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Résumé

En informatique, la résolution de problèmes NP-difficiles en un temps raisonnable est d’une
grande importance : optimisation de la chaîne d’approvisionnement, planification, routage,
alignement de séquences biologiques multiples, inference dans les modèles graphiques pro-
babilistes, et même certains problèmes de cryptographie sont tous des examples de la classe
NP-complet. En pratique, nous modélisons beaucoup d’entre eux comme un problème d’op-
timisation en nombre entier, que nous résolvons à l’aide de la méthodologie séparation et
évaluation. Un algorithme de ce style divise un espace de recherche pour l’explorer récursi-
vement (séparation), et obtient des bornes d’optimalité en résolvant des relaxations linéaires
sur les sous-espaces (évaluation). Pour spécifier un algorithme, il faut définir plusieurs pa-
ramètres, tel que la manière d’explorer les espaces de recherche, de diviser une recherche
l’espace une fois exploré, ou de renforcer les relaxations linéaires. Ces politiques peuvent
influencer considérablement la performance de résolution.

Ce travail se concentre sur une nouvelle manière de dériver politique de recherche, c’est
à dire le choix du prochain sous-espace à séparer étant donné une partition en cours, en
nous servant de l’apprentissage automatique profond. Premièrement, nous collectons des
données résumant, sur une collection de problèmes donnés, quels sous-espaces contiennent
l’optimum et quels ne le contiennent pas. En représentant ces sous-espaces sous forme de
graphes bipartis qui capturent leurs caractéristiques, nous entraînons un réseau de neurones
graphiques à déterminer la probabilité qu’un sous-espace contienne la solution optimale par
apprentissage supervisé. Le choix d’un tel modèle est particulièrement utile car il peut
s’adapter à des problèmes de différente taille sans modifications. Nous montrons que notre
approche bat celle de nos concurrents, consistant à des modèles d’apprentissage automatique
plus simples entraînés à partir des statistiques du solveur, ainsi que la politique par défaut
de SCIP, un solveur open-source compétitif, sur trois familles NP-dures: des problèmes de
recherche de stables de taille maximum, de flots de réseau multicommodité à charge fixe, et
de satisfiabilité maximum.

Mot-clés : Optimisation combinatoire, Séparation et évaluation, Recherche de solutions,
Plongement-à-l’optimum, Apprentissage par imitation, Réseaux de neurones graphiques
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Abstract

In computer science, solving NP-hard problems in a reasonable time is of great importance,
such as in supply chain optimization, scheduling, routing, multiple biological sequence align-
ment, inference in probabilistic graphical models, and even some problems in cryptography.
In practice, we model many of them as a mixed integer linear optimization problem, which
we solve using the branch and bound framework. An algorithm of this style divides a search
space to explore it recursively (branch) and obtains optimality bounds by solving linear
relaxations in such sub-spaces (bound). To specify an algorithm, one must set several pa-
rameters, such as how to explore search spaces, how to divide a search space once it has
been explored, or how to tighten these linear relaxations. These policies can significantly
influence resolution performance.

This work focuses on a novel method for deriving a search policy, that is, a rule for select-
ing the next sub-space to explore given a current partitioning, using deep machine learning.
First, we collect data summarizing which subspaces contain the optimum, and which do not.
By representing these sub-spaces as bipartite graphs encoding their characteristics, we train
a graph neural network to determine the probability that a subspace contains the optimal so-
lution by supervised learning. The choice of such design is particularly useful as the machine
learning model can automatically adapt to problems of different sizes without modifications.
We show that our approach beats the one of our competitors, consisting of simpler machine
learning models trained from solver statistics, as well as the default policy of SCIP, a state-
of-the-art open-source solver, on three NP-hard benchmarks: generalized independent set,
fixed-charge multicommodity network flow, and maximum satisfiability problems.

Keywords : Combinatorial Optimization, Branch and Bound, Solution Search, Diving-
to-Optimum, Imitation Learning, Graph Neural Networks
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Chapter 1

Introduction

In this section, we will review basic concepts of mixed integer programming. We will define
a mixed integer programming as a special kind of mathematical optimization problem, and
present the branch and bound family of algorithms, which is a framework designed to solve
them. Several sequential decision-making problems occur within these algorithms that can
drastically influence performance. We will contrast two approaches taken for the design of
such decision-making scheme, namely handcrafted heuristics, and data-driven ones. Since we
will use machine learning frameworks for the latter, we will present basic machine learning
paradigms and models with a focus for the ones useful for our purposes.

1. Mixed integer linear programming
Mixed integer linear programming is a powerful and flexible tool for modeling large-

scale discrete optimization problems of different application domains. According to NP-
completeness theory (Stephen Cook, 1971), any NP-hard problem can be formulated as a
MILP [1] since its solving is NP-hard. Many well-known theoretical problems have been
heavily studied and modeled, such as traveling salesperson, satisfiability in Boolean circuits,
subset sum, knapsack, and independent set problems. In a more applied context, NP-hard
problems naturally arise in numerous sectors, such as multiple sequence alignment, a very
active research area in bioinformatics with high applications in phylogenetics and genomics
[2], or in industrial planning, such as optimal network flows, optimal lot sizing, backlogging
[3], and symmetric-key primitives analysis in cryptology [4]. Firefighting [5], combinatorial
drug therapy for cancer [6], optimal wind turbine planning [7], biodiversity conservation
planning [8] are other examples of real-life problems often modeled as MILPs and then
solved.



A mixed integer linear program (MILP) is a mathematical optimization problem of the
form

min
x ∈ Rn

cT x

s.t. Ax ≤ b,

xi ∈ Z ∀i ∈ I,

(1.1)

where A ∈ Rm×n, b ∈ Rm, c ∈ Rn, and I ⊆ {1,2...n} are the indices of the variables con-
strained to be integer. The 4-tuple (A, b, c, I) characterizes the problem and is often referred
to as the problem data. The function to optimize, cT x, is called the objective function. The
set S(A, b, I) := {x|Ax ≤ b ∧ xi ∈ Z ∀i ∈ I} will be referred to as the search space induced
by (A, b, I). An element in the search space is called a feasible solution of the problem.
A feasible solution that minimizes the objective function is called an optimal solution or
optimum, and its associated objective value is referred as the optimum’s value.

Let (A, b, c, I) be a MILP. A linear inequality α, β ∈ Rn × R, defined as a function
Rn → {True, False} of vectorial format αT x ≤ β, is said to be valid on a MILP (A, b, c, I)
if

αT x ≤ β ∀x ∈ S(A, b, I).
A convex hull on a search space S(A, b, I) is, informally, the smallest polyhedron1 con-

taining the search space. More formally, we denote and define such set as follows:

CH(A, b, I) := ∩P a polyhedron |S(A,b,I)⊆P P.

Besides their elementary yet malleable structural properties, which enable painless and
intuitive modeling, MILPs are interesting since their continuous relaxations (the problems
resulting from the removal of integrality constraints xi ∈ Z ∀i ∈ I) are linear programs
(LP), which can be solved in polynomial time [9], [10]. Thus, obtaining a good lower bound
on the problem can be computationally cheap. One can argue that this property motivated
the development of two families of algorithms for solving MILPs until optimality: Cutting
Planes (CPs) [11] and Branch and Bound (B&B) [12]. Both frameworks are designed to
solve MILPs iteratively to obtain increasingly satisfactory lower bounds until an optimum
is found. Other frameworks, referred to as primal heuristics, are designed to find feasible
solutions that are not required to be optimal. Examples of such approaches are simulated
annealing [13], genetic algorithms [14], tabu search [15], local search [16], to name a few.

CPs can be used as an algorithm for solving certain MILPs: it can be proven that
for certain classes of MILPs, and certain classes of valid inequalities, iteratively adding such
inequalities will lead to the linear relaxation polytope to converge to the convex hull. In other
words, for a MILP (A, b, c, I), one can iteratively compute a collection of valid inequalities

1A polyhedron is a set of points in Rn satisfying a finite number of linear inequalities.
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Hx ≤ h such that the optimization problem

min
x∈Rn

cT x

s.t. Ax ≤ b

xi ∈ Z ∀i ∈ I

is equivalent, in the sense that the optimums coincide, to

min
x∈Rn

cT x

s.t. Ax ≤ b

Hx ≤ h.

The problem of solving the MILP (on the left) is thus reduced to the problem of solving
an LP (on the right), which can be solved efficiently in theory and in practice. Unfortunately,
however, all currently known approaches for computing such Hx ≤ h suffer from numerical
instabilities, which prevent convergence in practice [17]. Thus this strategy is rather used as
an aid to tighten the LP relaxation rather than to solve the MILPs per se.

B&B employs a divide-and-conquer approach, where the search space is recursively split
by branching on unfeasible variables in the continuous relaxation optima. This recursive
nature means that the solving process can be interpreted as a tree search process where
nodes correspond to sub-MILPs resulting from such branchings. Algorithm 1 details the
procedure, with n

i a n-vector with a one in the ith position, and zeros otherwise (“one-hot
vector”).

Algorithm 1 The branch and bound framework for mixed integer linear programming
1: function solve_milp_BB(A, b, c, I)
2: P, ub ← {(A, b, c, I)}, +∞
3: while P += ∅ do
4: P.remove( A, b, c, I ← choose_node( P ) ) # Searching in the tree
5: A, b, x ← solve_LP(A, b, c) # Bounding
6: if ∀i ∈ I, xi ∈ Z then
7: ub ← min(ub, cT x )
8: if ub = cT x then x∗ ← x
9: end if

10: else if cT x < ub then # Branching
11: i ← choose_branch(i ∈ I | xi +∈ Z)

12: P.add
((

A
+ n

i

)

,

(
b

+,xi-

)

, c, I

)

13: P.add
((

A
− n

i

)

,

(
b

−/xi0

)

, c, I

)

14: end if
15: end while
16: return x∗
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In practice, modern commercial and open-source MILP solvers are B&B-based, but often
use CPs to refine search space, and primal heuristics at opportune moments to speed up
the search [18]–[20]. Adding well-chosen valid inequalities can lead the linear relaxation
polyhedron closer to the convex hull, and thus increase the lower bound this relaxation,
thus leading to less branching (more nodes not satisfying the else if condition) and faster
solving. In parallel, well-chosen primal heuristics help lower upper bounds early in the tree,
which also helps reduce the amount of branching necessary.

A major property of the B&B framework is the presence of several arbitrary decisions
that must be repeatedly taken, such as the variable over which to branch (branching), or the
selection of the next node to process (searching in the tree). These are resolved by decision
rules, whose design is tightly linked to solving performance [21]. General decision rules
are often used, although highly problem-specific branching, searching, and refining rules can
lead to state-of-the-art solving for many heavily studied NP-hard problems, such as knapsack
with conflict graphs [22], maximum independent set [23], multicommodity network flow [24],
and capacitated facility location [25]. Unfortunately, the design of such rules requires in
practice considerable research efforts from combinatorial optimization experts, which might
not be available to practitioners. Thus, in practice, most practitioners simply fall back on
general-purpose rules.

A novel idea, however, has arisen recently which proposes to automatically derive good
problem-specific rules without expert knowledge. In many applications, similar MILPs are
repeatedly solved, leading to potential statistical similarities which could be exploited for
improved solving. In particular, one could potentially use machine-learning methods to
derive data-driven decision rules from already solved instances, which could hopefully then
lead to faster solving in future instances [26]. This approach, which will be referred to as
data-driven heuristics in integer programming, is, therefore, both problem-independent and
problem-adaptive. Before reviewing the field’s literature, an introduction of useful machine
learning concepts will follow.

2. Machine learning paradigms
Machine learning (ML) has as objective to give the computer the ability to learn, that

is, to automatically improve itself with experience for accomplishing a task [27]. It can be
seen as a field of applied statistics where the focus is to develop computational methods
for approximating unknown functions rather than providing confidence intervals for such
functions [28].

ML paradigms are meta-frameworks for these methods. They traditionally consist of
supervised learning, unsupervised learning, and reinforcement learning. Other paradigms
exist, e.g., semi-supervised learning, self-supervised learning, and imitation learning [29],
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[30]. We will focus on this thesis on supervised learning and imitation learning; because
imitation learning is tightly linked to reinforcement learning, an overview of the latter will
also be provided.

2.1. Supervised learning

We will introduce the general problem in supervised learning using a probabilistic ap-
proach. We start by defining some important probability concepts.

Given a distribution with probability density function p with support supp(p) =
closure({x ∈ Rd | p(x) > 0}), the log-likelihood of a sample x ∈ supp(p) is defined as
log p(x). The cross-entropy between two distributions with probability density functions p

and q acting on the same support is the quantity

H(p, q) = −EX∼p

[
log q(X)

]
.

This quantity can be interpreted as a measure of distance between two distributions, since it is
minimized when p = q. Note that it is not symmetrical in general, that is H(p, q) += H(q, p).

In supervised learning, one observes a dataset D = {(x1, y1), . . . , (xn, yn)} coming from
a joint probability distribution function p(x, y) over some space X × Y , where X ⊂ Rdin is
called the feature space and Y ⊂ Rdout is called the response space, and one assumes that
there is a function f such that f(x) ≈ y for (x, y) ∈ X × Y . The goal of supervised learning
is to recover this mapping from the sampled data.

More formally, the objective is to estimate, or model, the conditional distribution func-
tion p(y|x). Methods that try to estimate this function directly are called discriminative
supervised learning methods. Alternatively, some methods aim to estimate the joint distribu-
tion p(x, y), from which the conditional distribution follows by p(y|x) = p(x, y)/ ∫

p(x, y)dy.
Methods taking this indirect route are called generative supervised learning methods. The
mapping f , from inputs to outputs, is reinterpreted as the expectation f(x) = EY ∼p(.|X=x)[Y ].

For the rest of this thesis, we will assume a direct, discriminative approach to supervised
learning. The main approach runs as follows. To approximate or “learn” the conditional
distribution p(y|x), one decides on a class of probability density functions pmodel(y|x; θ) pa-
rameterized by some vector θ ∈ Rp, called the model. Then, ones tries to find the parameters
θ that minimize the cross-entropy between the model and empirical distribution p̂ of the ob-
served samples [28]:

min
θ

EX,Y ∼p̂

[
− log pmodel(Y |X; θ)

]
= −min

θ

n∑

i=1
log pmodel(yi|xi; θ).

This quantity is called the empirical risk, and this approach is known as empirical risk
minimization. Since one is looking for the parameters θ that maximize the likelihood of the
observed samples, this is also called the maximum likelihood approach [28]. The optimization
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process is referred to as training: the model is being fit to the data. It is worth mentioning
that the general goal of supervised learning is not to maximise this log-likelihood: instead,
it is to choose a model and an optimization scheme such that after fitting the model to
the data, the resulting is able to perform well on unseen data. This is captured through a
performance function to be selected according to the learning task to accomplish, and may
have no relation to pmodel.

We will now describe a typical train/evaluate scheme ML practitioners perform to learn
such discriminative function f that performs well on unseen data. First, given a dataset D,
the idea would be to partition it in three: Dtrain, Dvalid and Dtest. The dataset Dtrain is used
to fit the model to the data, i.e., to learn parameters for the model. This step is called the
training phase and corresponds to empirical risk minimization. Some models are endowed
with so-called hyperparameters. A hyperparameter may be defined as an unlearnable model
parameter, i.e., parameters that cannot be affected by the training phase (e.g., kernel func-
tions in SVM and kernel size for CNNs, neural network size and activation functions, and
so on, see section 3 for more details about models). To fit hyperparameters to the data,
machine learning practitioners tune them manually and retrain on Dtrain until a satisfac-
tory performance on Dvalid. This step is called hyperparameter tuning. Finally, evaluation,
i.e., performance of the model obtained after training and hyperparameter tuning, is done
using Dtest. A satisfactory model on Dtest is said to generalize well, and the goal of ML
practitioners is solely to obtain such model.

Since hyperparameter tuning is out-of-the-scope of this thesis, we will denote Dtrain as
D. For evaluation, we will either specify that we using the function f on Dtest, or simply on
new/unseen samples.

2.2. Markov decision processes

Many mathematical optimization problems can be formulated as the task of finding how
to behave in an environment that gives feedback, known as a control problem. This is usually
formulated as the task of finding an optimal policy in a Markov decision process (MDP),
where an agent observes the environment to be in a state st ∈ S, takes an action at ∈ A
according to a policy π : S 3→ A, receives a reward rt and the environment transitions to a
new state st+1 ∈ S. This continues until the environment reaches a terminal state sT : the
run s0, . . . , sT is called an episode. The objective is to find the policy that maximizes the
expected return

J(π) = Eπ

[
T∑

t=1
Rt

]

(2.1)

over episodes.
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The standard approach to solving a control problem is through reinforcement learning,
which optimizes a policy through repeated trial-and-error interactions with the environment.
Many reinforcement learning frameworks exists, of which the simplest are the REINFORCE
and Q-learning algorithms. In REINFORCE, the idea is to represent states and actions
vectorially, thus making it possible to model the policy as a learnable vector of parameters.
Then, one looks for the optimal parameters using first-order methods (see Section 4) [31].
Q-learning, in contrast, is more indirect. The idea is to learn offline a score function of state-
action pairs, called the action-value function, that captures the expected total reward [32].
Once the action-value is known, one can derive an optimal policy from it. The approaches
form the basis of the two main families of algorithms, known as policy methods and value
methods: modern methods usually combine the two.

Because of its generality and its treatment of the environment as a black-box, reinforce-
ment learning is often applicable where other methods cannot be applied. Unfortunately,
this generality comes at a cost, and reinforcement learning methods suffer from numerous
downsides, such as high computational requirements and difficulties learning in environments
with a high number of actions or long episodes.

2.3. Imitation learning

An alternative to reinforcement learning for solving control problems is imitation learning,
where one aims to mimic an expert policy. This is only possible in contexts where an expert
that achieves a high return exists, but which for some reason cannot be used directly. The
most important advantage of this approach is its simplicity, and efficiency. An additional
reason to prefer imitation learning over reinforcement learning is that, in reinforcement
learning, directly optimizing the reward function is often unfeasible, leading one to use
proxy reward functions that are easier to optimize, but only roughly correlate with the desired
reward function. In contrast, designing an expert agent might be much more straightforward.

More precisely, in imitation learning we are given a dataset of state-action pairs (si, ai)
from the expert policy πexpert, and we aim to train a machine learning model πmodel such
that πmodel(si) ≈ ai over these samples. Two approaches exist [33]: directly learn to mimic
p̂ (direct imitation learning) [34], or instead learn a reward function that suits p̂ (inverse
reinforcement learning) [35], after which one can use standard reinforcement learning tech-
niques.

In this thesis, we will focus on direct imitation learning. Since the objective is to find a
function such that πmodel(si) ≈ ai, it is appealing to simply treat the task as a supervised
learning problem. This approach is known as behavioral cloning, and often works surprisingly
well [36]–[38]. Nevertheless, it suffers from two major problems: supp(πexpert) may not be
independent and identically distributed, and it may not cover states encountered by the
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learned policy. To address those issues, one can use the stochastic mixing iterative learning
(SMILE) algorithm (Ross & Bagnell, 2010) [39] or the dataset aggregation (DAGGER)
algorithm (Ross, Gordon & Bagnell, 2011) [40]. Alternatively, a simpler approach consists of
intentionally diversifying state-action pairs by occasionally not following the expert (making
mistakes), that is registering expert’s decisions but not taking its recommended actions.
Performing standard supervised learning methods on such a diversified dataset can lead to
learning a policy that better captures the expert behavior.

3. Machine learning models
The previous section described the machine learning paradigms, where it was explained

that one must select a parameterized family of probability distributions, known as a model,
to approximate the true distribution. In this section, we will discuss popular choices, with
particular details for supervised and, by extension, imitation learning. Selection of the
model is a critical choice, and can make in important difference between excellent and poor
generalization ability [41], [42].

3.1. Linear and logistic regression

Besides the discriminative/generative distinction between supervised learning methods
outlined in the previous section, another important dichotomy is between regression and
classification problems. A regression problem is one where the output space is continuous,
while a classification problem is one where the output space is discrete.

Let us first look at regression. A simple example could be a college bookstore that
wants to predict how many instances of a given book are in stock for a given class, knowing
how many students are registered in such class. The history may be plotted as depicted in
Figure 1.1. To solve this problem, the simplest approach would be to use a linear regression
model. Formally, linear regression assumes that pmodel(y|x; θ, θ0) = pNormal(y | θT x + θ0, 1)2,
parameterized by parameters (θ, θ0) ∈ Rd ×R. Under this model, the log-likelihood simplifies
as the mean-square error with linear predictions EX,Y ∼p̂

[
(θT X + θ0 − Y

)2
]. Geometrically,

solving this optimization problem can be interpreted as attempting to make the hyperplane
θT x + θ0 = 0 fit the data points as well as possible, in the sense that the mean distance of
the points to the hyperplane is as small as possible. After solving the supervised learning
optimization problem using gradient descent (see Section 4), Figure 1.2 shows the learned
line (one-dimensional hyperplane parameterized by (θ, θ0)) that would be used for upcoming
inferences. Given a test dataset, a performance measure could be the square root of the
mean square error.

2That is, the normal distribution with mean θT X + θ0 and identity variance.
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Fig. 1.1. An example of a supervised learning dataset.

Fig. 1.2. An example of a data-fitting hyperplane for the linear regression problem.

Let us now turn to classification. As a simple example, the college bookstore might
know information about its clients (age, major, or other characteristics) for each year, and
might want to predict whether the client is likely to make a purchase at the bookstore in
the upcoming semester. The features are the yearly information about the client x, and the
response is a binary variable y = 1 if the client makes a purchase, y = 0 if not. To tackle
this problem, the simplest approach is logistic regression, which is the analogue of linear
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regression for classification. Let the σ(x) = 1/(1 + e−x) denote the sigmoid function. This
function is useful for two reasons: its output may be interpreted as a probability measure,
and the derivative of log σ(x) has the particularly simple form σ(−x) = 1 − σ(x).

Logistic regression assumes that pmodel(y|x; θ, θ0) = pBernoulli(y | σ(θT X + θ0))3, the re-
sulting model is logistic regression. The resulting empirical risk is known as the binary
cross-entropy loss function (to not be confused with cross-entropy operator between two
distributions, which is a more general concept) and is of the form EX,Y ∼p̂

[
Y log σ(θT X +

θ0) + (1 − Y )(1 − log σ(θT X + θ0))
]
. Geometrically, solving this optimization problem can

be interpreted as attempting to make the hyperplane θT x + θ0 = 0 separate data points into
two classes as well as possible, in the sense that the average signed distance of the points to
the hyperplane is as high as possible.

As an example, Figure 1.3 shows a training set consisting of 2-D featured inputs with
their associated class in the R2 cartesian plan, while Figure 1.4 shows the linear decision
boundary obtained by fitting a logistic regression model. As can be seen, the line is quite
successful on the data used for training. Figure 1.5 shows this decision boundary plotted on
top of new testing samples. Two points were misclassified over twenty points, yielding an
accuracy of 90%.

Fig. 1.3. The 2D binary classification dataset ABDl-DS40 sampled from the ABDl distri-
bution.

3That is, the Bernoulli distribution with probability σ(θT X + θ0).
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Fig. 1.4. Logistic regression’s decision boundary on ABDl-DS40

Fig. 1.5. Separating 20 new samples of ABDl

3.2. Support vector machines

The models introduced in the previous section have in common that they try to fit
linear objects (hyperplanes) onto the data, either as the closest fit (for regression) or as a
separation boundary (for classification). Accordingly, these are referred to as linear methods.
Unfortunately, data is rarely well approximated or separated by linear planes: for such data,
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it would be desirable to have models that can use more flexible objects. For example, the
manual transformation depicted in Figure 1.6, which enables linear classifiers to operate
effectively, can be learned by an MLP.

Fig. 1.6. An example of a transformation that enables linear models to effectively discrim-
inate data of the ABDL-Circles distribution.

We now introduce a more complex model which can efficiently find nonlinear boundaries,
known as support vector machines (SVMs). This model is usually introduced for binary
classification only: multiclass SVMs exist, and an analog for regression (known as support
vector regression) exists, although it is less commonly used. For simplicity, in this section,
we will only detail the classical binary classification case.

We start by describing SVMs with linear decision boundaries. The goal of logistic re-
gression was to maximize the points’ average signed distance to the hyperplane. SVMs,
in contrast, operate according to a different principle: it attempts to fit two hyperplanes,
parallel to each other, in between the points of the two classes, so that the distance between
the hyperplanes (the “margin”) is as large as possible. The hyperplane θT x + θ0 = 0 midway
between the parallel planes can then be taken as the linear decision boundary.

Let n := |Dtrain|. Formally, finding the highest-margin hyperplane θT x + θ0 = 0 can be
cast as the optimization problem

min
(θ, θ0) ∈ Rd × R

1
2 ||θ||2 (3.1a)

s.t. yi(θT xi + θ0) ≥ 1 ∀i = 1, . . . , n, (3.1b)
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where constraints (3.1b) force the hyperplane to correctly classify all training samples (of
output space Y = {−1,1}, for convenience). This is called the hard-margin primal formula-
tion.

Two comments are in order. First, technically, this approach does not quite fit with
the empirical risk minimization/maximum likelihood approach described in Section 2.1: the
SVM was designed before probabilistic approaches became prevalent in machine learning.
Accordingly, attributing probabilities SVMs predictions is impossible, among other limita-
tions. However, it is possible to regard SVMs as an approximation of another model called
the relevance vector machine (RVM), which does have a probabilistic grounding and fits
within the framework of Section 2.1 [43].

Second, the quadratic program above does not usually have a solution. Finding the best
hyperplane that separates the data is only possible if at least one such hyperplane exists,
and this is not usually the case. To address this, one can relax the constraints, turning them
into a cost that encourages separation but allows for misclassification errors. This is the
so-called soft-margin primal formulation and reads as follows:

min
(θ, θ0) ∈ Rd × R

1
2 ||θ||2 + C

n∑

i=1
ξi (3.2a)

s.t. yi(θT xi + θ0) ≥ 1 − ξi ∀i = 1, ..., n, (3.2b)
ξi ≥ 0 ∀i = 1, . . . , n. (3.2c)

This problem includes a hyperparameter C > 0, which controls how sensitive one is to
misclassification errors.

So far, the approach we have described only fits a linear hyperplane. We will now describe
an extension of this paradigm which effectively allows SVMs to fit nonlinear boundaries,
known as the kernel trick. This trick, in essence, maps the data to a higher dimensional
space where a linear boundary can be fit, without directly computing the higher-dimensional
projections. Doing so allows for decision boundaries with unorthodox shapes, allowing SVMs
to classify well nonlinear data such as depicted in Figure 1.6.

A kernel, in the support vector machine literature, is a mapping K : X 2 → R with
the property that for any collection of points {x1, . . . , xn}, the matrix Kij = K(xi, xj) is
positive semi-definite [43]. Popular choices include the Gaussian kernel K(x, y) = exp(−‖x−
y‖2/σ2) with hyperparameter σ2 > 0, and the polynomial kernel K(x, y) = (xT y + 1)d with
hyperparameter d ∈ N. Using a linear kernel K(x, y) = xT y recovers the classical case. The
choice of the kernel is considered hyperparameter tuning. Fitting a SVM with kernel K can
then be performed by solving the optimization problem

min
α ∈ Rn

1
2

n∑

i=1

n∑

j=1
αi · αjyi · yj · K(xi, xj) −

n∑

i=1
αi (3.3a)
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s.t.
n∑

i=1
αi · yi = 0, (3.3b)

C ≥ αi ≥ 0 ∀i = 1, ..., n. (3.3c)

with parameters (α1, . . . , αn). Once these parameters have been found, one can then compute
the “bias”

b = 1
|J |

∑

i∈J

[
yi −

∑

j∈J

αiyiK(xi, xj)
]

where J = {i | αi > 0}, and make a prediction at a point z using the formula

ŷ = 1
2 + 1

2sign
( ∑

i∈J

αiyiK(xi, z) − b
)
.

3.3. Neural networks and deep learning

In recent years there has been increased interest in another class of nonlinear models,
called neural networks. These models became noteworthy for their performance on large data
volume, as well as for their ability to perform well with minimal feature engineering [28], [44].
It is thus unsurprising that the approach is state of the art in heavily studied computer science
problems, such as speech recognition [45], automatic translation [46], sentiment analysis [47],
language generation [48], object detection [49], face recognition [50], image restoration [51]
and video tracking [52].

The simplest neural network is called the perceptron [53]. This model takes the form
pmodel(y|x; w, b) = exp(((a(wT X + b), y)) for parameters (w, b), where ( is the negative log-
likelihood of a probability distribution of interest, also called the loss function, and a is a
function called the activation function. Popular choices for a include the relu activation
function a(x) = max(0, x), and the hyperbolic tangent a(x) = tanh(x). The perceptron
generalizes the simpler models of Section 3.1: taking the activation function to be the identity
function and the loss function to be the mean square error function yields linear regression,
while taking the activation function to be the sigmoid function σ and the loss function to be
the binary cross entropy loss yields logistic regression.

In general, regardless of the choice of loss and activation function, the perceptron is a
linear model. To increase the ability to model problems that are not easily approximated
by hyperplanes, one can use the multilayer perceptron (MLP) model, also called a fully
connected neural network [41], [54]. Intuitively, a MLP is a stack of perceptrons, called layers,
that feed into each other to make a prediction. Conceptually, using nonlinear activation
functions, the model should be able to linearize the data for appropriate prediction by the
final layer. In fact, the universal approximation theorem in MLPs claims that the simplest
irreducible MLP can learn any discriminative/regressive function [55], as long as enough
parameters (“neurons”) are used.
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Formally, an L-layer MLP is defined by

pmodel(y|x; W1, b1, . . . , WL, bL) = exp(((hL(x), y)),

where hL(x) is defined recursively by

hl(x) = al(W T
l hl−1(x) + bl) for l = 1, . . . , n

and h0(x) = x. The Wl ∈ Rdl−1×dl , bl ∈ Rdl are the parameters, and the architecture of the
MLP is the layer sizes d0, d1, ..., dL, which specify the number of parameters.

As an example, let us look back at the ABDL-Circles classification problem depicted
in Figure 1.6. A MLP for this classification problem can be of the architecture presented
in Figure 1.7, with the binary cross-entropy loss function. After training the model using
gradient-descent (see Section 4), Figure 1.8 shows the original Cartesian coordinate features,
and Figure 1.9 shows their projection to the hidden layer’s linearly separable learned feature
space.

Fig. 1.7. Architecture of a simple MLP for binary classification

So far, all models we have covered have in common that they expect inputs (features) and
outputs (responses) to have a certain fixed dimension din, dout. A recent evolution in machine
learning has been the development of models, based on feedforward neural networks, that
generalize these models to other types of data with varying input size. One such class of
models are recurrent neural networks (RNNs) [56], which can take as input varying-length
sequences of feature vectors, outputting a final dimensional vector. An extension is sequence-
to-sequence models [57] which can map sequences of inputs to sequences of outputs. In
another direction, convolutional neural networks (CNNs) [58] have been developed for grid-
like inputs, such as images. These models rely on applying a convolution operation (a kind
of local transformation) with a learned kernel which is particularly natural for certain tasks,
such as computer vision. These are in turn generalized by graph neural networks (GNNs)
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(x1)

(x2
)

Fig. 1.8. ABDL-Circle original feature space samples

Fig. 1.9. ABDL-Circles samples after passing the first layer of MLP in Figure 1.7, after
training the model. This learned transformation tends to make the datapoints linearly
separable.

[59], which can take as input arbitrary graphs as features. These latest class of models have
proven particularly successful for the field of machine learning in combinatorial optimization.
Consequently, we next provide a detailed overview of CNNs and GNNs.

3.4. Convolutional and graph neural networks

As discussed in the preceding section, one often wants to make predictions for datasets
composed of related content, but of varying sizes. For example, a dataset of images might
contain pictures of different sizes, or a dataset of natural language might contain sentences
of different sizes. Processing data of varying size has motivated the development of CNNs
[58], which have been the angular stone for state-of-the-art neural network architectures
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for computer vision [60]–[62] and have been associated with competitive ones for natural
language processing [63], [64].

A CNN is similar to a feedforward neural network, instead of being composed of per-
ceptrons, it is composed of convolutional layers. Intuitively, convolutions aggregate local
information by performing an averaging with a matrix of weights in a neighborhood of each
point [28]. Formally, given an input X ∈ Rn×n×din , of which Xi,j denotes an element in Rdin

for every pair of (i,j) ∈ {1,...,n}2, a convolution layer is defined to return X̃ ∈ Rn×n×dout as
follows:

X̃i,j =
∑

k
′
1,k

′
2∈{1..k}2

W T
k

′
1,k

′
2
Xi+k

′
1−1,j+k

′
2−1

where W ∈ Rk×k×din×dout contains the so-called filter weights and k ∈ N is called the kernel
size. A filter or kernel is simply a k × k matrix. Thus, in this model, there are din × dout

number of filters. Figure 1.10 provides an example of the computation of a convolution
operation over an image, where X is an 200 × 300 dimensional image, (din, dout) = (1, 1),
and k = 3.

Fig. 1.10. Convolutional layer operating on an image
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CNNs are applicable when data is structured in a grid, such as in an image. This grid can
be interpreted as a graph with a lattice topology. A powerful generalization of CNNs, called
graph neural networks (GNNs), apply a convolution operation, but on an arbitrary graph
with features. Just as a CNN is composed of convolutional layers, a GNN is composed of
graph convolutional layers, which aggregate information for each node from adjacent nodes.
Consider a graph G = (X,A), where X ∈ Rn×din corresponds to individual node features,
and A ∈ Rn×n the adjacency matrix (with din the feature dimensionality of individual nodes,
and n the number of nodes in the graph). Figure 1.11 shows a concrete example of how a
graph is modeled according to this representation scheme.

Formally, given a graph (X,A), a graph convolution computes an output X̃ of dimen-
sionality Rn×dout as follows [59]:

X̃ = (D̃ 1
2 ÃD̃− 1

2 )XW,

where Ã = A + I, Dii = ∑
j Ãij a diagonal matrix, W ∈ Rdin×dout are the model parameters,

and X ∈ RN×din are the graph’s input nodes representations, with din and dout being respec-
tively node representation input size (also called in-channel) and node representation output
size (also called out-channel). Thus a graph convolution outputs the same input topology
but with the nodes’ features altered with neighboring information. GNNs have been reported
to state-of-the-art performances in tasks where data are naturally representable as graphs,
e.g., disease–gene association, recommendation systems, adversarial attack prevention [65]
and combinatorial optimization [26], [66].
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Fig. 1.11. Representing a graph-like data

4. Optimization for neural networks
We have discussed so far in Section 2 the paradigm of supervised machine learning, which

can be framed as a continuous optimization problem, and in Section 3 various popular choices
of models that completely characterize these problems. The final aspect we are left to discuss
is how these optimization problems are solved in practice. We will define some important
concepts in continuous optimization before introducing the algorithms, with a particular
emphasis on those that are relevant for neural networks.

Consider a generic continuous optimization problem
min

θ ∈ Rn
f(θ)

s.t. θ ∈ Θ
(4.1)

where f : Rn → R is differentiable of gradient ∇f . A problem is considered unconstrained
if Θ = R; otherwise, it is said to be constrained. Let ||.|| :=

√
.T . (the Euclidean norm). A

point θ ∈ Θ such that ∇θf(θ) = 0 is said to be
• A local minimum if ∃ε ∈ R>0 s.t. ∀θ

′ ∈ Θ satisfying ||θ − θ
′|| ≤ ε, we have f(θ) ≤

f(θ′);
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• A local maximum if ∃ε ∈ R>0 s.t. ∀θ
′ ∈ Θ satisfying ||θ − θ

′|| ≤ ε, we have f(θ) ≥
f(θ′);

• A saddle point, otherwise.
A point θ ∈ Θ is said to be a global minimum if f(θ) ≤ f(θ′) ∀θ

′ ∈ Θ. It is easy to prove that
all global minima are local minima, and so one can look global minima by inspecting all local
minima as candidates if there are only finitely many. Figure 1.12 provides an illustration
of this situation. In turn, finding local minima can be done by finding zero-valued gradient
points, and this can be done analytically or iteratively. Except for simple cases, such as
the optimization problem arising in linear regression, training supervised learning models
usually requires an iterative method.

Global minima

Local minima

Local maxima 

Saddle Point 

Legend

Global minima

Local minima

Local maxima 

Saddle Point 

Legend

Unbounded 
above

Fig. 1.12. 1D function with its local/global minima/maxima and saddle points

The simplest kind of iterative method for solving unconstrained optimization problems
where the objective function f is differentiable are first-order methods, which rely solely on
the gradient ∇θf = (∂f/∂θ1, . . . , ∂f/∂θn) of the function with respect to θ. These methods
exploit the fact that the gradient gives, locally to a point θ, the direction and magnitude of
the steepest ascent when evaluated at this point.

The angular stone of first-order methods is the gradient descent algorithm. The algorithm
converges to the closest point with zero gradient starting at some point θ0 ∈ Rn by iteratively
taking a step controlled by a parameter η ∈ R>0, called learning rate, towards the opposite
gradient direction (as we are minimizing). Algorithm 2 shows its functioning.
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Algorithm 2 Gradient descent algorithm
1: function gradient_descent(f,θ0,η, ε)
2: t ← 0
3: repeat
4: t ← t + 1
5: θt ← θt−1 − η∇θf(θt−1)
6: until ||θt − θt−1|| ≤ ε
7: return θt

Algorithm 3 Stochastic gradient descent for supervised learning using mini-batch sampling
scheme

1: function stochastic_gradient_descent_minibatch(pmodel,Dtrain, m, θ0, η, ε)
2: t ← 0
3: repeat
4: t ← t + 1
5: Sample a subset J ⊂ Dtrain of size m
6: θt ← θt−1 − η

m

∑
j∈J ∇θ log pmodel(yj|xj; θt−1)

7: until ||θt − θt−1|| ≤ ε
8: return θt

In recent years, a concern of great importance has been the training of machine learning
models when the dataset is very large. This is particularly the case for the training of
neural network models detailed in Sections 3.3 and 3.4, which often require large amount of
data to be competitive. Consequently, a variant of gradient descent has become standard
for training those models, called stochastic gradient descent (SGD). This algorithm aims to
solve unconstrained continuous problems where the function to minimize has a particular
form

f(θ) = 1
n

n∑

i=1
g(xi; θ).

When n is very large, the gradient ∇θf(θ) = 1
n

∑n
i=1 ∇θg(xi; θ) might be expensive to com-

pute. The idea of stochastic gradient descent is to instead sample a small minibatch J of
the indices {1, . . . , n}, where |J | 9 n, and use the approximate gradient update

θ′ = θ − η
1

|J |
∑

j∈J

g(xi; θ).

Algorithm 3 details the algorithm as applied to a supervised learning training problem.
In practice, besides the memory savings of the approach, it is generally believed that the
additional noise brought by the approximative gradient is helpful for highly nonlinear models,
such as neural networks.
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Algorithm 4 The Adam algorithm [67]
1: function adam(f,θ0, m,η, ε, β1, β2)
2: m0 ← 0 # first moment vector
3: v0 ← 0 # second moment vector
4: t ← 0
5: repeat
6: t ← t + 1
7: Sample a subset J ⊂ {1, . . . , n} of size m
8: gt ← 1

m

∑
j∈J ∇θ log pmodel(yj|xj; θt−1)

9: mt ← β1mt−1 + (1 − β1)gt # Update biased moments
10: vt ← β2vt−1 + (1 − β2)gt : gt

11: m̂t ← mt

1−βt
1

# Correct the bias to obtain moments estimates
12: v̂t ← vt

1−βt
2

13: θt ← θt−1 − η m̂t
√

v̂t+ε
# Update rule

14: until ||θt − θt−1|| ≤ ε
15: return θt

Many variants of this approach have been proposed. Instead of pursuing the gradient
direction at each iteration, modern SGD-based optimizers usually take into account the ex-
isting movement captured by previous gradient evaluations, a mechanism called momentum
SGD. This approach can make the optimization process less oscillating [68]. Moreover, using
adaptive learning rates for each parameter eliminates the need to manually tune the learning
rate and lead to faster and more reliable convergence [69]. One of the current state-of-the-art
optimizers is Adam (Kingma & Ba, 2015) [67], which computes individual learning rates by
approximating the first and second moments of the current gradient, a random variable, us-
ing previously computed and realized gradients. Algorithm 4 details this popular approach,
where : denotes elementwise multiplication.

A final remark is in order. In every gradient descent algorithm, whether Algorithm 2, 3 or
4, one needs to provide the gradient of the negative log-likelihood (loss function). To do so,
one could in principle derive the gradient analytically, and code it. In practice, however, it
is simpler to simply analytically derive the Jacobian of each layer, and compute the gradient
using the chain rule. This approach is usually called backpropagation in the neural network
literature [68].
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Chapter 2

Data-driven heuristics for integer
programming

As described in Chapter 1, it is common in applications to repeatedly solve similar mixed-
integer linear programs. This has motivated much work at the intersection of machine
learning and combinatorial optimization. Typically, the idea is to take an existing solver
and improve one of its components using a problem-adaptive policy instead of a handcrafted
generic one using data. Some past work has focused on improving separately four significant
modern B&B solvers’ components: primal heuristics design and their scheduling, cutting
plane selection, branching, and searching. We provide in this chapter an overview of the
work in this area.

1. Learning primal heuristics
It is possible to train neural networks to output good feasible solutions to CO problems.

The first architecture of this kind was introduced in Pointer Networks, Vinyals et al., 2015
[70]. These consist of long short-term memory (LSTM) networks [56] specifically designed
to output variable-size discrete tokens sequences. In their work, Vinyals et al. [70] trained
this network to output good Traveling Salesman Problem (TSP) solutions using behavioral
cloning. They reported being competitive with some handcrafted Christofides-based [71]
open-source primal heuristics.1 In 2016, Bello et al. [72] took the same architecture but
used it inside an RL framework, namely the gradient-policy method REINFORCE [31],
and scaled it on larger TSP instances and more NP-hard problems. Subsequently, in 2017,
Khalil et al. [73] used the structure2vec architecture [74] to work on data that directly
captures problems’ structure and trained using fitted Q-learning [75] (S2V-DQN) instead
of REINFORCE. The authors reported better performance than past approaches on three

1For the specific algorithms, see last three references in Section 3.3 of Pointer Networks, Vinyals et al., 2015
[70].



classes of NP-hard problems representable on graphs. Then, in 2018, Li and al. [76] reported
surpassing S2V-DQN on four classes of NP-hard problems by training a Graph Convolution
Network with behavioral cloning. Overall, these approaches suffer from two major issues:
scalability is limited, and real-life CO problems with hard constraints are problematically
represented [77].

2. Learning to select cutting planes
The first work concerning using machine learning to select cutting planes was initiated

by Radu et al. [78], who score cutting planes by predicting the objective variation brought
by adding the cut. In 2020, Tang and al. [79] proposed to formulate the cut selection
problem using reinforcement learning, and used a recurrent neural network with the atten-
tion mechanism [80] and LSTM cells [56] trained with evolutionary techniques [81]. They
reported beating some well-known handcrafted cutting plane selectors2 using Gurobi solver
[19]. Subsequently, in 2021, Huang et al. [83] proposed to use multiple instance learning
[84] for cut ranking formulation and trained an MLP at the task. They reported beating
some manually-designed cutting planes heuristics in a Huawei-owned B&B-based solver. In
2022, Paulus et al. [85] were able to design a look-ahead expert for the task, inspired by
strong-branching [86]. This new expert design leveraged the use of imitation learning. As a
learning model, they designed NeuralCut, a GNN inspired by Gasse et al. [87], with extra
attention blocks [80]. They reported beating 2020’s Tang et al. [79] approach on four classes
of NP-hard problems.

3. Learning to branch
Previous operations research work on branching includes: branching to the most infeasible

variable, random branching, strong branching, pseudocost branching, reliability branching,
and hybrid branching [88]–[90]. Because strong branching generally produces the smallest
tree size and because it requires heavy computation [90], it is an ideal expert to imitate.
Thus, in 2016, Alvarez et al. [89] proposed an offline, regression-based model using Extremely
Randomized Trees (ERT) [91], whereas Khalil et al. [92] used pairwise ranking of variables
with a SVM rank model (SVMRANK) [93]. In 2018, Hansknecht et al. [94] proposed to use
LambdaMart [95] as a ranking model instead of an SVM Rank (LMART) and specialize their
work on the TSP problem. Subsequently, in 2019, Gasse et al. [87] proposed a classification
formulation using a new data representation: variable-to-constraint graphs. They reported
beating ERT, SVMRANK, and LMART on four classes of NP-hard problems. Then, in
2021, Zarpellon et al. [96] used a variable and tree search parameterization on custom
2For a description of these handcrafted cutting planes heuristics, we refer the interested reader to Section
2.2 of Implementing cutting plane management and selection techniques, Wesselmann and Shulh, 2012 [82]
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deep learning architecture to show that using structured information from the tree enabled
learning problem-independent branching policies, whereas Gasse et al. [87] approach could
not.

4. Learning to search
Finally, a fourth topic that has received attention is the usage of machine learning meth-

ods to improve search heuristics. This is the central problem of this thesis, and so we provide
a detailed explanation of the search mechanism and its associated handcrafted heuristics,
with particular emphasis on the implementation in the SCIP open-source MILP solver.

4.1. Searching mechanism in SCIP

SCIP [97], standing for Solving Constrained Integer Programs, is a free, open-source C++,
academics-targeted software first by Achterberg for his Ph.D. thesis in 2004 and currently
maintained, i.e., updated, improved, and documented, by the Zuse Institute Berlin Group
(ZIB)[18]. The software provides a framework to create branch-and-bound-based search al-
gorithms. Figure 2.1 shows how the different highly customizable SCIP components interact
with each other to solve a problem.

This thesis aims at improving node selection, aka SCIP’s B&B searching mechanism,
without touching any other components. In SCIP, each node selection policy is associated
with a Nodesel object, referred to as node selector, and with an execution priority. The
Nodesel class should implement the following methods [18]:

• nodecomp: given two nodes, returns which one is preferred or equality
• nodeselect: given a list of open nodes, returns which one to explore next

Even if implementing only one of nodeselect or the nodecomp methods is sufficient for
specifying a search policy, SCIP makes use of both of them in order to maximize solving
performance. The nodecomp is used to maintain a priority queue of nodes to explore (by
inserting new nodes in the appropriate spot), whereas the nodeselect decides to either
simply remove and return the queue’s top node, aka the dequeue operation implemented by
getBestNode function, or to select another open-node. On extreme cases, only using the
priority queue in nodeselect may overcharge the nodecomp operator, whereas not using at
all the priority queue may overcharge the nodeselect operator. Though both are about
queue usage, more specifically on insertions, we believe that the latter extreme case is a
worse case since having no ordering information on open nodes means that reevaluating each
node each selection is unavoidable.

The SCIP software is delivered with six handcrafted node selectors implementing both
nodecomp and nodeselect [18]:
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Fig. 2.1. SCIP solver general workflow [97]. Node selection refers to the process of search-
ing in the feasible region partition, where each equivalence class is referred to as a node.
Branching procedures are not explicitly displayed but occur just after calling the LP solver
and before pricing variables.

• best-estimate: from solver’s pseudostatistics, computes (as node score) an estimate
of the objective decrease resulting in node potential selection [90], [97]. Prefers the
highest score;

• best-first search: prefers nodes with higher dual lower bounds [98];
• depth-first search (DFS): prefers deeper and newer nodes;
• breadth-first search: prefers shallower and older nodes;
• hybrid estimate (also called best-bound search): computes (as node score) a weighted

sum of node’s dual lower bound and its primal upper bound [18]. Prefers the lowest
score;

• restart DFS: a recursive depth-first search.
The solver operates in two computational modes: normal mode and memory saving

mode. Depending on the node selectors’ priorities and the active mode, the appropriate
node selector will be used at that moment. Table 2.1 shows the default, initial priority table
of SCIP built-in node selectors. In memomry saving mode, the active policy is depth-first
as it tends to produce fewer unprocessed nodes while reducing the number of open nodes,
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freeing up some memory. In contrast, in normal mode, the active node selection procedure
is Best Estimate, which corresponds to node selection’s state of the art [99], [100].

Table 2.1. SCIP built-in node selectors and their default execution priorities (higher =
more important)

estimate bfs dfs breadth-first nodesel_hybridestim ,restartdfs

normal mode 200,000 100 000 0 -10,000 50,000 10,000
memory saving mode 100 0 100,000 -1,000,000 50 50,000

One can use a plain nodeselect, i.e., a method that just dequeues the priority list and
focus entirely on specializing the nodecomp operator. An active, added customized node
selection policy will be entirely specified by its nodecomp method and a maximal execution
priority. This is the Node Comparison Problem in SCIP (in a plain setting). Since SCIP’s
searching mechanism is similar to other B&B-based solvers’, we will refer to this as the Node
Comparison Problem in Branch and Bound. Comparing nodes enables intuitive machine
learning formulation. One of interests is to guide search heuristics on where the optimum is.
It is possible to approximate such behavior by learning to discriminate between optimum-
containing and non-optimum-containing nodes, aka optimal and non-optimal nodes. We
hypothesize that the solving performance gain made possible by such specialization can
provide enough room to beat SCIP both nodecomp/nodeselect-implementing handcrafted
heuristics.

4.2. Data-driven node comparison

The first steps towards data-driven node comparison were taken by He et al. [101]. They
proposed to train an SVM model using the DAGGER algorithm [40] to imitate the node
comparison operator of a diving oracle, i.e., an expert that plunges to optimum. They
used it in combination with a learned pruning model that cuts off unpromising branches of
the branch-and-bound tree, yielding something more analogous to a primal heuristic. They
reported improvements in the optimality gap against SCIP under a node limit and against
Gurobi [19] under a time limit on four benchmarks.

Subsequently, Song et al. [102] trained an MLP RankNet model to perform node compar-
ison using a novel approach they call retrospective imitation learning. In this approach, as
applied to the branch-and-bound algorithm, a solver is executed until a specific node limit
(or potentially until optimality). The node selection trajectory is then corrected into the
shortest path to the best solution found during the process. When the solver is executed
until optimality, this is identical to trajectories generated by the diving oracle. In practice,
they generated trajectories using Gurobi and trained using DAGGER and SMILE [39] algo-
rithms. Unlike He et al., they provided results that only use the learned node comparator
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without an additional pruning operator. On a collection of path planning integer programs,
they reported impressive improvements in the optimality gap under a node limit against
Gurobi and SCIP. However, their appendix also reported less thorough results on a more
challenging combinatorial auctions benchmark used by He et al.

Finally, and more recently, Yilmaz and Yorke-Smith [103] proposed to learn a limited
form of feedforward neural network node comparison operator that decides whether the
branch-and-bound algorithm should expand the left child, right child, or both children of
a node. This operator can then be combined with a backtracking algorithm to provide a
full node selection policy. This approach can be interpreted as a combination of the neural
network node comparator of Song et al. [102] with a node selection rule that only calls it on
children of the current node and reverts to depth-first search otherwise. The authors used the
state encoding from Gasse et al. [87] and trained their model using behavioral cloning [34] to
imitate an oracle that prioritizes nodes on a path towards one of the k ≥ 1 best solutions – in
practice, a generalization of the He et al. [101] oracle. On three NP-hard benchmarks, they
reported improvements in time and number of nodes against He et al. [101], and sometimes
in nodes against SCIP; in a fourth benchmark, they were slightly worse than He et al. [101].

4.3. Node comparison with GNNs

Our approach aims at training a GNN to output a node “score” given a graph bipar-
tite representation, which we take as the one of Gasse et al. [87]. This score serves to
discriminate between optimal and non-optimal nodes. Intuitively, deeper optimal nodes
should have the highest scores and shallow non-optimal ones the lowest. To learn such a
scoring function, we generate data using a flawed branch-and-bound algorithm to obtain
as many optimal/non-optimal discriminations and depth differences as possible. We then
use a standard classification learning framework with exponential emphasis on higher depth
differences between pairs of nodes. Such formulation leverages inherent deep learning opti-
mization schemes to implicitly learn the scoring function of interest. The article of the next
chapter summarizes this work and experimental results.
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Résumé. Les approches branch-and-bound dans la programmation en nombres entiers né-
cessitent d’ordonner des portions de l’espace à explorer ensuite, un problème connu sous le
nom de comparaison de nœuds. Nous proposons un nouveau modèle de réseau de neurones
à graphes siamois pour résoudre ce problème, où les nœuds sont représentés sous forme
de graphes bipartis avec des attributs. Semblable aux travaux antérieurs, nous entraînons
notre modèle pour imiter un oracle qui plonge vers la solution optimale. Nous évaluons
notre méthode en résolvant les instances dans un cadre simple où les nœuds sont explorés
selon leur rang. Sur trois problèmes NP-hard choisis pour être particulièrement difficiles
au niveau primal, notre approche conduit à une résolution plus rapide et à des arbres de
recherche plus petits qu’en utilisant la fonction de classement par défaut du solveur SCIP,
ou bien aux autres modèles d’apprentissage automatique que constituent nos compétiteurs.
De plus, ces résultats se généralisent à des instances plus grandes que celles utilisées pour
l’entraînement.
Mots clés : Optimisation combinatoire, Branch-and-Bound, Recherche de solutions,
Plonger-à-l’optimum, Apprentissage par imitation, Réseaux de neurones à graphes

Abstract. Branch-and-bound approaches in integer programming require ordering por-
tions of the space to explore next, a problem known as node comparison. We propose a new
siamese graph neural network model to tackle this problem, where the nodes are represented
as bipartite graphs with attributes. Similar to prior work, we train our model to imitate a
diving oracle that plunges towards the optimal solution. We evaluate our method by solving
the instances in a plain framework where the nodes are explored according to their rank. On
three NP-hard benchmarks chosen to be particularly primal-difficult, our approach leads to
faster solving and smaller branch-and-bound trees than the default ranking function of the
open-source solver SCIP, as well as competing machine learning methods. Moreover, these
results generalize to instances larger than used for training.
Keywords: Combinatorial Optimization, Branch-and-Bound, Solutions Search, Dive-to-
Optimum, Imitation Learning, Graph Neural Networks

1. Introduction
Mixed-integer linear programming is an optimization paradigm with applications as var-

ied as airline scheduling [104], CPU management [105], auction design [106] and industrial
process scheduling [107]. Modern solvers rely on the branch-and-bound (B&B) algorithm,
which recursively divides the search space into a tree, solving relaxations of the problem until
an integral solution is found and proven optimal [108]. Throughout this procedure, numerous
decisions must be repeatedly made, such as the choice of the variable on which to branch
or the choice of primal heuristics to run at every node. These decisions often dramatically
impact final performance yet are still poorly understood [109]. Traditionally, these would be
made according to hard-coded expert heuristics implemented in solvers. Recently, however,
there has been a surge of interest in using machine learning methods to learn such heuristics
[26], in particular for variable selection [87], [96], [110]–[112].
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Despite this success, other critical branch-and-bound decision tasks remain poorly stud-
ied. One of the most important is the node comparison problem. Throughout solving, the
algorithm must repeatedly select the next node to subdivide, a task known as node selection.
It maintains a priority list of the open nodes, ordered according to a node comparison func-
tion. This list is then used to select the next node to subdivide, either by simply choosing
the highest-ranked node or through some more complex paradigm. Interestingly, a few works
have proposed to use machine learning methods to derive node comparison functions [101]–
[103]. This is particularly promising since the problem is naturally amenable to statistical
learning methods. However, despite promising results, challenges hinder progress in this
area. Most prominently, it is unclear how to represent nodes, which can vary in the number
of variables and constraints. Existing approaches have so far relied on fixed-dimensional
representations that necessarily lose information.

In this paper, inspired by work on the related problem of variable selection in branch and
bound [87], [96], [110], [111], we propose to tackle this problem by an approach based on graph
neural networks (GNNs) [113]. We represent nodes by bipartite graphs with attributes and
use a siamese architecture to model the node comparison function. This node representation
allows complete information regarding the nodes to be provided to the model, reducing the
amount of manual feature engineering. In line with previous work on this node comparison
problem [101]–[103], we train the network using imitation learning to approximate a diving
oracle that plunges towards the optimal solution.

We compare our GNN approach against the support vector machine approach of He
et al. [101], the feedforward neural network approach of Song et al. [102] and Yilmaz and
Yorke-Smith [103], and the default node selection rule of the open-source solver SCIP [18].
In addition, we compare against the node comparator of this same branching rule but with
a highest-rank node selection rule. Results show that our approach leads to improved node
selection compared to competing machine learning approaches and, in fact, often improves
on the default rule in SCIP itself. In addition, these results generalize to instances larger
than those used for training.

The paper is divided as follows. In Section 2, we review the related literature, while in
Section 3, we describe the branch-and-bound algorithm and the node comparison problem.
In Section 4, we describe our state representation, neural network architecture, as well as
training procedure. Finally, we detail experimental results in Section 5.

2. Related works
The first steps towards learning node comparison heuristics in branch and bound were

taken by He et al. [101]. In this work, they propose to train a support vector machine
(SVM) model using the DAGGER algorithm [40] to imitate the node comparison operator
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of a diving oracle. However, they only use it in combination with a learned pruning model,
which cuts off unpromising branches of the branch-and-bound tree, yielding something more
analogous to a primal heuristic. They report improvements in the optimality gap against
SCIP under a node limit and Gurobi [19] under a time limit on four benchmarks.

Subsequently, Song et al. [102] trained a multilayer perceptron (MLP) RankNet model to
perform node comparison using a novel approach they call retrospective imitation learning.
In this approach, as applied to the branch-and-bound algorithm, a solver is run until a
certain node limit (or potentially until optimality). The node selection trajectory is then
corrected into a shortest path to the best solution found during the process. When the solver
is run until optimality, this is in effect identical to trajectories generated by the diving oracle.
In practice, they generated trajectories using Gurobi and trained using the DAGGER and
SMILe [39] imitation learning algorithms. Unlike He et al., they provided results that only
use the learned node comparator without an additional pruning operator. On a collection
of path planning integer programs, they report impressive improvements in the optimality
gap under a node limit against Gurobi and SCIP. However, their appendix also reports more
mitigated results on a more challenging combinatorial auctions benchmark used by He et al.

Finally, and more recently, Yilmaz and Yorke-Smith [103] proposed to learn a limited
form of feedforward neural network node comparison operator that decides whether the
branch-and-bound algorithm should expand the left child, right child or both children of a
node. This operator can then be combined with a backtracking algorithm to provide a full
node selection policy: in effect, this can be interpreted by combining the neural network
node comparator of Song et al. with a node selection rule that only calls it on children of the
current node, and reverts to depth-first search otherwise. They use the state encoding from
Gasse et al. [87] and train their model using behavioral cloning [34] to imitate an oracle that
prioritizes nodes on a path towards one of the k ≥ 1 best solutions - in effect a generalization
of the He et al. oracle. On three benchmarks, they report improvements in time and number
of nodes against He et al., and sometimes in nodes against SCIP; in a fourth, they are slightly
worse than He et al.

3. Background
A mixed-integer linear program (MILP) is an optimization problem of the form

arg min
x∈Zk×Rn−k

{ctx : Ax ≥ b},

for a matrix A ∈ Rm×n and vectors b ∈ Rm, c ∈ Rn. The branch-and-bound algo-
rithm solves this problem recursively as follows. First, the linear program (LP) relaxation
arg minx∈Rn{ctx : Ax ≥ b} is solved, which can be done efficiently in practice. This relax-
ation yields a solution x∗, with a lower bound ctx∗ to the MILP. If the LP solution satisfies
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the integrality constraints, x∗ ∈ Zk × Rn−k, the problem is solved. Otherwise, we can take
any non-integer x∗

i for some 1 ≤ i ≤ k, and divide the problem into two subproblems

arg min
x∈Zk×Rn−k

{ctx : Ax ≥ b, xi ≤ ,x∗
i -}, arg min

x∈Zk×Rn−k

{ctx : Ax ≥ b, xi ≥ ,x∗
i - + 1}

The process then starts again, recursively constructing a tree of subproblems with their
associated linear relaxation solutions. The branching stops when subproblems are found
unfeasible or when their linear relaxations are integral, in which case they furnish feasible
solutions. These solutions can be used to prune parts of the branching tree, whose dual
bounds are worse than the best-found solution so far.

Throughout this algorithm, nodes in the branch-and-bound tree, corresponding to sub-
problems, must be selected for further branching: this is known as the node selection prob-
lem. In SCIP, this is implemented through a nodeselect method that takes as argument
the list of open nodes and must choose one for subdivision. In practice, it is expensive to
rank open nodes at every node selection step, and solvers maintain a priority list of open
nodes throughout solving. Whenever new nodes are created, they are inserted in the priority
list according to a node comparison function nodecomp, which takes two nodes as argu-
ment and returns whether the first node, the second node or none are to be preferred. The
nodeselect function can then make use of the ranking; in the simplest strategy, it simply
selects the node with the highest rank. More complex node selection strategies are also
possible, such as prioritizing the highest-ranked children or sibling of the currently opened
node over arbitrary leaves. Although this description uses SCIP terminology, other solvers
work similarly.

The current state-of-the-art nodecomp rule, used by default in most solvers, is best
estimate search [99], [100]. In this scheme, every node is associated with an estimate of
the increase in objective value resulting from selecting the node, computed from pseudocost
statistics. The heuristic then selects the node with the highest estimate. Other popular
rules include best-first search [114], which prioritizes nodes with the best dual bound, and
depth-first search [115], which prioritizes the deepest node.

As detailed by He et al. [101], the task of designing a good nodecomp function can be
assimilated to finding a good policy in a Markov decision process. In this process, the solver
is interpreted as the environment, which calls the nodecomp(node1, node2) policy whenever
it needs two open nodes compared. This policy is provided information about nodes, which
can be interpreted as a state s = (node1, node2), and then takes an action as to whether
to prefer the first node, the second node, or none, a ∈ {node1-better, node2-better, equal}.
This repeated decision making continues until no new nodes need insertion, that is, until the
solving is complete. The process is illustrated in Figure 1.
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Fig. 1. The node comparison problem. Here the solver is asking the nodecomp function
to rank the open nodes 2 and 4, which chose to prioritize the latter over the former.

4. Methodology
We now describe our approach to learning good nodecomp functions. Since the problem

can be assimilated to a Markov decision process, we follow previous work [101]–[103] and
train by imitation learning to mimic an expert policy.

4.1. State representation

Our learned nodecomp(node1, node2) takes as input a state s = (node1, node2), which
represents a pair of nodes. In the related problem of variable selection, important advances
were achieved by the usage of bipartite graph representations of the state of the solver,
allowing for the first time machine learning to improve over human-designed heuristics in
full-fledged solvers [87], [96], [110], [111]. These representations form the current state-of-
the-art approach on this problem, and offer many advantages, such as being permutation-
invariant in the labeling of the variables and constraints. Inspired by this innovation, we
similarly propose to represent each node as a bipartite graph, where on one side there are
as many vertices as constraints, and on the other side as many vertices as variables, in the
sub-MILP encoded by the node. We draw an edge between a constraint and a variable vertex
if the coefficient associated with the variable in the constraint is nonzero. To each constraint
vertex i we associate a vector of features, namely its right-hand side bi and its type (>, < or
=). Similarly, to each variable vertex j we associate a vector of features, namely its objective
coefficient cj, upper and lower bounds uj and lj, and type (binary, integer, or continuous).
In addition, we associate the nonzero coefficient of the variable in the constraint to each
edge. Finally, an additional global vertex of attributes associated with the whole node is
added, unconnected with the rest. To this vertex, we associate two features, namely an
estimate of the objective value of the best feasible solution in the subtree of the node and an
estimate of the dual bound achieved at the node, through the SCIPnodeGetEstimate and

52



Constraint
vertices

Variable
vertices Global

vertex

primal
estimate

dual
estimate

Fig. 2. Bipartite graph representation of a node.

Layer
Norm

+
Linear

Graph
Conv

x3

Embedding Graph
convolutions Pooling Norm

AvgPool

AvgPool

Node graph Score
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SCIPnodeGetLowerbound SCIP functions, respectively. The representation is illustrated in
Figure 2.

4.2. Model

Our nodecomp function has the form

nodecomp(node1, node2) =






node1-better if f(node1, node2) ≤ 0.5,

node2-better if f(node1, node2) > 0.5,
(4.1)

where f ∈ [0,1] is a classification machine learning model. Our model always prefers one
node over the other, and never returns a=equal as an action. The classification model takes
the form f(node1, node2) = σ

(
g(node1) − g(node2)

)
where σ stands for the sigmoid func-

tion, and g ∈ is a scoring function with a single dimensional, real-valued output. This
siamese architecture [116] is naturally symmetric, in the sense that our model satisfies
f(node2, node1) = 1 − f(node1, node2).

Just as for the design of the state representation, we take inspiration from the latest
line of work on variable selection [87], [96], [110], [111] and use a graph neural network
[113] model for our scoring function g, with suitable modifications for this node comparison
problem. A diagram of the architecture is provided as Figure 3. An important advantage of
this model is that, just as in the variable selection setting, the same model can be trained
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on problems of varying number of variables and constraints. In detail, the constraint and
variable features of the node are first transformed by an 32-dimensional embedding layer and
then pass through three graph convolutional layers, with 8, 4 and 4 dimensions each. Each
layer uses a ReLU activation function. The representations of the constraint and variable
vectors are then pooled by average separately and then concatenated with the global features
of the node. Finally, the resulting vector’s (2 norm is taken, which is outputted as the score.

4.3. Training procedure

Our training procedure is similar to the one of He et al. [101]. Just like them, we aim
to imitate a “diving oracle” nodecomp policy, which prioritizes a node if it contains the
optimal solution x∗, and falls back on another heuristic (we use best estimate search) if this
is not the case:

oracle-nodecomp(node1, node2) =






node1-better if x∗ ∈ node1,

node2-better if x∗ ∈ node2,

estimate-nodecomp(node1, node2) otherwise.

Since nodes represent a partition of the feasible space, the optimal solution cannot be in
the feasible spaces of both nodes simultaneously, so this is well-defined. As this nodecomp
function uses knowledge of the optimal solution, it cannot be used in practice; however, it
can be run on training instances by precomputing optimal solutions, and it is worthwhile
to try to imitate its decisions without this additional knowledge. To do this, He et al.
use DAGGER, an expensive imitation learning algorithm that aims to diversify the states
from which the expert is sampled through several rounds of training. We propose a simpler
procedure that achieves a similar result with lower computing requirements.

This procedure runs as follows. We first solve the instances using a solver, collecting
their optimal solutions. We then solve the instances again, using a plain highest-priority
nodeselect rule. When the solver calls the nodecomp function, we query the oracle, and
if it chooses node1-better or node2-better, we collect state information s and the resulting
decision a as an expert sample (si, ai). Next, crucially, we take the opposite decision than
the oracle recommends, making a mistake on purpose. This increases the variety of states
explored during the sampling phase and makes the state distribution more aligned with the
machine learning policy, which is bound to make mistakes. We follow this procedure until
the solving is completed.

As a result of this sampling process, we obtain a dataset of expert samples D = {(si, ai)}
from which to train our machine learning policy. Since we saved samples when the oracle
had a preference, the actions can be interpreted as labels 0 or 1 according to whether the
first or second node was preferred. Learning the preference of the oracle then becomes a
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simple classification task that can be performed by minimizing a cross-entropy loss over our
classifier f . Since mistakes coming early on in the sampling process can be exponentially
costly, we weight the samples during training using an exponentially decreasing scheme,
w = exp(1 + |d1 − d2|)/ min(d1, d2)), where d1, d2 are the depths of the first and second
nodes, respectively. This is similar to the exponential weighting scheme used by He et al.

5. Experimental results
We now present experimental results on three NP-hard problems. We evaluate each

machine learning method by running it in SCIP with a simple highest-priority rule that
falls back to estimate after two feasible solutions have been found, as we detail in Section
5.4. We also evaluate the default SCIP node selection rule (that is, with both default
nodeselect and nodecomp). Code for reproducing these experiments can be found at
hhttps://github.com/ds4dm/learn2comparenodes.

5.1. Benchmarks

We evaluate on three NP-hard instance families that are particularly primal-difficult,
that is, for which finding feasible solutions is the main challenge. Those are instances for
which improved node comparison is likely to have a particularly broad impact, so differences
between methods should be clearer. The first benchmark is composed of Fixed Charge Mul-
ticommodity Network Flow (FCMCNF) [117] instances, generated from the code of Chmiela
et al. [118]. We train and test on instances with n = 15 nodes and m = 1.5 · n commodities,
and also evaluate on larger transfer instances with n = 20 nodes. The second benchmark is
composed of Maximum Satisfiability (MAXSAT) instances, generated following the scheme
of Béjar et al. [119]. We train and test on instances with a uniformly sampled number of
nodes n ∈ [60, 70] and transfer on instances with n ∈ [80−100]. Finally, our third benchmark
is composed of Generalized Independent Set (GISP) [120] instances, generated from the code
of Chmiela et al. [118]. We train and test on instances with a uniformly sampled number of
nodes n ∈ [60, 70] and transfer on instances with n ∈ [70 − 80]. All these families require
an underlying graph: we use in each case Erdős-Rényi random graphs with the prescribed
number of nodes, with edge probability p = 0.3 for FCMCNF and p = 0.6 for MAXSAT and
GISP.

5.2. Baselines

We compare against the state-of-the-art best estimate node comparison rule [99], [100].
This is the nodecomp function used by default in SCIP, in conjunction with a diving
nodeselect rule that prioritizes children and siblings of the currently focused node. To
disentangle the effect of this nodeselect rule, we report both results with this rule (default
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Table 1. Test accuracies of the different machine learning methods in imitating the diving
oracle.

Test FCMCNF Test MAXSAT Test GISP

svm 91.5% 90.6% 93.0%
mlp 97.8% 97.9% 95.6%
gnn 95.7% 97.7% 97.0%

scip) and with a plain nodeselect that always selects the highest-ranked node (estimate).
We also report the performance of the expert we aim to imitate, the diving oracle (oracle).
This method cheats by having access to the optimal solution ahead of the solving.

In addition, we compare against two competing machine learning approaches: the sup-
port vector machine [121] approach of He et al. [101] (svm) and the RankNet feedforward
neural network [122] approach of Song et al. [102] and Yilmaz and Yorke-Smith [103]. The
former uses a multilayer perceptron; the latter uses the same, except for one benchmark
where they use three hidden layers. For simplicity, we use a multilayer perceptron for all
benchmarks (mlp), with a hidden layer of 32 neurons. The features used in the three papers
are roughly similar; again, for simplicity, we use the fixed-dimensional features of He et al.
for both the svm and the mlp. All methods except the default scip use a plain highest-rank
nodeselect.

5.3. Training

We use the training procedure of Section 4.3 for all machine learning models. The svm
model is trained using the scikit-learn [123] library; the mlp and the gnn implemented in
PyTorch [124] and optimized using Adam [67] with training batch size of 16. Running the
sampling procedure on 1000 training and 100 test instances yielded 16285 training and 3019
test samples for FCMCNF, 41299 training, and 4868 test samples for MAXSAT, and 41299
training and 4868 test samples for GISP. We train/evaluate using an Nvidia® Tesla V100
GPU and an Intel® Xeon Gold 6126 CPU. Test accuracies of the different models can be
found in Table 1.

5.4. Evaluation

We evaluate each machine learning model by setting SCIP’s nodecomp function be the
nodecomp function associated with the machine learning model (Eq. 4.1). In parallel, the
nodeselect function is designed to use the highest ranked node according to this node
comparison function, until two feasible solutions have been obtained. After this state, it falls
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Table 2. Evaluation of node comparison methods in terms of the 1-shifted geometric mean
of the number of nodes and solving time (in seconds) over the instances, with the geometric
standard deviation. For each problem, machine learning models are trained on instances of
the same size as the test instances, and evaluated on those and the larger transfer instances
(50 instances each).

Test FCMCNF Transfer FCMCNF Test MAXSAT Transfer MAXSAT Test GISP Transfer GISP
Nodes Time Nodes Time Nodes Time Nodes Time Nodes Time Nodes Time

oracle 15±4 3.80±1.5 75±4 19.9±1.8 102±2 6.17±1.8 160±2 8.9±1.5 98±3 4.18±1.3 1062±2 22.6±1.5

scip 41±5 4.64±1.5 178±4 26.7±1.9 147±2 9.26±1.5 171±2 12.9±1.4 184±2 4.38±1.2 1533±2 19.1±1.5
estimate 21±5 4.09±1.5 122±5 23.8±2.0 177±2 8.16±1.7 247±2 12.1±1.6 218±2 4.64±1.3 1435±2 24.9±1.7

svm 20±5 4.10±1.5 133±5 24.8±1.9 150±3 7.34±1.8 225±2 10.7±1.6 207±3 4.57±1.3 1295±2 23.4±1.6
mlp 21±5 4.15±1.5 115±5 24.1±1.9 157±3 7.76±1.9 215±2 10.8±1.6 209±3 4.72±1.3 1238±2 23.0±1.6
gnn 19±5 4.14±1.5 122±5 24.5±1.9 117±3 6.66±1.9 171±2 9.1±1.6 170±3 4.64±1.3 1203±2 22.8±1.5

back to estimate. This has the effect of prioritizing the learned node comparison during
the initial phases of the solving, in a size-independent manner.

We average results over the benchmarks using the 1-shifted geometric mean with geomet-
ric standard deviation to measure the average and dispersion of B&B tree size and solving
time on our benchmarks. This metric is the standard used in the mixed-integer program-
ming community since it reduces outlier effects from both directions (too easy and too hard
instances), as discussed in Appendix A3 of Achterberg [90]. We evaluated on 50 test and 50
transfer instances, as explained in Section 5.1. Table 2 summarizes the results.

5.5. Discussion

As can be seen in Table 1, both the mlp and gnn achieve similar accuracies on the
datasets, with the svm lagging a bit more behind. When used in solving, however, the gnn
more consistently dominates the other machine learning approaches. More impressively, the
model is often competitive with or even better than the SCIP default node strategy, partic-
ularly on the MAXSAT problems. In addition, these results generalize to larger instances
than those trained on. This is the case despite using a plain nodeselect rule, which sug-
gests that most of the difficulty in node selection can be reduced by the design of a good
nodecomp function. This is particularly attractive as this is a problem that is naturally
amenable to machine learning methods, as described in this work.

A disadvantage of the imitation learning approach we follow is that it is limited by
the performance of the expert itself. If the oracle does not beat a baseline, imitating it is
unlikely to bring gains. A good example is the largest benchmark, transfer GISP: this is
the only family where the oracle does not beat the SCIP default rule in time. Therefore,
it is unsurprising that no other machine learning method was able to beat it. Note that
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nonetheless, the gnn is the model that manages to come the closest to the performance of
the oracle on this benchmark, suggesting strong imitation capabilities.

6. Conclusion
This work proposes to train a graph neural network to compare nodes in a branch-and-

bound solver for solving mixed-integer linear programs. We represent nodes as bipartite
graphs with features and train a neural network to imitate a diving oracle that plunges to-
wards the optimal solution. On three primal-difficult NP-hard benchmarks, our approach
outperforms prior machine learning approaches and often even the SCIP default node selec-
tion strategy, while generalizing to larger instances than trained on.

An interesting direction for future work would be to combine variable and node selection
strategies. Besides the fact that the two problems are tightly linked, good node selection
is particularly important in primal-difficult problems, while good branching is particularly
useful in dual-difficult problems. Combining the two could thus help outperform current
expert-designed strategies on generic problems.
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Conclusion and future work

In this thesis, we first provided two broad concise overviews of operations research and ma-
chine learning while deepening more critical notions for this work. Then, a literature review
of data-driven combinatorial optimization was given, with an extensive study of research in
data-driven node selection in B&B. Finaly, the article titled Learning to Compare Nodes in
Branch and Bound using Graph Neural Networks followed, providing our novel contribution
to research.

This contribution consists of a new framework for obtaining a problem-adaptive B&B
node comparison policy. A simple training regime based on data diversification is proposed,
using graph neural networks to directly learn to infer from geometric characterizations of
MILPs, instead of solver’s pseudostatistics. It is shown that the approach outperforms pre-
vious data-driven ones in three NP-hard problems, suggesting its strong imitation potential
can be leveraged to learn more complex policies that would transfer even more appropriately
on out-of-distribution (typically larger) instances.

The next step for the node comparison problem could be to design an expert for both the
diving and the pruning phase in exact solvers. The problem of switching to a handcrafted
node selection policy after finding an optimum/almost-optimum solution would then be elim-
inated. Another direction could be to jointly learn a policy for branching and for searching,
which could at the same time boost performance and enable scalability on a larger spectrum
of NP-hard problems. In general, we hope to continue pushing for a deeper integration of
machine learning methods within combinatorial optimization, moving towards what could
be called one day an adaptive combinatorial optimization solver.
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