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Résumé

Les taxonomies sont une représentation essentielle des connaissances, jouant un rôle central
dans de nombreuses applications riches en connaissances. Malgré cela, leur construction
est laborieuse que ce soit manuellement ou automatiquement, et l’évaluation quantitative de
taxonomies est un sujet négligé. Lorsque les chercheurs se concentrent sur la construction
d’une taxonomie à partir de grands corpus non structurés, l’évaluation est faite souvent ma-
nuellement, ce qui implique des biais et se traduit souvent par une reproductibilité limitée.
Les entreprises qui souhaitent améliorer leur taxonomie manquent souvent d’étalon ou de ré-
férence, une sorte de taxonomie bien optimisée pouvant service de référence. Par conséquent,
des connaissances et des efforts spécialisés sont nécessaires pour évaluer une taxonomie.

Dans ce travail, nous soutenons que l’évaluation d’une taxonomie effectuée automatique-
ment et de manière reproductible est aussi importante que la génération automatique de
telles taxonomies. Nous proposons deux nouvelles méthodes d’évaluation qui produisent des
scores moins biaisés: un modèle de classification de la taxonomie extraite d’un corpus éti-
queté, et un modèle de langue non supervisé qui sert de source de connaissances pour évaluer
les relations hyperonymiques. Nous constatons que nos substituts d’évaluation corrèlent avec
les jugements humains et que les modèles de langue pourraient imiter les experts humains
dans les tâches riches en connaissances.
Mots-clés: Taxonomie, Ontologie, Apprentissage de taxonomie, Évaluation d’on-
tologie, Extraction de connaissances, Représentation des connaissances, Extrac-
tion de l’information, Modélisation du langage, Découverte d’hyperonymes

5





Abstract

Taxonomies are an essential knowledge representation and play an important role in clas-
sification and numerous knowledge-rich applications, yet quantitative taxonomy evaluation
remains to be overlooked and left much to be desired. While studies focus on automatic tax-
onomy construction (ATC) for extracting meaningful structures and semantics from large
corpora, their evaluation is usually manual and subject to bias and low reproducibility.
Companies wishing to improve their domain-focused taxonomies also suffer from lacking
ground-truths. In fact, manual taxonomy evaluation requires substantial labour and expert
knowledge.

As a result, we argue in this thesis that automatic taxonomy evaluation (ATE) is just as
important as taxonomy construction. We propose two novel taxonomy evaluation methods
for automatic taxonomy scoring, leveraging supervised classification for labelled corpora and
unsupervised language modelling as a knowledge source for unlabelled data. We show that
our evaluation proxies can exert similar effects and correlate well with human judgments and
that language models can imitate human experts on knowledge-rich tasks.
Keywords: Taxonomy, Ontology, Taxonomy Learning, Ontology Evaluation,
Knowledge Representation, Knowledge Extraction, Information Retrieval, In-
formation Extraction, Hypernym Discovery, Language Modelling
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Introduction

Machine learning (ML) is in every respect the buzzword today, offering practical solutions to
real-world problems by generalizing historical data to predict future data. Thanks to ML,
natural language processing (NLP) is sought to automate innumerable manual workflows in
processing large amounts of discrete texts with unprecedented efficiency.

Automatic taxonomy construction (ATC) is an important branch of NLP research that
studies methods for extracting concepts and topics from domain-focused corpora, identifying
entity relations and generating useful knowledge representations. As ML has ushered in the
era of automatic classification, a myriad of data classification tasks are essentially managed
through the use of multi-level (hierarchical) classification schemes in the form of a taxon-
omy. Although manually constructing and evaluating topic taxonomies can still be more
flexible, comprehensive and often ineluctable, automated systems are expected to replace or
supplement such manual efforts because they are time-consuming and require exceptional
expertise in technical domains. As a result, a panoply of research has been conducted on
ATC, leveraging various ML techniques, but the studies of machine learning and automatic
taxonomy evaluation (ATE) have rarely crossed paths. This begs the question:

Are machine learning and language modelling viable alternatives to the la-
borious manual taxonomy evaluation?

In this work, we propose two evaluation strategies that bridge the gap between ML
and automatic taxonomy scoring and ranking, while also guiding ATC and the optimization
process. Specifically, we must address the situation in which obtaining a ground-truth or gold-
standard is difficult and no external resources are available for validating concept relations.

Science relies on the ability to reproduce and repeat results. While most taxonomy as-
sessments are marred with human judgements, we argue in this thesis that ATC evaluation
should also shift towards a more systematic approach that prioritizes quantifiability and
reproducibility.1

1Note that we may use the word taxonomy and ontology interchangeably throughout this work.



Motivation
Although new automatic taxonomy extractors are constantly being proposed, currently

there is no way to impartially answer two simple questions: "which algorithm works best?" and
"which taxonomy (among many) is the best?". For instance, changing the hyper-parameters of
some parameterized ATC systems can result in drastically different outputs, but the optimal
configuration remains unknown and it is unclear how to directly optimize the systems, since
there are no automatic methods for assessing the structure and content of taxonomies. In
other AI studies such as deep learning (DL), intrinsic measures such as loss functions enable
artificial neural networks (ANN) to perform back-propagations and optimize their perfor-
mance automatically, while external metrics can help data scientists evaluate and compare
the performance of DL models in order to improve future results.

Consequently, the conundrum of ATC evaluation can stymie research progress and the
call for quantitative taxonomy evaluation is justified. Because an ontology or taxonomy is
typically developed in specific contexts to address problems or achieve goals, e.g. classifi-
cation, its evaluation is evidently context-dependent, and many researchers believe that a
task-independent automatic evaluation remains elusive, citing the lack of a general solution
[78]. In fact, researchers have argued that objective evaluation metrics must be well avail-
able for significant progress in the development and deployment of taxonomies and ontologies
[13].

Approach
Automatic evaluation should focus on the structure, word relations and cluster coherence

of a taxonomy. Our foremost problem in this thesis is the lack of external resources for
assessing concept relations found in auto-generated topic taxonomies, as such resources are
scarce and not publicly available for professional domains, which necessitates expert inputs
and reduces the evaluation’s reproducibility.

We discover that through training with documents from the evaluation domain, language
models may be able to capture implicit concept relationships and become proxy domain
experts, allowing us to evaluate semantic relations in a complex taxonomy without the use
of external knowledge bases or search engines. For manually annotated corpora, we find that
topic labels can be used to roughly estimate the ideal structure and topic distribution, so
that we can convert text classification into a proxy application for taxonomy scoring. As
such, we base our experiments with the following propositions that:

(1) Better taxonomies should result in higher scores on our evaluation tasks;
(2) Machine evaluation should correlate with human judgements;
(3) The evaluation procedures should be data and model-agnostic, with no reliance on a

particular dataset or taxonomy/ontology extractor;
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(4) The evaluation results should be reproducible.
To assess our proposed evaluation methods, we will attentively illustrate the structures

of and topics in our extracted taxonomies, as well as creating low-biased (indicative) manual
rankings for our evaluation targets. While it is nearly impossible to attempt comprehensive
manual rankings on the vast majority of human-created taxonomies and ontologies, let alone
cover their similarities and differences in depth, ranking automatically extracted taxonomies
is far easier due to the experimental nature of ATC with many containing low-level noise
and errors. We also design a perturbation test that gradually injects noise into a candidate
taxonomy and alters the taxonomy through random deletions and swapping to simulate the
degradation of taxonomy quality, as it is difficult to obtain ranked taxonomies with varying
quality from the same dataset. Finally, we show that our evaluation results are consistent
with the manual rankings and that our methods can generate scores independently for most
datasets and ATC outputs.

Challenge
Automatic taxonomy construction and evaluation are still in their infancy. To begin with,

ATC systems involve a whole slew of moving parts and cannot always guarantee consistent
results on any given datasets, which makes extracting topic taxonomies from texts other
than those used in the original studies a challenge. Luckily, we were able to reproduce the
results from research and extract taxonomy artifacts from other datasets and domains for
our experiments.

Second, there have been few studies on the evaluation of auto-generated taxonomies,
with most ontology evaluation research focusing on assessing Semantic Web ontologies and
their components. While structural and semantic evaluations are prioritized, other critical
aspects such as topic granularity, clarity and taxonomy usefulness are equally important but
inherently difficult to be evaluated by humans and even more so by machines.

Our final hurdle is a lack of ground-truth taxonomies for our construction and evaluation
tasks, especially for technical domains where existing resources and knowledge reposito-
ries are unavailable. Mining from a large repository, e.g. Wiki dump, is costly and time-
consuming. Even if such ground-truth exists, manually or automatically mapping taxonomy
concepts can pose another challenge. We hope that our work will provide insights and inspire
future research in taxonomy evaluation, and that the methods can also be used in ontology
and knowledge graph assessments and other information extraction tasks.

Presentation
This thesis is presented largely in two parts: Chapter 1, 2, 3 will systematically introduce

taxonomy, as well as state-of-the-art construction and evaluation methods; Chapter 4 and 5
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will expand on the techniques discussed in Chapter 3 by proposing two new evaluation pro-
cesses based on supervised classification and unsupervised language modelling, respectively.
We thank IATA for providing the generous datasets and taxonomies, which have served as
the foundation for our original research; however, the data will not be shown in this work,
and instead public (albeit less interesting) data will be used.
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Chapter 1

Defining Taxonomy

Integration of knowledge provides enormous opportunities for academics and industries and
one of the most important knowledge representations is taxonomy. A subset of ontology, a
topic taxonomy is a tree-like structure that not only helps with knowledge organization but
also serves an integral part of many knowledge-rich applications including question answer-
ing, web search and recommendation systems. An ontology can also be regarded as a formal,
explicit specification of a shared conceptualization [33].

This chapter introduces the concept of taxonomy as a knowledge representation, as well
as the study of taxonomy learning, the significance of taxonomy and its relevance in practical
applications.

1.1. Taxonomy Learning
Taxonomy learning is a comprehensive study in NLP that encompasses everything from

automatically constructing taxonomies from texts to using taxonomies to improve a wide
range of applications. In figure 1.1 we show a simple automatically constructed taxonomy
from a scientific domain. A glut of applied research has been conducted on hypernymy
discovery and lexical entailment [82, 6, 91, 68, 17, 114], instance-based concept taxonomy
construction [36, 94, 77, 112, 28, 58, 70], clustering-based topic taxonomy construction
[56, 115, 87, 41], taxonomy expansion and enrichment [90, 89, 116, 43, 52], taxonomy
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Fig. 1.1. An auto-constructed (and possibly erroneous) taxonomy



applications, e.g. improving recommender systems and information retrieval [59, 120, 119,
109], as well as taxonomy evaluation [18, 2, 11, 10, 43] [88].

While most taxonomy learning tasks are self-explanatory, hypernym discovery is the pro-
cess of extracting relevant hypernyms or super-types from a text corpus given some candidate
hyponyms or sub-types, whereas lexical entailment is concerned with identifying the seman-
tic relations between two words. An important research area in information retrieval (IR),
hypernym discovery can be regarded as the forerunner of automatic taxonomy construction
(ATC) as it aims to detect potential hypernym-hyponym pairs without taking into account
the taxonomy structure. At SemEval-2018 Task 9, researchers are asked to predict and
rank selected hypernyms from a large pool of candidate vocabulary, e.g. attributing ath-
lete, sportsperson, person, competitor, sport, olympic sport... to query subject "Suzy Favor
Hamilton" [6].

In our literature review, we found that the assessment of taxonomy learning commonly
makes use of existing ground-truths such as WordNet [24], Wikidata and ResearchCyc [76],
accompanied by expert annotations and judgments. For hypernym discovery, ranking mea-
sures are used including mean reciprocal rank (MRR), mean average precision (MAP) and
precision of top-k retrieval.

1.2. Taxonomy vs. Ontology vs. Knowledge Graph
While knowledge graphs (KG) may have become the spotlight of AI, taxonomy, ontol-

ogy and KG are all indispensable knowledge representations that manage concept entities
and denote their underlying relations for later exploitation. Figure 1.2 showcases the three
essential knowledge representations.

Fig. 1.2. Taxonomy, ontology and knowledge graph (from left to right)
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Taxonomy

From Latin taxis, meaning "order" and nomos meaning law, a taxonomy is a simple tree-
like knowledge map, a semantic representation that uses controlled vocabulary and a static
classification scheme for many applications. It can also be called a dendrogram in hierarchical
clustering. Here we summarize the principle components of a typical topic taxonomy:

• Node/entity: otherwise known as a "taxa", a taxonomy entity is comprised of a
concept or a topic;

• Edge: denotes the relation between a parent node and a child node. Subsumption
or "is-a" relation is the most common relationship in topic taxonomies, i.e. a child
topic is a type of the parent topic.

It is easier to include some key terminologies for denoting the main semantic relations
when describing a taxonomy (and other knowledge representations):

• Hypernym, hyponym: describe the semantic relation between a "super-type" (par-
ent) and a "sub-type" (child) from adjacent taxonomic levels, e.g. "fruit" and "apple";

• Holonym, meronym: contrary to hypernym and hyponym, meronym signifies a
"part-of-relationship" while holonym denotes a "whole", e.g. a "core" is a meronym
(part) of apple (holonym) while "macintosh" is a hyponym (type) of apple (hyper-
nym);

• Synonym: words that share similar semantic meanings and are siblings under the
same hypernym, e.g. "apple" and "orange".

Moreover, granularity is a critical concept that describes the level of detail in all knowl-
edge representations. For instance, "city" can be a more detailed or fine-grained concept
than "country"; A four-level taxonomy of country, province, city and street is finer-grained
than a two-level one of country and city. Topic-wise, "Montreal" (city name) may share
similar granularity with "Toronto" (city name) than with "Canada" (country name). A good
taxonomy should host topics of the same granularity at each level (Montreal and Toronto)
as compared to a mixed granularity (Montreal and Canada).

Topic taxonomy: a formal description

We attempt to formally describe a topic taxonomy referring to the description of Shang
et al. [87]. The target of automatic taxonomy construction and evaluation in our work is
a tree-like structure T of topic nodes c ∈ T that ideally represents the domain of interest
of document corpus D, where each node c is represented by an "anchor term" and may
include a list of alternative representations that we designate otherwise as "neighbours", e.g.
"software agents" and "multi-agent systems" for "intelligent agents". Parent-child pairs in T
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should follow a hypernym-hyponym relation, i.e. for each parent node c, its set of children
Sc = c1, c2, ..., cn should all be subtopics of c and share the same granularity.

Ontology

From Greek onto, meaning being and logia meaning "logical discourse", ontology is a
super-set of and is more structurally complex than a taxonomy. In contrast to the tree-like
structure of a taxonomy, the typical structure of an ontology resembles a "web". The smallest
unit of an ontology is called an axiom, which can either be a terminological axiom, a fact or
an annotation, all of which are beyond the scope of this thesis.

Vrandečić in Ontology Evaluation [104] summarized that an ontology: (i) specifies a
conceptualization, (ii) consists of a set of axioms, (iii) is expressed by an ontology document,
and (iv) constrains the construction of models satisfying the ontology. Furthermore, web
ontologies are typically encoded using ontology languages.

Knowledge Graph

Knowledge graphs are an agglomeration of in-domain ontologies, usually created by intel-
ligent systems (IS) and are frequently referred to as a large scale semantic network consisting
of entities and concepts connected via various semantic relations. In table 1.1, we summarize
the differences and similarities of taxonomy, ontology and KG.

Taxonomy Ontology Knowledge Graph

Node Concept/topic Individual/class Object/event/
situation/concept

Unit Taxa Axiom "Fact"

Relationship Hypernym-hyponym (is-a) Multiple relationships/
properties

Triplets:
e.g. Subject/Predicate/Object

Topology Tree Web Graph (acyclic)
Size Small Medium Large
Example Amazon Product Categories WordNet Google Knowledge Panel

Table 1.1. Overview of taxonomy, ontology and knowledge graph

1.3. Taxonomy Applications
Modern information systems are shifting from data processing towards concept processing

[11]. Impressively, some of the most popular ontology products in NLP can range from
web search to dialogue systems. To illustrate the potentials of automatically constructed
taxonomies and ontologies, this section provides several examples of important taxonomy
applications and how they are integrated in modern information systems.
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Bio-medicine and Clinical Care

In the realm of medicine, a medical ontology depicts the ideas behind medical termi-
nologies and how they relate to one another. It also facilitates the storage and exchange
of extensive medical knowledge. With the advancement of NLP, clinicians and medical re-
searchers seek more effective methods of curating biomedical data and documenting care in
the electronic health record (EHR) [45].

For example, some protein-protein interaction ontologies are created in bio-ontological
studies for exploiting complex experimental data and excavate new information [49]; in
patient care, clinicians used to document clinical findings and patient symptoms in a free-
text format in EHR, which made it difficult to find information and optimize care. Using
NLP, clinical texts can be mapped onto ontology concepts and stored in a more refined,
structured and systematic manner that facilitates future retrieval.

Semantic Web

Ontology is a vital component of the World Wide Web (WWW) and is used extensively for
web content management. Resource description framework or RDF is used for representing
web data and concepts and for exchanging of ontological information. In the context of
the Semantic Web, an ontology is a formal explicit description of concepts in a domain of
discourse with the properties of each concept describing features and attributes of the concept
[69]. Ontology engineering focuses on searching, crawling, classifying and ranking Semantic
Web ontologies.

Below we summarize five points of usage of ontologies in the Semantic Web [69]:

• To share common understanding of the structure of information among people or
software agents;

• To enable reuse of domain knowledge;
• To make domain assumptions explicit;
• To separate domain knowledge from the operational knowledge;
• To analyze domain knowledge.

Product and Data Management

Taxonomies are inevitably used as business and product catalogs and for managing on-
line sales. Notable ontology products in this domain include Amazon Category Taxonomy,
Google Product Taxonomy, Yelp Business Category and Google Content Categories. Logis-
tics use taxonomies for inventory and resource management while recommendation systems
leverage taxonomies for suggesting similar or highly-related items. In addition, question
answering (Q&A) systems use taxonomies for identifying relations and formulate queries.
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Due to their technicality, domain ontologies are commonly handcrafted by domain experts
and used for large-scale classification. The largest trade association of the world’s airlines
with member airlines from over 117 countries, IATA operates a complex multi-level ontology
for classifying and analyzing a plethora of airline-submitted aviation incident reports and for
detecting recurring aircraft defects.

Fig. 1.3. Excerpt of Google Content Categories 1

1.4. Taxonomy and Large-scale Classification Systems2

As mentioned earlier, taxonomies are conventionally used as a hierarchical classification
scheme. The content of taxonomies, on the other hand, is rarely static: as more entities are
added to a taxonomy, classification performance may begin to deteriorate due to overlapping
topics, labelling errors, skewed label distributions and lack of samples.

Improving the scalability of text classifiers has since become an important research topic,
typically through feature selection and adopting ensemble techniques that include voting,
bagging and boosting [32]. Companies are regularly faced with the dilemma between training
a single classifier per taxonomic level that needs to be discarded or retrained due to potential
taxonomic changes, or maintaining a large swath of binary classifiers for each taxonomic
node, which is practically impossible due to the number of local classifiers scaling up with
taxonomy size increase. Recently, text-to-text approaches aimed at training and fine-tuning
"text generation" models, e.g. Google’s T5 and DeepMind’s GPT, have gained attention
for enabling hierarchical classification with large-scale taxonomies, in which simple textual
descriptions containing a task prompt (in our case "multi-label classification:") and some
contexts (e.g. "runway excursion") can be used directly as model input for the models to
generate the corresponding taxonomic labels (e.g. "1001, 7003"). Moreover, only one text
generation model needs to be trained per taxonomic level [37].

1https://cloud.google.com/natural-language/docs/categories
2Memo for my IATA internships about large-scale hierarchical classification using complex ontologies
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1.5. Essential Ontologies in Research
Several ontologies have become indispensable and widely-adopted as ground-truths and

sources of knowledge for taxonomy construction and evaluation, as well as other knowledge-
rich NLP tasks. We illustrate three such ontologies reviewed in our research.

WordNet

Fig. 1.4. A subset of WordNet topic "event"

A "taxonomy of words", WordNet [24] is meticulously curated by computational lin-
guists and serves as a computer-readable lexical dictionary and memory for common-sense
knowledge. WordNet’s basic relationships are synonymy, antonymy, hyponymy, meronymy,
troponymy and entailment (relations between verbs). In taxonomy construction, WordNet
can be used for semantic look-up and disambiguation. In taxonomy evaluation, WordNet is
used as the ground-truth for measuring concept similarities and as the target for testing a
system’s performance in a taxonomy reconstruction task.

WordNet is easily accessible via APIs such as NLTK. However, it is commonly restricted
to generic usage due to its limited coverage of only 25,229 concepts [109], which also omits
domain-specific concepts.

Yago

YAGO (Yet Another Great Ontology) is a major ontology mining milestone published
in 2007 that was automatically sourced from WordNet and Wikipedia using a combination
of rule-based and heuristic methods, yielding 352,297 ontological concepts [96]. It is also
designed to be easily extendable and represents a significant improvement over WordNet,
which was created entirely manually due to ATC bottlenecks two decades ago. YAGO has
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achieved 95% accuracy assessed by human evaluators through sampling random facts from
the ontology (since there are no computer-processable ground-truths available).

In the end, Yago is often used as a backend for knowledge-rich applications including
entity-linking, question answering and conversational AI [29].

Probase

Probase is a probabilistic framework harnessing 2.7 million concepts mined from 1.68
billion web pages [109]. Therefore when compared to the two previous ontologies, Probase
has a higher chance of including a concept even if it comes from a domain-specific corpus,
which is why it is used in numerous taxonomy learning tasks such as taxonomy enrichment.
An outcome of its probabilistic nature, Probase can also provide a likelihood estimation for
each concept pair by considering context evidence. For example, sentences like "Spanish
artists such as Pablo Picasso ...” are considered evidence for the claim that Pablo Picasso
is an instance of the concept Spanish artist. As such, Probase can theoretically be used for
taxonomy evaluation if it possesses knowledge in the evaluation domain.
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Chapter 2

Automatic Taxonomy Construction

Most existing taxonomy construction methods organize hypernym-hyponym entities into a
tree-like structure to form an instance taxonomy [41]. It is at the forefront to understand the
ATC paradigm and its essential steps in order to design appropriate evaluation strategies.
To include all aspects of automatic taxonomy construction requires monumental effort. As
such, this chapter will focus on the fundamentals of most ATC pipelines.

Fig. 2.1. A typical taxonomy induction pipeline (Liu et al. 2012)

With a goal of distilling unstructured data into structured knowledge, automatic taxon-
omy construction typically consists of: (1) terms and concept extraction from a text corpus
and (2) a relation formation step that identifies concept relations based on the given corpus
[112]. Unlike manually annotated taxonomies with more flexibility with topic naming (as
they are primarily used by experts), ATC relies on rearranging existing topics found in a
corpus into meaning hierarchies. Figure 2.1 demonstrates a typical pipeline of the taxonomy
induction process. The concept terms, often hypernym-hyponym pairs introduced in Chap-
ter 1, are either modelled using (i) an existing knowledge base (KB) or a lexical database
such as WordNet Synsets (portmanteau for "synonym sets") and excerpts of Wikipedia [94]
through concept mapping, or using (ii) pattern-based or statistic-based approaches that infer
concept-pair relations from large text corpora. Recent SOTA taxonomy extractors have also



experimented with machine learning and deep learning techniques such as hierarchical clus-
tering that iteratively categorizes keywords into dendrograms (hierarchical clusters) [56] and
transfer learning for detecting hypernymy pairs. The backbone of the SOTA approaches,
however, is continuous numerical word representations processable by machine learning al-
gorithms that capture the latent semantics and contexts of topics [4, 62].

The input of an ATC system are usually unstructured texts from a domain of interest,
often accompanied by a list of relevant keywords that are curated manually or identified by
some topic mining tools; The output of an ATC program is a structured document typically
comprised of organized topic clusters of representative terms, indicating subsumption ("is-
a") relations. While some systems also apply query expansion techniques to expand an
extracted taxonomy by pulling related topics and concepts from a large lexical ontology or
the web, some recent "seed-guided" methods make use of language models and a small seeded
taxonomy for finding similar relations in context.

ATC algorithms can be roughly categorized into supervised, weakly supervised and un-
supervised methods that are suitable for different use scenarios. Figure 2.2 provides a brief
overview of automatic taxonomy construction methods. The following sections will introduce
two principle ATC paradigms, an pattern-based approach and a distributional (statistical)
approach, as well as SOTA extractors used for taxonomy building in this thesis.

ATC Methods

Unsupervised

Pattern-based Clustering-based Distributional

Weakly supervised

Bootstrapping Representation learning

Supervised Others

Graph-based Seed-guided

Fig. 2.2. A taxonomy of ATC methods

2.1. Pattern-based approach
Early ontology construction methods depended on pattern-based approaches that re-

quire handcrafted linguistic features and text filters, primarily Hearst patterns [39]. Hearst
patterns are first developed as a set of simple heuristics and have since played a cen-
tral role in extracting knowledge, thanks to their intuitive, easy-to-implement and human-
comprehensible nature. Hearst patterns distill knowledge by exploiting lexical-syntactic pat-
terns [66, 47, 58, 5, 48] that may indicate hypernymy relations in a corpus, i.e. locating
sentences containing "such as", "including" etc., as exemplified below, where NP denotes
noun phrases:

• NP0 such as NP1, NP2, ..., (and | or) NPn

e.g.: the bow lute such as the bambara ndang.
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• NP , NP* , or other NP

e.g.: Bruises, wounds, broken bones or other injuries.
• NP , including NP ,* or | and NP

e.g.: All common-law countries, including Canada and England.

Later pattern-based methods would include even more linguistic rules and generalized
patterns such as "star-pattern", "meta-pattern" and "SOL pattern" [58, 81, 47, 65, 42, 64,
115]. Aside from using a lexical database such as WordNet to obtain quantifiable scores
including term coverage, precision and recall for topic pairs extracted using Hearst patterns,
queries containing the above lexical patterns can also be submitted to a search engine for
computing an evidence score via the search results [58].

Pattern-based methods are fast and convenient for gathering potential hypernym-
hyponym pairs in a domain corpus as they do not require preparatory steps such as key
term extraction. With all its benefits, a pattern-based approach can achieve very high
precision but relatively low recall and low coverage tradeoff since it is impossible to manually
annotate all lexical patterns, and newly included lexical rules can also negatively affect
certain existing rules. Some researchers opt to train the systems on massive corpora to offset
the low recall [109], as studies have indicated that a pattern has a higher chance to explicitly
appear in a corpus such as the web if the size of the corpus is nearly unlimited [23, 48, 112].
Further, research has also proposed weakly-supervised automatic bootstrapping methods to
learn new relation instances and improve low recall [39, 94, 112].

2.2. Distributional Approach
Distributional or statistical ATC methods seek to improve the sparse coverage induced

by using handcrafted linguistic features above, which also lead to significantly more com-
plex systems. However, there is currently no standardized approach to statistical taxonomy
extraction. New methods have been constantly proposed for generating meaningful topic
clusters or recognizing hypernymy relations using machine learning, with some of them also
leveraging meta-data and other text-rich features [87]. Generally, SOTA automatic tax-
onomy construction can be regarded as a complex hierarchical embedding generation and
clustering problem with the current paradigm consisting of term extraction, generating dis-
tributed word representations, iterative clustering and structural optimization, which we will
describe in detail.

2.2.1. Feature Representation

Raw texts must be converted into vectorized, numerical representations for machine clus-
tering and classification. Classical machine learning before neural language models counted
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on frequency-based feature extraction methods, which use word occurrence to represent a fea-
ture in the vector space. The methods are based on the assumption that a textual sequence
can be embodied by a simplified view also known as bag-of-words (BoW) that disregards
word orders. For instance, the sentence "Montreal is in Quebec." can be represented by a list
of four separate words: "Montreal", "is", "in", "Quebec", even though the same features can
also represent "Quebec is in Montreal". A canonical frequency-based feature transformation
is count vectorization, by counting up words in a predefined vocabulary in each document,
as illustrated in table 2.1.

"this" "is" "the" "first" "sentence" "second" "and"
"this is the first sentence" 1 1 1 1 1 0 0
"this is the second sentence" 1 1 1 0 1 1 0
"the first and the second
sentence" 0 0 2 1 1 1 1

Table 2.1. Count vectorization: an example

Note that in table 2.1, it might appear that "sentence" is the most representative word
of the three examples as all phrases contain at least one occurence of it. However, arti-
cle "the" also appears in all the sentences and is non-informative. To counter this, pre-
processing techniques such as removing "stop-words" (e.g. "the", "would") are required. As
such, frequency-based methods are efficient to compute by most hardware but cannot capture
any word semantics. Another issue arises when the feature vectors become sparse (consisting
of mostly zero values) when the number of words in the vocabulary increases, suffering the
curse of dimensionality.

An improvement to the standard count vectorizer is the term frequency - inverse doc-
ument frequency or TF-IDF method, in which a TF-IDF feature is computed by term fre-
quency (TF) * inverse document frequency (IDF). TF-IDF is an indispensable tool in NLP
with a goal of scoring the significance of each term to a document using a bag-of-word
representation. The term frequency feature shares similarity with the count vectorizer by
measuring how important a term t is to a document d :

TF(t,d) = count of term in document / number of words in document

While the inverse document frequency (IDF) feature measures how informative a term
is in the document corpus of size N , i.e. if a word such as a stop-word appears in every
document, then it does not convey any useful information due to low entropy:

DF(t) = number of documents in which the term occurs
IDF(t) = log(N/(DF(t)+1)), add one is used to prevent divide-by-zero
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Combining TF and IDF features, the TF-IDF score for a document term is therefore:

TF-IDF(t, d) = TF(t,d) * log(N/(df+1))

In the 2000s, distributional methods were developed for probabilistic language models
that assign each term into a separate, continuous vector space and generate word repre-
sentations called word embeddings in fixed-sized, low-dimensional vectors, based on the sur-
rounding contexts [4]. Such models are trained with massive amount of data over various
unsupervised language modelling objectives including Skip-gram and CBoW (Continuous
Bag-of-Words) as described by Word2Vec [63, 62], producing static word vectors for the
target vocabulary that allow words in similar contexts (surrounding words) to have closer
distance. The word embeddings produced by methods such as Word2Vec are ubiquitous in
most ATC systems for modelling topic similarities and relations from unlabelled texts.

For ATC, the discriminative power of word embeddings can significantly limit the ac-
curacy of hierarchical clustering and its output, since clustering algorithms may struggle to
segregate topics with close embedding distance with higher granularity. As a result, some
studies propose to use "locally trained embeddings" [115, 7, 22] to calculate word vectors
with more discriminative power by iteratively fine-tuning global embeddings with weighted
documents containing fine-grained topics [87].

Another drawback of static word embeddings is that the vector value is averaged across
all word senses. With the breakthrough in language modelling, newest ATC methods also
leverage contextualized embeddings generated by the Transformers architecture. Transformers
use self-attention mechanism [102] to generate dynamic embeddings through a feed-forward
neural network, and produce feature vectors for words in different contexts, (e.g. homonymy
"bat" as in "baseball bat" or "bat the mammal"), as opposed to single static word embeddings.
ELMo [75] is the first method to follow such intuition to calculate contextualized embeddings,
by using LSTM (Long Short-Term Memory) [40] and a language modelling task called next
word prediction. The contextualized embeddings are then generated by concatenating the
hidden layers of the language model. BERT [21] improved upon the ELMo process by using
auto-encoders and masked language modelling that looks both ways for contexts. New ATC
systems such as CoRel [41] use the values of the initial layer of BERT as word embeddings
for clustering input. 1

2.2.2. Term Extraction

A dedicated study in domain knowledge acquisition and information retrieval, automatic
term or keyword extraction is essential in most ATC pipelines and involves a whole new set of

1The success of Transformer language models also enabled downstream tasks such as text classification
and summarization.
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challenges, including identifying domain terminologies and ranking a list of extracted terms
based on certain criteria such as "relevancy" and "term integrity". With a readily identified
corpus domain, a list of keywords can be manually curated or chosen from existing ontologies
such as WordNet [56]. Some popular statistical models for corpus keyword extraction are
Rake2 [83] and YAKE!3. These methods are used in acquiring knowledge from domain-
specific texts, eclipsing the performance of previous linguistic analyzing approaches relying
on techniques such as dependency parsing.

We decide to include in this section a SOTA automatic phrase mining tool called Au-
toPhrase that is used extensively in our tested ATC systems. AutoPhrase leverages a part-
of-speech (POS) guided phrasal segmentation model that incorporates shallow syntactic
information existing in POS-tags and as general large knowledge bases such as Wikipedia to
train a performant identifier of quality phrases [86].

(AutoPhrase Output)

( reuters ) carlos_tevez
sealed his move to juventus
on wednesday after four
controversy filled years at
manchester city and ...
bryce petty had to wait
behind a heisman trophy win-
ner and then another record......

delle_donne 0.9557175222
kenley_jansen 0.9537159802
coral_gables 0.9534897491
...

wall_street_journal 0.855155771
sam_houston_state 0.8551253483
european_countries 0.854114426...
bell_centre 0.1765758294
e_book 0.1063489821

(Document Corpus)

Fig. 2.3. AutoPhrase output with term integrity scores

AutoPhrase accelerates taxonomy construction in that it can generate quality keywords
and provide a term integrity score for each extracted keyword as shown in figure 2.3 that
is useful for ranking and for indicating keyword importance. It is also domain-independent,
although providing a list of domain keywords as reference will guide the algorithm to extract
better quality topics. Using the AutoPhrase output, a term integrity threshold can be set
for selecting the top quality noun phrases 4 or multi-word keywords for tagging the corpus,
a process known as phrasal segmentation, so that each multi-word noun phrase cannot be
split when calculating word embeddings or as different topic labels in a taxonomy. In the
following example, phrasal segmentation links two entities of interest "Chinese food" and
"Mexican food" using underscores.

2https://github.com/aneesha/RAKE
3https://github.com/LIAAD/yake
4technically, a phrase is defined as a sequence of words that appear consecutively in the text, forming a

complete semantic unit [25].
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Original Sentence: "I love Chinese food and I love Mexican food."
Phrasal Segmentation: "I love Chinese_food and I love Mexican_food."

In this case, the problems we encounter with AutoPhrase lie twofold: (1) how to interpret
the term integrity score and to configure the appropriate keyword threshold for taxonomy
construction. (2) as a list of reference keywords is unprovided, the key terms found by the
algorithm are often unfocused and can include words other than nouns and pronouns. Some
of the good keyword entities, e.g. "e_book" in figure 2.3 can also have low scores.

2.2.3. Clustering

Hierarchical clustering is innate for ATC since it inherently generates a dendrogram (tree
structure) of topics that is easy to interpret by humans [56]. Clustering-based ATC methods
or iterative clustering in general uses two partition strategies: an agglomerative method is a
bottom-up approach merging two most similar clusters at every step, while a divisive method
follows a top-down principle that splits a cluster into two or more fine-grained clusters at
each step. Recent clustering-based ATC methods often follow the divisive principle to first
learn a representation space of word embeddings for the terms of interest, then separate the
terms into an appropriate taxonomic structure, usually by identifying hypernymy-hyponymy
relations [56, 106, 112, 41]. Besides, a "conceptual clustering" method for taxonomy con-
struction has also came to popularity [15].

Clustering algorithms mainly focus on two types of data characteristics: algorithms
namely k-means use compactness to measure the distances between data-points and clus-
ter centers, where similar datapoints are assumed scattering compactly around their cluster
centers; other algorithms such as spectral clustering emphasize connectivity, assuming sim-
ilar data are connected to each other and form continuance on a graph. We can observe
such traits in figure 2.4, in which partitions are created by clustering algorithms, denoted
by colours, on four different 2D shapes comprised of datapoints (circles, half-moons, blobs
and no-structure). The bottom-right number in each sub-figure denotes the algorithm’s
running time on the dataset for comparison purposes, where MiniBatchKMeans (a varia-
tion of the standard k-means) has demonstrated remarkable efficiency. In the circles and
half-moons examples, MiniBatchKMeans and spectral clustering each produced two distinct
partitions based on proximity to cluster centroids versus continuity, even though the latter
appears to be more intuitive for humans. The bottom case depicts a "null" situation where
the algorithms attempt to segregate on homogenous data, and thus no optimal strategies
are guaranteed. Other clustering methods, e.g. affinity propagation [41] and agglomerative
clustering, are used for obtaining optimal taxonomy subtopics without specification of the
number of clusters. In this case, the number of clusters selected is manually reduced for
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improved visualization using hyper-parameters. Aside from using compactness and connec-
tivity, DBSCAN, a density-based method, has demonstrated its effectiveness such as on the
blobs example, detecting three rather than two cluster groups. It does not however work
well on overlapping clusters where no drop in density is observed, nor does it work well with
categorical features.

Fig. 2.4. Partitions of popular compactness and connectivity-based clustering algorithms
on four different data shapes (Original figure from scikit-learn)

We want to specifically discuss k-means, which is perhaps the most well-studied clustering
algorithm and unsupervised learning method. K-means starts with a predefined number k of
centroids with the objective of partitioning datapoints into k different partitions. K-means
follows the within-cluster squared-error criterion and does so by iteratively initializing k

centroids randomly then assigning and updating steps to minimize the distances of each
datapoint to its closest centroid until convergence. In other words, the goal of k-means is to
optimally position k cluster centers so that the surrounding data are closest to the cluster
centers. K-means aims to minimize the total sum of squared error. The equation for the
k-means minimization problem is rather self-explanatory where J is the sum of all distances
from the datapoints to the cluster centroids, as shown in equation 2.2.1:

J (x) =
K∑

k=1

∑
xi∈Ck

(xi − x̄k)2 (2.2.1)

While effective and practical, k-means suffers from two problems where (1) it is often
non-trivial to find and decide on the optimal k for a particular solution. Determining the
optimal value k, however, relies on proficiency in the domain knowledge, empirical study or
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using tools such as an elbow graph; (2) k-means algorithm may converge to a local minima
instead of a global minima and may require multiple runs for the best solution.

Spherical k-means is a variation of the conventional k-means algorithm [3] and is used
extensively in TaxoGen [115], by projecting the estimated centroids onto a unit sphere
instead of a plane during each step update.

2.2.4. Supervised Relation Classifier

The last point we want to mention in this section is the novel use of language models for
classifying hypernymy relationships. We use the example provided in CoRel [41] to illustrate
the use of a relation classifier in ATC. Given a positive parent-child pair provided in a seeded
taxonomy, in this case "dessert" and "ice cream", the ATC system assumes that a sentence
implies their relation if it contains the two entities and gathers all sentences contained in
a collection of texts with co-occurrences of the topic pair. The negative samples can be
gathered by combining a topic with another non-sibling entity in the seed taxonomy, e.g.
"dessert" and "salad". The training target of the classifier is therefore binary in that the
topic pair is either valid or non-valid, although CoRel trains a model with three output
targets, parent-child ("ice cream" is-a "dessert"), child-parent ("dessert" is-a "ice cream") and
non-relation.

Training input: We don’t serve [MASK] today except for [MASK]
Masked entities: desserts, ice_cream

The supervised relation classifier is intuitive and can achieve high accuracy, provided with
sufficient positive samples. However, the approach faces critical challenges in real-world usage
because (1) it is difficult to find parent-child co-occurence in a moderately-sized corpus and
many valid parent-child pairs are sparsely scattered in different sentences. (2) a technique
to gather more positive samples is to experiment with various seeded taxonomies and choose
the one that generates the most positive samples, but this is incredibly arduous and requires
prior knowledge of the corpus, which defeats the purpose of automatic extraction.

2.3. Tested Systems
As ATC remains highly experimental, we are grateful to have discovered some recent

state-of-the-art taxonomy extractors available publicly at a very early stage and that we were
able to adopt the code and replicate the published results. It is shown that the current SOTA
implementations can produce quality results on selected datasets and taxonomy domains.
We describe in 2.3.1 four tested systems that have directly enabled our taxonomy research
and illustrate in 2.3.3 a sample output for each algorithm.
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2.3.1. Description

TaxoGen [115] is an adaptive text embedding and clustering algorithm leveraging vari-
ous phrase-mining and clustering techniques including AutoPhrase [86], caseOLAP [54] and
spherical k-means clustering [3]. TaxoGen iteratively refines selected keywords and chooses
cluster representative terms based on two criteria: popularity which prefers term-frequency
in a cluster and concentration which assumes that representative terms should be more rel-
evant to their belonging clusters than their sibling clusters. The system can be configured
with several hyper-parameters including the depth of the taxonomy, the number of children
per parent term and the "representativeness" threshold. Experiments were conducted on
DBLP and SP (Signal Processing) datasets and the system is quantitatively evaluated with
relation accuracy and term coherency measures assessed by human evaluators (10 doctoral
students).

CoRel [41] takes advantages of novel relation transferring and concept learning tech-
niques and uses hypernym-hyponym pairs provided in a seeded taxonomy to help train
a deep learning (BERT) relation classifier and expand the seeded taxonomy horizontally
(width expansion) and vertically (depth expansion). Topical clusters are generated using
pre-computed BERT embeddings and a discriminative embedding space is learned, so that
each concept is surrounded by its representative terms. The clustering algorithms used by
CoRel are spectral co-clustering [46] and affinity propagation [27], which automatically com-
putes the optimal number of topic clusters. Compared to TaxoGen, CoRel does not require
depth and cluster number specifications but a small seeding taxonomy as an input for en-
abling a weakly-supervised relation classifier as discussed in section 2.2.4 based on BERT
[21]. Each pair of the provided hypernym-hyponym pair in the seeded taxonomy is used for
gathering positive training examples by CoRel to find other similar topic pairs. CoRel is
quantitatively evaluated with term coherency, relation f1 and sibling distinctiveness judged
by 5 computer science students on subsets of DBLP and Yelp datasets. The system generates
outputs in the form of large hierarchical topic word clusters.

HiExpan [90] differs from the aforementioned constructors in that it is a hierarchical
tree expansion framework, which aims to dynamically expand a seeded taxonomy horizon-
tally (width expansion) and vertically (depth expansion) and performs entity linking with
Microsoft’s Probase introduced in section 1.5 to iteratively grow a seeded taxonomy. As an
entity is matched against a verified knowledge base, the accuracy of terms and concept rela-
tions is perceived to be higher than than CoRel and TaxoGen. For quantitative evaluation,
HiExpan invited its authors and some volunteers to assess the taxonomy parent-child pair
relations using ancestor-f1 and edge-f1.

TaxoCom [52] is a novel framework improved upon TaxoGen, leveraging local discrimi-
native word embeddings that are more performant in clustering fine-grained topics. TaxoCom
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also defines and implements a new term significance metric and requires a seeded input for
completion and discovering new cluster topics. Evaluation of TaxoCom is conducted on term
coherency and topic completeness judged by 10 doctoral researchers on the NYT news and
arXiv datasets.

2.3.2. Observation

Each of our tested systems faces its own set of advantages and drawbacks. TaxoGen and
TaxoCom are the only parameterized systems in our experiments and only TaxoGen requires
no seeded input for producing an output, which can be beneficial when prior knowledge of
the corpus is lacking 5. Additionally, TaxoGen and TaxoCom also generate alternative syn-
onyms for each taxonomy topic, which increases the coverage and improves concept mapping
between taxonomies and documents. However, TaxoGen and TaxoCom seem to depend on
the keyword extraction quality and it is unclear how to determine the best hyper-parameter
settings for the systems owing to the lack of evaluation methods.

CoRel uses the concept pairs provided in the taxonomy seeds for mining similar relations,
but this has become its Achilles’ heel because same-sentence co-occurrence of valid parent-
child topics is rare in real-world data. As a result, CoRel may fail to produce any output at
all due to insufficient training examples for the relation classifier. It is also resource-intensive
for making use of neural networks for relation transferring and depth expansion. Anecdotally,
the output of CoRel may also not be entirely exhaustive and deterministic. Below are two
runs of CoRel that have produced two distinct results for topic "fuel" extracted from an
aviation corpus:

fuel

fuel gauge
excess fuel

delay vectors
manual loadsheet

tailpipe fire
engine started

fuel

flap indicator
flap asymmetry

auto fail
bleed trip

refuelling truck
catering vehicle

Fig. 2.5. Different CoRel runs generate different results

For our experiments, HiExpan is perceived to produce the most consistent taxonomies
thanks to the use of Probase for measuring topic similarities and locating related concepts.
However, the set-expansion mechanism of HiExpan often ignores topic granularity and adds
hyponyms and hypernyms found in similar contexts to the exact same taxonomy level (hence
most HiExpan taxonomies are two-level only). It also cannot differentiate word senses such
as virus as in computer virus and a viral disease.

5This has inspired us to study using a "seed-less" system such as TaxoGen for bootstrapping systems
that require seeded inputs (CoRel, HiExpan).
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2.3.3. Illustration

*/multi_agent
multi_agent, multiagent, multi_agent_systems, multi_agent_system
*/support_vector_machines
support_vector_machines, support_vector_machine, svm, svms
*/semantic_web
semantic_web, semantic_web_technologies, rdf, ontologies
*/multi_agent/mobile_robots
mobile_robots, robots, mobile_robot, robot, robotic
*/multi_agent/classical_planning
classical_planning, nondeterministic, logic_programs, propositional
*/multi_agent/logistics
logistics, manufacturing, transportation, supply_chain, production
*/support_vector_machines/neural_network
neural_network, neural_networks, artificial_neural_network, neural

Fig. 2.6. Format of TaxoGen output, where each topic comes with five alternatives and
topic-subtopic is separated by slash (DBLP dataset)

rib_steak sirloin_steak tenderloin porterhouse flank_steak sirloin
rib_eye cooked_medium ribeye rib med_rare cooked_medium_rare
medium_rare filet ribeye_steak striploin bone boneless filet_mignon
bone_in_rib_eye flank fillet 6oz med prime_rib rare_steak

tomatos cucumbers green_peppers tomatoes romaine_lettuce diced peppers
jalape_os lettuce banana_peppers bell_peppers red_peppers onions
bell_pepper jalapenos shredded_lettuce shredded red_onion green_onions
diced_tomatoes iceberg avocados grilled_onions spring_mix basil_leaves

mash_potatoes peppercorn_sauce chilaquiles cornbread chimichurri
smothered shepherds_pie meatloaf grits red_beans_and_rice biscuits
mash grandmas baked_beans chile_verde po_boy bangers hush_puppies
frites gravy meat_loaf hushpuppies potato short_rib latkes yuca

sauteed_mushrooms fingerling_potatoes wild_mushrooms foie_gras
truffle truffles risotto agnolotti fois_gras gnocchi caramelized_onions
ravioli tagliatelle earthy aged budino fig truffled sherry burrata
mushroom rich marmalade manchego steak_tartare pecorino decadent

Fig. 2.7. Sample CoRel subtopic clusters for topic "steak" (Yelp Dataset)
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computer_vision (eid=4061)
object_recognition (eid=12014)
object_detection (eid=20)
speech_recognition (eid=9346)
deep_learning (eid=1149)
visual_recognition (eid=7899)
...

image_processing (eid=2952)
image_restoration (eid=11812)
image_analysis (eid=5249)
knowledge (eid=717)
daily (eid=1024)
ontology (eid=2329)
...

datum_mining (eid=152)
mining (eid=1481)
pattern_mining (eid=11352)
association_rule (eid=8105)
sequential_pattern (eid=35385)
frequent_pattern (eid=13284)
...

...

Fig. 2.8. Sample HiExpan output (arXiv dataset)

*/math
geometric_topology, spectral_sequence, quantum_group, symplectic_geometry
*/physics
photons, electrons, bunch, accelerator_physics, laser, ion, photonic
*/wireless_networks
two_hop, relaying, arq, backhaul, single_hop, multicast, power_allocation
*/classical
uniform_sampling, mle, probabilistic_inference, pomdps, streaming_model
*/math/algebraic_geometry
finite_difference, numerical_solution, multigrid, finite_element, galerkin
*/physics/accelerator_physics
readout, pixel, asic, tpc, tdc, prototypes, gems, gem, alice, rpc
*/wireless_networks/best_effort
traffic_engineering, control_plane, congestion_control, core_network
*/classical/np_complete
np_complete, csp, bipartite_graph, graph_coloring, undirected_graphs

Fig. 2.9. Sample TaxoCom output with similar format as TaxoGen (arXiv dataset)
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2.4. Final Remarks
Current ATC approaches remain highly experimental. Although we had success in repro-

ducing the published results, producing quality taxonomies in other domains using automatic
taxonomy constructors is difficult. As ATC systems often entail various moving parts, the
quality of auto-generated taxonomies can depend on numerous factors, e.g. the quality of
keywords, the discriminative power of word embeddings, the clustering algorithms and the
seeded input.

We find that ATC taxonomies are particularly vulnerable to lexical noise, mixed gran-
ularity and edge inaccuracy, possibly due to the fact that word embeddings alone can omit
categorial lexical information critical to taxonomy construction such as hypernymy relations,
as well as granularity and topical significance. The usefulness of a generated taxonomy also
cannot be guaranteed, due to a mismatch between a user’s interests and the actual topics in-
duced by ATC. Further, the taxonomy construction process is complex and time-consuming
as it may involve term extraction, real-time local embedding generation and clustering.

We summarized in this chapter pattern-based and statistical-based taxonomy generation
strategies, where pattern-based methods using lexical-syntactic patterns may suffer from low
coverage despite having high precision, whereas statistical methods may have higher recall
and can generate a complete taxonomy without supervision but at the same time suffer from
data sparsity and lowered precision, when the discriminative power of word embeddings is
inadequate to separate noise from useful topics.

Theoretically, ATC can help in the understanding of highly focused and rapidly changing
corpus domains when compared to manual taxonomy construction; however, text corpora
that can characterize the domains are hard to find and often do not contain sufficient samples
of new topics detectable by current ATC methods [56]. Besides, ATC taxonomies lack
flexibility in that topics and concepts must come from the corpus. In future research, we
will study ATC methods that can also manage and integrate abstract topic descriptors into
a meaningful taxonomy.
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Chapter 3

Towards Automatic Taxonomy Evaluation

Many researchers reinstate the importance of having clear objectives for taxonomy and on-
tology creation, as well as developing a set of evaluation methodologies for assessing the
structure, word relations and cluster coherence of an automatically generated topic tax-
onomy. Because quantitative evaluation methods are lacking, research on taxonomy and
ontology construction heavily relies on qualitative descriptions for comparing ATC output
from the various perspectives of ontology engineers, system users or domain experts [30, 35].
Quantitative measures, on the other hand, require either calculating intrinsic measures such
as perplexity and cluster distance, or depend on extrinsic measures such as comparing target
taxonomies to a reference, also known as a gold-standard.

Because an ontology or taxonomy is frequently used within a targeted application to
achieve a specific goal, many researchers believe that a task-independent automatic evalua-
tion remains elusive, citing the lack of a general solution [78]. Current studies on taxonomy
and ontology evaluation, to our knowledge, are primarily concerned with the assessment of
web ontologies. Nevertheless, we find that ontology evaluation strategies shall remain mostly
applicable to ATC taxonomies, despite the fact that web ontologies are far more structurally
complex. In the next sections we will introduce these evaluation strategies and discuss ap-
proaches that may ultimately lead to quantifiable and reproducible taxonomy scoring.

3.1. Taxonomy Errors
Automatically constructed taxonomies are often exposed to basic errors that are not com-

monly found in manually constructed taxonomies, from selecting terms that best characterize
a topic cluster to assigning a node to its ideal position. In Semantic Web applications, Vran-
dečić in Ontology Evaluation argued that mistakes and omissions in ontologies can lead to
the inability of applications to achieve the full potential of exchanged data [104]. Below
we use a machine generated aviation taxonomy to summarize the various types of errors
identified in our research.



Noisy and trivial topics lack significance and reduce the taxonomy’s usefulness and
representativeness of the knowledge domain. This is the most common error in an auto-
matically generated taxonomy as word embeddings struggle to capture term significance. In
figure 3.1, topics such as "25r", "27r", "7l" and "9l" (taxi path names) are included in a subset
of an auto-generated aviation incident taxonomy concerning taxiway issues. A simple im-
provement can be implementing filters or Regex syntaxes for removing such lexical patterns,
however this approach can be laborious and may not eliminate all potential noise.

taxiway

wrong turn
wrong taxiway
missed taxiway

ground collision
crossbleed start

commenced pushback

takeoff setting
ramp congestion

emergency vehicle

incorrect taxiway
25r
27r
7l
9l

Fig. 3.1. Noisy labels in an auto-generated taxonomy

Some ATC algorithms also heuristically select or favour terms that appear with the
highest frequency or are more "unique" to one topic cluster than others in order to represent
the topic of a word cluster, producing incorrect or noisy cluster labels. For example, figure 3.2
showcases a taxonomy subset where the parent node is labelled simply "e" for taxa "traffic",
"thrust" and "altitude". In other instances we have observed erroneous parent labels such as
"white", "red" and "bit".

"e"

departing traffic
departing aircraft
reduced separation

auto thrust
climb detent

idle

published altitude
crossing altitude
lowest altitude

Fig. 3.2. Erroneous parent label

Incoherent clusters decrease the uniformity, interpretability and accuracy of the tax-
onomy. In figure 3.3, "incorrect taxiway" is a much closer topic to "wrong taxiway" (in fact,
they are semantically identical) as compared to "missed taxiway".
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taxiway

wrong turn
wrong taxiway
missed taxiway

ground collision
crossbleed start

commenced pushback

takeoff setting
ramp congestion

emergency vehicle

incorrect taxiway
25r
27r
7l
9l

Fig. 3.3. Cluster coherence problem

Structural problems are highly complex and harder to define since there is no clear
standard that indicates the optimality of a taxonomy’s structure (number of nodes and edges,
depth, granularity) in a knowledge domain. Figure 3.4 depicts a simple case of this problem,
in which the sibling nodes have different granularities and should be clearly displaced at
different levels. Another way to consider the structural error is whether nodes at a certain
ontology level contain a subsumption relation, e.g. if incursion and runway/taxiway, or
turbulence and weather should appear at the same ontology level as shown in figure 3.4.

root

runway taxiway incursion turbulence weather

Fig. 3.4. Taxonomy structure problem

Other taxonomy errors can occur before or after the ATC process. For instance, source
errors can occur when an ontology extraction process learns from incorrect data, e.g. a
person born in 1802 but featured in a Wikipedia category for people born in 1805. Philo-
sophical issues can be exemplified with the following question: "is an economist working
in France a French Economist, even if he was born in Ireland?"

3.2. Concept-pair and Coverage Analysis
Our first goal in this master’s project was evaluating a multi-level large aviation incident

ontology that is comprised of specialized aviation terminologies. Foremost, we intended to
validate the topic relations that exist in the ontology. As ground-truth aviation incident on-
tologies are rarely found, we instead sought to find evidence for the concept-pair coexistence
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in text. Specifically, in a multi-level ontology and a massive aviation incident corpus, we
attempted to extract all topic-subtopic identifier pairs in the adjacent ontology levels, e.g.
weather as the topic and hail, lighting strike, heavy rain as the subtopics:

weather: {hail, lighting strike, heavy rain}
⇓

(weather, hail), (weather, lighting strike), (weather, heavy rain)

Next, we aimed to retrieve all reports that contain an event pair in the ontology and use
the contexts as evidences for topic relation evaluation. For example, one such report could
be "bad weather... heavy rain... return to gate". If no reports mentioning the two events can
be found, the ontology edge may also be redundant or obsolete and should be removed.

The problem of this approach is that the names of valid events may not appear as-is
in the corpus documents, as abstract event descriptions and umbrella terms are ubiquitous
in ontologies created for manual classification, e.g. "Dangerous Goods Carried by Passen-
ger and Crew" and "Threat & Interference". Another challenge arises when different event
descriptions can refer to the same concept (e.g. "birdstrike" & "bird strike"; "intoxication"
& "intoxicated"), which may be resolved using text preprocessing and approximate string
matching. Our preliminary results show low recall with less than 50% of concept pairs found
to coexist in all returned reports and as such, assuming topic coexistence in corpus as a proof
of positive ontology relations can result in false negatives.

For coverage analysis and estimating the number of missing topics in an ontology, domain
experts and external references are commonly required. However, Brewster et al. [11, 13]
proposed to extract domain-specific terms from the document corpus using latent semantic
analysis (LSA) and measure the overlap of the LSA extraction and the ontology topics. In
sum, it is difficult to evaluate ontology concepts especially those from professional domains.

3.3. Comparing Taxonomies
Studies have been conducted to methodically describe, compare and visualize the differ-

ences and similarities between two taxonomy artifacts, or to highlight changes between two
different versions of a taxonomy. In the biological taxonomy domain, such comparisons are
critical for the "reconciliation of alternative versions of a taxonomic classification" [85] and
are mostly carried out by domain experts with the help of visualization tools due to the
complexities of taxonomy’s structures, taxa and usage.

In biology, for example, characterization of a taxonomy and its different versions involves
multi-national experts, expert interviews, literature reviews, as well as multiple sets of man-
ual tasks done by taxonomists from identifying splits and merges to locating repeated names.
Few researchers detail the procedures for systematically comparing two taxonomies without
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some sort of expert agreement, with the exceptions of some methods that compare labelled
trees and tree alignment, compute "tree edit distance" and measure taxonomy matching
rates [8, 117, 2]. Consequently, the current methodology of taxonomy evaluation is largely
confined by expert discretion. Even if external evaluations can help determining which tax-
onomy is more useful for a specific task, the results may not correlate at all to the actual
observed quality of many taxonomies.

Below we list four popular visualization software comparing two taxonomy-like hierarchies
in the literature, including edge drawing, matrix representation, animation and agglomeration
[85, 31]:

• Edge drawing uses colour-coded edges to visualize changes between two versions of
a taxonomy;

• Matrix representation arranges two taxonomies along the horizontal and vertical
axes of a matrix, similar to a Levenshtein distance matrix. Differences and changes
are coloured and highlighted at the cross-sections of the matrix cells;

• Animation uses animations to illustrate the differences between two taxonomies;
• Agglomeration merges two taxonomies into a single hierarchical structure (e.g.

sub-trees with the same parent name will be merged together) and uses colours to
distinguish parts from different taxonomies and changes.

Fig. 3.5. Matrix visualization of taxonomy differences (Sancho-Chavarria et al. 2020)

Finally, the advancement of neural language models enables visualization of the related-
ness of words in a corpus and manually identifying overlapping and duplicating topics using
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word embeddings. T-SNE [101] and PCA (Principle Component Analysis) are two principle
methods that can be deployed to project an n-dimensional word embedding (for example,
Word2Vec embeddings typically have n = 300 and for BERT n = 768) to a two-dimensional
or three-dimensional space through dimensionality reduction while preserving data variation.
During topic visualization, one can observe that highly correlated topics are clustered closely
as their embeddings share closer distances. Supposedly, the methods can be used directly
for projecting the topics of any taxonomy or ontology onto a 3D topic space, if their surface-
forms are found in-corpus, but this is rarely the case and would require domain experts to
make sense of the projected topic clusters.

3.4. Intrinsic Evaluation
In their simplest form, ATC-generated topic taxonomies can also be viewed as a collection

of topic clusters calculated using word vectors and clustering algorithms. External evaluation
for cluster quality is rarely used due to the lack of dependent variables or class labels for
each cluster object. For evaluating clustering results with reference labels, simple measures
such as homogeneity score, completeness score and v-measure can be used.

As a result, intrinsic metrics may have become indispensable for obtaining the optimal
topic clustering for some ATC systems. However, such metrics cannot be reused for evaluat-
ing ATC outputs as the clusters are directly optimized using these methods and the scores are
difficult to interpret by humans. Below we list three widely-used cluster evaluation methods
for ATC clusters.

Davies-Bouldin Index

The Davies-Bouldin index (DBI) is an intrinsic metric based on the principle of, in short,
within-cluster and between cluster distances, or the proximities between clusters and their
nearest neighbours [61, 19].

DB = 1
k

k∑
i=1

max
j ̸=i

Rij (3.4.1)

With:

Rij = si + sj

dij

(3.4.2)

In Equation 3.4.2, si denotes the average distance between each cluster data point and
the cluster centroid and dij is the distance between cluster centroids i and j. As the clusters
become more compact and separated, their Davies-Bouldin index will decrease. In some
ATC research, Davies-Bouldin is used to quantify cluster quality [115].
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Silhouette Score

A higher silhouette score [84] indicates how well an object belongs to its own cluster as
compared to all other clusters. Given variables a and b, where:

• a is the mean intra-cluster distance measured by the mean distance between each
data point and all other data points in the same cluster.

• b denotes the mean nearest-cluster distance, which is measured by the mean distance
between a data point and all other points in the next nearest cluster.

For each datapoint, the Silhouette Coefficient can be computed as:

s(i) = b(i) − a(i)
max a(i), b(i) (3.4.3)

The silhouette score can be a good indicator for cluster quality without target variables
and the score is bound between -1 and +1, with closer to 1 indicating strong affiliation, 0 in-
dicating overlapping clusters and -1 suggesting an object could be incorrectly assigned, which
can be superior to that of Davies-Bouldin as its scores are unbounded and less interpretable.

Calinski-Harabasz Index

Also known as the variance ratio criterion as it is based on the principle of variance,
Calinski-Harabasz index [14] is a heuristic device defined as ratio of the between-cluster
dispersion and within-cluster dispersion. It is fast to compute, and the denser and more well
separated the clusters, the higher the score. However it generally favours convex clusters
over density based clusters.

SCH = B

W
× N − k

k − 1 (3.4.4)

In which B, W , N , k denote the between-cluster variance, within-cluster variance, total
number of datapoints and the number of clusters.

3.5. Extrinsic Evaluation
Brank et al. [11] summarized four principle extrinsic ontology evaluation methods, by

(1) comparing the target ontology to a "gold standard" (ground-truth) ontology [60]; (2)
using the target ontology in an application and evaluating the application results [78]; (3)
conducting coverage analysis comparing the target with a source of data (eg., a collection
of documents) about a specific domain [13]; (4) manual reviews done by human experts
that assess how well the target ontology meets a set of predefined criteria, standards, and
requirements [57].
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3.5.1. Gold Standard Method

Studies of gold standard methods focus on comparing and measuring the similarity of
two ontologies.1 Maedche and Staab [60] proposed a two-level comparison framework to
measure ontology similarities on lexical and conceptual levels. Lexical level comparison aims
at measuring the similarity between two target strings, e.g. "TopHotel" and "Top_Hotel" and
producing a string matching score using a modified Levenshtein’s edit distance. Conceptual
level comparison focuses on the similarity of concept by computing the semantic cotopy,
which given a single term from two ontologies, compares the intersection or overlapping of
all the super- and sub-concepts of the term in each ontology to estimate the conceptual
similarity of the term’s role in the two ontologies. The evaluation for Maedche and Staab’s
method has shown promising results. Brewster et al. [13], however, argued that it is still
difficult to construct automated tests to automatically compare two or more taxonomies, as
it depends on external semantics to perform the evaluation capable only by human beings,
although recent work has been investigating in contextualized word embeddings as a proxy
for human judgements of word semantics [118].

Nevertheless, the gold standard method has remained popular as given a collection of
is-a and not-is-a term pairs as ground truth, standard relation classification metrics such
as precision (P), recall (R) and f-score (F) can be employed for quantitative evaluation
[92, 114]. Further, the gold-standard evaluation can also be helpful for parameter tuning
[100]. The generic precision and recall metrics are defined as below:

precision = True Positive
True Positive + False Positive (3.5.1)

recall = True Positive
True Positive + False Negative (3.5.2)

For a gold-standard evaluation, a precision score can be calculated as the percentage
of taxonomy nodes that also appear in the gold standard, divided by the total number of
nodes in the taxonomy; a recall score is defined as the percentage of topic nodes in the gold
standard that also appear in the taxonomy, in relation to the total number of entries in the
gold standard [11]. SemEval-2015 [9] further detailed the definitions of several quantifiable
gold-standard metrics by comparing:

common nodes = |VS ∩ VG| (3.5.3)

1As ontologies are in fact far more structurally complex than taxonomies, we draw comparisons solely on
the evaluation of taxonomic relations in an ontology and forgo evaluations of all other ontology components
and functionalities such as formal language, syntax, XML and RDF.
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vertex coverage = |VS ∩ VG|
|VG|

(3.5.4)

common edge = |ES ∩ EG| (3.5.5)

edge coverage = |ES ∩ EG|
|EG|

(3.5.6)

edge precision (P) = |ES ∩ EG|
|ES|

(3.5.7)

edge recall (R) = |ES ∩ EG|
|EG|

(3.5.8)

F1 score = 2 (P ∗ R)
(P + R) (3.5.9)

Constructing a gold standard is time-consuming and typically involves: (1) selecting
fine-grained concepts using a domain reference, e.g. Wikipedia or ACM classification that
categorizes subjects in Computer Science; (2) choosing a depth or the number of classification
levels of the taxonomy for a desired granularity; (3) choosing a scope of coverage based on
the subject of interest. However, even the optimality of manually constructed gold-standards
cannot be guaranteed.

Lastly, much semantic work including topic modelling and ontology comparison depends
on WordNet for gold-standard evaluation. Many similarity metrics based on WordNet are
therefore proposed for estimating and comparing topic similarities using the depths and
subsumer information of WordNet. The least common subsumer (LCS) is defined as the
deepest node in the hierarchy that subsumes both of the synsets under question [67], i.e.
the most specific concept which is an ancestor of both WordNet concept A and concept B
[73]. In the case of a subset of WordNet in figure 3.6, the LCS of "lion" and "cat" is "feline".
It is also safe to assume from the example that a lion is closer to a cat than it is to a wolf, as
the LCS of "lion" and "cat" is "feline" and the LCS of "lion" and "wolf" is "carnivore", which
is a further concept.

Similarly, the similarity of two ATC concepts can also be measured if they can be identi-
fied in WordNet or other structured databases. Below we include three widely used WordNet
semantic similarity metrics including Wu-Palmer (WuP), Leacock-Chodorow(LCH) and Lin.

Wu-Palmer [110] aimed to tackle a task of English-Chinese machine translation by accu-
rately selecting fine-grained lexemes from WordNet or a comparable thesaurus. The following
metric 3.5.10 quantifies the concept similarity in a hierarchical structure:
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carnivore

feline

big cat

lion tiger

cat

canine

dog wolf fox

Fig. 3.6. Subset of WordNet Synset

WuP (c1, c2) = 2 · depth(LCSc1,c2)
depthc1 + depthc2 + 2 · depth(LCSc1,c2) (3.5.10)

Leacock-Chodorow (LCH) [51] attempted word sense identification, specifically to dis-
ambiguate a noun, a verb and an adjective through knowledge acquisition via WordNet. The
LCH measure finds the shortest path sp(c1, c2) between two WordNet synsets and scales by
the maximum depth of WordNet (D) [67]. The final score takes the log likelihood as:

LCH(c1, c2) = − log sp(c1, c2)
2 · D

(3.5.11)

Lin [55] uses an information theoretic approach introduced as the Resnik Information
Content [80], which weights the edges of WordNet using their frequency of occurence in
a text corpus to measure the Information Content of WordNet concept nodes, avoiding
the assumption that all edges in WordNet possess equal importance [67]. As such, the
Information Content is defined by IC(c) = − log p(c) and the Lin measure can be calculated
as:

Linc1,c2 = 2 × log p(LCSc1,c2)
log p(c1) + log p(c2)

(3.5.12)

3.5.2. Data-driven method

Brewster et al. [13] presented the namesake approach that provides a more automatized
evaluation strategy to the more approachable and more popular gold-standard method. Fun-
damentally, it proposes an evaluation task to select the most structural fit ontology among
a set of candidates to a target corpus, or to select an ontology that best represents the
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knowledge domain of the text corpus. Theoretically, the data-driven approach attempts to
derive the conditional probabilities of ontologies given a corpus: the ontology that maximizes
the conditional probability of the ontology O given a corpus C is hence deemed the best fit
ontology O∗, where Bayes’ Theorem is used to derive the fit score if a valid method would
exist for estimating P (C|O).

O∗ = arg max
o

P (O|C) = arg max
o

P (C|O)P (O)/P (C) (3.5.13)

However, the authors have expressed uncertainty about how to approximate such con-
ditional probability and no experiment results were shown in the research. One solution to
this is to extract all domain-specific terms using an external reference, e.g. performing a two
step WordNet hyponym lookup, then measure the overlap between the extracted terms and
the target ontology so as to estimate the "fit" or the coverage of the ontology. An ontology-
tagged corpus by for example WordNet may also help estimate such coverage. Although the
data-driven approach shows great potentials, it is fairly complex to implement. A detailed
pipeline for converge analysis is shown as follows:

(1) Keyword extraction. Identify and extract keywords and terms of interest from a
selected corpus;

(2) Query expansion. Use existing ontologies such as WordNet and other Information
Retrieval techniques to find and expand the representations of the terms from (1).
The authors suggest to add two levels of hypernyms to each term using WordNet, to
ensure that a term in an ontology can be located via multiple lexical variations to
facilitate concept mapping;

(3) Ontology mapping. Match the ontology terms and their lexical variance to the
keywords extracted directly from the domain corpus to obtain a rough estimate of
the coverage of the ontology on the textual data.

3.5.3. Application-based method

The idea behind application-based ontology evaluation is straightforward in that one
might infer the quality of some ontologies by plugging them into an application that would
benefit from the use of taxonomies and comparing the application results (performance)
[11]. However, this approach does not necessarily exclude the use of gold-standards but
instead concentrates on producing a quantifiable score for ontology comparisons. Porzel et
al. [78] who pioneered the application-based approach proposed several possible applications
for inferring ontology quality such as "speech recognition concept tagging" and concept-pair
relation classification. Large ontological applications such as ONTOSCORE that converts
an ontology to a directed graph can also be used for scoring. Specifically, the authors sought
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to compute three types of performance measures typical in automatic speech recognition,
the target application and compare the results to a gold-standard to obtain error rates:

(1) insertion errors indicate superfluous concepts, isa- and semantic relations;
(2) deletion errors indicate missing concepts, isa- and semantic relations, and;
(3) substitution errors indicate off-target or ambiguous concepts, isa- and semantic

relations.
Another objective of the proposed application-based evaluation can be improving an

existing ontology by reducing the errors above. As a result, the application-based approach
is a viable alternative to gold-standard evaluation but is complex and non-scalable, best
suited for comparing a set of taxonomies with an existing gold-standard on some particular
usage of an ontology application. Brank et al. [11] summarized that it is in fact hard to
correlate ontology quality with the application performance and to measure the extent of an
ontology’s contribution to the application outcome. It might also be infeasible to plug in all
ontologies into the sample application for evaluation.

3.5.4. Manual Evaluation

In the end, manual evaluation is still desired due to the lack of gold-standards. It can also
be the only option when a taxonomy is designed following certain strict design principles. It
is difficult to create comprehensive machine-evaluation protocols that can cover the entire
manual evaluation spectrums, including lexical vocabulary and concept, hierarchy structure,
context and application, syntactic, structure and design and other semantic relations [11].
Manual evaluation can also revolve around philosophical evaluation criteria that can guide
ontology design (after all, ontologies and taxonomies are created for and used by humans)
some of which are listed below [95, 34, 1, 104]:

(1) Accuracy measures the precision and recall of which the asserted knowledge in the
ontology agree with an expert’s knowledge;

(2) Adaptability measures how "easy or difficult" to use an ontology given different
contexts or applications;

(3) Clarity measures how effectively the ontology communicates the intended meaning
of the defined terms;

(4) Completeness measures if the domain of interest properly covered via coverage
analysis;

(5) Conciseness measures if the ontology includes irrelevant elements regarding the
domain to be covered;

(6) Consistency measures the number of terms with contradicting meanings.
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In sum, a manual approach can shed valuable insights about a taxonomy but is still not
advisable as human evaluators inevitably judge from different standpoints, creating discrep-
ancies during evaluation. To replicate the success of manual construction and evaluation,
however, ATC and ATE must possess a vast amount of real-world knowledge or be able to
accurately derive facts from domain corpora.

3.5.5. Rank-based Metrics

Lastly, we mention ranked-based metrics commonly used for evaluating recommender
systems, whose aims are to provide a list of most relevant recommendations or user-interested
items. These criteria measure a system’s ability to retrieve relevant information, given
preferred rankings of a list of items that should appear in the system output. In hypernymy
discovery, external rank-based metrics are used to measure the effectiveness of a system at
retrieving all relevant hypernyms of a concept. These measures include mean reciprocal rank
(MRR), precision@K (P@K), recall@K (R@K) and mean average precision (MAP), which
can be deployed with human-created references/gold standards.

To compute MRR, we first generate for each user u a list of recommendations and find
rank ku of its first recommendation (the first recommendation has rank 1), then the recip-
rocal rank is:

MRR(O, U) = 1
|U|

∑
u∈U

1
ku

(3.5.14)

For P@K and R@K, we first set a rank threshold K ∈ 1, 2,.., n, and the scores are
therefore:

P@K = number of relevant items
number of items recommended (3.5.15)

R@K = number of relevant items
number of all possible relevant items (3.5.16)

With P@K we can compute mean average precision using the procedure as follows:
(1) Consider rank position of each relevant document K1, K2, ..., KR;
(2) Compute P@K for each K1, K2, ..., KR;
(3) Average precision is the mean of all P@K for a single ranking;
(4) Mean Average precision is the mean of all P@K for multiple rankings.

3.6. Towards Automatic Evaluation: a Dialogue
"Which system works the best? Which taxonomy is the best?" In sections 3.4 and 3.5

we discussed a wide gamut of intrinsic and extrinsic methods for taxonomy and ontology
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evaluation, which suffer the trade-off between reproducibility (for extrinsic measures in-
volving manual inputs) and interpretability (for intrinsic measures). The data-driven and
application-based methods have demonstrated the most potential towards automatic taxon-
omy evaluation among the four principle ontology evaluation methods, but are difficult to
implement because taxonomy coverage is hard to estimate and many ontologies do not have
a specific application. Hence for many researchers, a general solution for task-independent
automatic evaluation does not exist [78].

"Which system works the best?"

As our first problem in this thesis concerns the ranking of ATC systems, it is possible to
design universal benchmarks similar to that of GLUE for Natural Language Understanding
(NLU) [105], through gathering domain-focused corpora from various sources and hand-
crafting gold-standard taxonomies, to compare and measure ATC system’s ability to find
common edges and nodes. We can also simply test the systems on reconstructing or ex-
panding a subset of WordNet using WordNet annotated corpora such as SemCor3.0 for
English. It is unclear, however, whether reconstructing WordNet is a good indicator of a
system’s performance and whether the same performance can be translated to other domains.
Benchmark-making is also a lengthy process that is beyond the scope of this thesis. As such,
we decided to concentrate on our second challenge, which is taxonomy scoring and ranking.

"Which taxonomy is the best?"

Although automatic taxonomy and ontology evaluation has gained more traction recently
[72, 103, 12, 20, 18], a gold standard from an authoritative source is still much of a
necessity for calculating node and edge precision and recall. In the namesake research of
automatic ontology evaluation [12, 103], however, ontology researchers began to develop
methods for automatically evaluating a few selected aspects of web ontologies such as rigidity,
unity, identity and dependence or "similarity measures on partitions". De Knijff et al. [20]
proposed an auto-evaluation measure based on a score that is a trade-off between a term
frequency measure, but the measure is also used for calculating the depth of an "optimal"
taxonomy during taxonomy construction, which led to some researchers arguing that the
score is difficult to interpret [18]. Patel et al. [72] used the names of concepts and relations
of a collection of web ontologies as direct input to text classification models with the goal
of identifying ontology topics. Nevertheless, the study only measured the accuracy of topic
classification rather than using it towards ontology ranking.
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Automatic Topic Coherence Evaluation

Newman et al. [67] described a novel intrinsic measure for topic coherence scoring, which
we find potentially advantageous for quantifying the quality of a taxonomy cluster, using a
symmetric word-similarity measure D(wi, wj) to calculate the arithmetic mean or median
score for component words (w1, . . . , w10) under a given topic:

Mean-D-Score(w) = mean{D(wi, wj), ij ∈ 1 . . . 10, i < j} (3.6.1)

Median-D-Score(w) = median{D(wi, wj), ij ∈ 1 . . . 10, i < j} (3.6.2)

To calculate D(wi, wj), the authors proposed three scoring methods including Word-
Net similarity (Leacock-Chodorow, Wu-Palmer, Lin etc.) as introduced in section 3.5.1,
Wikipedia similarity and search engine-based similarity. The search engine-based similarity
include "Google title matches" and "Google log hit matches" and works by querying the clus-
ter topics, e.g. "space earth moon science scientist light nasa mission planet mars ...", and
matching their occurrences in the top results returned by the search engine. The research
shows that both Wikipedia and search engine-based approaches outperform WordNet-based
methods and are close to the results from manual annotations. We believe however that
search engine-based similarity, due to its broader coverage, may better suit our needs for
universal taxonomy evaluation.

Machine Learning as External Evaluators

Finally, we draw attention to the success of machine learning in non-classification tasks
such as text readability assessment and essay scoring [26, 98]. The key to the unparal-
leled success lies in the engineering of hand-coded lexical, syntactic and semantic features,
e.g. average sentence lengths, mean syllables per word, word frequencies and part-of-speech
(POS), with some novel studies propose to learn such features automatically. To train the
machine evaluators, human annotators will provide reference readability or essay scores for
the evaluation models to reproduce human gradings.

In the study of text generation, which aims to produce texts in natural languages using
text generation models or casual language models, with important applications including
machine translation and paraphrasing, evaluation also entails comparing the generated texts
to some annotated references for quantifying their semantic similarities. As exact-matching
evaluation methods such as the widely-adopted BLEU metric [71] can only compare the
surface-form similarity of two sentences through token matching, Zhang et al. [118] proposed
a novel BERTScore that can better measure sentence semantic similarity using contextualized
BERT embeddings. The results of BERTScore show that neural-based evaluation can in fact
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correlate better with human judgements than most lexical similarity methods, broadening
the horizon of using language models for automatic semantic evaluation.

Inspired by the aforementioned studies, we propose in chapter 4 and 5 two new evaluation
proxies towards automatic ATC taxonomy assessments, leveraging supervised classification
and domain-adapted language models for producing reproducible and interpretable results.
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Chapter 4

Supervised Taxonomy Evaluation with Text
Classification

We explore in this chapter an application-based (or rather, a mixed data-driven and
application-based) ontology evaluation approach, using text classification as a supervised
machine learning task for quantifying and comparing the quality of taxonomies generated
from labelled datasets, e.g. reviews annotated by genre and news articles categorized by
topic. Unlike previous methods that use the names of ontology nodes and edges directly for
classifying ontology topics [72], we propose to extract feature vectors from labelled docu-
ments by "tagging" a document with taxonomy entities and obtain a simplistic view of the
observation, e.g. representing the sentence "massive protests erupted in China" with taxon-
omy words "protest" and "China". The manually assigned topic labels, e.g. "politics", usually
coming from a ground-truth, are then used as target variables for training an auto-taxonomy
evaluator, implying the true class distribution of the observation. An ML algorithm is used
to learn the ideal taxonomy-transformed document representation and attempt to map it
against the topic labels using a training set, and the learning accuracy is obtained from a
testing set to complete the supervised learning task. We will dive into the details as we
progress through the chapter.

Since we assume a strong correlation can be found between document classes and topic
clusters of a quality taxonomy, our method can be regarded as a measurement of cluster
coherence or at least as an automatic coverage analysis. We hypothesize that a topic taxon-
omy with better structure, higher cluster coherence and topic coverage will outperform its
"noisier" counterparts in topic classification because:

(1) documents represented by noisy taxonomy topics will not be consistent with the
distribution of their manual labels;

(2) trivial taxonomy topics with low entropy are not indicative as classification features
for the document topics and the corpus domain, therefore do not increase classifica-
tion accuracy;



(3) documents tagged by a taxonomy with less coverage may lead to fewer features or
can produce a sparser feature vector/matrix, resulting in lower recall.

To demonstrate the intuition behind our proposed approach, table 4.1 depicts five sample
news articles and taxonomy topics extracted from the AG News corpus, as well as the
articles’ class labels. The taxonomy topics found in the documents display a high correlation
with the corresponding document label and a lower correlation with other document topics.
Although word sense disambiguation should be applied here to better determine the sense
of a taxonomy concept and to improve concept mapping accuracy (e.g. computer virus and
viral disease), we assume the percentage of ambiguous topics is low and identical across all
taxonomies generated on the same corpus.

Document Taxonomy topics in document Doc. label
1 dutch retailer beat apple download... "market", "retail", "music", "free" technology
2 afghan army dispatch calm violence.. "capital", "government" politics
3 dollar briefly hit wk low v euro ... "economy", "euro", "oil" business
4 natalie coughlin win backstroke ap... "olympic", "gold" sports
5 china red flag linux focus enterprise "company", "linux", "software" technology

Table 4.1. Document corpus annotated with entities from a quality ATC taxonomy, which
strongly correlate with the manually created document labels. Keywords appearing in both
the documents and the taxonomy are highlighted in yellow.

Thus, our problems are twofold: (1) how to acquire feature vectors to best represent
the semantics and the structure of a taxonomy evaluation target, and (2) whether the clas-
sification scores will correlate with the observed taxonomy quality, a common pitfall in
application-based evaluation. For the first problem, we experiment in section 4.2 with a bag-
of-words (BoW) approach by associating each labelled document with relevant taxonomy
entities via string matching and then using entity counts as features to train a text classifier;
For the second problem, we design a perturbation test in section 4.4 to simulate the degrada-
tion of taxonomy quality by reassigning a percentage of taxonomy topics to different topic
clusters via random swapping and random deletion [107].

4.1. Evaluation Targets
4.1.1. Datasets

Our evaluation procedure is based on the assumption that manually created topic labels
exist for defining the topics of interest in some documents. To our best knowledge, public
datasets for topic classification are uncommon, with most focusing on other NLP tasks such
as sentiment analysis. However, topic classification is in high demand on a commercial level
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and many companies possess private annotated data for topic classification and taxonomy
construction. We summarize two datasets for experimentation and illustration below.

(1) AG news is a widely-used news classification dataset collecting over a million news
articles. The documents are categorized into four topic categories, including world
(1), sport (2), business (3) and science/technology (4). Our training and test set
contain 120,000 and 7,600 news samples respectively, each containing a short title
and a description. Additionally, the dataset has a balanced class distribution across
all four categories.1

(2) IATA dataset is a private large multi-label and multilingual dataset, collecting over
millions of aviation incident and accident reports and containing frequent jargon,
acronyms, misspellings and noise. For our evaluation, we use ten distinctive level-one
categories as ground truths.

Title Description Class Index
1 El Salvador Jail Riot Kills at Least 31 (AP) AP - Rival inmates fought each other with... World (1)
2 Reversal Gives Peirsol Gold; Phelps Win... Despite being disqualified shortly after his... Sport (2)
3 Cash-rich, commodity-starved mainland ... SINGAPORE: The mainland #39;s plan to... Business (3)
4 IBM Extends Chip Performance with Ger... IBM today said it has demonstrated a tec... Sci/Tech (4)

Table 4.2. Sample AG News data input

4.1.2. Generated Taxonomies

Because it is difficult to include every component of a large taxonomy, we attempt to
illustrate five taxonomies (TG1, TG2, HE1, HE2, TC1) generated on the AG News Dataset
using three different ATC systems introduced in section 2.3.3: TaxoGen (TG1, TG2), Hi-
Expan (HE1, HE2) and TaxoCom (TC1). We also selected two off-topic taxonomies (TC*,
HE*) generated on other datasets to study their effects on proxy classification. In a large
taxonomy, we use ellipsis to represent one or more subtopic clusters under the parent topic.

From left to right, table 4.3 compares the maximum vertical levels, number of main top-
ics, number of "neighbours" for the main topics , total number of concepts in the taxonomy,
and the average number of children (sans neighbours) per taxonomy parent. We also display
the level 1 topics, the percentage of documents in the training and testing samples that cor-
responded to at least one taxonomy topic, and a manual ranking for the evaluation targets.
Specifically, the percentage of matched documents describes the proportion of documents
that contain at least one word from a taxonomy, which to some extent indicates taxonomy
coverage. We also attempted a manual ranking based on topic quality, taxonomy structure
and convergence to the real topic labels (i.e. world, sports, business and science/technology).
Due to the primitive nature of ATC, none of the extracted taxonomies could compete with

1https://www.kaggle.com/datasets/amananandrai/ag-news-classification-dataset
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Depth Nodes
in taxo.

Neigh-
bours

Total vocab.
in taxonomy

Avg. children
per parent
(no neighbours)

Main topics Matched
documents (%)

Manual
Ranking

TaxoGen1 (TG1) 3 79 621 700 4 "opposition", "sharply",
"field", "interface" ... 90% 3

TaxoGen2 (TG2) 3 33 244 277 4 "interface", "sharply" 51% 4

HiExpan1 (HE1) 2 399 0 399 26.8 "business", "politics",
"sports", "technology"... 84% 1

HiExpan2 (HE2) 1 19 0 19 19 "business", "politics",
"sports", "technology" 30% 5

TaxoCom1 (TC1) 2 38 323 361 6.3 "sports", "politics",
"business", "arts", "case" 30% 2

TaxoCom-OT (TC*) 2 42 366 408 7 "math", "physics",
"classical", "databases" 23% 7 (tie)

HiExpan-OT (HE*) 2 490 0 490 22.9 "unruly passenger",
"emergency equipment" 54% 7 (tie)

Table 4.3. Structures of taxonomies for ranking

Taxo Main topic Neighbours (ATC generated alternative titles)

TG1 opposition opposition, parliament, election, elections, parliamentary,
political, vote, prime minister, opposition leader, coalition

TG1 interface interface, desktop, features, server, digital, integrated,
tool, version, platform, compatible

TG2 memory memory, size, cards, supercomputer, chip, breakthrough,
processors, drives, flash, memory, dual

TG2 robot robot, solar, researchers, science, orbit, spacecraft,
mouse, tiny, craft, brain

TC1 politics
affordable care act, abortion, immigration, law enforcement,
gay rights, president obama, health care, surveillance,
advocates, congress

TC1 tennis rafael nadal, federer, djokovic, roger federer, novak djokovic,
serena williams, fed cup, andy murray, nadal, wimbledon

TC* number theory
hardy space, banach spaces, composition operators,
functional analysis, linear operators, hilbert transform,
boundedness, pseudo differential, besov, riesz

Table 4.4. Neighbours (synonyms) selected by ATC programs as alternative topic labels

the overall quality of their handcrafted counterparts. TaxoGen taxonomies are more struc-
turally rigorous, but they capture a lot of noise and the selected topics lack significance and
interpretability. HiExpan taxonomies, on the other hand, include higher quality keywords
but are structurally homogeneous with poor granularity. We rank both TaxoCom and Hi-
Expan "off-topic" taxonomies last for their irrelevancy. TaxoGen and TaxoCom taxonomies
(TG1, TG2, TC1, TC*) also include alternative titles with varying consistency for each
main taxonomy node, as illustrated in table 4.4 and in section 2.3.3, which can be used for
improving document matching.
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4.2. Feature Extraction
Text feature extraction primarily relies on count vectorization and TF-IDF discussed in

chapter 2 for capturing word frequencies and feature significance to a document category.
To convert an ATC taxonomy to categorical features for classification, we started with a
one-hot representation that considers each taxonomy entity a categorical feature with equal
importance, regardless of the depth of the entity in the taxonomy, i.e. a feature value is 1
if a document contains the entity or its optional neighbours (both associated with a single
categorical feature), and 0 otherwise. We then attempted to improve upon the one-hot
encoding by assuming that the more a topic word is mentioned in a document, the more
significant the topic is to the document, i.e. instead of binary features, the sum of a taxonomy
topic’s occurence and alternative forms in-text is used as a new feature value to represent
how likely a document is to be associated with the topic.

AG News Data Feature Vectors
Class Normalized documents business politics sport technology company ... firm industry
Business carlyle look toward commercial aerospace... 1 1 0 0 0 ... 1 3
Business oil economy cloud stock outlook reuters... 6 0 0 0 0 ... 0 0
World pakistan musharraf say quit army chief... 0 1 0 0 0 ... 0 0
Sports phelps thorpe advance freestyle ap ap m... 0 0 2 0 0 ... 0 0
Tech group propose new high speed wireless f... 0 0 0 3 1 ... 0 0

Table 4.5. Categorical feature extraction with HiExpan1 features from all levels. The value
of "technology" is greater than 1, being the aggregate score of "company" and other child
topics among the classification features.

Transforming taxonomy structure as numerical and classifiable features, however, is com-
plicated. In an initial setup, we encode taxonomic relations by adding the count values of
all child topics to the values of their respective parent features from the immediate upper
taxonomic level, e.g. adding the counts of "baseball", "basketball", "football" in a document
to "sports"; a parent is thus a non-leaf node from the taxonomy of evaluation and inherits all
counts from its descendants or direct and indirect subtopics. Aside from concatenating all
feature topics into the embedding matrix. We also consider obtaining and comparing classi-
fication scores per taxonomic level, such as comparing the level 2 performance of TaxoGen
and TaxoCom by embedding level two features only in the feature matrix.

A potential improvement to the count feature transformation is using TF-IDF scores to
represent feature importance. Specifically, using a TF-IDF vectorizer configured for unigrams
and bigrams for efficiency, we assign the TF-IDF value for each unigram and bigram entity
in a taxonomy for evaluation instead of the string count. For efficiency, we assign the TF-
IDF value for each unigram and bigram topic in an evaluation target instead of the string
count, while taxonomy entities with higher ngram numbers are assigned a score of 0.5 if
they are found in the documents but do not have a TF-IDF score. However, trigrams and
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higher are uncommon during our testing (only 7 counts for AG News). For non-leaf entities,
the TF-IDF scores become the maximum between the parents’ TF-IDF scores and those of
their immoderation children (subordinates) as TF-IDF scores are non-additive. However,
currently we find little to no effect to the classifiers between the use of TF-IDF features and
occurence features. However, we currently find that using normalized TF-IDF features has
little to no improvement for our classifiers.

AG News Data Feature Vectors
Class Normalized documents business politics sport technology company ... firm industry
Business carlyle look toward commercial aerospace... 0.064694 0.070737 0 0 0 ... 0.073609 0.117641
Business oil economy cloud stock outlook reuters... 0.186722 0 0 0 0 ... 0 0
World pakistan musharraf say quit army chief... 0 0.067618 0 0 0 ... 0 0
Sports phelps thorpe advance freestyle ap ap m... 0 0 0.115337 0 0 ... 0 0
Tech group propose new high speed wireless f... 0 0 0 0.1457255 0.051533 ... 0 0

Table 4.6. Feature transformation with TF-IDF scoring. The documents are represented
by TF-IDF scores of taxonomy entities instead of count features.

4.2.1. Improving taxonomy-corpus matching

To better match taxonomy concepts with their associated documents and increase recall,
we apply text preprocessing techniques to normalize the taxonomies and the corpus.

In boolean retrieval, lemmatization and stemming are common techniques for reducing
word variations including inflections and homonymies. A taxonomy topic "politics", for
example, should ideally match documents containing the words "politic", "political" and
"politically". While "stemmers" are a set of fast and efficient algorithms for removing word
inflections without using morphological rules, "lemmatizers" aim to reduce words to their
proper lemmas via morphological analysis. The WordNet lemmatizer, for example, refers to
WordNet Synsets to ensure a word would fall back to its correct position using the word’s
part-of-speech tag. We chose lemmatization for our experiments and discovered a 10 to 15%
increase in matching rate between all taxonomies of evaluation and the AG News corpus.

Stemming Lemmatization
1 studi_es → studi studying (verb) → study
2 studi_ed → studi studies (noun) → study
3 studying → studi studying (verb) → study

Table 4.7. Stemming vs. lemmatization

Approximate string matching is an umbrella term for a collection of techniques that
can also improve the match between taxonomy keywords and documents containing noise
and misspellings. There are two principle fuzzy string matching implementations with Edit
Distance (ED) and Word Embeddings. The Levenshtein distance [53], or canonically just edit
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distance, is a complex recursive algorithm that can be aided by the Levenshtein matrix to
solve the surface-level similarity of two strings. Another metric is the Jaro-Winkler distance
[108], which takes the average of matching characters and the number of transpositions with
respect to the lengths of two strings of interest.

New embedding-based similarity metrics are computed otherwise by the cosine distance
of two word embeddings generated with Word2Vec [62] or a pre-trained language model. As
our goal is to associate a taxonomy concept with all relevant corpus documents, as opposed to
broadening the scope of a taxonomy (for example, linking taxonomy topic "basketball" with
documents containing "baseball"), surface-form edit-distance methods may be more appro-
priate for our task. However, determining the optimal similarity threshold for edit distance
can be tricky in order to avoid false positives. Moreover, Jaro-Winkler scores can also be
disproportionately high, even for unrelated concepts. We found that the effect of approx-
imate string matching was minimal and as a result, we relied solely on text preprocessing
such as lemmatization in our experiment.

4.3. Evaluation Procedure
The input for our evaluation task are (1) an annotated corpus D of size k and (2)

a taxonomy of topics c1, c2, ..., cn ∈ T extracted using an ATC program from D. The
evaluation target T is a taxonomy that resembles a tree of topics, or rather some multi-level
topic clusters with optional "neighbouring" terms selected by the ATC program as alternative
representations for c1, c2, ..., cn, e.g. "agents", "software agents" and "multi agent system" for
"intelligent agents". We aim to obtain a proxy score associated with the quality of T , by
counting the occurrences of the main taxonomy topics c1, c2, ..., cn and their neighbours if
available for each document d1, d2, ..., dk ∈ D and obtaining a feature matrix D′ of shape
(n,k) as input for a classification task. Therefore, a document containing no words from the
evaluation target will be represented by all zero features. We use the topic labels l1, l2, ..., lk ∈
L as target variables, compared to which an optimal T and topics c1, c2, ..., cn should have
a similar class distribution. We set the train-test split to 70/30 for training and testing an
ML classifier on unseen data and use D′ and L to compute a proxy evaluation score, which
in our case is the classification accuracy.

4.4. Perturbation Test
To test if taxonomy-transformed topic classification can be used for predicting taxon-

omy quality, we propose gradually increasing the randomness in and generating a set of
altered versions of an original taxonomy, to seek correlations between feature randomness
and classification accuracy. For our tests, we create feature vectors of the same size as the
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number of main (level one) taxonomy topics, and whose values are the number of appear-
ances of the main topics and their respective descendants (from level 2, 3 etc.). We then
randomly reassign a proportion of the descendants to different parents or remove a per-
centage of taxonomy edges to obtain a new taxonomy, with which we repeat the process
and obtain a modified classification score. The classification outcomes are obtained using a
logistic regression model.

Random Shuffle

30% Shuffle

business

stock economy

sports

basketball internet

technology

software baseball

100% Shuffle

business

basketball software

sports

stock internet

technology

economy baseball

Fig. 4.8. Reassigning topics to new positions to simulate a noisy taxonomy

Random shuffle recreates situations in which ATC programs often wrongfully assign an
incorrect child topic to a parent. Figure 4.8 depicts two randomly shuffled taxonomies in
which the leaf nodes are switched to different topics, resulting in inferior versions of the
original topic hierarchies, with the 30% shuffled taxonomy (30% child nodes displaced) still
observably more coherent than the 100% shuffled taxonomy (100% leaf nodes displaced from
original positions). For our experiment, we create ten randomness settings, increasing the
proportion of nodes reassigned to a new topic by 10% per randomness level. Although it is
simple to ensure that a subtopic is moved under a new topic, it is however difficult to assert
that the old sibling nodes are not also assigned to the same new topic, reducing the effect
of random shuffling. As a result, we take the average of five different runs with different
random seedings per randomness level. Since the taxonomy structure and feature vector size
remain unchanged, we can conclude that incoherency in a taxonomy has a negative impact
on classification accuracy, if the scores decrease as we increase random shuffling.
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Fig. 4.9. Randomly deleting taxonomy edges for reducing taxonomy coverage
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In random deletion, taxonomy edges are randomly removed to produce taxonomies with
less completeness and lower coverage. To achieve this, we sample and delete child nodes
from the main topics, gradually increasing the deletion rate by 10% over time. In figure
4.9 we show two deformed taxonomies of varied levels, with 30% and 60% of the edges or
leaf nodes removed respectively (illustrated with dashed lines). As the size of the feature
vector is unreduced, lower taxonomy coverage may increase feature sparsity, which negatively
influences classification performance.

4.4.1. Results

Figure 4.10 demonstrates the results of random shuffle and deletion on the IATA and
AG News datasets. Evidently, we can see a clear, near-linear correlation between the level
of perturbation in a taxonomy (number of nodes displaced or removed) or decrease in ob-
served taxonomy quality and classification accuracy. For the IATA dataset, we generated
two large aviation incident taxonomies CoRel1 and CoRel2 and classified them using ten
incident labels.2 Some jittering in random shuffle with AG News can also be observed be-
cause of the small size of the TaxoGen and TaxoCom taxonomies (no neighbours are used
for classification) and imprecision in our shuffling procedure.

In addition to random shuffling and deletion, we find in other experiments that attaching
noisy subtopics, e.g. random words sampled from the corpus or domain-related entities to the
main topics results in nearly identical classification scores or does not increase or decrease
classification accuracy. This demonstrates that the proxy score can be at least a good
predictor of a coherent and comprehensive taxonomy and is correlated with the observed
taxonomy quality.

4.5. Evaluation Results and Ranking
We present in this section two distinct taxonomy evaluation results and rankings using

our evaluation procedure, with the first focusing on taxonomy (topic) coverage and the
second on feature quality. Table 4.8 compares the feature vector size or the number of
classification features after conversion, taxonomy coverage and classification accuracy of all
evaluation targets generated across the entire taxonomy-transformed training and
testing samples, which may include a large number of zero-value feature vectors as the
documents do not contain any taxonomy topics. We used logistic regression and a 10-fold
cross validated decision tree as classification models.

Table 4.8 shows that, while the classification scores have a weak correlation with our
manual ranking, they are largely driven and influenced by the number of classification fea-
tures representing the documents, as well as the percentage of non-zero feature vectors or

2Due to copyright of the dataset, the taxonomies are not shown.
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Fig. 4.10. Perturbation tests show that the more incoherent or incomplete a taxonomy
is, the lower the classification accuracy. Through random shuffling and deletion, we create
corrupted versions of an original taxonomy with observed quality degradation. For Taxo-
Gen/TaxoCom, we only used the main topics (without neighbours) for generating classifica-
tion features. Because TaxoGen2 contains so few topics, the effect on classification score is
less pronounced.

documents containing at least one taxonomy word for training and testing the classifiers,
with the exception of TaxoGen2, TaxoCom1 and HiExpan OT, which have a similar ratio of
non-zero features or taxonomy coverage, but higher classification scores for TaxoGen2 and
TaxoCom1. As such, our preliminary results can be reliably used for taxonomy ranking with
an emphasis on taxonomy coverage. Despite having poor interpretability, TaxoGen1 is given
the highest scores among the evaluation targets as its first level topics correspond exactly
with the manually assigned news labels, i.e. "opposition" (politics), "sharply" (business),
"field", (sports) and "interface" (sci/tech).

To reduce the effect of taxonomy coverage on classification scores, we conduct in table 4.9
a pairwise comparison of classification accuracy that completely disregards documents con-
taining no keywords from either taxonomy target, i.e. for two taxonomies, we only consider
the intersection of non-zero feature rows or records matching both taxonomies
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Classif.
Features

Taxonomy
Coverage (%)

Logistics
Regression

D-tree
10-fold CV

Classif.
Ranking

Manual
Ranking

TaxoGen1 79 90% 0.71 0.67 1 3
TaxoGen2 33 51% 0.51 0.51 3 4
HiExpan1 392 84% 0.68 0.66 2 1
HiExpan2 19 30% 0.41 0.42 6 5
TaxoCom1 38 47% 0.50 0.49 4 2
TaxoCom OT 42 23% 0.35 0.34 7 7 (tie)
HiExpan OT 478 54% 0.45 0.45 5 7 (tie)

Table 4.8. Taxonomy scores and ranking calculated by using all training and testing sam-
ples, resulting in a large number of zero-value feature rows from documents containing no
taxonomy topics. As a result, the classification scores are highly associated with taxonomy
coverage or the ratio of corpus documents tagged by a taxonomy. However, both TaxoGen2
and TaxoCom1 comparably show higher scores despite having less taxonomy coverage than
HiExpan off-topic (OT).

for classification. This way, large taxonomies are not penalized yet feature importance can
play a larger role in classification performance. As only 2,500 out of 127,600 (2%) news
articles contain a topic word from each of the seven evaluation targets, pairwise comparison
also ensures sufficient data support (at least 5,000 testing samples after 70/30 split) for more
accurate results. Our second results show a nearly perfect match with the manual ranking,
with minor discrepancies for TaxoGen1 (TG1) and TaxoCom1 (TC1), as even though the
former taxonomy has lower lexical quality, the latter omits the entire branch of science and
technology topics. Furthermore, we discover that our procedure can also accurately reflect
the taxonomy quality on the IATA dataset, but we are unable to show the results here.

TG1 TG2 HE1 HE2 TC1 TC* HE* Ranking Manual
TG1 +8% -2% +10% +3% +27% +14% 2 3
TG2 -8% -10% +8% -3% +19% +5% 3 4
HE1 +2% +10% +11% +5% +27% +13% 1 1
HE2 -10% -8% -11% -1% +20% +1% 5 5
TC1 -3% -8% -5% +1% +23% +7% 4 2
TC* -27% -19% -27% -20% -23% -12% 7 7 (tie)
HE* -14% -5% -13% -1% -7% +12% 6 7 (tie)

Table 4.9. Pairwise classification accuracy comparison between taxonomies A (left column)
and B (top column), using only intersections of non-zero feature rows, or texts containing
at least one topic from both A and B, therefore reducing the bias towards large taxonomies
that associate with more records. The intersections of non-zero feature rows are then split
70/30 to calculate and compare classification scores. The results show strong correlations
with manual ranking.
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4.6. Conclusion
Although using text classification as an application for taxonomy evaluation is quick and

simple, and has been shown to some extent to reflect taxonomy quality, particularly topic
coherence and coverage as demonstrated in the perturbation tests, its limitations are also
self-evident, in that annotated corpora are scarce and modelling topic relations and taxonomy
structure is difficult. The most prominent case in our evaluation proxy is that classification
accuracy clearly scales with the size or number of concepts in a taxonomy, which can be
attributed to either good taxonomy coverage or the model overfitting against noisy features.
Prominent classification features are well separated and are unlikely to be found under other
topics, e.g. "cleansing" in TaxoGen1 (which is most likely related to politics than business,
sports or technology), but they may not translate to meaningful taxonomy topics and our
procedure ignores term significance.

In future work, we would like to better integrating taxonomies with classification for
an application-based taxonomy evaluation: (1) similar to data augmentation methods that
use WordNet [24] for synonym lookup [107], we can use ATC taxonomies to augment a
document corpus through synonym replacement, then use the hypothetical improvement in
classification accuracy as a proxy measure for taxonomy quality; (2) using taxonomic features
as additional features in classification or leveraging ensemble methods such as stacking,
measuring how much a taxonomy can help improve the classification score; (3) integrating
taxonomy as external knowledge and a semantic loss function for a ML/DL classifier [111].
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Chapter 5

Unsupervised Taxonomy Evaluation via
MLM Prompting

In this chapter, we propose a novel procedure for reproducible and automatic taxonomy
evaluation without topic labels or external knowledge using masked language modelling
(MLM). Specifically, we seek to automate the scoring of a relation accuracy metric, which
aims at measuring the portion of true-positive parent-child relations in a given taxonomy.
In TaxoGen, this is done via majority voting by asking at least three human evaluators if
a taxonomy concept pair contains a hypernymy relationship [115], but we found that such
relationship can also be learned through adapting language models (LM) to a corpus domain
and later exploited via prompting, i.e. asking the LM "what are the possible parent types
of a topic?" (In fact, a critical part of taxonomy/ontology evaluation is knowledge about
the subsumptions, e.g. "is fluorescence spectroscopy a type of fluorescence technology?" or
"is CRJ200 a Bombardier?") We show that instead of relying on expert judgments, using a
single or multiple fine-tuned language models with prompting is another viable option for
approximating the relation accuracy metric, even in more technical domains.

5.1. Masked Language Modelling
Transformer-based language models pre-trained with massive data are shown to excel in

many downstream NLP tasks such as machine translation and question answering, or even
predicting missing texts in ancient languages [50]. The key to transformer’s success can be
largely attributed to the use of the attention mechanism [102], which replaces the context
vectors of recurrent neural networks (RNN) with query (Q), keys (K) and values (V) vectors
to attend to both global and local contexts. Such attention function can be summarized in
equation 5.1.1, where dk signifies the dimension of keys.

Attention (Q, K, V) = softmax
(

QKT

√
dk

V

)
(5.1.1)



To enable unsupervised language modelling, several learning objectives can be deployed
including next word prediction, next sentence prediction and masked language modelling,
which is derived from the Cloze test [99], originally developed for assessing individuals’
language ability. Analogous to "fill in the blanks", the MLM objective aims to randomly
mask a sentence token and train the LMs to restore the masked token using surrounding
contexts. This would require a bidirectional language model such as BERT [21] that can
attend to contexts both to the left and to the right of the mask instead of unidirectional
models such as OpenAI GPTs [79].

Sentence: "State of the art Transformer"
MLM objective: "State of the [MASK] Transformer"
Input: "[CLS]", "state", "of", "the", "[MASK]", "transform", "##er", "[SEP]"
Predictions: ("art", 0.988), ("union", 0.002), ("market", 0.001)

Fig. 5.1. Training a masked language model, an example

In Figure 5.1, a pre-trained WordPiece sentence tokenizer first splits the sentence into
words from a predefined vocabulary, which also breaks longer and less common words into two
or multiple sub-tokens, e.g. "transformer" to "transform" and "##er", for greater model and
tokenizer efficiency. Three of the special tokens of a typical BERT tokenizer include "[CLS]"
and "[SEP]", which mark the beginning and ending of a sentence, as well as "[MASK]". The
sentence tokens are converted to numerical token (input) IDs and padded or truncated to
a fixed length as model input. To complete MLM training, a percentage of sentence tokens
are replaced with the mask token and passed to the masked language model. A transformer
model for MLM has a classification layer on top of the encoder output layer where logits are
computed by multiplying the encoder outputs by the embedding matrix and then reshaping
them into the dimension of the vocabulary. We can henceforth obtain the model’s predictions
of the most probable masked tokens as illustrated in figure 5.1 by passing the logits of the
model vocabulary dimension into the softmax function, which can be disputably regarded
as a probability distribution.

Softmax(xi) = exi∑n
j=1 exj

= ŷi (5.1.2)

The output loss can be calculated using cross-entropy, a divergence measure for quanti-
fying the difference between two distributions, given the real masked token as the real label.
In this case, mi = 1 if the token at i-th position is masked and 0 otherwise and yi is the
one-hot encoding of the original token [44]:

Loss = −
n∑

i=1
mi × yi log ŷi (5.1.3)
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The original BERT implementation chose a 15% probability of masking each token pre-
training, where the token is replaced with the "[MASK]" token 80% of the time, a random
token 10% of the time, and unchanged 10% of the time [21].

5.2. Prompting
In hypernymy discovery, a typical form of prompting is simply using MLM to predict

the sentence "x is a type of __" (fill in the blank) so as to discover the attributes or entity
types of x, e.g. "crème brûlée is a type of __ ?" From section 5.1 we assumed that an
optimized language model can always output a list of plausible hypernyms (e.g. "dessert")
or highly associated terms with rapport to x given contexts such as Hearst ("is-a") patterns.1

As a result, we can regard language models as a proxy for domain knowledge and a good
taxonomy parent of x should be predictable among the top machine predictions.

seafood

mussel clam lobster beef pork

Fig. 5.2. Excerpt from HiExpan1 for topic "seafood"

Next, we illustrate our intuition for using prompting with MLM to evaluate a taxonomy’s
hypernymy relations. Figure 5.2 showcases a subset of an ATC taxonomy with topic "seafood"
and its five subtopics. It is easy for humans to assert (using common-sense) that the concepts
of beef and pork highlighted in red are incongruous with that of seafood as they are in fact
subtopics of "meat", for instance. In other words, a potential improvement to this taxonomy
subset is dividing the subtopics into seafood (for mussel, clam and lobster) and meat (for beef
and pork). Although it remains inconceivable for machines to fully grasp the true, implicit
relationships underlying the above concepts that are apparent to humans only, language
models may still capture and preserve high-order contextual word co-occurrence statistics
[93], statistically associating seafood more closely with mussels and clams given the "is-a"
context. This can be nonetheless beneficial for taxonomy construction and evaluation, even
if the models are only memorizing parent-child pairs from training data [38] or words of
sentences containing Hearst-like patterns. Another advantage of using language models is
that the models may learn all Hearst patterns automatically and implicitly from the corpus
without much specification.

1Nevertheless, we find that other types of ontological relations may also be inserted when using prompt-
ing, e.g. "x is a part of __". In fact, this has also opened the door for assessing knowledge representations
that include other types of semantic relations including "has-a" and "part-of" for ontologies and knowledge
graphs, which we will further examine in future works.
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Query Prediction 1 Prediction 2 Prediction 3 Prediction 4 Prediction 5 Rank
"Mussel is a type of [MASK] ." fish (0.227) dish (0.144) seafood (0.140) meat (0.037) soup (0.033) 3
"Clam is a type of [MASK] ." fish (0.203) dish (0.095) seafood (0.076) crab (0.030) thing (0.027) 3
"Lobster is a type of [MASK] ." seafood (0.222) dish (0.145) lobster (0.131) food (0.052) sauce (0.052) 1
"Chicken is a type of [MASK] ." dish (0.167) meat (0.110) chicken (0.079) thing (0.058) sauce (0.052) 73
"Beef is a type of [MASK] ." meat (0.274) beef (0.161) dish (0.063) food (0.027) thing (0.024) 57

Table 5.1. Recalling Hypernymy via prompting

In Table 5.1, we create five queries with each containing the subtopics from figure 5.2 and
use a pre-trained BERT model (Bert-large-uncased-whole-word-masking) for unmasking. As
shown, the language model correctly predicted the taxonomy parent "seafood" for mussel,
clam and lobster and "meat" for chicken and beef in the top 5 predictions. Although not
every prediction of the BERT-large model is factually correct (e.g. mussels are neither fish
nor meat), and it remains evidently unreliable to depend solely upon pre-trained language
models as ground-truths for all knowledge domains, we can regard the rankings of MLM
predictions as a likelihood of a subsumption relation between the subject and the object
of a query, as we show in our results that the model is significantly more likely to predict
"seafood" for mussel, clam and lobster (rank 3,3,1) than for chicken and beef (rank 73,57).

As such, we have successfully converted automatic Cloze tests into a reproducible, com-
parable and interpretable hypernym retrieval task for taxonomy evaluation using a certain
recall threshold, which we set to the top-10 predictions for our experiment. However, the
model’s prediction scores are not yet suitable for measuring and comparing the likelihood
of taxonomic relations since the softmax is distributed over the entire tokenizer vocabulary
(30k), resulting in correct relations having abysmally low scores (e.g. 0.076 for seafood-
clam). This could change however if the model can generate probabilities for only selected
evaluation topics.

5.3. Evaluation Procedure
Using the intuition from section 5.2, we hope to elicit with language models canonical

hypernyms pertained to the taxonomy domain for each child node of an evaluation target,
and use them as potential ground truths to test whether the taxonomy hypernyms overlap
with the LM predictions, thereby automatically examining taxonomic or "is-a" relations and
revealing better taxonomies.

To do so, we first flatten the taxonomy of evaluation into parent-child pairs from adjacent
taxonomy levels linked by single edges, denoted as (p,c) ∈ T . For each unique parent-
child pair (pi,ci), i ∈ 1,...,n, with n being the total number of edges in T , we insert ci and
the "[MASK]" token into prompts containing "is-a" patterns, then use MLMs to unmask
p′

1(ci), p′
2(ci), ..., p′

k(ci) ∈ p′(ci) per query as proxy parent terms of ci, where k is a recall
threshold (e.g. k = 10). Ultimately, an optimized language model should be able to generate
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an accurate sequence of the most canonical hypernyms for a given topic, similar to domain
experts. A good taxonomy concept pair is therefore if the real taxonomy parent pi can
also be found among the machine predictions p′(ci). In the case of table 5.1, we have
p′

1(ci), p′
2(ci), ..., p′

5(ci) equal fish, dish, seafood, meat, soup for ci = mussel, in which we find
the real taxonomy parent pi = seafood = p′

3(ci).
Our evaluation procedure takes two inputs: ci ∈ c, i ∈ 1, . . . ,n for querying and pi ∈

p, i ∈ 1, . . . ,n for validation, with (p,c) ∈ T ; the output of our procedure is intuitively a
relation accuracy score as formulated in equation 5.3.1. Therefore, for a taxonomy with no
parent-child pairs, i.e. a single-level taxonomy, our evaluation score is 0. 2 The input for
fine-tuning the masked language models for better hypernym retrieval, which we will discuss
in section 5.5, is a collection of documents D related to the evaluation domain as well as
a list of user-interested or taxonomy topics that can be found in D. For our experiments,
we consider a parent-child relation positive if and only if the parent term is recalled one or
more3 times in the top_k predictions.

ScoreMLM(T ) = number of positive parent-child pairs
number of all parent-child pairs in the taxonomy (5.3.1)

Example

In table 5.2, we sampled 10 parent-child topics from each of the three automatically
generated taxonomies (Taxo 1-3), measured the concept pairs using the above method and
highlighted the positive relations in red. Due to the complexity of taxonomies, the results
of our evaluation are rather debatable. Here we only consider a strict "is-a" relation, i.e.
"child" is a type of "parent" for a positive pair of concepts, although other relations may also
be technically correct, e.g. a tamale (salad) can be a type of salad in Taxo1. We show the
relation accuracy score of each taxonomy in the rightmost column.

5.4. Evaluation Targets
We use a subset of the Yelp dataset for reproducing research results [41] and extracting

restaurant and food-themed taxonomies. The dataset contains 1.9 million mostly-English
uncategorized reviews collected from the Yelp Dataset Challenge4 which includes relevant
topics and reviews about food, location, service, and so on. We extract noun phrases and
entities from the dataset with AutoPhrase [86], a phrase mining and keyword extraction

2One solution for evaluating a single-level taxonomy or taxonomy structure in general is to check if the
single-level topics contain any pair-wise subsumption relationships using the exact same evaluation procedure,
which we will further investigate in future work.

3A parent word can be predicted multiple times in singular and plural forms, misspellings, and so on,
e.g. "dessert", "desserts" and "desert".

4Author: Jiaxin Huang. https://drive.google.com/drive/folders/13DQ0II9QFLDhDbbRcbQ-Ty9hcJETbHt9
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Sample taxonomy concept pairs (p, c) Score

Taxo1

(’seafood’, ’fried oysters’), (’appetizer’, ’pakoras’), (’seafood’, ’caprese’),
(’dessert’, ’kung fu tea’), (’salad’, ’caesar salad’), (’dessert’, ’corned beef hash’),
(’dessert’, ’pancake’), (’spicy’, ’yakitori’), (’salad’, ’tamale’),
(’burger’, ’applewood smoked bacon’)

5/10

Taxo2
(’burger’, ’grilled onions’), (’dessert’, ’breading’), (’soup’, ’pho’),
(’roll’, ’sauce’), (’dessert’, ’pear’), (’roll’, ’carrots’), (’roll’, ’chilli’),
(’salad’, ’goat cheese salad’), (’bread’, ’muffins’), (’salad’, ’walnuts’)

3/10

Taxo3
(’salad’, ’mustard green’), (’beer’, ’french wine’), (’seafood’, ’crab’),
(’music’, ’background music’), (’pizza’, ’calzone’), (’sushi’, ’cucumber’),
(’pizza’, ’thin crust’), (’soup’, ’prime steak’), (’beer’, ’game’), (’seafood’, ’chicken’)

4/10

Table 5.2. Illustration of relation accuracy evaluation

framework from section from section 2.2.2, and generate and select the following ATC tax-
onomies using our tested systems, including CoRel (Corel 1-4) [41], HiExpan (HiExpan 1)
[90] and TaxoGen (TaxoGen 1-2) [115]. The extracted taxonomies are mostly two-levels
except those of TaxoGen, which have three levels and a fixed number of child topics for
each parent. In table 5.3 we list the main topics, i.e. non-leaf nodes of each taxonomy for
evaluation. Since taxonomies are complex structures, in table 5.4 we randomly sampled 10
concept pairs from each taxonomy for qualitative display. An illustration of each generated
taxonomy artifact can be found in Appendix A.

Taxonomy Top level (main) topics

CoRel1 steak, veggies, beef, cheese, crispy, fish, rice, salad, shrimp, spicy,
pork, bacon, burger, appetizer, bread, dessert, seafood

CoRel2 bacon, bread, fries, roll, soup, burger, dessert, salad, shrimp
CoRel3 chinese, seafood, dessert, steak
CoRel4 dinner, food, location, lunch, service

HiExpan1 seafood, salad, dessert, appetizer, food, sushi, "desert", pizza,
coffee, bread, pasta, beer, soup, wine, cheese, cocktail, taco, water, music

TaxoGen1 main_dish, south_hills, high_ceilings, "était pas"

TaxoGen2 chest, tempe, amaretto, pepper_jelly, relies, travis,
free_admission, exposed_brick

Table 5.3. Main topics of MLM evaluation targets
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Sampled parent-child pairs (p, c)

CoRel1
(’rice’, ’basil leaves’), (’dessert’, ’blood orange’), (’appetizer’, ’chicken parmigiana’),
(’burger’, ’skinny fries’), (’veggies’, ’basil’), (’spicy’, ’fried rice’), (’seafood’, ’tuna tartar’),
(’beef’, ’kung pao chicken’), (’fish’, ’tuna’), (’appetizer’, ’frites’)

CoRel2
(’fries’, ’dill’), (’bread’, ’cilantro’), (’burger’, ’filet mignon’), (’fries’, ’melted cheese’),
(’bacon’, ’ice cream’), (’dessert’, ’strawberries’), (’fries’, ’cabbage’),
(’bacon’, ’blueberry’), (’fries’, ’mayo’), (’burger’, ’mix’)

CoRel3
(’dessert’, ’sprinkles’), (’dessert’, ’marshmallow’), (’dessert’, ’alcoholic’), (’seafood’, ’taco’),
(’dessert’, ’smoothie’), (’seafood’, ’carne asada’), (’dessert’, ’eggs’), (’seafood’, ’tortilla’),
(’seafood’, ’crawfish’), (’chinese’, ’sauteed’)

CoRel4
(’food’, ’overpriced’), (’location’, ’refuse’), (’food’, ’horrible’), (’food’, ’hamburger’),
(’service’, ’bed’), (’food’, ’gravy’), (’location’, ’walmart’), (’dinner’, ’porterhouse’),
(’food’, ’bacon’), (’location’, ’strip mall’)

HiExpan1
(’bread’, ’ciabatta bread’), (’sushi’, ’yellow tail’), (’food’, ’zero star’),
(’desert’, ’strawberry shortcake’), (’pizza’, ’white’), (’music’, ’loud music’),
(’wine’, ’prosecco’), (’salad’, ’mixed green’), (’dessert’, ’waffle’), (’desert’, ’cassoulet’)

TaxoGen1

(’main dish’, ’dinners’), (’wood’, ’comfortable chairs’), (’wood’, ’lanterns’),
(’buffalo chicken wrap’, ’portabello’), (’main dish’, ’korma’), (’wood’, ’sofas’),
(’sashimi’, ’octopus’), (’lounging’, ’outdoor patio’), (’lasagna’, ’brother’),
(’carne asada’, ’enchiladas’)

TaxoGen2
(’relies’, ’remain’), (’short ribs’, ’carnitas’), (’short ribs’, ’mussels’), (’chest’, ’numb’),
(’chest’, ’chewed’), (’free admission’, ’dinner’), (’travis’, ’friendly’), (’relies’, ’execution’),
(’travis’, ’rude’), (’pepper jelly’, ’onion straws’)

Table 5.4. Evaluation parent-child samples
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5.5. Improving Hypernymy Predictions
In this section, we discuss two methods for increasing the hit rate of hypernymy predic-

tions of taxonomy subjects and reducing false negatives by (1) creating various prompts and
(2) fine-tuning MLMs with different masking procedures using expanded vocabulary.

5.5.1. Diversified Prompting

Studies on MLM prompting universally find that differences in prompts used can actively
impact a model’s performance in hypernymy retrieval [74, 38], which can lead to trivial mask
predictions such as stop-words (e.g. "this is a kind of seafood"), expressions and collocations
found frequently in training samples (e.g. "seafood is a kind of joke/disappointment") and
coarse-grained topics (e.g. "seafood is a kind of dish"). Hanna and Mareček [38] discovered
that hypernymy discovery by prompting BERT can actually outperform other unsupervised
methods even in an unconstrained scenario, but the effectiveness of it depends on the actual
queries [38]. For example, query "A(n) x is a [MASK]" outperformed "A(n) x is a type of
[MASK]" in P@1 and MRR ranking metrics during the authors’ diagnostics on the Battig
dataset. However, we argue that the claim varies for different datasets.

Prompt Pred1 Pred2 Pred3 Pred4 Pred5 Rank
p1a {shrimp} [MASK] salad cocktail pasta soup rice 359
p1b [MASK] {shrimp} fried no garlic coconut fresh 117
p2a {shrimp} is a [MASK] joke must winner favorite hit 959
p2b {shrimp} is an [MASK] option issue experience art order 4407
p3a {shrimp} is a kind of [MASK] joke thing dish treat disappointment 146
p3b {shrimp} is a type of [MASK] dish thing food sauce seafood 5
p3c {shrimp} is an example of [MASK] that this shrimp food seafood 5
p4a [MASK] such as {shrimp} sides food seafood fish shrimp 3
p4b A [MASK] such as {shrimp} lot variety side combination protein 40
p4c An [MASK] such as {shrimp} ingredient item option order animal 197
p5a My favorite [MASK] is {shrimp} dish thing part item roll 16

Table 5.5. Evaluation queries for "seafood-shrimp" of HiExpan1

As a result, instead of relying on a single query, we design five pattern groups (p1-p5)
of hypernymy tests for pooling unmasking results and preventing trivial predictions such
as collocations from lowering the rank of the true taxonomy parent and producing false
negatives. In the case of table 5.5, we use the tests to validate a parent-child pair (seafood-
shrimp) in HiExpan1 and expect to find the taxonomy parent "seafood" among the top 5
predictions for all queries. However, only prompts p3b, p3c and p4a returned "seafood" in
the top predictions (with rank 5,5,3), as other prompts all produced completely different
predictions based on the mask token’s functions in those sentences. While p2 to p4 follow
standard Hearst-like patterns [39], p5(a) employs the "my favourite is" prompt that has
demonstrated high P@1 and MRR in [38]. The different prompt types are also required
for evaluating other types of parent-child relationships: p1(a,b) are created specifically for
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noun phrases, which have a tendency to be split and considered as good taxonomy edges
by ATC systems. For instance, while "shrimp" is not a subtype of "salad" or "cocktail" per
se in the example of g1a, the two terms are still considered true taxonomy parents in our
experiment since "shrimp salad" and "shrimp cocktail" are both valid food items. A topic
pair has therefore a score of 1, as in the seafood-shrimp example, if the parent term is among
the top-k machine predictions for any inquiries containing the child topic, and 0 vice versa.5

Score(p,c) =

1 if p is retrieved in the top-k predictions of p1-p5
0 otherwise

5.5.2. Fine-tuning

To improve hypernymy predictions, we must also address two issues with pre-trained
language models: (1) the models are untrained on the evaluation domain; (2) the default
BERT tokenizer and model vocabulary are oblivious of some taxonomy topics, resulting in
zero recall. We find that most research on MLM prompting only assessed the performance
of pre-trained models. Kawintiranon and Singh [44], however, showed that fine-tuning can
be used to enhance MLM on political stance classification. Peng et al. [74] found an
improvement in accuracy and mean rank of retrieval (MRR) when using FinBert models
[113] pre-trained with massive financial corpora in retrieving financial hypernyms such as
equity and credit for "S&P 100 index is a/an __ index", compared to using BERT-base
[21]. Dai and Wang [16] generated ultra-fine entity typing labels, e.g. "person, soldier, man,
criminal" for "he was confined at Dunkirk, escaped, set sail for India" through inserting
hypernym extraction patterns and training LMs to predict such patterns. Analogously, we
can compare fine-tuning MLMs to training domain experts via the Cloze test objective [99].
Although assessing hypernym predictions is challenging without gold standards, we created
six fine-tuned models with various masking protocols, model vocabulary and training sizes,
in the hopes of observing qualitative differences in the predictions.

5Another implementation may include a normalized likelihood score between 0-1,
calculated by (number of positive queries) / (number of total queries) per taxonomy child,
e.g. 7/10 if 7 queries out of 10 returned the parent topic for a child topic.
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Model Name Base Model Vocabulary Training Size Masking Protocol Fine-tuned

Model1a Bert-base-uncased Bert-base-uncased
+31 food terms

Entire dataset
1.9m reviews

Entity masking
15% tokens

2 epochs

Model1b Bert-base-uncased Bert-base-uncased
+31 food terms

Entire dataset
1.9m reviews

Entity masking
one entity only

2 epochs

Model2a Bert-base-uncased Bert-base-uncased
+31 food terms

Entire dataset
1.9m reviews

Random masking
15% tokens

2 epochs

Model2b Bert-base-uncased Bert-base-uncased
+31 food terms

70% dataset
1.3m reviews

Random masking
15% tokens

2 epochs

Model0 Bert-base-uncased Bert-base-uncased 70% dataset
1.3m reviews

Random masking
15% tokens

2 epochs

Model0e Distilbert-base-uncased Distilbert-base-uncased 70% dataset
1.3m reviews

Entity masking
15% tokens

2 epochs

BERT-large Bert-large-uncased-
whole-word-masking

Bert-large-uncased-
whole-word-masking

N/A N/A No

BERT-base Bert-base-uncased Bert-base-uncased N/A N/A No

Table 5.6. Configurations of the fine-tuned evaluation models (model 0,1,2), with Model0
serving as baselines for training with the base tokenizer and a smaller sample size (for faster
training time). For our experiment, we also select two pre-trained models (BERT-large and
base) for comparisons.

First, we experiment with entity masking while fine-tuning model 1a, 1b and 0e, which
emphasizes masking task-relevant tokens and is shown to be more effective than random
masking in studies [97, 44]. Because we want the language models to concentrate on the
taxonomy entities, particularly the parent terms and their surrounding contexts and word
relationships, we prioritize therefore masking the main topics (shown previously in table 5.3)
and parent terms of the evaluation targets, then other taxonomy entities (e.g. leaf nodes),
followed by AutoPhrase entities if no taxonomy entities are present in the sentence and
other random tokens from our training samples. In addition, we test entity masking by only
masking one taxonomy entity rather than 15% of sentence tokens to gain more sentence
contexts. Table 5.7 illustrates the entity and random masking procedures.

Next, we enrich the vocabulary of model 1 and 2, by adding the lemmas or singular
forms of parent terms from table 5.3 that were not previously included in the base tokenizer,
such as "sushi", "appetizer" and "carne asada", and resizing the models’ token embedding
matrices to match the size of the new tokenizer. The new tokens are initialized randomly for
fine-tuning, although it is possible to manually assign them with the weights of the closest
terms in the original vocabulary. This ensures that domain-specific words such as food items
can be predicted as a whole word rather than being overlooked by the language models.
By adding only a small number of new tokens to the model and tokenizer, we also ensure
similar model and tokenizer efficiencies. We believe that vocabulary extension will become
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a necessary step for effective hypernymy prediction in most specialized domains, though the
exact optimal strategies remain to be discussed. The newly added parent terms can be found
in Appendix A.

Sample
Review "Everything was pretty good but the beef in the mongolian beef was very chewy and had a weird texture."

Taxonomy
Entities beef (CoRel1-4, HiExpan1), mongolian (CoRel1-4)

AutoPhrase
Entities beef, chewy, mongolian, weird texture

Masking
Priority 1. beef (CoRel1 main topic); 2. mongolian (taxo.); 3. chewy (AutoPhrase); 4. weird texture (AutoPhrase)

Entity
Masking (15%) "Everything was pretty good but the [MASK] in the [MASK] [MASK] was very chewy and had a weird texture."

Entity
Masking (one) "Everything was pretty good but the [MASK] in the mongolian [MASK] was very chewy and had a weird texture."

Random
Masking (15%) "Everything was pretty [MASK] but the beef in the mongolian beef [MASK] very chewy and had a [MASK] texture."

Table 5.7. Comparison between entity and random masking. Here we show a sample Yelp
review with entities from the evaluation targets (CoRel1-4, HiExpan1, TaxoGen1-2) and
entities extracted by AutoPhrase found in the review. We prioritize masking the taxonomy
entities, AutoPhrase entities and random tokens, in that order.

To highlight the qualitative differences between our evaluation models, we provide a
simple prompt "my favorite [MASK] is sirloin" for the models to predict the taxonomy
hypernym "steak" in CoRel1. The results are shown in table 5.8, where 5 out of 6 fine-tuned
models and none of the pre-trained models correctly predicted the taxonomy parent in the
top 5 predictions. (In fact, it may seem absurd for the base models to associate terms such
as "fruit" or "drink" with "steak".) Further, all fine-tuned models returned "steak" in the top
ten predictions.

Model Pred1 Pred2 Pred3 Pred4 Pred5 Rank

Fine-tuned
Models

Model1a burger dish sandwich steak beer 4
Model1b dish burger beer sandwich pizza 10
Model2a steak dish meat cut one 1
Model2b steak dish burger meat here 1
Model0 dish burger steak meat sandwich 3
Model0e cut steak meat beef burger 2

Pre-trained
Models

Large
Whole Word fruit flavor food color herb 69
Bert Base food drink color dessert fruit 71

Table 5.8. Fine-tuned vs. pre-trained models, "my favorite [MASK] is sirloin ."

Lastly, we show the positive effects of tokenizer extension in table 5.9. In this exam-
ple, we wish to recall the parent term "appetizer" for the concept pair "appetizer-mozzarella
sticks" in CoRel1, where token "appetizer" would be split into ’app’, ’##eti’ and ’##zer’ by
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the standard tokenizer. Both Model1a and Model1b trained with entity masking and an ex-
panded vocabulary correctly predicted "appetizer" in their top five predictions; Model2(a,b)
also recalled the term, albeit with a very low rank whereas other models are completely
oblivious to it. Nevertheless, we find that expanding the model’s vocabulary in conjunction
with entity masking may introduce bias into the models when training with limited training
samples, i.e. always predicting the added tokens.

Model Pred1 Pred2 Pred3 Pred4 Pred5 Rank

extended
vocabulary

Model1a sides foods food apps appetizer 5
Model1b sides food appetizer foods sandwiches 3
Model2a sides items food dessert things 6089
Model2b things items foods props sides 3111

base
vocabulary

Model0 sides extras items dessert staples N/A
Model0e sides apps foods snacks extras N/A
BERT-large foods items products food snacks N/A
BERT-base foods snacks food items products N/A

Table 5.9. extended vs. base vocabulary, "[MASK] such as mozzarella sticks"

5.6. Results
Table 5.10 showcases our preliminary results of MLM taxonomy relation accuracy eval-

uation, calculated by the number of positive relations over all unique parent-child pairs
in a taxonomy. We also considered word inflections and certain special cases to improve
matching between taxonomy terms and machine predictions, e.g. "veggies", "vegetable" and
"vegetables"; "dessert" and "desert". The entity-masking models 1a and 1b predicted the
most positive relationships in each candidate taxonomy while the pre-trained models pre-
dicted the fewest. It is also surprising that BERT-base outperforms BERT-large when it
comes to matching more positive concept pairs. However, all models produce similar score
distributions, with the HiExpan taxonomy receiving the highest scores and the TaxoGen
taxonomies receiving the lowest. This is consistent with our manual judgements in
that the HiExpan concept pairs were derived from an accurate relation dataset
(Probase), whereas TaxoGen1 and TaxoGen2 contain mostly noise. We also com-
pute the majority voting scores for each evaluation target using the six fine-tuned models
(model 0, 1, 2): a concept pair of a taxonomy is positive if and only if three or more models
have successfully predicted the parent word. To demonstrate the quality of the taxonomies
and the MLM predictions, in table 5.12 we sampled the Model2a evaluation matrix for several
parent-child pairs in each taxonomy, where each column corresponds to one of the prompt
types shown in table 5.5, a "1" indicates that the parent term was retrieved among the top
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ten predictions for the prompt, and a "0" indicates that it was not found. In row 1, "artichoke
is a type of [MASK]" and "[MASK] such as artichokes" both returned the taxonomy parent
"veggies" (vegetables), but none of the tests returned the word for "seafood" in row 2. The
terms are singularized before being inserted the prompts.

Model1a Model1b Model2a Model2b Model0a Model0b BERT-large BERT-base Majority
Voting

CoRel1 0.727 0.718 0.424 0.445 0.463 0.436 0.204 0.274 0.443
CoRel2 0.782 0.750 0.544 0.537 0.572 0.512 0.259 0.362 0.572
CoRel3 0.602 0.667 0.541 0.549 0.572 0.501 0.360 0.400 0.535
CoRel4 0.682 0.646 0.450 0.390 0.365 0.381 0.410 0.418 0.347
HiExpan1 0.845 0.847 0.595 0.567 0.569 0.643 0.349 0.420 0.590
TaxoGen1 0.135 0.147 0.055 0.061 0.012 0.025 0.031 0.037 0.012
TaxoGen2 0.000 0.000 0.000 0.045 0.000 0.000 0.000 0.000 0.000

Table 5.10. Relation accuracy scores evaluated by language models, calculated by the
number of positive relations, or parent terms in the model predictions, divided by the number
of unique parent-child pairs in each taxonomy.

Using the scores from table 5.10, we rank the taxonomies for evaluation in table 5.11. As
we previously agreed that HiExpan1 and TaxoGen 1, 2 are the best and the worst taxonomies
in the bunch (ranking 1,6,7), our final step is to produce a manual ranking for the four CoRel
candidates whose ranks differ in the machine results. Due to the large size of each taxonomy,
we gave impressions and randomly sampled 20 concept pairs for validation. We find that
all CoRel candidates have comparable levels of good parent-child pairs as well as unrelated
topics that frequently co-occur in the same contexts (e.g. "steak-tomato"). We also examined
the machine predictions as shown in table 5.12, and assigned a ranking of 3, 2, 4, 5 to CoRel
1-4. We find that MLM majority voting strongly correlates with our manual judgements,
with minor disagreements for CoRel 1 & 3.
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Model1a Model1b Model2a Model2b Model0a Model0b BERT-large BERT-base Majority
Voting

Manual
Ranking

CoRel1 3 3 5 4 4 4 5 5 4 3
CoRel2 2 2 2 3 1 2 4 4 2 2
CoRel3 5 4 3 2 1 3 2 3 3 4
CoRel4 4 5 4 5 5 5 1 2 5 5
HiExpan1 1 1 1 1 3 1 3 1 1 1
TaxoGen1 6 6 6 6 6 6 6 6 6 6
TaxoGen2 7 7 7 7 7 7 7 7 7 7

Table 5.11. Taxonomy rankings of automatic relation accuracy evaluation

NP is-a "kind-of" such-as fav-is
Taxo Parent Child p1a p1b p2a p2b p3a p3b p3c p4a p4b p4c p5a Sum

CoRel1

veggies artichokes 0 0 0 0 0 1 0 1 1 0 0 3
seafood grilled pork 0 0 0 0 0 0 0 0 0 0 0 0
steak rib eye steak 0 0 0 0 1 1 1 0 1 0 1 5
bacon gruyere 0 0 0 0 0 0 0 0 0 0 0 0

CoRel2

soup bisque 1 0 0 0 1 1 0 1 1 0 1 6
salad soy sauce 0 0 0 0 0 0 0 0 0 0 0 0
shrimp wonton 0 1 0 0 0 0 0 0 0 0 0 1
burger tortilla chips 0 0 0 0 0 0 0 0 0 0 0 0

CoRel3
dessert cheesecake 1 0 0 0 1 1 1 1 1 0 1 7
seafood prosciutto 0 0 0 0 0 0 0 0 0 0 0 0
dessert cake 0 0 1 0 1 1 1 1 1 0 1 7
chinese miso 0 0 0 0 0 0 0 0 0 0 0 0

CoRel4

location chinatown 1 0 0 0 0 0 0 1 1 0 1 4
lunch spring rolls 0 0 0 0 0 0 0 0 0 0 0 0
dinner juicy 0 0 0 0 0 0 0 0 0 0 0 0
service extremely rude 1 1 0 0 0 1 1 0 0 0 0 4

HiExpan1

salad caesar 1 0 0 0 1 1 0 1 1 0 0 5
pizza ny style 1 1 0 0 1 1 1 0 1 0 1 7
pasta bolognese 1 1 0 0 1 1 1 1 0 0 1 7
cheese cheddar 1 1 0 0 1 1 0 1 1 0 0 6

TaxoGen1
wine bar sushi joint 0 0 0 0 0 0 0 0 0 0 0 0
carne asada pollo 1 0 0 0 0 0 0 0 0 0 0 1
chow mein egg roll 0 0 0 0 0 0 0 0 0 0 0 0
ny wisconsin 0 0 0 0 0 0 0 0 0 0 0 0

TaxoGen2

exposed brick music videos 0 0 0 0 0 0 0 0 0 0 0 0
short ribs sashimi 0 0 0 0 0 0 0 0 0 0 0 0
amaretto bourbon 0 0 0 0 0 0 0 0 0 0 0 0
travis friendly 0 0 0 0 0 0 0 0 0 0 0 0

NP child parent (p1a), parent child (p1b)
is-a child is-a parent (p2a), child is-an parent (p2b)
"kind-of" child is-a-kind-of parent (p3a), child is-a-type-of parent (p3b), child is-an-example-of parent (p3c)
such-as parent such-as child (p4a), a parent such-as child (p4b), an parent such-as child (p4c)
fav-is my favourite parent is child (p5a)

Table 5.12. Sample relation accuracy evaluation results (Model2a)
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5.7. Conclusion
According to our experiment results, hypernymy prediction through the use of masked

language models can be a reliable proxy for reproducible taxonomy evaluation and ranking.
We demonstrate that such a method can rival manual rankings and produce a rough estimate
of taxonomy quality and relation accuracy at least for our tested dataset. By masking random
or entity tokens in a domain corpus, MLMs may learn to associate domain-specific hyper-
nymy using contexts and generate more relevant domain entities than pre-trained models.
Other benefits of such an approach include MLM’s ability to automatically learn Hearst-like
patterns without specification, and possibly predicting the correct super-types via association
for taxonomy terms not found in corpus (e.g. concepts from a manually created taxonomy).
In addition, we proposed and implemented several model tuning and prompting strategies
to improve hypernymy recall.

However, there are several obstacles to our approach, in that: (1) The WordPiece tok-
enizer can break up non-vocabulary words and prevent the model from recalling rare domain
entities. Adding custom vocabulary into the model may introduce bias and slow down the
training process. For our experiment, we only added the parent terms that did not already
exist in the base tokenizer and resized the model’s token embedding matrix to match the
size of the new tokenizer. Because the new tokens are initialized with random weights, more
training samples are required. (2) Rarer entities such as domain keywords may not be re-
called as frequently as more common words such as stop words and collocations. To improve
this, we can change BERT’s output layer to only generate scores for selected taxonomy terms.
(3) Prompts must be manually created for each evaluation dataset, and the best prompts
for each evaluation domain and relation types are left to be discovered.

In future works, we hope to quantify the hypernym prediction results using external
knowledge bases and labelled data, as well as use prompting on ontological relationships
such as "has-a". It is also possible to directly generate semantically coherent taxonomies
using prompting without relying on iterative clustering, which can omit important lexical
semantic relations. In the end, we advocate for using real-world knowledge from trusted
external sources such as WordNet [24] and Cloze tests to assess the knowledge learned by
language models.
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Chapter 6

Conclusion

The ability to automatically evaluate taxonomies and ontologies opens up a plethora of new
possibilities, from systematically assessing the quality of knowledge representations to quan-
titatively reproducing and comparing evaluation results. We find that the major hindrance
to automatic taxonomy scoring and ranking is the absence of ground-truth and external
knowledge for verifying subsumption or "is-a" relationships that are omnipresent in a tax-
onomy, which also dictates human input and slows down the process of taxonomy creation
and assessments. As a result, we proposed automatically learning essential topic relations
required for domain taxonomy evaluation from: (1) manually annotated topic labels and,
in the absence of such topic labels, (2) domain corpora using language modelling. We de-
veloped two novel taxonomy evaluation procedures with the aforementioned resources: the
first of which used classifiers and data labels to generate quantitative scores based on the
quality and coverage of classification features converted from taxonomy topics, and the sec-
ond employed auto-evaluators for estimating the hypernymy relation accuracy of taxonomy
parent-child pairs in an unsupervised fashion.

While both methods have been shown to produce consistent evaluation results, the ML
classification proxy extends the application-based ontology evaluation approach and is quick
in determining if a taxonomy matches the latent topic distribution provided in data labels,
whereas the language modelling approach traces back to the fundamental issue of lacking
domain knowledge and provides an universal solution for all taxonomy evaluation scenarios.
However, both of our proposed methods satisfied the four propositions for machine taxon-
omy evaluation, proposed at the outset of this work, in that: (1) better taxonomies should
result in higher scores on our evaluation tasks; (2) machine evaluation should correlate with
human judgements; (3) the evaluation procedures should be data and model-agnostic, with
no reliance on a particular dataset or taxonomy/ontology extractor; (4) the evaluation re-
sults should be reproducible. Despite this, our methods are not without flaws, such as the
fact that topic classification alone cannot account for topic significance, which determines a



taxonomy’s usefulness at the lexical level. In addition, adapting language models to tech-
nical domains through fine-tuning is time-consuming and resource-intensive, and predicting
rare domain entities is difficult. Despite this, our machine evaluation results strongly agree
with human judgments, indicating that machine learning and language modelling possess
the potential to become viable options for reproducible, automatic taxonomy evaluation.

In future work, improvements in feature extraction are required for the classification
proxy to better represent the taxonomy structure and inter-topical relationships and reduce
sparsity in the feature vectors. We also propose several new ideas that broaden our existing
application-based evaluation approach, through (1) augmenting data with ATC taxonomies
and measuring performance improvement; (2) using taxonomic features in ensemble with
regular text classifiers; (3) incorporating taxonomic knowledge as a semantic loss function
for DL and ML classifiers. For our MLM procedure, we aim to discover systematical ways
to generate prompts for various data and taxonomy types, as well as to experiment with
prompting on other types of semantic relationships such as those in a knowledge graph. Be-
cause the existing ATC paradigm that performs iterative clustering over word embeddings is
inherently oblivious to nuanced taxonomic relations and granularity, we should theoretically
be able to generate far more accurate topic taxonomies using language models, edging closer
to the more authentic taxonomy creation process carried out domain experts: "is lightning
strike a type of weather event?" Finally, we hope to use our knowledge and experience with
word relation assessment towards systematically evaluating real-world knowledge learned by
language models. ("Are mussels a kind of fish?")
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Appendix A

MLM Proxy Evaluation Targets

Topic Subtopic Clusters

Steak

rib_steak sirloin_steak tenderloin porterhouse flank_steak sirloin rib_eye cooked_medium ribeye rib
med_rare cooked_medium_rare medium_rare filet ribeye_steak striploin bone boneless filet_mignon ...

tomatos cucumbers green_peppers tomatoes romaine_lettuce diced peppers jalape_os lettuce
banana_peppers bell_peppers red_peppers onions bell_pepper jalapenos shredded_lettuce shredded ...

......

Veggies

artichokes red_peppers olives green_peppers bell_peppers artichoke tomatoes peppers fresh_mozzarella
kalamata roasted_peppers jalape_os parsley bell_pepper italian_sausage fresh_basil mozzarella ...

peanut coconut_milk soy coconut cashew soy_milk milk cashews coconut_cream taro durian winter_melon
lychee black_tea tapioca pandan chai sweetened green_tea cottage_cheese almond earl_grey sago ...

......

Dessert

sticky_rice ginger papaya mango panang_curry coconut tom_yum_soup penang tamarind satay lemongrass
panang peanut_sauce drunken_noodles cashew pad_thai lettuce_wraps larb thai_basil crunch_roll ...

brownie cookie peanut_butter cookie_dough vanilla cone ice_cream sundae fudge cupcake chocolate_syrup
chocolate_chip_cookie reese marshmallow hot_fudge oreo_cookie brownie_sundae cookie_monster caramel ...

......
... ......

Table A.1. CoRel1 sampled clusters



Topic Subtopic Clusters

Shrimp

satay prawns ginger dumpling broth. noodles, marinated skewers steamed lamb dumplings squid duck,
noodles. noodles teriyaki tendon vegetable clams hamachi broth pea curry, miso stir_fried noodle ...

shredded_beef enchiladas tamale tortillas guac guacamole carne_asada salsa tortillas. salsa. taco
burritos burrito beans tacos refried_beans Salsa burrito chips guacamole guac carnitas burrito ...

......

Burger

hot_sauce grilled_onions jalapenos flour jalapeno batter chipotle tortilla wheat tortillas, tortillas
pico_de_gallo cilantro, burrito. baja habanero avocados tortilla, cilantro tortilla. refried_beans ...

peanut coconut_milk soy coconut cashew soy_milk milk cashews coconut_cream taro durian winter_melon
lychee black_tea tapioca pandan chai sweetened green_tea cottage_cheese almond earl_grey sago ...

......

Dessert

mushrooms flatbread asparagus spinach eggplant grilled onions goat_cheese artichoke ricotta spaghetti
mushroom tomato meatballs meatballs, pasta pesto rigatoni prosciutto artichokes tomatoes alfredo ...

passion_fruit lychee green_tea mint mango peach coconut pineapple ginger fruity lemonade lemonade
tea. tequila rum vodka, strong. mojito jasmine margarita. lime tea boba martini, pomegranate mango ...

......
... ......

Table A.2. CoRel2 sampled clusters

Topic Subtopic Clusters

Chinese

rice_noodles cabbage steamed bean_sprouts pork shredded vegetables sauteed sauce
tofu chicken. peas breaded sesame spicy_sauce shrimp. pepper black_pepper white_rice broccoli
cabbage, pan_fried pork diced pea stir_fried ginger sautu00e9ed pickled tofu. wasabi white_rice.
sauce, carrots. broth. peanut_sauce vegetables veggies veggies. noodles. carrots rice. beef noodles,
shrimp, squid miso, vegetable minced tofu,

Seafood

prawns king_crab crabs crab_cakes crab oysters scallops mussels lobster_tail legs prime_rib jumbo
sea_bass lobster mussels. soft_shell_crab clams, chops kobe oysters, clams claws crawfish scallop ...

pea peel quail leaf orange, shaved leaves. root mango, zucchini, ginger, color. prosciutto, oil, lump herbs,
bell_pepper fragrant caviar flakes pieces, thinly_sliced sliced sharp bits colored celery ...

......

Dessert

white_chocolate brownie whipped_cream blueberry apples marshmallow chocolate_chip peanut_butter
chocolate. mouse cookie pecan cinnamon dark_chocolate salted_caramel red_velvet peanut_butter ...

mochi soft_serve frozen_yogurt green_tea fruits yogurt froyo shaved_ice boba soy self-serve boba.
markets snow smoothies yogurt. Boba ramen smoothie Smoothie Sprouts places, vanilla, Snow Sephora ...

......
... ......

Table A.3. CoRel3 sampled clusters
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Topic Subtopic Clusters

Location

arena venue theater balcony stadium stage theatre target dance comedy stage. show, Beatles performers stage,
viewing dancers screens movie songs, acrobatics tv outdoor_area theater, acrobatic DJ dance ...

strip_mall strip_mall, plaza shopping_center tucked strip_mall. unassuming shopping_center.
hidden shopping_center, hole-in-the-wall corner hidden_gem corner. hole located Located divey gem dive ...
...

Service

John assistant specialist detailed pressure tint technician solution thorough technique paint quote
Rob tires. extensions records tires, repair Mark auto James consult repairs Alex removal repair ...

extremely_rude acting male rude, garbage unfriendly lousy unprofessional disrespectful rude.
acted rude ignorant miserable yelled clueless snotty blatantly offended manners attitude, unprofessional ...

......

Food

chinese noodle Chinese dim_sum asian Vietnamese Asian Korean korean Filipino vietnamese Hawaiian
Mongolian Japanese ramen Chinese_food Pho Pho, Taiwanese Thai noodles, thai stir_fry Cantonese Ramen...

hash_browns pancakes eggs biscuits scrambled_eggs omelet french_toast eggs_benedict pancakes.
corned_beef_hash hashbrowns toast hash_browns. French_toast eggs. potatoes eggs, hash scramble gravy...

......
... ......

Table A.4. CoRel4 sampled clusters

Topic Subtopic Clusters

Seafood mussel, clam, lobster, oyster, shrimp, scallop, crab, chicken, salmon, fish, pork, octopus, beef, steak,
meat, tofu, duck, avocado, sausage, rice, brisket, crawfish, pork_belly, prime_rib

Salad wedge_salad, cesar_salad, mixed_green, sandwich, caesar, caesar_salad, volcano, hamburger, bloody_mary,
kale, pre_package, mediterranean, basic, mixed_greens, apple, greek, house, seaweed, grill_chicken, green...

Dessert ice_cream, cake, pastries, sauce, gelato, latte, cheesecake, milkshake, cupcake, taste, cream, smoothie,
pancake, waffle, mousse, bread_pudding, muffin, french_toast, syrup, butter, lemonade, croissant, sorbet...

Appetizer fry_calamari, stuff_mushroom, fry_zucchini, fry, shaker, squid, waiter_waitress, curly_fry, pineapple,
smash_potato, acoustic, apple_butter, portion_size, lettuce, halibut, carrot, jalapeno_popper, lamb_chop...

Food food_quality, no_real_complaint, table_side_guac, starbucks, no_complaint, 4_._5_star, 4_star, 3_star,
5_star, four_star, five_star, three_star, 1_star, no_worry, no_big_deal, zero_complaint, no_problem ...

Sushi
sashimi, spicy_tuna, yellow_tail, spicy_salmon, tuna, california, rainbow, dragon, dynamite, spider, eel,
tempura, philadelphia, ahi_tuna, vegas, tiger, las_vegas, cinnamon, spicy_scallop, cucumber,
soft_shell_crab, hawaiian, cali

... ...

"Desert"
creme_brulee, cannoli, tiramisu, flan, chocolate, chocolate_cake, baklava, pastry, strawberry, custard,
cassoulet, ratatouille, panna_cotta, biscotti, torte, creme_brule, key_lime, pecan_pie,
flourless_chocolate_cake, meringue...

Music
band, background_music, r_b, k_pop, dj, electronic_music, ghetto, oldie, music_video, beatle,
loud_music, rock, techno_music, hawaiian_music, tiesto, trumpet, smooth_jazz, big_screen_tv,
christmas_music, indie_music...

Table A.5. HiExpan1 sampled topics
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Fig. A.1. TaxoGen1 sampled topics

TaxoGen2
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Fig. A.2. TaxoGen2 topics
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A.1. Evaluation Terms Added to the BERT Vocabulary

"sushi",
"carne asada",
"halibut",
"exposed brick",
"wine bar",
"visiting family",
"main dish",
"veggie",
"mont royal",
"high ceiling",
"pepper jelly",
"appetizer",
"short rib",
"amaretto",
"lounging",
"lasagna",
"crispy",
"italian place",
"chow mein",
"sashimi",
"warm tone",
"korma",
"panang",
"comfortable bed",
"buffalo chicken wrap",
"high expectation",
"free admission",
"south hill",
"tempe",
"babaganoush"
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