch and one
long note. To mitigate such shortcomings, people turn to use event-based representation [58]
which is inspired by the Musical Instrument Digital Interface (MIDI) that represent music
as a sequence of event. Event-based representation use NOTE_ON, NOTE_OFF, NOTE_SUSTAIN
to denote the boundary of the note as event. The event-based can effectively represent
polyphonic music regardless of the total duration of the note, and the resulting discrete se-
quence is easy for language models to model as a sequence of tokens. However, event-based
representation failed to incorporate the vertical relationship between notes (such as notes
played simultaneously). Recently, other modifications of event-based representation has been
proposed [99]. Figure 2.6 shows the event-based representation.

2.3.2. Acoustic Music Representation

Representations for acoustic music are audio-related representations. Audio is most com-
monly saved digitally as a signal consisting of a sequence of sample points with a certain
sample rate and often is called waveform. In waveform, each sample point represents the
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Fig. 2.6. An example music score in event-based representation. Figure from [94].

electrical voltage of that time. The commonly used sample rates for recording and processing
music audio are 48kHz, 44.1kHz, 24kHz, and 16kHz.

In addition to the waveform, a common way of representing music audio is using spectral-
based representation such as Short-time Fourier transform (STFT) or Mel-spectrogram
(transformation of frequency in STFT using Mel-scale [116]). Due to the harmonic nature of
the music signal, chromagram [36] and constant-Q transform (CQT) are also often used as
feature in music information retrieval (MIR) research. Chromagram projects the entire spec-
trum into 12 bins representing 12 pitch classes, and constant-Q transform (CQT) [108] uses a
constant ratio of frequency to resolution, resulting in logarithmically spaced center frequency
for each bin and increasing resolution for higher frequencies. Figure 2.7 shows a performance
in audio waveform, STFT, Mel-spectrogram, Chromagram, and CQT representations.

2.3.3. Symbolic Music Generation

A natural way of training symbolic music generation models is to treat symbolic music as
a sequence of discrete tokens and apply language models [10, 32, 35, 58, 95]. Others might
treat symbolic generation as a conditional generation or conversion task, enabling control of
the generative process [12, 19, 22, 83, 104, 126].

Most symbolic music generation models use sequential models such as RNN or Trans-
former. In some works, non-sequential models are used, such as GAN with CNN [33] and
CNN-based orderless Neural Autoregressive Distribution Estimator (NADE) [57, 75]. Most
symbolic generation works use maximum likelihood training, while some approaches propose
to train with reinforcement learning [60].
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(a)

(b)

(c)

(d)

(e)

Fig. 2.7. The acoustic representation commonly used in music generation: (a) waveform,
(b) STFT, (c) Mel-spectrogram, (d) Chromagram, (e) CQT.
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2.3.4. Acoustic Music Generation

The ultimate output of acoustic music generation is the audio waveform. A type of
research is to directly model time dependencies of waveform sample points directly using
auto-regressive models and hierarchical models [28, 29, 119]. However, such models often
can only generate in an unconditional manner, making them less useful in the music creation
process.

Alternatively, score-to-audio generation is an approach to make acoustic music generation
controllable via leveraging discrete score or note labels alongside the music recording. Many
score-to-audio generation models follow the paradigm of text-to-speech models that first
generates a spectrogram and then use another model to inverse spectrogram back to the audio
waveform. Various types of generative model are used in spectrogram generation models
and spectrogram inversion models, including auto-regressive models [34, 46, 62, 119, 122],
GANs [71, 74], or diffusion models [73, 82].

Recently, a separate line of works has been proposed aiming to add in the explicit in-
ductive bias of digital signal processing (DSP). The most representative among those works
are Differentiable Digital Signal Processing (DDSP) which proposes to use of additive syn-
thesis, subtractive synthesis, and a reverb module to synthesize audio signal from synthesis
parameters. The audio synthesis module in DDSP is made to be fully differentiable, such
that neural networks can be trained end-to-end with gradient descent to generate audio. In
a similar principle, differentiable wavetable synthesis [111] or waveshaping synthesis [49] can
also use as differentiable DSP-based audio synthesizers.

DSP-based audio synthesis benefits from the interpretable DSP parameters and audio
synthesis process, which makes it easy to control the audio synthesis process. However, most
of those works are proposed to use frame-wise fundamental frequency and loudness contour as
input which prohibits them from synthesizing audio from a music score. Several works [14, 61]
propose to train an additional network to predict the fundamental frequency and loudness
contour and use the pre-trained DDSP model to synthesize audio. Such works leveraging
the DDSP model for audio generation inherit the controllability and interpretability from
DDSP, enabling them to control the generation to a certain extent. However, the control from
DDSP is too fine-grained for the users to have reasonable control on the note-level, and the
generation quality is often limited by the pre-trained DDSP model. Wu et al. [128] proposed
a hierarchy model that adds an extra performance level modelling that enables detailed
control on both note-level and synthesis levels while generating realistic music performance.
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Chapter 4

MIDI-DDSP: Detailed Control of Musical
Performance via Hierarchical Modeling

4.1. Introduction
1Generative models are most useful to creators if they can generate realistic outputs,

afford many avenues for control, and easily fit into existing creative workflows [59]. Deep
generative models are expressive function approximators, capable of generating realistic sam-
ples in many domains [11, 97, 119], but often at the cost of interactivity, restricting users
to rigid black-box input-output pairings without interpretable access to the internals of the
network. In contrast, structured models chain several stages of interpretable intermediate
representations with expressive networks, while still allowing users to interact throughout the
hierarchy. For example, these techniques have been especially effective in computer vision and
speech, where systems are optimized for both realism and control [15, 79, 90, 100, 123, 132].

For music generation, despite recent progress, current tools still fall short of this ideal
(Figure 4.1, right). Deep networks can either generate realistic full-band audio [28] or provide
detailed controls of attributes such as pitch, dynamics, and timbre [24, 37, 38, 46, 122] but
not both. Many existing workflows use the MIDI specification [3] to Conventional DSP
synthesizers [20, 103] provide extensive control but make it difficult to generate realistic
instrument timbre, while concatenative samplers [109] play back high-fidelity recordings of
isolated musical notes, but require manually stitching together performances with limited
control over expression and continuity.

1Online resources:
Code: https://github.com/magenta/midi-ddsp
Audio Examples: https://midi-ddsp.github.io/
Colab Demo: https://colab.research.google.com/github/magenta/midi-ddsp/blob/main/midi_
ddsp/colab/MIDI_DDSP_Demo.ipynb

https://github.com/magenta/midi-ddsp
https://midi-ddsp.github.io/
https://colab.research.google.com/github/magenta/midi-ddsp/blob/main/midi_ddsp/colab/MIDI_DDSP_Demo.ipynb
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Fig. 4.1. (Left) The MIDI-DDSP architecture. MIDI-DDSP extracts interpretable features
at the performance and synthesis levels, building a modeling hierarchy by learning feature
generation at each level. Red and blue components indicate encoding and decoding respec-
tively. Shaded boxes represent modules with learned parameters. Both expression features
and notes are extracted directly from synthesis parameters. (Right) Synthesizers have wide
range of control, but struggle to convey realism. Neural audio synthesis and concatenative
samplers can produce realistic audio, but have limited control. MIDI-DDSP enables both
realistic neural audio synthesis and detailed user control.

In this paper, we propose MIDI-DDSP, a hierarchical generative model of musical per-
formance to provide both realism and control (Figure 4.1, left). Similar to conventional syn-
thesizers and samplers that use the MIDI standard [3], MIDI-DDSP converts note timing,
pitch, and expression information into fine-grained parameter control of DDSP synthesizer
modules.

We take inspiration from the hierarchical structure underlying the process of creating
music. A composer writes a piece as a series of notes. A performer interprets these notes
through a myriad of nuanced, sub-second choices about articulation, dynamics, and expres-
sion. These expressive gestures are realized as audio through the short-time pitch and timbre
changes of the physical vibration of the instrument. MIDI-DDSP is built on a similar 3-level
hierarchy (notes, performance, synthesis) with interpretable representations at each level.

While the efficient DDSP synthesis representation (low-level) allows for high-fidelity au-
dio synthesis [38], users can also control the notes to be played (high-level), and the expres-
sion with which they are performed (mid-level). A qualitative example of this is shown in
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Fig. 4.2. An example of detailed user control. Given an initial generation from the full
MIDI-DDSP model (top), an expert musician can adjust notes (blue), performance attributes
(green), and low-level synthesis parameters (yellow) to craft a personalized expression of a
musical piece (bottom).

Figure 4.2, where a given performance on violin is manipulated at all three levels (notes,
expression, synthesis parameters) to create a new realistic yet personalized performance.

As seen in Figure 4.1 (left), MIDI-DDSP can be viewed similarly to a multi-level autoen-
coder. The hierarchy has three separately trainable modules (DDSP Inference, Synthesis
Generator, Expression Generator) and three fixed functions/heuristics (DDSP Synthesis,
Feature Extraction, Note Detection). These modules enable MIDI-DDSP to conditionally
generate at any level of the hierarchy, providing creative assistance by filling in the details
of a performance, synthesizing audio for new note sequences, or even fully automating music
generation when paired with a separate note generating model.

It is important to note that the system relies on pitch detection and note detection, so is
currently limited to training on recordings of single monophonic instruments. This approach
has the potential to be extend to polyphonic recordings via multi-instrument transcription [7,
39, 47] and multi-pitch tracking, which is an exciting avenue to explore for future work.
Finally, we also show that each stage can be made conditional on instrument identity, training
on 13 separate instruments with a single model.

For clarity, we summarize the core contributions of this work:
• We propose MIDI-DDSP, a 3-level hierarchical generative model of music (notes,

performance, synthesis), and train a single model capable of realistic audio synthesis
for 13 different instruments. (Section 4.3)

• Expression Attributes: We introduce heuristics to extract mid-level per-note expres-
sion attributes from low-level synthesis parameters. (Figure 4.5)
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• User Control: Quantitative studies confirm that manipulating the expression at-
tributes creates a corresponding effect in the synthesizer parameters, and we quali-
tatively demonstrate the detailed control that is available to users manipulating all
three levels of the hierarchy. (Table 4.5 and Figure 4.2)

• Assistive Generation: Reconstruction experiments show that MIDI-DDSP can make
assistive predictions at each level of the hierarchy, accurately resynthesizing au-
dio, predicting synthesis parameters from note-wise expression attributes, and auto-
regressively predicting note-wise expression attributes from a note sequence. (Ta-
bles 4.4a, 4.4b, 4.4c)

• Realistic Note Synthesis: An extensive listening study finds that MIDI-DDSP can
synthesize audio from new note sequences (not seen during training) with higher real-
ism than both comparable neural approaches and professional concatenative sampler
software. (Figure 4.9)

• Automatic Music Generation: We demonstrate that pairing MIDI-DDSP with a pre-
trained note generation model enables full-stack automatic music generation. As an
example, we use Coconet [57] to generate and synthesize novel 4-part Bach chorales
for a variety of instruments. (Figure 4.10)

4.2. Related Work
Note Synthesis. Existing neural synthesis models allow either high-level manipulation

of note pitch, velocity, and timing [46, 67, 85, 122], or low-level synthesis parameters [9, 14,
61]. MIDI-DDSP connects these two approaches by enabling both high-level note controls
and low-level synthesis manipulation in a single system.

Most related to this work is MIDI2Params [14], a hierarchical model that autoregressively
predicts frame-wise pitch and loudness contours to drive the original DDSP autoencoder [38].
MIDI-DDSP builds on this work by adding an additional level of hierarchy for the note
expression, training a new more accurate DDSP base model, and explicitly modeling the
synthesizer coefficients output by that model, rather than the pitch and loudness inputs to
the model. We extensively compare to our reimplementation of MIDI2Params as a baseline
throughout the paper.

Hierarchical Audio Modelling. Audio waveforms have dependencies over timescales
spanning several orders of magnitude, lending themselves to hierarchical modeling. For
example, Dieleman et al. [29] and Dhariwal et al. [28] both choose to encode audio as discrete
latent codes at different time resolutions, and apply autoregressive models as priors over
those codes. MIDI-DDSP applies a similar approach in spirit, but constructs a hierarchy
based on semantic musical structure (note, performance, synthesis), allowing interpretable
manipulation by users.
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Fig. 4.3. Separate training procedures for the three modules in MIDI-DDSP. (Left) The
DDSP Inference module predicts synthesis parameters from audio and is trained via an
audio reconstruction loss on the resynthesized audio. (Middle) The Synthesis Generator
module predicts synthesis parameters from notes and their expression attributes (shown as
a 6-dimensional color map) and is trained via a reconstruction loss and an adversarial loss.
(Right) The Expression Generator module autoregressively predicts note expression given
a note sequence and is trained with teacher forcing. Encoding processes are shown in red,
and decoding processes are shown in blue and loss calculations are shown in yellow. Thicker
arrows indicate the process that is being trained in each level. Ground-truth data are shown
in solid frames, while model predictions are shown in dashed frames.

Expressive Performance Analysis and Synthesis. Many prior systems pair analysis
and synthesis functions to capture expressive performance characteristics [13, 112, 130]. Such
methods often use heuristic functions to generate parameters for driving synthesizers or
selecting and modifying sample units. MIDI-DDSP similarly uses feature extraction, but
each level is paired with a differentiable neural network function that directly learns the
mapping to expression and synthesis controls for more realistic audio synthesis.

4.3. Model Architecture
4.3.1. DDSP Synthesis

Differentiable Digital Signal Processing (DDSP) [38] enables differentiable audio synthesis
by using a harmonic plus noise model [110]. Briefly, an oscillator bank synthesizes a harmonic
signal from a fundamental frequency f0(t), a base amplitude a(t), and a distribution over
harmonic amplitudes h(t), where the dimensionality of h is the number of harmonics. The
noise signal is generated by filtering uniform noise with linearly spaced filter banks, where
η(t) represents the magnitude of noise output from each filter in time. In this study, we
use 60 harmonics and 65 noise filter banks, giving 127 total synthesis parameters each time
frame (s(t) = (f0(t), a(t),h(t),η(t))). The final audio is the addition of harmonic and noise
signals.
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The harmonic signal is synthesized using a bank of Kh sinusoidal oscillators parameter-
ized by fundamental frequency f0(t), harmonic amplitudes a(t), and harmonic distribution
h(t). The noise signal is synthesized by a filtered noise synthesizer parameterized by noise
magnitudes η(t). Due to the strong inductive bias introduced by DDSP, the synthesis param-
eters are highly interpretable, i.e., opposed to some high-dimensional learned latent vector
producing audio, with DDSP models the network’s output is input to the harmonic plus
noise model, whose parameters are interpretable by definition. For the DDSP synthesis used
in this work, s(t) = (f0(t), a(t),h(t),η(t)), where f0(t) ∈ R1×t, a(t) ∈ R1×t, h(t) ∈ R60×t,
η(t) ∈ R65×t.

Same as the original DDSP synthesizer, the noise signal is generated by filtering uniform
noise given noise magnitudes η(t) in Kn frequency bins. An exponential sigmoid nonlin-
earity is applied to the raw neural network output to generate the a(t), h(t) and η(t):
exp-sigmoid(x) = 2.0 · sigmoid(x)log 10 + ϵ, where ϵ = 10−7. The harmonic distribution h(t)
is further normalized to constrain amplitudes of each harmonic component: ∑K

k=0 hk(t) = 1.
In this paper, we use 60 harmonic bins to synthesize harmonic signal, and 65 magnitude

bins to synthesize filtered noise. The frame size is set to 64 samples per frame, and the sam-
ple rate of the audio synthesis is set to 16000 Hz. After x(t) is synthesized, a reverb module
is applied to x(t) to capture essential reverberation in the environment and instrument. The
reverb module is implemented as a frequency domain convolution with a learnable impulse
response parameter. This paper uses different reverb parameters for different instruments,
and the reverb parameters are learned with back-propagation. The learnable impulse re-
sponse of the reverb is set to have a length of 48000 sample points. In experiments, we
found the latter part of the impulse response, which has minimal impact on the timbre and
environmental reverb, would cause a very long lingering sound. Thus, in inference time,
we add an exponential decay to the impulse response after 16000 samples to constraint the
lingering effect:

IR′(t) = IR(t), 0 ≤ t ≤ 16000
IR′(t) = IR(t) · exp (−4(t − 16000)), 16000 < t ≤ 48000

 (4.3.1)

where IR(t) is the original impulse response, and IR′(t) is the impulse response after
decay.

4.3.2. DDSP Inference

Since the synthesis process is differentiable, Engel et al. [38] demonstrate that it is possible
to train a neural network to predict the other synthesis parameters given f0(t) and the
loudness of the audio, and optimize a multi-scale spectral loss [38, 125] of the resynthesized
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Fig. 4.4. The architecture of the DDSP Inference. The DDSP Inference module extract f0
and loudness from audio, and use an 8-layer CNN to extract features from Mel-spectrogram.
A bi-directional LSTM takes in all features from audio and predict synthesis parameters.

audio (Figure 4.3 left). f0(t) is extracted by a pre-trained CREPE model [66], and the
loudness is extracted via an A-weighting of the power spectrum [45, 89].

We extend this work for our DDSP Inference module, by providing an additional input
features extracted by a CNN [76] from log-scale Mel-spectrogram of the audio, that produces
higher quality resynthesis (Table 4.4a).

In work proposed by [38], an autoencoder is built to reconstruct audio by predicting
synthesis parameters from audio features. We refer to this prior work as the “DDSP autoen-
coder.” Given an audio, fundamental frequency is estimated by CREPE [66] model, and the
loudness is extracted via an A-weighting of the power spectrum [45]. Then, the fundamental
frequency and loudness are input to a multi-layer perceptron (MLP) respectively. The out-
put of the MLPs are concatenated and passed to a uni-directional GRU. Finally, an MLP is
used to predict synthesis parameters from GRU output.

Our DDSP Inference module differs from the above DDSP autoencoder by enabling more
information extracted from audio input. The architecture of the DDSP Inference is shown
in Figure 4.4. In addition to fundamental frequency estimated by CREPE and loundess
extracted via A-weighting of the power spectrum, an 8-layer convolutional neural network
(CNN) [76] is used to extract features from log-scale Mel-spectrogram, and a bi-directional
long-short term memory network (LSTM) [55] is then applied to extract contextual features.
The use of CNN applied on log-scale Mel-spectrogram help model to extract more information
from audio input, thus enabling more accurate synthesis parameter estimation.

In our DDSP Inference module, a fully-connected network is applied on fundamental
frequency and loudness. The output is concatenated with the output of CNN, send to the
bi-directional LSTM to extract contextual features. Another fully connected layer are used to
map the features to synthesis parameters. The CNN network in the DDSP Inference module
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ConvBlock Kernel Size Stride Filter Size
Conv2d (3,3) (1,1) KF ilters

Batch norm + ReLU - - -
Conv2d (3,3) (1,1) KF ilters

Batch norm + ReLU - - -
Average pooling (1,2) - -

Mel-CNN Output Size Filter Size Dropout Rate
LogMelSpectrogram (1000, 64, 1) - -
ConvBlock (1000, 32, 64) 64 -
Dropout (1000, 32, 64) - 0.2
ConvBlock (1000, 16, 128) 128 -
Dropout (1000, 16, 128) - 0.2
ConvBlock (1000, 8, 256) 256 -
Dropout (1000, 8, 256) - 0.2
ConvBlock (1000, 4, 512) 512 -
Reshape (1000, 2048) - -
Dense (1000, 256) 256 -

Table 4.1. The architecture of the Mel-CNN (bottom) used to extract features from log-
scale Mel-spectrogram in the DDSP Inference module. The Mel-CNN uses convolutinal
blocks defined in the first table below.

is similar to the one used by [72] for computational efficiency. The detailed architecture of
the CNN is shown in Table 4.1.

The DDSP Inference Module is optimized via Adam optimizer in a batch size of 16 and a
learning rate of 3e−4. We choose a log-scale Mel-spectrogram with 64 frequency dimensions
in this work to extract features by CNN. The features extracted by CNN are mapped to
256 dimensions, and concatenated to the features extracted from the fundamental frequency
and loudness. When trained in the multi-instrument setting, a 64 dimensional instrument
embedding is also concatenated to the aforementioned feature vectors. The bi-directional
LSTM has a hidden dimension of 256.

4.3.3. Expression Controls

We aim to model aspects of expressive performance with a continuous variable. For
example, this enables a performer to choose how loud the note should be performed, or
how much vibrato to apply. We define a 6-dimensional vector, ei, for each note, ni, where
each dimension corresponds to one of the six expression controls, scaled within [0, 1]. These
are extracted from synthesis parameters s(t) and applied within the ith note, ni, in a note
sequence.
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Fig. 4.5. In MIDI-DDSP, manipulating note-level expression can effectively change the
synthesis-level quantities. We show by taking a test-set sample (middle row) and adjusting
each expression control value to lowest (bottom row) and highest (upper row), how each
synthesis quantities (rightmost legend) would change. The dashed gray line in each plot
indicates the note boundary.

Specifically, given frame-wise extracted synthesis parameters s(t) for the ith note, ni, in
a note sequence, we say that the ith note starts at frame Ton and ends at frame Toff. We
define τ ∈ [Ton, Toff] to be every frame that a note is active and the total frame duration of
the note is Tn = Toff −Ton. The synthesis parameters for a the whole duration of the note are
defined by a fundamental frequency f0(τ) contour, an amplitude contour a(τ), a harmonic
distribution h(τ), and a set of noise magnitudes η(τ).

The amplitude contour, a(τ), and noise magnitudes η(τ) are transformed into dB scale:

a′(τ) = 20 log10 a(τ), η′(τ) = 20 log10 η(τ) (4.3.2)

The note expression controls are extracted as follows:
Volume: Controls the volume of a note, extracted by taking average amplitude over a

note. Volume is the sum of the amplitude contour (in dB) normalized over the length of the
note, i.e., the mean amplitude over the note,

1
Tn

Tn∑
i=1

a′(i). (4.3.3)

Volume fluctuation: Determines the magnitude of a volume change across a note.
Used with the volume peak position described below, this can make a note crescendo or
decrescendo. This is extracted by calculating the standard deviation of the amplitude over
a note (in dB): √√√√ 1

Tn

Tn∑
i=1

(a′(i) − a′(τ))2. (4.3.4)

where a′(τ) is the mean amplitude over the whole note.
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Volume peak position: Controls where, over the duration of a note, the peak volume
occurs. Zero value corresponds to decrescendo notes, whereas one corresponds to crescendo
notes. The volume peak position is extracted by calculating the relative position of maximum
amplitude in the note:

1
Tn

arg max
i

a′(i) ∀i ∈ [1, Tn]. (4.3.5)

Vibrato: Controls the extent of the vibrato of a note. Vibrato is a musical technique
defined by pulsating the pitch of a note. Vibrato is extracted by applying Discrete Fourier
Transform (DFT) on the fundamental frequency f0(t) in a note and selecting the peak
amplitude. Vibrato is inspired by previous works on expressive performance analysis [81,
87, 130]. The vibrato is calculated by applying Discrete Fourier Transform (DFT) to the
fundamental frequency sequence:

max
i

F{f0(t)}i, (4.3.6)

where F{·} defines the DFT function. Only notes with a vibrato rate between 3 to 9
Hz and longer than 200ms are recorded. Otherwise, the vibrato of the note is set to 0.
In calculating the DFT function, the fundamental frequency, f0(t), is zero-padded to 1000
frames.

Brightness: Controls the timbre of a note where higher values correspond to louder
high-frequency harmonics. Brightness is determined by calculating the average harmonic
centroid (in bin numbers) of a the harmonic distribution in a note:

1
Tn

Tn∑
i

|h|∑
k=1

k · hk(i), (4.3.7)

where hk(i) represents the k-th bin of the harmonic distribution, h(τ) in the i-th time-
step, and we use |h| to refer to the number of bins in the harmonic distribution used by the
DDSP module (we use |h| = 60, see Section 4.3.2).

Attack Noise: Controls how much noise occurs at the start of the note (the attack),
e.g., the fluctuation of string and bow. Attack noise can determine whether two notes
sound consecutively or separately. Attack noise is extracted by taking a note’s average noise
magnitude in the first ten frames (40ms). Many instruments have a high amount of noise in
the first few milliseconds of a note (e.g., a bow scraping across a violin string), before the
harmonic components are heard. We determine attack noise like

1
N

N∑
i=1

|η|∑
k=1

η′k(i), (4.3.8)

where N determines how many of the first few frames we look at to determine the attack
noise (we set N = 10, corresponding to 40ms), η′k(i) represents the k-th bin of the dB-scaled
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noise magnitudes in the i-th time-step, and |η| is the number of noise magnitude bins in the
DDSP module (set to |η| = 65, see Section 4.3.2).

Recall that all expression controls are normalized to be in the interval [0.0, 1.0], concate-
nated to a 6-dimensional vector, and repeated for the full frame duration of the note, Tn,
before we use them with the MIDI-DDSP networks. See Sections 4.3.3 and 4.3.4 for addi-
tional information. We note that these are not the only ways to determine the “expression”
of a note, nor are our definitions definitive. Expression does not even need to be hand de-
signed, and could perhaps be learned in an unsupervised way by neural networks. However,
we designed our expression controls because they are all inherently interpretable (compared
to black box neural net features). We leave the exploration of other ways to define expression
for future work.

For constructing a conditioning sequence from these note expressions and an input note
sequence, the frame-wise note expressions and note pitch is expanded to a note-length se-
quence by repeating these parameters for the number of frames the note occupies. Then,
these note expression and pitch parameters are concatenated with note onsets and offsets (a
binary flag at the start and end of a note, respectively), and a scalar note positioning code
to provide additional information about note boundaries.

4.3.4. Synthesis Generator

Given the output of the per-note Expression Controls, ei for i = 1, ..., I notes, and
a corresponding note sequence, ni, the Synthesis Generator predicts the frame-level syn-
thesis parameters that, in turn, generate audio. Note expression controls are unpooled
(repeated) over the duration of the corresponding note to make a conditioning sequence,
c(t) = [(e1,n1), ..., (eI ,nI)], with the same length as the fundamental frequency curve,
f0(t).

The Synthesis Generator, gθ, is an autoregressive recurrent neural net (RNN) is used
to predict a fundamental frequency, f̂0(t) given conditioning sequence, and a convolutional
generative adversarial network (GAN), gϕ, is used to predict the other synthesis parameters
given conditioning sequence and generated fundamental frequency:

f̂0(t) = gθ(c(t)), â(t), ĥ(t), η̂(t) = gϕ(c(t), f̂0(t)), (4.3.9)

where θ denotes trainable parameters in the autoregressive RNN, and ϕ indicates train-
able parameters in the GAN. The architecture of the Synthesis Generator is shown in Fig-
ure 4.6.

f0 Generation using the Autoregressive RNN
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Fig. 4.6. The architecture of the Synthesis Generator. The Synthesis Generator is a GAN
whose generator (left) takes in per-note Expression Controls and instrument embedding as
a conditioning sequence (red box, left) and produces DDSP synthesis parameters, i.e., f0,
Amplitudes, Harmonic Distribution, and Noise Magnitudes (green boxes, middle). These
synthesis parameters get turned into audio by the DDSP modules.

The autoregressive RNN generates an f0 curve based on a note sequence (e.g., MIDI)
and the corresponding Note Expression Controls (described in Section 4.3.3). The autore-
gressive RNN for f0 generation consists of a single-layer Bi-LSTM and a 2-layer GRU that
autoregressively samples the note’s exact pitch, by predicting f0 frequency offset (in units
of semitones) with respect to a known f0 MIDI note number for the current MIDI note.
For example, if at some frame the note specified by the note sequence is A4, which has a
MIDI number2 of fA4

0 = 69, and the ground truth f0 in the audio is fGT
0 = 69.2, the autore-

gressive RNN is expected to predict fGT
0 − fA4

0 = 0.2, indicating that the f0 at the current
frame should be 0.2 semitones above the f0 determined by the current MIDI note, fA4

0 = 69.
The autoregressive RNN outputs a categorical distribution of pitch offsets in the range of
[−1.00, 1.00] semitones, quantized to 201 bins, where each bin represents 0.01 semitone. The
final frequency, f0, input to DDSP synthesizer is converted from semitone units to Hz using
f(n) = 440 · 2(n−69)/12, where f is the frequency in Hz, and n is the integer MIDI note
number. Both the single-layer Bi-LSTM and a 2-layer GRU in the Synthesis Generator have
a hidden dimension of 256. The autoregressive RNN is trained using cross-entropy loss Lce.
At inference time, the pitch offset is sampled using nucleus sampling [56] with p = 0.95 to
avoid sudden unrealistic change in fundamental frequency contour. Similar approaches for
using autoregressive RNNs to sample f0 curves has been proposed for speech synthesis and
conversion [90, 124].

2https://www.inspiredacoustics.com/en/MIDI_note_numbers_and_center_frequencies
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Fig. 4.7. The architecture of the discriminator used in the Synthesis Generator.

Generating the Rest of the Synthesis Parameters
The stack of dilated 1-D convolution layers, bi WaveNet [119], is used to generate the rest

of synthesis parameters, i.e., the base amplitude for the note, a(t), the harmonic amplitudes,
h(t), and the noise magnitudes η(t). This network uses the predicted f0(t), and concatenated
expression control vector, c(t), as conditioning. This network consists of 4 convolutional
stacks, with each stack having five layers of 1-D convolution with exponentially increasing
dilation rate followed by ReLU activation [84] and layer normalization [4]. For clarity, we
refer to this network as the “Dilated CNN.”

The conditioning sequence input is mapped to a 256-dimensional vector by a linear layer
before being sent into an autoregressive RNN and dilated convolution network. If trained on
the multi-instrument dataset, a 64-dimension instrument embedding is concatenated after
the linear layer. A dropout of rate 0.5 is applied to all GRU units, and during training the
input is teacher-forced to avoid overfitting and exposure bias.

The full details of the dilated convolutional network architecture are shown in Table 4.2.
Discriminator for the Synthesis Generator
The architecture of the discriminator used with the Synthesis Generator is shown in

Figure 4.7, and the detailed architecture of each discriminator block is shown in Table 4.3.
The discriminator is motivated by the multi-scale discriminator network in previous works
generating waveforms and spectrograms [74, 78]. It consists of 3 discriminator networks
with same architecture that take input signals with different downsample rate in an effort to
learn the features of synthesis parameters at different time resolutions. Each discriminator
network consists of 4 blocks at each scale, and each block extracts features from predicted
synthesis parameters and the conditioning sequence. For each feature stream in a block,
two 1-D convolutional layers are used with Leaky-ReLU activation function [129], with skip
connections and layer normalization [4].
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Dilated Stack Kernel Size Dilation Rate Stride Filter Size
Conv1d 3 1 1 KF ilters

ReLU + layer norm - - - -
Add residual - - - -
Conv1d 3 2 1 KF ilters

ReLU + layer norm - - - -
Add residual - - - -
Conv1d 3 4 1 KF ilters

ReLU + layer norm - - - -
Add residual - - - -
Conv1d 3 8 1 KF ilters

ReLU + layer norm - - - -
Add residual - - - -
Conv1d 3 16 1 KF ilters

ReLU + layer norm - - - -
Add residual - - - -

Dilated CNN Output Size Kernel Size Dilation Rate Stride Filter Size
Conditioning Sequence (1000, 384) - - - -
Conv1d (1000, 128) 3 1 1 128
Dilated Stack (1000, 128) 3 - 1 128
Dilated Stack (1000, 128) 3 - 1 128
Dilated Stack (1000, 128) 3 - 1 128
Dilated Stack (1000, 128) 3 - 1 128
Layer norm (1000, 128) - - - -
Dense (1000, 126) - - - 126

Table 4.2. The architecture of dilated convolution network (bottom) used in the Synthesis
Generator to generate amplitude, harmonic distribution and noise magnitude. The dilated
convolution network uses dialted stack layers defined in the first table below.

Synthesis Generator Losses
The Synthesis Generator is trained by minimizing both reconstruction loss and adversarial

loss:

L = Lrecon + αLadv = (LCE(f0) + Lspec) + α(Llsgan + γLfm), (4.3.10)

where Lrecon is the reconstruction loss, Ladv is the adversarial loss, α and γ are settable
hyperparameters that control the overall GAN loss and feature matching loss, respectively.
The reconstruction loss, Lrecon, consists of two pieces: a cross-entropy loss, LCE(f0), on the
f0 to train the autoregressive RNN, and a multi-scale spectral loss, Lspec to train the Dilated
CNN. The adversarial objective consisting of a least-squares GAN (LSGAN) Llsgan [86] loss
and a feature matching loss Lfm, Eqs. 4.3.14-4.3.17) [74].
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Discriminator Block -
conditioning sequence Output Size Kernel Size Stride Filter Size
Conditioning Sequence (Tin, Dc) - - -
Conv1d (Tin/2, 256) 3 2 256
Add output from Discriminator Block
of synthesizer parameters (Tin/2, 256) - - -
Leaky ReLU (Tin/2, 256) - - -
Add residual and layer norm (Tin/2, 256) - - -

Discriminator Block -
synthesis parameters Output Size Kernel Size Stride Filter Size
synthesis parameters (Tin, Ds) - - -
Conv1d (Tin/2, 256) 3 2 256
Leaky ReLU (Tin/2, 256) - - -
Add residual and layer norm (Tin/2, 256) - - -

Table 4.3. Details of the discriminator blocks used in the Synthesis Generator.

The cross-entropy loss for the autoregressive RNN is defined as

LCE(f0) = −
∑

i

f0i log f̂0i, (4.3.11)

where i is the length of the entire sequence in frames, f0 is the ground truth fundamental
frequency curve, and f̂0 is the estimated fundamental frequency curve.

The multi-scale spectral loss, Lspec, is used for the reconstruction loss. This loss is used
for reconstruction in the original DDSP paper [38]. The multi-scale spectral loss computes
the L1 difference between the magnitude spectrogram of the predicted and target audio
by comparing the computed spectrograms at a number of different FFT sizes. Given the
magnitude spectrogram of the predicted audio Ŝi and that of the target audio Si with FFT
size i, the multi-scale spectral loss computes the L1 difference between Ŝi and Si as well as
log Ŝi and log Si:

L(i)
spec = ||Si − Ŝi||1 + β|| log Si − log Ŝi||1, (4.3.12)

Lspec =
∑

i

L(i)
spec ∀i ∈ {2048, 1024, 512, 256, 128, 64}. (4.3.13)

The adversarial loss, Ladv, used to train the dilated CNN in the Synthesis Generator.
This loss combines a least-squares GAN (LSGAN) [86] objective and a feature matching
objective objective [74]:
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Ladv = Llsgan + γLfm. (4.3.14)

Given discriminator network Dk in k-th scale, the LSGAN objective to train the Synthesis
Generator can be written as

Llsgan = Ec

[∑
k

||Dk(ŝ, c) − 1||2
]

, (4.3.15)

and the LSGAN objective for training the discriminator is given by

min
Dk

E [||Dk(s, c) − 1||2 + ||Dk(ŝ, c)||2] , ∀k. (4.3.16)

In this work, we use 3 scales, so k = [1, 2, 3]. Given the output of i-th feature map
from one of the 4 layers of the k-th discriminator Dk, the feature map matching objective is
calculated as L1 difference between corresponding feature map:

Lfm = Es,c

[ 4∑
i=1

1
Ni

||D(i)
k (s, c) − D

(i)
k (ŝ, c)||1

]
, (4.3.17)

where Ni is the number of units in i-th layer of the feature map.
In training, we use a stop gradient between the adversarial loss and the autoregressive

RNN. That is, the RNN is trained by the cross-entropy loss only. The Synthesis Generator
is trained using 4 seconds of audio with a frame length of 4ms, resulting in a sequence length
of 1000. The Synthesis Generator is optimized via Adam optimizer in a batch size of 16
and a learning rate of 0.0003, with an exponential learning rate decay at a rate of 0.99 per
1000 steps. The discriminator is optimized using Adam optimizer in a batch size of 16 and
a learning rate of 0.0001. α = 1, β = 1, and γ = 10 are used for loss coefficients.

4.3.5. Expression Generator

The Expression Generator uses an autoregressive RNN to predict note expression con-
trols from note sequence. A single-layer bidirectional GRU extracts context information
from input, and a two-layer autoregressive GRU generates note expression. The Expression
Generator is trained by mean square error (MSE) loss between ground-truth note expres-
sion and teacher-forced prediction (Figure 4.3, right). The note sequence used to train the
Expression Generator can either be extracted or comes from human labels. To show the full
potential of MIDI-DDSP, we use the ground-truth note boundary label from dataset in all
experiments for best accuracy. However, in future work note transcription models can be
used to provide the note labels.

The Expression Generator creates a set of Expression Controls (see Section 4.3.3) given
an input note sequence. The architecture of the Expression Generator is shown in Fig-
ure 4.8. The Expression Generator consists of two parts: a single-layer bidirectional GRU
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Fig. 4.8. The architecture of the Expression Generator. The Expression Generator consists
of two parts: a single-layer bidirectional GRU extracts context information from input, and
a two-layer autoregressive GRU generates note expression. The input to the bi-directional
GRU is a concatenation of pitch embedding vector, duration feature vector and instrument
embedding.

extracts context information from input, and a two-layer autoregressive GRU generates note
expression.

In the input to the Expression Generator, the discrete pitch is mapped into a feature
vector of 64 dimensions via an embedding layer, and the scalar duration is mapped into a
feature vector of 64 dimensions via a fully-connected layer. The instrument embedding input
is a 64 dimension feature vector. The input to the bi-directional GRU is a concatenation
of pitch embedding vector, duration feature vector and instrument embedding. The bi-
directional GRU and auto-regressive GRU all use a hidden size of 128 and a dropout rate
of 0.5. Input dropout with a rate of 0.5 is applied to the teacher-forced input in training
time to avoid over-fitting and exposure bias. The output layer of the Expression Generator
is a two-layer Multi-layer Perceptron (MLP), which consists of a fully connected layer with
a layer normalization before the ReLU nonlinearity used in [38].

Data augmentation is applied in the training of the Expression Generator. For the in-
put note sequence, we randomly transpose {−3, −2, −1, 0, 1, 2, 3} semitone(s) and randomly
stretch the duration by a factor of {0.9, 0.95, 1, 1.05, 1.1}.

The Expression Generator is trained on a sequence length of 64 notes and a batch size of
256. Adam optimizer [68] is used in training with a learning rate of 0.0001. For training the
Expression Generator, we use the mean-square loss (MSE) between the estimated Expression
Controls and the ground truth Expression Controls (see Section 4.3.3).

4.4. Experiments
The structured hierarchy and explicit latent representations used in MIDI-DDSP benefit

music control as well as music modeling. We design a set of experiments to answer the
following questions: First, does the system generate realistic audio, and if so, how does each
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Table 4.4. Each module in MIDI-DDSP produces a high-quality reconstruction and accu-
rate prediction. We show reconstruction accuracy of each MIDI-DDSP module against a
comparable method.

Model Spectral Loss
DDSP Inference 4.28
Engel et al. [38] 5.00

(a)

Model RMSE
Synthesis Generator 0.19
MIDI2Params 0.26

(b)

Models RMSE
Expression Generator 0.14
MIDI2Params 0.23

(c)

module contribute? How does this compare to existing systems? And, second, is the system
capable of enabling note-level, performance-level, and synthesis-level control? How effective
are these controls?

4.4.1. Dataset

To demonstrate modeling a variety of instruments, we use the URMP dataset [80], a
publicly-available audio dataset containing monophonic solo performances of a variety of
instruments. URMP is widely used in music synthesis research [8, 39, 49, 133]. The URMP
dataset contains solo performance recordings and ground truth note boundaries from 13
string and wind instruments, which allows us to test MIDI-DDSP on many different instru-
ments. The recordings in the URMP dataset are played by students, and the performance
quality is substantially lower compared to virtuoso datasets used in other work [46]. The
URMP dataset contains 3.75 hours of 117 unique solo recordings, where 85 recordings in 3
hours are used as the training set, and 35 recordings in 0.75 hours are used as the hold-out
test set.

The 13 instruments in the URMP dataset are violin, viola, cello, double bass, flute, oboe,
clarinet, saxophone, bassoon, trumpet, horn, trombone, tuba. In this paper, we regard both
the soprano saxophone and tenor saxophone in URMP dataset as saxophone. The recordings
in the dataset have a sample rate of 48kHz but we downsampled them to 16kHz to match
the sample rate of the DDSP synthesis module. To train the Synthesis Generator and DDSP
Inference, we segmented the recordings into 4 seconds clips with 50% overlap.

In the URMP dataset, the solo recordings are part of ensemble pieces. Splitting the same
piece played by different instruments into training and test sets can cause data leakage.
Thus, we split the dataset based on a random shuffle of the recordings, and then moved
pieces post-hoc such that the same piece does not appear in both training and test set.
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Fig. 4.9. (left) Comparing the log-scale Mel spectrograms of synthesis results from test-set
note sequences, MIDI-DDSP synthesizes more realistic audio (more similar to ground-truth
and DDSP Inference) than prior score-to-audio work MIDI2Params (enlarged in Figure 4.11).
The synthesis quality is also reflected in the listening study (right), where the MIDI-DDSP
synthesis is perceived as more realistic than the professional concatenative sampler Ableton
and the freely available FluidSynth.

4.4.2. Model Accuracy

Modules in MIDI-DDSP can accurately reconstruct output at multiple levels of the hi-
erarchy (Figure 4.3). We evaluate the reconstruction quality of MIDI-DDSP by evaluating
each module, and report the average value across all test set samples in Table 4.4.

DDSP Inference. We measure the difference between reconstruction and ground-truth
in the audio spectral loss for our DDSP Inference module and compared it with the original
DDSP autoencoder. As shown in Table 4.4a, with an additional CNN to extract features,
the DDSP Inference module can reconstruct audio more accurately than the original DDSP
Autoencoder.

Synthesis Generator. We predict synthesis parameters from ground-truth note expres-
sion and then extract note expression back from the generated synthesis parameters. We
measure the root mean square error (RMSE) between note expressions. The prior approach
MIDI2Params directly generates synthesis parameters from notes and does not have access
to note expressions. However, we can extract note expressions from the generated synthesis
parameters and compare them to ground truth. As shown in Table 4.4b, the Synthesis Gen-
erator can faithfully reconstruct the input note expression, whereas without access to note
expression, MIDI2Params generates larger error.

Expression Generator. We take ground-truth MIDI and evaluate the likelihood of
the ground-truth note expressions under the model. As the Expression Generator is autore-
gressive, we use teacher-forcing to sequentially accumulate the squared error note by note.
The total error thus computed can be interpreted as a log-likelihood. We again compare to
MIDI2Params, where we autoregressively condition its own output within and on ground-
truth across notes to obtain a note-wise metric. That is, MIDI2Params sees the ground truth
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of past notes, but sees its own output for the current note. As shown in Table 4.4c, the Ex-
pression Generator can accurately predict the note expression. In comparison, MIDI2Params
without performance-level modeling suffers from predicting the note expression with a higher
error when compared to our frame-wise sequence models.

Volume Vol. Fluc. Vol. Peak Pos. Vibrato Brightness Attack Noise
violin .99 .84 .80 .86 .96 .97
viola .98 .74 .70 .82 .98 .97
cello .97 .64 .54 .74 .98 .94
double bass .98 .85 .34 .84 .99 .95
flute .99 .87 .48 .63 .90 .97
oboe .97 .79 .72 .91 .87 .97
clarinet .98 .88 .63 .72 .88 .97
saxophone .97 .71 .43 .80 .94 .96
bassoon .99 .90 .56 .91 .99 .96
trumpet .97 .88 .55 .73 .92 .92
horn .97 .88 .41 .64 .94 .95
trombone .97 .93 .59 .52 .99 .96
tuba .98 .91 .15 .22 .98 .93

Table 4.5. The Pearson correlation result of all instruments described in Table 4.5. The
Pearson correlation r-values are shown in the table, while p-values are omitted as in all
entries p < 0.0001. We consider Pearson r-values larger than 0.7 (marked on bold) to mean
that our input controls are strongly correlated with the output. For Volume, Brightness,
and Attack Noise, all instruments show a strong correlation; for Volume Fluctuation, and
Vibrato, the majority of instruments show a strong correlation.

4.4.3. Audio Quality Evaluation by Human Listeners

We evaluate the audio quality of MIDI-DDSP via a listening test. We compare ground
truth audio from the URMP dataset to MIDI-DDSP and four other sources: a stripped
down version of our system, containing just our DDSP Inference module (Section 4.3.1),
MIDI2Params [14], and two concatenative samplers: FluidSynth and Ableton (detailed in
Appendix 4.6.2.1). DDSP Inference infers synthesis parameters from the ground truth audio;
it serves as an upper bound on what is attainable with MIDI-DDSP, which has to predict
expression and synthesis parameters from MIDI. MIDI2Params is prior work that synthesizes
audio from MIDI by predicting frame-wise loudness and pitch contour, which is fed as input
to a DDSP autoencoder.

Participants in the listening test were presented with two 8-second clips, and asked which
clip sounded more like a person playing on a real violin, on a 5-point Likert scale. We col-
lected 960 ratings, with each source involved in 320 pair-wise comparisons. Figure 4.9 shows
the number of comparisons in which each source was selected as more realistic. According
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to a post-hoc analysis using the Wilcoxon signed-rank test with Bonferroni correction (with
p < 0.01/15), the orderings shown in Figure 4.9 (right) are all statistically significant with the
exception of ground truth versus DDSP Inference and MIDI2Params versus FluidSynth (Ta-
ble 4.6). In particular, MIDI-DDSP was significantly preferred over MIDI2Params, Ableton,
and FluidSynth.

The difference among the sources can also be seen from visual inspection of the spec-
trograms (Figure 4.9, left). While the DDSP Inference module faithfully re-synthesizes
the ground-truth audio, MIDI-DDSP generates a coherent performance from a series notes,
and has rich, varying expressions across the notes. MIDI2Params failed to generate co-
herent expressions within a note, generating unrealistic pitch and loudness contours. Also,
MIDI2Params stopped the note in the middle when generating the fifth note, suggesting that
modelling expressive performance only in synthesis level is limited in long-term coherence
even inside a single note. On the contrary, the note expression modeling in MIDI-DDSP
allows it to model dependencies at the granularity of the note sequence and use synthe-
sis parameters to model the frame-wise parameter changing inside a single note. The two
concatenative synthesizers Ableton and FluidSynth generate the same note expression with
identical vibrato and volume for all notes. Although the expression is coherent inside a single
note, they fail to generate expression dependencies between different notes automatically.

4.4.4. Effects of Note Expression Controls

To evaluate the behavior of the note expression controls, we measure how well each
control correlates with itself after a roundtrip through synthesis. That is, for each sample
in the test set, we interpolate the control from lowest (0) to highest (1) in an interval of
0.1 and generate synthesis parameters. Then we extract the note expressions from these
synthesis parameters. Table 4.5 reports the correlation between the value we put in and the
value observed after synthesis. All controls exhibit strong correlation as desired, except for
volume peak position. A low correlation may stem from characteristics of the instrument,
or imbalances of those performance techniques in the dataset.

Figure 4.5 illustrates how each note expression affects properties of the sound. For
example, as we increase vibrato, we see stronger fluctuations in pitch. Similarly, changing
the volume peak position changes the shape of the amplitude curve.

4.4.5. Fine Grained Control or Full End-to-End Generation

The structured modelling approach of MIDI-DDSP enables end users to have as much
or as little control over the output as they want. A user can add manipulations at certain
levels of the hierarchy or let the model guide the synthesis.
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Fig. 4.10. MIDI-DDSP can take input from different sources (human or other models) by
designing explicit latent representations at each level. A full hierarchical generative model
for music can be constructed by connecting MIDI-DDSP with an automatic composition
model. Here, we show MIDI-DDSP taking note input from a score level Bach composition
model and automatically synthesizing a Bach quartet by generating explicit latent for each
level in the hierarchy.

On one end of this spectrum, Figure 4.2 shows the results of an end user manipulating
each level of MIDI-DDSP. Because different levels of the MIDI-DDSP hierarchy correspond
with different musical attributes, a user can make manipulations at the note-level to change
the attack noise and volume to create staccato notes (second green box in Figure 4.2) or a
user could make adjustments to the synthesis-level to control the pitch contour for making
a “pitch bend” (yellow box in Figure 4.2).

On the other end of the spectrum, MIDI-DDSP can be paired with generative sym-
bolic music models to make fully generated, realistic end-to-end performances. As shown
in Figure 4.10, MIDI-DDSP can be combined with a composition Bach chorales model Co-
conet [57], to form a fully generated musical quartet that sounds like real instruments
performance. Readers are encouraged to listen to both the hand-tuned and end-to-end per-
formances on our accompanying website.

4.5. Conclusion
We proposed MIDI-DDSP, a hierarchical music modeling system that factorizes the gen-

eration of audio to note, performance, and synthesis levels. By proposing explicit repre-
sentations for each level alongside modeling note expression, MIDI-DDSP enables effective
manipulation and realistic automatic generation of music. We show, experimentally, that
the input controls for MIDI-DDSP are correlated with desired performance characteristics
(e.g., vibrato, volume, etc). We also show that listeners preferred MIDI-DDSP over existing
systems, while enabling fine-grained control of these characteristics. MIDI-DDSP can also
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connect to other models to construct a full audio generation model, where beginners can
obtain realistic novel music from scratch, while expert users can manipulate results based
on model prediction to realize unique musical design.
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4.6. Appendix

Fig. 4.11. The enlarged log-scale Mel spectrograms of synthesis results in Figure 4.9

4.6.1. Other Training Details

The Expression Generator, Synthesis Generator, and DDSP Inference Module are trained
separately. The Expression Generator is trained for 5000 steps, the Synthesis Generator is
trained for 40000 steps, and the DDSP Inference Module is trained for 10000 steps.

4.6.2. Experiment Details

4.6.2.1. Details of Baseline Methods. We use the orchestral strings pack in Ableton3 with-
out any manual adjustment to synthesize the audio from Ableton. For FluidSynth, we used
the FluidR3_GM.sf24 sound font. We reimplemented the MIDI2Param system proposed
by [14] by following the official implementation on GitHub5. The MIDI2Params system is
only trained in the single instrument setting for the listening test experiments as is done in
the original paper. However, as a comparison in our multi-instrument scenario, we trained
a multi-instrument MIDI2Params model that had an additional instrument embedding con-
catenated to the model input.

4.6.2.2. Details of the Listening Test. In total, we gathered 960 ratings based on 360
pairwise comparisons from 14 participants for our listening test. Participants were presented
with two unlabeled audio clips and asked “Which one of the following recordings sound most
3https://www.ableton.com/en/packs/orchestral-strings/
4https://member.keymusician.com/Member/FluidR3_GM/index.html
5https://github.com/rodrigo-castellon/midi2params
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Pairs wins ties losses p value
Ableton MIDI2Params 39 1 24 7.61e-5
Ableton DDSP Inference 11 0 53 2.98e-27
Ableton FluidSynth 42 0 22 0.0002
Ableton Ground-truth 14 1 49 6.62e-26
Ableton MIDI-DDSP 5 0 59 5.34e-16
MIDI2Params DDSP Inference 8 0 56 5.73e-42
MIDI2Params FluidSynth 31 0 33 0.027*
MIDI2Params Ground-truth 8 0 56 2.43e-40
MIDI2Params MIDI-DDSP 8 0 56 7.16e-28
DDSP Inference FluidSynth 55 0 9 2.97e-39
DDSP Inference Ground-truth 35 0 29 0.024*
DDSP Inference MIDI-DDSP 44 0 20 6.02e-05
FluidSynth Ground-truth 4 0 60 1.00e-37
FluidSynth MIDI-DDSP 9 0 55 7.25e-26
Ground-truth MIDI-DDSP 44 0 20 0.00018

Table 4.6. A post-hoc comparison of each pair on their pairwise comparisons with each
other, using the Wilcoxon signed-rank test for matched samples (“win” means the first item
in the pair is selected) . p value less than 0.01/15 = 6.67×10−4 yields a statistically significant
difference. Only two pairs are not significantly different (DDSP Inference vs. Ground-truth,
MIDI2Params vs. FluidSynth), and are marked with an asterisk (*).

like a person playing it on a real violin?” Participants were asked to wear headphones, and
were able to listen to the audio clips as many times as they pleased before submitting their
answers. The participants chose their preference using a 5-point Likert-like scale, with the
first option being "Strong preference for Audio Clip 1", the middle option indicating "No
preference", and the final option being "Strong preference for Audio Clip 2."

The pairs of unlabeled clips were drawn from the set of [Ground-truth, DDSP Inference,
MIDI-DDSP, Ableton, MIDI2Params, Fluidsynth]. Participants were recruited through a
Google internal data labeling platform, and were selected based on a pre-screening pilot study
to ensure that the participant was able to provide reasonable evaluations of audio recordings.
In this pilot study, we filtered out individuals who rated FluidSynth examples as sounding
more like a real violin recording than the Ground-truth violin recording. Participants were
not screened based on their musical background.

A Kruskal-Wallis H test of the ratings showed that there is at least one statistically
significant difference between the models: χ2(2) = 395.35, p < 0.01. The number of wins for
each pair comparison and a Wilcoxon signed-rank test for each pair is shown in Table 4.6.
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Fig. 4.12. The effect of modifying the ‘Volume’ and ’Volume Fluctuation’ note expression
for a sample. Each row shows the amplitudes of the notes when fixing ’Volume Fluctuation’
and changing ’Volume’, while each column shows the amplitudes of the notes when fixing
’Volume’ and changing ’Volume Fluctuation’. The number indicates the amount of modifi-
cation to the note expression control where (+0, +0) is the original sample. Upper figure
shows the spectrogram of generations, and the bottom figure shows the amplitude of the
generations. The cartoon on the side indicates how the modified feature would change the
synthesis parameters. The gray dash line in the bottom figure indicates the note boundaries.
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Fig. 4.13. The effect of modifying different note expression parameters on an existing sam-
ple. The number indicates the amount of modification to the note expression control where
(+0) is the original sample. Upper figure shows the spectrogram of generations, and the
bottom figure shows the quantity of the generations affected by the control. The cartoon
on the side indicates how the modified feature would change the synthesis parameters. The
gray dash line in the bottom figure indicates the note boundaries.
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Chapter 5

Conclusion

In this thesis, we proposed MIDI-DDSP, which leverages a structured hierarchy to achieve
controllable music performance synthesis. The proposed model is an instance of controllable
generative models and is an effective tool for generating and controlling music performance.

The proposed MIDI-DDSP gives adaptable insights for enabling control in any generative
models: Controls can be enabled in generative models by extracting features in intermediate
levels and factorizing the generation pipeline according to domain workflow. In MIDI-DDSP,
the intermediate-level representations are extracted from the data where no additional labels
are needed, following a “analysis and synthesis” paradigm. This “analysis and synthesis”
paradigm can be applied in future works to control generative models in other domains such
as symbolic music generation or speech synthesis. On the other hand, one could replace the
extracted feature-based intermediate representation with the learned prior or couple it with
linguistic semantics that enables control via natural language.

The structured hierarchy and explicit feature extraction also make MIDI-DDSP a good
dataset generator. The intermediate output of MIDI-DDSP will naturally serve as paired
data for supervised models to train on, and it is easy to sample a large dataset from MIDI-
DDSP. In our recent work [127], we proposed a dataset generation pipeline connecting Co-
conet [57] that generates MIDI and MIDI-DDSP, which renders the MIDI into audio. We use
the pipeline to create a large-scale dataset we named CocoChorales dataset, which consists
of 240,000 samples. We show that the CocoChorales dataset can improve the performance
of the music transcription model on the low-resource dataset and enables source separation
task that has too little data to train a model.

MIDI-DDSP can be further improved by developing the methods it relies on. Future
advances in differentiable polyphonic synthesis and note detection could enable MIDI-DDSP
to generate polyphonic instruments such as the piano. Currently, MIDI-DDSP replies on
clean recordings for training data. Further development in unsupervised learning could
enable transfer learning of expressive performance from noisy data.



Last, more efforts are needed beyond machine learning to make good creative tools pow-
ered by generative models. Although we demonstrated to enable controls in a music perfor-
mance synthesis model suitable for music creation, there is still a gap between a controllable
generative model and a tool music creators will prefer for their creation and production.
As one of the most important directions to consider beyond machine learning, studies are
needed from the angle of Human-Computer Interaction (HCI) to determine which form of in-
teractions and visual representations are better for such creation tool [1, 25]. Those findings
will in turn affect the design of the control in generative models, proposing more challenges
from the machine learning side. Model development is another direction to consider be-
yond machine learning. To release a creation tool, sometimes one needs to make sure the
generative model runs in real-time on a personal or portable device. This often involves
redesigning the generative model, distilling the model, and optimizing model computation
on hardware-specific platforms.
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