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Résumé

De nos jours, atteindre un niveau élevé de satisfaction des employés à l’intérieur d’horaires efficients
est une tâche importante et ardue à laquelle les compagnies font face. Dans ce travail, nous
abordons une nouvelle variante du problème de création d’horaire de personnel face à une demande
inconnue, en tenant compte de la satisfaction des employés via l’incertitude endogène qui découle
de la combinaison des préférences des employés envers les horaires, et de ceux qu’ils reçoivent.
Nous abordons ce problème dans le contexte de la création d’horaire d’employés remplaçants,
un problème opérationnel de l’industrie du transport en commun qui n’a pas encore été étudié,
bien qu’assez présent dans les compagnies nord-américaines. Pour faire face aux défis qu’amènent
les deux sources d’incertitude, les absences des employés réguliers et des employés remplaçants,
nous modélisons ce problème en un programme stochastique en nombres entiers à deux étapes
avec recours mixte en nombres entiers. Les décisions de première étape consistent à trouver les
journées de congé des employés remplaçants. Une fois que les absences inconnues des employés
réguliers sont révélées, les décisions de deuxième étape consistent à planifier les tâches des employés
remplaçants. Nous incorporons les préférences des employés remplaçants envers les journées de
congé dans notre modèle pour observer à quel point la satisfaction de ces employés peut affecter
leurs propres taux d’absence. Nous validons notre approche sur un an de données de la ville de Los
Angeles. Notre travail est présentement en cours d’implémentation chez un fournisseur mondial de
solutions logicielles pour les opérations de transport en commun.

Mots clés: Création d’horaire de personnel, Programmation stochastique, Programmation en nombres
entiers, Préférences des employés, Industrie du transport, Incertitude endogène.
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Abstract

Nowadays, reaching a high level of employee satisfaction in efficient schedules is an important and
difficult task faced by companies. In this work, we tackle a new variant of the personnel scheduling
problem under unknown demand by considering employee satisfaction via endogenous uncertainty
depending on the combination of their preferred and received schedules. We address this problem
in the context of reserve staff scheduling, an operational problem from the transit industry that
has not yet been studied, although rather present in North American transit companies. To
handle the challenges brought by the two uncertainty sources, regular employee and reserve
employee absences, we formulate this problem as a two-stage stochastic integer program with
mixed-integer recourse. The first-stage decisions consist in finding the days off of the reserve
employees. After the unknown regular employee absences are revealed, the second-stage decisions
are to schedule the reserve staff duties. We incorporate reserve employees’ preferences for days
off into the model to examine how employee satisfaction may affect their own absence rates.
We validate our approach on one year of data from the city of Los Angeles. Our work is cur-
rently being implemented in a world-leader software solutions provider for public transit operations.

Keywords: Personnel scheduling, Stochastic programming, Integer programming, Employee preferences,
Transit industry, Endogenous uncertainty.
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Chapter 1

Introduction

1.1. Context and motivation
Public transport is at the heart of urban mobility and sustainable development. According to the
Société de transport de Montréal, the number of passenger trips in public transport in Montreal
increased by 8.8% between 2016 and 2019, reaching 375M in 2019. The society explains this
improvement by the enhancement of the service offer coupled with favorable economic conditions
for the city. This explanation follows the words of De Oña and De Oña (2015) who state that
“An on-going enhancement of service quality represents an essential tool for transit agencies and
transport planners in order to capture and retain more passengers. In fact, offering high quality
transit services will encourage a modal shift from private modes to public transport services and,
consequently, it will promote a more sustainable mobility”. It is thus essential for the transit
companies to maximize the service quality. However, this task is far to be simple given the range
and the complexity of the transit operations. The planning process of transit industry is divided
into three parts: strategical, tactical and operational.

The strategical part concerns long-term decisions that are the network and route design.
The main goal is to define the bus lines. This definition can encompass a host of elements. A
bus line is usually defined by its route, its length, its number of stops and their locations but
additional characteristics may be considered such as its estimated travel time, its travel price and
its estimated fuel consumption, to name a few. Kepaptsoglou and Karlaftis (2009) survey the
literature on transit route design, and for the vast majority of the surveyed papers, at most two
of these criteria are taken into consideration at the same time. When we look at what is to be
optimized when constructing those lines, the aspects to study are also numerous. Depending on
the user, company or ecological point of view, the transportation company may want to define the
bus lines in order to minimize the average user cost, number of transfers, user travel time, user
waiting time, maximize the total coverage for the users, minimize the total length of bus lines,
operational cost and total fuel consumption to satisfy the population movement’s demand. Again,
it is difficult to handle all these objectives at the same time, and thus a subset must be chosen.
Nowadays, the transit companies take advantage of the population public transport movement
data from the previous years to establish the origin-destination matrix which contains the number



of movements among geographical zones. At this step, only a daily-aggregated version of this
matrix is needed. A more granular format will be needed when defining the line frequencies.
This matrix is then used to estimate the public transport demand for the coming year. Fan and
Machemehl (2006) state that due to the complexity of the network and route design problem,
most researchers treat the demand as fixed although the demand is greatly affected by the services
offered by the public transportation company. Indeed, a better coverage of the network with bus
lines with higher trip frequencies will promote its utilization towards the population. Note that it
is not uncommon to have some bus lines imposed, either by political engagements or because of
their historical natures, even if some more efficient networks could be found without those.

Once the network has been defined, the tactical part, which is reviewed on a seasonal ba-
sis, comes into play. The goal is to define the bus lines’ frequencies, and build their timetables.
When defining the line frequencies, a finer version of the origin-destination matrix is considered,
which takes into account the time and day of the population movements. This set of data is
complex to obtain without automated tracking systems which are not available in all the transport
societies. At this point, the objective is to find a set of frequencies for the bus lines that maximizes
the covering of the demand. The line frequencies will thus vary according to the lines, time
of the day, day of the week and even season of the year. Of course, the available resources in
terms of size of the bus fleet lead to important limitations that are taken into account. Note
that the determination of line frequencies is sometimes included in the strategical phase. Once
these frequencies are fixed, the company must find the timetables for the bus lines such that the
frequencies are respected. Timetables are a sequence of departure times, one for each stop served
by each line run in the network. An important objective of this process is to coordinate the arrival
times between stops (particularly for terminal start and end points) to facilitate the line transfers
for the users, and thus minimize their waiting time and total travel time. Again, the bus fleet
size must be taken into account to avoid using more buses than available at anytime of the day.
Guihaire and Hao (2008) state that again, some frequencies and timetables can be imposed for
historical or political reasons. A novel tool that some transport companies take advantage of is the
collection of historical data from the bus delays at each stop. From these measures, more accurate
departure times can be defined for each stop. The tactical phase also includes defining the target
number of drivers to ensure the delivery of the service, and how they must be dispatched among
the different garages over the city. This information gives an estimation of the recruitment levels
to operate for the human resources.

Finally, the operational phase is the most diverse and aims at taking shorter term deci-
sions. It seeks at delivering the service defined above at a minimal cost. This includes the vehicle
scheduling, the crew scheduling, the rostering, absences management and daily operations.

The vehicle scheduling consists in constructing the schedules of the buses at a minimum
cost while covering the lines previously determined. Usually, the cost is minimized when the
number of buses necessary to cover the demand is minimized. A bus schedule contains the time
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and the lines it covers. It also includes deadheads: some time periods necessary for travelling
between the terminal start point to the first line start point, the previous line arrival point and the
next line departure point, and the last line end point and the terminal end point. Maintenance
operations are also involved, such as fueling or battery charging in case of electric vehicles.

After the vehicle schedules have been set, the goal of crew scheduling is to transform those
vehicle schedules into the drivers’ duties which define their workdays, including the day start
and end times, the sequence of lines to drive, pause times and relieves (i.e. a geographical
location where a change of drivers occur on a bus, at a specific time). Every duty that is created
must respect a set of work rules from the labor union agreements, and the set of duties must
respect global rules from the transit company. Respective examples would be that a single
duty cannot plan more than 4 consecutive driving hours, and that only 10% of the duties
can have overtime. The objective is to minimize the total cost of the duties, which is not
always obtained when the number of duties is minimized. Overall, this problem is very complex to
solve. An example of simultaneous vehicle and crew Scheduling can be found in Haase et al. (2001).

Once the set of duties is found, the rostering consists in assigning the duties to the regular
drivers. Work rules should be respected. For example, an employee cannot obtain a night duty the
day after he/she worked on a day duty. Days off must also be assigned according to the company
policies (2 consecutive days off per week is the most common policy, for instance). There are many
ways to proceed to rostering. Some companies construct work weeks which contain duties and
days off, and offer them to the drivers who, in turn, choose the ones they prefer according to their
seniority. Other companies group employees based on their schedule preferences and regroup a
set of duties with similar characteristics close to the preferences of the group of employees. Then,
each employee of this group will, in a cyclic way, be assigned to each work week for this group. In
Er-Rbib et al. (2021), the authors tackle the cyclic bus driver rostering problem while taking into
account the employees’ preferences.

Sometimes, the number of regular drivers is not sufficient to cover all the duties. In this
case, the company will assign the remaining duties to extra boards (XBs), which are a type of
drivers whose main goal is to cover the regular employee absences. Employees will prefer the
regular employee or XB status according to their personal preferences. Regular employees will
receive duties that are more stable in terms of lines to cover and start and end times. In some
companies, senior employees are advantaged with this status because it allows them to choose the
work weeks they prefer. The XBs usually receive duties with varying characteristics over the weeks,
because they mainly cover the regular employee absences. However, for junior employees, this
status might be interesting because it allows them to receive preferable work weeks from absent
senior regular employees. The operational phase also includes daily operations such as positioning
wisely the buses in the garages at the end of the day so that they are in the right order for the
next day departures. This might sound simple at first glance. However, due to the high number
of buses per garage, they must be parked in single files and, according to the characteristic of the
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buses (capacity, electric or not, etc.), some must be placed in front because their departure time is
earlier than others. When employees are unexpectedly absent, the company must rapidly transfer
the absentee’s duty to an XB to avoid the cancellation of the lines. When service cancellation
is unavoidable, the company can still decide which lines to cancel by swapping duties between
employees. Most of the time, the companies tend to first cancel high frequency lines to minimize
the customer’s waiting time that could be high if cancelling low frequency lines. Dealing with line
detours due to construction, special events or other unforeseeable reasons, is also part of the daily
operations.

1.2. Contributions and organization
Every single action described in the previous section needs to be as efficient as possible. In this
way, there is the potential to increase the service quality, while improving the competitiveness and
the market shares of public transport. In this thesis, we will focus on how the management of
employee absences can be improved. Indeed, its enhancement has a direct impact on the quality
of service offered as it contributes to minimizing the cancelled service and achieve gains in terms
of cost savings for the public transportation companies.

We contribute by developing a stochastic model to schedule the days off of the XBs in or-
der to minimize the cancelled service costs, XBs’ duty costs and maximize the XB days-off
preferences. The days-off preferences of the XBs are taken into consideration to obtain solutions
that are interesting, not only from the point of view of the transport company, but also for
the employees. Two uncertainty sources are present in our model. The first one corresponds to
the demand for XBs and originates from regular employees’ absences. It is modeled through
a probability space whose estimation is done from real-world data; once it is revealed, the
recourse action is the scheduling of duties to the XBs which do not have a day off. The second
source of uncertainty is endogenous and depends on the satisfaction of XBs’ days-off preferences.
In other words, the absence of XBs depends on the first-stage decisions. Our computational
results on instances inspired from real-world data validate the benefit of considering a stochastic
programming formulation, i.e., of embedding within our model a representation of uncertainty.
Moreover, we show the potential that the consideration of employee satisfaction can have on this
planning problem.

This thesis is articulated as follows. We give an extended literature review in Chapter 2.
Chapter 3 presents the research paper to be submitted to the International Transactions in
Operational Research journal. Finally, Chapter 4 provides conclusion and discusses the future
work that can leverage the contribution of this thesis.
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Chapter 2

Extended literature review

In this section, we provide a detailed landscape of the existent literature related to our problem. As
mentioned in the introduction, our problem concerns scheduling XBs, thus Section 2.1 reviews the
work in personnel scheduling. We also account for employee absence uncertainty which motivates
the discussion of the literature in this domain in Section 2.2. We conclude this literature review in
Section 2.3 by describing work considering employees’ preferences in scheduling. The latter will be
used to define the endogenous uncertainty in our model. Note that the literature review presented
in Section 3.2 of the article is a condensed version of the one presented in this section.

2.1. Personnel scheduling
Historically, personnel scheduling problems have been the subject of numerous studies in many
industries: transportation, health care, retail stores, etc. It consists in finding the days off and
working days of a set of employees, and the shifts or duties for the working employees. In general
and at a very high level, the set of hard constraints is divided into two parts. The first one requires
a covering of the demand by the employees. The second one can be seen as a set of work rules
to comply to, ensuring the feasibility of the employee schedules. Then, a set of soft constraints
comes on top to define which solutions are preferable among the set of valid schedules. Employee
preferences, for example, belong to this class of soft constraints. These groups of constraints are
easily identified in most of the personnel scheduling problems, e.g., the nurse scheduling problem
(Jafari and Salmasi (2015)), the airline and transit crew rostering problems (Kohl and Karisch
(2004) and Xie et al. (2012)), and the retail store workforce scheduling problem (Chapados et al.
(2011)). Of course, many variations emerge from one domain to another. For instance, cyclic
schedules are often required in the European bus transit industry, employee competency-based
schedules are mostly used in the health care industry, and preference-based schedules are increasing
in popularity across all domains. When accounting for these particular needs that differ according
to the application domains, a significant number of variables and constraints are used, leading to
large-scale optimization problems.

Many methods have been developed to face these large problems. A powerful exact method
to tackle large integer problems is the branch-and-price, since it aims to use only a dynamic



subset of all the variables in the model. It combines a column generation algorithm within
a branch-and-bound framework. First, an optimal dual bound is found for the problem with
relaxed integrality constraints. Then, iteration after iteration, a pricing sub-problem is solved to
identify the promising variables thanks to the reduced costs from the dual information. These
variables (columns) are then added to the master problem. Branching is performed on the master
problem when no more promising variables can be found. The stopping criteria are based on the
branch-and-bound. A well-known application in transit crew scheduling is shown in Desrochers
and Soumis (1989). When it comes to heuristic methods, an efficient way to tackle these large
problems in mathematical programming is by the use of techniques decomposing the problem in
simpler ones. For example, in Beaulieu et al. (2000), the authors’ goal is to generate 6-month long
schedules for emergency room physicians. Since the model they formulate to account for all the
rules is intractable, they rather make use of a rolling horizon approach that considers fixed the
past schedules. Constructive and improvement heuristics are also used by researchers to approach
these large scheduling problems, such as in Smet et al. (2014) and Bard and Wan (2006).

2.1.1. Days-off scheduling

Within the personnel scheduling literature, it is particularly relevant the works on days-off schedul-
ing. To the best of our knowledge, no literature exists on our particular problem of assigning days
off to reserve employees. However, general days-off scheduling has been studied. Days-off sched-
uling consists in finding the right daily number of employees needed to satisfy the daily demand,
while ensuring the days-off rules hold. Multiple policies exist for the days off: two days off per week,
two consecutive days off per week, four days off every two weeks, etc. This problem alone is not
very complex as the number of days-off patterns is usually low and the demand is pre-determined.
Its main challenge resides in the modeling of the days-off rules. Variants include consideration of
multiple types of employees such as part time and full time (Emmons and Fuh (1997)), employee
skills and qualifications for tasks (Ulusam Seçkiner et al. (2007)), and cyclic schedules (Emmons
and Burns (1991)). After having decided who is working on which days, the shift scheduling occurs,
which consists in assigning duties to working employees to satisfy the demand over the course of
the day. Shift scheduling alone can have varying complexity depending on the number of possible
duties. Again, the employee demand is pre-determined. Embedding days-off with shift scheduling
yields the so-called tour scheduling. When the duty start and end times are mostly invariant (such
as in manufacturing companies where the duties are often 9AM-5PM), the tour scheduling prob-
lem can be tackled directly. Such an example is shown in Bailey (1985) which considers only five
different start times. However, usually, the days-off and shift scheduling problems must be solved
in turn, due to the explosion of possibilities when considering the combinations of days-off patterns
and duties. van Veldhoven et al. (2016) show that although this 2-step decomposition reduces the
solution time by 80% to 90%, the quality of the solutions is often deteriorated compared to when
solving directly the tour scheduling problem. The problem tackled by us is a (stochastic) tour
scheduling problem.
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2.1.2. Scheduling under disruptions

Van den Bergh et al. (2013) offer a broad review of the solution methods for general personnel
scheduling problems. In their review, they point out three uncertainty sources that could be faced.
Those are uncertainties related to the demand (what is the workload to accomplish?), the arrival
(when does the workload occur?), and the capacity (how many employees can be used?). In the
personnel scheduling literature, it is very common to account for pre-determined demand and
number of employees. Those uncertainties about the workload and the workforce are thus, most
of the time, completely ignored. In these deterministic approaches, the workers are assumed to
be always present, whereas absences are unavoidable in practice. The uncertainties related to the
workload are also disregarded; when not fixed and known, the workload is estimated via historical
data, using forecast and prediction techniques such as machine learning. Although these estimations
can be accurate, the stochastic aspect of the demand is left out, leaving the developed models
sensitive to when the estimations differ from the real demand. Some approaches exist to account
for the disruptions while keeping a deterministic modeling. In this context, the goal is to create
schedules that necessitate only few adjustments when disruptions happen to the estimated demand.
Ingels and Maenhout (2017) first find a schedule at optimal cost C. Then, they re-optimize it by
changing the objective to maximize the substitutability of the schedule, and by adding a constraint
that the cost of the new schedule should not exceed C by more than a “robustness budget”. The
substitutability is defined as the number of swaps employees can do in the schedule by respecting
the skill constraints and working rules. In this way, any disruption to the original parameters of
the problem is easier to cope with by swapping duties between employees. Another example can
be seen in Paias et al. (2021) where the authors introduce robustness to a bus operator schedule
via a reactive approach. Following disruptions, the bus drivers’ initial roster is reconstructed using
a multi-commodity flow assignment model in a way such that it is very close to the initial one in
terms, notably, of XBs needed and postponed days off. Stochastic approaches, however, are more
appropriate due to their ability to incorporate and handle such forms of uncertainty compared to
the deterministic approaches.

2.2. Stochastic Optimization
Two-stage stochastic programs, the most common application of stochastic programming, are
greatly popular among researchers who want to consider uncertainty in their models. They fit
the use case where a first set of decisions has to be taken without knowing the realization of ran-
dom variables. Then, the uncertainty is revealed and the decision-maker reacts through recourse
actions. The general formulation for a two-stage linear stochastic program is the following:

min
x∈Rn

cTx+ Eω[q(ω)Ty(ω)]

subject to: Ax = b,

T (ω)x+W (ω)y(ω) = h(ω), ∀ω ∈ Ω

y(ω) ∈ Rm, ∀ω ∈ Ω.
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The vector x represents the first-stage variables, c the associated cost vector, and A and b are the
matrix and vector establishing linear constraints. The vector ω is random by drawn from its sample
space Ω. The vector of second-stage variables is y(ω). The vector of recourse costs is q(ω). Remark
the dependency on the realization of ω. Finally, T (ω),W (ω) and h(ω) are the technology matrix,
the recourse matrix, and the requirements vector and can all depend on the realization of ω. This
type of formulation demands the ability to represent the distribution of the random variables ω via
scenarios. On the one hand, data must be used to generate the set of scenarios, each representing
a possible realization of ω. When Ω is finite of size S, or when we approximate the problem with
a finite number S of scenarios, the general extensive formulation of the two-stage linear stochastic
program can be derived:

min
x∈Rn,y1,...,yS∈R

cTx+ p1q(ω1)Ty1 + ...+ pSq(ωS)TyS

subject to: Ax = b

T (ω1)x+W (ω1)y1 = h(ω1)
...

T (ωS)x+W (ωS)yS = h(ωS)

where ∀s ∈ {1,...,S}, ps is the probability associated to the realization of ω into ωs. When possible,
finding the best-fit distributions on the random variables is very convenient because it allows to
sample as many scenarios as desired from it. For instance, Bodur and Luedtke (2017) generate
scenarios about the arrival of customers by sampling from a Poisson distribution with arrival rate
themselves sampled from a forecast distribution estimated from historical data. On the other hand,
when the distribution is complex, the effort to represent it can necessitate a large number of scenar-
ios and, again, lead to very large optimization problems, requiring decomposition techniques to be
solved. A popular such approach for two-stage linear programs is the L-shaped method, introduced
by Slyke and Wets (1969), and based on the application of Benders’ decomposition (Benders (1962))
to the extensive formulation. Laporte and Louveaux (1993) then introduced the integer L-shaped
algorithm, allowing integer variables in both stages. Traditional implementations of the L-shaped
method add a single optimality cut at each major iteration, by aggregating information from all
the second-stage problems. Some works are dedicated to reduce the solution time by considering
multi-cut approaches (Birge and Louveaux (1988) and Trukhanov et al. (2010)). In Hewitt et al.
(2022), a speedup is obtained by considerably reducing the number of scenarios with clustering.
Two scenarios will be in the same cluster if the objective values of applying the optimal first-stage
decision of one scenario to the other one, are similar. Then, the L-shaped method can be applied
by considering one scenario per cluster, with the probability equal to the sum of the same-cluster
scenarios’ probabilities. Remark that in our model, we present directly the problem in extensive
form.
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2.2.1. Stochastic scheduling

Overall, although most of the personnel scheduling problems are approached in a deterministic
way, some papers follow the stochastic path. This is the case of Kim and Mehrotra (2015), who
formulate an integrated nurse staffing and scheduling problem with unknown demand as a two-stage
stochastic integer program. They schedule the nurses for 3-month long horizons, while respecting
rules on the nurse-to-patient ratios and not knowing in advance the number of patients in the
hospital. Their recourse action is to add or cancel shifts, with associated costs for each. Penalty
costs are also inferred for overstaffing and understaffing. They demonstrate computationally the
efficiency of their model on the cost savings, and that these savings increase with the precision of
the demand forecasts. In the model considered in this thesis, the uncertainty, i.e., the stochastic
process, will be in personnel absences.

2.2.2. Types of uncertainty

In stochastic optimization, most of the uncertainty we encounter is modeled as exogenous uncer-
tainty. That is, the decision variables do not affect the uncertainty distribution. However, with
endogenous uncertainty, the decisions can influence the probability distribution. Goel and Gross-
mann (2006) and Li and Grossmann (2021) distinguish two types of endogenous uncertainty. In
type I endogenous uncertainty, decisions influence the parameter realizations by altering the under-
lying probability distributions for the uncertain parameters. In type II, the decisions influence the
parameter realizations by affecting the time at which we observe these realizations. In our setting,
only the type I is of interest since we hypothesize that the XBs’ absence rates vary according to
their satisfaction with the assigned days-off patterns. However, to the best of our knowledge, there
is no work on scheduling considering type I endogenous uncertainty.

2.3. Individual preference optimization
Individual preferences are now fundamental in the design of schedules. More and more personnel
scheduling papers incorporate them in their models. In the literature, we can find two different
approaches for considering preferences. The first one, the most common, is to account for the
preferences directly in the model and maximize for overall satisfaction. This method is used in Badri
et al. (1998), Jafari and Salmasi (2015) and Bard and Purnomo (2005), to name just a few. The
second one consists in first creating schedules without preferences, and then performing an auction
where the employees bid on their preferred schedules as in De Grano et al. (2009). In general, few
attention is given to the fairness in the attribution of the schedules to employees. Multiple optimal
solutions that assign different schedules to different employees might exist, with some employees
being more satisfied than others about their schedules. This demonstrates that even if the employee
satisfaction about the schedules is globally high, unfairness can arise from an egalitarian perspective.
To counter this effect, Badri et al. (1998) design the penalty of not respecting a preference as an
increasing function of the number and severity (according to some rules) of preference violations.
As explained later in Section 3.1.1, one of the reasons to consider employee preferences in schedules
is to increase job satisfaction, which can in turn decrease absenteeism. The inverse is also, and
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perhaps even more, true: de Boer et al. (2002) state that job dissatisfaction, together with stress, are
the two explanations for absenteeism. In the mathematical programs designed to solve preference-
aware personnel scheduling problems, keeping track of employee satisfaction at the individual level
based on the realization of their preferences on the assigned schedules becomes challenging because
it depends on decision variables.
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Abstract. Nowadays, reaching a high level of employee satisfaction in efficient schedules is an important and
difficult task faced by companies. We tackle a new variant of the personnel scheduling problem under unknown
demand by considering employee satisfaction via endogenous uncertainty depending on the combination of their
preferred and received schedules. We address this problem in the context of reserve staff scheduling, an unstudied
operational problem from the transit industry. To handle the challenges brought by the two uncertainty sources,
regular employee and reserve employee absences, we formulate this problem as a two-stage stochastic integer program
with mixed-integer recourse. The first-stage decisions consist in finding the days off of the reserve employees. After
the unknown regular employee absences are revealed, the second-stage decisions are to schedule the reserve staff
duties. We incorporate reserve employees’ days-off preferences into the model to examine how employee satisfaction
may affect their own absence rates.
Keywords: Personnel scheduling; Stochastic programming; Integer programming; Employee preferences; Transit
industry; Endogenous uncertainty

3.1. Introduction
Employee absences can have a critical impact on the quality of service offered by companies. This
is particularly the case in the transportation sector where the absenteeism is very high due to
atypical workdays, which can easily lead to service cancellations. Therefore, some enterprises rely
on a specific pool of workers, called extra-boards (XBs) in the transit industry, to mainly cover
the regular employees’ absences. In contrast to the known-in-advance absences such as employee
vacations, long term absences and open work, the unknown absences that are declared close to the
operation day result in uncertainty about when to schedule XBs. It is important that each day,
the number of XBs scheduled matches the demand in terms of the shortage of regular employees
to avoid service cancellation or XBs idle time. In the remainder of the study, when we mention
demand, we are referring to demand in terms of XBs to cover the regular employee absences.

As described in Desaulniers and Hickman (2007), the planning process of transit industry is
commonly divided into three parts: strategical, tactical and operational. The strategical part aims
at taking long-term decisions having a direct impact on the quality of service such as the network
and route transit design. The tactical phase is reviewed on a seasonal basis, and also concerns the
quality of service such as the bus frequencies and timetabling, recruitment targets and employee
dispatch by division. Finally, the operational phase seeks to offer the previously proposed service
at a minimal cost. To do so, many different problems are solved, the largest two problems being
vehicle scheduling and personnel scheduling. This is where the XB (personnel) scheduling problem
arises. The XB scheduling process varies around the world. In Europe, the XBs are assigned each
possible days-off pattern and duty (the shift of the employees, consisting of the start time, end time,
and a potential pause) over time, as part of rotating schedules. In contrast, in North America, the
days-off patterns are assigned from scratch to the XBs at the start of each scheduling horizon, and
the duties are assigned at the latest the eve of the operation day. In practice, the dispatcher decides
on the number of days off to be offered each day of the scheduling horizon. Then, according to
their seniority, the XBs take turn choosing which days off they prefer among the ones still available.

Due to ongoing and anticipated labor market shortages, it has become essential for compa-
nies to take into account employee preferences to differentiate themselves, recruit new employees
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and address employee retention. In our study, we follow the North American XB scheduling
process and directly assign the days-off pattern to the XBs to better incorporate their preferences
in the optimization process. This approach generalizes well to multiple applications that consider
employee preferences, such as in nurse scheduling (see Miller et al. (1976) and Goodman et al.
(2009)).

3.1.1. Contributions

Our contributions summarize as follows.

First, we formulate a two-stage stochastic integer program with mixed-integer recourse to
model the XB days-off scheduling problem over a finite time horizon. In most cases, this scheduling
is done manually by the dispatchers, at best making use of average absence ratios. In our model
formulation, we leverage the decomposable aspect of absence scenarios per time period to achieve
representational power for uncertainty. This contrasts with the classical method of defining
scenarios in stochastic programming, which would require exponentially more scenarios.

Second, we consider XB preferences in the process to model uncertainty. Social science re-
searches aiming at reducing employee absenteeism have unanimously identified job satisfaction as
a key factor influencing the employee’s motivation to attend work (Kehinde (2011), Tasie (2018)).
Personal reasons, at the individual level, have also been identified as an absenteeism cause.
For example, some employees might have some strict constraints (due to family responsibilities,
health issues, etc.), making them unavailable to work on certain days. These motivate our initial
assumption that an XB assigned to preferred days off is less likely to be absent. This assumption
not only gives the flexibility to increase the satisfaction level of employees receiving their preferred
days off, but also allows to manage the strict schedule constraints some employees might have. To
the best of our knowledge, this is the first time that reserve employee preferences are considered
in an absence staffing problem.

Third, we expose a new type of problem mixing both exogenous and endogenous uncertain-
ties. In one hand, exogenous uncertainty, i.e., uncertainty independent from the decisions, is the
most standard form of uncertainty in stochastic programming and is represented in our problem as
the demand. On the other hand, endogenous uncertainty has been little studied and is much more
difficult to treat as the stochastic processes are affected by the decisions. Indeed, in our problem,
when an XB is assigned to a days-off pattern, he/she can be satisfied, unsatisfied or neutral,
which can alter his/her own absence probability on certain of his/her working days. Hence, the
uncertainty regarding XB absences depends on the first-stage decisions related to the days-off
pattern assignment. In our formulation, we mimic this endogenous uncertainty in a linear fashion.

Our approach is validated with an empirical study based on data from the city of Los An-
geles. We show that taking preferences into account leads to significant improvements when
compared to not considering preferences: on average, employee social welfare is improved by
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37.12% while also substantially minimizing the cancelled service by 21.14%. The stochastic
programming formulation is partly responsible for theses gains as the social welfare and the
cancelled service are improved on average by 7.65% and 16.63%, respectively, when comparing
with a deterministic formulation.

3.1.2. Paper organization

This paper is organised the following way. Section 3.2 surveys the literature relevant to our problem.
In Section 3.3, we describe the XB days-off scheduling problem and the proposed mathematical
program to model it in Section 3.4. We detail the setup of our empirical study in Section 3.5,
and report the results in Section 3.6. Finally, Section 3.7 draws conclusions and discusses possible
directions for future research.

3.2. Related literature
In this section, we provide a detailed landscape of the existent literature related to personnel
scheduling, uncertainty in scheduling and preference optimization.

Personnel scheduling. Historically, personnel scheduling problems have been the subject of
numerous studies in many industries: transportation, health care, retail stores, etc. It consists
in finding the days off and working days of a set of employees, and the shifts or duties for the
working employees. In general and at a very high level, the set of hard constraints is divided
into two parts. The first one requires a covering of the demand by the employees. The second
one can be seen as a set of work rules to comply to, ensuring the feasibility of the employee
schedules. Then, a set of soft constraints comes on top to define which solutions are preferable
among the set of valid schedules. Employee preferences, for example, belong to this class of
soft constraints. These groups of constraints are easily identified in most of the personnel
scheduling problems, e.g., the nurse scheduling problem (Jafari and Salmasi (2015)), the airline
and transit crew rostering problems (Kohl and Karisch (2004) and Xie et al. (2012)), and the
retail store workforce scheduling problem (Chapados et al. (2011)). Of course, many variations
emerge from one domain to another. For instance, cyclic schedules are often required in the
European bus transit industry, employee competency-based schedules are mostly used in the
health care industry, and preference-based schedules are increasing in popularity across all domains.

Within the personnel scheduling literature, it is particularly relevant the works on days-off
scheduling. To the best of our knowledge, no literature exists on our particular problem of
assigning days off to reserve employees. However, general days-off scheduling has been studied.
Days-off scheduling consists in finding the right daily number of employees needed to satisfy the
daily demand, while ensuring the days-off rules hold. Multiple policies exist for the days off:
two days off per week, two consecutive days off per week, four days off every two weeks, etc.
This problem alone is not very complex as the number of days-off patterns is usually low and
the demand is pre-determined. Its main challenge resides in the modeling of the days-off rules.
Variants include consideration of multiple types of employees such as part time and full time
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(Emmons and Fuh (1997)), employee skills and qualifications for tasks (Ulusam Seçkiner et al.
(2007)), and cyclic schedules (Emmons and Burns (1991)). After having decided who is working on
which days, the shift scheduling occurs, which consists in assigning duties to working employees to
satisfy the demand over the course of the day. Shift scheduling alone can have varying complexity
depending on the number of possible duties. Again, the employee demand is pre-determined.
Embedding days-off with shift scheduling yields the so-called tour scheduling. When the duty
start and end times are mostly invariant (such as in manufacturing companies where the duties are
often 9AM-5PM), the tour scheduling problem can be tackled directly. Such an example is shown
in Bailey (1985) which considers only five different start times. However, usually, the days-off
and shift scheduling problems must be solved in turn, due to the explosion of possibilities when
considering the combinations of days-off patterns and duties. van Veldhoven et al. (2016) shows
that although this 2-step decomposition reduces the solution time by 80% to 90%, the quality of
the solutions is often deteriorated compared to when solving directly the tour scheduling problem.
The problem tackled by us is a (stochastic) tour scheduling problem.

Scheduling under uncertainty. Van den Bergh et al. (2013) offer a broad review of the
solution methods for general personnel scheduling problems. In their review, they point out three
uncertainty sources that could be faced. Those are uncertainties related to the demand (what
is the workload to accomplish?), the arrival (when does the workload occur?), and the capacity
(how many employees can be used?). In the personnel scheduling literature, it is very common
to account for pre-determined demand and number of employees. Those uncertainties about the
workload and the workforce are thus, most of the time, completely ignored. In these deterministic
approaches, the workers are assumed to be always present, whereas absences are unavoidable
in practice. The uncertainties related to the workload are also disregarded; when not fixed and
known, the workload is estimated via historical data, using forecast and prediction techniques such
as machine learning. Although these estimations can be accurate, the stochastic aspect of the
demand is left out, leaving the developed models sensitive to when the estimations differ from the
real demand. Some approaches exist to account for the disruptions while keeping a deterministic
modeling. In this context, the goal is to create schedules that necessitate only few adjustments
when disruptions happen to the estimated demand. Examples of works in this line are Ingels and
Maenhout (2017); Paias et al. (2021).

Stochastic approaches, however, are more appropriate due to their ability to incorporate
and handle such forms of uncertainty compared to the deterministic approaches. Overall, although
most of the personnel scheduling problems are approached in a deterministic way, some papers
follow the stochastic path. This is the case of Kim and Mehrotra (2015), who formulate an
integrated nurse staffing and scheduling problem with unknown demand as a two-stage stochastic
integer program. They schedule the nurses for 3-month long horizons, while respecting rules on the
nurse-to-patient ratios and not knowing in advance the number of patients in the hospital. Their
recourse action is to add or cancel shifts, with associated costs for each. Penalty costs are also
inferred for overstaffing and understaffing. They demonstrate computationally the efficiency of

33



their model on the cost savings, and that these savings increase with the precision of the demand
forecasts. In our model, the uncertainty, i.e., the stochastic process, will be in personnel absences.

In stochastic optimization, most of the uncertainty we encounter is modeled as exogenous
uncertainty. That is, the decision variables do not affect the uncertainty distribution. However,
with endogenous uncertainty, the decisions can influence the probability distribution. Goel
and Grossmann (2006) and Li and Grossmann (2021) distinguish two types of endogenous
uncertainty. In type I endogenous uncertainty, decisions influence the parameter realizations by
altering the underlying probability distributions for the uncertain parameters. In type II, the
decisions influence the parameter realizations by affecting the time at which we observe these
realizations. In our setting, only the type I is of interest since we hypothesize that the XBs’
absence rates vary according to their satisfaction with the assigned days-off patterns. However, to
the best of our knowledge, there is no work on scheduling considering type I endogenous uncertainty.

Individual preference optimization. Individual preferences are now fundamental in the design
of schedules. More and more personnel scheduling papers incorporate them in their models. In
the literature, we can find two different approaches for considering preferences. The first one, the
most common, is to account for the preferences directly in the model and maximize for overall
satisfaction. This method is used in Badri et al. (1998), Jafari and Salmasi (2015) and Bard and
Purnomo (2005), to name just a few. The second one consists in first creating schedules without
preferences, and then performing an auction where the employees bid on their preferred schedules
as in De Grano et al. (2009). In general, few attention is given to the fairness in the attribution of
the schedules to employees. Multiple optimal solutions that assign different schedules to different
employees might exist, with some employees being more satisfied than others about their schedules.
This demonstrates that even if the employee satisfaction about the schedules is globally high,
unfairness can arise from an egalitarian perspective. To counter this effect, Badri et al. (1998)
design the penalty of not respecting a preference as an increasing function of the number and
severity (according to some rules) of preference violations. As explained in Section 3.1.1, one of the
reasons to consider employee preferences in schedules is to increase job satisfaction, which can in
turn decrease absenteeism. The inverse is also, and perhaps even more, true: de Boer et al. (2002)
state that job dissatisfaction, together with stress, are the two explanations for absenteeism. In the
mathematical programs designed to solve preference-aware personnel scheduling problems, keeping
track of employee satisfaction at the individual level based on the realization of their preferences
on the assigned schedules becomes challenging because it depends on decision variables.

3.3. Problem description
The solving frequency and horizon length of the XB days-off scheduling problem vary from one
transit company to another and range from 2 to 4 weeks. In Los Angeles, the problem is solved
bi-weekly in all the divisions, for a planning horizon J of 2 weeks long (|J | = 14 days). We can
see an example of this process in Figure 1. Next, we start by detailing the first-stage decisions
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of our planning problem, followed by a description of the XBs demand including the associated
uncertainty and, finally, the recourse decisions.

Fig. 1. The January 2019 XB days-off assignment calendar in Los Angeles. The crosses represent
the days where the assignment of days-off patterns to XBs must be decided, and the same-color
days represent the corresponding planning horizon.

The goal of the XB days-off scheduling problem is to obtain a work schedule for each XB in the
set E of XBs, first consisting of his/her days off and working days for each of the |J | days of the
planning horizon. Then, in a second time, given a demand scenario, the set of duties that the
planned-to-work XBs will receive must be found, but these duties do not need to be individually
assigned. These two types of decisions correspond respectively to the first stage and the second
stage (recourse) of the stochastic problem to be formulated. Throughout the rest of the paper, we
will refer to those work schedules, i.e., first-stage decisions, as days-off patterns. We define P to be
the set of days-off patterns. In Los Angeles, the XBs must be assigned to two consecutive days off
per week that must be the same for each week of the horizon, making a total of 7 possible days-off
patterns: Sunday-Monday, Monday-Tuesday,..., Saturday-Sunday.

Two types of demand coexist in the problem: known and unknown at the moment of as-
signing the days-off patterns. The unknown demand corresponds to a stochastic variable and we
represent its distribution using scenarios. Let us clarify in detail the demands for XBs:

• For each day j ∈ J , oj represents the number of unassigned duties from open work and
known-in-advance absences, vacations and long-term absences. One XB can fulfill exactly
one such duty, on a given day. Covering this known demand is formulated with hard
constraints to ensure a reasonable number of XBs is available to cover absences.
• For each day j ∈ J , Sj represents the set of daily scenarios. The uncertainty from each
scenario s ∈ Sj is made available through the parameters ds

t,j which depicts the number
of unknown absences (absences that were declared after the assignment of the days-off
patterns) at time period t ∈ T on day j, where T is the set of time periods. For example,
T can be chosen to be hourly time periods, in which case |T | = 24.
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In practice, after the days off have been assigned, the XBs know on which days they are scheduled
to work. XBs working on known-in-advance absences and open work are also assigned their duties.
However, for the XBs working on unknown absences, the duties that they will inherit are still to be
defined. At the latest, those duties are assigned to these XBs on the eve of each working day. At
that moment, most of the unknown absences are declared and the demand in terms of XB working
hours to cover the regular employees’ absences is almost fully known. This motivates the modeling
of the problem as a two-stage stochastic program, where the recourse decisions correspond to
determining the XBs’ work shifts (duties) for each absence scenario. Concretely, given a scenario
s ∈ Sj for day j ∈ J , each XB working on fulfilling unknown absences should be assigned a duty
w from the set of duties W . The set of duties depend on the labor union agreement. Each duty
has a specific cost cw

2 , depending on the work, pause and overtime hours it contains.

In addition to the regular employees’ absences, the XBs’ absences have to be considered in
the problem. Indeed, some XBs can also be absent during their own planned duties, creating a
shortage in the number of XBs scheduled to cover the regular employees’ absences. The probability
of absence of XB e ∈ E given that he/she is assigned to work on day j ∈ J is denoted by qe,j .
Our assumption is that this probability is linked to the XB’s happiness about his/her assigned
days-off pattern. If the XB is off on his/her most preferred days, we assume that his/her absence
probability will be low during the assigned working days. Inversely, if the XB is planned to work
on his/her most preferred days, the absence probability will be higher for these days. More details
about this process are given in Section 3.5.5. Each XB e ∈ E expresses his/her preferences about
the 7 days-off patterns in P by ranking them from 1 to 7 (7 being the most preferred, 1 being the
least preferred) into the preference score parameters sp,e for p ∈ P .

Once the duties have been assigned for each scenario, it becomes possible to compute whether
understaffing (which results in cancelled service) or overstaffing occurs at each time period t ∈ T ,
for each day j ∈ J . The objective function corresponds to the expected costs for cancelled service
and duty costs throughout the entire planning horizon. The expectation is taken with respect
to the probability distribution of each scenario. The probability that a scenario s ∈ Sj occurs
is denoted by αs

j , and the probabilities of daily scenarios sum to 1. A penalty of c1 is issued for
each period of understaffing, and a duty cost cw

2 for duty w must be paid for each XB working on
unknown absences. Duty costs of XBs working on known-in-advance absences and open work are
omitted because they are constant (recall that we impose this demand to be covered). Additionally,
the objective function also includes the negative sum of the XB preferences, associated with a
social welfare benefit c3. Thus, our goal is to minimize the described objective function. It is
important to note that minimizing the cancelled service and maximizing the XB preferences (social
welfare) is closely related and can be jointly optimized. Indeed, increasing the XBs’ satisfaction by
assigning days-off patterns they like will make them less absent, creating more flexibility to cover
the regular employee absences and avoid service cancellation. No cost is assigned to overstaffing
because there is already an implicit cost to it: precious work time from the XBs is wasted by not
covering unknown absences.
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3.4. Mathematical formulations
In this section, we formalize the XB days-off scheduling problem as a two-stage stochastic pro-
gram with mixed-integer recourse. We consider two cases, namely, with and without preferences
(Sections 3.4.1 and 3.4.2 respectively). The notation used in these models is listed in Table 1.

Table 1. Notation

Type Notation Description

Sets

J Set of days in the planning horizon. |J | is a multiple of 7.
Sj Set of daily scenarios on day j
E Set of XBs
P Set of possible days-off patterns
T Set of time periods
W Set of duties

1st-stage variables xp,e Takes value 1 if pattern p is assigned to XB e and 0 otherwise

2nd-stage variables
ys

t,j
Number of understaffing hours (cancelled service) at time t of day j,
under scenario s

zs
t,j Number of overstaffing hours at time t of day j, under scenario s
vs

w,j Number of XBs assigned to duty w on day j, under scenario s

Parameters in the
constraints

qe,j Absence probability of XB e if working on day j
rp,j Takes value 1 if pattern p plans work on day j and 0 otherwise
bp,j Takes value 1 if pattern p plans off on day j and 0 otherwise

oj
Number of duties to be fulfilled on day j to cover known-in-advance
absences and open work

aw,t Takes value 1 if duty w plans work at time t and 0 otherwise
ds

t,j Number of unknown absences at time t on day j, under scenario s
ε Numerical tolerance parameter. A value of 1e−15 is used.

Parameters in the
objective function

αs
j Probability of scenario s on day j.
c1 Cancelled service cost per time period
cw

2 Cost of duty w
c3 Social welfare benefit
sp,e Preference score of XB e for pattern p. This is a number between 1 and 7.

3.4.1. Formulation for the case with preferences

The extensive form of the mixed-integer stochastic program for the case with preferences expresses
as follows:
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min
∑
j∈J

∑
s∈Sj

αs
j

(∑
t∈T

c1y
s
t,j +

∑
w∈W

cw
2 v

s
w,j

)
− c3

∑
e∈E

∑
p∈P

sp,exp,e (1)

subject to:
∑
p∈P

xp,e = 1, ∀e ∈ E (2)

∑
e∈E

(1− qe,j)
∑
p∈P

rp,jxp,e ≥ oj , ∀j ∈ J (3)

∑
w∈W

vs
w,j ≤ |E| − oj −

∑
e∈E

∑
p∈P

bp,jxp,e −
∑
e∈E

qe,j

∑
p∈P

rp,jxp,e, ∀j ∈ J, s ∈ Sj (4)

∑
w∈W

vs
w,j ≥ |E| − oj −

∑
e∈E

∑
p∈P

bp,jxp,e −
∑
e∈E

qe,j

∑
p∈P

rp,jxp,e − (1− ε), ∀j ∈ J, s ∈ Sj (5)

∑
w∈W

aw,tv
s
w,j + ys

t,j − zs
t,j = ds

t,j , ∀j ∈ J, s ∈ Sj , t ∈ T (6)

xp,e ∈ {0, 1}, ∀e ∈ E, p ∈ P (7)

ys
t,j , z

s
t,j ∈ N, ∀j ∈ J, s ∈ Sj , t ∈ T (8)

vs
w,j ∈ N, ∀j ∈ J, s ∈ Sj , w ∈W. (9)

Constraints (2) ensure that each XB is assigned exactly one days-off pattern. In (3), we require
that for each day, the number of scheduled-to-work and present XBs is sufficient to cover the
known-in-advance absences and open work. Indeed, 1 − qe,j represents the presence probability
of XB e on day j. Summing over all the scheduled-to-work XBs gives the expected number of
scheduled-to-work and present XBs. It is important to note that in this model, we account for
anonymous XB absences: the number of XB absences is obtained by summing the individual XB
absence probabilities, but we do not infer absences of specific XBs. Constraints (4)-(5) and (9) can
be combined to obtain:

∑
w∈W

vs
w,j = |E| − oj −

∑
e∈E

∑
p∈P

bp,jxp,e −


∑
e∈E

qe,j

∑
p∈P

rp,jxp,e

 , ∀j ∈ J, s ∈ Sj . (10)

In other words, for each day and demand scenario, the total number of duties we can use to
cover unknown absences is the total number of XBs from which we subtract the ones working
on known-in-advance absences and open work, the ones that are off, and the ones that were
scheduled-to-work but absent. Splitting (10) into two sets of constraints in the mixed-integer
program (MIP) is necessary to account for the integrality constraints on the vs

w,j variables. Finally,
(6) ensure that for each day, scenario and time period, the demand equation is fulfilled: the number
of XBs working on unknown absences plus the understaffing minus the overstaffing is equal to the
unknown absences.

The objective function (1) contains three terms. As described in Section 3.3, the first two,
related to cancelled service and duty costs, are scenario-dependent, and so we account for their
expected value over the scenario’s probability distribution. The last term represents the sum of
the XB preferences related to their assigned days-off patterns, often referenced to as the social
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welfare in economics.

Remark that our mathematical program corresponds to a two-stage stochastic program al-
though not explicitly formulated as such; we have written directly its extensive form by explicitly
considering all scenarios. Thus, the recourse problem for the scenario realization s of the associated
two-stage stochastic problem corresponds to the optimization with the xp,e fixed and restricted to
the variables with superscript s.

We now wish to highlight three simplifications within our model:
(1) We assume that the uncertainty is entirely revealed at the moment of deciding the XBs’ du-

ties. As absences can be declared during the operation day, a multi-stage formulation would
be needed to correctly take care of this uncertainty. The latter would greatly complexify
the model, thereby our choice for this approximation.

(2) Whereas in practice the XBs inherit from already existing duties (initially assigned to absent
drivers, or that were not yet assigned), we do not follow this process for unknown absences.
We assume for simplicity that XBs can instantly change from an initial duty to another.
In practice, this is not possible as the relieves (places dispatched along duties where a bus
has a driver switch and that allows drivers to make a line transfer or take a pause) take a
certain time. In our formulation, we aim for situations where the number of XBs working
on unknown absences is the same as the total number of unknown absences per time period,
even though in practice a larger number of XBs could be necessary to cover the demand,
by considering the relieves. On the other hand, by re-arranging and re-optimizing the set
of initial duties from unknown absences on the operational day’s eve, it would be possible
to generate a number of duties that is smaller than the number of initial duties from the
absent drivers, and that would still cover the same service. This time, a smaller number
of XBs could suffice to cover the demand. Hence, overall, the estimate we make should be
close to the real number of XBs necessary to cover the unknown absences.

(3) We ignore two work rules involving duty combinations such as the minimal rest time
between two consecutive duties and the maximal weekly work time. This approximation is
possible because the duty assignment is only simulated through the second-stage, and no
duties are actually assigned at this point.

We note that these three approximations are performed only on the recourse problem. After the
first-stage decisions have been taken and closer to the operation day, it will be possible to take
more precise recourse decisions with more accurate information, and respecting all the work rules.

As mentioned in Section 3.1.1, we leverage on the separable aspect of our formulation to
define daily scenarios instead of horizon-long scenarios like we traditionally have in stochastic
programming literature. In order to obtain the same representational power brought by n · |J |
daily scenarios (n = |S1| = . . . = |S|J ||) in our formulation, we need n|J | horizon-long scenarios.
This improvement is crucial in our setting as the time to solve the extensive form (also known as
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deterministic equivalent) of a two-stage stochastic program is typically dependent on the size of
the formulation. Thus, a formulation with a large number of scenarios and, consequently, a large
number of second-stage variables is expected to demand long computational times.

Lastly, a very important aspect of this model is how the endogenous uncertainty resulting
from the satisfaction of XB e about his/her assigned days-off pattern p is modeled linearly on xp,e.
Since the variables xp,e are binary and constraints (2) ensure that one pattern is assigned to XB
e, we are able to represent in a linear way the XBs’ absence probabilities conditional on whether
the XB is working.

There are several procedures to generate values for the parameters qe,j and we propose one
in Section 3.5.5. A general principle that should always hold is that the absence probability should
be at its highest (lowest) on the days off that are the most (least) desired by an XB.

3.4.2. Formulation for the case without preferences

The XB days-off scheduling problem (1)-(9) considers by default the XB preferences. The expected
number of absent and scheduled-to-work XBs is obtained by summing up the individual absence
probabilities qe,j of the scheduled-to-work XBs. We propose in this section some modifications to
(1)-(9) that would lead to a model not taking into account the XB preferences. Only two changes
are required:

• We redefine the parameters qe,j used in (3)-(5) as qj , making the absence probabilities equal
for all XBs, and independent from the assigned patterns.
• We cancel the social welfare benefit in the objective function by forcing c3 = 0.

These two changes lead to solutions uninfluenced by the XB preferences. In the empirical study,
we will refer to this special case formulation when needed.

3.5. Empirical study setup
In this section, we explain how we transform the input data to create problem instances, and how
we evaluate the quality of solutions.

3.5.1. Input data

In Los Angeles, the XB days-off assignment process (also called markup) happens every other
Thursday for the planning horizon starting the following Sunday (3 days later) and ending the
Saturday two weeks later (see Figure 1). The data we have access to is from 10 out of the 11 bus
divisions of the city and concern years 2018 and 2019 (except specified otherwise). The data is
divided into four parts:

(a) For each division and each day of the 2 years, the counts of absences declared before markup
(known-in-advance absences) and the total daily absence durations declared after markup
(unknown absences). For example, on January 1st 2018, there were 7 known-in-advance
absences, and a total of 88h35min of unknown absences for division 1.
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(b) For each division and each day of the 2 years, the distribution of the total daily unknown
absence durations per hourly time periods, that we will refer to as absence shape from now
on. Following the example above, on the 88h35min of unknown absences, 0h0min take place
from 0AM to 4AM, 1h9min take place between 4AM and 5AM, 2h46min between 5AM and
6AM and so on.

(c) A list of XB days-off pattern preferences from one specific markup in 2019.
(d) For each division and each day of 2019, the XB absence rates.

Any information specific to the drivers was disregarded from the data. The counts of known-in-
advance absences from Data (a) are directly used for the values of the oj parameters. The two years
of data from Data (a)-(b) were used to fit distributions to generate scenarios, and the year 2019
was chosen to create problem instances. During the year 2019, 25 complete two-week long planning
horizons starting on Sundays were available, making a total of 250 planning horizons across the 10
divisions.

3.5.2. Scenario generation

In this section, we describe how we generate daily unknown absence scenarios from the data in order
to determine values of the parameters ds

t,j . The creation of a daily scenario consists of three parts.
We start by generating a total daily unknown absence duration (scalar). An example would be a
total of 240h of unknown absence on a day. We continue by generating a daily unknown absence
shape (vector of length |T | whose values sum to 1). For instance, the shape (1/24, 1/24, ..., 1/24)
implies that the unknown absences are distributed evenly over the day. Finally, we combine these
two results to obtain the absence scenario. Following our example, we would generate the scenario
(10, 10, ..., 10) where there are 10 unknown absence hours during each hour of the day. The process
we describe below is for one division, but is repeated for each of the 10 divisions to capture their
specific characteristics.

(1) To generate the daily unknown absence durations, we consider the set of 2 ·365 = 730 values
from the total daily unknown absence durations over the two years from Data (a). We find
the best-fit distribution D(µ) on these values, where D represents the distribution type (for
example a Gaussian) and µ its parameters (for example mean and variance). We then split
this set of values into 7 subsets based on their associated days of the week, and compute
the best-fit parameters µi of D on these subsets i ∈ {1,2,...,7}. We obtain, for each division,
a globally best-fit distribution with 7 different days-of-the-week-specific best-fit parameters
D(µ1),D(µ2), ...,D(µ7) that are independent from the planning horizons. Now, to generate l
daily unknown absence durations for a specific day of the week i from any planning horizon,
we sample l values from D(µi).

(2) To generate the daily unknown absence shapes for a specific day of a planning horizon, we
simply pick the k daily unknown absence shapes of the same day of the week from the k
weeks preceding immediately the horizon from Data (b).

(3) To obtain l · k daily scenarios for a specific day j from a planning horizon, we generate
l total daily unknown absence durations and k unknown absence shapes as described
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above. Each of the possible duration and shape pairs is combined to create a scenario that
populates ds

t,j for s ∈ Sj = {1,2,...,l · k}.

An example of scenarios is provided in Figure 2.

Fig. 2. Example of daily scenarios where the blue and red ones use the same absence shapes but
different daily absence durations, and the green ones use the same daily absence durations as the
red ones but different absence shapes. The daily scenarios are aggregated to form the 14 days
horizon.

3.5.3. Preference samplings

As defined in Section 3.3, the XB days-off preferences are rankings from 7 to 1 (7 being the most
preferred, 1 being the least preferred) given to the 7 possible days-off patterns, making a total of
7! = 5040 possible rankings. Data (c) contains a total of 1678 days-off rankings from XBs across
all divisions. Multiple samplings of days-off preferences from the empirical distribution of these
rankings were created to populate the parameters sp,e, so that the results we present in Section 3.6
could be averaged over multiple problem instances with different XB days-off preferences. Some
statistics about Data (c) are shown in Figure 3.

We can see that the days-off pattern Sat-Sun is by far the most popular, followed by the ones
that contain one weekend day (Fri-Sat and Sun-Mon). In fact, the most popular days-off pattern
ranking is Sat-Sun (7), Sun-Mon (6), Fri-Sat (5), Thu-Fri (4), Wed-Thu (3), Tue-Wed (2), Mon-Tue
(1), and occurs 159 times out of the 1678 rankings. The next 10 most popular rankings also start
with Sat-Sun. It is interesting to note that in the transit industry, the number and frequency of
buses are much lower on weekends than during the week. Therefore, less drivers are required on
these days, which in turn leads to less absences to cover for the XBs. Hence, there is an alignment
between preferred days off and the demand for drivers, anticipating an ease in the assignment of
days-off patterns that include weekend days. An analogous conclusion can be obtained for the least
popular days-off which are those of the week (Mon-Tue, Tue-Wed, Wed-Thu).
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Fig. 3. Statistics about the XB days-off patterns preferences.

3.5.4. XB absence probabilities

The special case formulation where the XB preferences are not considered has a straightforward
way of setting the XB absence probability parameters. For each division and day j ∈ J ,
we simply populate qj with the average divisional XB absence rate for 2019 of the same day
of the week from Data (d). Therefore, each day, all the working XBs will have the same absence rate.

When considering the XB preferences, for each division, the historical absence rates from
Data (d) are split by days of the week and the low and high whiskers, σlow

i and σhigh
i , are identified

for each day of the week i ∈ {1,2,...,7}. The whiskers represent the smallest and largest points from
a dataset within 1.5 times the inter-quartile range. Then, for each day of the week i, we divide
the interval [σlow

i , σhigh
i ] into seven equally distant points σlow

i = hi,1 < hi,2 < ... < hi,7 = σhigh
i

and those values will be the ones populating the parameters qe,j according to the XBs’ preferred
days of the week for days off. Indeed, from their submitted days-off pattern preferences, we can
compute the XBs’ preferred days off from 1 to 7. In general, for each XB e ∈ E and day j ∈ J
such that j corresponds to the day of the week i, qe,j will be given the value hi,n where e has day
of the week i as its nth least preferred day off. We illustrate this with an example on a division.

In Figure 4, we see that on Sundays (i = 1), the low and high whiskers are σlow
1 = 0.022

and σhigh
1 = 0.154, defining the range for h1,1, ..., h1,7, and on Wednesdays (i = 4), σlow

4 = 0.038
and σhigh

4 = 0.171. Then, suppose an XB e submitted the following days-off pattern preferences
(from most to least preferred): Sat-Sun (7), Sun-Mon (6), Fri-Sat (5), Thu-Fri (4), Wed-Thu
(3), Tue-Wed (2), Mon-Tue (1). We are now able to rank his/her individual days of the week
preferences for days off: Sun (13), Sat (12), Fri (9), Mon (7), Thu (7), Wed (5), Tue (3). In case of
ties, the natural week ordering prevails. Then, on Wednesdays, XB e has an absence probability
of h4,2 = 0.06 because Wednesdays are his/her 2nd least desired day off. Hence, qe,4 = qe,11 = 0.06
since days j = 4 and j = 11 of the horizon are Wednesdays. Similarly, on Sundays, his/her absence
probability is of h1,7 = 0.154. We can see in this example that the absence probability of XBs is
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high (low) in the whiskers interval, on days of the week where the XB has a strong (weak) desire to
have a day off. It is also worth noting that by construction, for each day of the week i ∈ {1,2,...,7},
the values qi and hi,4 are always very close to each other, making the absence probability of XBs
receiving their middle choice very similar to the overall absence probability of XBs when their
preferences are not considered.

Fig. 4. Box plot of XB absence rates for division 1. For each day of the week i, the values hi,1 to
hi,7 are displayed with the horizontal red lines.

3.5.5. Other parameter settings

In the experiments, we consider |J | = 14-day long horizons, with an hourly discretization of the
time (|T | = 24).

The number of XBs |E| varies according to the division and can be found in Table 2 along
with an overview of the known-in-advance and unknown absence quantities. Due to a lack of
information in the data, we proceeded to a sensitivity analysis to determine |E| and fixed, for each
division, the number of XBs minimizing the cost over the 25 planning horizons of the XB days-off
problem without considering XB preferences.
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Table 2. Number of XBs and overview of demand per division.

Division 1 2 3 4 5 6 7 8 9 10
|E| 50 56 55 61 73 51 67 61 63 98

maxj∈J oj 14 13 12 16 15 13 17 15 18 32
maxj∈J LBj 30 31 35 36 45 32 39 34 40 46
Note: The third row indicates the average over all the planning horizons of the maximal daily number of
known-in-advance absences over the horizon. LBj stands for a lower bound on the number of XBs to cover
the unknown absences on day j, and is calculated by summing the daily unknown absence durations and
dividing it by 8 hours (the duration of a regular XB shift). The last row indicates the average over all

scenarios and planning horizons of the maximal daily LBj over the horizon. The last two rows are rounded
to nearest integer.

The number of daily scenarios |Sj | varies according to the experiments, but is always the same
for all days of a horizon. When building these scenarios, the number of daily unknown absence
durations l is always equal to the number of unknown absence shapes k. The daily scenarios are
always treated with equal probability: ∀s1, s2 ∈ Sj , α

s1
j = αs2

j .

The set of duties W contains 201 duties covering the whole day, with a potential 3 hours
long pause in the middle (representing split duties, commonly used in public transit). Since the
labor union agreement states that each employee must be paid a minimum of 8 hours, all the
duties are created with a minimum of 8 work hours. After the first 8 work hours which are paid
at regular rate, each additional working hour is paid as overtime. No duty exceeds a 12-hour span
nor a 10-hour work duration, meaning that the maximum overtime duration is 2 hours. The cost
cw

2 of duties w is calculated in the following way: a cost of 1.5 is assessed for each overtime hour,
1 for each regular working time hour and 0.5 for each unpaid pause hour as a mental cost for the
driver, making the cost of any duty ranging between 8 and 11.

Costs c1 = 10 and c3 = 0.75 (when using XB preferences) were also tuned using a sensitiv-
ity analysis on a single division.

3.5.6. Problem instances

As stated in Section 3.5.1, we have in hand 25 planning horizons for each of the 10 divisions. We
transform those planning horizons into 2500 problem instances by sampling 10 sets of XB days-off
pattern preferences for each planning horizon and division. When not considering the days-off
preferences, we remain with a total of 250 problem instances as we use the divisional average
absence rates qj instead of the XB-preference related ones, as explained in Section 3.4.2.

Whenever a problem instance is solved with XB preferences consideration, the first-stage
solution is saved. It is then evaluated on a hidden set of 1000 second-stage problem instances
by fixing the first-stage solution to the saved one. Each of these second-stage problems contains
exactly 1 scenario from a held-out test set of 1000 scenarios.

To ensure a fair comparison between solutions that do and do not take into account the
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XB days-off preferences, the solutions found in the latter case are evaluated on the 10 problem
instances with different XB preference samplings, the test set of scenarios, and formulation (1)-(9)
instead of the special case formulation defined in Section 3.4.2. In this way, we can easily observe
in the evaluation phase the repercussions of taking the days-off decisions without considering the
XB preferences.

3.5.7. Computational environment

The integer programs were all solved using the Gurobi MIP solver v9.5.0, limited to a single thread
of an Intel Gold 6148 Skylake @ 2.4 GHz CPU. 16Gb of RAM were sufficient to solve all instances.
In fact, the largest problem instances involve up to around 45,000 constraints and 365,000 integer
variables. A time limit of 3 hours and an optimality gap tolerance of 0.01% were given as stopping
criteria.

3.6. Computational experiments
In this section, we report the experimental results. We start in Section 3.6.1 by showing the benefit
of considering employee preferences. Then, in Section 3.6.2, we empirically motivate the interest of
considering a stochastic formulation. Sections 3.6.3 and 3.6.4 provide an analysis on the number
of scenarios to use and a comparison with solutions under perfect information, respectively. The
results shown in this section correspond to the evaluation phase described in Section 3.5.6, and are
averaged over the 1000 evaluation scenarios and the 25 planning horizons for each division.

3.6.1. Impact of preferences

Tables 3 and 4 provide details about the stochastic solutions that do and do not consider the XB
days-off preferences. Table 5 compares these two sets of solutions.

Table 3. Statistics about stochastic solutions (100 daily scenarios) that do not consider preferences

Division Cost C.S.
(h.) S.W. XB abs. OVS.

(h.)

XB util.
rate
(%)

OVT.
(h.)

Sol. time
(min.)

Opt. gap
(%)

Solved
instances

1 2876.1 35.5 4.23 63.1 600.8 77.4 72.2 77.2 0.08 23/25
2 3089.8 27.4 4.27 94.1 761.0 74.4 61.0 56.6 0.04 23/25
3 3391.1 42.2 4.22 82.6 699.6 77.5 77.2 91.9 0.21 19/25
4 3412.5 38.8 4.38 106.3 797.6 75.1 72.8 52.6 0.01 25/25
5 4479.8 48.3 4.31 100.4 981.8 76.9 93.1 83.2 0.11 23/25
6 3016.3 35.8 4.45 63.4 919.3 68.2 43.9 71.8 0.03 20/25
7 3742.7 31.6 4.53 97.9 860.8 76.4 77.2 72.0 0.13 22/25
8 3567.8 40.7 4.08 83.0 881.2 74.3 80.2 86.8 0.37 21/25
9 3801.5 44.2 4.47 67.5 1013.2 72.1 55.0 49.4 0.18 23/25
10 4761.6 41.7 4.48 153.0 1335.3 72.3 86.8 87.8 0.22 20/25

Mean 3613.9 38.6 4.34 91.1 885.0 74.5 71.9 72.9 0.14 -
Note: The average and the maximal optimality gap for non-optimal instances are 1.06% and 3.96%,

respectively.

The cost, the cancelled service (C.S.), the average employee social welfare (S.W.), the number of
XB absences (XB abs.), the overstaffing (OVS.), the XB utilization rate (XB util. rate, calculated
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Table 4. Statistics about stochastic solutions (100 daily scenarios) that consider preferences

Division Cost C.S.
(h.) S.W. XB abs. OVS.

(h.)

XB util.
rate
(%)

OVT.
(h.)

Sol. time
(min.)

Opt. gap
(%)

Solved
instances

1 2773.0 28.7 5.86 58.5 623.3 76.7 64.7 180.0 2.12 0/250
2 2988.8 21.6 5.78 89.7 781.2 73.9 51.5 180.0 1.69 0/250
3 3276.1 34.1 5.85 76.5 730.6 76.7 67.5 180.0 1.75 0/250
4 3270.4 28.5 5.89 100.7 821.7 74.5 62.7 180.0 1.57 0/250
5 4327.7 39.3 6.00 94.9 1007.8 76.4 84.0 180.0 1.16 0/250
6 2921.2 30.9 6.00 60.9 928.7 67.9 40.6 180.0 1.32 0/250
7 3592.2 22.3 6.23 91.8 887.0 75.9 64.2 180.0 1.39 0/250
8 3434.4 33.0 5.70 79.5 894.0 73.9 72.8 180.0 1.57 0/250
9 3686.5 38.8 6.07 64.6 1025.9 71.8 50.1 180.0 1.19 0/250
10 4547.9 28.2 6.04 145.6 1366.4 71.7 72.0 180.0 1.13 0/250

Mean 3481.8 30.5 5.94 86.3 906.7 73.9 63.0 180.0 1.49 -
Note: The maximal optimality gap for non-optimal instances is 5.43%.

by dividing the sum of hours where XBs cover unknown absences by the sum of their paid work
hours) and the overtime (OVT.) are shown in Tables 3 and 4, and for similar tables in this section.
The solution time (Sol. time), the optimality gap (Opt. gap) and the number of instances solved to
optimality (Solved instances) are also displayed and concern the first-stage solutions obtained from
solving the extensive form of the two-stage problems (before the evaluation phase). Optimality is
obtained in less than a second when solving any second-stage problem in the evaluation phase.

Table 5. Improvements from solutions that do not consider preferences to solutions that consider
them

Division Cost
(%)

C.S.
(%)

S.W.
(%)

1 3.34 19.01 38.87
2 3.11 21.09 35.70
3 3.13 19.35 39.22
4 3.82 26.49 34.64
5 3.21 18.72 39.43
6 3.04 13.58 35.43
7 3.88 29.60 37.72
8 3.54 18.81 40.03
9 2.76 12.39 36.18
10 4.39 32.34 34.92

Mean 3.42 21.14 37.21

In Table 5 and for similar tables in the rest of the section, the average over all evaluation instances
of the cost and social welfare ratios over the two methods are shown. For the cancelled service,
the ratio of the average are displayed to account for solutions with no cancelled service on some
evaluation instances.

We observe important differences between the two approaches. The solutions with prefer-
ences outclass the ones without preferences in terms of cancelled service, social welfare and cost.
In fact, the solutions with preferences are on average close to a social welfare of 6, meaning
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that the XBs are assigned on average to their 2nd most preferred days-off pattern. Without
preferences, the social welfare reaches an average value of 4.34 (close to the 4th most preferred
pattern). This 37.21% social welfare improvement is directly reflected on the level of employee
satisfaction which permits to save on average around 5 XB absences per planning horizon when
considering preferences. Consequently, the cancelled service and the total cost are much lower
when considering preferences, beating the solutions without preferences by 21.14% and 3.42%
respectively. Other consequences of the 5 XB absences saved are the increase in overstaffing and
decrease in utilization rate from the solutions that do not consider preferences to the ones that
do; indeed, the additional XB duties that we can assign might not cover a lot of demand, but
help to cover the demand peaks during the horizon. The overtime also follows a decrease, which
is intuitive. In terms of solution time, however, the stochastic program with preferences is never
solved to proven optimality within 3 hours, while the programs without preferences are solved on
average in 1h13min.

3.6.2. Value of the stochastic solution

The value of stochastic solution (VSS) is introduced in Birge (1982), and expresses how well
the stochastic formulation takes care of the problem uncertainty compared to the deterministic
formulation. The deterministic formulation considers only 1 daily scenario each day, that we choose
to be the average of the 100 scenarios from the stochastic formulation. Details of the solutions
obtained by ignoring and considering preferences are shown in Tables 6 and 7, respectively. The
VSSs are reported in Table 8.

Table 6. Statistics about deterministic solutions that do not consider preferences

Division Cost C.S.
(h.) S.W. XB abs. OVS.

(h.)

XB util.
rate
(%)

OVT.
(h.)

Sol. time
(min.)

Opt. gap
(%)

Solved
instances

1 2932.3 40.3 4.29 62.6 613.9 77.0 76.7 0.0 0.00 25/25
2 3170.2 35.5 4.29 94.5 771.2 74.1 66.0 0.0 0.00 25/25
3 3435.6 46.3 4.33 82.0 711.7 77.2 81.0 0.0 0.00 25/25
4 3452.0 42.2 4.44 106.1 807.9 74.8 78.5 0.0 0.00 25/25
5 4501.7 50.0 4.37 100.3 990.2 76.8 98.9 0.0 0.00 25/25
6 3050.7 38.9 4.59 63.1 929.7 68.0 48.5 0.1 0.00 25/25
7 3786.8 35.4 4.58 97.6 871.3 76.2 81.6 0.0 0.00 25/25
8 3592.7 42.9 4.00 83.6 881.3 74.3 83.5 0.6 0.00 25/25
9 3824.4 46.1 4.50 66.9 1020.8 71.9 56.7 0.2 0.00 25/25
10 4796.7 44.0 4.54 152.6 1348.7 72.1 94.5 0.2 0.00 25/25

Mean 3654.3 42.2 4.39 90.9 894.7 74.2 76.6 0.1 0.00 -

The behaviours are different when comparing the stochastic solutions to the deterministic solutions,
depending on whether the preferences are taken into account or not. Although the VSSs are
similar on average (1.04% by not considering preferences, 0.89% by considering preferences), it
is when looking at the social welfare and cancelled service improvements that we see evidence of
the strength of the stochastic formulation. The cancelled service is reduced by 8.80% and 16.63%
(by not considering and by considering the preferences, respectively) when using the stochastic
solutions over deterministic ones. Similarly, when considering the preferences, the social welfare is
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Table 7. Statistics about deterministic solutions that consider preferences

Division Cost C.S.
(h.) S.W. XB abs. OVS.

(h.)

XB util.
rate
(%)

OVT.
(h.)

Sol. time
(min.)

Opt. gap
(%)

Solved
instances

1 2810.4 35.2 5.68 64.5 590.9 77.6 73.7 161.2 0.28 36/250
2 3042.8 29.6 5.16 98.5 731.0 75.1 63.9 159.6 0.20 41/250
3 3314.1 41.6 5.25 86.1 669.9 78.2 76.6 172.0 0.16 16/250
4 3312.7 35.4 5.05 111.4 755.3 76.0 74.8 168.0 0.23 30/250
5 4353.8 43.5 5.72 101.2 972.5 77.0 95.2 174.5 0.22 12/250
6 2938.1 34.4 5.69 65.6 897.8 68.7 45.1 146.7 0.14 68/250
7 3661.6 31.2 5.75 100.2 842.5 76.8 78.3 170.6 0.18 21/250
8 3456.4 37.6 5.36 86.1 854.2 74.8 81.0 179.7 0.32 1/250
9 3696.5 41.2 5.99 68.5 1004.2 72.2 57.2 166.1 0.23 29/250
10 4593.0 33.8 5.87 152.1 1336.6 72.3 88.1 180.0 0.27 0/250

Mean 3517.9 36.4 5.55 93.4 865.5 74.9 73.4 167.8 0.22 -
Note: The average and the maximal optimality gap for non-optimal instances are 0.25% and 2.87%,

respectively.

Table 8. Value of stochastic solutions: improvements from deterministic solutions to stochastic
solutions using 100 daily scenarios

VSS
without preferences

VSS
with preferences

Division Cost
(%)

C.S.
(%)

S.W.
(%)

Cost
(%)

C.S.
(%)

S.W.
(%)

1 1.71 12.10 -1.02 1.10 18.33 3.31
2 2.28 22.72 -0.16 1.58 26.96 12.62
3 1.11 8.78 -2.22 0.87 18.15 12.18
4 1.06 8.12 -1.14 1.14 19.39 17.88
5 0.41 3.34 -1.15 0.47 9.80 5.02
6 1.02 8.11 -2.90 0.42 10.28 5.71
7 1.09 10.58 -0.75 1.73 28.61 8.64
8 0.54 5.04 2.51 0.48 12.12 6.62
9 0.61 3.95 -0.27 0.25 6.00 1.56
10 0.62 5.30 -1.28 0.88 16.65 2.97

Mean 1.04 8.80 -0.84 0.89 16.63 7.65

subject to an increase of 7.65%. Given that social welfare maximization is not considered in the
stochastic and deterministic solutions without preferences, it is not surprising that no social welfare
trend is observed when comparing the respective solutions. We encounter the same phenomenon
explained earlier about the reduction of XB absences, leading to a decrease in utilization rate
and overtime, and an increase in overstaffing from the stochastic solutions to the deterministic
solutions, when preferences are taken into account. In terms of solution time, it is interesting to
notice that most of the first-stage solutions for the deterministic formulation with preferences are
not proven to be optimal. Recall that the deterministic formulation considers only 1 scenario,
highlighting the difficulty of the problem.

Counter-intuitively, we can see that for the deterministic formulations, although the social
welfare is greater when preferences are considered compared to when they are not considered, the
number of XB absences is also superior. By looking at the details of the solutions, we explain
this by the fact that the deterministic model with preferences saves the cost of a few duties by
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allowing more absences to occur on days where it is easy to cover the demand. Increasing the
number of XB absences cannot be done without decreasing the social welfare. The maximal social
welfare decrease for an XB e costs at most (maxp∈P sp,e −minp∈P sp,e) · c3 = (7 − 1) · 0.75 = 4.5,
and the cost of saving a duty is at least minw∈W cw

2 = 8. Hence, the model tends to make few
XBs absent when it does not result in cancelled service. We note that this behaviour disappears
once multiple scenarios are taken into consideration. This is because, in that setting, having one
more XB absence could create some cancelled service on some specific scenarios, inferring a cost
of c1 = 10 for these scenarios and making the duty cost savings not worth anymore.

3.6.3. Varying the number of scenarios

In this section, we justify our choice of using 100 daily scenarios. Table 9 compares the solutions
obtained when using 25 and 49 daily scenarios, and Table 10, for 49 and 100 scenarios.

Table 9. Improvements from solutions using 25 daily scenarios to solutions using 49 daily scenarios

49 Vs 25 scenarios
without preferences

49 Vs 25 scenarios
with preferences

Division Cost
(%)

C.S.
(%)

S.W.
(%)

Cost
(%)

C.S.
(%)

S.W.
(%)

1 0.98 7.93 0.44 0.84 8.25 0.73
2 0.75 7.29 0.83 0.49 6.20 0.39
3 0.82 6.68 0.63 0.55 5.56 0.54
4 0.55 5.20 -0.27 0.49 4.54 0.22
5 0.47 3.92 0.12 0.32 2.83 0.44
6 0.20 1.73 -1.51 0.30 3.20 -0.14
7 -0.20 -1.31 0.02 0.19 3.24 0.36
8 0.67 6.12 0.73 0.65 7.60 0.72
9 0.17 1.42 0.29 0.06 0.63 0.05
10 0.70 6.95 -0.41 0.22 3.85 0.26

Mean 0.51 4.59 0.09 0.41 4.59 0.36
Note: When using 25 daily scenarios and without preferences, the average solution time is 17.3min and

241/250 instances are solved optimally. With preferences, none of the 2500 are solved optimally in 3h; the
average and maximal optimality gaps are 1.19% and 4.45%, respectively.

When switching from 25 to 49 daily scenarios, the total cost is improved on average by 0.51%
and 0.41%, for the case without and with preferences, respectively. These values drop to 0.26%
and 0.22% when going from 49 to 100 daily scenarios. When taking into account the preferences,
the average optimality gap is slowly increasing, going from 1.19% when using 25 daily scenarios
to 1.34% with 49 scenarios and finally 1.49% with 100 scenarios. The slow increase in total cost
improvements along with the increase in optimality gaps confirms the sufficiency of using 100 daily
scenarios.

It is also worth mentioning that the cancelled service is much more sensitive to the number
of scenarios than the social welfare. This is explained by the direct relationship between the
cancelled service and the demand that the scenarios represent. The relation between scenarios
and social welfare is less obvious, making its improvements small when increasing the number of
scenarios.

50



Table 10. Improvements from solutions using 49 daily scenarios to solutions using 100 daily sce-
narios

100 Vs 49 scenarios
without preferences

100 Vs 49 scenarios
with preferences

Division Cost
(%)

C.S.
(%)

S.W.
(%)

Cost
(%)

C.S.
(%)

S.W.
(%)

1 0.38 3.39 0.94 0.34 4.01 0.41
2 0.16 1.40 0.08 0.30 4.68 0.75
3 0.38 2.37 0.06 0.43 3.57 0.93
4 0.27 1.16 0.55 0.33 4.32 0.98
5 0.08 -0.01 0.40 0.02 1.18 -0.18
6 0.26 2.02 0.95 0.10 1.66 0.71
7 0.36 3.71 -0.26 0.18 3.96 0.45
8 0.38 3.45 0.54 0.31 3.23 0.38
9 0.27 3.49 0.77 0.08 1.11 0.68
10 0.10 1.13 1.01 0.16 1.96 0.93

Mean 0.26 2.21 0.50 0.22 2.97 0.60
Note: When using 49 daily scenarios and without preferences, the average solution time is 36.1min and

242/250 instances are solved optimally. With preferences, none of the 2500 are solved optimally in 3h; the
average and maximal optimality gaps are 1.34% and 5.42%, respectively.

3.6.4. Expected value of perfect information

The expected value of prefect information (EVPI) is introduced in Pratt et al. (1995) and measures
the loss due to the problem uncertainty. It is calculated by comparing the stochastic and the
perfect information solution costs on each evaluation scenario, where the perfect information
solution costs are obtained by solving the problem after having observed the realization of the
random variables (also called wait-and-see approach). Due to the high computational time to find
the perfect information solutions that consider preferences on all the problem instances (3h for
each of the 2,500,000 instances), we restrict ourselves to the case with no preferences. Table 11
shows the details from the perfect information solutions without considering preferences. The
EVPI are then reported in Table 12.

Table 11. Statistics about perfect information solutions that do not consider preferences

Division Cost C.S.
(h.) S.W. XB abs. OVS.

(h.)

XB util.
rate
(%)

OVT.
(h.)

Sol. time
(min.)

Opt. gap
(%)

Solved
instances

1 2654.8 15.0 4.25 62.7 569.7 78.5 58.3 0.0 0.00 249820/250000
2 2927.0 13.1 4.27 94.0 736.7 75.2 49.6 0.0 0.00 250000/250000
3 3127.5 17.6 4.30 82.0 667.3 78.5 64.8 0.0 0.00 250000/250000
4 3203.4 19.9 4.43 106.0 768.1 75.9 60.4 0.0 0.00 249980/250000
5 4188.0 22.3 4.31 100.4 933.8 78.0 71.3 0.0 0.00 249880/250000
6 2876.3 23.5 4.50 63.4 898.3 68.9 34.6 0.0 0.00 244290/250000
7 3517.0 12.1 4.54 97.7 822.8 77.4 57.4 0.0 0.00 249920/250000
8 3306.2 17.5 4.05 83.4 836.3 75.5 62.1 0.0 0.00 249980/250000
9 3673.3 34.2 4.42 67.5 985.3 72.8 37.3 0.0 0.00 249860/250000
10 4513.4 19.1 4.48 153.1 1298.4 73.1 72.7 0.0 0.00 249640/250000

Mean 3398.7 19.4 4.35 91.0 851.7 75.4 56.9 0.0 0.00 -
Note: The average and the maximal optimality gap for non-optimal instances are 0.11% and 0.44%,

respectively.
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Table 12. Expected value of perfect information that do not consider preferences: improvements
from stochastic solutions using 100 daily scenarios to perfect information solutions

Division Cost
(%)

C.S.
(%)

S.W.
(%)

1 7.20 57.63 0.67
2 5.01 52.05 0.41
3 7.03 58.28 2.28
4 5.72 48.61 1.36
5 6.04 53.88 0.10
6 4.41 34.18 1.46
7 5.76 61.72 0.38
8 6.85 56.99 -0.44
9 3.20 22.59 -0.94
10 5.08 54.30 0.29

Mean 5.63 50.02 0.56

Since the perfect information solutions without preferences are obtained by solving the formulation
for the case without preferences in Section 3.4.2 and then evaluated on the second-stage evaluation
problem instances with XB preferences, we can sometimes witness the stochastic solutions
without preferences outperforming the perfect information solutions. As a matter of fact, 227,111
stochastic solutions obtained a lower cost than the perfect information solutions out of the
2,500,000 evaluation instances, representing around 9.08%. Also, because solving the deterministic
formulation without preferences, it is not surprising to see the average solution time and optimality
gap of 0.0min and 0.00%, respectively, for the perfect information solutions.

The EVPI is already high at 5.63% on average, but we can particularly see the effect of
the uncertainty on the cancelled service: knowing in advance the demand would allow us to
decrease on average by one half the cancelled service. We expect these values to be even higher
when considering preferences.

3.7. Conclusion
In this paper, the extra board days-off scheduling problem is studied for the first time. We develop
a flexible two-stage stochastic integer program that can take into consideration the employee
preferences. This problem is interesting because of its applicability in the transit industry. From
the practical side, an improvement would be to include an additional recourse action, which is to
call regular drivers to work overtime at the end of their duties or during their days off. This action
is regularly used in the transit companies because it permits to save service punctually without
hiring additional extra boards that would decrease the global extra board utilization rate.

The problem is also methodologically challenging. Indeed, the addition of endogenous un-
certainty related to the employee preferences and absence probabilities, to the original exogenous
demand uncertainty, leaves unsolved even the smallest mixed-integer program instances that
involve as low as 500 constraints and 4000 variables. Nevertheless, based on instances generated
from real-world data, we show empirically the added value of representing uncertainty through
a stochastic program as well as of considering employee satisfaction to decrease their absences
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and the cancelled service. From the methodological side, a great addition to our work would
be to derive a solution approach to solve our mixed-integer programs to optimality as further
improvements on cost, cancelled service and social welfare may be obtained.

Our work is currently being implemented in a world-leader software solutions provider for
public transit operations.

Ethical Impact
The pipeline we develop in this work shows that taking extra board preferences into account has
benefits for both the transit company and the employees. The cancelled service reduction is greater
and the extra board social welfare is higher than when preferences are not considered. However,
particular attention should be given to the individual preference scores of the days-off that extra
boards receive. Indeed, since we are globally maximizing the social welfare, nothing prevents the
dispersion of values forming the welfare and some extra boards could receive days off they do not
like even if the social welfare is high. Any real-world implementation of this work should carefully
monitor the individual preference scores to avoid unlucky XBs receiving disliked days off, horizon
after horizon.
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Chapter 4

Conclusion

In this thesis, we tackled the problem of scheduling extra boards from the operational phase of
the transit industry. More precisely, we focused on assigning the days off to extra boards in such
a way that the regular employees’ absences can be efficiently covered. The absence probabilities
of the extra boards were accounted for, and made dependent on the combination of their days-off
preferences and the ones they are assigned. The formulation we proposed mixes exogenous
uncertainty related to the demand and endogenous uncertainty related to the preferences. Our
formulation leverages the decomposable aspect of the problem and enables to better represent the
exogenous uncertainty with a least number of scenarios compared to the classical way of doing so.
Note that the methodology used is general and can be transposed to other application domains.
The experimental results showed value in using a stochastic formulation for this problem, and
that the consideration of the preferences leads to better solutions in terms of social welfare and
cancelled service. This work will help the transit companies to improve absence management.

Some future research directions were discussed in Section 3.7. We suggested adding an ad-
ditional recourse action that consists in calling an employee that was initially on a day off, to
work. This would help to reduce cancelled service on specific days, while avoiding the hiring of an
additional employee. Most of the time, employees like to have the option to work on their day off
thanks to the whole workday being paid in overtime. However, we anticipate an increase in the
absence probabilities of such employees due to the fatigue accumulation and losing a day off, as
well as the financial compensation offered when working on an initially scheduled day off. This
endogenous process could be modeled in a similar way as it is for the endogenous uncertainty of the
extra boards’ absence probabilities. The need for an algorithm to solve the mixed-integer programs
to optimality was also underlined. To this end, the design of a decomposition inspired by the
integer L-shaped method (Laporte and Louveaux (1993) and Angulo et al. (2016)) for two-stage
mixed-integer stochastic programs could have the potential to speed up computations. Reducing
the number of scenarios while keeping the same representational power would be an alternative way
to reach optimality. Indeed, currently, the scenarios are assumed to have equal probability, and
nothing prevents some daily scenarios to be very similar or even identical. Grouping looking-alike
scenarios and adjusting the probabilities accordingly, for instance with the use of clustering, is an
interesting avenue worth investigating.
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