
Université de Montréal

Adaptive Learning of Tensor Network Structures

par

Seyed Meraj Hashemizadehaghda

Département d’informatique et de recherche opérationnelle

Faculté des arts et des sciences

Mémoire présenté en vue de l’obtention du grade de

Maître ès sciences (M.Sc.)

en Informatique

October 3, 2022

© Seyed Meraj Hashemizadehaghda, 2022

Université de Montréal

Faculté des arts et des sciences

Ce mémoire intitulé

Adaptive Learning of Tensor Network Structures

présenté par

Seyed Meraj Hashemizadehaghda

a été évalué par un jury composé des personnes suivantes :

Ioannis Mitliagkas

(président-rapporteur)

Guillaume Rabusseau

(directeur de recherche)

Pierre-Luc Bacon

(membre du jury)

Résumé

Les réseaux tensoriels offrent un cadre puissant pour représenter efficacement des objets

de très haute dimension. Les réseaux tensoriels ont récemment montré leur potentiel pour

les applications d’apprentissage automatique et offrent une vue unifiée des modèles de

décomposition tensorielle courants tels que Tucker, tensor train (TT) et tensor ring (TR).

Cependant, l’identification de la meilleure structure de réseau tensoriel à partir de données

pour une tâche donnée est un défi.

Dans cette thèse, nous nous appuyons sur le formalisme des réseaux tensoriels pour

développer un algorithme adaptatif générique et efficace pour apprendre conjointement la

structure et les paramètres d’un réseau de tenseurs à partir de données. Notre méthode

est basée sur une approche simple de type gloutonne, partant d’un tenseur de rang un et

identifiant successivement les bords du réseau tensoriel les plus prometteurs pour de petits

incréments de rang. Notre algorithme peut identifier de manière adaptative des structures

avec un petit nombre de paramètres qui optimisent efficacement toute fonction objective

différentiable. Des expériences sur des tâches de décomposition de tenseurs, de complétion de

tenseurs et de compression de modèles démontrent l’efficacité de l’algorithme proposé. En

particulier, notre méthode surpasse l’état de l’art basée sur des algorithmes évolutionnaires

introduit dans [26] pour la décomposition tensorielle d’images (tout en étant plusieurs ordres

de grandeur plus rapide) et trouve des structures efficaces pour compresser les réseaux

neuronaux en surpassant les approches populaires basées sur le format TT [30].

Mots-clés: réseau de tenseur, décomposition de tenseur, apprentissage automatique

5

Abstract

Tensor Networks (TN) offer a powerful framework to efficiently represent very high-dimensional

objects. TN have recently shown their potential for machine learning applications and offer

a unifying view of common tensor decomposition models such as Tucker, tensor train (TT)

and tensor ring (TR). However, identifying the best tensor network structure from data

for a given task is challenging. In this thesis, we leverage the TN formalism to develop a

generic and efficient adaptive algorithm to jointly learn the structure and the parameters of

a TN from data. Our method is based on a simple greedy approach starting from a rank

one tensor and successively identifying the most promising tensor network edges for small

rank increments. Our algorithm can adaptively identify TN structures with small number

of parameters that effectively optimize any differentiable objective function. Experiments

on tensor decomposition, tensor completion and model compression tasks demonstrate the

effectiveness of the proposed algorithm. In particular, our method outperforms the state-of-the-

art evolutionary topology search introduced in [26] for tensor decomposition of images (while

being orders of magnitude faster) and finds efficient structures to compress neural networks

outperforming popular TT based approaches [30].

Keywords: tensor network, tensor decomposition, machine learning

7

Contents

Résumé . 5

Abstract . 7

List of tables . 11

List of figures . 13

Introduction. 15

Chapter 1. Preliminaries . 19

1.1. Introduction . 19

1.2. Notations . 19

1.3. Tensors . 19

1.4. Tensor network diagrams. 20

1.5. Basic Operations on Tensors . 21

1.6. Tensor decomposition . 22

1.6.1. CP decomposition . 22

1.6.2. Tucker decomposition . 23

1.6.3. Tensor train decomposition . 24

1.6.4. Tensor ring decomposition . 25

1.7. Tensor learning tasks . 26

9

1.7.1. Low-rank tensor approximation . 26

1.7.2. Tensor completion . 26

1.8. Tensor network learning . 27

Chapter 2. A Greedy Algorithm for Tensor Network Structure Learning. . 29

2.1. Introduction . 29

2.2. Tensor Network Optimization . 29

2.3. Tensor Network Structure Learning . 31

2.4. Greedy Algorithm. 32

2.4.1. Computational Complexity. 39

Chapter 3. Results and discussion . 41

3.1. Introduction . 41

3.2. Tensor decomposition . 41

3.2.1. Weight transfer benefits . 44

3.3. Tensor completion . 45

3.4. Image compression . 49

3.5. Compressing neural networks . 50

Chapter 4. Conclusion and future work . 53

References . 55

10

List of tables

3.1 Log compression ratio and RSE for 10 different images selected from the LIVE

dataset. 50

11

List of figures

1.1 Tensor network representation of a vector v ∈ R
d, a matrix M ∈ R

m×n and a

tensor T ∈ R
d1×d2×d3 . 20

1.2 Tensor network representation of common operation on matrices and tensors. 21

1.3 Tensor network diagram of the outer product of three vectors. 21

1.4 Tensor network diagram of the mode-3 product of a fourth order tensor with a

matrix. 22

1.5 Tensor network diagram of the CP decomposition of a fourth order tensor. The

factor matrices Vi ∈ R
di×R are construced by concatenating the rank one vectors

as, i.e, Vi = [v1
i |v

2
i | · · · |v

R
i]. The black dot represents a diagonal tensor with ones

along the superdiagonal. 23

1.6 Tensor network diagram of the Tucker decomposition of a fourth order tensor. . . 24

1.7 Tensor network diagram of the TT decomposition of a fourth order tensor. 24

1.8 Tensor network diagram of the TR decomposition of a fourth order tensor. 25

3.1 Tensor network structures for tensor decomposition. 41

3.2 Evaluation of Greedy-TN on tensor decomposition. Curves represent the

reconstruction error averaged over 100 runs, shaded areas correspond to standard

deviations and the vertical line represents the number of parameters of the

target TN. Greedy corresponds to Greedy-TN without the search for internal

nodes (split-nodes subroutine, line 15 of Algorithm 1) while Greedy-int.

includes this search. 43

13

3.3 Most common tensor network structure returned by Greedy-TN and Greedy-int

over the 100 runs of the tensor decomposition experiment. 44

3.4 Comparison of Greedy-TN with and without weight transfer on a TT structure

decomposition task. Curves represent the reconstruction error averaged over 50

runs, and shaded areas correspond to standard deviations. 45

3.5 Image completion with 10% of the entries randomly observed. (top) Relative

reconstruction error. (bottom) Best recovered images for CP, Tucker, TT and TR,

and 6 recovered images at different iteration of greedy (image title: RSE% [number

of parameters]). 47

3.6 Solutions found by Greedy-TN for the Einstein image completion experiments,

labeled by number of parameters and relative test error w.r.t. the full image.

[continued on next page] . 48

3.7 Solutions found by Greedy-TN for the Einstein image completion experiments,

labeled by number of parameters and relative test error w.r.t. the full image.

[continued from previous page] . 49

3.8 Train and test accuracies on the MNIST dataset for different model sizes. 51

14

Introduction

Matrix factorization is ubiquitous in machine learning and data science and forms the backbone

of many algorithms. Tensor decomposition techniques emerged as a powerful generalization

of matrix factorization to higher-order arrays. They are particularly suited to handle high-

dimensional multi-modal data and have been successfully applied in neuroimaging [51], signal

processing [4, 40], spatio-temporal analysis [1, 38] and computer vision [27]. Common tensor

learning tasks include tensor decomposition (finding a low-rank approximation of a given

tensor), tensor regression (which extends linear regression to the multi-linear setting), and

tensor completion (inferring a tensor from a subset of observed entries).

Akin to matrix factorization, tensor methods rely on factorizing a high-order tensor

into small factors. However, in contrast with matrices, there are many different ways of

decomposing a tensor, each one giving rise to a different notion of rank, including CP, Tucker,

Tensor Train (TT) and Tensor Ring (TR). For most tensor learning problems, there is no clear

way of choosing which decomposition model to use, and the cost of model mis-specification

can be high. It may even be the case that none of the commonly used models is suited for

the task, and new decomposition models would achieve better tradeoffs between minimizing

the number of parameters and minimizing a given loss function.

We propose an adaptive tensor learning algorithm which is agnostic to decomposition

models. Our approach relies on the tensor network formalism, which has shown great success

in the many-body physics community [35, 9, 8] and has recently demonstrated its potential

in machine learning for compressing models [30, 46, 11, 31, 20, 48], developing new insights

into the expressiveness of deep neural networks [5, 21], and designing novel approaches to

supervised [42, 12] and unsupervised [41, 14, 29] learning. Tensor networks offer a unifying

view of tensor decomposition models, allowing one to reason about tensor factorization in a

general manner, without focusing on a particular model.

In this work, we design a greedy algorithm to efficiently search the space of tensor network

structures for common tensor problems, including decomposition, completion and model

compression. We start by considering the novel tensor optimization problem of minimizing a

loss over arbitrary tensor network structures under a constraint on the number of parameters.

To the best of our knowledge, this is the first time that this problem is considered. The

resulting problem is a bi-level optimization problem where the upper level is a discrete

optimization over tensor network structures, and the lower level is a continuous optimization

of a given loss function. We propose a greedy approach to optimize the upper-level problem,

which is combined with continuous optimization techniques to optimize the lower-level

problem. Starting from a rank one initialization, the greedy algorithm successively identifies

the most promising edge of a tensor network for a rank increment, making it possible to

adaptively identify from data the tensor network structure which is best suited for the task

at hand.

The greedy algorithm we propose is conceptually simple, and experiments on tensor

decomposition, completion and model compression tasks showcase its effectiveness. Our

algorithm significantly outperforms a recent evolutionary algorithm [26] for tensor network

decomposition on an image compression task by discovering structures that require less

parameters while simultaneously achieving lower recovery errors. The greedy algorithm also

outperforms CP, Tucker, TT and TR algorithms on an image completion task and finds more

efficient TN structures to compress fully connected layers in neural networks than the TT

based method introduced in [30].

Related work. Adaptive tensor learning algorithms have been previously proposed, but they

only consider determining the rank(s) of a specific decomposition and are often tailored to a

specific tensor learning task (e.g., decomposition or regression). In [1], a greedy algorithm

is proposed to adaptively find the ranks of a Tucker decomposition for a spatio-temporal

16

forecasting task, and in [45] an adaptive Tucker based algorithm is proposed for background

subtraction. In [49], the authors present a Bayesian approach for automatically determining

the rank of a CP decomposition. In [2] an adaptive algorithm for tensor decomposition in

the hierarchical Tucker format is proposed. In [13] a stable rank-adaptive alternating least

square algorithm is introduced for completion in the TT format. The problem we consider is

considerably more general since we do not assume a fixed tensor network structure (e.g. Tucker,

TT, CP, etc.). Exploring other decomposition relying on the tensor network formalism has

been sporadically explored. The work which is the most closely related to our contribution

is [26] where evolutionary algorithms are used to approximate the best tensor network

structure to exactly decompose a given target tensor. However, the method proposed in [26]

only searches for TN structures with uniform ranks (with the rank being a hyperparameter)

and is limited to the problem of tensor decomposition. In contrast, our method is the first to

jointly explore the space of structures and (non-uniform) ranks to minimize an arbitrary loss

function over the space of tensor parameters. Lastly, [17] proposes to explore the space of

tensor network structures for compressing neural networks, a rounding algorithm for general

tensor networks is proposed in [28] and the notions of rank induced by arbitrary tensor

networks are studied in [47].

Summary of the contributions. We introduce a tensor learning algorithm which is

agnostic to decomposition models. The greedy algorithm we propose is conceptually simple

and experiments on tensor decomposition, completion and model compression tasks showcase

its effectiveness. We believe this work opens the door to promising directions for developing

tensor network based learning algorithms going beyond classical decomposition models

commonly used by practitioners. To the best of our knowledge, this is the first time that the

problem of learning the structure of tensor networks is considered in such a general framework

encompassing a wide range of tensor learning problems, and our work is the first to propose

a learning algorithm which is agnostic to decomposition models and can adaptively discover

tensor network structures from data.

17

Outline of the thesis.

We begin in Chapter 1 with a brief introduction on tensors as multi-dimensional arrays

and the main operations associated with them. We then introduce tensor network diagrams

as a tool to intuitively represent tensor operations. Further on, we introduce some of the most

common tensor decomposition methods. Finally, we review some tensor machine learning

tasks, which we utilize in the following chapters.

In Chapter 2, we describe our main contribution—the adaptive greedy method for tensor

structure learning. We start off by formally defining the tensor network structure learning

problem as a bi-level optimization problem. We then introduce our algorithm, Greedy-TN, to

tackle this problem; we discuss its components and analyze the computational complexity.

This chapter also appears as a preprint on arXiv [15] written by the author, Michelle Liu,

Jacob Miller, and the author’s supervisor. The author lead the development of the method

and the experiments; all co-authors collaborated in writing the paper.

In Chapter 3, we evaluate Greedy-TN on different machine learning tasks, specifically

tensor decomposition, image compression, tensor completion, and neural network compression.

In Chapter 4, we provide a summary and also discuss potential further work.

This work was also presented at the first workshop on quantum tensor networks in machine

learning at NeurIPS in 2020 [16].

18

Chapter 1

Preliminaries

1.1. Introduction

In this chapter, we present principal notions from tensor algebra and tensor networks,

which are at the core of our work. We refer the enthusiastic reader to [23] for a more in-depth

primer on tensor algebra.4

1.2. Notations

We first introduce the notations used throughout this thesis. For any integer k, [k] denotes

the set of integers from 1 to k, i.e., [k] = {1, 2, · · · , k}. We use lower case bold letters for

vectors (e.g. v ∈ R
d1), upper case bold letters for matrices (e.g. M ∈ R

d1×d2) and bold

calligraphic letters for higher order tensors (e.g. T ∈ R
d1×d2×d3). The ith row (resp. column)

of a matrix M will be denoted by Mi,: (resp. M:,i). This notation is extended to slices (fibers)

of a tensor in the obvious way. For example, given a third-order tensor T ∈ R
d1×d2×d3 its

mode-1, 2 and 3 fibers are denoted as T :,j,k, T i,:,k, and T i,j,: respectively.

1.3. Tensors

A tensor T ∈ R
d1×···×dp can simply be seen as a multidimensional array (T i1,··· ,ip

: in ∈

[dn], n ∈ [p]). The inner product of two tensors is defined by 〈S, T 〉 =
∑

i1,··· ,ip
Si1···ip

T i1···ip

and the Frobenius norm of a tensor is defined by ‖T ‖2
F = 〈T , T 〉. The mode-n matrix

product of a tensor T and a matrix X ∈ R
m×dn is a tensor denoted by T ×n X. It is of size

d1× · · · × dn−1×m× dn+1× · · · × dp and is obtained by contracting the nth mode of T with

the second mode of X, e.g. for a 3rd order tensor T , we have (T ×2 X)i1i2i3 =
∑

j T i1ji3Xi2j.

The nth mode matricization of T is denoted by T (n) ∈ R
dn×

∏

i6=n
di .

1.4. Tensor network diagrams

Tensor network diagrams allow one to represent complex operations on tensors (mainly

contractions) in a graphical and intuitive way. A tensor network (TN) is simply a graph

where nodes represent tensors, and edges represent contractions between tensor modes, i.e. a

summation over an index shared by two tensors. In a tensor network, the arity of a vertex (i.e.

the number of legs of a node) corresponds to the order of the tensor (see Figure 1.1).

v

d

Mm n
T

d1

d2

d3

Figure 1.1. Tensor network representation of a vector v ∈ R
d, a matrix M ∈ R

m×n and a
tensor T ∈ R

d1×d2×d3 .

We will sometimes add indices to legs of a tensor network to refer to its components or

sub-tensors. For example, the tensor networks A
m n , Ai and Ai j represent

a matrix A ∈ R
m×n, the ith row of A and the component Ai,j, respectively.

Connecting two legs in a tensor network represents a contraction over the corresponding

indices. Consider the following simple tensor network with two nodes: A xm n . The first

node represents a matrix A ∈ R
m×n and the second one a vector x ∈ R

n. Since this tensor

network has one dangling leg (i.e. an edge which is not connected to any other node), it

represents a first order tensor, i.e., a vector. The edge between the second leg of A and the leg

of x corresponds to a contraction between the second mode of A and the first mode of x. Hence,

the resulting tensor network represents the classical matrix-vector product, which can be seen

by calculating the ith component of this tensor network: A xi =
∑

j Aijxj = (Ax)i .

Other examples of tensor network representations of common operations on matrices and

tensors can be found in Figure 1.2.

20

Lastly, it is worth mentioning that disconnected tensor networks correspond to ten-

sor products, e.g., u v = uv⊤ is the outer product of u and v with components

u vi j = uivj . Consequently, an edge of dimension (or rank) 1 in a TN is equiv-

alent to having no edge between the two nodes, e.g., if R = 1 we have A Bi R j =

∑R
r=1 Ai,rBr,j = Ai,1B1,j = A Bi j.

A B = AB A = Tr(A) T B = T ×3 B T T = ‖T ‖2
F

Figure 1.2. Tensor network representation of common operation on matrices and tensors.

1.5. Basic Operations on Tensors

Outer Product. The outer product of p vectors v1 ∈ R
d1 , . . . , vp ∈ R

dp , denoted by

v1 ◦ · · · ◦vp, is a p-th order tensor T ∈ R
d1×···×dp with the elements T i1,...,ip

= (v1)i1 . . . (vp)ip
,

where (vk)ik
is the ik-th element of vk. Therefore, the outer product can be seen as one basic

way to construct a tensor from vectors; tensors that can be written as an outer product of

vectors are called rank one tensors. Figure 1.3 shows the TN diagram representation of the

outer product of three vectors, a ◦ b ◦ c.

d1 d3d2

T = a b c

d1 d2 d3

Figure 1.3. Tensor network diagram of the outer product of three vectors.

n-mode product. The n-mode (matrix) product is a generalization of the matrix multipli-

cation. For a p-th order tensor T ∈ R
d1×···×dn×···×dp and a matrix M ∈ R

m×dn, the n-mode

product is the contraction of the nth mode of T with the second mode of the matrix M,

resulting in a p-th order tensor T ×n M ∈ R
d1×···×dn−1×m×dn+1×···×dp . More formally,

(T ×n M)i1,...,in−1,j,in+1,...,ip
=

dn
∑

in=1

T i1,...,in,...,ip
Mj,in

. (1.5.1)

Figure 1.4 illustrates the tensor network diagram associated with the mode-3 product of a

fourth order tensor with a matrix.

21

T

d4

d1
d2

d3
M

m
= T ×3 M

Figure 1.4. Tensor network diagram of the mode-3 product of a fourth order tensor with a
matrix.

Matricization. Matricization or unfolding is the operation that rearranges the entries of a

tensor into a matrix. There are many ways to matricize a tensor, e.g,. a 3× 5× 7 tensor can

be arranged as a 15× 7 matrix or a 3× 35 matrix, and so on [23]. In the general case a tensor

T ∈ R
d1×d2×···×dp can be rearranged into a matrix where each of the p modes is either mapped

to the row or the column of the flattened matrix. Formally, let I and J be a bi-partition

of [p] (i.e., [p] = I ∪ J and I ∩ J = ∅) then we will denote by ♭I,J(T) ∈ R

∏

i∈I
di×

∏

j∈J
dj

the matricization of T obtained by using the modes in I for rows and the modes in J for

columns.

One widely used matricization is the mode-n matricization, where the mode-n fibers

are arranged as the columns of matricization. The mode-n matricization of a tensor T ∈

R
d1×···×dn×···×dp is denoted by T (n); this is the same as ♭{n},[p]\n(T).

1.6. Tensor decomposition

Tensor decompositions are generalizations of matrix factorizations to their high-order

extensions—tensors, and as so their usecases are two-fold: 1) compressing large tensors to

reduce storage costs, and 2) discovering (low rank) latent representations in complex high

dimensional data. We now briefly present the most common tensor decomposition models.

1.6.1. CP decomposition

The CP decomposition [19] of a tensor T ∈ R
d1×d2×···×dp consists in expressing T as a

sum of rank-1 tensors:

T =
R

∑

r=1

vr
1 ◦ · · · ◦ vr

p, (1.6.1)

22

where the CP rank of T is defined as the smallest R for which the equation holds. Unlike the

matrix case where computing the rank can be done in polynomial time (O(d3)), computing

the CP rank is an NP-hard problem [18]. However, certain bounds can be obtained, e.g.,

CP-rank(T) ≤ mini

∏

j 6=i dj. Another distinction between the CP rank and matrix rank is

that a random matrix is almost surely (with probability equal to one) full rank, but the

CP rank of a random tensor can take multiple values with non-zero probability. Lastly,

another exciting difference is the uniqueness of the CP decomposition under some mild

assumptions [25]. The TN representation of the CP decomposition of a fourth order tensor is

illustrated in Figure 1.5.

V1 V2 V3 V4

R R R R

d1 d2 d3 d4

Figure 1.5. Tensor network diagram of the CP decomposition of a fourth order tensor.
The factor matrices Vi ∈ R

di×R are construced by concatenating the rank one vectors as,
i.e, Vi = [v1

i |v
2
i | · · · |v

R
i]. The black dot represents a diagonal tensor with ones along the

superdiagonal.

1.6.2. Tucker decomposition

The Tucker decomposition, first introduced in [43], expresses a tensor T ∈ R
d1×d2×···×dp

as a core tensor G multiplied by a orthogonal matrix along each of its modes.

T = G ×1 U1 ×2 U2 ×3 · · · ×p Up (1.6.2)

where G ∈ R
R1×R2×···×RP , Ui ∈ R

di×Ri and U⊤
i Ui = I for all i ∈ [p]. The TN representation

of the tucker decomposition of a fourth order tensor is illustrated in Figure 1.6.

The Tucker rank, or multilinear rank (n-rank), of a tensor T is the smallest tuple

(R1, R2, · · · , Rp) for which the tucker decomposition (Equation 1.6.2) exists. It can be

shown that the multilinear rank of T is given by the ranks of its matricizations, i.e.,

n-rank(T) =
(

rank(T (1)), rank(T (2)), · · · , rank(T (p))
)

[7].

23

In contrast to CP decomposition, Tucker decomposition is not unique as we can multiply

the factor matrices with any unitary matrix as long as the invert is applied to the corresponding

mode of the core tensor.

U1 U2 U3 U4

G

R1 R2 R3 R4

d1 d2 d3 d4

Figure 1.6. Tensor network diagram of the Tucker decomposition of a fourth order tensor.

1.6.3. Tensor train decomposition

Given a tensor T ∈ R
d1×d2×···×dp , the tensor train (TT) decomposition [33], also known

as matrix product states (MPS) [36, 32] in the physics community, factorizes T into p core

tensors G1 ∈ R
d1×R1 , G2 ∈ R

R1×d2×R2 , . . . , Gp−1 ∈ R
Rp−2×dp−1×Rp−1 , Gp ∈ R

Rp−1×dp in the

following form

T i1,··· ,ip
=

R1
∑

r1=1

· · ·
Rp−1
∑

rp−1=1

G1
i1,r1

G2
r1,i2,r2

G3
r2,i3,r3

· · ·Gp−1
rp−1,ip−1,rp−1

G
p
rp−1,ip

. (1.6.3)

The TN representation of this decomposition for a fourth order tensor is illustrated in

Figure 1.7.

G1 G2 G3 G4

R1 R2 R3

d1 d2 d3 d4

Figure 1.7. Tensor network diagram of the TT decomposition of a fourth order tensor.

Similar to Tucker, the TT decomposition naturally gives rise to an associated notion

of rank: the TT rank is the smallest tuple (R1, R2, · · · , Rp−1) such that a TT decom-

position exists. The TT rank of a tensor can be determined in terms of the rank of

its matricization (a different matricization than the typical mode-n matricization), i.e.,

TT-rank(T) =
(

rank(♭{1},[p]\{1}(T)), rank(♭{1,2},[p]\{1,2}(T)), · · · , rank(♭[p−1],{p}(T))
)

, where

♭[k],[p]\[k](T) ∈ R

∏k

i=1
di×

∏p

j=k+1
dj is the matricization of T with modes {1, 2, · · · , k} as the

rows and modes {k + 1, k + 2, · · · , p} as the columns.

24

1.6.4. Tensor ring decomposition

The tensor ring (TR) decomposition [50] represents a tensor T ∈ R
d1×d2×···×dp by a

sequence of third-order tensors, Gi ∈ R
Ri−1×di×Ri for all i ∈ [p] with R0 = Rp, that are

multiplied circularly. The decomposition takes the following form

T i1,··· ,ip
= Tr(G1

:,i1,:G
2
:,i2,: · · ·G

p
:,ip,:), (1.6.4)

It can be seen that the tensor train decomposition is a particular case of the tensor ring

decomposition where R0 must be equal to 1 (R0 is thus omitted when referring to the rank

of a TT decomposition). The TN representation of the TR decomposition for a fourth order

tensor is shown in Figure 1.8.

G1 G2 G3 G4

R1 R2 R3

d1 d2 d3 d4

R0

Figure 1.8. Tensor network diagram of the TR decomposition of a fourth order tensor.

As shown tensor networks offer a unifying view of tensor decomposition models. Each

decomposition is naturally associated with the graph topology of the underlying TN. For

example, the Tucker decomposition corresponds to star graphs, the TT decomposition

corresponds to chain graphs, and the TR decomposition model corresponds to cyclic graphs.

The relation between the rank of a decomposition and its number of parameters is different

for each model. Letting p be the order of the tensor, d its largest dimension and R the rank

of the decomposition (assuming uniform ranks), the number of parameters is in O (Rp + pdR)

for Tucker, and O (pdR2) for TT and TR. One can see that the Tucker decomposition is not

well suited for tensors of very high order since the size of the core tensor grows exponentially

with p.

25

1.7. Tensor learning tasks

In this section we briefly introduce some of the common machine learning tasks where

tensors play a central role. These tasks include the tensor low-rank approximation problem

and the tensor completion problem.

1.7.1. Low-rank tensor approximation

Approximating a given tensor by a low-rank tensor which is representable with less

number of parameters is a common task in many applications such as data compression,

image denoising and genomic data analysis. Here we are interested in identifying the “best”

rank-r tensor to approximate a given tensor. More formally given a tensor T ∈ R
d1×d2×···×dp

the problem can be stated as

min
W
‖T −W‖2

F s.t. rank (W) ≤ R (1.7.1)

where W is the low-rank approximation of T and rank could be any notion of tensor rank

as defined in the previous section.

Unlike for matrices where the solution of the low-rank approximation problem is given

by the Eckart–Young theorem, the problem for tensor is much more difficult as the set of

low-rank tensors is not closed and the Eckart–Young theorem cannot be extended to tensors.

1.7.2. Tensor completion

Tensor completion is a generalization of the classical matrix completion problem [3].

Similarly, tensor completion applications are ubiquitous, e.g., recommendation systems [52]

and image processing [44]. In these applications, the underlying tensor is only partially

observed, and the goal is to estimate the missing entries. More formally given a partially

observed target tensor X ∈ R
d1×d2×···×dp from a set of observed entries {X i1,··· ,ip

}(i1,··· ,ip)∈Ω

where Ω ⊂ [d1]× · · · × [dp] we wish to recover the missing entries of X . Similar to the matrix

case, to avoid the problem being underdetermined, and to restrict the degrees of freedom a

26

low rank assumption is necessary [10]. Therefore, the problem could be presented as

min
W

1

|Ω|

∑

(i1,··· ,ip)∈Ω

(W i1,··· ,ip
−X i1,··· ,ip

)2 s.t. rank(W) ≤ R, (1.7.2)

where the rank constrain could refer to any notation of rank as defined in the previous

section.

1.8. Tensor network learning

In this section, we introduce a unifying view of common tensor learning problems. Most

tensor learning problems can be seen as special cases of the following optimization problem:

min
W∈R

d1×···×dp

L(W) s.t. rank(W) ≤ R (1.8.1)

where L : Rd1×···×dp → R is a loss function and rank(W) denotes some notion of tensor

rank (e.g. CP, Tucker, TT, ...). The rank constraint R is either a single number or a

tuple of integers depending on the decomposition considered and it often corresponds to an

hyper-parameter of the underlying tensor learning problem controlling model capacity.

Different choices of loss functions in Problem 1.8.1 give rise to different common tensor

learning problems. For tensor decomposition, the objective is to find the best low rank

approximation of a given target tensor X and a common choice of loss function is L(W) =

‖W−X‖2
F . One form of tensor regression consists in learning a linear function f : Rd1×···×dp →

R from a training set of input-output examples {(X (n), y(n))}N
n=1 ⊂ R

d1×···dp × R where each

y(n) ≃ f(X (n)). A common choice of loss function for tensor regression is the mean squared

error: L(W) = 1
N

∑N
n=1(〈W , X (i)〉− y(i))2. The tensor completion task consists in estimating

a target tensor X ∈ R
d1×···×dp from a set of observed entries {X i1,··· ,ip

}(i1,··· ,ip)∈Ω where

Ω ⊂ [d1]×· · ·× [dp]. A common loss function for tensor completion is again the squared error:

L(W) = 1
|Ω|

∑

(i1,··· ,ip)∈Ω(W i1,··· ,ip
−X i1,··· ,ip

)2. Lastly, learning matrix product state models

for classification [42] and sequence modeling [14] also falls within this general formulation by

using the cross-entropy or log likelihood as a loss function.

27

The rank constraint in Problem 1.8.1 often serves two purposes: it acts as a regularizer

but is also a way to make the problem tractable. Indeed, in some instances of these tensor

learning problems the size of the tensor parameter W is so large that it cannot be stored

in memory. Unfortunately, for almost all common tensor learning tasks, Problem 1.8.1

is NP-hard because of the tensor rank constraint [18]. There are two common ways of

handling this constraint: either a convex relaxation is used and the resulting problem is

solved using classical convex optimization toolboxes, or the objective function is minimized

with respect to the factors involved in the decomposition of the tensor W rather than

w.r.t. W itself. For the latter, an example for a tensor decomposition task with a Tucker

rank constraint would be to rewrite Problem 1.8.1 in the following unconstrained form:

minG∈R
R1×···×Rp ,Ui∈R

di×Ri ,1≤i≤p ‖G ×1 U1 ×2 · · · ×p Up −X‖2
F , where the rank constraint has

been removed but the objective function is not convex anymore. This is the approach we will

take for the greedy algorithm we introduce in the following section.

This formulation encompasses classical tensor learning problems:

• Tensor decomposition: L(W) = ‖W −X‖2
F

• Tensor regression: L(W) = 1
N

∑N
n=1(〈W , X (i)〉 − y(i))2

• Tensor completion: L(W) = 1
|Ω|

∑

(i1,··· ,ip)∈Ω(W i1,··· ,ip
−X i1,··· ,ip

)2

28

Chapter 2

A Greedy Algorithm for Tensor Network

Structure Learning

2.1. Introduction

In this chapter, we first introduce the problem of tensor network structure learn-

ing—minimizing a loss function defined over arbitrary tensor network structures under

a constraint on the number of parameters—which we formalize as a bi-level optimization

problem. We then propose an iterative greedy algorithm to tackle this problem.

2.2. Tensor Network Optimization

We consider the problem of minimizing a loss function L : Rd1×···×dp → R+ w.r.t. a tensor

W efficiently parameterized as a tensor network (TN). We first introduce our notations for

TN.

Without loss of generality, we consider TN having one factor per dimension of the

parameter tensor W ∈ R
d1×···×dp , where each of the factors has one dangling leg corresponding

to one of the dimensions di (we will discuss how this encompasses TN structures with internal

nodes such as Tucker at the end of this section). In this case, a TN structure is summarized by

a collection of ranks (Ri,j)1≤i<j≤p where each Ri,j ≥ 1 is the dimension of the edge connecting

the ith and jth nodes of the TN (for convenience, we assume Ri,j = Rj,i if i > j). If there

is no edge between nodes i and j in a TN, Ri,j is thus equal to 1 (see Section 1.4). A TN

decomposition of W ∈ R
d1×···×dp is then given by a collection of core tensors G(1), · · · , G(p)

where each G(i) is of size R1,i × · · · ×Ri−1,i × di ×Ri,i+1 × · · · ×Ri,p. Each core tensor is

of order p but some of its dimensions may be equal to one (representing the absence of

edge between the two cores in the TN structure). We use TN(G(1), · · · , G(p)) to denote the

resulting tensor. Formally, for an order 4 tensor we have

TN(G(1), · · · , G(4))i1i2i3i4 =
R1,2
∑

j2
1=1

R1,3
∑

j3
1=1

· · ·
R3,4
∑

j4
3=1

G
(1)

i1,j2
1 ,j3

1 ,j4
1
G

(2)

j2
1 ,i2,j3

2 ,j4
2
G

(3)

j3
1 ,j3

2 ,i3,j4
3
G

(4)

j4
1 ,j4

2 ,j4
3 ,i4

.

This definition is straightforwardly extended to TN representing tensors of arbitrary orders.

As an illustration, for a TT decomposition the ranks of the tensor network representation

would be such that Ri,j 6= 1 if and only if j = i + 1. The problem of finding a rank (r1, r2, r3)

TT decomposition of a target tensor T ∈ R
d1×d2×d3×d4 can thus be formalized as

min
G(1)∈R

d1×r1×1×1,G(2)∈R
r1×d2×r2×1,

G(3)∈R
1×r2×d3×r3 ,G(4)∈R

1×1×r3×d4

L(TN(G(1), G(2), G(3), G(4))) (2.2.1)

where L(W) = ‖T −W‖2
F . Other common tensor problems can be formalized in this manner.

For example, the tensor train completion problem would be formalized similarly with the loss

function being L(W) = 1
|Ω|

∑

(i1,··· ,ip)∈Ω(W i1,··· ,ip
−T i1,··· ,ip

)2 where Ω ⊂ [d1]×· · ·× [dp] is the

set of observed entries of T ∈ R
d1×···×dp , and learning TT models for classification [42] and

sequence modeling [14] also falls within this general formulation by using the cross-entropy

or log-likelihood as a loss function.

We now explain how our formalism encompasses TN structure with internal nodes, such

as the Tucker format. Since a rank one edge in a TN is equivalent to having no edge, internal

cores can be represented as cores whose dangling leg have dimension 1. Consider for example

the Tucker decomposition T = G×1U1×2U2×3U3 ∈ R
d1×d2×d3 of rank (r1, r2, r3). The tensor

T can naturally be seen as a fourth order tensor T̃ ∈ R
1×d1×d2×d3 , G as G̃ ∈ R

1×r1×r2×r3 ,

U1 as Ũ1 ∈ R
r1×d1×1×1, U2 as Ũ2 ∈ R

r2×1×d2×1×1 and U3 as Ũ3 ∈ R
r3×1×1×d3 . With these

definitions, one can check that TN(G̃, Ũ1, Ũ2, Ũ3) = G ×1 U1 ×2 U2 ×3 U3 = T . More

complex TN structure with internal nodes such as hierarchical Tucker can be represented

30

using our formalism in a similar way. The assumption that each core tensor in a TN structure

has one dangling leg corresponding to each of the dimensions of the tensor T is thus without

loss of generality, since it suffices to augment T with singleton dimensions to represent TN

structures with internal nodes.

2.3. Tensor Network Structure Learning

A large class of TN learning problems consist in optimizing a loss function w.r.t. the

core tensors of a fixed TN structure; this is, for example, the case of the TT completion

problem: the rank of the decomposition may be selected using, e.g., cross-validation, but the

overall structure of the TN is fixed a priori. In contrast, we propose to optimize the loss

function simultaneously w.r.t. the core tensors of the TN and the TN structure itself. This

joint optimization problem can be formalized as

min
Ri,j ,

1≤i<j≤p

min
G(1),··· ,G(p)

L(TN(G(1), · · · , G(p))) s.t. size(G(1), · · · , G(p)) ≤ C (2.3.1)

where L is a loss function, each core tensor G(i) is in R
R1,i×···×Ri−1,i×di×Ri,i+1×···×Ri,p , C is a

bound on the number of parameters, and size(G(1), · · · , G(p)) is the number of parameters of

the TN, which is equal to
∑p

i=1 diR1,i · · ·Ri−1,iRi,i+1 · · ·Ri,p. Note that if K is the maximum

arity of a node in a TN, its number of parameters is in O
(

pdRK
)

where d = maxi di and

R = maxi,j Ri,j.

Problem 2.3.1 is a bi-level optimization problem where the upper level is a discrete

optimization over TN structures, and the lower level is a continuous optimization problem (as-

suming the loss function is continuous). If it is possible to solve the lower level continuous

optimization, an exact solution can be found by enumerating the search space of the upper

level, i.e. enumerating all TN structures satisfying the constraint on the number of parameters,

and selecting the one achieving the lower value of the objective. This approach is, of course,

not realistic since the search space is combinatorial in nature, and its size grows exponentially

with p. Moreover, for most tensor learning problems, the lower-level continuous optimization

31

problem is NP-hard [18]. In the next section, we propose a general greedy approach to tackle

this problem.

2.4. Greedy Algorithm

In this section we propose a greedy algorithm to solve the tensor network structure

learning problem (Problem 2.3.1). The algorithm consists in first optimizing the loss function

L starting from a rank one initialization of the tensor network, i.e. Ri,j is set to one for all

i, j and each core tensor G(i) ∈ R
R1,i×···×Ri−1,i×di×Ri,i+1×···×Ri,p is initialized randomly. At each

subsequent iteration of the greedy algorithm, the most promising edge of the current TN

structure is identified through some efficient heuristic, the corresponding rank is increased,

and the loss function is optimized w.r.t. the core tensors of the new TN structure initialized

through a weight transfer mechanism. In addition, at each iteration, the greedy algorithm

identifies nodes that can be split to create internal nodes in the TN structure by analyzing

the spectrum of matricizations of its core tensors.

The overall greedy algorithm, named Greedy-TN, is summarized in Algorithm 1. In the

remaining of this section, we describe the continuous optimization, weight transfer, best edge

identification and node splitting procedures. For Problem 2.3.1, a natural stopping criterion

for the greedy algorithm is when the maximum number of parameters is reached, but more

sophisticated stopping criteria can be used. For example, the algorithm can be stopped once

a given loss threshold is reached, which leads to an approximate solution to the problem

of identifying the TN structure with the least number of parameters achieving a given loss

threshold. For learning tasks (e.g., TN classifiers or tensor completion), the stopping criterion

can be based on validation data (e.g., using early stopping).

Continuous Optimization. Assuming that the loss function L is continuous and differ-

entiable, standard gradient-based optimization algorithms can be used to solve the inner

optimization problem (line 13 of Algorithm 1). For example, in our experiments on compress-

ing neural network layers (see Section 3.5) we use Adam [22]. For particular losses, more

efficient optimization methods can be used: in our experiments on tensor completion and

32

Algorithm 1 Greedy-TN: Greedy algorithm for tensor network structure learning.

Input: Loss function L : Rd1×···×dp → R, splitting node threshold ε.
1: // Initialize tensor network to a random rank one tensor and optimize loss function.
2: Ri,j ← 1 for 1 ≤ i < j ≤ p

3: Initialize core tensors G(i) ∈ R
R1,i×···×Ri−1,i×di×Ri,i+1×···×Ri,p randomly

4: (G(1), · · · , G(p))← optimize L(TN(G(1), · · · , G(p))) w.r.t. G(1), · · · , G(p)

5: repeat
6: (i, j)← find-best-edge(L, (G(1), · · · , G(p)))
7: // Weight transfer

8: Ĝ
(k)
← G(k) for k ∈ [p] \ {i, j}

9: Ri,j ← Ri,j + 1

10: Ĝ
(i)
← add-slice(G(i), j) // add new slice to the jth mode of G(i)

11: Ĝ
(j)
← add-slice(G(j), i) // add new slice to the ith mode of G(j)

12: // Optimize new tensor network structure

13: (G(1), · · · , G(p))← optimize L(TN(G(1), · · · , G(p))) from init. Ĝ
(1)

, · · · , Ĝ
(p)

14: // Add internal nodes if possible (number of cores p may be increased after this step)

15: (G(1), · · · , G(p))← split-nodes((G(1), · · · , G(p)), ε)
16: until Stopping criterion

tensor decomposition, we use the Alternating Least-Squares (ALS) [23, 6] algorithm which

consists in alternatively solving the minimization problem w.r.t. one of the core tensors while

keeping the other ones fixed until convergence.

Weight Transfer. A key idea of our approach is to restart the continuous optimization

process from the previous iteration of the greedy algorithm: we initialize the new slices of the

two core tensors connected by the incremented edge to values close to 0, while keeping all the

other parameters of the TN unchanged (line 8-11 of Algorithm 1). The detailed procedure

of add-slice is described in Algorithm 2. For example, for a tensor network of order 4,

increasing the rank of the edge (1, 2) by 1 is done by adding a slice of size d1 ×R1,3 ×R1,4

(resp. d2 × R2,3 × R2,4) to the second mode of G(1) (resp. first mode of G(2)). After this

operation, the new shape of G(1) will be d1 × (R1,2 + 1) × R1,3 × R1,4 and the one of G(2)

will be (R1,2 + 1) × d2 × R2,3 × R2,4. The following proposition shows that if these slices

were initialized exactly to 0, the resulting TN would represent exactly the same tensor as

the original one. In practice, we initialize the slices randomly with small values to break

symmetries that could constrain the continuous optimization process.

33

Algorithm 2 add-slice(G(i), j)

Input: Core tensor to add new slice to G(i), mode to add new slice j.
1: if j > i then

2: Ĝ
(i)
← reshape

(

[

(G(i))(j)

−0−

]

, (R1,i × · · · × Ri−1,i × di × Ri,i+1 × · · · × Ri,j−1 × (Ri,j +

1)×Ri,j+1 × · · · ×Ri,p)
)

3: else if j < i then

4: Ĝ
(i)
← reshape

(

[

(G(i))(j)

−0−

]

, (R1,i × · · · × Rj−1,i × (Rj,i + 1) × Rj+1,i × · · · × Ri−1,i ×

di ×Ri,i+1 × · · · ×Ri,p)
)

Output: Ĝ
(i)

Proposition 2.4.1. Let G(k) ∈ R
R1,k×···×Rk−1,k×dk×Rk,k+1×···×Rk,p for k ∈ [p] be the core tensors

of a tensor network and let 1 ≤ i < j ≤ p. Let R̃i′j′ = Ri′,j′ + 1 if (i′, j′) = (i, j) and Ri′,j′

otherwise, and define the core tensors G̃
(k)
∈ R

R̃1,k×···×R̃k−1,k×dk×R̃k,k+1×···×R̃k,p for k ∈ [p] by

(G̃
(i)

)(j) =

(G(i))(j)

−0−

 , (G̃
(j)

)(i) =

(G(j))(i)

−0−

 and G̃
(k)

= G(k) for k ∈ [p] \ {i, j}

where 0 denotes a row vector of zeros of the appropriate size in each block matrix.

Then, the core tensors G̃
(k)

correspond to the same tensor network as the core tensors

G(k), i.e., TN(G̃
(1)

, · · · , G̃
(p)

) = TN(G(1), · · · , G(p)).

Proof. Let T = TN(G(1), · · · , G(p)) and T̃ = TN(G̃
(1)

, · · · , G̃
(p)

). We first split the TN T

and T̃ in two parts by isolating the ith and jth nodes from the other nodes of the TN:

• let G\(i,j) ∈ R

∏

k 6=i,j
dk×

∏

k 6=j
Ri,k×

∏

k 6=i
Rj,k be the tensor obtained by contracting all the

core tensors of T except for the ith and jth cores,

• let G(i,j) ∈ R
di×dj×

∏

k 6=j
Ri,k×

∏

k 6=i
Rj,k be the tensor obtained by contracting G(i) and

G(j) along their shared index (i.e., the jth mode of the ith core is contracted with the

jth mode of the ith core),

• let G̃
(i,j)
∈ R

di×dj×
∏

k 6=j
Ri,k×

∏

k 6=i
Rj,k be the tensor obtained by contracting G̃

(i)
and

G̃
(j)

along their shared index.

34

One can check that the contraction between the last two modes of G\(i,j) and the last two

modes of G(i,j) is a reshaping of T . Similarly, since G̃
(k)

= G(k) for any k distinct from i and

j, the contraction over the last two modes of G\(i,j) and G̃
(i,j)

gives rise to the same reshaping

of T̃ . Therefore to prove T = T̃ , it suffices to show that G(i,j) = G̃
(i,j)

.

This argument is illustrated in the tensor network diagrams below for the particular case

of p = 4, i = 1, j = 2.

T =

G(1) G(2)

G(3)G(4)

d1 d2

d3d4

R1,2

R1,3R1,4 R2,3R2,4

R3,4

=
R1,4 R1,3 R2,4 R2,3

d2d1

d3d4

G(1,2)

G\(1,2)

, T̃ =

G̃
(1)

G̃
(2)

G(3)G(4)

d1 d2

d3d4

R1,2

R1,3R1,4 R2,3R2,4

R3,4

R1,2 + 1

=
R1,4 R1,3 R2,4 R2,3

d2d1

d3d4

G̃
(1,2)

G\(1,2)

Let (G(i,j))[1,3] (resp. (G̃
(i,j)

)[1,3]) be the matricization of G(i,j) (resp. G̃
(i,j)

) with modes 1

and 3 as the rows and modes 2 and 4 as the columns. We have

(G̃
(i,j)

)[1,3] = G̃
(i)⊤

〈j〉 G̃
(j)

〈i〉 = G
(i)⊤
〈j〉 G

(j)
〈i〉 + 00⊤ = (G(i,j))[1,3],

where the notation A
(m)
〈n〉 denotes the matrix obtained by transposing the mth mode of A(m)

to the first mode and matricizing the resulting tensor along the nth mode if m < n and along

the (n + 1)th mode if m > n∗. It then follows that G(i,j) = G̃
(i,j)

, hence T = T̃ .

Continuing with the particular case of p = 4, i = 1, j = 2, the second part of the proof

can be illustrated by the following tensor network diagrams.

∗For example, if A
(2) ∈ R

n1×d×n3×n4 , A
(2)
〈3〉 ∈ R

n3×dn1n4 is obtained by transposing A
(2) in a tensor of size

d × n1 × n3 × n4 and matricizing the resulting tensor along the 3rd mode. Similarly, A
(2)
〈1〉 ∈ R

n1×dn3n4 is

obtained by transposing A
(2) in a tensor of size d× n1 × n3 × n4 and matricizing the resulting tensor along

the 2nd mode. Note that A
(m)
〈n〉 is always a column-wise permutation of the classical matricization A

(m)
(n) .

35

R1,4 R1,3 R2,4 R2,3

d2d1

G̃
(1,2) =

R1,4 R1,3 R2,4 R2,3

R1,2 + 1

d2d1

G̃
(1)

G̃
(2)

=

R1,4 R1,3 R2,4 R2,3

R1,2

d2d1

G(1) G(2) +

R1,4 R1,3 R2,4 R2,3

d2d1

0 0

=

R1,4 R1,3 R2,4 R2,3

R1,2

d2d1

G(1) G(2)

=

R1,4 R1,3 R2,4 R2,3

d2d1

G(1,2)

�

The weight transfer mechanism leads to a more efficient and robust continuous optimization

by transferring the knowledge from each greedy iteration to the next and avoiding re-optimizing

the loss function from a random initialization at each iteration. An ablation study showing

the benefits of weight transfer is provided in section 3.2.1.

Best Edge Selection. As mentioned previously, we propose to optimize the inner minimiza-

tion problem in Eq. 2.3.1 using iterative algorithms, namely gradient based algorithms or ALS

depending on the loss function L. In order to identify the most promising edge to increase

the rank by 1 (line 6 of Algorithm 1), a reasonable heuristic consists in optimizing the loss

for a few epochs/iterations for each possible edge and selecting the edge which led to the

steepest decrease in the loss. One drawback of this approach is its computational complexity

for example, when using ALS, each iteration requires solving p least-squares problem with

di

∏

k 6=i Ri,k unknowns for i ∈ [p]. We propose to reduce the complexity of the exploratory

optimization in the best edge identification heuristic by only optimizing the loss function

w.r.t. the new slices of the core tensors. Thus, at each iteration of the greedy algorithm, for

each possible edge to increase, we transfer the weights from the previous greedy iteration,

36

optimize only w.r.t. the new slices for a small number of iteration, and choose the edge which

led to the steepest decrease of the loss. For ALS, this reduces the complexity of each iteration

to the one of solving 2 least-squares problems with di

∏

k∈[p]\{i,j} Ri,k and dj

∏

k∈[p]\{i,j} Ri,k

unknowns, respectively, where (i, j) is the edge being considered in the search. When using

gradient-based optimization algorithms, the same approach is used where the gradient is only

computed for (and back-propagated through) the new slices. The overall pseudo-code for

identifying the best edge is described in Algorithm 3.

It is worth mentioning that the greedy algorithm can seamlessly incorporate structural

constraints by restricting the set of edges considered when identifying the best edge for a

rank increment. For example, it can be used to adaptively select the ranks of a TT or TR

decomposition.

Algorithm 3 find-best-edge(L, (G(1), · · · , G(p)))

Input: Loss function L, core tensors G(1), · · · , G(p).
1: best-loss ←∞
2: for i← 1 to p do
3: for j ← i + 1 to p do

4: Ĝ
(i)
← add-slice(G(i), j)

5: Ĝ
(j)
← add-slice(G(j), i)

6: (G(1), · · · , G(i−1), Ĝ
(i)

, G(i+1), · · · , G(j−1), Ĝ
(j)

, G(j+1), · · · , G(p))←

optimize L(TN(G(1), · · · , G(i−1), Ĝ
(i)

, G(i+1), · · · , G(j−1), Ĝ
(j)

, G(j+1), · · · , G(p)))

w.r.t. new slices in Ĝ
(i)

and Ĝ
(j)

7: loss = L(TN(G(1), · · · , G(i−1), Ĝ
(i)

, G(i+1), · · · , G(j−1), Ĝ
(j)

, G(j+1), · · · , G(p)))
8: if loss < best-loss then
9: best-edge = (i, j)

10: best-loss = loss
Output: best-edge

Internal Nodes. Lastly, we design a simple approach for the greedy algorithm to add

internal nodes to the TN structure relying on a common technique used in TN methods to

split a node into two new nodes using truncated SVD (see, e.g., Fig. 7.b in [42]). To illustrate

this technique, let M ∈ R
m1×m2×n1×n2 be the core tensor associated with a node in a TN

we want to split into two new nodes A ∈ R
m1×m2×r and B ∈ R

n1×n2×r: the first two legs of

A (resp. B) will be connected to the core tensors that were connected to M by its first two

37

legs (resp. last two legs), and the third leg of A and B will be connected together. This

is achieved by taking the rank r truncated SVD of (M)[1,2] ≃ UDV⊤ ∈ R
m1m2×n1n2 (the

matricization of M having modes 1 and 2 as rows and modes 3 and 4 as columns), and

letting A(3) = U⊤ ∈ R
r×m1m2 and B(3) = DV⊤ ∈ R

r×n1n2 . If the truncated SVD is exact,

the resulting TN will represent exactly the same tensor as the one before splitting the core

M. This node splitting procedure is illustrated in the following TN diagram.
m1

m2

n1

n2
M ≃

m1

m2
U D Vr r V

n1

n2

=
m1

m2
A B

r
n1

n2
B

In order to allow the greedy algorithm to learn TN structures with internal nodes, at

the end of each greedy iteration, we perform an SVD of each matricization of G(k) for

k ∈ [p] (line 15 of Algorithm 1). For each matricization, we split the corresponding node only

if there are enough singular values below a given threshold ε in order for the new TN structure

to have less parameters than the initial one. Algorithm 4 illustrates the pseudo-code for this

procedure. While this approach may seem computationally heavy, the cost of these SVDs is

negligible w.r.t. the continuous optimization step which dominates the overall complexity of

the greedy algorithm.

Algorithm 4 split-nodes((G(1), · · · , G(p)), ε)

Input: Core tensors G(1), · · · , G(p), splitting node threshold ε.
1: for i← 1 to p do
2: for every bi-partition (M, N) of [p] do

3: U, D, V⊤ = ε-truncated-SVD(reshape(G(i), di

∏

j∈M Ri,j ×
∏

j∈N Ri,j))

4: R̂← rank of the ε-truncated-SVD

5: if splitting node G(i) reduces the number of parameters then
6: ∀j ∈ [p], let R̃i,j = Ri,j if j ∈M and 1 otherwise.

7: G(i) ← reshape(U, R̃1,i × · · · × R̃i−1,i × di × R̃i,i+1 × · · · × R̃i,p × R̂)
8: ∀j ∈ [p], let R̃i,j = Ri,j if j ∈ N and 1 otherwise.

9: G(p+1) ← reshape(DV⊤, R̃1,i × · · · × R̃i−1,i × R̂× R̃i,i+1 × · · · × R̃i,p × 1))
10: for j ∈ [p] \ {i} do

11: G(j) ← reshape(G(j), R1,j × · · · ×Rj−1,j × dj ×Rj,j+1 × · · · ×Rj,p × 1))
12: p← p + 1
Output: (G(1), · · · , G(p))

38

2.4.1. Computational Complexity

The overall time complexity of Greedy-TN is dominated by the whose complexity is in

O(p2T + pd2R2p) where T is the time complexity of optimizing the loss function w.r.t. one

of the core tensors. The first term corresponds to the find-best-edge subroutine and the

second one corresponds to the split-nodes sub-routine. For example, when optimizing a

squared error loss with SGD, T is in O(Rp−1dp) where R = maxi,j Ri,j is the maximum rank

in the tensor network and d = maxi di is the maximum dangling dimension. Thus, in this

case, when R ≤ d the overall complexity is dominated by the find-best-edge subroutine.

39

Chapter 3

Results and discussion

3.1. Introduction

In this chapter we evaluate the performance of Greedy-TN on a number of machine

learning tasks, namely tensor decomposition, tensor completion, image compression, and

neural network compression. We compare our method to classical tensor decomposition

methods as well as the recently proposed genetic algorithm method for tensor network

decomposition [26].

3.2. Tensor decomposition

We first consider a tensor decomposition task, where we generate normally distributed

random target tensors of size 7×7×7×7×7 with the four TN structures shown in Figure 3.1.

TT target tensor

2 3 6 5

TR target tensor

2 3 4 5

5

Tucker target tensor

2 3 4 3 2

5 2 5

2 2

“Triangle” target tensor

Figure 3.1. Tensor network structures for tensor decomposition.

For each of the four TN structures in Figure 3.1 we generate 100 random tensor networks.

We then run Greedy-TN with the loss function L set to the squared error loss, until it recovers

an almost exact decomposition (stopping when the relative error falls below 10−6). We

compare Greedy-TN with CP, Tucker and TT decomposition (using the implementations

from the TensorLy python package [24]) of increasing rank as baselines (we use uniform ranks

for Tucker and TT). We also include a simple random walk baseline based on Greedy-TN,

where the edge for the rank increment is chosen at random at each iteration.

Reconstruction errors averaged over the 100 runs are reported in Figure 3.2, where we see

that the greedy algorithm outperforms all baselines for the the four target tensors. Notably,

Greedy-TN outperforms TT/Tucker even on the TT/Tucker targets. This is because the rank

of the TT and Tucker targets are not uniform and Greedy-TN is able to adaptively set different

ranks to achieve the best compression ratio. Furthermore, Greedy-TN is able to recover the

exact TN structure of the triangle target tensor on almost every run. Lastly, we observe that

the internal node search of Greedy-TN is only beneficial on the Tucker target tensor, which

is expected due to the absence of internal nodes in the other target TN structures.

42

Greedy-TN and Greedy-int always recover the same structure except for the Tucker target,

where Greedy-TN finds the best TN structure without internal nodes to approximate the

target. We also observe that the greedy algorithm recovers the correct TN structure for all

targets most of the time, except for the TR target.

2 3 6 5

Target tensor

2 3 4 5

5

2 3 4 3 2

5 2 5

2 2

2 3 6 5

Greedy-TN tensor

2 3 4 5

5

3

2 3 4 3

5 2 5

2 2

2 3 6 5

Greedy-int tensor

2 3 4 5

5

3

2 3 4 3 2

5 2 5

2 2

Figure 3.3. Most common tensor network structure returned by Greedy-TN and Greedy-int

over the 100 runs of the tensor decomposition experiment.

As an illustration of the running time, for the TR target, one iteration of Greedy-TN takes

approximately 0.91 second on average without the internal node search and 1.18 seconds

with the search.

This experiment showcases the potential cost of decomposition model mis-specification:

both CP and Tucker struggle to efficiently approximate most target tensors. Interestingly,

even the random walk outperforms CP and Tucker on the TR target tensor.

3.2.1. Weight transfer benefits

Here, we study if transferring the weights at each step leads to better results. We randomly

generate 50 target tensors of size 7× 7× 7× 7× 7 with a TT structure of rank 6, 3, 6, 5. We

run Greedy-TN with and without weight transfer until convergence.

The results are shown in Figure 3.4, where we see that using the weight transfer mechanism

results in a lower loss with the same number of parameters, compared to using a random

44

17,820 parameters. At iteration 31, Greedy-TN already recovers an image with an error of

10.60% with 10,096 parameters, which is better than the best result of TR-ALS both in terms

of parameters and relative error.

The images recovered at each iteration of Greedy-TN along with the relative test error

and number of parameters for each step, are shown in Figures 3.6 and 3.7.

In this experiment, the total running time of Greedy-TN is comparable to the one of

TR-ALS (on the order of hours), which is larger than the one of the other three methods.

46

target image observed pixels
Iter. 1 - 75 param.
test error = 40.00%

Iter. 2 - 95 param.
test error = 37.73%

Iter. 3 - 135 param.
test error = 35.07%

Iter. 4 - 165 param.
test error = 33.11%

Iter. 5 - 215 param.
test error = 31.28%

Iter. 6 - 298 param.
test error = 29.70%

Iter. 7 - 358 param.
test error = 28.13%

Iter. 8 - 478 param.
test error = 25.19%

Iter. 9 - 588 param.
test error = 23.46%

Iter. 10 - 688 param.
test error = 22.32%

Iter. 11 - 888 param.
test error = 20.75%

Iter. 12 - 1078 param.
test error = 20.00%

Iter. 13 - 1338 param.
test error = 19.13%

Iter. 14 - 1588 param.
test error = 18.47%

Iter. 15 - 1644 param.
test error = 18.08%

Iter. 16 - 1964 param.
test error = 17.19%

Iter. 17 - 2070 param.
test error = 16.74%

Iter. 18 - 2390 param.
test error = 16.31%

Iter. 19 - 2790 param.
test error = 15.47%

Iter. 20 - 3190 param.
test error = 14.80%

Iter. 21 - 3650 param.
test error = 13.94%

Iter. 22 - 4160 param.
test error = 13.44%

Iter. 23 - 4690 param.
test error = 12.88%

Iter. 24 - 5270 param.
test error = 12.63%

Iter. 25 - 5950 param.
test error = 12.18%

Iter. 26 - 6610 param.
test error = 11.92%

Iter. 27 - 7370 param.
test error = 11.54%

Iter. 28 - 7466 param.
test error = 11.45%

Figure 3.6. Solutions found by Greedy-TN for the Einstein image completion experiments,
labeled by number of parameters and relative test error w.r.t. the full image. [continued on
next page]

48

Iter. 29 - 8216 param.
test error = 11.28%

Iter. 30 - 9156 param.
test error = 10.93%

Iter. 31 - 10096 param.
test error = 10.60%

Iter. 32 - 11026 param.
test error = 10.47%

Iter. 33 - 11956 param.
test error = 10.35%

Iter. 34 - 12162 param.
test error = 10.26%

Iter. 35 - 13092 param.
test error = 10.22%

Iter. 36 - 14322 param.
test error = 10.07%

Iter. 37 - 15792 param.
test error = 9.79%

Iter. 38 - 17152 param.
test error = 9.66%

Iter. 39 - 18382 param.
test error = 9.54%

Iter. 40 - 18585 param.
test error = 9.50%

Iter. 41 - 19815 param.
test error = 9.49%

Iter. 42 - 21375 param.
test error = 9.45%

Iter. 43 - 22705 param.
test error = 9.45%

Iter. 44 - 24035 param.
test error = 9.45%

Iter. 45 - 24301 param.
test error = 9.47%

Figure 3.7. Solutions found by Greedy-TN for the Einstein image completion experiments,
labeled by number of parameters and relative test error w.r.t. the full image. [continued
from previous page]

3.4. Image compression

In this experiment, we compare Greedy-TN with the genetic algorithm (GA) for TN

decomposition recently introduced in [26], denoted by GA(rank=6) and GA(rank=7) where

the rank is a hyper-parameter controlling the trade-off between accuracy and compression

ratio (the results of TT and TR, which are worst than GA, are available in Table 3 in [26]).

49

Following [26], we select 10 images of size 256× 256 from the LIVE dataset [39], tensorize

each image to an order-8 tensor of size 48 and run Greedy-TN to decompose each tensor using

a squared error loss.

Greedy-TN is stopped when the lowest RSE reported in [26] is reached. In Table 1, we

report the log compression ratio and root square error averaged over 50 random seeds. For

all images, our method results in a higher compression ratio compared to GA(rank=7).

Moreover, for images 1 to 9 our method even outperforms GA(rank=6) by achieving both

higher compression ratios and significantly lower RSE. For image 0, setting the greedy

stopping criterion to the RSE of GA(rank=6), Greedy-TN also achieves a higher compression

ratio than GA(rank=6): 1.085(0.128). Our method is also orders of magnitude faster—few

minutes compared to several hours for GA.

Table 3.1. Log compression ratio and RSE for 10 different images selected from the LIVE
dataset.

Image
Log compression ratio CR↑ and (RSE↓) ±std

Greedy-TN GA(rank=6) GA(rank=7) Tensor Train Tensor Ring
0 0.715(0.105)±0.152(0.005) 0.901(0.137) 0.660(0.115) 0.582(0.142) 0.325(0.115) 0.469(0.141) 0.457(0.127)
1 2.313(0.150)±0.189(0.005) 1.352(0.158) 1.159(0.155) 1.210(0.170) 1.137(0.166) 1.216(0.187) 0.824(0.155)
2 2.139(0.167)±0.127(0.004) 1.452(0.176) 1.268(0.171) 1.148(0.187) 0.898(0.179) 1.231(0.206) 1.022(0.182)
3 3.009(0.185)±0.088(0.002) 1.649(0.193) 1.476(0.189) 1.140(0.191) 1.265(0.206) 1.416(0.211) 1.074(0.191)
4 0.874(0.111)±0.129(0.005) 0.859(0.152) 0.621(0.121) 0.527(0.156) 0.408(0.143) 0.403(0.153) 0.372(0.141)
5 3.668(0.080)±0.103(0.001) 1.726(0.087) 1.548(0.083) 1.471(0.087) 1.531(0.083) 1.471(0.088) 1.388(0.085)
6 2.205(0.097)±0.171(0.004) 1.332(0.110) 1.141(0.104) 1.471(0.113) 1.088(0.101) 1.212(0.124) 1.052(0.102)
7 2.132(0.115)±0.202(0.002) 1.573(0.126) 1.406(0.120) 1.030(0.139) 1.179(0.142) 1.112(0.145) 0.970(0.125)
8 3.634(0.080)±0.142(0.001) 1.679(0.085) 1.505(0.081) 1.493(0.082) 1.493(0.082) 1.387(0.085) 1.357(0.084)
9 1.669(0.174)±0.202(0.002) 1.164(0.194) 0.966(0.185) 0.994(0.227) 0.774(0.190) 0.836(0.200) 0.916(0.226)

3.5. Compressing neural networks

In this section we apply our algorithm to compress a neural network with one hidden

layer on the MNIST dataset. Following [30] the hidden layer weight is of size 1024× 1024

which we represent as a fifth-order tensor of size 16× 16× 16× 16× 16. We use Greedy-TN

with loss function L set as cross-entropy to train the tensor network representing the hidden

layer weight matrix alongside the output layer weights end-to-end. We select the best edge

50

singular values threshold for the internal node search is set to ε = 10−5. In all experiments

except the tensor decomposition on the Tucker target, the internal node search did not lead

to any improvement of the results. All experiments were performed on a single 32GB V100

GPU.

52

Chapter 4

Conclusion and future work

In this thesis we introduced a greedy algorithm to jointly optimize an arbitrary loss function

and efficiently search the space of TN structures and ranks to adaptively find parameter

efficient TN structures from data. Our experimental results show that Greedy-TN outperforms

common methods tailored for specific decomposition models on tensor completion, image

compression, and neural network compression tasks.

Even though Greedy-TN is orders of magnitude faster than the genetic algorithm intro-

duced in [26], its computational complexity can still be limiting in some scenarios such as

compressing neural networks with evergrowing number of parameters. Therefore, scaling up

the method to discover TN structures suited for efficient compression of larger neural network

models is a future direction we wish to discover.

In addition, the greedy algorithm may converge to locally optimal TN structures. And so,

future work includes exploring more efficient discrete optimization techniques to solve the

upper-level discrete optimization problem, Greedy-TN is not optimal as it does not backtrack,

an interesting direction to explore is different discrete optimization methods such as A* with

a carefully designed heuristic to reach better solutions.

References

[1] Mohammad Taha Bahadori, Qi Rose Yu, and Yan Liu. Fast multivariate spatio-temporal

analysis via low rank tensor learning. In Advances in Neural Information Processing

Systems, pages 3491–3499, 2014.

[2] Jonas Ballani and Lars Grasedyck. Tree adaptive approximation in the hierarchical

tensor format. SIAM journal on scientific computing, 36(4):A1415–A1431, 2014.

[3] Emmanuel J Candès and Benjamin Recht. Exact matrix completion via convex opti-

mization. Foundations of Computational mathematics, 9(6):717–772, 2009.

[4] A. Cichocki, R. Zdunek, A.H. Phan, and S.I. Amari. Nonnegative Matrix and Tensor

Factorizations. Applications to Exploratory Multi-way Data Analysis and Blind Source

Separation. Wiley, 2009.

[5] Nadav Cohen, Or Sharir, and Amnon Shashua. On the expressive power of deep learning:

A tensor analysis. In Conference on Learning Theory, pages 698–728, 2016.

[6] Pierre Comon, Xavier Luciani, and André LF De Almeida. Tensor decompositions,

alternating least squares and other tales. Journal of Chemometrics: A Journal of the

Chemometrics Society, 23(7-8):393–405, 2009.

[7] Lieven De Lathauwer, Bart De Moor, and Joos Vandewalle. A multilinear singular value

decomposition. SIAM journal on Matrix Analysis and Applications, 21(4):1253–1278,

2000.

[8] David Elieser Deutsch. Quantum computational networks. Proc. R. Soc. Lond. A,

425(1868):73–90, 1989.

[9] Richard P Feynman. Quantum mechanical computers. Foundations of physics, 16(6):507–

531, 1986.

[10] Silvia Gandy, Benjamin Recht, and Isao Yamada. Tensor completion and low-n-rank

tensor recovery via convex optimization. Inverse problems, 27(2):025010, 2011.

[11] Timur Garipov, Dmitry Podoprikhin, Alexander Novikov, and Dmitry Vetrov. Ul-

timate tensorization: compressing convolutional and fc layers alike. arXiv preprint

arXiv:1611.03214, 2016.

[12] Ivan Glasser, Nicola Pancotti, and J Ignacio Cirac. Supervised learning with generalized

tensor networks. arXiv preprint arXiv:1806.05964, 2018.

[13] Lars Grasedyck and Sebastian Krämer. Stable als approximation in the tt-format for

rank-adaptive tensor completion. Numerische Mathematik, 143(4):855–904, 2019.

[14] Zhao-Yu Han, Jun Wang, Heng Fan, Lei Wang, and Pan Zhang. Unsupervised generative

modeling using matrix product states. Physical Review X, 8(3):031012, 2018.

[15] Meraj Hashemizadeh, Michelle Liu, Jacob Miller, and Guillaume Rabusseau. Adaptive

learning of tensor network structures. arXiv preprint arXiv:2008.05437, 2020.

[16] Meraj Hashemizadeh, Michelle Liu, Jacob Miller, and Guillaume Rabusseau. Adaptive

tensor learning with tensor networks. In First Workshop on Quantum Tensor Networks

in Machine Learning at NeurIPS, 2020.

[17] Kohei Hayashi, Taiki Yamaguchi, Yohei Sugawara, and Shin-ichi Maeda. Einconv:

Exploring unexplored tensor decompositions for convolutional neural networks. In

Advances in Neural Information Processing Systems, 2019.

[18] Christopher J Hillar and Lek-Heng Lim. Most tensor problems are np-hard. Journal of

the ACM (JACM), 60(6):45, 2013.

[19] Frank L Hitchcock. The expression of a tensor or a polyadic as a sum of products.

Journal of Mathematics and Physics, 6(1-4):164–189, 1927.

[20] Pavel Izmailov, Alexander Novikov, and Dmitry Kropotov. Scalable gaussian processes

with billions of inducing inputs via tensor train decomposition. In International Confer-

ence on Artificial Intelligence and Statistics, pages 726–735, 2018.

56

[21] Valentin Khrulkov, Alexander Novikov, and Ivan Oseledets. Expressive power of recurrent

neural networks. In International Conference on Learning Representations, 2018.

[22] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In

3rd International Conference on Learning Representations, ICLR, 2015.

[23] Tamara G Kolda and Brett W Bader. Tensor decompositions and applications. SIAM

review, 51(3):455–500, 2009.

[24] Jean Kossaifi, Yannis Panagakis, Anima Anandkumar, and Maja Pantic. Tensorly:

Tensor learning in python. The Journal of Machine Learning Research, 20(1):925–930,

2019.

[25] J. B. Kruskal. Rank, Decomposition, and Uniqueness for 3-Way and n-Way Arrays, page

7–18. North-Holland Publishing Co., NLD, 1989.

[26] Chao Li and Sun Sun. Evolutionary topology search for tensor network decomposition.

In International Conference on Machine Learning, 2020.

[27] H. Lu, K.N. Plataniotis, and A. Venetsanopoulos. Multilinear Subspace Learning:

Dimensionality Reduction of Multidimensional Data. CRC Press, 2013.

[28] Oscar Mickelin and Sertac Karaman. Tensor ring decomposition. arXiv preprint

arXiv:1807.02513, 2018.

[29] Jacob Miller, Guillaume Rabusseau, and John Terilla. Tensor networks for language

modeling. arXiv preprint arXiv:2003.01039, 2020.

[30] Alexander Novikov, Dmitrii Podoprikhin, Anton Osokin, and Dmitry P. Vetrov. Ten-

sorizing neural networks. In Advances in Neural Information Processing Systems, pages

442–450, 2015.

[31] Alexander Novikov, Anton Rodomanov, Anton Osokin, and Dmitry Vetrov. Putting

MRFs on a tensor train. In International Conference on Machine Learning, pages

811–819, 2014.

[32] Román Orús. A practical introduction to tensor networks: Matrix product states and

projected entangled pair states. Annals of Physics, 349:117–158, 2014.

57

[33] Ivan V. Oseledets. Tensor-train decomposition. SIAM Journal on Scientific Computing,

33(5):2295–2317, 2011.

[34] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory

Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison,

Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank

Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch:

An imperative style, high-performance deep learning library. In Advances in Neural

Information Processing Systems 32, pages 8024–8035. Curran Associates, Inc., 2019.

[35] Roger Penrose. Applications of negative dimensional tensors. Combinatorial mathematics

and its applications, 1:221–244, 1971.

[36] David Perez-García, Frank Verstraete, Michael M Wolf, and J Ignacio Cirac. Matrix

product state representations. Quantum Information and Computation, 7(5-6):401–430,

2007.

[37] Robert NC Pfeifer, Glen Evenbly, Sukhwinder Singh, and Guifre Vidal. Ncon: A tensor

network contractor for matlab. arXiv preprint arXiv:1402.0939, 2014.

[38] Guillaume Rabusseau and Hachem Kadri. Low-rank regression with tensor responses. In

Advances in Neural Information Processing Systems, pages 1867–1875, 2016.

[39] H.R. Sheikh, M.F. Sabir, and A.C. Bovik. A statistical evaluation of recent full ref-

erence image quality assessment algorithms. IEEE Transactions on Image Processing,

15(11):3440–3451, 2006.

[40] Nicholas D Sidiropoulos, Lieven De Lathauwer, Xiao Fu, Kejun Huang, Evangelos E

Papalexakis, and Christos Faloutsos. Tensor decomposition for signal processing and

machine learning. IEEE Transactions on Signal Processing, 65(13):3551–3582, 2017.

[41] E. Miles Stoudenmire. Learning relevant features of data with multi-scale tensor networks.

Quantum Science and Technology, 3(3):034003, 2018.

[42] Edwin Stoudenmire and David J. Schwab. Supervised learning with tensor networks. In

Advances in Neural Information Processing Systems, pages 4799–4807, 2016.

58

[43] Ledyard R Tucker. Some mathematical notes on three-mode factor analysis. Psychome-

trika, 31(3):279–311, 1966.

[44] Wenqi Wang, Vaneet Aggarwal, and Shuchin Aeron. Efficient low rank tensor ring

completion. In Proceedings of the IEEE International Conference on Computer Vision,

pages 5697–5705, 2017.

[45] Senlin Xia, Huaijiang Sun, and Beijia Chen. A regularized tensor decomposition method

with adaptive rank adjustment for compressed-sensed-domain background subtraction.

Signal Processing: Image Communication, 62:149–163, 2018.

[46] Yinchong Yang, Denis Krompass, and Volker Tresp. Tensor-train recurrent neural

networks for video classification. arXiv preprint arXiv:1707.01786, 2017.

[47] Ke Ye and Lek-Heng Lim. Tensor network ranks. arXiv preprint arXiv:1801.02662, 2018.

[48] Rose Yu, Guangyu Li, and Yan Liu. Tensor regression meets gaussian processes. In

International Conference on Artificial Intelligence and Statistics, pages 482–490, 2018.

[49] Qibin Zhao, Liqing Zhang, and Andrzej Cichocki. Bayesian cp factorization of incomplete

tensors with automatic rank determination. IEEE transactions on pattern analysis and

machine intelligence, 37(9):1751–1763, 2015.

[50] Qibin Zhao, Guoxu Zhou, Shengli Xie, Liqing Zhang, and Andrzej Cichocki. Tensor ring

decomposition. arXiv preprint arXiv:1606.05535, 2016.

[51] H. Zhou, L. Li, and H. Zhu. Tensor regression with applications in neuroimaging data

analysis. Journal of the American Statistical Association, 108(502):540–552, 2013.

[52] Ziwei Zhu, Xia Hu, and James Caverlee. Fairness-aware tensor-based recommendation.

In Proceedings of the 27th ACM International Conference on Information and Knowledge

Management, pages 1153–1162, 2018.

59

