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Résumé

Cette thèse, divisée en trois chapitres, contribue à la vaste et récente littérature sur
l’évaluation des actifs et la finance climatique. Le premier chapitre contribue à la littéra-
ture sur la finance climatique tandis que les deux derniers contribuent à la littérature sur
l’évalutaion des actifs.

Le premier chapitre analyse comment les politiques environnementales visant à réduire
les émissions de carbone affectent les prix des actifs et la consommation des ménages. En
utilisant de nouvelles données, je propose une mesure des émissions de carbone du point
de vue du consommateur et une mesure du risque de croissance de la consommation de
carbone. Les mesures sont basées sur des informations sur la consommation totale et
l’empreinte carbone de chaque bien et service. Pour analyser les effets des politiques
environnementales, un modèle de risques de long terme est développé dans lequel la
croissance de la consommation comprend deux composantes: le taux de croissance de
la consommation de carbone et le taux de croissance de la part de la consommation
de carbone dans la consommation totale. Ce chapitre soutient que le risque de long
terme de la croissance de la consommation provient principalement de la croissance de
la consommation de carbone découlant des politiques et des actions visant à réduire
les émissions, telles que l’Accord de Paris et la Conférence des Nations Unies sur le
changement climatique (COP26). Mon modèle aide à détecter le risque de long terme
dans la consommation des politiques climatiques tout en résolvant simultanément les
énigmes de la prime de risque et de la volatilité, et en expliquant la coupe transversale des
actifs. La décomposition de la consommation pourrait conduire à identifier les postes de
consommation les plus polluants et à construire une stratégie d’investissement minimisant
ou maximisant un critère environnemental de long terme.

Le deuxième chapitre (co-écrit avec René Garcia et Caio Almeida) étudie le rôle des
facteurs non linéaires indépendants dans la valorisation des actifs. Alors que la majorité
des facteurs d’actualisation stochastique (SDF) les plus utilisés qui expliquent la coupe
transversale des rendements boursiers sont obtenus à partir des composantes principales
linéaires, nous montrons dans ce deuxième chapitre que le fait de permettre la substitution
de certaines composantes principales linéaires par des facteurs non linéaires indépendants
améliore systématiquement la capacité des facteurs d’actualisation stochastique de val-
oriser la coupe transversale des actifs. Nous utilisons les 25 portefeuilles de Fama-French,
cinquante portefeuilles d’anomalies et cinquante anomalies plus les termes d’interaction
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basés sur les caractéristiques pour tester l’efficacité des facteurs dynamiques non linéaires.
Le SDF estimé à l’aide d’un mélange de facteurs non linéaires et linéaires surpasse ceux
qui utilisent uniquement des facteurs linéaires ou des rendements caractéristiques bruts
en termes de performance mesurée par le R2 hors échantillon. De plus, le modèle hybride
- utilisant à la fois des composantes principales non linéaires et linéaires - nécessite moins
de facteurs de risque pour atteindre les performances hors échantillon les plus élevées par
rapport à un modèle utilisant uniquement des facteurs linéaires.

Le dernier chapitre étudie la prévisibilité du rendement des anomalies à travers les dé-
ciles à l’aide d’un ensemble de quarante-huit variables d’anomalie construites à partir des
caractéristiques de titres individuels. Après avoir construit les portefeuilles déciles, cet
article étudie leur prévisibilité en utilisant leurs propres informations passées et d’autres
prédicteurs bien connus. Les analyses révèlent que les rendements des portefeuilles dé-
ciles sont persistants et prévisibles par le ratio de la valeur comptable sur la valeur de
marché de l’entreprise, la variance des actions, le rendement des dividendes, le ratio des
prix sur les dividendes, le taux de rendement à long terme, le rendement des obligations
d’entreprise, le TED Spread et l’indice VIX. De plus, une stratégie consistant à prendre
une position longue sur le décile avec le rendement attendu le plus élevé et à prendre une
position courte sur le décile avec le rendement attendu le plus bas chaque mois donne des
rendements moyens et un rendement par risque bien meilleurs que la stratégie tradition-
nelle fondée sur les déciles extrêmes pour quarante-cinq des quarante-huit anomalies.

Mots-clés: Émissions de carbone, Risque carbone, Risque de long terme, Valorisation
des actifs, Composantes principales non linéaires, Coupe transversale des rendements,
Facteurs d’actualisation stochastiques, Entropie, Réduction de dimension, Rendements
des portefeuilles déciles, Prévisibilité, Limite à l’arbitrage, Stratégie d’investissement.
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Abstract

This thesis, divided into three chapters, contributes to the vast and recent literature on
asset pricing, and climate finance. The first chapter contributes to the climate finance
literature while the last two contribute to the asset pricing literature.

The first chapter analyzes how environmental policies that aim to reduce carbon
emissions affect asset prices and household consumption. Using novel data, I propose a
measure of carbon emissions from a consumer point of view and a carbon consumption
growth risk measure. The measures are based on information on aggregate consumption
and the carbon footprint for each good and service. To analyze the effects of environmen-
tal policies, a long-run risks model is developed where consumption growth is decomposed
into two components: the growth rate of carbon consumption and the growth rate of the
share of carbon consumption out of total consumption. This paper argues that the
long-run risk in consumption growth comes mainly from the carbon consumption growth
arising from policies and actions to curb emissions, such as the Paris Agreement and
the U.N. Climate Change Conference (COP26). My model helps to detect long-run risk
in consumption from climate policies while simultaneously solving the equity premium
and volatility puzzles, and explaining the cross-section of assets. The decomposition of
consumption could lead to identifying the most polluting consumption items and to con-
structing an investment strategy that minimizes or maximizes a long-term environmental
criterion.

The second chapter ((co-authored with René Garcia, and Caio Almeida)) studies the
role of truly independent nonlinear factors in asset pricing. While the most successful
stochastic discount factor (SDF) models that price well the cross-section of stock re-
turns are obtained from regularized linear principal components of characteristic-based
returns we show that allowing for substitution of some linear principal components by
independent nonlinear factors consistently improves the SDF’s ability to price this cross-
section. We use the Fama-French 25 ME/BM-sorted portfolios, fifty anomaly portfolios,
and fifty anomalies plus characteristic-based interaction terms to test the effectiveness
of the nonlinear dynamic factors. The SDF estimated using a mixture of nonlinear and
linear factors outperforms the ones using solely linear factors or raw characteristic returns
in terms of out-of-sample R2 pricing performance. Moreover, the hybrid model –using
both nonlinear and linear principal components– requires fewer risk factors to achieve
the highest out-of-sample performance compared to a model using only linear factors.
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The last chapter studies anomaly return predictability across deciles using a set of
forty-eight anomaly variables built using individual stock characteristics. After con-
structing the decile portfolios, this paper studies their predictability using their own past
information, and other well-known predictors. The analyses reveal that decile portfolio
returns are persistent and predictable by book-to-market, stock variance, dividend yield,
dividend price ratio, long-term rate of return, corporate bond return, TED Spread, and
VIX index. Moreover, a strategy consisting of going long on the decile with the high-
est expected return and going short on the decile with the lowest expected return each
month gives better mean returns and Sharpe ratios than the traditional strategy based
on extreme deciles for forty-five out of forty-eight anomalies.

Keywords: Carbon emissions, Carbon risk, Long-run risk, Asset pricing, Nonlinear
principal components, Cross-section of returns, Stochastic discount factors, Entropy, Di-
mension reduction, Decile portfolio returns, Predictability, Limit to arbitrage, Trading
strategy.
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Chapter 1

Long-Run Carbon Consumption
Risks Model and Asset Prices

1.1 Introduction
Regulators are increasingly worried about the extent to which stock markets efficiently
price climate change risks and the discount rate that should be used to evaluate invest-
ments’ uncertain future benefits. In fact, part of these risks stems from the transition
to a low-carbon economy. More precisely, to curb carbon dioxide (CO2) emissions, cli-
mate policy aims to hold the increase in the average global temperature to within 2◦C

of pre-industrial levels. A burgeoning climate finance literature examines the efficiency
of capital markets in pricing risks associated with climate change. For a detailed recent
literature review, see Hong et al. (2020) and Giglio et al. (2020).

This market price related to carbon emissions, however, is narrowly confined to the
production level and neglects carbon leakage inside and outside a given boundary0. Car-
bon leakage alludes to the situation that may take place if, for any cost-related reasons for
climate actions, firms were to transfer production to other countries with fewer pollution-
related constraints. This delocalization of production activities could lead to an increase
in the total emissions of the corresponding firm. Thus, the production-based market
price of carbon emissions incorrectly measures the actual impact of the carbon emis-
sions. Moreover, as depicted in Figure 1.1, since 1998, carbon emissions in the United
States, as measured with the consumption-based approach, are consistently larger than
those measured with the production-based approach. Hence, the use of production-based
emissions minimizes the real CO2 emissions in the atmosphere. Despite this fact, most
papers and climate policies focus on the production side. This paper addresses this is-
sue by providing a consumption-based carbon emissions measure using 12 consumption
categories. Using the consumption-based carbon emissions approach has two benefits.

0Production-based carbon emissions exclusively refer to emissions generated at the point of
production—that is, emissions physically produced
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First, it captures carbon leakage. Second, it captures the life cycle of greenhouse gases
(GHG) emissions expressed in a CO2 equivalent. The life cycle assessment gives a more
complete picture of a product’s environmental impact. It tells us about the parts of its
life cycle period during which the product most negatively affects the environment.

Climate change is a long-horizon phenomenon. But our actions today can help miti-
gate and adapt to that forthcoming risk. Our mitigation and adaptation actions will be
efficient if we have a deep understanding of that long-run risk. To better understand the
climate change effects on the economy, we need a long-run risks model. However, the
canonical long-run risks (LRR) model studied by Bansal and Yaron (2004) is not suit-
able for analyzing climate risk, nor is it suitable for analyzing the effects of environmental
policies on asset prices and household consumption. The reasons are twofold. First, the
dynamics of the consumption growth rate in the canonical LRR model are not directly
affected by any climate-related variable. Second, it is difficult to detect long-run risk
in consumption coming from the canonical model (Bansal et al. (2007a), Bansal et al.
(2007b), Pohl et al. (2018), Schorfheide et al. (2018) among others). Therefore, we need
a new long-run risks model that specifies the consumption growth rate dynamics such
that long-run risk is easily detectable and consumption growth is directly affected by
climate-related shocks. This paper proposes such a model based on insight from Bansal
et al. (2016b), Bansal et al. (2017), and Giglio et al. (2021b).

This paper adds two contributions to the existing literature. First, I use novel data
to provide a consumption-based carbon emissions measure. Second, I introduce a long-
run carbon consumption risks model that departs from the existing long-run risks model
through its decomposition of consumption growth into two components: carbon con-
sumption growth and growth in the share of carbon consumption. The first component
captures the effect of carbon consumption on aggregate consumption, and the second
component captures the effect of green consumption. In addition, my model differs from
the current literature in its ability to study the effects of environmental policies on asset
prices and household consumption.

To that end, this paper links the carbon footprint information of each good and service
from the Economic Input-Output Life Cycle Assessment (EIO-LCA) database and the
aggregate consumption information of the same goods and services from the national
income and product accounts (NIPA) consumption data to construct my consumption-
based carbon dioxide emissions measure. To the best of my knowledge, this paper is
the first to link the NIPA and EIO-LCA data to provide a consumption-based carbon
emissions measure. Then, I use industry-level returns data from Kenneth R. French’s
website to empirically test the long-run carbon consumption risks model.

To assess the impact of climate change on macro-financial variables such as dividend
growth, the equity premium, and consumption growth, this paper decomposes the con-
sumption growth rate into two components: the carbon consumption growth component
and the share of the carbon consumption growth component. In our setting, “carbon
consumption risk” occurs for two main reasons. First, carbon risk stems from regulators’

2



willingness to curb carbon emissions at the pre-industrial level, which in turn may affect
future household consumption that heavily depends on carbon consumption. Second,
carbon consumption creates damage through the lens of climate change. As a result,
carbon-based consumption carries potential long-run risks in both cases. Building on
this insight, I theoretically characterize and then quantify carbon price risk in an asset
pricing model with long-run risks in carbon consumption. This paper argues that the
long-run risk in consumption growth comes mainly from the carbon consumption growth
arising from policies and actions to curb emissions, such as the Paris Agreement and the
U.N. Climate Change Conference (COP26). I hypothesize that the growth rate of the
share of carbon consumption out of total consumption does not carry any long-run risks.

Turning to the findings, we see that the decomposition of consumption growth gives
more flexibility to policymakers in their efforts to stimulate consumption. They can target
either carbon consumption or the share of carbon consumption out of total consumption.
For example, one standard deviation negative shock to the expected carbon consumption
–such shock could be a policy aiming to reduce the long-run carbon consumption– causes
consumption growth to decrease by 5.5% for sixty months using the full sample parameter
estimates. It decreases dividend growth, market return, and the risk free rate by 8%,
3.7%, and 4% respectively. Further analysis over different sub-periods shows that the
impacts of environmental policies on asset prices and household consumption are bigger
during periods of high climate change uncertainty. In fact, the decrease in consumption
growth is approximately 2%, 3%, and 11% during the periods 1930–1955, 1956–1980,
and 1981–2018, respectively. The effects of the policy disappear after sixty periods –
corresponding to five years. A direct shock on carbon consumption growth –such as
policies aiming to reduce the short-run carbon consumption–, leads to a mitigated and
ambiguous effect on consumption.

In addition, my model helps to detect future persistent fluctuations in the mean and
volatility of carbon consumption growth arising from environmental policies. It also
doubles the ability to detect long-run risks, as compared to the canonical model, while
also solving the equity premium and volatility puzzles. My model is especially useful
during periods of high climate change uncertainty, such as the period after the election
of President Ronald Reagan in the US.

This article is related to the strand of literature on the long-run risks model. Papers
here include Bansal and Yaron (2004), Bansal et al. (2007a), Bansal et al. (2007b), Koijen
et al. (2010), Bonomo et al. (2011), Constantinides and Ghosh (2011), Schorfheide et al.
(2018), Pohl et al. (2018), and Pohl et al. (2021). These papers model consumption
growth dynamics as containing a small, predictable component. In these papers, long-
run risks come from the aggregate consumption growth rate, and the economy is governed
by two state variables: expected consumption growth and the conditional volatility of
consumption growth. They find that expected consumption growth is highly persistent
and that long-run risks are difficult to detect. To depart from this literature, I consider
new consumption growth dynamics that allow me to study the effects of environmental
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policies on asset prices and household consumption beyond the usual effects analyzed by
the canonical LRR model. I decompose the consumption growth rate into two parts: a
carbon growth component, which creates long-run growth risk, and a share of the carbon
growth component, which does not create any long-run risk but does affect the dynamics
of consumption growth and acts as a hedge against carbon risk. In the previously cited
papers, long-run risk comes directly from aggregate consumption growth, which is barely
detectable. This decomposition allows me to study the effects of climate change on
macro-financial variables such as consumption growth, dividend growth, and the equity
premium.

My study is also related to the strand of literature on climate finance. Papers here
include Daniel et al. (2016), Bansal et al. (2016b), Bansal et al. (2017), Chen et al.
(2019), Giglio et al. (2021b), and Stroebel and Wurgler (2021), Avramov et al. (2022).
This paper focuses on carbon or transition risk,1 whereas the previously cited papers
study the physical risk side of climate risk2. In particular, since climate change is a
long-horizon phenomenon, we need to assess it using a long-run risks model by looking
at the consumption or household side.

The rest of the paper is organized as followed. Section 1.2 describes the methodology
used to build a new measure of consumption-based carbon risk. Section 1.3 sets up the
theoretical model. Section 1.4 presents the results and the asset pricing implications of
the model, and section 1.5 concludes.

1Carbon or transition risk is that which is inherent to the process of transitioning to a lower-carbon
economy. Examples include policy and legal risks, technology risk, market risk, and reputation risk.

2Physical risk includes event-driven risks that damage assets and disrupt the supply chain (examples
include hurricanes, floods, and fires), and long-term shifts in climate patterns (for example, increasing
temperatures or rising sea levels).
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1.2 A measure of consumption-based carbon risk
The central challenge of climate finance is to capture the actual impact of carbon emis-
sions. To address that challenge, this paper uses aggregate consumption data and the
carbon footprint to identify a carbon/green risk measure. All data are on an annual
basis and span the period 1930–2018. I describe below how I constructed the carbon
consumption, green consumption measures to assess the empirical implications of a long-
run carbon consumption risks model. Summary statistics are presented in table 1.1.

To construct the carbon consumption measure, I consider carbon dioxide emissions
from a household consumption perspective. These carbon dioxide emissions indicators
provide an alternative view of carbon dioxide emissions, where the emissions are tied to
the consumption of durable goods, non-durable goods, and services in the United States.
This approach allows for accounting for a potential carbon leakage and the actual im-
pact of carbon emissions within a given boundary. In fact, under the assumption of a
linear life cycle progression of a product, households stand at the usage stage where they
have control of the product. Using NIPA data, I collect aggregate information on 12
consumption categories (food, clothing, housing, furniture, health, transportation, com-
munication, recreation, education, food services and accommodation, financial services
and insurance, and other goods and services.)3. Then, I match this aggregate informa-
tion to the carbon footprint information provided by the Economic Input-Output Life
Cycle Assessment (EIO-LCA) database using the purchaser (retail) price model4. The
Life Cycle Assessment (LCA) investigates, estimates, and evaluates the environmental
burdens imposed by a material, product, process, or service throughout its life span.
Environmental burdens include the materials and energy resources required to create the
product, as well as the wastes and emissions generated during the process. The EIO-LCA
is developed by Carnegie Mellon University (Institute. (2021)) and provides an estimate
of economy-wide cradle-to-gate GHG emissions per dollar of producer output for 428 sec-
tors of the US economy. This paper uses the US 2002 benchmark model - purchaser price5

to collect the carbon footprint for the 11 household expenditure categories identified in
the NIPA data. I identify in the EIO-LCA database a total of 50 sectors representing
household consumption good production. A sample of such carbon emissions is given in
figure 1.2 for power generation and supply (electricity), and soft drinks and ice manu-
facturing. It depicts the direct and indirect emissions related to the purchase of $US 1
million of electricity (top panel) and soft drinks (bottom panel). It amounts to 9,370 and
651 tons of CO2 emissions (t CO2e), respectively. Note that electricity places a higher

3NIPA is an abbreviation for the national income and product accounts from the Bureau of Economic
Analysis. I use annual aggregate consumption data for US households from the period 1930 to 2018.

4The purchaser (retail) price model is a commodity-based model. The purchaser model is designed to
adjust for retail to producer prices and thus models the delivery and retailing stages of the supply chain.
It also allows for the modeling of commodities as opposed to industrial activity (e.g., a car instead of
"automobile production").

5The US 2002 model uses information on the 2002 US economy.
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burden on the environment than soft drinks.
Using these 50 sectors, I covered 96% of total household consumption expenditure,

which represents a total of 29 consumption goods out of 44 in the NIPA data table. In
figure 1.3, the x-axis captures the tons of CO2 emissions (tCO2e) per million US dollars.
Figure 1.3 displays the total carbon footprint in each consumption category. As shown,
transportation, food, and housing account for a large part of the carbon footprint in
household consumption expenditure, representing a total of 77% of US household CO2
emissions. In household consumption baskets, food and beverages contribute the most
to the carbon footprint, followed by housing, household utilities, furnishings, recreation,
and transportation.

Figure 1.1: Fact

The direct carbon dioxide emissions, which include natural gas, motor oil, and lubri-
cant oil, represent only 11% of the total emissions in the household consumption basket.
In this paper, we use both direct and indirect burdens to compute the total carbon
emissions.

Next, I map the NIPA expenditure category to the carbon footprint information to
compute the consumption-based carbon measure. Since the carbon footprint information
is related to the 2002 consumer price purchase, all of the NIPA data are deflated using
the 2002 reference base period for the consumer price index (CPI). Figure 1.2 shows
that all of the consumption categories do not affect the environment equally. Therefore,
this paper weights the aggregate consumption of each good and service by its burden on
the atmosphere to compute a new total consumption measure. The total US household
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Figure 1.2: Carbon footprint of electricity versus soft drinks

(a) Power generation and supply

(b) Soft drinks and ice manufacturing
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Figure 1.3: Carbon footprint by household expenditure category.

Note: The x-axis captures the tons of CO2 emissions (tCO2e) per million US dollars

consumption-based carbon emissions can be expressed simply as the product of consump-
tion, denoted C, in dollars, and carbon emissions per unit of consumption, denoted CE,
summed over each carbon footprint activity (i) included in the model. Put simply, when
it comes to analyzing the effect of carbon emissions on the economy and environment,
consumption categories should not be treated the same. Each category affects the envi-
ronment differently , so I compute the aggregate consumption by weighting each category
consumption by its footprint. Alternatively, I classify the carbon footprint in decreasing
order and use the five categories with the highest carbon footprints to compute what I
call “carbon consumption” and whatever is left over to compute “green consumption.”
Overall, the total carbon emissions at any time t are calculated as follows:

TCt =
11∑
i=1

Ci,t ∗ CEi (1.1)

However, I subdivide all of the consumption categories into two parts in order to separate
the usual consumption risk into two risks. The first risk measures the carbon consump-
tion risk—including the consumption categories that pollute the most based on their
carbon footprint; see equation 1.2). The second risk measures the green consumption
risk—including the consumption categories that pollute the least based on their carbon
footprint; see equation 1.3). Henceforth, I will call the risk associated with green con-
sumption “green risk” and the risk associated with carbon consumption “carbon risk”.

CCt =
5∑

i=1
Ci,t ∗ CFi or

5∑
i=1

Ci,t (1.2)

GCt =
11∑

i=6
Ci,t ∗ CFi or

11∑
i=6

Ci,t (1.3)
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The pattern of those components is shown in figure 1.4 in terms of log difference:

∆cct+1 = log
(
CCt+1

CCt

)
(1.4)

∆gct+1 = log
(
GCt+1

GCt

)
(1.5)

∆αcc,t+1 = log

(
αcc,t+1

αcc,t

)
, (1.6)

where αcc,t = CCt
Ct

. I call ∆cct+1 carbon consumption growth risk, ∆gct+1 green con-
sumption growth risk, and ∆αcc,t the share of carbon consumption growth risk. I could
have defined the share of green consumption growth risk (∆αgc,t) in the same manner.

Figure 1.4 displays the time series of the key variables of this paper. One can clearly
see that the series replicate some business cycles and climate change events. Specifically,
when consumption growth goes up, carbon consumption growth goes up too which cor-
roborates the fact that a significant part of the household’s baskets is carbon. In addition,
the peaks and troughs of these two series6 occur at the same time. Green consumption
follows a similar pattern with some lags and some periods where it decreases while carbon
consumption or total consumption is going up7

To link the real economy to the financial market, I also use data on industry, small,
large, value, and growth portfolio returns from Kenneth R. French’s website. I use value-
weighted portfolios including and excluding dividends to compute the dividend and price
series on a per-share basis (Campbell and Shiller (1988), Hansen et al. (2008)). Table
1.1 presents some descriptive statistics. All returns and dividend growth series have been
deflated using CPI growth.

1.3 Model
The model builds on the Bansal and Yaron (2004) LRR model and uses insight from Giglio
et al. (2021b). My model introduces three state variables: a long-run risk variable, the
variance of the innovation of carbon consumption growth alongside the growth rate of the
share of carbon consumption out of total consumption that jointly drive the conditional
mean of carbon consumption growth, and dividend growth.

1.3.1 Preferences
In this economy, there is a representative household with recursive preferences (Kreps and
Porteus (1978), Epstein and Zin (1989)). This paper chooses these types of preferences for

6Consumption and carbon consumption growths
7During the World War II period for example.
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Figure 1.4: Carbon risk, green risk, and household expenditure growth

two main reasons: First, they allow for separation between the coefficient of risk aversion
and the elasticity of intertemporal substitution. Second, an Epstein–Zin (EZ) investor’s
marginal utility depends on both the one-period innovation in the consumption growth
rate and news about consumption growth at future horizons. This feature is important for
the climate change thematic as news about future global warming will affect consumers’
consumption behaviors. Hence, consumption growth will incur a proportional shock.
One would like a utility function specification that affects the level of the climate risk
premium and the term structure of the discount rate. Epstein-Zin utility specified in
equation 1.7 does what I just described:

Vt =
[
(1 − δ)C

1−γ
θ

t + δ
(
Et[Vt+1]1−γ

) 1
θ

] θ
1−γ

(1.7)
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Table 1.1: Summary statistics

E(.) σ(.) AC(1) AC(2) AC(3) AC(4) AC(5)
Macro variables

∆c 0.0178 0.0343 0.3150 0.0608 -0.1508 -0.1491 0.0098
∆αcc -0.0030 0.0134 0.4545 0.0574 -0.1233 -0.2765 -0.1730
∆cc 0.0147 0.0382 0.2717 -0.0223 -0.2057 -0.1549 0.0176
∆αgc 0.0042 0.0215 0.4469 0.0640 -0.0749 -0.2692 -0.2105
∆gc 0.0220 0.0385 0.4647 0.2063 -0.0167 -0.2016 -0.1006

Financial variables
∆d 0.0176 0.1223 0.1075 -0.1832 -0.1502 -0.0930 0.0459
zm 3.3878 0.5123 0.9276 0.8524 0.7992 0.7605 0.7163
rm 0.0694 0.1929 0.0077 -0.2202 0.0181 -0.0053 -0.1215
rf 0.0025 0.0351 0.6852 0.3059 0.2040 0.2336 0.2788

The table reports the sample mean, standard deviation, and first-order to fifth-order autocor-
relation of the marketwide log price-dividend ratio, the log dividend, consumption, and the
(share of) carbon/green consumption growth rates.

where δ is the subjective discount factor parameter, γ > 0 is the coefficient of risk aver-
sion, and θ = 1−γ

1− 1
ψ

with ψ > 0 represents the elasticity of intertemporal substitution
(EIS). The standard time-separable power utility model is a special case of the EZ util-
ity when γ = 1

ψ
. The agent prefers early resolution of the risk if γ > 1

ψ
and late resolution

if γ < 1
ψ

.

In this formulation, the household evaluates her consumption plan recursively. She
consumes at time t and receives a continuation value of her consumption, which can bear
a long-run risk component through its carbon consumption. Indeed, with a canonical
expected utility risk, only short-run risks are compensated, whereas long-run risks do
not carry a separate risk premium. With the above preference, long-run risks earn a
positive risk premium if households prefer an early resolution of uncertainty.

Furthermore, there are N + 1 tradable assets in the economy: one risk-free asset
(i = 0) and N risky assets (i = 1, . . . , N). In each period t, the representative household
invests Xit unit of its discretionary wealth in asset i. The tradable asset i has a price
of Pit and a future dividend of Dit, with a gross return of Rit+1 = Dit+1+Pit+1

Pit
. The

intertemporal budget constraint faced by the household is given by

Ct +
N+1∑
i=1

PitXi,t+1 =
N+1∑
i=1

(Pit +Dit)Xit = Wt (1.8)
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where
Ct = CCt +GCt

is total consumption and the sum of the consumption considered as carbon consumption
(CCt) and the consumption considered as green consumption (GCt).

1.3.2 A long-run carbon consumption risks (LRCCR) model
This paper assumes that consumption growth in the economy depends on two compo-
nents. One carries a long-run risk, and the other does not carry any long-run risks. In
particular, we assume that aggregate consumption growth is given by (the proof can be
found in appendix A.1):

∆ct+1 = ∆cct+1︸ ︷︷ ︸
Carbon

− ∆αcc,t+1︸ ︷︷ ︸
share of cc

, (1.9)

where ∆ct+1 = log
(
Ct+1

Ct

)
is the log consumption growth rate. The expression ∆cct+1

is the growth rate of carbon consumption and ∆αcc,t+1 is the growth rate of the share
of carbon consumption in total consumption as defined in section 1.2, equations 1.4–1.6.
Note that the conditional mean of ∆cct+1 and its conditional volatility are a potential
source of carbon consumption risk. In fact, the transition to a low-carbon economy
raises the future likelihood of carbon consumption risk, which, if realized, leads to a
consumption risk. For instance, the nationally determined contributions (NDC) policy
scenario aims to reduce carbon consumption by 32(15) gigatons of CO2 to stay within the
1.5◦C(2◦C) limit by 2030. The dynamics of the other variables are described as follows:

∆cct+1 = νcc + xt + σtϵcc,t+1 (1.10)
xt+1 = ρxxt + ψxσtϵx,t+1 (1.11)
σ2
t+1 = (1 − ν)σ2 + νσ2

t + σwϵσ,t+1 (1.12)

Thus, in our model xt, ∆αcc,t, and σ2
t are the state variables. In particular, xt captures

the conditional mean of the carbon consumption growth rate, while σ2
t captures the

uncertainty associated with the transition to a lower-carbon economy. The growth of
the share of carbon consumption out of total consumption component doesn’t carry any
long-run risk and evolves, as given by

∆αcc,t+1 = να(1 − ρα) + ρα∆αcc,t + σαϵα,t+1 + πσtϵcc,t+1 (1.13)

This paper assumes that innovations in the share of carbon consumption out of total
consumption and carbon consumption are correlated. That correlation depends on the
parameters π8 and σα. Finally, the dividend growth rate of any dividend-paying asset i

8Alternative specification : ϵα,t and ϵcc,t are correlated instead of i.i.d. and set π = 0
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is as follows:

∆di,t+1 = νi + ϕixt + ϕα,i∆αcc,t + ψiσtϵi,t+1 (1.14)

where ϕi, ϕα,i, ψi determine asset i’s exposure to the long-run share of carbon consump-
tion and volatility risks, respectively. The shocks ϵx,t+1, ϵα,t+1, ϵi,t+1, ϵcc,t+1, and ϵσ,t+1 are
assumed to be i.i.d. N(0,1) and mutually independent if π ̸= 0. Equations (1.9)–(1.14)
represent the building blocks of our long-run carbon consumption risks model, hence-
forth LRCCR model. The dynamics of the variables and the utility function involve 17
parameters Θ=[ρx ψx ψi νcc ν νi σw σ ϕi δ γ ψ να ρα σα π ϕα,i]. I calibrate the model
parameters to match key sample moments. I derive some moments conditions for carbon
consumption, the share of carbon consumption, and asset i dividend growth rates as
functions of the time series and the preferences parameters. See the appendices A.3 for
more details.

1.3.3 Solving the model
For any asset i, the corresponding Euler equation regarding the consumer’s utility max-
imization is given by

Et[emt+1+ri,t+1 ] = 1 (1.15)

where

mt+1 = θlog(δ) − θ

ψ
∆cct+1 + θ

ψ
∆αcc,t+1 + (θ − 1)rc,t+1 (1.16)

is the natural logarithm of the stochastic discount factor; Et[.] denotes expectation con-
ditional on time t information; ri,t+1 is the continuously compounded return on asset i;
and rc,t+1 is the unobservable continuously compounded return on an asset that delivers
aggregate consumption as its dividend each period.

Following Campbell and Shiller (1988), the log return on the consumption claim,
namely rc,t+1, and the log return of the asset i ri,t+1 are approximated as follows:

rc,t+1 = κ0 + κ1zt+1 − zt + ∆cct+1 − ∆αcc,t+1 (1.17)

ri,t+1 = κ0,i + κ1,izi,t+1 − zi,t + ∆di,t+1 (1.18)

where zt = log
(
Pm,t
Ct

)
and Pm,t stands for the market portfolio price, zi,t = log

(
Pi,t
Di,t

)
.

κ1 = ez̄

1+ez̄ and κ0 = log (1 + ez̄)−κ1z̄ are log-linearization constants. The term z̄ denotes
the long-run mean of the log price-consumption ratio (z). Regarding equation (1.18),
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κ1,i = ez̄i
1+ez̄i and κ0,i = log(1 + ez̄i) − κ1z̄i where z̄i denotes the long-run mean of the

log price-dividend ratio (zi). Throughout this paper, subscript m refers to the market
portfolio, and subscript i refers to any asset.

As in Bansal and Yaron (2004), I conjecture that zt and zi,t are affine functions of the
state variables xt (LRR variable or conditional expected carbon consumption growth),
σ2
t (conditional volatility of the carbon consumption growth), and ∆αcc,t (share of carbon

consumption growth):

zt = A0 + A1xt + A2σ
2
t + A3∆αcc,t (1.19)

zi,t = A0,i + A1,ixt + A2,iσ
2
t + A3,i∆αcc,t (1.20)

The functions A0, A1, A2, A3, A0,i, A1,i, A2,i, and A3,i are functions of parameters
in Θ and the linearization parameters. Their expressions are given in the appendix
A.3. An increase in the expected carbon consumption growth rate will raise the price-
consumption ratio if the intertemporal substitution effect dominates the wealth effect.
However, a higher share of carbon consumption out of total consumption implies a lower
price-consumption ratio when ψ > 1. Turning now to the price-dividend ratio, we see
that the conclusions are different for the share of the carbon consumption growth effect.
While the expected carbon consumption growth measure still raises the price-dividend
ratio but is much higher under the conditions that ψ > 1 and ϕi > 1 (the LRR variable
acts as a leverage), the share of carbon consumption now positively affects the price-
dividend ratio, hypothesizing ϕα,i > 0.

Using equation 1.15, I show that the log risk-free rate can be written as a function of
the state variables as follows:

rf,t = −logEt[emt+1 ] (1.21)
= A0,f + A1,fxt + A2,fσ

2
t + A3,f∆αcc,t

Once again A0,f , A1,f , A2,f , A3,f are functions of parameters in Θ and the linearization
parameters, and their expressions are given in the appendix A.3.

1.3.4 Asset pricing implications
To test the implications of the model for the equity premium and the cross section
of returns, I combine equations (1.16), (1.17), and (1.19) to get the expression of the
stochastic discount factor in terms of state variables:
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mt+1 = (θlog(δ) + (θ − 1)[κ0 + (κ1 − 1)A0]) +
(

− θ

ψ
+ (θ − 1)

)
∆cct+1

+
(
θ

ψ
− (θ − 1) + (θ − 1)κ1A3

)
∆αcc,t+1

+ (θ − 1)κ1A1xt+1 + (θ − 1)κ1A2σ
2
t+1

− (θ − 1)A1xt − (θ − 1)A2σ
2
t − (θ − 1)A3∆αcc,t (1.22)

The innovation in the mt+1 conditional on time-t information is given by

mt+1 −Et[mt+1] = −λm,ασαϵα,t+1 −λm,ccσtϵcc,t+1 −λm,xσtϵx,t+1 −λm,wσwϵσ,t+1 (1.23)

Therefore, the equity risk premium for any asset i is

Et(ri,t+1−rf,t)+0.5Vt(ri,t+1) = λm,xβi,xσ
2
t +λm,wβi,wσ2

w+λm,αβi,ασ2
α+λm,ccβi,ccσ2

t (1.24)

where the β’s are asset i exposure to the long-run risk, the volatility risk, the share of the
carbon consumption risk, and the short-run risk, and the λ’s are the respective risk prices.
The β’s and λ’s are functions of the preference parameters, the linearization parameters,
and the parameters in the dynamics of macro-financial variables (see appendix A.3). The
price of the short-run carbon consumption risk and the exposure of any asset to this risk
rise with the correlation between the share of carbon growth and the carbon growth.
The price of the long-run risk λm,x, and the exposure of any asset i to the long-run risk
βi,x increase with the persistence of the expected carbon consumption growth. In the
same way, λm,cc, λm,α, βi,cc, and βi,α increase with the persistence of the share of carbon
consumption out of total consumption growth.

I substitute equation (1.22) into the set of Euler equations (1.15) to have moment
conditions that are expressed entirely in terms of observables. Then I examine the empir-
ical plausibility of the model when the set of assets in the economy consists of the market
portfolio and the risk-free rate, thereby focusing on the equity premium and risk-free rate
puzzles. In particular, I consider a set of moments, namely, the expected value and the
standard deviation of the equity premium, the real risk-free rate, and the price-dividend
ratio, and I calibrate the parameters Θ to match those moments.

Next, this paper examines whether the model can explain the cross section of re-
turns in different asset classes including “carbon-intensive" (high heat-exposed and low
heat-exposed) portfolios and Fama-French 25 portfolios. In total, I use 42 Fama-French
industry portfolios, and 25 Fama-French portfolios. I adopt the two-pass regression
methodology of Fama and MacBeth (1973) to estimate the risk premia on each risk fac-
tor (see also Kan et al. (2013), Bai and Zhou (2015)). I consider the two risks I built,
namely, the carbon consumption (cc) growth risk (∆cct) and the share of carbon con-
sumption (shcc) growth risk (∆αcc,t), and Fama and French (1993) three-factors. In the
first stage, I compute the portfolio’s exposures to the risk factors by regressing each port-
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folio’s excess return (ri,t) on ∆cct, ∆αt, and on Fama and French (1993) three-factors:

ri,t = ci+βm,imktt+βhml,ihmlt+βsmb,ismbt+βsh,i∆αcc,t+βcc,i∆cct+ϵi,t i = 1, ..., N (1.25)

where ri,t is the return of the portfolio i, mktt is the market portfolio excess return, smbt
is the size premium (small minus big), hmlt is the value premium (high minus low), the
β’s are the factor loading’s. In the second stage, I run a cross-sectional regression. Put
in equation terms, this gives the following:

µr,i = γ0 + γmβ̂m,i + γhmlβ̂hml,i + γsmbβ̂smb,i + γshβ̂sh,i + γccβ̂cc,i + ϵi i = 1, ..., N (1.26)

For comparison purposes, this paper also applies the two-pass regression to the case
of Fama and French (1993) three-factors model, and different other specifications. I
plot the exposures βsh,i’s and βcc,i’s in Figure 1.6 for the model using only my two risk
factors. Once we know which portfolio (industry) is significantly positively and negatively
exposed to the carbon risk, I calibrate the LRCCR model to match key moments of those
portfolios (industries). The main goal is to explain the cross section of the portfolios’
(industries’) expected returns. My parameters of interest are the leverage parameters—
that is, the dividend exposure to the long-run risk variable and to the share of the carbon
consumption growth rate for each portfolio (industry) ϕi and ϕα,i—and the dividend
exposure to volatility risks ψi. To test the effectiveness of the LRCCR model, I start by
looking at the cross-sectional properties of the well-known portfolios, in particular, the
value, growth, small size, and large portfolios. Based on empirical evidence (see Bansal
et al. (2005) and Hansen et al. (2008), Bansal et al. (2016a)), the value portfolio presents
a much higher exposure to low-frequency risks in consumption relative to the growth
portfolio. Likewise, the long-run risk exposure of the small-size portfolio exceeds that of
the large-size portfolio. Then, I look at the cross-sectional properties of the Fama-French
industry portfolios, and the 25 Fama–French size and book-to-market ranked portfolios.

A final analysis done in this paper is to build portfolios based on the exposure of
individual US stocks listed on NYSE, AMEX, or NASDAQ to the risk factors this paper
proposed. The first step of this analysis is to build monthly risk factors. This is done by
projecting the annual factors onto the space of Fama-French 25 ME/BM-sorted portfolios
and keeping constant the annual weight throughout the time. I use the annual weights
to build the monthly factors. The second step consists of computing the time-varying
betas’ using a rolling window approach – a minimum of 36 months and a maximum of
60 months past information. Then, I build the portfolios by sorting the stocks based on
their betas into deciles. I monthly rebalance the portfolios. The long-short portfolios are
formed by going long the last decile and going short the first decile. Additional long-short
portfolios proposed in this analysis consist of going long firms that are positively exposed
to the risk factors and going short firms that are negatively exposed. The last step is to
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compute the average premium and test the performance of the portfolios. I measure the
performance of the portfolios using the alpha from the Fama-French three-factor model
(see equation 1.27).

rlsi,t − rft = αi + β1mktt + β2hmlt + β3smbt + ϵi,t i = 1, ..., nls (1.27)

where rlsi,t − rft is the excess return of the long-short portfolio i, αi is the performance
measure of the strategy i.

1.4 Findings

1.4.1 BY04 versus LRCCR
This part of the paper compares the LRCCR and LRR models in terms of replicating the
observed equity premium, the volatility of the equity premium, and the risk-free rate.
Here I calibrate the 17 parameters Θ=[ρx ψx ψd νcc ν νd σw σ ϕd δ γ ψ να ρα σα π ϕα,d]
to match the (share of) carbon consumption growth, the (share of) green consumption
growth, dividend growth, the market return, and the risk-free rate means, variances, and
(auto)correlations observed in the data. The calibration results are displayed in table
1.2 for both my setting and Bansal and Yaron (2004)’s setting (BY04 model). I present
four sets of results: the full sample, the period around World War II, the period around
the First Earth Day, and finally the post-Reagan election sample. This paper splits
the results into four sets because returns react to news, and in earlier times, climate
change or global warming was not a prominent issue. Therefore, we hypothesize that
there is probably no big effect during the pre-Reagan election period. The paper uses
President Reagan’s election as a reference day because global public awareness of energy
conservation and improvements in energy efficiency start around this time period.

The term Ψx tells us how detectable the long-run variable is. The results show that
the long-run risk variable is more detectable than it is in the BY model during the 1956–
2018 period, which is near the climate change events. The results in the table 1.2 show
that there are long-run risks in volatility and carbon consumption growth: ν smaller and
close to one, and ρx smaller and close to one. Overall, the risk aversion in our model
is higher than the one in Bansal and Yaron (2004)’s setting but is within a reasonable
range. This high value is related to the nature of the risk discussed in this paper (carbon
risk). Furthermore, agents are more fearful of carbon risk than consumption risk because
carbon risk will increase (amplify) consumption risk even more. The expression ϕα,d
functions as a leverage ratio on the share of carbon consumption growth during the
period 1981–2018.

This paper simulates the time series of the model-implied carbon consumption growth,
the share of carbon consumption growth, dividend growth, market return, and the risk-
free rate. I present some quantiles of those series in tables 1.3 and A.4 for the four
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Table 1.2: Calibrated parameters

1930-2018 1930-1955 1956-1980 1981-2018
BY04 LRCCR BY04 LRCCR BY04 LRCCR BY04 LRCCR

ρx 0.932 0.978 0.937 0.979 0.920 0.900 0.976 0.900
ψx 0.259 0.150 0.278 0.119 0.010 0.204 0.206 0.514
ψd 4.540 4.340 4.789 4.488 13.361 0.000 10.122 4.288
νx 9E-04 1E-03 1E-04 1E-03 -6E-05 2E-03 -2E-04 9E-04
ν 0.999 0.979 0.573 0.985 0.577 0.691 0.988 0.995
νd 0.001 -0.011 0.000 -0.025 -0.002 0.001 0.005 0.003
σw 5E-07 2E-08 1E-04 2E-07 7E-08 1E-05 4E-06 4E-06
σ 8E-03 3E-03 5E-04 4E-03 1E-03 1E-03 7E-04 9E-03
ϕ 2.294 3.378 2.354 3.734 321.850 10.056 0.792 1.019
δ 0.956 0.998 0.999 0.999 0.998 0.998 0.998 0.997
γ 7.074 12.290 9.878 10.084 15.940 23.016 6.063 8.732
ψ 1.379 1.487 3.018 1.495 1.574 1.235 1.503 1.486
z̄ 3.088 6.164 6.054 6.602 6.201 6.285 5.720 5.060
z̄m 5.344 3.981 5.153 3.522 4.754 5.696 12.820 5.548
νa -3E-04 4E-05 -3E-04 -4E-04
ρa 0.455 0.480 -0.281 0.360
σa 0.006 0.006 0.014 0.004
π 1.344 0.897 3.328 0.626
ϕa 0.590 0.877 -0.294 1.305

The table reports the calibrated parameters for the different subsamples for both our setting
(LRCCR) and the Bansal and Yaron (2004) setting (BY04).
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samples. The quantiles 5% and 95% serve as the confidence intervals, and overall, the
sample moments are within those intervals generated by our simulation in the preferred
subsamples.

Table 1.3: Model-implied moments.

σ(zm) EP E(Rf ) σ(rm,a) σ(rf,a) ρ(zm)
1930-2018

Data 0.512 0.067 0.002 0.193 0.002 0.928
BY2004 Mean 0.189 0.096 0.007 0.212 0.068 0.454

5% 0.158 -0.029 -0.090 0.180 0.050 0.286
50% 0.188 0.097 0.005 0.212 0.065 0.458
95% 0.225 0.220 0.111 0.246 0.095 0.607

LRCCR Mean 0.197 0.078 0.010 0.134 0.022 0.735
5% 0.154 0.053 0.001 0.118 0.019 0.601
50% 0.195 0.078 0.010 0.134 0.022 0.743
95% 0.248 0.104 0.019 0.151 0.027 0.841

1981-2018
Data 0.415 0.072 0.011 0.162 0.011 0.890

BY2004 Mean 0.078 0.066 0.010 0.128 0.002 0.846
5% 0.042 0.028 0.005 0.103 0.001 0.642
50% 0.073 0.066 0.010 0.127 0.002 0.871
95% 0.133 0.106 0.015 0.154 0.004 0.961

LRCCR Mean 0.204 0.118 0.015 0.183 0.006 0.809
5% 0.118 0.061 0.003 0.148 0.003 0.586
50% 0.191 0.117 0.015 0.182 0.005 0.835
95% 0.330 0.178 0.027 0.220 0.009 0.946

The table reports the model-implied moments (the equity premium (EP), the mean of the
risk-free rate, the standard deviations of the log price-dividend ratio, the market return, and
the risk-free rate, and the first-order autocorrelation of the log price-dividend ratio), alongside
some-20 quantiles.

Now let us turn to the predictability implication of my model versus the one of Bansal
and Yaron (2004) by comparing the predicted equity premium, consumption growth, and
dividend growth rates and their realized counterparts. Most of the consumption capital
asset pricing models find a constant risk premium: approximately constant predicted risk
premium. However, during 1981–2018, a period of high carbon emissions risk, a long-run
carbon consumption risks model finds a time-varying risk premium. My model performs
much better than the usual long-run risk model in terms of replicating the documented
time-varying risk-premium, consumption and dividend growths predictability, etc. (See
Figure 1.5 and figure A.1 in the appendix A.6.) The difference is quite clear when I predict
the macro-financial variables in the subsample, especially during the period 1981–2018,
a period starting around the election of President Reagan, at time when climate actions
began.
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Figure 1.5: Realized versus predicted equity premium, consumption growth, and dividend
growth.

In this figure, I predict equity premium, consumption growth, and dividend growth using
the long-run risk derived from my model and compared it to BY model.

(a) Full sample: 1930-2018 (b) 1981-2018

(c) Full sample: 1930-2018 (d) 1981-2018

(e) Full sample: 1930-2018 (f) 1981-2018
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1.4.2 Comparative statics
This paper conducts comparative statics by computing the impulse response functions of
three exogenous shocks: (i) shock on the expected carbon consumption growth, (ii) shock
on the carbon consumption growth, and (ii) shock on the share of carbon consumption.
As a result, one standard deviation negative shock to the expected carbon consumption
–such shock could be a policy aiming to reduce the long-run carbon consumption– causes
consumption growth to decrease by 5.5% for sixty months using the full sample parameter
estimates. It decreases dividend growth, market return, and the risk free rate by 8%,
3.7%, and 4% respectively. Further analysis over different sub-periods shows that the
impacts of environmental policies on asset prices and household consumption are bigger
during periods of high climate change uncertainty (see Table 1.4, and Figures A.3 and
A.2). In fact, the decrease in consumption growth is approximately 2%, 3%, and 11%
during the periods 1930–1955, 1956–1980, and 1981–2018, respectively. The effects of
the policy disappear after sixty periods –corresponding to five years. When considering
a direct shock on the carbon consumption growth –such as policies aiming to reduce
the short-run carbon consumption–, the effect on the consumption is mitigated and
ambiguous. For example, one standard deviation negative shock to the short-run carbon
consumption causes consumption growth to decrease by 0.04% for less than ten months
using the full sample parameter estimates. The comparative statics may suggest the
necessity of aiming for a policy that has a long-run effect than a short-run effect.

1.4.3 Risks and Price of risks
In this section, I compute the price of the four risk sources discussed in the model section:
carbon consumption growth risk, the share of carbon consumption growth risk—which is
correlated with the share of green consumption growth risk—long-run risk, and volatility
risk. The most important result from table 1.5 is the consistent sign of the contribution of
volatility risk in the equity premium under my model. The market is negatively exposed
to volatility risk in every sample I considered.
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Table 1.4: Comparative statics : Impulse Response Function

Comparative statics : Impulse Response Function In this table, I show the impulse response
functions of consumption growth, carbon consumption growth, share of carbon consumption
growth, price dividend ratio, market return, and risk free rate following three shocks: shock on
the expected carbon consumption growth, shock on the carbon consumption growth, and shock
on the share of carbon consumption.

ϵx shock ϵcc shock ϵα shock
1930-2018

∆cc 5.51 1.29 0.00
∆αcc 0.00 1.25 1.49
∆d 7.92 1.02 1.21
rm 3.72 -0.41 -0.49
rf 4.02 -0.41 -0.49

1930-1955
∆cc 2.02 0.35 0.00
∆αcc 0.00 0.61 1.11
∆d 7.53 0.54 0.98
rm 1.32 -0.20 -0.36
rf 1.35 -0.20 -0.36

1956-1980
∆cc 3.44 1.47 0.00
∆αcc 0.00 5.03 1.01
∆d 17.17 -0.56 -0.11
rm 1.00 0.45 0.09
rf 1.09 0.45 0.09

1981-2018
∆cc 10.71 1.85 0.00
∆αcc 0.00 2.54 0.73
∆d 11.52 2.36 0.68
rm 6.51 -0.60 -0.17
rf 7.04 -0.60 -0.17
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Table 1.5: Market prices of risks and effects on the risk premium

λ β effect λ β effect
1930-2018 1930-1955

BY04 srr 7.07 0.00 0 9.88 0.00 0
lrr 14.47 5.58 + 40.61 8.17 +
vr -2564.24 -7723.52 + -1884.32 -515.00 +

LRCCR αrisk -21.93 1.59 − -18.75 2.18 −
srr -17.19 2.13 − -6.74 1.96 −
lrr 73.78 10.16 + 50.61 7.28 +
vr -122914.44 -14400.98 + -79112.00 -6155.20 +

1956-1980 1981-2018
BY04 srr 15.94 0.00 0 6.06 0.00 0

lrr 1.92 37.37 + 40.87 1.09 +
vr -273.13 1687.23 − -51947.16 5284.64 −

LRCCR αrisk -18.15 -0.41 + -13.22 2.40 −
srr -37.37 -1.35 + 0.46 1.50 +
lrr 44.47 18.41 + 38.93 2.04 +
vr -5168.90 -1975.90 + -66622.82 -4374.95 +

1.4.4 Cross-sectional implications
As evident in figure 1.6, I cannot classify the industries based on their betas until 1955.
All of the industries are positively and negatively exposed to the carbon consumption
growth risk and the share of the carbon consumption growth risk, respectively. One
exception is the rubber and plastic products industry, which is negatively and positively
exposed to the carbon consumption growth risk and the share of the carbon consumption
growth risk, respectively. Starting in 1956, the risk factors start to affect the industries
differently. This result is interesting because it tells us that our risk factors are eventually
able to identify industries, and firms that pollute the most based on their levels of risk
exposure at a time when it matters the most.

In tables 1.6 and 1.7, this paper reports the risk-premium estimates (γ̂) and t-statistics
(t-ratio) associated to each risk factor. I use multiple risk factors: Fama and French
(1993) three-factors, consumption growth risk, carbon and green consumption growth
risks, the growth risks of the share of carbon and green consumption out of total consump-
tion. The risk premium estimates of the market factor (mkt) are consistently negative
for both industry portfolios and Fama–French size and book-to-market sorted portfolios.
The market factor is negatively priced (see table 1.7) at the 5% level and the risk pre-
mium ranged from -13.14% to -8.29%. That finding corroborates with past empirical
studies and contradicts theoretical evidence9. The value minus growth factor (hml) is
priced in any of my specifications. In particular, the associated risk premium is consis-

9Glosten et al. (1993), Whitelaw (2000), Han (2011), etc.
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Figure 1.6: Exposure of industries to carbon consumption risks: β’s

(a) Full sample (b) 1930-1955

(c) 1956-1980 (d) 1981-2018

tently and significantly negative at 5% level using Fama-French industry portfolios (see
table 1.6). However, the risk premium is consistently and significantly positive at 1%
level using Fama–French size and book-to-market sorted portfolios (see table 1.7). The
later confirms Kan et al. (2013) findings.

Among my risk factors, only carbon consumption growth risk is negatively priced
using Fama-French industry portfolios at 10% level. My risk factors reliably explain
the cross-section of size and book-to-market sorted portfolios. In particular, carbon
consumption growth risk (∆cc) and the share of carbon consumption growth risk (∆αcc)
are negatively priced while green consumption growth risk (∆gc) and the share of green
consumption growth risk (∆αgc) are positively priced at 1% level.

I investigate the contribution of my factors in explaining the cross-section of industry
portfolios and of size and book-to-market sorted portfolios. I did it by testing if the cross-
sectional R2 of Fama and French (1993) three-factors model is equal to the cross-sectional
R2 of an alternative model adding new factors to the three-factors (FF3) model. Findings
are reported in table A.5. Three alternative specifications outperform FF3 model at 5%
level and two outperform at 10% level. Under potential misspecification, only two of my
alternative models outperform at 10% and none at 5%.
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Table 1.6: Industry portfolios

mkt hml smb ∆c ∆cc ∆αcc ∆gc ∆αgc R2

γ̂ -0.0259 -0.0084 -4.1E-06
t ratio -1.0794 -1.6910 -0.0327 0.059

γ̂ -0.0253 -0.0119
t ratio -1.0591 -2.4436 0.104

γ̂ -0.0247 -0.0404 -0.0059
t ratio -1.0205 -2.2953 -0.3763 0.095

γ̂ -0.0245 -0.0423 -0.0053 -0.0089
t ratio -1.0151 -2.3947 -0.3356 -1.7862 0.122

γ̂ -0.0254 -0.0404 -0.0059 -3.2E-05
t ratio -1.0470 -2.2969 -0.3709 -0.2553 0.097

γ̂ -0.0222 -0.0441 -0.0078 -0.0124
t ratio -0.9181 -2.4957 -0.4939 -2.5408 0.170

γ̂ -0.0239 -0.0425 -0.0053 -0.0089 -1.2E-05
t ratio -0.9850 -2.4017 -0.3362 -1.7894 -0.0916 0.123

γ̂ -0.0244 -0.0424 -0.0053 -0.0055 0.0034
t ratio -1.0067 -2.3937 -0.3377 -0.6161 0.4078 0.122

This table reports the risk-premiums (γ̂) and t-statistics (t-ratio) associated to each risk fac-
tor. I use multiple factors: Fama and French (1993) three-factors, consumption growth risk,
carbon and green consumption growth risks, the growth risks of the share of carbon and green
consumption out of total consumption. The models are estimated using annual returns on 42
industry portfolios. The data are from 1930 to 2018. This table also reports the cross-sectional
R2 in the last column.
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Table 1.7: Fama-French 25 ME/BM- sorted portfolios

mkt hml smb ∆c ∆cc ∆αcc ∆gc ∆αgc R2

γ̂ -0.0944 -0.0110 -0.0007
t ratio -3.1680 -2.0736 -4.0674 0.191

γ̂ -0.0829 -0.0060
t ratio -2.7848 -1.1344 0.069

γ̂ -0.1224 0.0406 0.0248
t ratio -4.0071 2.5795 1.7063 0.250

γ̂ -0.1147 0.0407 0.0245 -0.0085
t ratio -3.6605 2.5895 1.6833 -1.6078 0.259

γ̂ -0.1222 0.0420 0.0199 -0.0006
t ratio -4.0001 2.6669 1.3647 -3.6273 0.350

γ̂ -0.1170 0.0406 0.0251 -0.0060
t ratio -3.7180 2.5835 1.7232 -1.1383 0.254

γ̂ -0.1259 0.0420 0.0198 -0.0106 -0.0006
t ratio -3.9967 2.6673 1.3551 -1.9972 -3.6567 0.351

γ̂ -0.1314 0.0421 0.0209 0.0280 0.0377
t ratio -4.1437 2.6741 1.4318 2.9838 3.8475 0.343

This table reports the risk-premiums (γ̂) and t-statistics (t-ratio) associated to each risk fac-
tor. I use multiple factors: Fama and French (1993) three-factors, consumption growth risk,
carbon and green consumption growth risks, the growth risks of the share of carbon and green
consumption out of total consumption. The models are estimated using annual returns on the
25 Fama–French size and book-to-market ranked portfolios. The data are from 1930 to 2018.
This table also reports the cross-sectional R2 in the last column.

26



The results of the firms-level analysis are shown in Tables 1.8 and A.6. There is no
profitable strategy –all significant α’s are negative– that outperformed the FF3 model
benchmark return using the factors constructed by this paper. However, the individual
factor premium of the strategy going long/short extreme deciles constructed based on
carbon consumption’s betas is above the average factor premiums of SMB and HML
using the full sample (table A.6). That average premium is significant at 10% level.

Table 1.8: Alphas (%) of the proposed long-short portfolios.

This table shows the performance of the portfolios measured by the alpha from the Fama-
French three-factor model: rlsi,t−rft = αi+β1mktt+β2hmlt+β3smbt+ϵi,t i = 1, ..., 8 where
rlsi,t − rft is the excess return of the long-short portfolio i, αi is the performance measure
of the strategy i. It reports the α’s for eight strategies. The first four columns’ strategies
long/short extreme deciles while the last four long/short firms that have positive/negative
betas.

∆cc ∆αcc ∆gc ∆αgc s(∆cc) s(∆αcc) s(∆gc) s(∆αgc)

January 1930 - June 2018
αi 0.33 -0.66*** 0.25 -0.28 -0.19*** -0.30*** -0.21*** -0.24***

(0.23) (0.22) (0.22) (0.21) (0.07) (0.07) (0.07) (0.07)

January 1930 - December 1980
αi 0.32 -0.52** 0.45* -0.46** -0.18** -0.22** -0.12 -0.26***

(0.26) (0.25) (0.26) (0.22) (0.08) (0.10) (0.08) (0.09)

January 1980 - June 2018
αi 0.29 -0.68* 0.09 -0.22 -0.24** -0.41*** -0.34*** -0.13

(0.39) (0.37) (0.38) (0.37) (0.12) (0.11) (0.11) (0.11)

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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1.5 Conclusion
This paper tackles the long-run carbon consumption risks model by allowing both long-
run risks in mean and volatility. We use an Epstein-Zin utility function to disentangle
the risk aversion coefficient and because of its ability to deal with the climate change
thematic. This paper finds empirical support for the long-run risks model in the context of
carbon-green consumption. Three state variables completely define the other variables in
the economy. To sum up, our long-run carbon consumption risks model solves the equity
premium, volatility, and risk-free rate puzzles by decomposing consumption growth into
two components: the growth rate of the carbon consumption component and the growth
rate of the share of green consumption out of total consumption. Our model setting
increases the ability of investors to detect long-run risk; namely, investors can profit from
this risk by using climate change news. Also, our risk factors explain the cross section
of industries and firms. Thus, this paper recommends using the carbon risk measures we
computed to identify industries or firms that pollute the environment the most and to
construct an investment strategy that minimizes/maximizes a long-term environmental
criterion. However, this paper does not find enough evidence about using the risk factors
provided to build investment strategies that easily beat a benchmark portfolio which
return is given by the FF3 model.

Further research can use other proxies for the green component in the consumption
decomposition and conduct the same analysis. One such proxy could be R&D expenses
of carbon-intensive firms allocated to green technology or the revenue from selling Solar
Renewable Energy Certificates.
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Chapter 2

Asset Pricing with Nonlinear
Principal Components∗

2.1 Introduction
The search for a parsimonious stochastic discount factor (SDF) that can explain a large
cross-section of equity returns is central to empirical asset pricing. The recent contri-
bution of Kozak et al. (2020) shows that a large cross-section of characteristics-based
portfolios can be shrunk to a few principal components that make up a SDF with a
robust predictive out-of-sample pricing performance. This departs from the previous lit-
erature, where a limited number of factors predicted the variation of a given cross-section
of characteristics-based portfolios. As this cross-section enlarged and new characteristics
emerged, the number of factors increased from three in (Fama and French (1993)) to four
in (Hou et al. (2015)), five in (Fama and French (2015)), and six in (Barillas and Shanken
(2018)). Kozak et al. (2020) show that restricting the SDF to a few characteristics-based
factors does not adequately capture the cross-section of expected returns. A sparse SDF
with a few high-variance principal components produces a good and robust out-of-sample
fit of the cross-section of expected returns.

The above-mentioned achievements make clear the importance of performing transfor-
mations of the original set of raw returns in order to obtain a robust SDF. In this paper,
we move one step further by studying how changing the metric in which raw information
is transformed in (potential) SDF factors affects this SDF’s pricing performance on a
fixed cross section of returns. While Kozak et al. (2020) use a Bayesian method based
on a quadratic criterion we adopt an entropic criterion, which brings novel statistical
properties to the extracted factors. We build on the recent theoretical developments of
Gunsilius and Schennach (2021) who use a multivariate additive entropy decomposition
to generalize the principal component analysis (PCA) to a nonlinear setting. Their non-

∗Co-authored with René Garcia and Caio Almeida. I am indebted to my advisor, René Garcia for
his invaluable guidance and support.
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linear principal components analysis delivers truly independent factors (as opposed to
the uncorrelated factors of PCA) that maximize the percent of entropy information from
the original cross-section of raw returns that is explained by the nonlinear factors.

Our main empirical contribution is to show that, for different fixed cross-sections of
returns, when a small number of nonlinear principal components is allowed to comple-
ment/substitute factors on an SDF based on linear principal components, the nonlinear
SDF consistently outperforms the linear specification and with fewer factors. To better
understand the additional value of nonlinear principal components in pricing the cross-
section of returns, we apply the new methodology to the Fama-French 25 ME/BM-sorted
portfolios. While the Fama-French three-factor linear model has been the workhorse of
the asset pricing literature, it did not explain well the returns of extreme portfolios, es-
pecially the small-growth one, where nonlinear relations between portfolios and factors
may be present. Next, we explore the set of fifty anomaly portfolios built by Kozak et al.
(2020) using individual stock characteristics to assess the predictive ability of a stochas-
tic discount factor combining both linear and nonlinear factors. Lastly, we use the big
data set of 2600 portfolios proposed by Kozak et al. (2020), which includes the fifty raw
characteristic excess returns plus 2550 interaction terms obtained by crossing the char-
acteristics of the stocks (two by two and adding the third power of each characteristic)
and aimed at capturing nonlinearities. Adding nonlinear principal components to linear
factors increases substantially the out-of-sample R2’s for the different cross-sections of
returns under consideration.

The numerical procedure used to extract the nonlinear principal components pro-
ceeds in several steps. We start with n variables that are potential predictors of future
returns and extract n linear principal components in the usual way. We then select the
k linear factors having the largest eigenvalues (variances) and apply the algorithm of
Gunsilius and Schennach (2021) to capture nonlinear forms of dependence through truly
independent factors. The approach relies on the theory of Brenier maps Brenier (1991),
which are a generalization of monotone functions in multivariate settings, and on the
use of entropy1 to determine the principal nonlinear components that capture most of
the information content of the data, instead of variance for linear principal components.
Another important ingredient is a multivariate additive decomposition of the entropy
into one-dimensional contributions.

Entropy as a measure of dispersion has received considerable attention in the asset
pricing literature. The main focus has been on extracting SDFs from observed asset
prices in the spirit of Hansen and Jagannathan (1991) who minimize the variance of the
SDF subject to asset pricing restrictions. Minimizing the entropy involves higher mo-
ments of the distribution of asset returns and captures nonlinearities in the pricing kernel
or non-Gaussianity in returns. Stutzer (1995) suggests a nonparametric bound to test

1See Shannon (1948), Kullback (1997), Csiszar (1991), and the other references cited in Gunsilius
and Schennach (2021).
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asset pricing models based on entropy minimization, while Bansal and Lehmann (1997)
propose a related entropic bound that is obtained by maximizing the growth portfolio.
Backus et al. (2011) tests disaster-based models based on this entropic bound. Several
papers derive pricing kernels based on entropy. Alvarez and Jermann (2005) provide a
decomposition of the pricing kernel into permanent and transitory components, while
Ghosh et al. (2017) propose a factorization of the SDF into an observable component (a
parametric function of consumption) and an unobservable nonparametric one. Backus
et al. (2014) characterize the pricing kernel entropy and its dynamics for several rep-
resentative agent models. Chen et al. (2020b) use a statistical measure of discrepancy
that extends relative entropy to recover information about investor beliefs embedded in
forward-looking asset prices in conjunction with asset pricing models. Almeida and Gar-
cia (2012, 2017) minimize a large class of divergence measures which includes entropy
under asset pricing restrictions and derive information bounds as well as misspecification
measures.

Since the nonlinear factors are not tradable by nature, we construct mimicking port-
folios to extract tradable factors to be priced alongside with the linear principal com-
ponents. For robustness purposes, we proceed in three manners. First, we performed a
linear regression of the nonlinear factors on the fifty anomaly excess returns including
a constant term. Second, we add one more asset, the CRSP value-weighted index, in
the previous (first) regression. Third, we add an option on the market, to the previous
(second) regression. In this third regression, we approximate the nonlinear principal com-
ponents using a piecewise function to take into account their nonlinearities (see Glosten
and Jagannathan (1994), and Diez De Los Rios and Garcia (2011)). Therefore, the mim-
icking portfolios are the predicted nonlinear factors from the regressions. We then use
these mimicking portfolios along with the linear factors or linear principal components to
estimate the stochastic discount factor or to predict future expected returns under the set
up of Kozak et al. (2020). In the final step of our methodology, we regress the expected
returns of different sets of tradable factors on the covariance matrix of different set of
factors under Elastic-Net and Ridge penalties, and then, assess the accuracy of these
regressions by computing the out-of-sample and in-sample cross-sectional R2. We use
the 3-fold cross-validation procedure of Kozak et al. (2020) to compute the out-of-sample
R2.

This paper is related to three strands of literature. First, the vast literature on
nonlinear principal components. Papers here include Kramer (1991), Schölkopf et al.
(1998), Roweis and Saul (2000), Lee and Verleysen (2007), Chen et al. (2009), Lawrence
(2012), and Damianou et al. (2021) among others. Recall that traditional principal
components are extracted under the assumption of independence and stationarity of
the raw random variables, which are then rotated to obtain uncorrelated linear factors
chosen to maximize the explained variance of the original variables. While all the above-
mentioned methods use variations and / or generalizations of the traditional principal
components method which go from relaxing independence (Chen et al. (2009)) to applying
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traditional PCA to an augmented features’ space via “the kernel trick” (Schölkopf et al.
(1998)), they all obtain factors that maximize the explained variance of the original
raw data using a quadratic criterion. In contrast, we build on Gunsilius and Schennach
(2021) who find factors that are truly independent by construction and that maximize an
aggregate measure of the entropy of the original raw random variables. In this context,
our paper is the first to empirically test these entropic dynamic factors in an asset pricing
application involving the identification of a SDF that prices the cross-section of stocks.

Second, this paper is related to the new growing literature on machine learning asset
pricing models (Feng et al. (2018), Nakagawa et al. (2019), Chen et al. (2020a), and
Fang and Taylor (2021)). It provides a test for the effectiveness of using an alternative
dimension reduction technique (based on entropy as a metric) to price the cross-section of
stock returns. Third, this paper is also related to the strand of literature on the stochastic
discount factor estimation using a given set of factors. Papers here include Fama and
French (1993), Hou et al. (2015), Fama and French (2015), Barillas and Shanken (2018)
and Kozak et al. (2018). While all these models bet on linear factor models we show that
obtaining nonlinear dynamic factors can bring additional valuable information to price
the cross-section of stock returns.

Our paper is also closely related to Gunsilius and Schennach (2021) and Kozak et al.
(2020) in terms of methodology. However, there are key differences between this paper
and theirs. Compared to Gunsilius and Schennach (2021) –which is mainly theoretical
and did a simple application to predict bond excess returns using directly non tradable
factors (nonlinear principal components) conjointly with tradable factors–, our paper
sheds light on how to better adapt empirically the theory of truly independent nonlinear
factors to an asset pricing context. We use the stock market as opposed to the bond
market and the (tradable) mimicking portfolios analysis as opposed to the non tradable
portfolios analysis in Gunsilius and Schennach (2021). Compared to Kozak et al. (2020),
our analysis uses a set of truly independent nonlinear factors and linear factors. This
hybrid method delivers compelling out-of-sample performance measured by the R2.

The remainder of the paper is organized as follows. Section 2.2 explains the method-
ology to extract the independent nonlinear components and to construct the stochastic
discount factor to price the various sets of portfolios. Section 2.3 describes the construc-
tion of the data. We report the results of our analysis in Section 2.4 and conclude in
Section 2.5.
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2.2 Methodology
We first describe the steps to follow to construct the nonlinear factors, then we specify
the estimation procedure of the stochastic discount factor.

2.2.1 Nonlinear Principal Components
Let us consider n portfolios whose excess returns are stacked in a 1 × n vector r =
(r1, r2, ..., rn). One would like to reduce the dimensionality of the space of these n port-
folios to k < n factors. The most common way is to take the first k linear principal
components. This dimension reduction operates by finding successively the linear combi-
nation of the portfolio returns that explains the largest share of the variance-covariance
matrix of the original set of portfolios, with the condition that each successive principal
component is uncorrelated with the previous ones. The intuition is that we search for
a line along which the points are the most dispersed, with the variance as a measure
of dispersion. However, the principal component analysis can be generalized to explore
nonlinear data representations. Gunsilius and Schennach (2021) propose to use entropy,
as another concept of dispersion, to determine the most informative principal nonlinear
components. Moreover, the method delivers independent instead of uncorrelated factors.

Let us suppose that r has a density function denoted g(r). The idea of extracting
truly independent nonlinear factors is to find a map T : Rn 7−→ Rn transforming g(r)
into a target density Φ(r̃) where r̃ = T (r). The choice of this pre-specified density Φ
is useful to find truly independent factors as we will choose a density that factors as a
product of the marginal densities. Therefore, we choose Φ to be a multivariate normal
density function among other possible choices. The change of variable formula yields an
expression of the original density function in terms of the target density function and the
Brenier map as follows :

g(r) = Φ(T (r))det(∂T (r)
∂r′ ) (2.1)

First, we need to estimate the mapping function T by minimizing the distance between
a nonlinear transformation of the data T (r) and the original data r. We want to take
into account a possible nonlinear relationship between the portfolios and yet, we do not
want to depart too much from the original portfolios. Hence, T minimizes the following
optimization problem:
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min
T

∫
||T (r) − r||2g(r)dr

s.t.
∫
A
g(r)dr =

∫
T−1(A)

Φ(r̃)dr̃, A ⊂ Rn

g(r) = Φ(T (r))det(∂T (r)
∂r′ )

T is bijective
T is measurable
T is approximately differentiable

(2.2)

The known solution of this minimization problem (Monge-Kantorovich-Brenier op-

timal transportation problem) is T (r) = ∂C(r)
∂r

, where C is a convex function. The
function C can be estimated using a grid point procedure or an approximation pro-
cedure. This paper uses the grid point procedure. Second, we extract k eigenvectors
e = (e1, e2, ..., ek) corresponding to the k largest eigenvalues of J̃ defined by :

J̃ = −
∫
g(r)log∂T (r)

∂r′ dr (2.3)

Finally, the ith nonlinear principal component is defined by : NLFi = T (r)ei (versus
LFi = r × ẽi

2 in the linear case). This is a nonlinear transformation of the original
portfolio returns because T is a nonlinear function unless r is a Gaussian process. The
nonlinear transformation of the portfolio returns implies that the new factors, NLF =
(NLF1, NLF2, ..., NLFk)3 are not tradable in the sense that their returns cannot be
obtained as a linear combination of the original portfolios of assets. We therefore resort
to the usual procedure of forming a mimicking portfolio for each nonlinear factor -in
order to see which asset will be long and short - before the estimation of the stochastic
discount factor. We explain in Section 2.3.2 the various regression methods we used to
obtain the mimicking portfolios.

2.2.2 Stochastic Discount Factor estimation procedure
In this section, Ft stands for all factors –either the tth row of the raw characteristic returns
matrix (RC), or the tth row of the linear principal components matrix (LF ), or the tth
row of the nonlinear principal components matrix (NLF ), or the tth row of the combined
matrix. We assume that the Stochastic Discount Factor (SDF) is an affine function of
the factors, as follows :

SDFt = 1 − λ′(Ft − µ) (2.4)
2ẽ are the eigenvectors of Cov(r)
3The ith nonlinear factor is a vector NLFi = (NLFi,1, NLFi,2, ..., NLFi,t, ...), written in times series.
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where λ is a K × 1 vector of factor loadings, Ft is a K × 1 vector of risk factors at time t
and µ = E(Ft) is a K × 1 vector of factors’ mean. The stochastic discount factor should
satisfy the law of one price:

E(SDFt × Ft) = 0 (2.5)

E(.) is the mathematical expectation. Equation 2.5 is in line with the characteristics-
based factor model literature.

The naive sample estimator of λ is λ̂ = Σ̄−1µ̄4. This naive estimator is imprecise due to
uncertainty about µ and Σ. However, the principal origin of imperfection is µ –the factor
means since we can use a robust estimator for Σ (see Ledoit and Wolf (2004a), Ledoit
and Wolf (2004b), Kozak et al. (2020)). Therefore, we make two additional assumptions
about the factors: first, we suppose that µ is random and follows a normal distribution,
and second, we consider that Σ = Cov(Ft) is known.

µ ∼ N (0, κ
2

τ
Ση) , τ = tr[Σ] (2.6)

where κ is a scale parameter, η is a shape parameter which we set its value to 2, and
N (0, κ

2

τ
Ση) is the normal distribution of mean 0 and variance κ2

τ
Ση. Because we also

suppose that there is no near-arbitrage opportunities, we want the Sharpe ratio of high-
eigenvalue principal components (PCs) to be higher than the Sharpe ratio of the low-
eigenvalue PCs (which is economically plausible since the latter do not bring much risk
premium, as emphasized in Kozak et al. (2020)).

We follow Kozak et al. (2020) procedure to estimate the stochastic discount factor.
Basically, λ solves the following minimization problem:

λ̂ = argmin
λ

(µ− Σλ)′Σ−1(µ− Σλ) + γ1

K∑
i=1

|λi| + γ2λ
′λ, (2.7)

that is we minimize the HJ-distance subject to an Elastic-net/Ridge constraint5. Under
the assumption that η = 2, γ1 = 0, and therefore γ2 = τ

κ2T
, the expected maximum

squared Sharpe ratio is equal to the squared scale parameter :

E(µΣ−1µ) = κ2 (2.8)

Under the ridge shrinkage hypothesis γ1 = 0, we obtain

λ̂ = (Σ + γ1I)−1µ

I is a K × K identity matrix. Under the Elastic-Net shrinkage hypothesis, we use the
4Σ̄ is the sample estimation of the covariance matrix and µ̄ is the sample factors’ mean.
5γ1 and γ2 are the tuning or shrinkage parameters.
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Least Angle Regression (LAR-EN) algorithm6 to estimate λ.
The shrinkage parameters γ2 or (γ1 and γ2) are optimally chosen using the out-of-

sample R-squared constructed by cross-validation as in Kozak et al. (2020). First, we
set a grid on the shrinkage parameters γ1, and γ2. Second, we divide the sample into
H equal subsamples. Third, for each possible pair of γ1 and γ2, we compute λ̂ by using
H−1 of these subsamples. Then, we evaluate the out-of-sample fit of the resulting model
on the single withheld subsample by computing the out-of-sample R-squared (R2

oos) as

R2
oos = 1 −

(
µ2 − Σ̃2λ̂

)′ (
µ2 − Σ̃2λ̂

)
µ′

2µ2
(2.9)

where µ2 and Σ̃2 are respectively the sample mean and covariance of the factors from the
withheld subsample. We do this exercise H times and for each time, we treat a different
subsample as the out-of-sample data. Finally, we define the cross-validated R2

cv−oos as
the average of the R2

oos across these H estimates and choose γ1 and γ2 that generates the
highest R2

cv−oos as the optimal values.

2.3 Data
As mentioned in the introduction, the empirical part of this paper employs three data
sets. First, we use the Fama-French 25 ME/BM-sorted (FF25) portfolios dowloaded from
Kenneth R. French website. The two other data sets are built using individual stock
characteristics. We start by all the firms’ stocks available on the Center for Research in
Security Prices (CRSP) and take the accounting data from Compustat. The data from
CRSP are monthly/daily and the one from Compustat are quarterly. Our final data is
a set of daily/monthly returns spanning the period from November 1973 to December
2019. For each date t and from each stock s ∈ 1, 2, ..., nt, we build fifty stock-characteristic
portfolios (see Table B.1) following the common definition of anomalies (Novy-Marx and
Velikov (2016), Kozak et al. (2020)) :

(
xis,t

)
s∈1,2,...,nt; i∈1,2,...,50; t∈1,2,...,T

, where nt is the
number of stocks at time t for which we can calculate the anomaly variable. Following
Freyberger et al. (2020) and Kozak et al. (2020), we perform a rank-transformation
denoted rxis,t before normalizing that rank-transformed characteristic to obtain the final
zero-investment long-short portfolios denoted zis,t. First, we rank all stocks for which
data are available based on xis,t for each i, t. Second, we compute rxis,t and zis,t as follows
:

6See the appendix for the algorithm.
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rxis,t =
rank(xis,t)

1 + nt
(2.10)

zis,t =
rxis,t − 1

nt

∑nt
s=1 rx

i
s,t∑nt

s=1 |rxis,t − 1
nt

∑nt
s=1 rx

i
s,t|

(2.11)

The anomalies are monthly for anomalies using CRSP variables and quarterly for anoma-
lies whose calculations use accounting variables. To obtain daily factor returns, we as-
sumed that the anomalies take the same values for each day within the month or the
quarter. Third, the raw characteristic factors are obtained by : RCt = Z ′

t−1Rt where Zt
is a nt-by-50 matrix containing the zis,t for all s, i and Rt is a nt-by-1 vector of daily re-
turns from CRSP. Before doing this interaction, we remove all small capitalization stocks
with capitalization under 0.01% of the aggregate market capitalization for each t from
the data. Furthermore, we orthogonalized each factor returns with respect to the CRSP
value-weighted index return using β’s estimated with the full sample. Then, we rescaled
the portfolio returns to have their standard deviations equal to the in-sample standard
deviation of the excess returns on the CRSP value-weighted index returns which we took
as the market index. We computed the excess returns using the one-month Treasury bill
rate.

2.3.1 Interactions
We add interaction terms to the second data set to constitute the third data set. The
aim of the use of this database is to compare the nonlinearity introduced by Kozak et al.
(2020), which requires a very high-dimensional data set (2,600 factors), to the empirical
performance of the nonlinearity introduced by Gunsilius and Schennach (2021), which
require less nonlinear factors. The interaction-term weights on the individual stocks are
constructed as follows:

zijs,t =
zis,tz

j
s,t − 1

nt

∑nt
s=1 z

i
s,tz

j
s,t∑nt

s=1 |zis,tzjs,t − 1
nt

∑nt
s=1 z

i
s,tz

j
s,t|

(2.12)

ziis,t =
(zis,t)2 − 1

nt

∑nt
s=1(zis,t)2

∑nt
s=1 |(zis,t)2 − 1

nt

∑nt
s=1(zis,t)2|

(2.13)

ziiis,t =
(zis,t)3 − 1

nt

∑nt
s=1(zis,t)3

∑nt
s=1 |(zis,t)3 − 1

nt

∑nt
s=1(zis,t)3|

(2.14)
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2.3.2 Nonlinear principal components
As stated in the methodology section, this paper uses a grid-point procedure to estimate
the Brenier map needed to compute the nonlinear factors. We extract the nonlinear
factors using either the fifty raw characteristics data or the Fama-French 25 portfolios.
To reduce the computation burden, we adopt a hybrid procedure. First, one extracts
the linear principal components, henceforth LF from the fifty raw characteristics (or
the Fama-French 25 portfolios). Second, we compute k nonlinear principal components,
hereafter NLF from the first k linear principal components (LF1, LF2, ..., LFk)7. The
rationale for this approach rests on the premise that the nonlinearity comes from the
linear factors with the highest eigenvalues, the ones that capture the most information.

As mentioned before, we need to reconcile the statistical factor extraction and the
financial factors extraction by constructing portfolios mimicking NLF . For robustness
purposes, we consider three regression strategies for constructing the mimicking portfo-
lios. The first two regressions estimate the mimicking portfolios in the usual way. It
consists in projecting the factors on a set of basis assets. We add a third regression to
account for the nonlinearity by adding piecewise linear functions (see Glosten and Ja-
gannathan (1994) and Diez De Los Rios and Garcia (2011)). Henceforth, we will denote
the mimicking portfolios MP .

NLFj,t = β0,j + β′
c,jRCt + ϵj,t t = 1, ..., T (2.15)

NLFj,t = β0,j + β1,jrmkt,t + β′
c,jRCt + ϵj,t t = 1, ..., T (2.16)

NLFj,t = β0,j + β1,jrmkt,t + β′
c,jRCt + δjmax(rmkt,t − lj, 0) + ϵj,t t = 1, ..., T

(2.17)

where the βs and δs are the regression coefficients, RCt stands for the raw characteristics
excess returns, rmkt,t for the market excess returns, lj is the strike parameter of the call
option j and ϵj,t for the error terms. The returns of the mimicking portfolios will be the
predicted values of these regressions MP = ˆNLF . In the following section 2.4, we will
present the basic case and we put the robustness checking analysis in the appendix B.4.

Let LF−k be a set of 50 − k linear principal components, excluding the first k lin-
ear PCs and let MP (k) and NLF (k) be respectively a set of k mimicking portfolios
from the third regression and nonlinear PCs. In the basic case, we price [LF−k,MP (k)]
using risk factors derived from [LF−k,MP (k)]. Namely, µ = E([LF−k,MP (k)]),Σ =
Cov([LF−k,MP (k)]). To check the robustness of our results, we use directly the non-
linear principal components in the risk factors instead of their mimicking portfolios.
Thereby, µ = E([LF−k,MP (k)]),Σ = Cov([LF−k, NLF

(k)])
7See appendix for the computation details.
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2.4 Findings

2.4.1 Fama-French 25 ME/BM-sorted portfolios
To acquire an intuition about the potential for capturing nonlinearities with the NLPC
methodology, we start our analysis with the Fama-French 25 ME/BM-sorted portfolios.
The properties of this set of test assets are well-known from previous studies, but most
of the time in a linear factor-model context.8 We consider five specifications for the
stochastic discount factor and present the optimal model in Table B.2 in terms of out-
of-sample R2, Sharpe ratio of the mean-variance efficient portfolio, and scale parameter
κ.

First, we estimate the SDF using all the 25 portfolio excess returns as factors (column
1). Second, we do the same exercise but using the 25 principal components extracted from
the Fama-French 25 ME/BM-sorted portfolios as factors (column 2). Third, we estimate
an hybrid model where we replace the first two linear principal components by two
mimicking portfolios of the nonlinear factors extracted from the first two linear factors.
This hybrid specification is reasonable because the nonlinearity dwell in the principal
component with the highest variances or eigenvalues as mentioned before. Fourth, we
estimate Fama-French 3-factor model, and finally we estimate the SDF using just 2-
nonlinear factors. From the comparison of the performance of these specifications in Table
B.2, we draw three main observations. Compared to the linear models, the nonlinear
specifications lead to a higher out-of-sample R2

cv−oos, a higher Sharpe ratio of the MVE
portfolio, and a lower κ, which means that we impose more L2 shrinkage when we consider
nonlinear factors.

2.4.2 Fifty Anomaly Portfolios
We now apply the same methodology to a set of fifty portfolios sorted according to
different stock characteristics as in Kozak et al. (2020). We will proceed in a similar way
as with the Fama-French 25 ME/BM-sorted portfolios by comparing linear specifications
and parsimonious nonlinear specifications. We gather our results about the stochastic
discount factor specifications in Figures B.5, B.6, B.7, and B.8. In the first two figures,
we show the out-of-sample R2’s of a model using fifty raw characteristic excess returns
(Figure B.5), and a model using fifty linear principal components (Figure B.6). We can
see the difference between those two specifications as in Kozak et al. (2020). The left
panel shows the R2

oos in color map under the dual penalty. The right panel shows in red
the R2

oos pattern for different values of the tuning parameter or equivalently the Sharpe
8Ghosh et al. (2019) build a one-factor SDF from a large cross-section of equity portfolios based

on entropy and show that it delivers smaller out-of-sample pricing errors and a better cross-sectional
fit than leading factor models, in particular the three-factor Fama-French model that we consider in
our analysis. The so-called information theoretic SDF is highly positively skewed and leptokurtic, and
therefore captures nonlinearities in the test assets that imply compensation in the observed risk premia.
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Ratio. From these graphs, we conclude that the projection of the SDF on the linear
principal components space requires less factors to attain the maximum R2

oos compared
to the projection into the raw characteristics space, and that the difference between the
two approaches in terms of the highest R2

oos is small.
We now look at the projection of the stochastic discount factor into the hybrid space

where we replace the first k linear factors (k = 2 for Figure B.7 and k = 3 for Figure
B.8) by k mimicking portfolios of the nonlinear factors. In these graphs, we are pricing
fifty factors (made of k mimicking portfolios and 50−k linear factors. For both k values,
we observe that we need fewer factors compared to the linear case in B.5 to reach the
maximum R2

oos under the elastic net penalty. With about 5 factors, the R2
oos is now

around 0.5. The LARS-EN algorithm adds the factors starting by the model with all the
mimicking portfolios of the nonlinear factors. The mimicking portfolios are always kept
among the selected factors in the optimal model. We can conclude that this captures
more information than the linear factors that they replace since less factors are selected
in the optimal model. In the right hand panels of Figures B.7 and B.8, which feature the
R2
oos under the ridge penalty (γ1 = 0), we also report values higher than 50% compared

to a bit more than 20% with the linear-factor analysis in Figure B.5.

2.4.3 Linear factors versus mimicking portfolios
We have put forward the importance of introducing nonlinearity in the stochastic dis-
count factor estimation by replacing the linear factors with the highest variances by the
mimicking portfolios of the nonlinear factors. As a matter of fact, the out-of-sample R2

in average increases from 0.49 to 0.65 for the Fama-French 25 ME/BM-sorted portfolios
data and from 0.22 to 0.55 for the fifty anomaly portfolios data. To better understand
where this improvement comes from, we provide in Figures B.9 and B.10 a plot of the
respective weights ( wi∑ |wi|

) of the first two linear factors and the first two mimicking
portfolios for the fifty anomalies and the twenty-five Fama-French portfolios. Let us first
look at the characteristics portfolios. For the first factor, the main differences in expo-
sures appear for idiosyncratic volatility, beta arbitrage, composite issuance, price and
share volume. The weights for the other portfolios remain very similar between the lin-
ear and the mimicking portfolios. For the second factor, we observe differences for most
factors, albeit with varied magnitudes. The large ones occur mainly for characteristics
linked to momentum. The differences are much less apparent for the 25 FF portfolios,
which is consistent with the fact that the portfolios are built with two characteristics,
size and book-to-market, but we observe small differences for most of the portfolios for
the first factor. There are relatively no significant differences between the linear and the
mimicking portfolios for the second factor.
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2.4.4 Interactions : Very high-dimensional data
In order to compare the nonlinearity introduced in this paper with the one of Kozak
et al. (2020), we include in Figure B.11 the R2

oos for the dual penalty both in the raw
characteristics space and in the linear principal components space with the full set of
2600 portfolios of raw characteristics built by Kozak et al. (2020). It is important to
emphasize that the optimal achievable R2

ooss are not comparable with the results from
our approach since we are not pricing the same assets. However, we can see in the right-
hand panel that the optimal performance is obtained for a small number of PCs but that
the maximum R2

oos in the vicinity of 35%. It tells at least that our more parsimonious
approach to construct nonlinear factors achieves a competitive performance.

2.5 Conclusion
This paper shows how truly independent nonlinear factors alongside linear principal com-
ponents improve the prediction of future expected returns. We use the Fama-French 25
ME/BM-sorted portfolios and fifty anomaly portfolios built using individual stock charac-
teristics to reveal the strengths of the truly independent nonlinear principal components.
Then, we estimate the expected returns or equivalently the stochastic discount factor
using risk factors derived from raw characteristic excess returns, linear principal compo-
nent portfolio returns and nonlinear principal component (mimicking) portfolio returns.
The hybrid model –using both nonlinear and linear principal components– requires less
risk factors to achieve the highest out-of-sample performance compared to a model using
only linear factors or a model projected into the raw characteristic returns. Plotting the
weights of the anomalies on the linear principal component portfolios and the portfolios
mimicking the nonlinear factors, we find a weight shifting on some anomalies. Our find-
ings show that nonlinear principal components should be considered when the SDF is
built with many anomalies since nonlinearities are likely to appear.
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Chapter 3

Anomaly return predictability ∗

3.1 Introduction
The financial literature has put forward multiple anomalies (Harvey et al. (2016)). Those
anomalies are firm characteristics or other observable variables that provide explanatory
power for the cross-section of the sample mean returns beyond the beta of the CAPM
or a benchmark factor model. To exploit these anomalies, researchers have proposed
to sort the individual stock returns according to a given firm characteristic and build
decile or quantile portfolios. The strategy consists in going long in the quantile with the
highest returns and short in the one with the lowest returns, hoping to get the spread
over a certain holding period. The chosen characteristics cover several categories such
as Momentum, Value-versus-growth, Investment, Profitability, Intangibles, and Trading
frictions. Many papers1, the most prominent being McLean and Pontiff (2016), have
tested the out-of-sample and post-publication performances of those anomaly portfolios.
The general conclusion is that the out-of-sample or the post-publication performance of
these anomaly strategies decays.

In this paper, we want to explore a different type of strategy based on the time
series behavior of the quantile portfolios instead of the persistence of the cross-sectional
return spread between extreme portfolios. We focus on the return dynamics of forty-eight
anomaly portfolios chosen among the six above-mentioned categories. More specifically,
we study the predictability of quantile portfolios of forty-eight well-known anomalies
and propose a trading strategy that uses the predictability of the quantile portfolios. It
will consist in going long in the quantile portfolio with the highest predicted return and
shorting the quantile portfolio with the lowest predicted return.

To predict the decile-portfolio returns, we use three sets of information: past prices in-
formation, information about other variables (financial, macroeconomics, limit-to-arbitrage),

∗I am indebted to my advisor, René Garcia for his invaluable guidance and support
1Jegadeesh and Titman (2001), Harvey et al. (2016), Green et al. (2017), Hou et al. (2020), Jacobs

and Müller (2020), etc.
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or a combination of both types of information. The choice of the best set of predictors is
done according to two approaches. First, univariate predictive regressions are performed
and I retain the set of predictors that has a good overall performance at predicting all
decile portfolios. In the second approach, I use stepwise Akaike Information Criteria
(AIC) regression, where the starting model uses all possible candidate predictors, and
then the optimal model is chosen by adding and/or deleting predictor variables based on
their AIC in a stepwise procedure until there is no predictor left to add or delete.

In addition to putting forward evidence of decile-portfolio predictability, we explore
two investment strategies that differ from the usual strategies for all forty-eight anomaly
variables. The first strategy consists of going long on the decile with the highest expected
return and going short on the decile with the lowest expected return each month. The
second strategy goes long on any decile for which the expected return exceeds a cer-
tain threshold and short on any decile for which the expected return is below a certain
threshold.

We use monthly stock market data from the Center for Research in Security Prices
(CRSP) and quarterly accounting data from Compustat to build decile portfolios. First,
I construct forty-eight stock characteristics following the common definition of anomalies
using different frequencies (month, quarter, year) depending on their definition. However,
the values of the anomalies within each quarter or year are kept identical when the
frequency of the anomaly is not monthly. Second, we drop penny stocks which contain
all stocks for which the price is below five dollars. Third, for each month and each
anomaly, stocks are sorted into deciles according to the anomaly value to build value-
weighted returns of the firms in each decile (decile portfolios). Predictors come from Amit
Goyal’s website and are detailed in the Data section. We augment this set of predictors
with the Chicago Fed activity index, the TED Spread, and the VIX CBOE volatility
index. The final monthly data spans the period from January 1978 to December 2019
including 480 decile portfolios and sixteen predictors.

Our findings support the evidence of persistence in the decile and long-minus-short
portfolios, suggesting that abnormal returns may find their source in risk-based and be-
havioral explanations. The predictive regressions reveal that the decile portfolio returns
are predictable, especially by book-to-market, stock variance, dividend yield, dividend
price ratio, long-term rate of return, corporate bond return, TED Spread, and VIX in-
dex. These findings extend Campbell and Shiller (1988) aggregate predictability results
as dividend yield and dividend price ratio appear to be good predictors of the cross-
section of returns. Moreover, a strategy consisting of going long on the decile with the
highest expected return and short on the decile with the lowest expected return each
month (hereafter called deciles-based strategy) produces much higher mean return and
Sharpe ratio than the traditional long-short strategy based on the two extreme portfo-
lios. For example, the deciles-based strategy delivers a monthly mean return of 1.30%
(0.70%) for the size (value) anomaly and these means are statistically significant, while
the traditional high-minus-low strategy corresponding means are 0.1% (0.1%) and are not
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significantly different from zero. This outperformance of the deciles-based strategy over
the traditional strategy remains true for the other anomalies. The first four anomalies
to stand out in decreasing order are Beta arbitrage (3.46% versus 0.1%), Idiosyncratic
Volatility (2.57% versus 0.41%), Share Volume (2.39% versus 0.12%), and Momentum
(2.30% versus 0.79%).

Returns’ predictability is important for two main reasons. First, it helps to improve
the performance of managed portfolios (DeMiguel et al. (2009), Haddad et al. (2020),
etc.). Second, investors can benefit from returns’ predictability by taking a long-term
investment position (Barberis (2000), Detemple et al. (2003), etc.). Up to the 80s, the
literature focused on the efficient market hypothesis (EMH)2, interpreted as implying a
constant equity premium or unpredictable excess stock returns.

The first evidence of stock returns’ predictability–therefore of market inefficiency or
time-varying expected returns– is shown by Shiller et al. (1981), Shiller et al. (1984),
Summers (1986), and Fama and French (1988). Since then, the literature has found
evidence of stock returns’ predictability by using either past prices or other variables.
Brock et al. (1992) find that twenty-six technical trading rules applied to the Dow
Jones Industrial Average significantly outperformed a benchmark of buy and hold. Je-
gadeesh (1990), De Bondt and Thaler (1985), Jegadeesh and Titman (1993) show that
short/intermediate/long-term past returns are related to future expected returns. Au-
thors attribute this relation to microcaps, and data-snooping (see Sullivan et al. (1999),
White (2000), etc.). White (2000) tested whether a given model has predictive superior-
ity over a benchmark model after accounting for the effects of data-snooping. Campbell
and Shiller (1988) use dividend yield to forecast future stock returns. Lamont (1998)
uses dividend payout ratio to predict excess returns on both stocks and corporate bonds.

Though many papers support equity premium predictability, there are others that find
evidence against it due to long-horizon regressions issues, small-sample biases, sampling
issues (see Valkanov (2003), Lewellen (2004), Welch and Goyal (2008) ). Haddad et al.
(2020) studied the predictability of the first five principal components of fifty well-known
anomaly returns using their own book-to-market ratio. They find strong evidence of
predictability. They relied on this predictability to characterize the optimal factor timing
portfolio and improve the estimation the stochastic discount factor (SDF). Arnott et al.
(2016), Asness et al. (2000), Jacobs (2015), etc. use sentiment index, limits to arbitrage
variables, and valuation ratios to forecast future anomaly returns. However, there are
few studies from our knowledge (Cooper et al. (2002)) that looked at the predictability
of anomaly quantiles’ portfolio returns.

The paper is related to two additional strands of literature on the source of abnor-
mal returns and the use of extreme quantiles to trade the anomalies. Abnormal returns
are associated with three main sources: data mining, risk compensation (risk-based ex-
planation), and limit-to-arbitrage or sentiment variables (behavioral explanation). If the

2The hypothesis states that all security prices fully reflect all available information. See Fama (1991).
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abnormal return comes from data mining, it should not be persistent, however, if it comes
from a risk-based or behavioral explanation then it can be persistent, and therefore pre-
dictable. Wang et al. (2021) and Cotter and McGeever (2018) studied the persistence of
various anomalies produced by the literature. The former used limit-to-arbitrage vari-
ables to explain time-series momentum–constructed by going long the anomalies with pos-
itive past returns and short those with negative returns– and cross-sectional momentum–
constructed based on two extreme quintiles: long the high past performance quintile and
short the low past performance quintile– strategies returns such as arbitrage capital and
illiquidity measures. They find that the profits of the momentum strategies are more
pronounced when arbitrage capital is scarcer and market liquidity is lower. They also
find that the persistence of long-short anomaly returns is short-lived and is not due to
data mining. Concerning the latter, they found also that persistence is a matter of a short
horizon. Therefore, this paper takes a simple autoregressive model AR(1) when using
past prices to predict returns and uses an AR(1) term as a predictor in the multivariate
predictive regression model. This paper differs from those papers because we analyze the
persistence at the decile portfolio level and not only at the long-short portfolio level.

Several papers question the use of extreme quantiles to trade the anomalies. Papers
here include Lai et al. (2022), and Cooper et al. (2002). Relying solely on the extreme
deciles can provide surprising results and lower the potential return from a long minus
short strategy. This paper is closely related to the one of Jacobs (2015) and Cooper et al.
(2002). Jacobs (2015) studies the time-series dynamics of 100 anomalies using sentiment
index and limit-to-arbitrage variables. Actually, they did not study those 100 anomalies
individually but built 20 meta-anomalies by averaging long-short returns from the same
anomaly groups. So, their study is at the aggregate level as opposed to this paper which
looks at individual decile portfolios. We study the time-series dynamics of forty-eight
anomalies at the deciles level using limit-to- arbitrage and macroeconomic variables as
predictors. They found that the sentiment index explains well the dynamics of the
meta-anomalies more than limit-to-arbitrage variables. However, the latter explain the
dynamics of short-term reversal and deviations of the law of one price which is consistent
with our findings. His findings about the others meta-anomalies are mitigated. Cooper et
al. (2002) study book-to-market and size portfolios predictability as opposed to this paper
which extends the set of anomalies considered. They constructed strategies going long
and short in different deciles and found interesting results such as the outperformance
of that strategy over the traditional which consists of going long and short in extreme
deciles.

The remainder of the paper is organized as follows. Section 3.2 describes the data
and methodology. Section 3.3 establishes the results. Section 3.4 concludes the paper.
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3.2 Methodology and Data
This section describes the prediction models used in this paper, the data, and the trading
strategies proposed to benefit from the predictability of the deciles’ portfolios.

3.2.1 Methodology
Predictability

Three kinds of predictive regressions are proposed to analyze the predictability of the
decile portfolios of forty-eight well-known anomalies:

Using past prices : ri,t+h = αi + ρiri,t+h−1 + ϵi,t+h (3.1)
Using other variables : ri,t+h = αi +X ′

t+hβi + ϵi,t+h (3.2)
Combined regression : ri,t+h = αi + ρiri,t+h−1 +X ′

t+hβi + ϵi,t+h, (3.3)

where the subscript i identifies the predicted assets (the decile portfolios), h denotes the
prediction horizon (h = 1 for monthly prediction while h = 12 for annual prediction), X is
a set of predictors (macroeconomic predictors, predictors related to stock characteristics,
and limit-to-arbitrage predictors), and αi, ρi and βi are the regression coefficients. The
AR(1) model allows to study the persistence of the returns of each decile as well as the
long-short anomaly returns. The parameter ρi captures the degree of persistence of the
return of portfolio i.

The forecasting literature has identified three approaches about the use of data to do
out-of-sample forecasting analysis. The first approach is the recursive window regression
consisting in using all information until the first split date and then expand the set of
information for the next predictions (Fair and Shiller (1990), West (1996), Pesaran and
Timmermann (1995), etc.). The second approach is the rolling window regression con-
sisting in fixing the size of the regression window. So, as new information is added, oldest
information is removed so that the window size is kept constant (Akgiray (1989),Giaco-
mini and White (2006), etc.). The last approach is the fixed window regression consisting
in fixing the size of the window, estimate the model once –as opposed to the rolling win-
dow regression– and predict all needed future information (Pagan and Schwert (1990),
McCracken (2020), etc.). The prediction outputs may vary depending on the approach
one adopt. The third approach is ruled out due to possible parameter instability when
predicting stock returns as shown in the literature (see Pesaran and Timmermann (2002),
Paye and Timmermann (2006), etc.). So, estimating the parameters once and keep them
unchanged throughout the test sample is not an efficient way to assess the forecasting
ability of the model. Therefore, we are left with either the rolling window regression or
recursive window regression. West and McCracken (1998) proposed four regression-based
tests – mean prediction error, efficiency, encompassing, and first-order serial correlation–
that assess out-of-sample prediction errors of the three approaches listed above. Evidence
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–about the size of nominal 0.05 tests– from that paper gives more support to the recur-
sive window regression than the two others. Furthermore, the rolling window regression
approach requires setting optimally or efficiently the length of the window –since the
estimates depend on it– while the recursive method does not require setting the size of
the window. Another advantage of the recursive method is its logical use of all available
data and the estimates are less volatile. See Elliott and Timmermann (2016).

Hence, this paper adopts the recursive window regression to compute the OOS per-
formance measures listed earlier by splitting the dataset into two: a training sample and
a testing sample. The model is estimated over the first sample and uses the estimated
coefficients to predict over the test sample, namely over the next month (for monthly
prediction) or over the next twelve months (for annual prediction). Then, we add new
information on the training sample and perform the same exercise. Let us consider the
following model and December 1992 as the splitting date:

ri,t = αi + ρiri,t−1 +X ′
tβi + ϵi,t (3.4)

In that case, the equation 3.4 is estimated using information from January 1978 to
December 1992. Then the estimated coefficients are used to predict the return of the
corresponding asset in January 1993 for monthly prediction or predict the returns until
December 1993 for annual prediction. Next, the information on January 1993 is added to
the training sample and the equation 3.4 is re-estimated using information from January
1978 to January 1993. The corresponding coefficients are used to predict the return in
February 1993. The same exercise is performed until the end of the sample– that is
December 2019. In short:

For monthly prediction : r̂i,m+1 =α̂i + ρ̂iri,m +X ′
mβ̂i (3.5)

For annual prediction : r̂i,m+12 =α̂i + ρ̂iri,m+11 +X ′
m+12β̂i (3.6)

At the end of the procedure , we have the following series r̂i,m+1, r̂i,m+2, ..., r̂i,T to compute
out-of-sample (oos) R2

oos and MSPEoos
3 for each portfolio using the equations below 4:

R2
i,oos = 1 −

∑T
t=m+1(ri,t − r̂i,t)2∑T
t=m+1(ri,t − r̄)2 (3.7)

MSPEi,oos = 1
T −m

T∑
t=m+1

(ri,t − r̂i,t)2 (3.8)

3MSPE stands for Mean Squared Prediction Error
4Their in-sample versions are computed by estimating the models using the whole sample and com-

puting all the predictions without re-estimating the models.

R2
i,is = 1 −

∑T
t=2(ri,t − r̂i,t)2∑T

t=2(ri,t − r̄)2
and MSPEi,is = 1

T − 1
∑T

t=2(ri,t − r̂i,t)2
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Where m is the length of the first training sample when computing the out-of-sample
R2s.

When performing predictive regressions, we are always interested in identifying the
best set of variables that helps predict the response variable –in our case the returns.
Previous literature has put forward two types of techniques to forecast the response when
facing a large set of predictors: regularization and model/variable selection techniques.
See in particular Tibshirani (1996), Hoerl and Kennard (1970), Zou and Hastie (2005), for
regularization techniques, and James et al. (2013), Heinze et al. (2018), Yu et al. (2007),
for model/variable selection techniques. More specifically, Brownlees and Gallo (2008)
use the variable selection method to predict the realized volatility and the value at risk
(VaR). They find that using variable selection, the VaR forecasts improved significantly.
Aït-Sahalia and Brandt (2001) show that variable selection helps investors to select the
predictors or the set of predictors to use in their portfolio formation. Moreover, investors
do not know a priori which economic or financial variables will predict well the returns.
So, the variable selection technique is one of their best options to predict future returns
by using all predictors the literature has pointed out as potential predictors.

Therefore, the choice of the best set of predictors– that is X in equation 3.4–is done in
this paper using two approaches. In the first approach, univariate predictive regressions
are performed and we retain the set of predictors that have a good overall performance5

at predicting all decile portfolios. In the second approach, stepwise Akaike Information
Criteria (AIC) regression6 –a model selection technique– is used. In this approach, the
starting model uses all potential candidate predictors based on all information sources,
and then the optimal model is chosen by adding and/or deleting predictor variables
based on their AIC in a stepwise procedure until there is no predictor left to add or
delete. Basically, the two approaches are different because the first uses the same set of
predictors for all decile portfolios over all the training samples. But the second approach
may use a different set of predictors from one decile portfolio to another and from a
training sample to another. The use of different predictive models helps to determine the
robustness of deciles-based strategies.

Trading strategies

The usual trading strategy when it comes to benefiting from the mispricing brought
by the anomalies is to go long and short the extreme quantiles. An example of such
a traditional trading rule is the SMB or HML type of strategy (see Fama and French
(1993)). Most papers in the literature have adopted this rule to assess the profitability
of the anomalies. This paper departs from this literature and proposes trading strategies
similar to Cooper et al. (2002). The purpose of these strategies is to benefit from the

5We measure the overall performance by the out-of-sample R2s
6We use AIC instead of BIC because of the end goal which is the prediction. See Stone (1977),

Shmueli (2010)
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cross-decile returns’ variation. The mean returns vary a lot within the deciles (see Table
C.1 for more details), and any investor should be willing to build an investment strategy
based on this observation. For each of the forty-eight anomaly variables, we propose
two types of strategy. The first one consists of going long on the decile with the highest
expected return and short on the decile with the lowest expected return each month. The
second strategy consists of going long any decile for which the expected return exceeds a
certain positive threshold and going short on any decile for which the expected return is
below a certain negative threshold. If there are no decile portfolios above or below the
thresholds, the strategy suggests going long/short on the 1-month T-bill. This second
strategy is similar in spirit to filter rules (see Fama and Blume (1966), Sweeney (1988),
etc.). We use the level of the expected returns and the threshold to filter decile portfolios
at each period. We buy and hold deciles that have high expected returns while selling
deciles that have low expected returns. The idea behind this strategy is to take effective
long and short positions. An effective long (short) position means go long (short) on
deciles with positive (negative) expected returns in order to have a positive profit. The
threshold can be determined arbitrarily (as in Cooper et al. (2002)) based on the investor
risk appetite or preference. We propose to set the threshold at the average level of the
risk-free rate. One can choose optimally the threshold by minimizing a criteria –for
example the transaction cost– or by maximizing a criteria –for example the terminal
wealth, the average profit, etc. The expected returns are obtained using the predictive
regressions proposed in this paper. The performance of the proposed strategies is assessed
by using the mean return, Sharpe ratio, and the terminal wealth generated by the strategy
compared to the one generated by the traditional trading rule.

In addition, we assess the after-trading-cost performance of our strategies using the
framework of Farouh and Garcia (2021) to estimate trading costs. We want to make
sure that all of the profits generated by the proposed strategies are not erased by the
transaction costs. Their transaction costs estimation model can be summarized into one
equation:

∆pit = ci0,tp × ∆qit + ci1,tp × FRt × ∆qit + βimrm,t + ϵit (3.9)

where pit stands for the log trade price, qit is a variable specifying the trade direction.
qit = 1 if it took place at the ask and qit = −1 if it took place at the bid. rm,t is the
market return, FRt is the financial risk, ϵit

iid∼ N (0, σ2
ϵi

)7 is the error term. The time
subscript t (tp) denotes the daily frequency (the time period over which the trading cost
are estimated, either monthly or annually). The wanted trading cost is cit = ci0,tp +
ci1,tp ×FRt. All the parameters are estimated using a Bayesian approach (see Hasbrouck
(2009), and Farouh and Garcia (2021)). In our strategy, we can go long or short any
decile. So, all the deciles have a chance to be selected. We compute the frequency of
inclusion of each decile for each anomaly analyzed. The frequency of inclusion of a decile

7Normal distribution
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j is the number of time we take a –long or short– position in this decile. This helps us to
compute the weighted average transaction cost serving to calculate the after-trading-cost
performance of the strategies. The weighted average transaction costs of the long, and
short positions are calculated using the following equation:

tcostid,p =
10∑
j=1

freqij,p × tcostij (3.10)

tcostib,p = tcosti1 or tcosti10 (3.11)

where tcostid,p (tcostib,p) is the weighted average transaction cost of the position p=long
or short using the deciles-based (benchmark) strategy for anomaly i, d stands for deciles-
based strategy, b for benchmark strategy, p = L, S for long and short, freqij,p denotes the
frequency of inclusion of decile j in the position p for anomaly i, and tcostij is the annual-
ized average transaction cost of trading jth decile of anomaly i. Finally, we compute the
after-trading-cost return by taking the difference between the annualized gross return of
the long-short strategy s = d or b and the corresponding transaction cost as it follows:

netRa
s,i = Ra

s,i − tcostis,L − tcostis,S (3.12)

where Ra
s,i is the annualized gross return, netRa

s,i is the net of transaction cost return, a
stands for annualized, i for anomaly, s for strategy.

3.2.2 Data
This paper builds the dependent variables using monthly stock market data from the Cen-
ter for Research in Security Prices (CRSP) and quarterly accounting data from Compus-
tat. First, we construct forty-eight stock characteristics following the common definition
of anomalies (Novy-Marx and Velikov (2016), Kozak et al. (2020)). The full list of the
anomalies used in this paper is provided in Table B.1 and their definitions in the sec-
tion B.3 of the Appendix. Anomalies are constructed using different frequencies (month,
quarter, year) depending on their definition. However, the values of the anomalies within
each quarter or year are kept identical when the frequency of the anomaly is not monthly.
Second, we drop penny stocks which contain all stocks for which the price is below five
dollars. Third, for each month and each anomaly, we sort the stocks into deciles accord-
ing to the anomaly value to build deciles’ portfolios. Finally, the dependent variables are
computed as the value-weighted returns of the firms in each decile.

Predictors are those used by Welch and Goyal (2008) augmented by the Chicago Fed
activity index and two limit-to-arbitrage predictors: book-to-market (b.m), Treasury bills
(tbl), long-term yield (lty), net equity expansion (ntis), inflation (infl), long-term rate of
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return (ltr), corporate bond return (corpr), stock variance (svar), Dividend price ratio
(Dpr), Dividend yield (Dy), Earning price ratio (Epr), Dividend Payout Ratio (Der),
Default yield spread (Dfy), Chicago Fed National Activity Index (gro_p), TED spread
(Garleanu and Pedersen (2011) ) and Amihud Illiquidity measure (Amihud (2002) ).

The final monthly data span the period from January 1978 to December 2019 includ-
ing 480 decile portfolios and sixteen predictors.

3.3 Findings
Our predictive models use three information sets : past prices, set of macroeconomic, fi-
nancial and limit-to-arbitrage variables, or a combination of the two types of information.
We present the respective findings obtained with these three different sets of predictors.
We also report the performance of the trading strategies described above.

3.3.1 Predictability of the decile portfolios
Using only past prices

The prediction analysis using only past prices (see Appendix C.9) reveals that some decile
portfolios are predictable at monthly horizon because their associated out-of-sample R2

oos

are positive. This is in line with papers showing that persistence is a short-term phe-
nomenon (see Wang et al. (2021) and Cotter and McGeever (2018)). These decile portfo-
lios are consistently predictable because the methodology does not depend on the choice
of a split date. Most of the predictable decile portfolios remain predictable after the
change of the split date.

Using financial, macroeconomic and limit-to-arbitrage variables

The following results correspond to 1992m12 as a split date– which means that the
forecasting starts as of 1993m1 when using only other variables and starts as of 1993m2
when using also past prices. A robustness check is performed with respect to a change
in the split date by choosing 2004m12 following Stock and Watson (2006) and Inoue
and Kilian (2008) . They suggest choosing the split date such that one has enough data
to estimate and enough range to do the out-of-sample exercise. In addition, Rapach et
al. (2010) and Welch and Goyal (2008) suggest considering multiple split dates. The
robustness check analysis reveals similar results as those presented in this section.

As mentioned in section 3.2.1, the first prediction approach consists of running uni-
variate regressions and keeping predictors that have good performance at predicting all
the 480 decile portfolios. The results of the univariate regressions can be found in Table
C.10. Overall, six predictors have good predictive power at monthly horizon and predict
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consistently almost all the deciles using a univariate regression model: book-to-market,
stock variance, dividend yield, dividend-price ratio–stock characteristic variables– and
long-term rate of return, corporate bond return–interest rate related variables. There-
fore, we run a predictive regression using these six predictors–columns 2 and 7 (model 1)
of Table C.2 –for all the decile portfolios. Columns 3, 6, and 8 of Table C.2 are variations
of model 1 where some predictors are added –either AR(1) term or limit-to-arbitrage
variable (VIX and TED Spread) or both.

Let us take model 1 and look at the predictability of the decile portfolios of the
two well-known anomalies (size, and value). The returns of their deciles are predictable
and the degree of predictability varies across deciles and anomalies. For example, the
first five most predictable deciles of the size anomaly in decreasing order of their R2

oos

are the second, third, tenth, fourth, and the fifth. While the first five most predictable
deciles of the value anomaly are the tenth, eighth, seventh, fourth, and sixth. The R2

oos

asssociated with the value anomaly deciles ranges from 3.6% to 19.6%, while for the size
it varies between 11.4% and 17.4%, showing less volatility. The last decile is the least
predictable for six anomalies (prof, aturnover, indmom, roa, betaarb, shvol) and the
extreme deciles tend to be among the least predictable (lowest R2

oos) for many anomalies
(lev, roaa, sp among others.). The R2

oos drastically increases when we add the past prices
information as predictors (model 2). That observation confirms the findings in section
3.3.1 showing the persistence property of the decile returns. The pattern in R2

oos is still
the same as in model 1. Thus, investors should not look only at the extreme deciles when
forming investment strategies even though they are among the most predictable for some
anomalies.

Among the six strong predictors identified in the univariate predictive regressions,
some of them may be good predictors for specific deciles of certain characteristic port-
folios. For example, predictors such as dividend yield or dividend-price ratio share some
common information with the decile portfolios to be predicted such as earning-price ratio
or dividend yield (as in Lamont (1998), and Campbell and Shiller (1988)). Therefore, we
perform stepwise regressions (model selection analysis) to allow the model to select the
best set of predictors for each decile portfolio. The findings for these predictive regres-
sions where the set of predictors may change from one decile to another are presented
in columns 4 and 9 of Table C.2 (Model 3). We find that most of the previous six well-
performing predictors from the univariate regressions are retained when performing the
variable selection technique albeit the R2

ooss from Model 3 are smaller than the ones from
Model 1. Once again, we observe the same pattern in the R2

ooss. Extreme deciles of some
anomalies are still among the least predictable. The R2

oos of the size (value) anomaly
ranges from 3.6% to 13.4% (-2.2% to 14.9%) less (more) volatile. For this model, the
last three deciles of share volume (shvol) and industry momentum (indmom) anomalies
are not predictable at all. They have negative R2

ooss. So, it suggests that we cannot rely
on these extreme deciles to form a trading strategy as put forward in the literature. The
findings and interpretations do not change that much when we change the split date. We
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still find the same pattern in the R2
ooss.

Overall, all the deciles are predictable by the selected set of predictors used in Model
1 and Model 2 because they deliver positive R2

oos for all the portfolios. Therefore, we
find support of return predictability using past information (prices and other variables) as
shown in some papers after the 80s (Haddad et al. (2020), Arnott et al. (2016), Cooper et
al. (2002), Jegadeesh and Titman (1993), among others). The other models give pretty
good results too–with some exceptional negative R2

oos for a few specific deciles. The
preferred model by far is Model 2– Model 1+ AR(1) term– that includes the persistence
property of deciles found in section 3.3.1. The decile portfolios of some anomalies are
monotonically predictable– decreasing R2 or U-shape.

Overall, the decile portfolios are predictable and this predictability can be used to
build an investment strategy. Besides, extreme deciles are not necessary more predictable
than the middle deciles. Consequently, a strategy investing in any of the deciles based on
their expected returns – deciles-based strategy– is proposed, analyzed, and compared to
the usual benchmark trading strategy consisting of investing only in the extreme deciles
(see section 3.3.2).

3.3.2 Trading strategies
In this section, we introduce a portfolio analysis in order to exploit the predictability
found in section 3.3.1. Results are displayed in Table C.3. A first glance at the table
shows clearly that the deciles-based strategy outperforms the benchmark strategy.

First, the mean returns (column µm) of the long minus short portfolios of the deciles-
based strategy are positive and significant at 5% except for two anomalies– Asset Turnover
and Standardized Unexpected Earning, while only 11 out of 48 are significant if we long
(short) the first decile and short (long) the tenth decile. Even when the mean return of
the benchmark long-minus-short strategy is positive, it is lower than the mean return of
the deciles-based strategy. The t-statistic test shows that both mean returns are signifi-
cantly different (see the last column of the table). The top five anomalies for which our
deciles-based strategy yields a monthly return above 2% are betaarb (3.5%), ivol (2.6%),
shvol (2.4%), mom12 (2.3%), and rome (2%). In contrast, none of the 11 significantly
positive returns produced by the benchmark strategy is above 1%. The highest is 0.9%
for the market equity (rome) anomaly.

Second, the terminal wealth of investing 1$ at the beginning of the forecasting period
(column tw ) and reinvesting the proceeds over the sample period is always greater
for the deciles-based strategy. The terminal wealth is large enough for the previous
top five anomalies –betaarb (38,330$), ivol (2027$), shvol (1365$), mom12 (728$), rome
(422$) to potentially offset the transaction cost. Moreover, the breakeven transaction
cost incurred to equate the long position mean returns of both trading rules for each
anomaly is reasonable (breakeven t-cost column of Table C.3).

Tables C.4 and C.5 give detailed information about the frequency with which each
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decile is selected in the long and short strategies respectively. It is clear that all deciles
are selected at one point or another for all anomalies, implying that the deciles-based
strategy dominates the benchmark one. Depending on the anomaly, we do select more
often some deciles than others.

Let us look at the deciles-based strategy applied to size and value anomalies compared
to the traditional HML and SMB. The HML type strategy takes a long position 100%
of the time in the high book-to-market (value anomaly) stocks–the last decile– while the
proposed deciles-based strategy takes a long position of 41% of the time in the last decile,
17% of the time in the eighth decile, 15% of the time in the first decile. For the short
side, it takes a short position 100% of the time in the low book-to-market stocks–the first
decile, while the proposed deciles-based strategy takes a short position 40% of the time
in the first decile, 28% of the time in the ninth decile, and 9% of the time in the eighth
decile.

Regarding the SMB type strategy, it takes a long position of 100% of time in the small
market capitalization (size anomaly) stocks–the first decile– while the proposed deciles-
based strategy takes a long position of 38% of the time in the last decile, 19% of the time
in the ninth decile, 19% of the time in the first decile. It takes a short position 100%
of the time in the big market capitalization stocks–the last decile– while the proposed
deciles-based strategy takes a short position 45% of the time in the first decile, 10% of
the time in the ninth decile, 22% of the time in the tenth decile. Giving the flexibility to
take a long-short position in any decile increases considerably the mean return of the long
minus short portfolio. A deciles-based strategy delivers a mean return of 1.30% (0.70%)
for the size (value) anomaly and these means are significant. Meanwhile, the usual HML
(SMB) type strategy delivers 0.1% (0.1%) for the value (size) anomaly and they are not
even significant.

In addition, Figure C.1 plots the time-series of the top four mean returns of the long-
minus-short deciles-based strategies with the corresponding returns of the benchamark
strategy. It includes, in decreasing order, Beta arbitrage (Betaarb), Idiosyncratic Volatil-
ity (Ivol), Share Volume (Shvol), and Momentum (Mom12) anomalies. During and after
times of crisis, such as the Financial crisis in 2008, our strategy is able to generate positive
profit. The profit generated by the benchmark strategy investing in betaarb, ivol, and
mom12 anomalies starts dropping around 2009 and reach a trough around 2010 while
our strategy was able to generate increasing profit around 2009 and reach a peak around
2010. These results hold as well for the dot-com bubble in the late 1990s.

We also plot the corresponding cumulative returns of the four pairs of strategies (see
Figure C.2). The deciles-based strategy outperformed the traditional one based on the
unadjusted profit measure (see Table C.3 and C.7) and the risk-adjusted measure (see
Table C.6 for the Sharpe Ratio comparison). The Sharpe Ratios are not excessively
high, contrary to the suggestion by Haddad et al. (2020), and are positive. Eighteen
out of forty-eight anomalies have a good Sharpe Ratio (SR above 1). The top five
anomalies for which our deciles-based strategy delivers a good SR are betaarb (2.22),
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shvol (1.6), indrrev (1.6), ivol (1.4), and rome (1.3). The risk-adjusted returns (SRs) for
the benchmark strategy are less than 1.

The mean returns of our long-short strategy are much higher when considering the
expected returns filter rule (see Table C.7). The reason is that we only take effective
long (returns always positive) and short (returns always negative) positions. The monthly
average returns are all above 3% and less volatile. It goes from 2.96% to 3.94%. Moreover,
the Sharpe Ratios of this expected return filter rule are near or above 1. It goes from
0.94 to 1.20. However, the transaction cost may be higher compared to the strategy that
goes long (short) the decile with the highest (lowest) expected returns. The explanation
of this potential high transaction cost lies in the number of deciles to go long or short. In
fact, the expected returns filter rule can go long-short many deciles as long as they pass
the filtering rule, while the other deciles-based strategy goes long-short one decile at a
time. Can the profits generated by our strategies survive after considering the transaction
costs? We will discuss this matter in the next section.

3.3.3 Transaction costs
In the proposed strategies, we can change the deciles we invest in each month (rebal-
ancing) and that is a source of transaction costs incurred by the investors. We discuss
this issue in this section and propose a way to minimize the transaction cost. Previous
literature has put forward transaction cost mitigation methods. Novy-Marx and Velikov
(2016) propose three ways to reduce transaction costs. First, one can reduce the trading
cost by reducing the strategy rebalancing frequency. Second, one can reduce the trading
cost by trading only cheap-to-trade stocks. Third, they suggest introducing a buy/hold
spread that discourages investors to enter into a position. They show that the most
effective way to reduce transaction costs is the latter.

Before analyzing the method that might effectively reduce the transaction cost in our
proposed strategies, let us analyze the situation. In an ideal world where the transaction
cost is reasonable (low), we show that our proposed strategies beat the traditional long-
short strategy based on extreme deciles and that the breakeven transaction costs that
equate the mean return of our strategy to the mean return of the traditional strategy are
low (see the breakeven t-cost column in Table C.3). Of the two strategies we proposed, the
expected returns filter rule is the one that will generate high transaction costs. Therefore,
we compute after-trading-cost returns for the strategy that goes long the decile with the
highest expected return and goes short the decile with the lowest expected return (see
Table C.8). Next, we suggest a mitigation method for the filtering rule strategy.

Looking at Table C.8, we can see that the weighted average transaction costs of our
strategy are lower than the transaction cost of the benchmark strategy calculated using
equations 3.11 and 3.10. Transaction costs (annualized) of the deciles-based strategy go
from 1.5% to 4.5% while the transaction costs (annualized) for the benchmark strategy
range from 1.6% to 5%. The cheapest anomalies to trade are the return on market
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equity (1.5%) and leverage (2.5%) for our strategy and return on market equity (1.6%)
and growth in long-term net operating assets (2.6%) for the benchmark strategy. Among
the anomalies for which our strategy generates significant profit (see Table C.3), all
of their after-transaction-cost returns (annualized) are positive. On the opposite, inv,
accruals, and aturnover do not generate a positive net profit for the benchmark strategy.
Moreover, the net profit of our strategy is far above the benchmark’s net profit.

In a world where the transaction cost is important, we can still find a strategy that
beat the traditional long-short strategy by applying the expected return filter rules. A
solution is to set the threshold at a high value and then reduce the number of active
trading months, months where there is at least one decile that passes the filter. Hence,
successfully reducing the number of active trading months (less rebalancing) leads to
low transaction costs. This is in line with one of the solutions proposed by Novy-Marx
and Velikov (2016) –which consists in reducing strategy rebalancing frequency. Another
solution will be to reduce the set of deciles for which we can potentially take a position to
the cheapest-to-trade deciles. An optimal solution will be to find the optimal threshold
–defined as the threshold that minimizes the transaction cost. It will consist in applying
the expected returns filter rule for many values of the threshold and taking the value
that minimizes the transaction cost.
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3.4 Conclusion
This paper studies anomaly return predictability across deciles using a set of forty-eight
anomaly variables built using individual stock characteristics. After constructing the
decile portfolios, this paper studies their predictability using past prices, and other well-
known predictors. The analyses reveal that some decile portfolio returns are persistent.
In addition, decile portfolio returns are predictable by book-to-market, stock variance,
dividend yield, dividend price ratio, long-term rate of return, corporate bond returns, the
TED Spread, and the VIX index. Moreover, a strategy consisting of going long on the
decile with the highest expected return and short on the decile with the lowest expected
return each month gives a way better mean returns and Sharpe ratio than the traditional
strategy for forty-five out of forty-eight anomalies. The deciles-based strategy delivers a
monthly mean return of 1.30% (0.70%) for the size (value) anomaly and these means are
significant. Meanwhile, the usual HML (SMB) type strategy delivers 0.1% (0.1%) for the
value (size) anomaly and they are not significant. This outperformance of the deciles-
based strategy over the traditional strategy remains true for the other anomalies. The first
four anomalies to stand out in decreasing order are Beta arbitrage (3.46% versus 0.1%),
Idiosyncratic Volatility (2.57% versus 0.41%), Share Volume (2.39% versus 0.12%), and
Momentum (2.30% versus 0.79%). While tansaction costs reduce profits, deciles-based
strategies still appear to generate a positive performance but a more thorough analysis
needs to be performed.
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Appendix A

Appendix to Chapter 1

A.1 Consumption growth decomposition
Let us consider I categories of consumption among which J carbon consumption cate-
gories and I − J green consumption categories.

Ct =
I∑
i=1

Ci,t (A.1)

Ct =
J∑
i=1

Ci,t +
I∑

i=J+1
Ci,t (A.2)

Ct = CCt +GCt (A.3)

Growth rate decomposition :

∆ct+1 = log(CCt+1 +GCt+1) − log(CCt +GCt) (A.4)

∆ct+1 = log(CCt+1) + log CCt+1 +GCt+1

CCt+1
− log(CCt) − log CCt +GCt

CCt
(A.5)

∆ct+1 = ∆cct+1 −
(

log CCt+1

CCt+1 +GCt+1
− log CCt

CCt +GCt

)
(A.6)

∆ct+1 = ∆cct+1 − ∆αCC,t+1 (A.7)
Or ∆ct+1 = ∆cct+1 − ∆αgc,t+1 + ∆χgc,cc,t+1 (A.8)

where ∆ct+1, ∆cct+1 and ∆αCC,t+1 are consumption, carbon consumption and carbon
consumption share growth rates (log-difference) respectively, and χgc,cc,t = log GCt

CCt
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A.2 Price of risks
λm,α = (−γ + (1 − θ)κ1A3) (A.9)
λm,cc = γ + (−γ + (1 − θ)κ1A3) π (A.10)
λm,x = (1 − θ)κ1A1ψx (A.11)
λm,w = (1 − θ)κ1A2 (A.12)

are prices of risk that correspond to the four sources of risk ϵα,t+1, ϵcc,t+1, ϵx,t+1, ϵσ,t+1.

A.3 Theoretical moments calculation
From the carbon/green consumption growth rate processes, we have :

E[∆cct+1] = νcc (A.13)
E[∆αcc,t+1] = να (A.14)

V[∆cct+1] = V[νcc + xt + σtϵcc,t+1]
= V[xt] +V[σtϵcc,t+1]

= ψ2
x

1 − ρ2
x

σ2 + σ2 (A.15)

V[∆αcc,t+1] = V[να(1 − ρα) + ρα∆αcc,t + σαϵα,t+1 + πσtϵcc,t+1]
(1 − ρ2

α)V[∆αcc,t+1] = σ2
α + π2σ2

V[∆αcc,t+1] = σ2
α + π2σ2

1 − ρ2
α

(A.16)

Cov[∆cct+1,∆cct+2] = ρx
ψ2
x

1 − ρ2
x

σ2 (A.17)

Cov[∆αcc,t+1,∆αcc,t+2] = Cov[∆αcc,t+1, ρα∆αcc,t+1 + σαϵα,t+2 + πσt+1ϵcc,t+2]
= ραV[∆αcc,t+1]

= ρα
σ2
α + π2σ2

1 − ρ2
α

(A.18)

From the dividend growth rate process, we can get :

E[∆dt+1] = νi + ϕα,iνα (A.19)

V[∆di,t+1] = ϕ2
iV[xt] + ϕ2

α,iV[∆αcc,t] + ψ2
iV[σtϵi,t+1]

= ϕ2
i

ψ2
x

1 − ρ2
x

σ2 + ϕ2
α,i

σ2
α + π2σ2

1 − ρ2
α

+ ψ2
i σ

2 (A.20)
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Cov[∆di,t+1,∆di,t+2] = Cov[ϕixt + ϕα,i∆αcc,t + ψiσtϵi,t+1, ϕixt+1 + ϕα,i∆αcc,t+1 + ψiσt+1ϵi,t+2]
= ϕ2

iCov[xt, xt+1] + ϕ2
α,iCov[∆αcc,t,∆αcc,t+1]

= ϕ2
i ρxV[xt] + ϕ2

α,iρα
σ2
α + π2σ2

1 − ρ2
α

= ϕ2
i ρx

ψ2
x

1 − ρ2
x

σ2 + ϕ2
α,iρα

σ2
α + π2σ2

1 − ρ2
α

(A.21)

From both carbon/green consumption and dividend growth rates, we get the cross
moments :

Cov[∆αcc,t+1,∆cct+1] = Cov[ρα∆αcc,t + σαϵα,t+1 + πσtϵcc,t+1, xt + σtϵcc,t+1]
= πV[σtϵcc,t+1]
= πσ2 (A.22)

Cov[∆di,t+1,∆cct+1] = Cov[ϕixt + ϕα,i∆αcc,t + ψiσtϵi,t+1, xt + σtϵcc,t+1]
= ϕiV[xt]

= ϕi
ψ2
x

1 − ρ2
x

σ2 (A.23)

Cov[∆di,t+1,∆αcc,t+1] = Cov[ϕixt + ϕα,i∆αcc,t + ψiσtϵi,t+1, ρα∆αcc,t + σαϵα,t+1 + πσtϵcc,t+1]
= ϕα,iραV[∆αcc,t]

= ϕα,iρα
σ2
α + π2σ2

1 − ρ2
α

(A.24)

From the log price dividend process:

E[zi,t] = A0,i + A2,iσ
2 + A3,iνα (A.25)

V[zi,t] = A2
1,i

ψ2
x

1 − ρ2
x

σ2 + A2
2,i

σ2
w

1 − ν2 + A2
3,i
σ2
α + π2σ2

1 − ρ2
α

(A.26)

Cov[∆di,t+1, zi,t] = Cov[ϕixt + ϕα,i∆αcc,t + ψiσtϵi,t+1, A1,ixt + A2,iσ
2
t + A3,i∆αcc,t]

= ϕiA1,i
ψ2
x

1 − ρ2
x

σ2 + ϕα,iA3,i
σ2
α + π2σ2

1 − ρ2
α

(A.27)

Cov[∆ct+1, zi,t] = Cov[∆cct+1 − ∆αcc,t+1, A1,ixt + A2,iσ
2
t + A3,i∆αcc,t]

= Cov[xt + σtϵcc,t+1, A1,ixt + A2,iσ
2
t + A3,i∆αcc,t]

− Cov[ρα∆αcc,t + σαϵα,t+1 + πσtϵcc,t+1, A1,ixt + A2,iσ
2
t + A3,i∆αcc,t]

= A1,i
ψ2
x

1 − ρ2
x

σ2 − ραA3,i
σ2
α + π2σ2

1 − ρ2
α

(A.28)
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Return on consumption claim rc,t+1, on dividend paying asset
ri,t+1 and risk-free rate rf,t

Let us determine zt = A0 + A1xt + A2σ
2
t + A3∆αcc,t. From the Euler equation 1.15, we

have :

1 = Ete
θlogδ−

θ

ψ
∆ct+1+θrc,t+1

= e
Et(θlogδ−

θ

ψ
∆ct+1+θrc,t+1)+0.5Vt(θlogδ−

θ

ψ
∆ct+1+θrc,t+1)

= e
θlogδ−

θ

ψ
Et(∆ct+1)+θEtrc,t+1+0.5Vt((−

θ

ψ
+θ)∆ct+1+θκ1zt+1)

= exp(θlogδ + (1 − γ)(νcc + xt − να(1 − ρα) − ρα∆αcc,t) + θ(κ0 − A0 − A1xt − A2σ
2
t − A3∆αcc,t)

+ θκ1(A0 + A1ρxxt + A2((1 − ν)σ2 + νσ2
t ) + A3(να(1 − ρα) + ρα∆αcc,t))

+ 0.5
{(

(1 − γ + π(−1 + γ + θκ1A3))2 + (θκ1A1)2ψ2
x

)
σ2
t + (−1 + γ + θκ1A3)2 σ2

α + θ2κ2
1A

2
2σ

2
w

}
)

0 = θlogδ + (1 − γ)(νcc − να(1 − ρα)) + θ(κ0 − A0) + θκ1(A0 + A2(1 − ν)σ2 + A3να(1 − ρα))
+ 0.5

{
(−1 + γ + θκ1A3)2 σ2

α + θ2κ2
1A

2
2σ

2
w

}
+ (1 − γ − θA1 + θκ1A1ρx)xt
+
(
−θA2 + θκ1A2ν + 0.5 (1 − γ + π(−1 + γ + θκ1A3))2 + 0.5(θκ1A1)2ψ2

x

)
σ2
t

+ (−(1 − γ)ρα − θA3 + θκ1A3ρα) ∆αcc,t

By identification :

A1 =
1 − 1

ψ
1 − κ1ρx

A3 = −

(
1 − 1

ψ

)
ρα

1 − κ1ρα

A2 = 0.5θ

(
1 − 1

ψ
+ π(−1 + 1

ψ
+ κ1A3)

)2

+ (κ1A1)2ψ2
x

1 − κ1ν

A0 =
logδ + (1 − 1

ψ
)(νcc − να(1 − ρα)) + κ0 + κ1(A2(1 − ν)σ2 + A3να(1 − ρα))

1 − κ1

+
0.5θ


(

−1 + 1
ψ

+ κ1A3

)2

σ2
α + κ2

1A
2
2σ

2
w


1 − κ1
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Let us determine :

zi,t = A0,i + A1,ixt + A2,iσ
2
t + A3,i∆αcc,t

Let us remind that one can rewrite the return on any asset and its dividend growth
process as follow :

ri,t+1 = κ0,i + κ1,izi,t+1 − zi,t + ∆di,t
∆di,t+1 = νi + ϕixt + ϕα,i∆αcc,t + ψiσtϵi,t+1

From the Euler equation 1.15, we have :

1 = Ete
θlogδ−

θ

ψ
∆ct+1+(θ−1)rc,t+1+ri,t+1

= e
Et(θlogδ−

θ

ψ
∆ct+1+(θ−1)rc,t+1+ri,t+1)+0.5Vt(θlogδ−

θ

ψ
∆ct+1+(θ−1)rc,t+1+ri,t+1)

= e
θlogδ−

θ

ψ
Et(∆ct+1)+(θ−1)Etrc,t+1+Etri,t+1+0.5Vt((−

θ

ψ
∆ct+1+(θ−1)rc,t+1+ri,t+1)

0 = θlogδ − γ(νcc + xt − να(1 − ρα) − ρα∆αcc,t) + (θ − 1)(κ0 −A0 −A1xt −A2σ
2
t −A3∆αcc,t)

+ (θ − 1)κ1(A0 +A1ρxxt +A2((1 − ν)σ2 + νσ2
t ) +A3(να(1 − ρα) + ρα∆αcc,t)) + κ0,i

+ κ1,i(A0,i +A1,iρxxt +A2,i((1 − ν)σ2 + νσ2
t ) +A3,i(να(1 − ρα) + ρα∆αcc,t)) + νi + ϕixt + ϕα,i∆αcc,t

+ 0.5
{

(−γ + π(γ + (θ − 1)κ1A3 + κ1,iA3,i))2 + ((θ − 1)κ1A1 + κ1,iA1,i)2ψ2
x + ψ2

i

}
σ2
t

+ 0.5 (γ + (θ − 1)κ1A3 + κ1,iA3,i)2 σ2
α

+ 0.5 ((θ − 1)κ1A2 + κ1,iA2,i)2 σ2
w −A0,i −A1,ixt −A2,iσ

2
t −A3,i∆αcc,t

0 = θlogδ − γ(νcc − να(1 − ρα)) + (θ − 1)(κ0 −A0) + (θ − 1)κ1(A0 +A2(1 − ν)σ2 +A3να(1 − ρα)) + κ0,i

+ κ1,i(A0,i +A2,i(1 − ν)σ2 +A3,iνα(1 − ρα)) + νi

+ 0.5 (γ + (θ − 1)κ1A3 + κ1,iA3,i)2 σ2
α + 0.5 ((θ − 1)κ1A2 + κ1,iA2,i)2 σ2

w −A0,i

+ (−γ − (θ − 1)A1 + (θ − 1)κ1A1ρx + κ1,iA1,iρx + ϕi −A1,i)xt
+
(
0.5((−γ + π(γ + (θ − 1)κ1A3 + κ1,iA3,i))2 + ((θ − 1)κ1A1 + κ1,iA1,i)2ψ2

x + ψ2
i )
)
σ2
t

+ (−(θ − 1)A2 + (θ − 1)κ1A2ν + κ1,iA2,iν −A2,i)σ2
t

+ (γρα − (θ − 1)A3 + (θ − 1)κ1A3ρα + κ1,iA3,iρα + ϕα,i −A3,i) ∆αcc,t
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By identification :

A1,i =
ϕi − 1

ψ

1 − κ1,iρx

A3,i =
ϕα,i + ρα

ψ

1 − κ1,iρα

A2,i = (1 − θ)A2(1 − κ1ν) + 0.5
{
(−γ + π(γ + (θ − 1)κ1A3 + κ1,iA3,i))2 + ((θ − 1)κ1A1 + κ1,iA1,i)2ψ2

x + ψ2
i

}
1 − κ1,iν

A0,i = θlogδ − γ(νcc − να(1 − ρα)) + (θ − 1)(κ0 −A0) + (θ − 1)κ1(A0 +A2(1 − ν)σ2 +A3να(1 − ρα)) + κ0,i
1 − κ1,i

+ κ1,i(A2,i(1 − ν)σ2 +A3,iνα(1 − ρα)) + νi
1 − κ1,i

+ 0.5 (γ + (θ − 1)κ1A3 + κ1,iA3,i)2 σ2
α + 0.5 ((θ − 1)κ1A2 + κ1,iA2,i)2 σ2

w

1 − κ1,i

Deriving rf,t :

Ete
θlogδ−

θ

ψ
∆ct+1+(θ−1)rc,t+1+rf,t

= 1

So

e−rf,t = Ete
θlogδ−

θ

ψ
∆ct+1+(θ−1)rc,t+1

= e
Et(θlogδ−

θ

ψ
∆ct+1+(θ−1)rc,t+1)+0.5Vt(θlogδ−

θ

ψ
∆ct+1+(θ−1)rc,t+1)

= e
θlogδ−

θ

ψ
Et(∆ct+1)+(θ−1)Etrc,t+1+0.5Vt((−

θ

ψ
∆ct+1+(θ−1)rc,t+1)

−rf,t = θlogδ − γ(νcc + xt − να(1 − ρα) − ρα∆αcc,t) + (θ − 1)(κ0 −A0 −A1xt −A2σ
2
t −A3∆αcc,t)

+ (θ − 1)κ1(A0 +A1ρxxt +A2((1 − ν)σ2 + νσ2
t ) +A3(να(1 − ρα) + ρα∆αcc,t))

+ 0.5
{

(−γ + π(γ + (θ − 1)κ1A3))2 + ((θ − 1)κ1A1)2ψ2
x

}
σ2
t

+ 0.5 (γ + (θ − 1)κ1A3)2 σ2
α + 0.5 ((θ − 1)κ1A2)2 σ2

w

−rf,t = θlogδ − γ(νcc − να(1 − ρα)) + (θ − 1)(κ0 −A0) + (θ − 1)κ1(A0 +A2(1 − ν)σ2 +A3να(1 − ρα))
+ 0.5 (γ + (θ − 1)κ1A3)2 σ2

α + 0.5 ((θ − 1)κ1A2)2 σ2
w

+ (−γ − (θ − 1)A1 + (θ − 1)κ1A1ρx)xt
+
(
−(θ − 1)A2 + (θ − 1)κ1A2ν + 0.5((−γ + π(γ + (θ − 1)κ1A3))2 + ((θ − 1)κ1A1)2ψ2

x)
)
σ2
t

+ (γρα − (θ − 1)A3 + (θ − 1)κ1A3ρα) ∆αcc,t
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Therefore :

rf,t =A0,f +A1,fxt +A2,fσ
2
t +A3,f∆αcc,t

Deriving Etri,t+1 :

Etri,t+1 =κ0,i + κ1,iEtzi,t+1 −A0,i −A1,ixt −A2,iσ
2
t −A3,i∆αcc,t + νi + ϕxt + ϕα,i∆αcc,t

=κ0,i + κ1,iEt(A0,i +A1,ixt+1 +A2,iσ
2
t+1 +A3,i∆αcc,t+1)

−A0,i −A1,ixt −A2,iσ
2
t −A3,i∆αcc,t + νi + ϕixt + ϕα,i∆αcc,t

=κ0,i + κ1,iA0,i + κ1,iA1,iρxxt + κ1,iA2,i((1 − ν2)σ2 + νσ2
t )

+ κ1,iA3,i(να(1 − ρα) + ρα∆αcc,t) −A0,i −A1,ixt −A2,iσ
2
t −A3,i∆αcc,t + νi + ϕixt + ϕα,i∆αcc,t

=κ0,i + κ1,iA0,i + κ1,iA2,i(1 − ν)σ2 + κ1,iA3,iνα(1 − ρα) −A0,i + νi

+ (−A1,i + ϕi + κ1,iA1,iρx)xt + (−A2,i + κ1,iA2,iν)σ2
t + (−A3,i + ϕα,i + κ1,iA3,iρα)∆αcc,t

=B0 +B1xt +B2σ
2
t +B3∆αcc,t

The innovation in the market return is :

ri,t+1 − Etri,t+1 = κ1,iA1,iψxσtϵx,t+1 + κ1,iA2,iσwϵσ,t+1 + κ1,iA3,iσαϵα,t+1 + κ1,iA3,iπσtϵcc,t+1 + ψiσtϵi,t+1

So the expected equity premium on any dividend paying asset i is given by :

Et(ri,t+1 − rf,t) = −Cov(ri,t+1 − Etri,t+1,mt+1 − Etmt+1) − 0.5Vt(ri,t+1)
= λm,x κ1,iA1,iψx︸ ︷︷ ︸

βi,x

σ2
t + λm,w κ1,iA2,i︸ ︷︷ ︸

βi,w

σ2
w + λm,α κ1,iA3,i︸ ︷︷ ︸

βi,α

σ2
α + λm,cc κ1,iA3,iπ︸ ︷︷ ︸

βi,cc

σ2
t − 0.5Vt(ri,t+1)

And

Vt(ri,t+1) =Vt(κ1,izi,t+1 + ∆di,t+1)

=
(
κ2

1,iA
2
1,iψ

2
x + π2κ2

1,iA
2
3,i + ψ2

i

)
σ2
t + κ2

1,iA
2
2,iσ

2
w + κ2

1,iA
2
3,iσ

2
α

=(β2
i,x + β2

i,cc + ψ2
i )σ2

t + β2
i,wσ

2
w + β2

i,ασ
2
α
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A.4 Impulse Response Functions (IRF)

xt+h =Ψx

∞∑
j=0

ρjxσt+h−j−1ϵx,t+h−j (A.29)

σ2
t+h =σ2 + σw

∞∑
j=0

νjϵσ,t+h−j (A.30)

∆αcc,t+h =να + σα

∞∑
j=0

ρjαϵα,t+h−j + π
∞∑
j=0

ρjασt+h−j−1ϵcc,t+h−j (A.31)

∆cct+h =νcc + xt+h−1 + σt+h−1ϵcc,t+h (A.32)
∆di,t+h =νi + ϕixt+h−1 + ϕα,i∆αcc,t+h−1 + Ψiσt+h−1ϵi,t+h (A.33)
zi,t+h =A0,i +A1,ixt+h +A2,iσ

2
t+h +A3,i∆αcc,t+h (A.34)

ri,t+h =κ0,i + κ1,izi,t+h − zi,t+h−1 + ∆di,t+h (A.35)
rf,t+h =A0,f +A1,fxt+h +A2,fσ

2
t+h +A3,f∆αcc,t+h (A.36)

A.5 Tables

Table A.1: Descriptive statistics : 1930-1955.

E(.) σ(.) ρ(1) ρ(2) ρ(3) ρ(4) ρ(5) CV

∆d 0.0038 0.1914 0.1244 -0.2814 -0.1927 -0.1018 0.0954 50.6037
∆c 0.0169 0.0540 0.3633 0.1214 -0.1689 -0.2447 0.0208 3.1977
∆αcc 0.0005 0.0231 0.4800 0.0383 -0.1503 -0.3388 -0.2569 50.1958
∆cc 0.0173 0.0611 0.2899 -0.0096 -0.2380 -0.2580 0.0343 3.5250
∆αgc -0.0009 0.0378 0.4771 0.0408 -0.0949 -0.3182 -0.2775 -42.0192
∆gc 0.0160 0.0621 0.5495 0.2875 -0.0174 -0.2748 -0.1701 3.8876
zm 2.8535 0.2265 0.4185 -0.0828 -0.2764 -0.4030 -0.2802 0.0794
rm 0.0732 0.2468 0.0904 -0.2068 -0.0779 -0.2504 -0.0288 3.3692
rf -0.0103 0.0558 0.6365 0.1463 0.0169 0.1026 0.2074 -5.4163

The table reports the sample mean, standard deviation, and first-order to fifth-order autocor-
relation of the marketwide log price-dividend ratio, the log dividend, consumption, and the
(share of) carbon/green consumption growth rates.
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Table A.2: Descriptive statistics : 1956-1980.

E(.) σ(.) ρ(1) ρ(2) ρ(3) ρ(4) ρ(5) CV

∆d 0.0074 0.0523 0.2667 0.0359 0.0091 0.0667 0.0053 7.0994
∆c 0.0222 0.0290 -0.0204 -0.2613 -0.0383 0.0427 0.1899 1.3081
∆αcc -0.0035 0.0043 -0.2815 -0.0210 0.3359 -0.3975 0.0456 -1.2429
∆cc 0.0187 0.0295 -0.0577 -0.2755 -0.0490 0.0381 0.1629 1.5790
∆αgc 0.0061 0.0076 -0.2780 -0.0079 0.3276 -0.3867 0.0584 1.2326
∆gc 0.0283 0.0296 0.0243 -0.2123 0.0213 0.0111 0.2276 1.0473
zm 3.2918 0.1822 0.6555 0.3480 0.2547 0.3035 0.1185 0.0553
rm 0.0445 0.1779 -0.0762 -0.3736 0.1056 0.3032 0.0922 4.0023
rf 0.0030 0.0152 0.5917 0.4075 0.4660 0.3126 0.2736 5.0496

The table reports the sample mean, standard deviation, and first-order to fifth-order autocor-
relation of the marketwide log price-dividend ratio, the log dividend, consumption, and the
(share of) carbon/green consumption growth rates.

Table A.3: Descriptive statistics : 1981-2018.

E(.) σ(.) ρ(1) ρ(2) ρ(3) ρ(4) ρ(5) CV

∆d 0.0339 0.0926 -0.0365 -0.0047 -0.0714 -0.1272 -0.0885 2.7331
∆c 0.0155 0.0162 0.4603 0.0530 -0.0526 -0.0848 -0.0747 1.0438
∆αcc -0.0052 0.0066 0.3599 -0.0832 -0.2421 -0.0687 0.1352 -1.2812
∆cc 0.0104 0.0185 0.5090 0.0042 -0.1916 -0.1590 -0.1158 1.7807
∆αgc 0.0065 0.0083 0.3914 -0.0141 -0.1654 0.0388 0.1809 1.2843
∆gc 0.0220 0.0172 0.3744 0.1211 0.1178 0.0675 0.0877 0.7844
zm 3.8166 0.4151 0.8895 0.7548 0.6669 0.5546 0.4293 0.1088
rm 0.0831 0.1618 -0.0695 -0.1204 0.0703 -0.0356 -0.4177 1.9464
rf 0.0109 0.0221 0.7975 0.6500 0.5337 0.3759 0.3189 2.0303

The table reports the sample mean, standard deviation, and first-order to fifth-order autocor-
relation of the marketwide log price-dividend ratio, the log dividend, consumption, and the
(share of) carbon/green consumption growth rates.
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Table A.4: Model-implied moments.

σ(zm) EP E(Rf ) σ(rm,a) σ(rf,a) ρ(zm)
1930-1955

Data 0.227 0.084 -0.010 0.247 0.010 0.418
BY2004 Mean 0.238 0.109 0.007 0.264 0.159 0.354

5% 0.166 -0.019 -0.051 0.193 0.122 0.019
50% 0.234 0.105 0.006 0.261 0.158 0.368
95% 0.325 0.251 0.065 0.346 0.198 0.637

LRCCR Mean 0.150 0.040 0.010 0.116 0.019 0.608
5% 0.098 0.000 -0.005 0.089 0.014 0.291
50% 0.145 0.039 0.010 0.115 0.018 0.635
95% 0.216 0.081 0.024 0.144 0.025 0.834

1956-1980
Data 0.182 0.041 0.003 0.178 0.003 0.656

BY2004 Mean 0.125 0.093 -0.002 0.134 0.001 0.345
5% 0.093 0.045 -0.002 0.102 0.001 0.019
50% 0.124 0.093 -0.002 0.133 0.001 0.360
95% 0.162 0.143 -0.001 0.167 0.002 0.620

LRCCR Mean 0.175 0.068 0.003 0.197 0.019 0.282
5% 0.119 0.003 -0.005 0.138 0.014 -0.041
50% 0.172 0.066 0.003 0.194 0.019 0.293
95% 0.240 0.141 0.010 0.263 0.024 0.569

The table reports the model-implied moments (the equity premium (EP), the mean of the
risk-free rate, the standard deviations of the log price-dividend ratio, the market return, and
the risk-free rate, and the first-order autocorrelation of the log price-dividend ratio), alongside
some-20 quantiles.
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Table A.5: Testing the difference in terms of CS R2

Industries
∆cc ∆αcc ∆cc+ ∆αcc ∆gc ∆αgc ∆gc+ ∆αgc ∆c

R2
ff3 −R2

ff3+new -0.027 -0.002 -0.028 -0.004 -0.006 -0.027 -0.075
pcs 0.146 0.753 0.391 0.638 0.606 0.446 0.011
pms 0.248 0.787 0.544 0.692 0.648 0.571 0.059
pwald,cs 0.146 0.753 0.241 0.638 0.606 0.305 0.011
pwald,ms 0.248 0.787 0.476 0.692 0.648 0.505 0.059

FF25P
R2
ff3 −R2

ff3+new -0.009 -0.100 -0.101 -0.046 -0.092 -0.093 -0.004
pcs 0.294 0.022 0.044 0.076 0.048 0.082 0.510
pms 0.530 0.074 0.162 0.162 0.096 0.193 0.689
pwald,cs 0.294 0.022 0.081 0.076 0.048 0.143 0.510
pwald,ms 0.530 0.074 0.221 0.162 0.096 0.267 0.689

This table reports the difference in terms of cross-sectional R2 and the p-values for the test H0 :
R2
ff3 = R2

ff3+new. It reports four different p-values: p-value of testing H0 : R2
ff3 = R2

ff3+new
under correctly specified model, p-value of testing H0 : R2

ff3 = R2
ff3+new under misspecified

model, p-value of Wald test of H0 : R2
ff3 = R2

ff3+new under correctly specified model, and
p-value of Wald test of H0 : R2

ff3 = R2
ff3+new under potentially misspecified model.The models

are estimated using annual returns on the 25 Fama–French size and book-to-market ranked
portfolios and 42 industry portfolios. The data are from 1930 to 2018.

Table A.6: Means, and t-statistics for monthly factor returns over different samples.

This table reports the factor’s premiums for eight strategies. The first four rows’ strate-
gies long/short extreme deciles while the last four long/short firms that have posi-
tive/negative betas.

1930-2018 1930-1980 1981-2018
Mean tstat Mean tstat Mean tstat

∆cc 0.47 1.74 0.32 0.91 0.66 1.59
∆αcc -0.22 -0.91 0.03 0.11 -0.55 -1.39
∆gc 0.4 1.59 0.42 1.28 0.38 0.97
∆αgc -0.05 -0.26 -0.37 -1.53 0.35 0.95
s(∆cc) 0.04 0.53 0.01 0.11 0.08 0.67
s(∆αcc) 0.08 0.96 0.2 1.71 -0.08 -0.77
s(∆gc) -0.01 -0.11 -0.02 -0.15 0.00 0.01
s(∆αgc) 0.09 1.23 -0.02 -0.18 0.23 2.07
Mkt-RF 0.63 3.87 0.64 2.68 0.64 3.13
SMB 0.25 2.53 0.37 2.78 0.11 0.74
HML 0.37 3.45 0.42 2.66 0.32 2.3
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A.6 Figures
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Figure A.1: Realized versus predicted equity premium, consumption growth, and dividend
growth.

In this figure, I predict equity premium, consumption growth, and dividend growth using
the long-run risk derived from my model and compared it to BY model.

(a) 1930-1955 (b) 1956-1980

(c) 1930-1955 (d) 1956-1980

(e) 1930-1955 (f) 1956-1980
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Figure A.2: IRF: 1981-2018.

In this figure, I plot the impulse response functions of consumption growth, carbon
consumption growth, share of carbon consumption growth, price dividend ratio, market
return, and risk free rate following one standard deviation shock (increase) to the expected
carbon consumption.

83



Figure A.3: IRF: 1930-2018.

In this figure, I plot the impulse response functions of consumption growth, carbon
consumption growth, share of carbon consumption growth, price dividend ratio, market
return, and risk free rate following one standard deviation shock (increase) to the expected
carbon consumption.
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A.7 Data construction details
Table A.7: Carbon footprint covered from the NIPA expenditure data.

Household consumption expenditures category (2 digit level) Footprint Covererage E

1-Food and beverages purchased for off-premises consumption
Food and nonalcoholic beverages purchased for off-premises consumption

√

Alcoholic beverages purchased for off-premises consumption x
Food produced and consumed on farms

√

2-Clothing, footwear, and related services
Clothing

√

Footwear
√

3-Housing, utilities, and fuels
Housing

√

Household utilities and fuels
Water supply and sanitation

√

Electricity, gas, and other fuels x
Electricity

√

Natural gas
√

Fuel oil and other fuels
4-Furnishings, household equipment, and routine household maintenance
Furniture, furnishings, and floor coverings

√

Household textiles
√

Household appliances
√

Glassware, tableware, and household utensils
√

Tools and equipment for house and garden x
5-Health
Medical products, appliances, and equipment x
Outpatient services

√

Hospital and nursing home services
Hospital

√

Nursing home services
√

6-Transportation
Motor vehicles

√

Motor vehicle operation
√

Public transportation
Ground transportation

√

Air transportation
√

Water transportation
√

7-Communication
Telephone and related communication equipment

√

Postal and delivery services
√

Telecommunication services
√

Internet access x
8-Recreation
Video and audio equipment, computers, and related services

√

Sports and recreational goods and related services
√

Membership clubs, sports centers, parks, theaters, and museums
√

Magazines, newspapers, books, and stationery
√

Gambling x
Pets, pet products, and related services x
Photographic goods and services x
Package tours x
9-Education
Educational books x
Higher education

√

Nursery, elementary, and secondary schools
√

Commercial and vocational schools
√

10-Food services and accommodations
Food services

√

Accommodations
√

11-Financial services and insurance
Financial services

√

Insurance
√

Continued on next page
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Table A.7 – continued from previous page
Household consumption expenditures category (2 digit level) Footprint Covererage E

12-Other goods and services
Personal care

√

Personal items
√

Social services and religious activities
√

Professional and other services
√

Tobacco
√
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Appendix B

Appendix to Chapter 2

B.1 Tables
Table B.1: List of anomalies.

Abbreviation (rebalanced) Name of the anomaly
accruals (annually) Accruals Follows Sloan (1996).
agrowth (annually) Asset Growth Follows Cooper et al. (2008).
aturnover (annually) Asset Turnover Follows Soliman (2008).
cfp (annually) Cash Flow / Market Value of Equity Follows Lakonishok et al. (1994).
ciss (monthly) Composite Issuance Follows Daniel and Titman (2006).
ep (annually) Earnings/Price Follows Basu (1977).
gltnoa (annually) Growth in LTNOA Follows Fairfield et al. (2003).
gmargins (annually) Gross Margins Follows Novy-Marx (2013).
inv (annually) Investment Follows Chen et al. (2011).
igrowth (annually) Invetment Growth Follows Xing (2008).
invcap (annually) Investment-to-Capital Follows Xing (2008).
indmomrev (monthly) Industry Momentum-Reversal Follows Moskowitz and Grinblatt (1999).
indrrev (monthly) Industry Relative Reversals Follows Da et al. (2014).
indrrevlv (monthly) Industry Relative Reversals (Low Volatility) Follows Da et al. (2014).
lrrev (monthly) Long-term Reversals Follows De Bondt and Thaler (1985).
mom11 (monthly) Momentum (11m) Follows Jegadeesh and Titman (1993).
mom6 (monthly) Momentum (6m) Follows Jegadeesh and Titman (1993).
indmom (monthly) Industry Momentum Follows Moskowitz and Grinblatt (1999).
valmom (monthly) Value-Momentum Follows Novy-Marx (2013).
momrev (monthly) Momentum-Reversal Follows Jegadeesh and Titman (1993).
nissa (annually) Share Issuance (annual) Follows Pontiff and Woodgate (2008).
noa (annually) Net Operating Assets Follows Hirshleifer et al. (2004).
noaa (annually) Net Operating Assets Follows Kozak et al. (2020).
price (monthly) Follows Blume and Husic (1973).
roa (quarterly) Return on Assets Follows Chen et al. (2011).
roaa (annually) Return on Assets (annual) Follows Chen et al. (2011).
roe (monthly) Return on Book Equity Follows Chen et al. (2011).
season (monthly) Seasonality Follows Heston and Sadka (2008).
sgrowth (annually) Sales Growth Follows Lakonishok et al. (1994).
shvol (monthly) Share Volume Follows Datar et al. (1998).
size (annually) Follows Fama and French (1993).
strev (monthly) Short-term Reversal Follows Jegadeesh (1990).
sue (monthly) Standardized Unexpected Earning Follows Foster et al. (1984).
value (annually) Follows Fama and French (1993).
valuem (monthly) Value (monthly) Follows Asness et al. (2013).
prof (annually) Gross Profitability Follows Novy-Marx (2013).
valprof (monthly) Value-Profitability Follows Novy-Marx (2013).

Continued on next page
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Table B.1 – continued from previous page
Abbreviation (rebalanced) Name of the anomaly
F-score (annually) Piotroski’s F -score Follows Piotroski (2000).
debtiss (annually) Debt Issuance Follows Spiess and Affleck-Graves (1999).
repurch (annually) Share Repurchases Follows Ikenberry et al. (1995).
divp (annually) Dividend Yield Follows Naranjo et al. (1998).
divg (annually) Dividend growth Follows Giglio et al. (2021a)
dur (annually) Cash flow duration Follows Giglio et al. (2021a)
lev (annually) Leverage Follows Bhandari (1988).
sp (annually) Sales-to-Price Follows Barbee et al. (1996).
valmomprof (monthly) Value-Momentum-Profitability Follows Novy-Marx (2013).
shortint (monthly) Short Interest Follows Dechow et al. (1998).
nissm (monthly) Share Issuance Follows Pontiff and Woodgate (2008).
rome (monthly) Return on Market Equity Follows Chen et al. (2011).
ivol (monthly) Idiosyncratic Volatility Follows Ang et al. (2006).
betaarb (monthly) Beta Arbitrage Follows Cooper et al. (2008).
age (monthly) Firm Age Follows Barry and Brown (1984).

Table B.2: Comparison of Linear and Nonlinear Specifications.

25RR 25LF HM 3FF 2NL

R2
oos 0.4403 0.4948 0.6765 0.5387 0.6184

κ 0.4011 0.2913 0.3149 0.1706 0.3430

SR 0.501 0.4758 0.7788 0.4610 0.3553

88



B.2 Figures

(a) Dual penalty (b) L2 penalty

Figure B.1: Raw 25 anomaly portfolios.

In the left panel, we plot in a color map the out-of-sample cross-sectional R2 (R2
oos)

-calculated using 3-fold cross-validation- of the regression of the expected returns on
the covariance matrix (risk factors) under the Elastic-Net penalty. In the right panel, we
plot the R2

oos (solid red) -calculated using 3-fold cross-validation- and the in-sample cross-
sectional R2

is (dashed black) of the regression of the expected returns on the covariance
matrix (risk factors) under the Ridge penalty (γ1 = 0). The confidence interval of the
R2
oos, i.e. R2

oos ± 1s.e. is drawn with dotted lines.

(a) Dual penalty (b) L2 penalty

Figure B.2: PCs 25 anomaly portfolios.

In the left panel, we plot in a color map the out-of-sample cross-sectional R2 (R2
oos)

-calculated using 3-fold cross-validation- of the regression of the expected returns on
the covariance matrix (risk factors) under the Elastic-Net penalty. In the right panel, we
plot the R2

oos (solid red) -calculated using 3-fold cross-validation- and the in-sample cross-
sectional R2

is (dashed black) of the regression of the expected returns on the covariance
matrix (risk factors) under the Ridge penalty (γ1 = 0). The confidence interval of the
R2
oos, i.e. R2

oos ± 1s.e. is drawn with dotted lines.
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(a) Dual penalty (b) L2 penalty

Figure B.3: Hybrid FF25P using 2 nonlinear factors +23 linear factors.

In the left panel, we plot in a color map the out-of-sample cross-sectional R2 (R2
oos)

-calculated using 3-fold cross-validation- of the regression of the expected returns on
the covariance matrix (risk factors) under the Elastic-Net penalty. In the right panel, we
plot the R2

oos (solid red) -calculated using 3-fold cross-validation- and the in-sample cross-
sectional R2

is (dashed black) of the regression of the expected returns on the covariance
matrix (risk factors) under the Ridge penalty (γ1 = 0). The confidence interval of the
R2
oos, i.e. R2

oos ± 1s.e. is drawn with dotted lines.

(a) Dual penalty (b) L2 penalty

Figure B.4: Hybrid FF25P using 3 nonlinear factors +22 linear factors.

In the left panel, we plot in a color map the out-of-sample cross-sectional R2 (R2
oos)

-calculated using 3-fold cross-validation- of the regression of the expected returns on
the covariance matrix (risk factors) under the Elastic-Net penalty. In the right panel, we
plot the R2

oos (solid red) -calculated using 3-fold cross-validation- and the in-sample cross-
sectional R2

is (dashed black) of the regression of the expected returns on the covariance
matrix (risk factors) under the Ridge penalty (γ1 = 0). The confidence interval of the
R2
oos, i.e. R2

oos ± 1s.e. is drawn with dotted lines.
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(a) Dual penalty (b) L2 penalty

Figure B.5: Raw 50 anomaly portfolios.

In the left panel, we plot in a color map the out-of-sample cross-sectional R2 (R2
oos)

-calculated using 3-fold cross-validation- of the regression of the expected returns on
the covariance matrix (risk factors) under the Elastic-Net penalty. In the right panel, we
plot the R2

oos (solid red) -calculated using 3-fold cross-validation- and the in-sample cross-
sectional R2

is (dashed black) of the regression of the expected returns on the covariance
matrix (risk factors) under the Ridge penalty (γ1 = 0). The confidence interval of the
R2
oos, i.e. R2

oos ± 1s.e. is drawn with dotted lines.

(a) Dual penalty (b) L2 penalty

Figure B.6: PCs 50 anomaly portfolios.

In the left panel, we plot in a color map the out-of-sample cross-sectional R2 (R2
oos)

-calculated using 3-fold cross-validation- of the regression of the expected returns on
the covariance matrix (risk factors) under the Elastic-Net penalty. In the right panel, we
plot the R2

oos (solid red) -calculated using 3-fold cross-validation- and the in-sample cross-
sectional R2

is (dashed black) of the regression of the expected returns on the covariance
matrix (risk factors) under the Ridge penalty (γ1 = 0). The confidence interval of the
R2
oos, i.e. R2

oos ± 1s.e. is drawn with dotted lines.
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(a) Dual penalty (b) L2 penalty

Figure B.7: Hybrid 50 factors using 2 nonlinear factors +48 linear factors.

In the left panel, we plot in a color map the out-of-sample cross-sectional R2 (R2
oos)

-calculated using 3-fold cross-validation- of the regression of the expected returns on
the covariance matrix (risk factors) under the Elastic-Net penalty. In the right panel, we
plot the R2

oos (solid red) -calculated using 3-fold cross-validation- and the in-sample cross-
sectional R2

is (dashed black) of the regression of the expected returns on the covariance
matrix (risk factors) under the Ridge penalty (γ1 = 0). The confidence interval of the
R2
oos, i.e. R2

oos ± 1s.e. is drawn with dotted lines.

(a) Dual penalty (b) L2 penalty

Figure B.8: Hybrid 50 factors using 3 nonlinear factors +47 linear factors.

In the left panel, we plot in a color map the out-of-sample cross-sectional R2 (R2
oos)

-calculated using 3-fold cross-validation- of the regression of the expected returns on
the covariance matrix (risk factors) under the Elastic-Net penalty. In the right panel, we
plot the R2

oos (solid red) -calculated using 3-fold cross-validation- and the in-sample cross-
sectional R2

is (dashed black) of the regression of the expected returns on the covariance
matrix (risk factors) under the Ridge penalty (γ1 = 0). The confidence interval of the
R2
oos, i.e. R2

oos ± 1s.e. is drawn with dotted lines.
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(a) LF1 versus MP1 (b) LF2 versus MP2

Figure B.9: 50 anomaly data.

These graphs plot the weight of the anomalies on the first two linear factors and mimicking
portfolios.

(a) LF1 versus MP1 (b) LF2 versus MP2

Figure B.10: FF25P data.

These graphs plot the weight of the 25 Fama-French portfolios on the first two linear
factors and mimicking portfolios.

93



(a) 2600 raw characteristics (b) PCs of 2600 raw characteristics

Figure B.11: 50 anomaly + interaction terms data.

We plot in a color map the out-of-sample cross-sectional R2 (R2
oos) -calculated using 3-

fold cross-validation- of the regression of the expected returns on the covariance matrix
(risk factors) under the Elastic-Net penalty. In the left panel, we rotate the stochastic
discount factor in the raw characteristics space and in the right panel, we rotate the
stochastic discount factor in the linear principal components space.

B.3 Anomalies
The definitions and descriptions of the anomalies used in this thesis are based on the lists of
characteristics compiled by Novy-Marx and Velikov (2016), Haddad et al. (2020), Giglio et al.
(2021a) and Kozak et al. (2020).

1. Accruals (accruals):

Follows Sloan (1996).

accruals = ∆ACT − ∆CHE − ∆LCT + ∆DLC + ∆TXP − ∆DP
(AT +AT−12)/2

, where ∆ACT is the annual change in total current assets, ∆CHE is the annual change in
total cash and short-term investments, ∆LCT is the annual change in current liabilities,
∆DLC is the annual change in debt in current liabilities, ∆TXP is the annual change in
income taxes payable, ∆DP is the annual change in depreciation and amortization, and
(AT +AT−12)/2 is average total assets over the last two years. Rebalanced annually.

2. Asset Growth (agrowth):

Follows Cooper et al. (2008). agrowth = AT/AT−12. Rebalanced annually.

3. Asset Turnover (aturnover):

Follows Soliman (2008). aturnover = SALE/AT . Sales to total assets. Rebalanced
annually.

4. Cash Flow / Market Value of Equity (cfp):
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Follows Lakonishok et al. (1994) cfp = (IB +DP )/MEDec. Net income plus deprecia-
tion and amortization, all scaled by market value of equity measured at the same date.
Rebalanced annually.

5. Composite Issuance (ciss):

Follows Daniel and Titman (2006). ciss = log(MEt−13
MEt−60

) −
∑60
l=13 rt−l, where r is the log

return on the stock and ME is total market equity. Rebalanced monthly.

6. Earnings/Price (ep):

Follows Basu (1977). ep = IB/MEDec. Net income scaled by market value of equity.
Rebalanced annually.

7. Growth in Long Term Net Operating Assets (gltnoa):

Follows Fairfield et al. (2003). gltnoa = GRNOA − ACC. Growth in Net Operating
Assets minus Accruals. NOA = (RECT + INV T +ACO+PPENT + INTAN +AO−
AP − LCO − LO)/AT , GRNOA = NOA−NOA−12, ACC = ((RECT −RECT−12) +
(INV T−INV T−12)+(ACO−ACO−12)−(AP−AP−12)−(LCO−LCO−12)−DP )/((AT+
AT−12)/2), where RECT = Receivables, INV T = Total Inventory, ACO = Current As-
sets, AP =Accounts Payable, LCO = Current Liabilities (Other), DP = Depreciation
and Amortization, AT = Assets, PPENT = Property, Plant, and Equipment (net),
INTAN = Intangible Assets, AO = Assets (Other), LO = Liabilities (Other). Rebal-
anced annually.

8. Gross Margins (gmargins):

Follows Novy-Marx (2013). gmargins = GP/SALE, where GP is gross profits and
SALE is total revenues. Rebalanced annually.

9. Investment-to-Assets (inv):

Follows Chen et al. (2011). inv = PPEGT−PPEGT−12+INV T−INV T−12
ATQ−12

. Investment-to-
Assets is the annual change in PPEGTQ which is property, plant, and equipment (Com-
pustat item PPEGT) plus annual change in INV T which is total inventories (Compustat
item INVT) divided by lagged total assets (AT ).

10. Investment Growth (igrowth):

Follows Xing (2008). igrowth = CAPX/CAPX−12. Investment growth is the percentage
change in capital expenditure (Compustat item CAPX).

11. Investment-to-Capital (invcap):

Follows Xing (2008). invcap = CAPX/PPENT . Investment to capital is the ratio of
capital expenditure (CAPX) over property, plant, and equipment (PPENT ).

12. Industry Momentum-Reversal (indmomrev):

Follows Moskowitz and Grinblatt (1999). indmomrev = rank(industrymomentum) +
rank(industryrelative−reversalslow−vol). Sum of Fama and French 49 industries ranks
on industry momentum and industry relative reversals (low vol). Rebalanced monthly.
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13. Industry Relative Reversals (indrrev):

Follows Da et al. (2014). indrrev = r−1 − rind−1 , where r is the return on a stock and rind

is return on its industry. Difference between a stocks’prior month’s return and the prior
month’s return of its industry (based on the Fama and French 49 industries). Rebalanced
monthly.

14. Industry Relative Reversals (Low Volatility) (indrrevlv):

Follows Da et al. (2014). indrrevlv = r − rind−1 if vol < NY SEmedian, where r is the
return on a stock and rind is return on its industry. Difference between a stocks’ prior
month’s return and the prior month’s return of its industry (based on the Fama and
French 49 industries). Only stocks with idiosyncratic volatility lower than the NYSE
median for month are included in the sorts. Rebalanced monthly.

15. Long-term Reversals (lrrev):

Follows De Bondt and Thaler (1985). lrrev =
∑60
l=13 rt−l. Cumulative returns from t- 60

to t-13. Rebalanced monthly.

16. Momentum (11m) (mom11):

Follows Jegadeesh and Titman (1993). mom11 =
∑12
l=2 rt−l. Cumulated past per-

formance in the previous 11 months by skipping the most recent month. Rebalanced
monthly.

17. Momentum (6m) (mom6):

Follows Jegadeesh and Titman (1993). mom6 =
∑7
l=2 rt−l. Cumulated past performance

in the previous 6 months by skipping the most recent month. Rebalanced monthly.

18. Industry Momentum (indmom):

Follows Moskowitz and Grinblatt (1999). indmom = rank(
∑6
l=1 r

ind
t−l). In each month,

the Fama and French 49 industries are sorted on their value-weighted past 6 months’
performance and assigned to 10 industry deciles. Then, all firms in decile 10(from the 5
winner industries) form the value-weighted long portfolio and allfirms in decile 1 (the 5
loser industries) form the short portfolio. Rebalanced monthly.

19. Value-Momentum (valmom):

Follows Novy-Marx (2013). valmom = rank(B/M) + rank(Mom). Sum of ranks in
univariate sorts on book-to-market and momentum. Annual book-to-market values are
used for the entire year. Rebalanced monthly.

20. Momentum-Reversal (momrev):

Follows Jegadeesh and Titman (1993). momrev =
∑19
l=14 rt−l. Buy and hold returns

from t-19 to t-14. Rebalanced monthly.

21. Share Issuance (annual) (nissa):
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Follows Pontiff and Woodgate (2008). nissa = shroutJun/shroutJun−12, where shrout
is the number of shares outstanding. Change in real number of shares outstanding from
past June to June of the previous year. Excludes changes in shares due to stock dividends
and splits, and companies with no changes in shrout.

22. Net Operating Assets (noa):

Follows Hirshleifer et al. (2004).

noa = (AT − CHE) − (AT −DLC −DLTT −MIB − PSTK − CEQ),

where AT is total assets, CHE is cash and short-term investments, DLC is debt in
current liabilities, DLTT is long term debt, MIB is non-controlling interest, PSTK is
preferred capital stock, and CEQ is common equity. Rebalanced annually.

23. Price (price):

Follows Blume and Husic (1973). price = log(ME/shrout), where ME is market equity
and shrout is the number of shares outstanding. Log of stock price. Rebalanced monthly.

24. Return on Assets (roaa):

Follows Chen et al. (2011). roaa = IB/AT . Net income scaled by total assets. Rebal-
anced annually.

25. Return on Book Equity (roe):

Follows Chen et al. (2011). roe = IBQ/BEQ−3, where IBQ is income before extraor-
dinary items (Rebalanced quarterly), and BEQ is book value of equity. Rebalanced
monthly.

26. Seasonality (season):

Follows Heston and Sadka (2008). season =
∑5
l=1 rt−l×12. Average monthly return in

the same calendar month over the last 5 years. As an example, the average return from
prior Octobers is used to predict returns this October. The firm needs at least one year
of data to be included in the sample. Rebalanced monthly.

27. Sales Growth (sgrowth):

Follows Lakonishok et al. (1994). sgrowth = SALE/SALE−12. Sales growth is the
percent change in net sales over turnover (Compustat item SALE).

28. Share Volume (shvol):

Follows Datar et al. (1998). shvol = 1
3
∑3
i=1 volumet−i/shroutt. Average number of

shares traded over the previous three months scaled by shares outstanding. Rebalanced
monthly.

29. Size (size):

Follows Fama and French (1993). size = MEJun. We use the CRSP end of June price
times shares outstanding.
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30. Short-term Reversal (strev):

Follows Jegadeesh (1990). strev = rt−1. Return in the previous month. Rebalanced
monthly.

31. Standardized Unexpected Earnings (sue):

Follows Foster et al. (1984). sue = IBQ−IBQ−12
σIBQ−24:IBQ−3

, where IBQ is income before ex-
traordinary items (Rebalanced quarterly), and σIBQ−24:IBQ−3 is the standard deviation
of IBQ in the past two years skipping the most recent quarter. Earnings surprises are
measured by Standardized Unexpected Earnings (SUE), which is the change in the most
recently announced quarterly earnings per share from its value announced four quarters
ago divided by the standard deviation of this change in quarterly earnings over the prior
eight quarters. Rebalanced monthly.

32. Value (value):

Follows Fama and French (1993). value = BE/ME. At the end of June of each year, we
use book equity from the previous fiscal year and market equity from December of the
previous year. Rebalanced annually.

33. Value (valuem):

Follows Asness et al. (2013). valuem = BEQ−3/ME−1. Book-to-market ratio using the
most up-to-date prices and book equity (appropriately lagged). Rebalanced monthly.

34. Gross Profitability (prof):

Follows Novy-Marx (2013). prof = GP/AT , where GP is gross profits and AT is total
assets. Rebalanced annually.

35. Value-Profitability (valprof ):

Follows Novy-Marx (2013). valprof = rank(value) + rank(prof). Sum of ranks in
univariate sorts on book-to-market and profitability. Annual book-to-market and prof-
itability values are used for the entire year. Rebalanced monthly.

36. Piotroski’s F-score (F-score):

Follows Piotroski (2000). F−score = 1IB>0+1∆ROA>0+1CFO>0+1CFO>IB+1∆DTA<0|DLTT=0|DLTT−12=0+
1∆ATL>0+1EqIss≤0+1∆GM>0+1∆ATO>0, where IB is income before extraordinary items,
ROA is income before extraordinary items scaled by lagged total assets, CFO is cash
flow from operations, DTA is total long-term debt scaled by total assets, DLTT is total
long-term debt, ATL is total current assets scaled by total current liabilities, EqIss is
the difference between sales of common stock and purchases of common stock recorded
on the cash flow statement, GM equals one minus the ratio of cost of goods sold and total
revenues, and ATO equals total revenues, scaled by total assets. Rebalanced annualy.

37. Debt Issuance (debtiss):

Follows Spiess and Affleck-Graves (1999). debtiss = 1DLTISS<=0. Binary variable equal
to one if long-term debt issuance indicated in statement of cash flow. Updated annually.
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38. Share Repurchases (repurch):

Follows Ikenberry et al. (1995). repurch = 1PRSTKC>0. Binary variable equal to one if
repurchase of common or preferred shares indicated in statement of cash flow. Updated
annually.

39. Dividend Yield (divp):

Follows Naranjo et al. (1998). divp = Div/MEDec. Dividend scaled by price. Both
are measured in December of the year t-1 or t-2 (for returns in months prior to July).
Rebalanced annually.

40. Cash flow duration (dur):

Follows Giglio et al. (2021a). dur =
∑
t PV0(tÖCFt)/P0. Present value of expected

cashflows. Cashflows’ components (from clean surplus identity, ROE and book equity
growth) are forecasted using AR(1). Sums are discounted using a constant discount rate.
Rebalanced monthly.

41. Leverage (lev):

Follows Bhandari (1988). lev = (AT/ME)Dec. Market leverage is the ratio of total assets
(Compustat item AT ) over the market value of equity. Both are measured in December
of the same year.

42. Sales-to-Price (sp):

Follows Barbee et al. (1996). sp = SALE/MEDec. Total revenues divided by stock price.
Rebalanced annually.

43. Value-Momentum-Profitability (valmomprof ):

Follows Novy-Marx (2013). valmomprof = rank(B/M) + rank(Prof) + rank(Mom).
Sum of ranks in univariate sorts on book-to-market, profitability, and momentum. Annual
book-to-market and profitability values are used for the entire year. Rebalanced monthly.

44. Short Interest (shortint):

Follows Dechow et al. (1998). shortint = SharesShorted/Shrout. Rebalanced monthly.

45. Share Issuance (monthly) (nissm):

Follows Pontiff and Woodgate (2008). nissm = shroutt−1/shroutt−13, where shrout is
the number of shares outstanding. Change in real number of shares outstanding from
t−13 to t−1. Excludes changes in shares due to stock dividends and splits, and companies
with no changes in shrout.

46. Return on Market Equity (rome):

Follows Chen et al. (2011). rome = IBQ/ME−4, where IBQ is income before extraor-
dinary items (Rebalanced quarterly), and ME is market value of equity. Rebalanced
monthly.
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47. Idiosyncratic Volatility (ivol):

Follows Ang et al. (2006). ivol = std(ri,t − βm,iRm,t − βsmb,iSMBt − βhml,iHMLt). The
standard deviation of the residual from firm-level regression of daily stock returns on the
daily innovations of the Fama and French three-factor model using the estimation window
of three months. Lagged one month. Rebalanced monthly.

48. Beta Arbitrage (betaarb):

Follows Cooper et al. (2008). betaarb = βt−60:t−1. Beta with respect to the CRSP equal-
weighted return index. Estimated over the past 60 months (minimum 36 months) using
daily data and lagged one month. Rebalanced monthly.

49. Firm Age (age):

Follows Barry and Brown (1984). age = log(1 + number of months since listing). The
number of months that a firm has been listed in the CRSP database. Rebalanced monthly.
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B.4 Robustness check
We put in this section additional figures (B.12, B.13, B.14, B.15) concerning the robustness case
scenario for the Fama-French 25 ME/BM-sorted portfolios and the fifty anomaly portfolios.
For robustness purposes, we replace the first k linear factors directly by the nonlinear principal
components in the risk factors instead of their mimicking portfolios. And price a set of portfolios
containing n factors where we replace the first k linear principal components by k mimicking
portfolios. Moreover, we let the LARS-EN algorithm adds the factors starting by the model
with no risk factors instead of starting by the model with our k mimicking portfolios as risk
factors. The figures confirm the results presented in the section 3.3. We checked the robustness
of the mimicking portfolios (nonlinear) factors are always in the optimal model giving the
highest R2

oos. Our hybrid factors models outperform the linear models.

B.5 Least Angle Regression
1. Initialize λ̂(0) = 0, A = argmaxj |Σ′

jµ|, ∇λ̂(0)
A = −sign(Σ′

Aµ),∇λ̂(0)
I = 0, n = 0.

2. While I ≠ ∅ do ;

3. δj = min+
j∈A − λ̂(n)

∇λ̂(n)
j

4. δi = min+
i∈I

{
(Σi+Σj)′(µ−Xλ̂(n))
(Σi+Σj)′(Σ∇λ̂(n)) ,

(Σi−Σj)′(µ−Σλ̂(n))
(Σi−Σj)′(Σ∇λ̂(n))

}
where j is any index in A.

5. δ = min(δj , δi)

6. if δ = δj then move j from A to I else move i from I to A.

7. λ̂(n+1) = λ̂(n) + δ∇λ̂(n)

8. ∇λ̂(n+1)
A = −1

2 (ΣA + γ2I)−1 .sign(λ̂(n+1)
A )

9. Update the value of n=n+1

10. end while

11. Output the series of coefficients Λ = (λ̂(0), λ̂(1), ..., λ̂(k))

B.6 Nonlinear principal components estimation
We normalize each linear factor to have 0 mean and 1 standard deviation LF0=(lf01,...,lf0k)
and set a grid on the standardized data lfm, m ∈ {1...ng}k where

lfmi ∈ min(lf0i) : max(lf0i) −min(lf0i)
ng − 1 : max(lf0i), i = 1, ..., k
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The estimation of the density function g(lfm) is done by kernel smoothing. Then the convex
function C is computed via gradient descent algorithm using

Cn+1(lfm) = Cn(lfm) + τ(g(lfm) − Φ(∂Cn(lfm)
∂lfm

)det(∂
2Cn(lfm)
∂lfm∂lf

′
m

) (B.1)

All the derivatives are computed using centered finite differences :

Tj(lfm) ≈ ∂Cn(lf)
∂lf j

=
Cn(lfm+∆j

) − Cn(lfm−∆j
)

2 ∗ step
, j = 1, 2, ..., k

and

∂2Cn(lfm)
∂lfi∂lf

′
j

≈
Cn(lfm+∆j+∆i

) − Cn(lfm−∆j+∆i
) − Cn(lfm−∆i+∆j

) + Cn(lfm−∆j−∆i
)

||lfm+∆i
− lfm−∆i

||||lfm+∆j
− lfm−∆j

||

For any boundary points, we use an appropriate noncentered finite differences version that is
second-order accurate. Let us denote C∗ the optimal convex function and by x∗

m = T (lfm)
the transformed data. The nonlinear principal components are obtained by diagonalizing the
matrix J defined by :

J =
∑

m∈{1...ng}k
Φ(x∗

m)lnJ(lfm)
d∏
j=1

||x∗
m+∆j

− x∗
m−∆j

||
2

where J(lf) = ∂2C∗(lf)
∂lf∂lf ′ . The eigenvectors of J associated to the k highest eigenvalues :

e1...ek. Finally, we interpolate the Brenier map to have the full nonlinear transformation
of the original data T (LF1, LF2, ..., LFk). Therefore, the ith nonlinear factor is NLFi =
T (LF1, LF2, ..., LFk)ei.
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(a) Dual penalty (b) L2 penalty

Figure B.12: Hybrid FF25P using 2 nonlinear factors +23 linear factors.

In the left panel, we plot in a color map the out-of-sample cross-sectional R2 (R2
oos)

-calculated using 3-fold cross-validation- of the regression of the expected returns on
the covariance matrix (risk factors) under the Elastic-Net penalty. In the right panel, we
plot the R2

oos (solid red) -calculated using 3-fold cross-validation- and the in-sample cross-
sectional R2

is (dashed black) of the regression of the expected returns on the covariance
matrix (risk factors) under the Ridge penalty (γ1 = 0). The confidence interval of the
R2
oos, i.e. R2

oos ± 1s.e. is drawn with dotted lines.

(a) Dual penalty (b) L2 penalty

Figure B.13: Hybrid FF25P using 3 nonlinear factors +22 linear factors.

In the left panel, we plot in a color map the out-of-sample cross-sectional R2 (R2
oos)

-calculated using 3-fold cross-validation- of the regression of the expected returns on
the covariance matrix (risk factors) under the Elastic-Net penalty. In the right panel, we
plot the R2

oos (solid red) -calculated using 3-fold cross-validation- and the in-sample cross-
sectional R2

is (dashed black) of the regression of the expected returns on the covariance
matrix (risk factors) under the Ridge penalty (γ1 = 0). The confidence interval of the
R2
oos, i.e. R2

oos ± 1s.e. is drawn with dotted lines.
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(a) Dual penalty (b) L2 penalty

Figure B.14: Hybrid 50 anomaly portfolios using 2 nonlinear factors +48 linear factors.

In the left panel, we plot in a color map the out-of-sample cross-sectional R2 (R2
oos)

-calculated using 3-fold cross-validation- of the regression of the expected returns on
the covariance matrix (risk factors) under the Elastic-Net penalty. In the right panel, we
plot the R2

oos (solid red) -calculated using 3-fold cross-validation- and the in-sample cross-
sectional R2

is (dashed black) of the regression of the expected returns on the covariance
matrix (risk factors) under the Ridge penalty (γ1 = 0). The confidence interval of the
R2
oos, i.e. R2

oos ± 1s.e. is drawn with dotted lines.

(a) Dual penalty (b) L2 penalty

Figure B.15: Hybrid 50 anomaly portfolios using 3 nonlinear factors +47 linear factors.

In the left panel, we plot in a color map the out-of-sample cross-sectional R2 (R2
oos)

-calculated using 3-fold cross-validation- of the regression of the expected returns on
the covariance matrix (risk factors) under the Elastic-Net penalty. In the right panel, we
plot the R2

oos (solid red) -calculated using 3-fold cross-validation- and the in-sample cross-
sectional R2

is (dashed black) of the regression of the expected returns on the covariance
matrix (risk factors) under the Ridge penalty (γ1 = 0). The confidence interval of the
R2
oos, i.e. R2

oos ± 1s.e. is drawn with dotted lines.

104



Appendix C

Appendix to Chapter 3

C.1 Tables

Table C.1: Mean return of deciles in %

This table presents the mean returns of deciles’ anomaly portfolio. We use value-weighted returns
for each anomaly-based portfolios and compute the average over January, 1978 - December 2019. d1
stands for the first decile, d2 for the second decile, ..., d10 for the last decile.

d1 d2 d3 d4 d5 d6 d7 d8 d9 d10

size 1.00 1.16 1.20 1.11 1.02 1.21 0.85 1.05 1.06 0.93

value 1.12 1.36 1.08 1.09 1.29 1.14 0.84 1.09 1.15 1.06

prof 1.14 0.83 1.02 1.12 1.03 1.17 0.38 1.16 1.24 1.02

valprof 1.18 1.02 1.10 1.15 1.04 1.16 0.88 1.32 1.24 1.02

nissa 1.15 0.95 0.94 1.18 1.13 1.11 1.00 0.90 1.25 1.28

accruals 1.18 1.06 1.02 1.23 1.10 1.16 1.04 0.91 1.02 1.32

growth 1.14 1.06 1.10 0.89 1.09 1.08 0.97 0.92 0.39 1.57

aturnover 1.20 1.06 1.11 0.91 1.17 0.96 1.03 1.07 1.09 1.59

gmargins 1.13 1.14 1.03 1.15 0.80 1.10 1.07 1.00 1.28 0.76

divp 1.05 1.07 0.95 1.02 1.14 1.41 1.18 1.06 1.10 0.87

divg 1.00 1.27 1.08 1.20 1.03 0.90 1.21 1.11 1.25 0.94

dur 1.11 1.18 1.10 1.03 1.05 0.87 1.47 1.12 1.16 1.02

ep 1.13 0.93 1.12 1.10 1.01 1.06 0.90 1.13 1.10 1.14

Continued on next page
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Table C.1 – continued from previous page

d1 d2 d3 d4 d5 d6 d7 d8 d9 d10

cfp 1.02 1.11 0.98 1.16 1.02 0.92 1.09 1.35 1.10 1.13

noa 1.14 1.09 0.95 1.09 1.07 1.12 1.15 0.57 1.13 1.18

inv 1.11 1.08 1.12 1.21 1.14 1.31 1.08 0.86 1.09 1.24

invcap 1.08 1.06 1.13 1.05 1.02 1.16 1.10 0.97 0.98 1.31

igrowth 1.07 1.08 1.09 1.13 1.13 1.05 1.23 0.88 0.92 1.60

sgrowth 1.08 1.07 1.19 1.02 0.90 1.26 1.06 0.95 0.97 0.75

lev 1.27 1.17 1.20 1.09 0.98 1.19 1.20 0.98 1.10 1.00

roaa 0.85 1.24 1.14 1.09 0.95 1.01 1.19 1.12 1.16 1.02

roea 0.85 1.14 1.13 1.14 1.06 1.15 1.36 1.11 1.14 1.08

sp 0.93 0.76 1.22 1.04 0.97 1.06 1.14 1.10 1.15 1.06

gltnoa 0.97 1.01 1.28 1.02 1.09 1.09 1.08 1.28 1.08 1.12

mom 1.10 1.02 0.87 1.10 1.04 1.20 1.12 0.53 1.10 1.06

indmom 1.07 1.06 0.93 1.14 1.08 1.22 1.15 0.65 1.05 1.11

valmom 1.10 1.13 1.05 0.87 1.03 1.27 1.14 1.05 0.75 1.21

valmomprof 1.07 1.16 1.10 1.17 1.18 1.12 1.10 0.94 0.84 1.30

shortint 1.11 1.21 1.06 1.05 0.95 1.07 1.11 1.09 0.98 0.73

mom12 1.30 1.04 1.03 1.04 1.00 1.29 1.13 1.04 0.98 1.03

momrev 0.84 1.27 1.22 0.99 1.05 0.89 1.18 1.08 1.15 1.04

lrrev 0.95 1.23 1.16 1.12 1.13 1.10 1.20 1.33 1.04 1.21

valuem 0.85 0.93 1.14 1.11 1.17 1.09 1.05 1.34 1.05 1.11

nissm 1.02 0.95 1.33 1.12 1.11 1.18 1.05 1.55 1.05 1.10

sue 1.20 1.07 0.98 1.25 1.16 1.12 1.03 0.63 1.18 1.02

roe 1.17 1.04 1.14 1.12 1.26 0.91 0.98 0.79 1.44 1.05

rome 1.29 1.11 0.96 1.07 1.27 1.13 1.09 1.01 0.67 1.12

roa 1.33 1.00 1.11 1.05 1.38 1.19 0.99 1.02 0.76 1.02

strev 1.33 1.12 1.16 1.10 1.07 1.44 1.10 1.00 0.87 1.01

Continued on next page
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Table C.1 – continued from previous page

d1 d2 d3 d4 d5 d6 d7 d8 d9 d10

ivol 1.44 1.05 1.11 1.01 1.04 1.55 0.90 1.00 0.99 1.17

betaarb 0.72 0.98 1.02 1.12 1.00 1.01 1.35 1.15 1.03 1.03

season 0.93 1.11 1.15 1.21 1.17 1.03 1.23 1.07 1.14 1.02

indrrev 1.25 0.98 1.27 1.06 0.96 1.19 0.78 1.10 1.22 1.11

indrrevlv 1.15 1.00 1.23 1.13 1.07 1.21 0.91 1.18 1.35 0.98

indmomrev 1.05 1.09 0.68 1.18 1.06 1.22 1.27 0.76 1.46 1.17

ciss 1.04 1.09 0.98 0.98 1.10 1.04 1.09 0.86 1.35 1.02

price 1.04 1.05 1.05 1.03 1.12 1.07 1.13 1.02 0.63 1.01

shvol 1.14 1.21 0.81 1.03 1.08 0.96 1.03 1.07 0.85 0.96

Table C.2: R2
oos of the predictive models

This table presents R2
oos for diverse predictive model. Model 1 uses the best univariate decile predictors : bm, ltr,

corpr, svar, Dpr, Dy. Model 2 uses the same set of predictors as model 1 but add an AR(1) term. Model 3 selects
the best set of predictors among the fourteen available in a stepwise way. Model 4 uses only two limit-to-arbitrage
predictors–namely VIX CBOE volatility index and the TED spread. Finally, Model 5=Model 2+ VIX+TED spread.
We compute the R2

oos as follow: the equation 3.4 is estimated using information from January 1978 to December
1992. Then the estimated coefficients are used to predict the return of the corresponding asset in January 1993.
Next, the information on January 1993 is added to the training sample and reestimate the equation 3.4 using
information from January 1978 to January 1993. The corresponding coefficients are used to predict the return in
February 1993. The same exercise is performed until the end of the sample– that is December 2019. Lastly, the
R2
oos is computed using equation 3.7

Split date: 1992m12 Split date: 2004m12 Split date: 2004m12

Deciles Model 1 Model 2 Model 3 Model 4 Model 5 Model 1⋆ Model 2⋆ Model 3⋆

size_p1 11.45 98.51 3.65 0.76 9.17 28.56 98.46 21.24

size_p2 17.42 87.46 12.41 4.25 21.58 32.47 92.48 32.92

size_p3 16.97 81.81 13.43 5.20 23.67 33.15 89.79 36.07

size_p4 16.16 77.58 12.58 4.85 18.66 27.86 85.94 30.85

size_p5 14.71 74.20 9.18 4.76 13.44 25.49 82.99 24.44

size_p6 14.53 68.31 11.19 3.92 13.67 24.03 79.62 26.52

size_p7 12.90 61.85 7.43 3.94 6.88 20.21 75.15 20.48

size_p8 14.57 59.86 11.27 4.91 7.96 22.46 74.19 25.37

size_p9 13.26 51.50 8.77 3.67 0.76 17.88 65.19 19.06

size_p10 16.42 46.08 12.47 9.34 10.95 27.87 67.45 28.87
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Deciles Model 1 Model 2 Model 3 Model 4 Model 5 Model 1⋆ Model 2⋆ Model 3⋆

value_p1 8.78 82.50 2.94 -6.01 3.58 28.58 83.13 27.29

value_p2 9.50 84.73 3.27 -1.60 13.72 26.18 86.83 26.99

value_p3 3.58 80.32 -2.18 2.29 11.82 16.05 83.61 18.77

value_p4 16.31 79.41 5.29 5.91 15.61 29.22 87.98 22.03

value_p5 10.86 76.33 4.72 6.08 20.83 24.45 84.28 25.06

value_p6 16.14 72.71 9.51 4.50 23.84 28.09 83.02 26.26

value_p7 18.22 69.82 13.23 7.53 28.38 30.73 80.28 29.74

value_p8 18.46 64.39 14.38 5.05 22.74 29.05 77.16 26.35

value_p9 14.49 62.31 9.56 2.68 7.56 24.39 68.51 18.37

value_p10 19.59 56.86 14.88 3.89 12.35 24.66 60.17 22.83

prof_p1 10.75 70.67 6.90 -3.33 5.18 24.26 67.26 24.03

prof_p2 20.30 78.01 15.27 5.90 27.62 33.28 81.88 29.93

prof_p3 19.10 82.06 10.95 8.28 29.76 36.21 84.46 31.94

prof_p4 18.89 81.08 11.30 4.65 27.52 36.06 84.83 35.71

prof_p5 15.05 77.83 6.70 8.23 21.42 28.73 84.95 26.55

prof_p6 7.54 76.58 2.48 2.51 14.32 20.11 82.73 19.33

prof_p7 6.98 76.51 0.87 1.32 11.19 26.44 81.73 27.64

prof_p8 6.80 74.73 2.92 -1.87 -1.95 23.05 83.27 25.62

prof_p9 6.60 80.09 0.75 -5.02 -2.01 17.87 83.44 16.41

prof_p10 5.64 73.57 0.69 -8.35 -5.70 18.14 78.98 15.09

valprof_p1 13.95 85.87 4.68 1.75 22.47 35.96 86.63 31.63

valprof_p2 11.57 83.73 5.32 5.73 15.59 34.34 85.90 35.75

valprof_p3 9.67 79.71 4.03 0.82 22.16 25.71 84.51 24.92

valprof_p4 10.24 77.73 5.29 3.52 10.74 19.83 83.35 18.24

valprof_p5 10.59 85.05 5.12 -0.10 13.92 25.62 89.01 25.54

valprof_p6 12.13 77.54 6.64 -5.71 11.78 25.59 89.29 20.61

valprof_p7 12.87 70.89 6.58 -2.54 11.28 22.71 84.18 18.33

valprof_p8 10.35 65.19 7.12 1.27 -0.02 14.96 71.76 17.88

valprof_p9 14.15 66.61 11.02 2.14 2.32 21.69 73.31 22.34

valprof_p10 11.63 57.67 8.33 4.78 -2.28 13.83 61.70 16.57

nissa_p1 16.65 84.39 11.47 5.85 18.69 30.86 84.56 29.39

nissa_p2 16.18 80.68 13.96 3.97 18.28 35.16 83.92 36.32

nissa_p3 13.85 73.83 10.28 2.44 12.04 27.67 82.32 29.21

nissa_p4 12.81 82.49 8.78 0.90 16.67 23.07 82.24 24.75

nissa_p5 9.78 83.53 2.20 2.32 6.75 23.63 85.10 19.82

nissa_p6 7.98 77.67 0.74 4.32 8.63 22.63 88.53 19.18

nissa_p7 12.18 83.21 2.46 3.51 18.38 25.72 90.40 19.33
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Deciles Model 1 Model 2 Model 3 Model 4 Model 5 Model 1⋆ Model 2⋆ Model 3⋆

nissa_p8 12.32 84.62 4.52 2.00 12.37 26.77 93.34 22.93

nissa_p9 11.39 80.70 6.17 2.74 11.34 26.75 90.76 22.66

nissa_p10 13.07 77.34 6.33 1.70 11.86 23.34 85.67 19.91

accruals_p1 12.42 68.41 6.27 3.39 -0.74 26.90 77.08 25.86

accruals_p2 13.81 79.82 8.28 -1.20 21.99 30.83 85.92 27.21

accruals_p3 9.33 81.09 5.97 -3.45 -0.11 19.90 83.77 22.68

accruals_p4 7.59 77.38 0.75 0.61 17.43 21.95 86.52 19.26

accruals_p5 6.67 82.27 -0.13 3.04 12.94 22.54 89.42 20.69

accruals_p6 12.68 81.06 6.99 2.80 12.92 27.84 88.72 26.68

accruals_p7 12.66 81.88 3.52 2.73 12.71 29.08 87.20 22.95

accruals_p8 11.98 78.96 5.46 4.36 23.60 28.56 87.53 25.69

accruals_p9 9.09 73.06 5.64 -1.88 9.94 29.80 81.91 30.71

accruals_p10 14.87 71.63 10.38 1.03 2.84 35.56 75.08 36.93

growth_p1 12.02 72.10 6.92 -3.76 12.08 29.63 76.69 29.76

growth_p2 8.28 71.55 4.97 -0.55 10.11 26.44 81.90 26.31

growth_p3 9.19 82.15 3.79 -3.65 8.25 23.46 84.69 25.12

growth_p4 8.63 83.92 1.56 -3.98 9.46 23.95 87.96 18.81

growth_p5 11.39 80.66 4.03 2.20 8.16 25.54 90.31 20.22

growth_p6 10.89 81.72 8.37 3.25 24.09 26.91 85.99 27.71

growth_p7 14.19 78.05 8.10 4.07 21.10 26.70 85.60 22.57

growth_p8 11.22 74.96 1.05 6.23 19.92 24.94 86.12 19.62

growth_p9 14.84 77.88 8.33 3.46 22.44 31.69 86.08 29.95

growth_p10 14.41 74.27 6.98 5.74 7.14 27.60 83.42 23.59

aturnover_p1 13.66 71.66 9.79 -0.50 10.88 32.02 82.18 27.15

aturnover_p2 7.21 77.66 0.33 1.26 17.58 29.23 85.51 27.79

aturnover_p3 12.82 82.34 6.47 2.47 2.83 30.84 87.07 30.16

aturnover_p4 9.19 80.24 1.55 -0.60 15.51 26.48 88.03 25.36

aturnover_p5 14.46 77.31 8.12 0.55 16.96 26.19 86.75 26.39

aturnover_p6 17.10 84.97 11.16 1.53 26.76 35.72 86.41 33.42

aturnover_p7 14.45 72.60 9.70 4.49 20.62 27.07 83.76 26.12

aturnover_p8 4.91 67.11 -0.27 2.90 10.95 13.77 74.78 14.78

aturnover_p9 9.28 66.06 7.76 -0.47 -2.16 15.43 73.18 20.69

aturnover_p10 1.17 65.00 -3.35 -4.41 -12.76 13.01 69.89 14.83

gmargins_p1 18.28 66.57 11.42 2.78 24.88 30.87 80.00 30.02

gmargins_p2 17.03 73.86 11.62 7.09 26.21 28.47 82.92 28.45

gmargins_p3 17.00 74.84 12.30 3.25 22.76 29.62 79.32 31.44

gmargins_p4 3.46 70.85 -4.38 5.81 4.75 13.42 72.98 15.06
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gmargins_p5 15.15 81.13 6.27 1.38 18.95 32.40 88.07 27.77

gmargins_p6 15.05 79.47 9.75 6.51 18.17 26.38 84.73 25.63

gmargins_p7 13.32 78.24 10.65 1.99 18.01 28.86 80.60 29.81

gmargins_p8 8.75 83.91 4.55 1.18 1.75 29.29 86.76 26.02

gmargins_p9 9.69 84.24 1.14 -1.62 0.58 28.54 90.29 24.13

gmargins_p10 8.83 82.00 3.96 -6.42 6.98 26.68 88.10 23.61

divp_p1 13.32 84.51 5.96 3.00 24.92 34.15 84.91 33.55

divp_p2 11.11 83.37 4.20 2.06 24.82 31.72 87.38 30.53

divp_p3 12.18 83.93 5.06 0.20 14.71 26.46 88.64 25.11

divp_p4 7.44 71.18 -0.41 3.21 13.54 23.98 86.86 19.58

divp_p5 8.50 66.32 1.04 4.36 21.65 18.87 81.59 14.74

divp_p6 4.51 71.96 -3.33 2.00 4.92 16.55 82.83 12.22

divp_p7 9.55 74.90 0.33 7.85 13.86 21.07 85.15 12.87

divp_p8 4.27 61.30 -5.99 3.54 -15.75 9.59 67.53 -0.63

divp_p9 8.74 51.84 1.91 3.10 8.25 15.50 65.82 8.13

divp_p10 7.90 38.07 -0.30 5.37 -13.46 9.30 41.08 -0.45

divg_p1 14.45 70.46 8.28 7.25 18.98 26.76 80.77 22.21

divg_p2 10.93 69.22 5.50 5.68 10.17 19.08 81.06 18.40

divg_p3 7.59 72.01 -1.60 6.18 14.15 15.37 77.29 9.73

divg_p4 13.76 75.09 5.61 6.11 30.28 28.25 84.22 21.77

divg_p5 5.20 69.01 -0.82 4.97 6.84 11.35 76.87 5.43

divg_p6 10.47 78.05 4.01 6.72 8.45 21.92 82.56 16.36

divg_p7 6.58 75.32 -1.03 -0.68 10.34 18.62 87.26 13.47

divg_p8 8.94 80.44 1.76 -0.44 -1.63 25.36 86.73 19.23

divg_p9 6.52 81.02 -1.47 -1.92 0.07 25.20 87.48 22.22

divg_p10 16.56 79.14 10.10 3.40 20.03 34.02 83.05 30.92

dur_p1 8.48 78.68 2.69 -8.25 -1.82 28.09 79.23 26.29

dur_p2 8.39 85.14 2.57 -1.12 11.82 27.80 89.36 27.79

dur_p3 5.05 77.49 1.06 -0.39 13.87 16.71 80.60 19.77

dur_p4 9.10 78.84 -0.78 4.76 7.64 24.75 86.37 21.46

dur_p5 9.97 74.06 2.47 4.35 8.37 15.34 82.30 12.01

dur_p6 13.82 73.64 8.54 5.37 15.67 27.13 83.05 27.80

dur_p7 14.02 74.32 8.78 5.56 13.15 22.09 83.58 20.89

dur_p8 18.09 66.10 10.90 5.47 25.31 30.36 75.19 27.61

dur_p9 24.28 70.77 20.62 3.41 18.58 34.52 76.44 35.33

dur_p10 18.83 55.45 16.54 4.49 10.43 25.42 58.09 26.92

ep_p1 16.04 63.98 10.90 1.29 9.93 32.58 73.73 32.87
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Deciles Model 1 Model 2 Model 3 Model 4 Model 5 Model 1⋆ Model 2⋆ Model 3⋆

ep_p2 13.86 77.10 8.54 2.13 16.12 31.05 81.00 30.71

ep_p3 9.78 84.93 2.94 1.51 15.06 27.96 86.06 26.01

ep_p4 7.57 82.75 1.20 2.97 15.98 23.29 88.39 19.37

ep_p5 11.27 84.03 4.53 -1.05 12.89 27.79 91.35 23.78

ep_p6 8.33 78.36 1.76 3.36 13.45 20.98 87.97 17.69

ep_p7 10.33 77.61 3.99 4.34 10.97 24.97 89.98 23.17

ep_p8 11.59 75.26 4.53 5.16 5.13 19.32 82.96 13.23

ep_p9 18.36 74.85 12.56 8.93 15.72 29.19 84.37 24.46

ep_p10 14.33 67.17 9.13 5.98 7.59 17.18 71.41 15.88

cfp_p1 10.30 81.41 4.43 -0.59 9.97 28.70 80.69 27.34

cfp_p2 6.71 85.00 -0.74 -2.68 7.01 24.88 88.75 21.64

cfp_p3 7.61 86.12 -1.22 2.47 6.53 26.16 89.72 21.95

cfp_p4 12.56 78.74 3.66 3.68 19.63 25.65 90.15 21.32

cfp_p5 10.95 81.06 4.97 4.75 10.14 23.14 88.37 20.80

cfp_p6 9.56 75.73 0.84 6.10 1.78 19.01 82.83 12.56

cfp_p7 19.33 71.84 12.46 8.09 27.85 30.78 82.77 26.04

cfp_p8 13.68 66.62 6.73 7.42 20.00 22.06 83.22 16.92

cfp_p9 17.28 66.76 11.51 5.84 19.57 24.41 75.54 21.46

cfp_p10 21.44 64.63 17.96 5.12 18.13 31.46 71.72 32.09

noa_p1 14.87 73.60 10.41 2.52 7.56 33.30 75.62 34.57

noa_p2 10.78 74.17 8.33 2.01 14.85 23.92 83.10 23.94

noa_p3 13.43 76.47 9.90 0.10 12.82 27.98 82.39 25.18

noa_p4 12.03 76.09 3.65 0.73 9.43 34.89 82.84 27.93

noa_p5 8.78 77.46 -0.42 -2.67 2.98 23.19 80.33 21.29

noa_p6 12.48 81.91 6.41 1.57 10.97 29.95 89.39 27.05

noa_p7 10.21 79.95 2.62 1.57 13.71 25.11 86.44 21.34

noa_p8 13.52 80.05 7.67 2.86 24.84 29.65 88.34 29.20

noa_p9 10.56 76.90 5.37 -0.22 -0.89 27.21 85.08 27.59

noa_p10 11.01 71.60 8.64 -1.54 3.37 25.63 79.97 27.54

inv_p1 16.92 70.31 10.87 3.88 24.32 31.73 74.39 31.67

inv_p2 9.12 76.82 4.67 -4.00 -9.72 23.05 79.05 23.95

inv_p3 5.67 73.58 -0.29 -3.57 -26.29 16.23 66.99 15.35

inv_p4 12.13 81.21 6.36 -2.00 15.41 31.03 83.33 27.10

inv_p5 13.18 83.82 10.13 1.73 24.63 28.92 86.40 29.38

inv_p6 15.21 80.05 9.77 1.82 28.68 30.19 87.37 25.56

inv_p7 11.44 82.87 5.48 3.89 8.23 28.21 90.46 25.81

inv_p8 11.92 82.95 4.28 0.92 7.85 24.81 87.74 22.70
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inv_p9 10.95 81.03 2.07 0.59 10.57 24.04 88.38 19.06

inv_p10 13.34 76.63 5.40 7.64 18.20 27.07 83.13 24.68

invcap_p1 10.95 63.73 7.46 -5.36 -8.90 28.75 66.53 28.24

invcap_p2 11.76 75.11 8.94 -1.77 9.67 30.87 83.52 34.09

invcap_p3 12.19 83.21 6.86 -1.40 24.57 29.33 87.67 28.86

invcap_p4 13.70 83.82 4.43 4.34 16.43 31.21 90.55 26.49

invcap_p5 8.40 78.21 -0.26 -0.62 5.74 22.08 87.27 20.29

invcap_p6 9.29 76.50 1.47 2.45 12.57 19.76 84.32 18.48

invcap_p7 6.34 72.21 -2.07 5.52 16.99 18.29 83.31 11.66

invcap_p8 9.42 73.42 4.30 0.72 19.36 22.98 79.79 18.99

invcap_p9 15.68 69.53 10.94 2.44 17.59 28.25 80.05 24.79

invcap_p10 17.30 61.81 12.66 8.85 26.63 26.41 74.62 23.51

igrowth_p1 13.64 69.92 8.67 1.86 10.34 29.99 78.85 30.06

igrowth_p2 15.08 73.16 9.90 -2.26 19.32 31.34 76.83 32.38

igrowth_p3 9.99 82.40 2.98 0.90 11.95 26.27 88.52 24.23

igrowth_p4 10.86 77.47 4.51 -1.50 16.34 24.85 85.02 23.73

igrowth_p5 13.88 83.47 9.28 3.30 19.65 31.00 89.36 29.22

igrowth_p6 8.55 81.31 3.68 3.43 11.47 23.91 89.39 20.34

igrowth_p7 4.79 82.82 -2.89 0.32 -0.16 19.56 85.02 17.11

igrowth_p8 13.27 81.40 5.96 1.36 15.45 25.35 87.26 22.36

igrowth_p9 13.62 74.91 9.65 2.99 25.99 33.26 84.07 35.21

igrowth_p10 10.67 67.24 5.96 3.46 4.34 23.55 76.60 25.58

sgrowth_p1 12.42 70.90 8.31 -3.00 11.27 29.31 73.39 30.03

sgrowth_p2 9.09 68.85 4.36 0.33 13.81 25.68 80.86 26.50

sgrowth_p3 9.97 81.02 6.19 -0.77 5.21 21.01 86.38 23.64

sgrowth_p4 11.96 83.38 5.78 -3.27 -1.65 28.14 88.34 23.16

sgrowth_p5 8.67 81.22 5.45 0.80 15.70 25.36 85.37 23.82

sgrowth_p6 7.23 81.32 3.89 0.02 14.08 18.96 83.98 19.33

sgrowth_p7 8.92 75.17 1.55 6.37 19.56 23.72 85.03 19.52

sgrowth_p8 14.08 70.89 4.96 2.60 23.27 29.78 79.87 23.98

sgrowth_p9 17.36 78.53 11.18 5.43 22.35 32.85 83.65 32.14

sgrowth_p10 17.01 73.99 10.74 7.17 12.52 33.21 80.88 31.08

lev_p1 9.00 81.44 5.14 -5.73 2.57 28.38 84.00 27.17

lev_p2 5.04 82.06 -3.59 3.07 14.59 19.57 85.71 15.34

lev_p3 7.24 82.91 -0.01 1.90 13.57 21.66 89.50 21.40

lev_p4 13.08 80.86 5.38 0.16 15.85 28.41 87.61 24.14

lev_p5 15.63 75.19 7.60 5.39 28.96 30.69 83.54 26.94
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lev_p6 14.41 75.16 7.70 7.48 20.60 26.39 84.80 23.33

lev_p7 19.94 74.64 15.81 3.43 20.67 34.33 83.01 32.56

lev_p8 16.20 72.77 9.39 5.97 12.73 27.13 79.82 20.50

lev_p9 8.39 70.70 2.87 6.09 -6.40 17.52 76.24 13.59

lev_p10 10.60 60.42 4.46 6.35 3.40 14.08 61.13 7.19

roaa_p1 14.30 64.09 11.77 -0.77 0.25 29.50 71.46 30.72

roaa_p2 20.52 77.63 10.90 8.55 17.53 29.35 77.16 20.49

roaa_p3 5.86 71.25 -0.57 5.29 -7.96 12.02 72.28 6.62

roaa_p4 12.54 83.48 5.76 4.04 11.83 25.78 85.21 21.57

roaa_p5 15.00 77.94 9.86 5.57 21.42 31.03 88.17 29.33

roaa_p6 14.21 80.19 7.82 7.66 11.80 27.73 88.62 27.08

roaa_p7 15.64 82.86 6.53 7.51 27.93 29.38 89.09 23.39

roaa_p8 9.99 83.89 3.33 2.75 19.67 25.64 90.66 25.12

roaa_p9 7.55 86.11 -0.89 0.22 12.43 28.58 90.15 24.86

roaa_p10 8.38 81.38 4.33 -8.46 0.57 24.82 86.88 23.91

roea_p1 16.56 66.13 12.10 0.76 5.65 32.82 73.47 32.00

roea_p2 18.89 81.40 14.34 9.07 11.31 33.40 85.31 33.54

roea_p3 20.11 80.10 15.39 5.42 26.97 34.64 85.45 32.39

roea_p4 12.89 76.27 5.55 9.80 29.53 29.61 83.69 29.05

roea_p5 9.25 77.79 1.07 9.25 13.63 20.50 87.77 14.93

roea_p6 14.90 85.46 7.85 7.40 12.38 27.04 87.11 20.26

roea_p7 14.24 86.96 6.20 4.03 17.54 27.21 90.21 22.35

roea_p8 11.59 91.05 6.25 2.84 16.18 27.07 92.93 25.56

roea_p9 7.53 91.69 3.15 -2.49 4.87 22.94 93.05 21.77

roea_p10 9.36 84.72 2.07 -6.11 -1.44 25.79 88.16 23.62

sp_p1 10.81 84.81 4.79 -4.62 4.41 30.26 86.13 29.62

sp_p2 6.95 88.45 3.52 2.43 8.81 25.83 91.55 23.86

sp_p3 8.58 85.72 2.40 5.29 7.03 19.55 89.25 15.75

sp_p4 13.15 85.07 6.31 2.93 13.65 23.33 89.71 19.32

sp_p5 16.70 76.56 10.25 4.12 22.45 27.62 85.66 25.65

sp_p6 17.92 77.39 9.80 8.26 20.64 30.38 89.79 25.89

sp_p7 19.62 75.17 13.73 7.50 24.48 28.80 82.07 25.61

sp_p8 12.82 71.19 7.81 5.44 9.60 19.08 76.47 22.15

sp_p9 13.56 64.86 9.30 7.72 4.92 18.13 70.98 21.19

sp_p10 21.12 67.08 16.78 6.76 12.74 27.53 70.58 28.48

gltnoa_p1 15.34 78.94 10.20 0.07 6.96 30.15 86.32 31.10

gltnoa_p2 16.97 83.09 11.22 0.89 9.89 28.87 88.63 27.55
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gltnoa_p3 14.21 82.55 5.48 1.87 12.12 30.83 84.34 29.38

gltnoa_p4 11.56 78.33 7.34 4.47 20.67 24.48 84.89 24.04

gltnoa_p5 7.03 74.82 2.09 2.33 13.59 22.38 87.42 17.71

gltnoa_p6 10.50 81.54 3.87 2.45 0.48 24.67 88.62 22.49

gltnoa_p7 14.82 81.68 6.58 5.40 26.71 30.62 89.43 25.25

gltnoa_p8 11.02 78.56 6.15 2.95 15.52 24.43 91.52 22.65

gltnoa_p9 16.14 82.24 9.80 0.67 26.34 34.64 89.97 31.53

gltnoa_p10 8.48 78.31 3.29 0.73 9.92 29.72 84.26 30.79

mom_p1 15.13 65.32 12.22 -1.66 -11.77 28.81 65.32 28.34

mom_p2 14.34 73.25 9.82 -3.89 -9.45 27.07 73.28 26.90

mom_p3 10.91 75.22 5.74 -1.95 -2.50 22.10 77.71 19.15

mom_p4 9.43 80.45 3.57 0.38 -6.13 20.06 83.74 17.27

mom_p5 10.44 81.15 6.96 -4.70 3.81 23.20 87.32 23.88

mom_p6 7.78 80.08 4.10 -1.67 7.07 20.75 89.55 18.94

mom_p7 10.59 79.51 3.61 2.27 17.60 22.07 88.29 16.72

mom_p8 7.21 79.75 1.69 6.71 15.68 18.05 85.30 17.41

mom_p9 8.81 73.02 2.42 9.38 23.35 21.87 78.44 19.30

mom_p10 7.56 50.69 2.54 4.65 2.68 16.81 59.29 15.68

indmom_p1 16.71 60.03 11.32 3.97 -6.23 32.12 62.08 27.91

indmom_p2 9.63 65.22 3.78 -5.21 -20.81 20.92 68.93 18.61

indmom_p3 19.38 72.66 14.82 2.31 27.94 36.67 80.34 36.12

indmom_p4 7.39 66.24 1.84 -0.56 6.62 21.50 79.79 17.84

indmom_p5 8.57 66.35 1.87 3.04 14.75 20.60 82.66 14.74

indmom_p6 9.17 71.20 3.13 -4.24 9.11 19.18 82.56 14.27

indmom_p7 13.63 68.00 7.41 8.23 17.57 25.41 72.30 22.15

indmom_p8 6.69 67.17 -0.83 5.49 12.04 16.08 74.94 11.28

indmom_p9 5.60 64.29 -0.07 0.15 1.60 14.89 73.79 11.63

indmom_p10 3.97 42.37 -2.71 3.54 -5.44 7.69 52.22 2.86

valmom_p1 10.28 72.19 6.20 -6.44 -17.88 28.98 74.86 31.34

valmom_p2 7.84 79.77 2.29 -6.02 4.70 20.28 83.14 19.09

valmom_p3 10.96 82.92 5.13 -4.49 13.27 24.75 87.10 21.92

valmom_p4 10.53 82.49 6.32 -0.11 15.94 25.68 87.82 25.89

valmom_p5 10.77 81.83 5.52 -0.29 18.53 22.09 87.15 21.61

valmom_p6 13.67 75.94 8.63 1.08 14.16 23.66 82.49 22.97

valmom_p7 12.75 62.89 7.91 -1.78 21.69 25.46 80.66 24.77

valmom_p8 15.85 60.38 7.33 7.07 15.56 23.91 74.53 19.68

valmom_p9 16.13 59.21 8.88 8.14 15.49 24.91 73.86 19.34
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valmom_p10 13.55 47.68 7.15 8.63 18.07 20.31 60.45 17.80

valmomprof_p1 13.11 77.08 6.98 0.24 1.70 33.46 78.51 32.29

valmomprof_p2 14.31 81.40 9.78 -2.94 6.35 29.49 82.30 29.94

valmomprof_p3 12.46 77.68 6.22 -1.79 14.81 24.82 82.78 23.28

valmomprof_p4 8.34 78.03 1.54 -1.33 16.00 20.54 84.83 17.68

valmomprof_p5 11.19 78.80 3.47 0.19 13.66 26.24 86.69 22.66

valmomprof_p6 11.57 73.36 4.83 0.75 12.55 21.17 83.82 14.36

valmomprof_p7 12.31 76.45 6.01 5.44 22.81 26.23 83.23 25.11

valmomprof_p8 9.35 65.45 2.13 4.12 11.86 19.23 76.98 15.65

valmomprof_p9 6.58 59.95 2.46 0.54 3.04 10.31 68.62 9.32

valmomprof_p10 9.37 46.46 5.01 2.03 3.91 16.55 66.01 15.26

shortint_p1 11.79 70.41 6.40 3.69 0.13 23.62 70.71 23.00

shortint_p2 14.77 79.45 8.12 5.27 13.88 26.11 82.70 22.80

shortint_p3 16.83 82.32 12.44 3.59 20.09 30.06 83.57 29.32

shortint_p4 14.98 82.16 10.74 5.14 18.47 28.31 86.39 27.66

shortint_p5 16.12 85.16 9.62 1.04 21.64 30.32 86.89 26.18

shortint_p6 16.05 85.03 10.50 5.20 20.07 28.23 88.86 28.12

shortint_p7 13.18 79.69 7.30 3.29 12.54 29.24 89.25 27.85

shortint_p8 12.11 78.81 4.32 3.32 23.29 28.41 89.59 24.31

shortint_p9 6.82 72.86 1.41 4.57 16.27 20.05 90.85 19.23

shortint_p10 14.65 73.75 8.10 11.94 17.56 24.23 81.15 16.64

mom12_p1 14.31 56.85 8.90 2.12 -0.25 22.38 57.76 17.39

mom12_p2 19.64 70.06 15.38 0.56 -1.36 32.45 72.69 29.40

mom12_p3 10.53 69.02 5.05 -0.86 -4.99 21.59 69.24 18.87

mom12_p4 14.73 76.66 7.22 0.60 1.55 27.35 81.97 23.19

mom12_p5 10.01 78.62 4.29 0.38 3.88 18.53 83.63 14.59

mom12_p6 9.48 79.04 5.81 3.32 15.29 19.80 87.90 22.17

mom12_p7 3.56 77.55 -0.12 1.55 6.56 10.29 86.57 13.46

mom12_p8 7.49 78.03 1.52 5.21 14.70 19.74 85.79 19.06

mom12_p9 9.55 74.24 3.55 10.09 26.12 24.75 78.80 24.08

mom12_p10 4.82 53.11 1.16 5.53 14.56 18.34 63.28 18.15

momrev_p1 12.41 67.99 6.76 4.82 24.66 33.89 75.21 32.11

momrev_p2 10.81 82.13 2.55 6.98 18.15 25.20 82.15 20.44

momrev_p3 11.84 80.26 3.07 3.80 18.16 24.98 90.39 19.99

momrev_p4 12.97 86.25 6.92 4.42 18.20 26.08 90.70 23.61

momrev_p5 10.06 83.99 0.77 3.17 11.93 20.51 87.80 12.89

momrev_p6 7.52 85.14 1.77 1.14 -3.26 20.77 88.54 18.93
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momrev_p7 9.37 78.88 4.34 -0.79 10.70 21.42 84.37 20.96

momrev_p8 7.38 73.54 3.11 -2.94 -7.89 17.92 78.54 14.46

momrev_p9 15.96 72.11 10.19 1.34 15.46 30.24 78.73 27.62

momrev_p10 15.70 60.32 11.83 3.86 9.93 29.37 71.22 29.94

lrrev_p1 12.66 76.81 5.16 -0.11 18.86 33.84 76.74 32.52

lrrev_p2 10.27 82.62 0.15 4.08 21.69 27.98 83.27 19.55

lrrev_p3 8.54 78.52 -1.04 1.92 16.40 23.98 85.67 18.49

lrrev_p4 9.72 81.02 2.07 4.24 24.06 25.68 88.89 21.62

lrrev_p5 12.06 77.87 8.41 3.52 17.72 26.00 88.59 26.49

lrrev_p6 5.94 75.42 -1.58 3.68 2.41 15.69 84.66 10.76

lrrev_p7 12.56 76.76 9.74 4.80 7.89 20.27 84.36 19.67

lrrev_p8 13.61 71.09 10.52 4.45 18.08 21.59 80.39 22.05

lrrev_p9 14.89 71.49 11.00 0.84 14.48 19.73 75.81 18.81

lrrev_p10 15.52 58.03 13.95 2.31 15.99 21.05 62.58 23.17

valuem_p1 5.77 76.56 -0.01 -5.75 11.37 25.16 79.02 23.09

valuem_p2 4.24 84.07 -3.30 -1.92 2.05 18.99 85.51 18.13

valuem_p3 8.67 85.13 1.14 4.24 15.99 23.54 87.79 23.52

valuem_p4 13.83 81.47 6.92 6.59 16.99 32.28 87.66 31.53

valuem_p5 14.02 81.07 5.67 8.43 16.76 29.85 89.83 27.27

valuem_p6 15.02 74.06 10.83 6.52 12.41 28.35 83.76 28.12

valuem_p7 15.58 74.27 11.82 3.84 13.86 26.56 81.01 26.73

valuem_p8 17.73 69.79 14.74 4.11 20.04 31.61 77.17 29.56

valuem_p9 15.16 57.67 13.92 -3.42 -12.50 28.40 67.76 28.86

valuem_p10 16.45 51.94 12.11 0.92 -18.14 21.26 54.03 16.77

nissm_p1 19.76 80.00 14.69 7.67 20.71 32.46 80.40 29.33

nissm_p2 16.15 78.92 14.01 5.29 11.47 30.94 87.77 32.23

nissm_p3 11.60 79.66 9.28 0.68 -8.03 24.21 81.48 26.66

nissm_p4 10.78 81.30 2.61 1.92 17.36 24.97 82.89 20.13

nissm_p5 12.30 81.40 4.54 -0.47 16.69 26.37 85.11 21.95

nissm_p6 8.75 79.12 1.45 0.65 14.12 25.04 86.52 23.54

nissm_p7 11.17 78.31 3.17 3.46 18.69 25.62 91.61 23.14

nissm_p8 7.43 86.82 0.25 1.34 11.03 22.79 91.98 21.05

nissm_p9 11.75 83.11 2.66 4.49 12.97 26.58 91.72 18.56

nissm_p10 14.70 76.43 7.27 4.74 15.31 31.18 87.49 27.86

sue_p1 13.38 69.83 9.24 4.13 1.44 24.26 70.92 20.52

sue_p2 7.21 69.64 -0.70 3.08 -24.70 11.31 72.56 5.42

sue_p3 13.44 66.62 4.53 7.70 6.31 22.78 70.34 13.66
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sue_p4 14.60 76.00 9.54 6.27 18.36 23.45 82.33 19.56

sue_p5 13.06 76.04 6.17 -1.77 14.82 27.20 80.20 20.70

sue_p6 2.15 75.02 -4.14 2.70 9.82 12.81 80.84 7.71

sue_p7 9.14 77.97 7.95 -2.03 11.82 20.31 83.32 20.09

sue_p8 8.05 77.82 3.43 -0.70 17.96 22.51 83.27 22.46

sue_p9 1.65 76.64 -1.97 1.60 11.42 17.53 80.62 15.74

sue_p10 12.41 76.00 6.91 1.44 18.63 33.34 80.78 32.21

roe_p1 21.90 67.28 18.07 6.70 26.46 40.50 78.25 36.88

roe_p2 21.00 80.58 15.06 5.28 5.37 34.54 82.84 31.43

roe_p3 11.06 78.06 5.40 1.36 -6.90 18.19 79.49 16.96

roe_p4 14.66 76.85 9.00 3.35 -2.59 22.63 82.50 17.25

roe_p5 13.54 83.03 7.75 6.76 7.82 26.46 86.38 24.04

roe_p6 13.83 86.00 8.59 8.66 24.61 30.25 88.41 29.26

roe_p7 11.73 84.51 4.05 5.37 17.13 23.07 88.72 17.68

roe_p8 7.99 85.22 4.33 0.37 20.09 25.20 88.58 27.43

roe_p9 8.77 86.98 2.16 -0.69 11.15 23.83 88.10 21.94

roe_p10 5.46 81.15 -0.80 -3.57 8.58 21.82 87.69 18.27

rome_p1 23.04 68.32 19.37 6.93 23.14 39.12 75.95 37.96

rome_p2 17.24 75.28 13.08 1.86 10.90 33.89 83.10 33.87

rome_p3 10.70 82.47 5.72 -0.18 7.75 23.68 81.10 23.31

rome_p4 13.34 85.55 6.96 1.88 17.68 28.95 90.23 26.00

rome_p5 11.71 83.72 3.04 1.72 4.50 30.57 90.29 25.85

rome_p6 6.40 81.14 0.78 1.49 0.42 20.14 92.17 17.69

rome_p7 6.24 78.59 1.24 6.09 21.00 21.76 86.76 17.93

rome_p8 8.71 75.85 6.31 6.04 14.30 21.98 89.12 21.94

rome_p9 9.93 69.21 6.48 2.76 8.00 16.50 77.24 16.34

rome_p10 15.63 67.95 10.85 4.20 19.70 23.44 72.45 23.60

roa_p1 18.33 63.57 16.34 4.38 14.63 35.44 76.01 35.65

roa_p2 24.79 80.07 18.69 8.20 27.70 36.91 80.44 31.71

roa_p3 7.15 69.79 1.29 3.25 -20.85 10.86 66.66 4.14

roa_p4 10.84 80.39 6.09 5.02 6.99 21.27 80.75 16.54

roa_p5 10.02 80.86 1.96 0.36 4.25 20.81 85.87 15.30

roa_p6 14.08 81.79 5.49 3.53 16.40 25.34 85.86 22.39

roa_p7 16.28 82.87 7.42 6.10 25.19 31.09 87.78 27.36

roa_p8 6.33 81.16 1.52 3.58 19.50 23.68 88.39 25.01

roa_p9 11.56 85.32 6.83 -2.04 17.75 31.12 89.95 29.25

roa_p10 5.24 77.05 0.21 -4.17 10.59 22.33 83.20 20.72
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strev_p1 8.73 59.85 6.32 -0.63 4.41 20.70 66.75 20.63

strev_p2 2.71 74.91 -1.54 -6.63 0.00 10.51 75.52 7.45

strev_p3 10.79 83.01 7.32 -1.13 18.69 28.71 86.46 26.65

strev_p4 9.28 85.56 2.46 -0.67 9.36 23.77 88.70 20.70

strev_p5 13.68 85.65 7.51 4.81 19.89 26.97 88.43 25.18

strev_p6 10.62 84.88 3.95 3.94 1.39 22.32 88.42 18.75

strev_p7 11.48 83.28 4.99 4.36 17.88 25.70 84.51 23.70

strev_p8 17.78 79.47 13.62 6.36 25.28 31.74 83.33 30.44

strev_p9 15.68 75.46 11.42 6.39 7.81 28.06 80.61 27.44

strev_p10 17.35 67.53 9.30 4.32 9.15 29.27 73.32 22.63

ivol_p1 15.98 57.99 12.13 1.13 6.04 30.63 67.67 29.36

ivol_p2 15.28 69.78 11.21 0.04 8.60 33.24 75.54 34.49

ivol_p3 15.30 77.09 10.24 1.63 15.52 27.30 81.87 26.93

ivol_p4 17.66 80.53 11.91 -0.26 16.56 32.88 84.06 32.28

ivol_p5 19.29 83.98 13.41 3.59 15.78 35.02 84.50 34.98

ivol_p6 12.42 82.35 2.41 6.24 15.53 22.58 88.20 15.76

ivol_p7 12.89 84.14 5.38 5.04 12.69 26.55 89.97 22.65

ivol_p8 9.83 84.48 4.41 1.47 18.01 24.71 90.49 23.30

ivol_p9 5.96 82.06 -0.19 -0.49 14.92 23.03 91.99 19.19

ivol_p10 6.89 73.60 1.03 2.63 8.63 16.16 85.01 9.67

betaarb_p1 19.08 80.74 15.24 -0.07 22.49 32.52 78.46 32.68

betaarb_p2 20.95 76.83 12.33 6.24 25.81 31.38 80.34 25.54

betaarb_p3 21.29 77.85 13.60 6.29 31.63 32.33 83.44 26.83

betaarb_p4 13.40 73.12 5.96 4.71 13.05 22.29 78.55 16.26

betaarb_p5 11.94 68.55 5.25 4.54 19.21 22.50 78.71 18.97

betaarb_p6 11.91 74.89 8.46 5.88 20.41 26.20 85.68 27.18

betaarb_p7 8.91 60.87 2.66 8.09 20.71 17.28 81.13 14.35

betaarb_p8 8.53 61.65 2.17 5.57 17.70 16.93 76.91 14.47

betaarb_p9 7.10 45.68 3.34 7.49 16.48 14.73 71.26 10.12

betaarb_p10 3.45 34.83 1.90 5.90 2.30 4.83 51.18 6.28

season_p1 12.61 64.34 10.01 1.11 19.98 21.84 75.98 27.14

season_p2 13.26 76.47 10.36 3.94 22.89 20.36 82.84 20.76

season_p3 10.62 79.61 5.49 3.15 4.74 21.58 85.04 20.51

season_p4 13.48 83.40 6.81 7.92 20.01 29.83 87.25 27.07

season_p5 11.90 85.09 5.51 1.73 -1.33 21.69 88.38 17.40

season_p6 7.87 84.86 0.36 2.80 5.13 17.43 87.60 14.38

season_p7 10.68 83.87 1.24 1.96 10.24 25.21 88.52 18.81
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season_p8 7.32 85.71 0.82 5.38 11.81 21.43 87.44 16.87

season_p9 11.40 82.30 2.89 3.40 15.99 29.02 84.67 24.62

season_p10 14.71 76.98 8.04 0.12 15.97 32.46 78.06 30.40

indrrev_p1 9.28 60.69 6.64 -0.30 6.95 21.50 71.62 23.30

indrrev_p2 10.18 78.77 4.55 -3.10 10.02 23.66 81.80 22.63

indrrev_p3 7.52 89.01 1.28 -0.14 5.36 18.95 88.64 17.28

indrrev_p4 15.33 90.79 8.40 4.96 13.97 31.07 93.29 26.66

indrrev_p5 12.03 88.62 6.76 -0.48 15.23 28.84 90.66 26.68

indrrev_p6 13.32 86.53 5.70 0.38 16.42 24.68 91.96 20.10

indrrev_p7 13.66 87.32 7.64 2.87 11.80 25.97 88.84 22.99

indrrev_p8 14.86 83.10 8.40 8.25 21.11 29.99 84.69 27.62

indrrev_p9 15.15 80.33 11.35 4.69 0.11 28.56 83.44 29.45

indrrev_p10 17.63 72.74 13.88 1.39 8.33 32.20 79.04 34.02

indrrevlv_p1 8.79 71.60 4.17 4.48 7.34 13.58 78.83 11.49

indrrevlv_p2 6.38 80.17 1.71 -6.58 -5.84 16.97 81.81 15.76

indrrevlv_p3 1.97 76.92 -3.68 4.35 3.51 13.09 86.23 5.77

indrrevlv_p4 10.04 74.39 2.44 2.63 9.27 22.69 85.40 14.88

indrrevlv_p5 9.00 73.47 2.24 0.05 18.68 23.03 82.02 18.33

indrrevlv_p6 11.80 81.09 5.30 2.47 15.63 25.12 87.91 19.75

indrrevlv_p7 12.05 73.81 6.86 4.66 20.02 22.91 86.16 18.83

indrrevlv_p8 7.05 75.94 -0.62 1.59 10.02 21.10 85.01 16.30

indrrevlv_p9 7.96 73.87 4.32 0.13 7.43 17.69 80.77 19.52

indrrevlv_p10 13.28 74.32 6.27 7.19 25.46 28.21 81.50 24.13

indmomrev_p1 11.21 66.61 4.34 0.84 4.38 27.69 76.00 22.21

indmomrev_p2 10.20 70.08 3.09 -3.48 3.99 23.74 79.49 19.40

indmomrev_p3 3.92 70.53 -0.06 -3.45 2.64 12.01 85.55 11.06

indmomrev_p4 8.78 74.13 2.03 2.69 -0.42 23.02 85.59 17.70

indmomrev_p5 4.82 74.52 -1.08 3.51 5.33 16.64 83.92 13.24

indmomrev_p6 8.70 76.13 3.80 6.38 4.38 18.60 84.34 14.41

indmomrev_p7 11.37 79.09 8.10 3.12 22.08 21.75 84.68 20.79

indmomrev_p8 7.27 74.92 2.78 5.03 18.05 18.49 81.64 14.99

indmomrev_p9 9.73 73.50 3.70 2.65 16.46 20.06 80.53 15.89

indmomrev_p10 5.38 69.56 -0.84 1.26 9.16 17.14 78.71 13.87

ciss_p1 12.46 82.70 7.99 4.28 5.57 28.86 84.91 30.14

ciss_p2 9.65 83.26 1.99 4.07 18.00 25.19 86.70 22.01

ciss_p3 10.67 83.37 6.03 0.98 10.34 24.50 84.61 24.72

ciss_p4 13.44 83.09 9.06 3.76 22.19 30.86 88.22 31.89
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ciss_p5 8.78 80.83 4.33 1.86 3.46 20.09 85.84 20.65

ciss_p6 11.97 83.94 6.59 0.40 19.67 27.01 88.55 23.00

ciss_p7 9.81 83.51 2.01 4.05 18.37 24.08 89.53 20.12

ciss_p8 12.40 79.43 5.05 2.45 8.85 25.86 89.79 20.33

ciss_p9 7.07 78.81 0.00 -1.09 2.54 17.01 89.84 12.91

ciss_p10 21.20 78.55 13.23 10.70 7.25 31.40 87.62 27.11

price_p1 12.71 50.30 10.94 2.38 -24.24 20.58 61.31 23.13

price_p2 16.15 65.83 12.33 2.93 -4.53 23.95 71.39 23.65

price_p3 21.15 72.57 18.49 5.53 13.18 31.77 79.74 32.71

price_p4 13.21 74.53 10.19 1.09 -17.26 22.81 80.18 23.14

price_p5 16.04 80.52 10.18 1.05 10.59 30.91 86.81 27.60

price_p6 9.60 82.84 4.90 2.34 -12.78 19.99 88.40 17.59

price_p7 11.58 86.79 6.13 3.17 -5.36 25.52 91.43 23.56

price_p8 12.73 88.26 5.56 4.04 14.96 30.49 93.07 26.96

price_p9 10.90 91.81 3.49 -0.65 7.84 29.03 93.68 28.80

price_p10 10.06 84.91 3.09 2.47 20.22 24.60 86.43 22.81

shvol_p1 14.43 66.29 11.45 -1.86 14.96 31.41 75.47 31.36

shvol_p2 14.75 80.46 9.69 2.99 18.74 31.16 84.49 31.62

shvol_p3 16.11 85.72 8.29 7.24 17.87 32.07 87.61 30.18

shvol_p4 21.05 86.06 14.20 8.84 27.69 36.50 87.78 32.34

shvol_p5 8.20 83.45 1.63 5.39 10.89 18.76 86.68 17.52

shvol_p6 16.52 84.87 8.85 6.62 15.09 29.84 91.26 24.66

shvol_p7 10.29 79.46 3.83 4.91 13.31 25.39 89.38 22.03

shvol_p8 6.60 78.27 -0.74 -0.67 8.36 24.16 88.19 20.17

shvol_p9 4.32 67.96 -3.22 -1.41 12.21 16.75 84.16 13.81

shvol_p10 1.81 59.35 -3.87 5.74 -1.07 10.44 70.25 8.74
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Table C.3: Trading strategies comparison

This table presents the performance of two trading rules. Trading rule 1: Go long the decile with the
highest expected return and go short the decile with the lowest expected return. Trading rule 2: Go long
the first (last) decile and go short the last (first) decile based on which extreme decile has the highest average
return. The model 2 is adopted to do the forecasting and the strategy starts as of 1993m2. The statistics
relative to the first trading rule are indexed by m while they are indexed by b for the second trading rule.
For each rule, we present the mean return of the obtained long-short portfolios (µ), student test statistic
for testing H0 : µ = 0, the terminal wealth of investing 1$ at the beginning of the forecasting period
(tw), student test statistic for testing H0 : µm = µb, and the breakeven transaction cost that equates the
long leg mean returns of both strategies. Finally, the breakeven transaction costs (unadjusted, adjusted by
the standard deviation) that equate the mean returns of the long positions of both strategies are provided.
Each strategy starts in January 1993 and it holds until December 2019. The statistics are calculated using
monthly information. See section 3.2.1 in the main text.

L-S mean returns and tstats Breakeven t-cost Terminal wealth T-stat

µm(%) tm µb(%) tb no-sd(%) with sd(%) twm twb H0 : µm = µb

size 1.31 6.28 0.09 0.34 0.86 0.65 53.60 0.53 4.22

value 0.69 3.55 0.08 0.33 0.38 0.37 7.60 0.54 2.41

prof 0.63 3.70 0.39 2.18 0.40 0.38 6.57 0.23 4.13

valprof 0.85 4.62 0.42 2.00 0.61 0.64 12.87 0.20 4.54

nissa 0.79 4.21 0.63 3.57 0.58 0.67 10.81 0.11 5.51

accruals 1.30 6.20 0.37 1.94 0.89 1.02 51.89 0.25 5.90

growth 0.99 4.93 0.24 1.14 0.53 0.65 19.65 0.36 4.21

aturnover 0.26 1.44 0.35 1.70 0.34 0.35 1.94 0.26 2.23

gmargins 0.45 2.41 0.24 1.33 0.24 0.27 3.54 0.38 2.65

divp 1.06 4.27 0.21 0.68 0.78 0.89 22.17 0.31 3.23

divg 0.53 2.99 0.21 1.04 0.39 0.48 4.69 0.40 2.75

dur 0.59 2.49 0.15 0.52 0.49 0.46 4.99 0.41 2.00

ep 1.67 6.15 0.45 1.50 0.97 1.32 147.45 0.14 5.23

cfp 0.90 4.50 0.12 0.48 0.54 0.59 14.79 0.50 3.23

noa 0.97 4.99 0.74 3.68 0.88 0.94 18.89 0.07 6.12

inv 0.38 2.28 0.33 1.88 0.34 0.42 2.94 0.29 2.93

invcap 1.75 6.02 0.04 0.11 0.68 0.89 179.80 0.63 3.88

igrowth 0.88 4.24 0.24 1.37 0.54 0.71 13.70 0.40 4.14

sgrowth 1.09 5.05 0.15 0.65 0.62 0.75 26.24 1.23 3.03

lev 0.77 3.50 0.05 0.18 0.36 0.37 9.30 0.54 2.23

roaa 1.50 6.36 0.29 1.12 0.78 1.05 93.44 0.28 5.15

roea 1.43 6.46 0.28 1.01 0.64 0.83 75.63 0.27 4.85

sp 0.92 4.50 0.26 1.14 0.51 0.49 15.43 0.32 3.83

gltnoa 0.70 4.03 0.10 0.74 0.31 0.36 8.06 1.26 2.68

mom 1.96 6.18 0.14 0.33 0.87 1.01 322.50 0.28 4.04

indmom 0.68 2.05 0.38 0.96 0.56 0.65 5.11 0.13 2.06

valmom 0.90 3.47 0.23 0.76 0.61 0.66 12.91 0.30 2.84
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L-S mean returns and tstats Breakeven t-cost Terminal wealth T-stat

µm(%) tm µb(%) tb no-sd(%) with sd(%) twm twb H0 : µm = µb

valmomprof 1.32 5.58 0.81 2.64 1.02 1.15 52.76 0.04 5.50

shortint 1.24 6.49 0.11 0.51 0.61 0.76 44.14 1.13 4.00

mom12 2.30 5.91 0.79 1.72 1.51 1.96 727.84 0.03 5.14

momrev 0.93 3.82 0.48 1.71 0.68 0.75 14.86 0.14 3.79

lrrev 1.33 5.43 0.08 0.29 0.81 0.80 52.41 0.50 3.76

valuem 1.42 4.70 0.06 0.17 0.65 0.44 60.48 0.35 3.11

nissm 0.79 4.10 0.52 2.42 0.58 0.73 10.61 0.15 4.55

sue 0.07 0.35 0.31 1.31 0.32 0.38 1.00 0.27 1.21

roe 1.41 5.81 0.59 1.94 0.89 1.25 68.51 0.09 5.13

rome 2.02 7.01 0.93 3.00 1.23 1.77 422.27 0.03 6.96

roa 1.29 4.81 0.44 1.56 0.85 1.13 43.77 0.15 4.44

strev 1.43 5.21 0.23 0.68 0.95 0.93 67.84 0.26 3.82

ivol 2.57 7.42 0.41 0.92 1.33 2.12 2027.37 0.09 5.24

betaarb 3.46 11.55 0.10 0.25 1.78 2.47 38330.12 0.34 7.33

season 0.82 4.58 0.45 2.03 0.66 0.75 11.83 0.18 4.45

indrrev 1.93 8.25 0.40 1.55 1.32 1.38 362.99 0.19 6.68

indrrevlv 0.84 4.86 0.63 3.53 0.77 0.73 12.88 0.11 5.91

indmomrev 0.47 2.79 0.52 2.46 0.40 0.42 3.95 0.15 3.67

ciss 0.86 4.98 0.42 2.38 0.56 0.65 13.60 0.22 5.19

price 1.66 4.73 0.16 0.38 0.91 1.27 108.22 0.27 3.35

shvol 2.39 8.22 0.12 0.33 1.10 1.51 1365.24 0.72 4.84

Table C.4: Deciles inclusion in the long position (%)

This table presents the frequencies of inclusion of each decile in the long position of the
deciles-based-strategy proposed in this paper. The frequencies can be nonnull for all the
deciles because there is a possibility to go long any decile based on its expected return. If
one considers the usual trading rule to form the long-short portfolios, the frequency of d1
or d10 would be 100% and the other zero as one goes long either the first decile or the last
decile. Trading rule: The strategy here consists of going long the decile with the highest
expected return. The model 2 is adopted to do the forecasting and the strategy starts as of
1993m2

d1 d2 d3 d4 d5 d6 d7 d8 d9 d10

size 18.58 6.81 3.10 3.72 0.31 7.12 0.31 3.72 18.58 37.77

value 15.17 0.62 10.53 0.62 3.72 3.10 6.19 16.72 2.48 40.87

prof 21.98 4.95 4.95 4.95 6.50 2.17 18.89 2.79 0.31 32.51

valprof 14.24 2.17 0.62 2.79 6.19 14.86 13.93 5.26 1.55 38.39
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d1 d2 d3 d4 d5 d6 d7 d8 d9 d10

nissa 4.02 6.50 26.93 3.10 5.26 1.24 0.62 0.31 8.05 43.96

accruals 0.31 0.93 0.00 3.10 2.79 11.15 23.84 0.00 14.55 43.34

growth 11.46 15.48 4.64 8.98 0.00 10.53 13.62 2.79 11.15 21.36

aturnover 19.20 4.33 4.02 10.84 0.62 11.46 8.05 0.00 38.70 2.79

gmargins 10.84 10.84 16.72 14.86 8.36 1.55 14.24 3.41 0.00 19.20

divp 34.37 1.55 1.86 0.00 0.31 8.67 4.95 2.48 9.91 35.91

divg 5.57 11.76 2.48 5.26 23.22 1.24 8.67 2.48 11.15 28.17

dur 11.76 2.48 6.50 1.55 4.33 0.31 13.62 1.86 3.41 54.18

ep 37.77 5.88 2.79 1.55 0.62 0.62 10.84 13.62 2.17 24.15

cfp 20.43 2.17 0.31 0.62 3.41 5.57 1.24 11.76 22.60 31.89

noa 0.62 18.58 13.93 0.31 2.48 3.72 7.12 6.19 14.86 32.20

inv 14.55 3.10 8.67 2.79 12.69 13.93 2.17 4.95 14.55 22.60

invcap 41.18 6.19 0.31 0.93 2.17 5.57 4.95 7.74 13.31 17.65

igrowth 13.62 15.48 1.24 2.17 0.62 15.17 8.05 7.43 21.05 15.17

sgrowth 38.70 2.79 3.10 1.86 5.57 21.67 8.05 4.02 10.22 4.02

lev 9.91 0.62 4.02 19.20 2.17 1.24 10.84 7.43 2.79 41.80

roaa 26.01 30.03 7.12 7.43 12.69 0.31 4.02 8.05 0.93 3.41

roea 40.87 3.41 20.74 3.41 8.98 2.48 2.79 2.48 1.24 13.62

sp 9.29 10.22 5.26 4.95 4.64 0.31 11.76 1.86 8.36 43.34

gltnoa 21.05 2.79 4.02 27.24 6.50 6.81 0.93 1.24 0.62 28.79

mom 25.08 1.55 3.10 3.72 2.48 8.98 7.43 0.00 0.31 47.37

indmom 25.39 4.33 0.31 0.00 0.62 4.02 11.15 3.10 8.05 43.03

valmom 18.58 8.05 2.17 1.24 0.31 7.12 19.50 2.17 5.57 35.29

valmomprof 15.48 2.79 0.31 4.33 8.36 0.31 0.93 0.00 14.86 52.63

shortint 35.29 2.48 8.98 7.12 19.81 0.62 1.24 2.79 7.12 14.55

mom12 17.96 5.57 1.55 4.95 2.17 0.00 6.50 8.36 1.86 51.08

momrev 6.19 4.95 3.72 0.31 8.05 7.12 0.93 13.93 3.41 51.39

lrrev 14.55 0.31 0.62 2.79 13.31 4.64 0.00 3.72 18.89 41.18

valuem 17.96 6.81 1.55 3.41 5.26 0.00 7.43 6.81 19.20 31.58

nissm 7.12 6.19 22.91 6.50 3.10 1.55 4.02 4.33 12.07 32.20

sue 11.46 0.00 1.86 19.50 7.12 4.95 2.17 2.79 14.86 35.29

roe 29.10 7.12 3.41 0.93 6.50 0.93 22.29 3.10 2.79 23.84

rome 22.91 0.93 11.46 0.00 0.31 3.41 2.17 11.46 6.19 41.18

roa 25.39 14.86 13.62 4.64 11.15 0.00 5.88 3.10 8.67 12.69

strev 6.19 1.24 6.81 5.57 2.79 8.67 11.76 12.69 11.76 32.51

ivol 15.48 28.17 6.19 0.31 10.84 3.10 0.31 0.31 2.79 32.51

betaarb 51.39 0.31 1.55 0.31 1.55 0.93 0.00 0.93 18.58 24.46

season 0.93 0.00 4.95 0.31 19.50 1.24 2.79 0.62 4.95 64.71
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d1 d2 d3 d4 d5 d6 d7 d8 d9 d10

indrrev 1.24 0.00 0.31 2.17 4.95 14.86 10.53 13.62 11.76 40.56

indrrevlv 0.00 0.00 2.17 4.33 5.57 2.48 12.69 10.22 6.81 55.73

indmomrev 2.79 2.48 2.48 0.31 7.43 2.48 6.50 4.95 8.36 62.23

ciss 10.84 11.76 13.62 7.12 4.95 3.72 0.31 8.36 17.96 21.36

price 35.29 7.12 9.29 4.64 4.02 0.62 0.93 4.64 14.24 19.20

shvol 38.39 15.48 2.17 1.86 0.93 0.31 1.86 3.10 7.12 28.79

Table C.5: Deciles inclusion in the short position (%)

This table presents the frequencies of inclusion of each decile in the short position of the
deciles-based-strategy proposed in this paper. The frequencies can be nonnull for all the
deciles because there is a possibility to go short any decile based on its expected return. If
one considers the usual trading rule to form the long-short portfolios, the frequency of d1 or
d10 would be 100% and the other zero as one goes short either the first decile or the last
decile. Trading rule: The strategy here consists of going short the decile with the lowest
expected return. The model 2 is adopted to do the forecasting and the strategy starts as of
1993m2.

d1 d2 d3 d4 d5 d6 d7 d8 d9 d10

size 44.89 3.10 3.72 0.00 6.19 2.79 3.10 4.02 9.91 22.29

value 40.25 2.48 0.62 6.50 0.62 3.10 2.17 8.98 27.55 7.74

prof 15.79 26.63 9.91 5.57 4.02 6.19 18.27 2.17 7.12 4.33

valprof 30.34 0.62 21.36 31.89 0.93 0.00 0.00 0.62 1.86 12.38

nissa 47.37 6.50 0.31 0.00 1.55 6.19 21.67 4.02 12.07 0.31

accruals 52.63 4.95 0.93 2.17 14.55 6.50 11.76 4.02 0.00 2.48

growth 43.03 5.57 0.00 8.67 2.48 14.24 22.60 0.62 0.00 2.79

aturnover 39.94 11.15 19.81 3.72 4.02 0.93 0.93 7.43 10.22 1.86

gmargins 19.20 6.81 0.62 7.12 0.00 23.22 8.05 4.02 26.32 4.64

divp 34.37 5.26 0.62 3.41 3.10 1.55 0.00 0.93 23.22 27.55

divg 32.51 2.79 0.62 2.48 24.15 8.98 1.24 6.81 0.62 19.81

dur 47.68 7.12 2.79 2.48 9.29 0.93 12.38 2.79 4.64 9.91

ep 28.48 14.86 0.62 14.24 4.64 14.86 0.00 8.05 13.62 0.62

cfp 32.20 6.19 12.69 5.26 2.48 1.24 12.69 8.05 12.07 7.12

noa 46.75 3.72 4.64 32.82 0.31 2.17 4.95 0.00 0.31 4.33

inv 34.06 20.12 0.31 6.19 8.67 25.08 4.33 0.31 0.62 0.31

invcap 35.60 2.48 9.91 0.00 1.86 0.00 9.29 16.41 3.72 20.74

igrowth 42.41 0.93 1.86 2.48 11.46 31.27 0.93 1.86 3.10 3.72

sgrowth 27.86 1.24 8.67 4.64 6.19 3.72 29.41 4.02 1.24 13.00

lev 30.03 14.55 4.95 0.00 4.64 13.00 2.79 13.00 1.86 15.17

roaa 34.67 2.17 4.02 1.24 30.03 7.74 4.64 0.93 13.00 1.55

Continued on next page

124



Table C.5 – continued from previous page

d1 d2 d3 d4 d5 d6 d7 d8 d9 d10

roea 34.67 5.26 13.31 5.26 24.77 2.48 0.62 0.93 6.50 6.19

sp 33.44 34.98 3.10 0.31 0.31 4.33 0.00 2.79 7.74 13.00

gltnoa 8.67 17.96 6.50 18.58 17.34 2.17 2.17 2.79 1.55 22.29

mom 37.77 4.64 8.36 1.86 9.91 0.62 13.93 19.20 1.55 2.17

indmom 31.27 5.88 3.72 17.34 19.20 2.79 0.31 4.33 6.19 8.98

valmom 44.89 0.62 6.19 15.79 0.31 0.00 3.10 8.05 18.58 2.48

valmomprof 42.41 2.48 4.64 0.31 4.64 38.39 0.31 2.17 3.10 1.55

shortint 32.51 3.72 1.24 0.00 0.00 1.55 1.86 11.46 45.20 2.48

mom12 49.54 5.57 6.19 0.93 12.07 1.24 16.41 0.62 6.19 1.24

momrev 38.70 4.64 1.86 13.93 16.41 0.00 11.46 0.93 2.79 9.29

lrrev 26.01 7.74 17.96 13.31 5.26 3.41 8.05 1.24 0.93 16.10

valuem 25.39 0.62 2.79 1.24 1.55 2.48 0.00 34.67 2.17 29.10

nissm 42.11 9.91 1.55 0.31 0.62 0.31 21.98 8.98 13.93 0.31

sue 31.89 31.89 8.05 2.48 5.88 4.95 11.46 0.93 2.17 0.31

roe 42.41 1.86 0.93 16.72 27.55 4.95 0.00 0.93 0.62 4.02

rome 38.70 13.93 0.31 13.62 0.93 13.00 13.00 3.72 2.48 0.31

roa 41.18 3.10 2.79 0.31 28.79 9.29 3.72 4.02 0.93 5.88

strev 12.07 20.43 8.36 5.26 11.76 1.86 0.00 0.93 1.86 37.46

ivol 47.37 0.62 1.24 3.72 1.24 1.86 0.31 2.48 2.48 38.70

betaarb 33.44 4.64 2.48 1.55 4.33 2.17 0.62 9.29 7.74 33.75

season 26.01 33.75 13.62 0.31 0.00 7.43 0.62 10.53 0.00 7.74

indrrev 19.81 5.57 4.64 8.36 23.84 4.64 0.00 0.62 0.93 31.58

indrrevlv 58.82 1.55 12.69 3.72 13.93 1.55 0.00 0.62 0.31 6.81

indmomrev 30.65 32.51 27.24 1.24 1.24 2.79 1.86 1.86 0.31 0.31

ciss 47.06 3.41 1.24 0.00 0.31 4.02 11.15 15.17 0.31 17.34

price 43.03 3.41 3.10 0.00 1.24 9.60 5.88 3.41 1.55 28.79

shvol 33.44 0.00 4.95 2.48 1.55 7.12 0.93 7.74 8.36 33.44

125



Table C.6: Annualized Sharpe Ratio

This table presents the Sharpe Ratio –measuring the risk-adjusted
performance of the deciles-based and benchmark strategies compared
to the risk-free rate– of each anomalies considered in this paper.
Deciles-based strategy: Go long the decile with the highest ex-
pected return and go short the decile with the lowest expected re-
turn. Benchmark strategy: Go long the first (last) decile and go
short the last (first) decile based on which extreme decile has the
highest average return. The model 2 is adopted to do the forecast-
ing and the strategy starts as of 1993m2. The annualized Sharpe
Ratio for each portfolio i is calculated using the following formula:

SRi =
√

12 ×
E(ri − rf )

σi
. σi is the standard deviation of the strat-

egy’s return, E(ri−rf ) is the expected excess return of the portfolio i
with respect to the risk-free rate. Column L stands for Long position,
S for Short position, and L-S for Long-Short strategy.

Deciles-based strategy Benchmark strategy

Anomalies L S L-S L S L-S

size 1.11 0.28 1.21 0.73 0.55 0.07

value 0.94 0.45 0.69 0.69 0.66 0.07

prof 0.87 0.42 0.73 0.59 0.90 0.42

valprof 0.97 0.35 0.90 0.48 0.76 0.38

nissa 0.87 0.24 0.80 0.38 0.97 0.69

accruals 1.04 0.17 1.18 0.38 0.55 0.38

growth 0.94 0.21 0.94 0.45 0.73 0.21

aturnover 0.62 0.48 0.28 0.38 0.73 0.31

gmargins 0.76 0.42 0.45 0.52 0.76 0.24

divp 1.14 0.31 0.83 0.48 0.59 0.14

divg 0.80 0.38 0.59 0.42 0.59 0.21

dur 0.87 0.52 0.48 0.59 0.55 0.10

ep 1.11 0.03 1.18 0.38 0.83 0.28

cfp 1.04 0.38 0.87 0.62 0.62 0.10

noa 0.90 0.24 0.97 0.28 0.69 0.69

inv 0.76 0.42 0.45 0.42 0.73 0.35

invcap 1.07 -0.03 1.14 0.48 0.76 0.03

igrowth 0.87 0.21 0.83 0.38 0.55 0.28

sgrowth 1.07 0.31 0.97 0.55 0.52 0.14

lev 0.94 0.35 0.66 0.66 0.52 0.03

roaa 0.97 0.00 1.21 0.35 0.80 0.21

roea 0.87 -0.03 1.25 0.35 0.87 0.21

sp 0.94 0.35 0.87 0.62 0.69 0.21

gltnoa 1.07 0.52 0.76 0.73 0.69 0.14

mom 1.00 0.00 1.18 0.48 0.73 0.07

indmom 0.73 0.38 0.38 0.38 0.73 0.17
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Deciles-based strategy Benchmark strategy

Anomalies L S L-S L S L-S

valmom 1.00 0.45 0.66 0.55 0.80 0.14

valmomprof 1.11 0.24 1.07 0.38 0.94 0.52

shortint 0.94 0.07 1.25 0.42 0.45 0.10

mom12 0.94 -0.17 1.14 0.17 0.69 0.35

momrev 0.90 0.31 0.73 0.42 0.62 0.31

lrrev 1.11 0.31 1.04 0.62 0.55 0.07

valuem 0.76 0.10 0.90 0.66 0.42 0.03

nissm 0.90 0.24 0.80 0.35 0.90 0.45

sue 0.73 0.66 0.07 0.42 0.73 0.24

roe 0.87 0.00 1.11 0.21 0.90 0.38

rome 1.04 -0.21 1.35 0.17 0.94 0.59

roa 0.87 0.07 0.94 0.28 0.80 0.31

strev 0.97 0.07 1.00 0.38 0.38 0.14

ivol 1.11 -0.35 1.42 0.21 0.97 0.17

betaarb 1.63 -0.55 2.22 0.35 0.97 0.03

season 0.94 0.38 0.87 0.42 0.69 0.38

indrrev 1.21 0.00 1.59 0.38 0.48 0.31

indrrevlv 1.00 0.38 0.94 0.45 0.80 0.69

indmomrev 0.94 0.55 0.52 0.55 1.00 0.48

ciss 0.94 0.24 0.97 0.42 0.97 0.45

price 0.87 0.00 0.90 0.28 0.76 0.07

shvol 1.25 -0.24 1.59 0.42 0.80 0.07

Table C.7: Trading strategy - filter rule

This table presents the findings of the expected returns filter rule for the long (L),
short (S) and long-short (L − S) positions. We compute the mean returns (µ), the
Sharpe Ratio (SR), and the terminal wealth of investing 1$ at the beginning of
the forecasting period – January 1993. Expected returns filter rule strategy:
Go long any decile for which the expected return exceeds the average risk-free rate
(> µrf ) and go short any decile for which the expected return is below the average
risk-free rate (< −µrf ). If there is no decile exceeding or below the average risk-free
rate, then the strategy suggests going long/short on the 1-month T-bill. The model
2 is adopted to do the forecasting and the strategy starts as of 1993m2. See section
3.2.1 in the main text for more details about the trading strategy.

Anomalies µL(%) SRL µL(%) SRL µL−S(%) SRL−S twL twS

size 2.47 0.67 -1.21 -0.43 3.68 1.00 2009.95 0.02

value 2.16 0.81 -1.00 -0.47 3.16 1.09 827.08 0.03

prof 2.16 0.78 -1.09 -0.49 3.25 1.09 820.93 0.03
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Anomalies µL(%) SRL µL(%) SRL µL−S(%) SRL−S twL twS

valprof 2.26 0.84 -1.07 -0.49 3.33 1.17 1137.20 0.03

nissa 2.22 0.82 -1.13 -0.50 3.35 1.15 1088.85 0.03

accruals 2.27 0.83 -1.18 -0.49 3.45 1.17 1176.11 0.02

growth 2.21 0.83 -1.14 -0.52 3.35 1.20 983.78 0.02

aturnover 2.12 0.74 -1.05 -0.49 3.17 1.04 759.13 0.03

gmargins 2.15 0.81 -1.08 -0.49 3.23 1.11 864.31 0.03

divp 2.08 0.79 -0.92 -0.38 3.00 0.97 594.98 0.05

divg 2.06 0.82 -1.01 -0.49 3.07 1.11 650.54 0.04

dur 2.25 0.78 -1.01 -0.44 3.26 1.01 1059.32 0.03

ep 2.32 0.84 -1.20 -0.49 3.52 1.19 1237.35 0.02

cfp 2.19 0.84 -1.04 -0.49 3.23 1.14 882.53 0.03

noa 2.19 0.79 -1.17 -0.49 3.36 1.09 938.28 0.02

inv 2.19 0.81 -1.18 -0.52 3.37 1.17 1016.88 0.02

invcap 2.21 0.81 -1.09 -0.49 3.30 1.17 806.93 0.03

igrowth 2.26 0.81 -1.16 -0.49 3.42 1.14 1156.14 0.02

sgrowth 2.26 0.85 -1.08 -0.48 3.34 1.17 1114.55 0.03

lev 2.20 0.81 -1.08 -0.49 3.28 1.11 947.12 0.03

roaa 2.27 0.79 -1.25 -0.50 3.52 1.13 1103.22 0.02

roea 2.28 0.83 -1.23 -0.50 3.51 1.17 1171.45 0.02

sp 2.25 0.82 -1.07 -0.47 3.32 1.11 1099.49 0.03

gltnoa 2.18 0.83 -1.07 -0.50 3.25 1.15 943.39 0.03

mom 2.37 0.74 -1.20 -0.51 3.57 1.13 1261.89 0.02

indmom 2.22 0.74 -1.10 -0.44 3.32 0.99 979.97 0.03

valmom 2.23 0.82 -1.09 -0.52 3.32 1.15 1012.05 0.03

valmomprof 2.25 0.77 -1.09 -0.51 3.34 1.15 1012.59 0.03

shortint 2.24 0.80 -1.13 -0.48 3.37 1.10 1015.83 0.02

mom12 2.34 0.70 -1.33 -0.47 3.67 1.03 1170.85 0.02

momrev 2.30 0.82 -1.12 -0.48 3.42 1.13 1233.94 0.03

lrrev 2.24 0.79 -1.07 -0.49 3.31 1.11 976.01 0.03

valuem 2.20 0.67 -1.09 -0.45 3.29 0.92 793.16 0.03

nissm 2.22 0.82 -1.13 -0.50 3.35 1.14 1052.40 0.03

sue 2.23 0.81 -1.12 -0.49 3.35 1.13 1090.30 0.02

roe 2.27 0.81 -1.28 -0.49 3.55 1.12 1171.53 0.02

rome 2.38 0.82 -1.33 -0.51 3.71 1.19 1401.16 0.02

roa 2.27 0.77 -1.27 -0.48 3.54 1.07 1121.00 0.02

strev 2.31 0.80 -1.28 -0.51 3.59 1.15 1298.84 0.02

ivol 2.53 0.73 -1.41 -0.44 3.94 1.05 1995.55 0.01

betaarb 2.26 0.75 -1.23 -0.49 3.49 1.14 680.84 0.03
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Anomalies µL(%) SRL µL(%) SRL µL−S(%) SRL−S twL twS

season 2.19 0.81 -1.13 -0.50 3.32 1.15 945.55 0.02

indrrev 2.41 0.82 -1.27 -0.48 3.68 1.15 1622.68 0.02

indrrevlv 2.14 0.86 -0.95 -0.49 3.09 1.18 794.58 0.04

indmomrev 2.07 0.84 -0.89 -0.47 2.96 1.13 639.50 0.05

ciss 2.21 0.84 -1.13 -0.51 3.34 1.20 1008.01 0.03

price 2.49 0.71 -1.32 -0.38 3.81 0.94 1922.79 0.01

shvol 2.26 0.76 -1.23 -0.50 3.49 1.15 848.62 0.02

Table C.8: After-trading-cost returns: deciles-based strategy versus benchmark strategy
(%)

This table presents the after-trading-cost performance of the proposed strategy versus the traditional
long-short strategy based on the extreme deciles. We compute the weighted average trading cost
of each anomaly for the long/short position, the after-trading-cost returns using the equations 3.10,
3.11, and 3.12. In the table, tcostis,p, Ras,i, and Ras,i denote the weighted average transaction cost for
taking a position s (long or short) using the strategy s (m or b) in anomaly i, the gross annualized
return for investing in anomaly i using strategy s (m or b), the net of transaction cost annualized
return for investing in anomaly i using strategy s (m or b), respectively . As mentioned, m stands
for deciles-based strategy, b for benchmark strategy. p = L, S for long and short. Deciles-based
strategy (m): Go long the decile with the highest expected return and go short the decile with
the lowest expected return. Benchmark strategy (b): Go long the first (last) decile and go short
the last (first) decile based on which extreme decile has the highest average return. The model 2 is
adopted to do the forecasting and the strategy starts as of 1993m2. See section 3.2.1 in the main
text for more details about the computation.

Deciles-based strategy Benchmark strategy

Anomalies tcostm,L tcostm,S Ram,i netRam,i tcostb,L tcostb,S Rab,i netRab,i

size 1.55 2.19 15.72 11.98 0.80 3.50 1.08 -3.22

prof 2.01 1.92 7.56 3.63 1.95 2.70 4.68 0.03

nissa 1.55 1.55 9.48 6.37 1.60 1.50 7.56 4.46

accruals 1.82 2.15 15.60 11.63 2.05 2.60 4.44 -0.21

agrowth 1.82 2.01 11.88 8.05 1.80 2.60 2.88 -1.52

aturnover 2.01 2.13 3.12 -1.02 2.00 2.45 4.20 -0.25

gmargins 1.95 2.00 5.40 1.45 2.00 2.50 2.88 -1.62

noa 1.62 2.39 11.64 7.62 0.90 2.85 8.88 5.13

inv 1.90 2.12 4.56 0.54 1.85 2.65 3.96 -0.54

invcap 2.26 2.21 21.00 16.53 2.75 2.10 0.48 -4.37

igrowth 1.89 2.00 10.56 6.67 2.10 2.55 2.88 -1.77

sgrowth 1.87 1.83 13.08 9.38 2.25 2.05 1.80 -2.50

lev 1.27 1.24 9.24 6.73 1.40 1.30 0.60 -2.10

roaa 2.28 2.07 18.00 13.64 1.65 3.05 3.48 -1.22

sp 1.33 1.32 11.04 8.39 1.55 1.55 3.12 0.02
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Deciles-based strategy Benchmark strategy

Anomalies tcostm,L tcostm,S Ram,i netRam,i tcostb,L tcostb,S Rab,i netRab,i

gltnoa 1.78 1.88 8.40 4.74 1.55 1.00 1.20 -1.35

mom 2.01 2.03 23.52 19.48 1.85 3.10 1.68 -3.27

indmom 1.75 1.74 8.16 4.67 1.85 1.85 4.56 0.86

mom12 1.88 2.32 27.60 23.40 1.65 3.30 9.48 4.53

momrev 1.69 2.00 11.16 7.47 1.80 2.90 5.76 1.06

lrrev 1.46 1.82 15.96 12.68 1.25 3.05 0.96 -3.34

nissm 1.64 1.61 9.48 6.23 1.50 1.60 6.24 3.14

sue 1.70 1.70 0.84 -2.56 1.70 1.75 3.72 0.27

roe 1.84 1.82 16.92 13.26 2.00 2.00 7.08 3.08

rome 0.73 0.74 24.24 22.77 0.70 0.90 11.16 9.56

strev 1.92 1.99 17.16 13.25 2.20 2.75 2.76 -2.19

season 1.50 1.70 9.84 6.64 1.80 2.45 5.40 1.15

indrrev 1.91 1.98 23.16 19.27 2.20 2.75 4.80 -0.15

ciss 1.65 1.39 10.32 7.28 1.90 1.05 5.04 2.09

price 1.46 2.18 19.92 16.29 0.75 3.50 1.92 -2.33

shvol 1.83 1.88 28.68 24.97 2.25 1.65 1.44 -2.46

Table C.9: R2
oos of the predictive models using only past prices (%)

This table presents the R2
oos of the predictive model using only past prices for

all the deciles. We use two split dates: 1992m12, and 2004m12. We compute
the out-of-sample R2

oos using equation 3.7.

Deciles 1992m12 2004m12 Deciles 1992m12 2004m12

size_p1 -0.573 -0.534 mom_p1 -0.158 0.665

size_p2 0.051 0.323 mom_p2 -0.484 0.142

size_p3 0.024 0.193 mom_p3 -0.361 -0.517

size_p4 -0.216 -0.481 mom_p4 -0.336 -0.352

size_p5 -0.462 -0.929 mom_p5 -0.328 -0.257

size_p6 -1.029 -0.922 mom_p6 -0.499 -0.672

size_p7 -1.137 -1.73 mom_p7 -0.588 -0.54

size_p8 -0.597 -1.595 mom_p8 -0.305 -0.173

size_p9 -1.128 -1.574 mom_p9 -0.605 -0.357

size_p10 2.169 1.402 mom_p10 -0.418 -0.221

value_p1 -0.669 0.151 indmom_p1 -0.769 -1.009

value_p2 -0.364 -0.437 indmom_p2 -0.056 -0.143

value_p3 -0.316 -0.728 indmom_p3 -0.259 0.355
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Deciles 1992m12 2004m12 Deciles 1992m12 2004m12

value_p4 0.444 0.534 indmom_p4 -0.589 -0.35

value_p5 -0.599 -0.582 indmom_p5 -0.419 -0.969

value_p6 -0.771 -0.568 indmom_p6 -0.09 0.032

value_p7 -0.335 -0.303 indmom_p7 -0.353 -0.155

value_p8 -1.069 -0.428 indmom_p8 -0.348 -0.339

value_p9 -0.842 -0.775 indmom_p9 0.262 0.078

value_p10 1.115 1.28 indmom_p10 -0.919 -0.235

prof_p1 -0.184 0.137 valmom_p1 -0.867 -0.403

prof_p2 -0.738 -0.561 valmom_p2 -0.752 -0.851

prof_p3 -0.467 -0.4 valmom_p3 -0.55 -0.379

prof_p4 -0.572 -0.547 valmom_p4 -0.337 -0.338

prof_p5 -0.54 -0.46 valmom_p5 -0.322 0.123

prof_p6 -0.428 -0.498 valmom_p6 -0.603 -0.622

prof_p7 -0.767 -0.309 valmom_p7 -0.593 -0.543

prof_p8 -0.666 -0.427 valmom_p8 0.006 -0.392

prof_p9 -0.869 -1.039 valmom_p9 -0.311 -0.331

prof_p10 -0.675 0.588 valmom_p10 -0.405 -0.432

valprof_p1 0.499 0.921 valmomprof_p1 -0.556 -0.274

valprof_p2 -0.519 -0.011 valmomprof_p2 -0.524 -0.346

valprof_p3 -0.659 -0.477 valmomprof_p3 -0.583 -0.522

valprof_p4 -0.425 -0.121 valmomprof_p4 -0.447 -0.517

valprof_p5 -0.541 -0.47 valmomprof_p5 -0.427 -0.33

valprof_p6 -0.52 -0.551 valmomprof_p6 -0.298 0.301

valprof_p7 -0.52 -0.434 valmomprof_p7 -0.564 -0.407

valprof_p8 -0.33 -1.321 valmomprof_p8 -0.657 -0.385

valprof_p9 0.645 0.281 valmomprof_p9 -0.494 -0.317

valprof_p10 0.238 -1.224 valmomprof_p10 -0.712 -0.399

nissa_p1 0.916 1.081 shortint_p1 0.183 0.059

nissa_p2 0.071 1.065 shortint_p2 -0.132 -0.061

nissa_p3 -0.617 -0.467 shortint_p3 -0.343 -0.443

nissa_p4 -0.394 -0.388 shortint_p4 -0.083 0.004

nissa_p5 -0.238 -0.057 shortint_p5 -0.514 -0.559

nissa_p6 -0.559 -0.735 shortint_p6 -0.413 -0.478

nissa_p7 -0.443 -0.357 shortint_p7 -0.672 -0.931

nissa_p8 -0.315 -0.191 shortint_p8 0.426 0.558

nissa_p9 -0.448 -0.398 shortint_p9 -0.145 -0.493

nissa_p10 -0.491 -0.544 shortint_p10 -0.583 -0.579

accruals_p1 -1.143 0.019 mom12_p1 0.06 1.118
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Deciles 1992m12 2004m12 Deciles 1992m12 2004m12

accruals_p2 -0.725 -0.622 mom12_p2 -0.704 0.595

accruals_p3 -0.383 -0.983 mom12_p3 0.217 0.21

accruals_p4 -0.401 -0.499 mom12_p4 -0.244 -0.037

accruals_p5 -0.64 -0.504 mom12_p5 -0.435 0.002

accruals_p6 -0.473 -0.33 mom12_p6 -0.37 -0.344

accruals_p7 -0.785 -0.95 mom12_p7 -0.144 -0.049

accruals_p8 -0.68 -0.512 mom12_p8 -0.269 -0.234

accruals_p9 -0.83 -0.239 mom12_p9 -0.45 -0.485

accruals_p10 -0.749 -0.02 mom12_p10 -0.61 -0.494

growth_p1 -0.435 -0.155 momrev_p1 0.244 0.008

growth_p2 -1.183 -0.456 momrev_p2 0.384 0.147

growth_p3 -0.964 -0.596 momrev_p3 -0.173 -0.26

growth_p4 -0.54 -0.612 momrev_p4 -0.45 -0.38

growth_p5 -0.328 -0.74 momrev_p5 -0.565 -0.412

growth_p6 -0.785 -0.76 momrev_p6 -0.243 0.301

growth_p7 -0.816 -0.712 momrev_p7 -0.284 -0.003

growth_p8 -0.548 -0.404 momrev_p8 -0.342 -0.128

growth_p9 -0.343 -0.204 momrev_p9 0.49 1.378

growth_p10 0.227 0.938 momrev_p10 -0.313 0.334

aturnover_p1 -0.568 0.172 lrrev_p1 -0.269 0.895

aturnover_p2 -0.322 -0.276 lrrev_p2 -1.088 -0.791

aturnover_p3 -0.608 -0.319 lrrev_p3 -0.281 -0.201

aturnover_p4 -0.336 -0.313 lrrev_p4 -0.468 -0.529

aturnover_p5 -0.333 -0.244 lrrev_p5 -0.416 -0.399

aturnover_p6 -0.69 -0.721 lrrev_p6 -0.681 -0.364

aturnover_p7 -0.479 -0.19 lrrev_p7 0.153 -0.094

aturnover_p8 -0.588 -1.071 lrrev_p8 -0.673 -0.605

aturnover_p9 -1.681 -2.53 lrrev_p9 -0.068 -0.187

aturnover_p10 -1.621 -0.883 lrrev_p10 -0.736 -0.533

gmargins_p1 0.16 -0.41 valuem_p1 -0.412 0.152

gmargins_p2 -0.227 -0.443 valuem_p2 -0.736 -0.804

gmargins_p3 -0.588 -0.667 valuem_p3 -0.469 -0.453

gmargins_p4 -0.368 -0.509 valuem_p4 -0.14 -0.201

gmargins_p5 -0.614 -0.311 valuem_p5 -0.648 -0.535

gmargins_p6 0.173 0.017 valuem_p6 -0.559 -0.592

gmargins_p7 0.154 0.367 valuem_p7 0.073 0.075

gmargins_p8 -0.779 -0.64 valuem_p8 -0.52 -0.313

gmargins_p9 -0.385 -0.518 valuem_p9 0.875 1.003
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Deciles 1992m12 2004m12 Deciles 1992m12 2004m12

gmargins_p10 -0.631 -0.345 valuem_p10 1.647 2.74

divp_p1 -0.469 0.227 nissm_p1 1.797 2.521

divp_p2 -0.697 -0.398 nissm_p2 -0.526 -0.116

divp_p3 -0.441 -0.301 nissm_p3 -0.331 -0.036

divp_p4 -0.307 0.052 nissm_p4 -0.173 -0.142

divp_p5 -0.629 -0.493 nissm_p5 -0.254 -0.209

divp_p6 -0.161 -0.232 nissm_p6 -0.487 -0.455

divp_p7 -0.707 -0.73 nissm_p7 -0.798 -0.547

divp_p8 -0.705 -0.784 nissm_p8 -0.541 -0.416

divp_p9 -1.235 -0.797 nissm_p9 -0.26 -0.322

divp_p10 1.382 1.323 nissm_p10 -0.451 -0.224

divg_p1 -0.723 -0.683 sue_p1 -0.631 -0.298

divg_p2 -0.622 -0.759 sue_p2 -0.583 -0.489

divg_p3 -0.545 -0.604 sue_p3 0.113 0.296

divg_p4 -0.312 -0.243 sue_p4 -0.26 -0.119

divg_p5 -0.39 -0.249 sue_p5 -0.577 -0.614

divg_p6 -0.004 0.032 sue_p6 -0.471 -0.747

divg_p7 -0.474 -0.466 sue_p7 -0.341 -0.254

divg_p8 -0.374 -0.195 sue_p8 -0.419 -0.416

divg_p9 -0.719 -0.456 sue_p9 -0.4 -0.314

divg_p10 -0.371 -0.121 sue_p10 -0.694 -1.208

dur_p1 -0.646 0.211 roe_p1 1.487 2.48

dur_p2 -0.696 -0.522 roe_p2 1.269 1.934

dur_p3 -0.267 -0.772 roe_p3 -0.101 0.467

dur_p4 -0.064 -0.183 roe_p4 -0.271 -0.242

dur_p5 -0.426 -0.441 roe_p5 -0.946 -0.457

dur_p6 -0.393 -0.532 roe_p6 -0.066 -0.189

dur_p7 -0.627 -0.568 roe_p7 -0.396 -0.514

dur_p8 -0.294 -0.43 roe_p8 -0.466 -0.384

dur_p9 -0.448 -0.443 roe_p9 -0.646 -0.578

dur_p10 0.777 1.027 roe_p10 -0.862 -0.274

ep_p1 1.444 2.514 rome_p1 3.048 3.983

ep_p2 -0.395 0.183 rome_p2 1.11 1.549

ep_p3 -0.475 -0.395 rome_p3 -0.612 -0.086

ep_p4 -0.6 -0.506 rome_p4 -0.382 -0.23

ep_p5 -0.502 -0.531 rome_p5 -0.179 -0.177

ep_p6 -0.397 -0.479 rome_p6 -0.419 -0.369

ep_p7 -0.483 -0.514 rome_p7 -0.464 -0.427
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Deciles 1992m12 2004m12 Deciles 1992m12 2004m12

ep_p8 0.018 0.113 rome_p8 -0.572 -0.614

ep_p9 0.661 0.675 rome_p9 -0.263 -0.709

ep_p10 -0.196 -0.367 rome_p10 -0.489 -0.612

cfp_p1 -0.297 0.304 roa_p1 0.822 1.238

cfp_p2 -0.277 -0.23 roa_p2 1.89 2.703

cfp_p3 -0.651 -0.427 roa_p3 -0.691 0.029

cfp_p4 -0.44 -0.285 roa_p4 -0.549 -0.562

cfp_p5 -0.405 -0.116 roa_p5 -0.321 -0.49

cfp_p6 -0.196 0.033 roa_p6 -0.567 -0.581

cfp_p7 -0.433 -0.192 roa_p7 -0.905 -0.702

cfp_p8 -0.872 -0.577 roa_p8 -0.44 -0.677

cfp_p9 -0.821 -0.677 roa_p9 -0.238 -0.385

cfp_p10 0.439 0.571 roa_p10 -0.883 -0.326

noa_p1 -0.409 0.213 strev_p1 -0.5 -0.386

noa_p2 0.564 0.163 strev_p2 -0.328 -0.106

noa_p3 -0.507 -0.369 strev_p3 -0.46 0.038

noa_p4 0.609 0.205 strev_p4 -0.491 -0.187

noa_p5 -0.419 -0.717 strev_p5 -0.479 -0.659

noa_p6 -0.513 -1.156 strev_p6 -0.407 -0.615

noa_p7 -0.435 -0.448 strev_p7 -0.81 -0.901

noa_p8 -0.592 -0.578 strev_p8 -0.471 -1.802

noa_p9 -0.745 -0.422 strev_p9 -0.226 -0.122

noa_p10 -0.838 0.152 strev_p10 0.028 0.682

inv_p1 -0.399 0.088 ivol_p1 0.161 1.699

inv_p2 -0.785 -0.486 ivol_p2 0.615 2.698

inv_p3 -0.196 -0.648 ivol_p3 0.248 0.677

inv_p4 -0.095 0.197 ivol_p4 0.531 0.788

inv_p5 -0.851 -0.785 ivol_p5 0.218 0.276

inv_p6 -0.696 -0.731 ivol_p6 -0.226 -0.181

inv_p7 -0.593 -0.406 ivol_p7 -0.219 -0.016

inv_p8 -0.599 -0.498 ivol_p8 -0.693 -0.586

inv_p9 -0.361 -0.56 ivol_p9 -0.561 -0.492

inv_p10 -0.389 0.052 ivol_p10 -0.391 -0.419

invcap_p1 -0.379 0.156 betaarb_p1 0.113 0.624

invcap_p2 -1.025 -0.266 betaarb_p2 0.103 0.249

invcap_p3 -0.46 -0.581 betaarb_p3 -0.093 -0.101

invcap_p4 -0.364 0.015 betaarb_p4 0.097 0.281

invcap_p5 -0.438 -0.412 betaarb_p5 -0.724 -0.785
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Deciles 1992m12 2004m12 Deciles 1992m12 2004m12

invcap_p6 -0.347 -0.194 betaarb_p6 -0.645 -0.56

invcap_p7 -0.552 -0.531 betaarb_p7 -0.386 -0.699

invcap_p8 -0.859 -0.415 betaarb_p8 -0.448 -0.859

invcap_p9 -1.047 -0.711 betaarb_p9 -0.292 -0.565

invcap_p10 -0.569 -0.545 betaarb_p10 -0.579 -1.718

igrowth_p1 -0.489 -0.726 season_p1 -0.444 -0.119

igrowth_p2 -0.718 -0.142 season_p2 -0.655 -0.701

igrowth_p3 -0.544 -0.451 season_p3 -0.585 -0.413

igrowth_p4 -0.533 -0.75 season_p4 -0.482 -0.504

igrowth_p5 -0.666 -0.524 season_p5 -0.24 -0.207

igrowth_p6 -0.605 -1.054 season_p6 -0.397 -0.325

igrowth_p7 -0.602 -0.461 season_p7 0.01 0.037

igrowth_p8 -0.603 -0.798 season_p8 -0.587 -0.4

igrowth_p9 -0.279 -0.312 season_p9 -0.383 -0.098

igrowth_p10 -0.562 -0.126 season_p10 -0.551 0.033

sgrowth_p1 -0.621 -0.026 indrrev_p1 -0.217 0.449

sgrowth_p2 -0.846 -0.508 indrrev_p2 -0.227 0.005

sgrowth_p3 -0.657 -0.4 indrrev_p3 0.025 0.424

sgrowth_p4 -0.517 -0.53 indrrev_p4 -0.308 -0.272

sgrowth_p5 -0.551 -0.774 indrrev_p5 -0.643 -0.267

sgrowth_p6 -0.377 -0.479 indrrev_p6 -0.411 -0.537

sgrowth_p7 -0.597 -0.658 indrrev_p7 -0.806 -0.854

sgrowth_p8 -0.806 -0.691 indrrev_p8 -0.512 -0.731

sgrowth_p9 0.338 0.623 indrrev_p9 -0.052 0.46

sgrowth_p10 -0.241 0.081 indrrev_p10 -0.638 0.016

lev_p1 -0.667 -0.161 indrrevlv_p1 -0.271 -0.322

lev_p2 -0.308 -0.292 indrrevlv_p2 -0.458 -0.417

lev_p3 -0.407 -0.726 indrrevlv_p3 -0.228 -0.595

lev_p4 -0.655 -0.797 indrrevlv_p4 -0.69 -0.769

lev_p5 -0.781 -0.771 indrrevlv_p5 -0.576 -0.783

lev_p6 -0.52 -0.306 indrrevlv_p6 -0.45 -0.446

lev_p7 -0.725 -0.664 indrrevlv_p7 -0.632 -0.492

lev_p8 -0.039 0.248 indrrevlv_p8 -0.627 -0.516

lev_p9 -0.877 -0.091 indrrevlv_p9 -0.515 -0.885

lev_p10 0.253 1.632 indrrevlv_p10 -0.722 -0.574

roaa_p1 0.689 1.085 indmomrev_p1 -0.506 0.133

roaa_p2 1.195 2.099 indmomrev_p2 -0.593 -0.543

roaa_p3 -0.591 0.017 indmomrev_p3 -0.469 -0.147
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Deciles 1992m12 2004m12 Deciles 1992m12 2004m12

roaa_p4 -0.5 -0.551 indmomrev_p4 -0.584 -0.262

roaa_p5 -0.812 -0.605 indmomrev_p5 -0.578 -0.304

roaa_p6 -0.459 -0.031 indmomrev_p6 -0.164 0.14

roaa_p7 -0.3 -0.358 indmomrev_p7 -0.183 -0.15

roaa_p8 -0.385 -0.454 indmomrev_p8 -0.465 -0.4

roaa_p9 -0.663 -0.446 indmomrev_p9 -0.508 -0.358

roaa_p10 -1.018 -0.301 indmomrev_p10 -0.544 -0.692

roea_p1 0.784 1.508 ciss_p1 -0.033 0.013

roea_p2 0.231 0.678 ciss_p2 -0.588 -0.061

roea_p3 -0.034 0.152 ciss_p3 -0.116 -0.05

roea_p4 -1.16 -0.583 ciss_p4 -0.494 -0.318

roea_p5 -0.544 -0.458 ciss_p5 -0.413 -0.58

roea_p6 -0.401 -0.354 ciss_p6 -0.869 -0.373

roea_p7 -0.337 -0.266 ciss_p7 -0.479 -0.573

roea_p8 -0.384 0.128 ciss_p8 -0.561 -0.597

roea_p9 -0.681 -0.693 ciss_p9 -0.399 -0.291

roea_p10 -1.156 0.145 ciss_p10 0.636 0.83

sp_p1 -0.407 0.076 price_p1 0.886 3.231

sp_p2 -0.391 -0.226 price_p2 0.837 1.694

sp_p3 -0.467 -0.441 price_p3 -0.405 0.522

sp_p4 -0.347 -0.298 price_p4 0.039 -0.268

sp_p5 -0.453 -0.557 price_p5 -0.43 -0.344

sp_p6 0.682 1.089 price_p6 -0.251 -0.126

sp_p7 0.077 -0.096 price_p7 -0.284 -0.206

sp_p8 -0.551 -1.417 price_p8 -0.58 -0.431

sp_p9 0.427 -1.766 price_p9 -0.401 -0.242

sp_p10 1.067 -0.97 price_p10 -0.425 -0.285

gltnoa_p1 0.299 0.45 shvol_p1 0.04 1.381

gltnoa_p2 -0.28 0.079 shvol_p2 -0.204 0.043

gltnoa_p3 -0.44 -0.092 shvol_p3 0.33 0.598

gltnoa_p4 -0.702 -0.812 shvol_p4 0.137 0.57

gltnoa_p5 -0.321 -1.404 shvol_p5 -0.536 -0.626

gltnoa_p6 -0.419 -0.893 shvol_p6 -0.304 -0.128

gltnoa_p7 -0.032 0.005 shvol_p7 -0.477 -0.407

gltnoa_p8 -0.525 -0.462 shvol_p8 -0.615 -0.47

gltnoa_p9 -0.789 -0.523 shvol_p9 -0.372 -0.303

gltnoa_p10 -0.881 -0.073 shvol_p10 0.002 -0.933
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Table C.10: R2
oos of the univariate predictive models using other variables (%)

This table presents the R2
oos of the univariate predictive model using fourteen financial, macroeconomic variables

as predictors. We use 1992m12 as split date. We compute the out-of-sample R2
oos using equation 3.7. Predictors

are those used by Welch and Goyal (2008) augmented by the Chicago Fed activity index: book-to-market (b.m),
Treasury bills (tbl), long-term yield (lty), net equity expansion (ntis), inflation (infl), long-term rate of return (ltr),
corporate bond return (corpr), stock variance (svar), Dividend price ratio (Dpr), Dividend yield (Dy), Earning price
ratio (Epr), Dividend Payout Ratio (Der), Default yield spread (Dfy), Chicago Fed National Activity Index (gro_p).
See section 3.2.1 in the main text for more details.

b.m tbl lty ntis infl ltr corpr svar Dpr Dy Epr Der Dfy gro_p

size_p1 0.17 -0.84 -0.69 -1.93 -1.20 0.10 0.66 1.22 0.14 0.48 0.18 -1.49 -1.14 0.91

size_p2 0.06 -0.93 -0.72 -1.42 -0.97 0.67 1.94 1.15 -0.58 0.17 -0.56 -1.70 -1.24 -0.45

size_p3 0.00 -0.81 -0.74 -0.91 -0.90 0.25 1.23 0.40 -0.76 0.00 -0.66 -1.31 -1.16 -0.77

size_p4 -0.09 -0.83 -0.76 -0.93 -0.80 0.26 1.63 0.41 -0.91 -0.09 -0.78 -1.36 -1.30 -0.93

size_p5 0.25 -0.94 -0.80 -0.73 -1.13 0.21 0.85 0.17 -0.28 0.46 -0.31 -1.22 -1.13 -1.12

size_p6 0.07 -0.76 -0.71 -0.64 -0.95 0.12 0.31 0.21 -0.75 0.01 -0.70 -1.46 -1.25 -0.96

size_p7 -0.10 -0.74 -0.63 -0.54 -0.89 0.16 0.43 0.21 -1.12 -0.11 -0.87 -1.41 -1.40 -1.07

size_p8 -0.22 -0.80 -0.75 -0.55 -0.88 0.24 0.73 0.32 -1.18 -0.33 -0.91 -1.40 -1.24 -0.70

size_p9 -0.76 -0.72 -0.67 -0.38 -0.72 -0.11 -0.11 0.13 -1.99 -1.19 -1.26 -1.52 -1.51 -0.85

size_p10 -0.93 -0.82 -0.91 -0.01 -0.71 -0.45 0.48 1.02 -2.02 -1.46 -1.39 -1.00 -1.23 -0.76

value_p1 -0.22 -1.66 -1.28 -1.81 -1.12 0.08 0.53 0.66 -0.45 -0.23 -0.35 -1.07 -0.89 -0.51

value_p2 0.35 -1.15 -0.86 -1.41 -1.07 0.50 2.00 0.34 0.05 0.63 -0.06 -1.04 -1.31 -0.92

value_p3 -0.20 -1.01 -0.86 -1.43 -1.20 -0.45 -0.33 0.32 -0.98 -0.03 -0.50 -1.04 -1.30 -0.11

value_p4 0.42 -0.97 -0.93 -1.53 -0.80 1.03 2.33 1.36 -0.19 0.66 0.12 -2.06 -1.40 0.42

value_p5 -0.10 -1.16 -0.85 -1.50 -0.66 0.39 1.06 0.21 -0.82 -0.20 -0.46 -1.49 -0.79 0.89

value_p6 -0.25 -0.40 -0.59 -1.44 -0.54 0.30 0.98 0.53 -1.28 -0.31 -0.46 -1.77 -1.51 0.53

value_p7 0.06 -0.61 -0.60 -1.15 -1.58 0.91 2.49 1.25 -0.31 0.15 -0.44 -1.64 -1.49 -0.28

value_p8 0.07 -0.27 -0.33 -1.29 -0.76 0.19 1.08 0.32 -0.83 -0.06 -0.44 -1.65 -1.16 0.10

value_p9 0.59 -0.19 -0.25 -1.04 -1.01 1.28 2.92 0.44 0.40 1.06 -0.31 -1.72 -0.94 0.29

value_p10 0.31 -0.78 -0.25 -0.29 -1.18 0.64 1.37 -0.15 0.02 0.49 -0.69 -1.74 -1.30 0.52

prof_p1 -0.11 -0.33 -0.50 -1.13 -0.83 -0.41 -0.14 0.48 -0.68 -0.02 0.06 -1.17 -1.62 -1.00

prof_p2 0.77 -0.14 -0.29 -1.11 -0.37 0.35 0.79 1.23 0.36 1.00 0.11 -2.49 -1.10 0.37

prof_p3 0.23 -1.19 -1.05 -1.33 -0.67 0.51 2.22 0.85 0.00 0.38 -0.07 -1.87 -0.81 1.63

prof_p4 0.15 -1.18 -1.27 -1.06 -0.79 0.54 2.40 0.71 0.17 0.54 -0.48 -1.55 -0.63 0.92

prof_p5 0.41 -1.01 -0.93 -1.22 -0.72 -0.06 0.54 0.53 -0.07 0.57 0.15 -1.46 -1.06 1.49

prof_p6 0.12 -1.03 -0.95 -1.04 -1.28 -0.09 0.08 0.45 -0.35 0.23 -0.07 -1.24 -0.90 0.63

prof_p7 -0.42 -0.68 -0.69 -1.29 -0.65 0.53 0.55 -0.28 -1.17 -0.32 -0.54 -0.99 -1.37 -0.06

prof_p8 0.07 -0.82 -0.61 -1.17 -1.01 0.47 1.56 0.07 -0.32 0.30 -0.33 -0.82 -1.23 -0.79

prof_p9 0.61 -1.20 -0.66 -1.57 -1.43 0.53 0.61 0.36 0.73 1.12 0.56 -1.00 -1.28 -1.03

prof_p10 -0.05 -0.64 -0.40 -2.07 -1.88 0.30 0.50 1.04 -0.58 -0.06 -0.56 -1.29 -2.20 -1.52

valprof_p1 0.01 -1.30 -1.65 -1.23 -0.62 -0.07 0.40 1.14 -0.30 0.14 -0.34 -1.95 -0.85 0.15

valprof_p2 -0.30 -0.81 -0.80 -1.10 -0.47 -0.01 0.95 0.28 -0.77 -0.22 -0.52 -1.22 -0.59 0.59

valprof_p3 0.36 -0.96 -0.76 -1.39 -0.90 0.89 1.70 0.38 0.41 0.83 -0.19 -0.90 -0.81 0.56
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Table C.10 – continued from previous page

b.m tbl lty ntis infl ltr corpr svar Dpr Dy Epr Der Dfy gro_p

valprof_p4 0.35 -0.58 -0.60 -1.46 -0.88 -0.01 0.36 0.03 -0.35 0.31 0.47 -1.11 -1.10 -0.26

valprof_p5 0.25 -0.30 -0.55 -1.40 -0.68 0.50 1.53 0.99 -0.24 0.50 -0.33 -1.41 -1.01 -0.06

valprof_p6 -0.23 -1.31 -0.67 -1.49 -1.83 0.61 1.21 0.36 -0.82 -0.40 -0.22 -1.29 -1.10 0.19

valprof_p7 -0.38 -0.74 -0.60 -1.19 -1.14 0.49 1.28 0.42 -1.23 -0.46 -0.81 -1.50 -1.83 0.26

valprof_p8 -0.52 -0.65 -0.55 -1.57 -1.40 0.26 0.46 -0.26 -1.66 -0.62 -0.95 -1.27 -1.61 -0.19

valprof_p9 0.07 -0.61 -0.40 -0.78 -1.62 1.02 1.84 0.29 -0.76 0.09 -0.96 -1.65 -1.76 -0.30

valprof_p10 0.32 -0.51 -0.08 -0.72 -1.68 0.51 0.93 0.45 -0.52 0.37 -0.77 -1.50 -1.83 -0.98

nissa_p1 0.10 -0.74 -0.79 -1.07 -0.71 0.10 1.27 1.29 0.07 0.62 -0.50 -1.40 -0.97 -1.34

nissa_p2 -0.06 -0.54 -0.61 -0.76 -0.87 -0.25 0.48 1.11 -0.49 0.11 -0.62 -1.05 -0.85 -0.31

nissa_p3 -0.39 -0.73 -0.67 -0.73 -0.85 0.08 0.75 0.57 -1.32 -0.76 -0.55 -1.12 -0.94 0.30

nissa_p4 -0.06 -0.88 -0.74 -1.11 -0.91 -0.03 1.04 0.60 -0.63 0.09 -0.44 -1.16 -1.38 -0.57

nissa_p5 0.12 -1.00 -0.93 -1.16 -0.64 0.11 0.56 2.19 -0.35 0.34 -0.56 -2.22 -1.36 -0.27

nissa_p6 0.58 -0.83 -0.53 -1.20 -0.81 0.33 1.19 1.06 0.16 0.78 0.09 -1.45 -1.28 0.01

nissa_p7 0.64 -1.15 -0.64 -1.76 -1.31 0.35 0.64 1.41 0.43 1.00 0.10 -1.79 -1.77 0.40

nissa_p8 -0.07 -0.87 -0.84 -1.42 -0.87 0.37 0.68 1.14 -1.32 -0.16 -0.23 -1.76 -1.78 0.66

nissa_p9 -0.09 -0.63 -0.54 -2.15 -1.33 0.91 2.51 -0.19 -0.98 -0.03 -0.14 -1.27 -1.50 0.86

nissa_p10 -0.14 -0.67 -0.57 -1.10 -1.41 0.68 1.68 0.76 -0.88 -0.19 -0.73 -1.64 -1.39 -0.12

accruals_p1 0.04 -1.28 -1.07 -0.59 -0.73 0.29 0.64 0.13 -0.39 0.23 -0.36 -1.06 -0.71 -0.58

accruals_p2 0.18 -0.97 -0.86 -1.09 -0.99 0.20 1.34 0.92 -0.20 0.24 -0.12 -1.34 -1.03 -0.47

accruals_p3 -0.08 -1.17 -0.73 -0.77 -1.14 0.33 1.13 -0.20 -0.44 0.11 -0.14 -1.00 -1.23 0.08

accruals_p4 0.32 -0.69 -0.39 -2.03 -1.09 0.27 1.79 0.11 -0.40 0.45 0.22 -1.09 -1.53 0.24

accruals_p5 0.38 -1.19 -0.82 -1.69 -1.35 0.79 1.01 0.37 0.26 0.80 -0.03 -1.53 -1.21 0.77

accruals_p6 0.21 -0.90 -0.77 -2.03 -1.17 0.19 0.74 0.79 0.01 0.35 -0.11 -1.33 -0.87 0.53

accruals_p7 0.31 -0.61 -0.59 -2.31 -1.24 0.65 1.01 0.64 0.21 0.63 0.10 -1.92 -1.30 0.73

accruals_p8 0.18 -0.30 -0.45 -2.09 -1.03 0.25 0.63 1.19 -0.51 0.35 0.07 -1.43 -1.78 0.37

accruals_p9 -0.19 -0.81 -1.02 -0.68 -0.68 -0.11 0.18 0.29 -0.75 -0.31 -0.49 -1.11 -0.59 0.50

accruals_p10 -0.16 -0.82 -0.91 -0.82 -0.67 0.27 1.38 0.23 -0.67 -0.06 -0.65 -0.87 -0.71 -0.40

growth_p1 0.01 -1.22 -1.25 -0.76 -0.77 0.77 1.72 0.08 -0.33 0.24 -0.34 -1.05 -0.60 -0.65

growth_p2 -0.32 -0.73 -0.91 -0.85 -0.57 0.26 0.86 0.88 -1.03 -0.44 -0.69 -1.14 -0.79 -0.11

growth_p3 -0.32 -1.35 -0.88 -1.21 -1.20 0.00 0.47 0.47 -1.09 -0.50 -0.60 -1.13 -1.05 0.74

growth_p4 -0.34 -0.51 -0.50 -2.24 -0.78 -0.07 0.13 0.06 -1.78 -0.55 -0.42 -1.40 -1.89 0.34

growth_p5 0.53 -0.91 -0.54 -1.97 -1.62 0.54 1.83 1.10 0.08 0.70 0.56 -1.27 -1.24 0.80

growth_p6 0.07 -0.52 -0.51 -1.67 -0.76 0.31 0.53 0.60 -0.28 0.31 -0.66 -1.62 -1.52 0.07

growth_p7 0.50 -0.54 -0.41 -1.30 -1.17 0.76 1.78 0.52 0.44 0.75 0.66 -1.43 -1.48 0.62

growth_p8 0.53 -0.84 -0.81 -2.00 -1.01 -0.07 0.46 0.55 0.14 0.67 0.35 -1.44 -1.11 0.58

growth_p9 0.54 -1.02 -1.13 -1.22 -1.34 0.36 0.76 0.51 0.51 1.03 -0.30 -1.62 -1.23 -0.73

growth_p10 -0.55 -0.92 -1.18 -0.52 -1.02 -0.12 0.99 1.02 -1.41 -0.42 -1.65 -1.06 -1.05 -0.47

aturnover_p1 0.17 -0.22 -0.41 -1.02 -0.77 -0.10 0.23 0.43 0.01 0.30 -0.01 -1.91 -0.91 -0.17
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b.m tbl lty ntis infl ltr corpr svar Dpr Dy Epr Der Dfy gro_p

aturnover_p2 0.64 -0.65 -0.87 -1.38 -0.35 0.26 0.94 0.33 0.35 0.87 0.39 -1.55 -0.68 0.55

aturnover_p3 -0.12 -1.03 -0.85 -1.49 -1.07 0.00 0.21 0.29 -0.27 0.21 -0.45 -1.02 -1.04 -0.15

aturnover_p4 -0.44 -0.83 -0.88 -0.94 -0.46 0.29 0.92 0.66 -1.16 -0.15 -0.50 -1.11 -1.08 1.08

aturnover_p5 0.13 -1.12 -0.92 -1.30 -1.29 0.26 1.20 1.69 -0.12 0.52 -0.52 -1.22 -1.52 0.17

aturnover_p6 0.16 -0.95 -1.01 -1.36 -0.72 0.57 1.85 0.13 0.05 0.45 -0.50 -1.58 -0.93 0.32

aturnover_p7 0.13 -0.89 -0.64 -1.36 -1.08 0.58 1.61 1.29 -0.34 0.27 -0.39 -1.36 -1.05 0.33

aturnover_p8 0.42 -0.95 -0.74 -1.09 -1.46 0.24 0.98 -0.43 -0.16 0.51 0.33 -1.22 -1.16 0.78

aturnover_p9 -0.36 -0.97 -0.70 -1.37 -1.56 0.66 0.83 0.03 -1.46 -0.88 -0.86 -1.35 -1.55 -1.05

aturnover_p10 0.71 -0.55 -0.27 -1.56 -1.96 0.50 0.83 0.16 -0.09 0.57 0.29 -1.04 -1.85 -1.99

gmargins_p1 -0.07 -0.95 -0.96 -0.97 -0.50 0.49 1.99 0.35 -0.92 -0.07 -0.40 -1.46 -1.05 0.40

gmargins_p2 -0.02 -1.13 -0.96 -1.04 -1.32 0.74 1.94 0.94 -0.47 0.03 -0.68 -1.78 -1.16 0.36

gmargins_p3 0.09 -0.69 -0.64 -1.04 -1.18 0.43 1.27 0.50 -0.62 0.16 -0.20 -1.52 -1.35 0.60

gmargins_p4 0.46 -1.18 -0.85 -1.01 -1.04 0.21 1.18 -0.03 -0.14 0.61 0.70 -0.91 -0.98 1.28

gmargins_p5 0.16 -1.11 -0.89 -1.44 -1.35 -0.07 0.49 0.92 -0.16 0.31 -0.22 -1.68 -1.13 0.81

gmargins_p6 0.61 -0.83 -0.68 -1.31 -1.09 0.23 1.28 1.11 0.45 1.06 -0.44 -1.28 -0.84 -0.05

gmargins_p7 0.26 -0.59 -0.64 -1.35 -0.59 0.85 2.22 0.08 -0.25 0.23 -0.53 -1.46 -1.07 -0.72

gmargins_p8 0.21 -0.58 -0.66 -1.50 -1.07 0.52 1.30 0.06 0.11 0.48 -0.27 -1.21 -0.79 -0.43

gmargins_p9 0.72 -0.92 -0.79 -1.59 -0.88 0.16 0.46 0.78 0.78 1.17 0.94 -1.29 -1.28 0.11

gmargins_p10 -0.26 -0.92 -0.74 -1.57 -0.89 0.16 0.49 0.32 -0.66 -0.15 -0.42 -1.05 -1.29 -0.76

divp_p1 0.31 -1.13 -1.13 -1.00 -0.61 0.07 1.53 1.43 -0.20 0.44 -0.32 -1.21 -0.94 -0.38

divp_p2 -0.06 -1.27 -1.03 -1.16 -0.67 0.28 1.72 0.37 -0.61 0.02 -0.55 -1.43 -0.93 -0.31

divp_p3 0.19 -0.93 -0.68 -1.86 -1.11 -0.02 0.72 1.22 -0.16 0.49 -0.03 -1.52 -1.43 -0.41

divp_p4 0.16 -0.82 -0.80 -1.89 -1.07 0.37 1.42 1.79 -0.58 0.23 0.02 -1.54 -1.25 0.21

divp_p5 0.13 -1.19 -0.82 -1.66 -1.55 0.26 1.56 0.09 -0.46 0.07 0.57 -1.12 -1.35 -0.19

divp_p6 -0.13 -0.93 -0.71 -1.71 -1.28 -0.06 1.42 0.68 -0.68 -0.13 -0.09 -1.26 -1.20 0.66

divp_p7 0.18 -0.10 -0.04 -0.99 -0.46 -0.25 -0.04 1.44 -0.89 0.47 0.31 -2.03 -2.24 0.47

divp_p8 0.04 -0.82 -0.39 -1.49 -1.71 0.30 -0.48 1.57 -0.31 0.22 -1.07 -3.24 -2.07 -0.72

divp_p9 -0.02 -0.35 -0.41 -1.54 -1.40 0.35 0.89 0.59 -0.52 0.02 -0.90 -2.14 -1.65 0.14

divp_p10 -0.05 -0.39 -0.40 -0.96 -0.34 -0.25 -0.73 3.23 -0.35 -0.06 -1.18 -4.19 -2.05 0.14

divg_p1 0.98 -0.58 -0.39 -0.96 -0.71 0.35 1.55 1.60 1.56 1.95 -0.28 -0.61 -0.80 -0.24

divg_p2 -0.12 -0.71 -0.62 -0.96 -1.03 0.77 1.59 1.57 -0.77 0.15 -0.57 -1.89 -2.05 0.15

divg_p3 -0.01 -0.53 -0.47 -1.87 -0.57 0.59 1.45 1.66 -0.77 0.43 -0.51 -2.23 -1.67 0.40

divg_p4 0.38 -0.73 -0.76 -1.68 -0.61 0.36 1.38 1.44 -0.26 0.47 0.38 -1.46 -1.10 0.78

divg_p5 0.42 -0.15 -0.22 -1.73 -1.05 -0.64 0.52 0.75 0.16 0.71 0.16 -1.54 -1.08 0.50

divg_p6 0.27 -0.62 -0.47 -1.58 -1.25 -0.32 -0.33 2.28 -0.17 0.53 0.20 -2.23 -2.19 0.09

divg_p7 0.10 -0.85 -0.51 -2.00 -1.86 0.04 0.54 0.85 -0.40 0.12 0.12 -1.64 -1.40 0.26

divg_p8 0.11 -0.72 -0.46 -1.70 -1.14 0.22 0.19 1.51 -0.50 0.26 -0.41 -2.17 -2.17 -0.09

divg_p9 0.12 -1.49 -1.13 -1.47 -1.43 -0.02 0.44 0.99 0.00 0.22 0.35 -1.31 -0.99 0.43
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divg_p10 0.05 -1.23 -1.13 -1.33 -0.95 1.61 3.05 0.60 -0.68 0.04 -0.34 -1.79 -1.23 -0.45

dur_p1 -0.22 -1.71 -1.48 -1.79 -1.11 0.19 0.81 0.47 -0.37 -0.24 -0.41 -1.04 -0.78 -0.61

dur_p2 0.02 -1.21 -0.89 -1.36 -0.85 0.38 1.65 0.62 -0.47 0.19 -0.12 -1.17 -1.29 -1.09

dur_p3 -0.26 -0.90 -0.72 -1.29 -1.12 -0.12 0.60 0.31 -1.10 -0.15 -0.51 -1.06 -1.44 -0.12

dur_p4 0.03 -1.17 -1.00 -1.82 -1.36 0.50 0.79 0.78 -0.86 0.06 -0.06 -1.68 -1.53 0.54

dur_p5 0.18 -0.97 -0.73 -1.27 -0.90 0.34 1.63 0.53 -0.57 0.27 -0.14 -1.32 -1.10 0.70

dur_p6 -0.15 -1.19 -1.00 -1.39 -0.73 0.60 1.17 0.39 -0.64 -0.29 -0.77 -1.69 -0.95 0.09

dur_p7 -0.30 -0.51 -0.49 -1.24 -0.98 0.39 0.71 0.78 -1.26 -0.39 -0.54 -1.52 -1.70 0.84

dur_p8 -0.17 -0.58 -0.88 -1.27 -1.33 0.58 1.68 1.11 -0.69 -0.11 -0.52 -1.60 -1.38 -0.24

dur_p9 -0.14 -0.67 -0.51 -0.61 -1.48 0.43 2.10 0.83 -0.70 0.14 -0.98 -1.57 -1.30 0.65

dur_p10 0.18 -0.56 -0.47 -0.09 -0.54 0.78 2.06 -0.55 -0.06 0.29 -0.67 -1.33 -0.73 0.25

ep_p1 -0.31 -1.04 -0.99 -0.34 -0.53 -0.20 0.62 -0.08 -0.76 -0.29 -0.83 -0.66 -0.83 -0.04

ep_p2 -0.22 -0.81 -0.95 -1.52 -0.63 -0.09 0.21 0.37 -0.60 -0.27 -0.70 -0.93 -0.72 -0.65

ep_p3 -0.16 -1.22 -1.14 -1.39 -1.07 0.06 1.17 1.38 -0.60 -0.04 -0.40 -1.20 -1.10 -0.63

ep_p4 0.59 -0.57 -0.65 -2.14 -0.84 0.18 1.45 0.86 0.11 0.71 0.54 -1.23 -1.36 -0.69

ep_p5 -0.19 -1.07 -0.79 -1.21 -0.95 0.35 1.31 0.26 -0.93 -0.24 -0.10 -1.44 -1.17 0.52

ep_p6 0.38 0.25 -0.20 -1.70 -1.03 1.16 2.37 1.59 -0.70 0.33 0.34 -1.89 -2.04 -0.99

ep_p7 -0.01 -0.64 -0.74 -1.63 -0.93 0.81 1.82 1.18 -0.57 0.08 -0.41 -1.54 -1.00 -0.20

ep_p8 0.07 -0.33 -0.20 -1.22 -1.40 0.24 0.78 1.69 -0.70 0.04 -0.30 -2.05 -1.59 0.52

ep_p9 0.21 -0.50 -0.49 -0.54 -1.37 0.85 2.48 1.15 -0.44 0.20 -0.37 -1.96 -1.43 0.08

ep_p10 -0.46 -1.01 -0.56 -0.58 -1.50 0.96 1.58 1.14 -1.29 -0.54 -1.00 -1.93 -1.20 -0.33

cfp_p1 -0.23 -1.51 -1.36 -1.40 -1.05 0.06 0.63 1.29 -0.51 -0.27 -0.39 -1.16 -1.05 -0.64

cfp_p2 -0.12 -1.36 -1.10 -2.35 -1.03 0.08 0.95 0.81 -0.80 -0.09 -0.36 -1.29 -1.35 -1.15

cfp_p3 0.28 -0.88 -0.80 -1.62 -1.16 0.87 2.33 0.57 -0.35 0.43 0.18 -1.40 -1.26 -0.73

cfp_p4 0.31 -0.57 -0.48 -2.12 -1.02 0.48 1.71 1.19 -0.10 0.85 -0.29 -1.71 -2.05 -0.97

cfp_p5 -0.10 -0.55 -0.58 -1.12 -0.70 0.45 1.41 1.73 -1.37 -0.18 -0.05 -1.64 -1.64 0.48

cfp_p6 -0.18 -0.51 -0.52 -1.10 -0.95 0.11 1.26 1.71 -1.17 -0.27 -0.69 -1.85 -1.77 0.01

cfp_p7 0.01 -1.00 -0.66 -1.84 -1.01 0.74 2.17 0.91 -0.62 0.00 -0.70 -2.29 -1.35 0.46

cfp_p8 -0.02 -0.13 -0.38 -1.02 -0.43 0.29 0.98 1.17 -0.86 -0.09 -0.37 -1.78 -1.01 0.23

cfp_p9 -0.01 -0.31 -0.37 -1.27 -1.13 1.01 1.83 -0.05 -0.73 0.07 -0.61 -1.69 -1.14 0.32

cfp_p10 0.08 -0.94 -0.65 -0.55 -0.84 0.95 2.22 0.76 -0.13 0.44 -0.83 -1.70 -0.88 0.30

noa_p1 0.51 -0.77 -0.94 -0.92 -0.74 0.61 1.60 0.32 0.61 1.12 -0.11 -1.41 -0.51 -1.15

noa_p2 -0.11 -0.38 -0.41 -0.68 -0.91 0.18 0.36 1.07 -0.95 -0.36 -0.42 -1.78 -1.24 -0.20

noa_p3 -0.08 -0.70 -0.68 -1.26 -0.93 -0.13 0.47 0.91 -0.58 -0.16 -0.65 -1.62 -1.07 -0.05

noa_p4 0.94 -0.76 -0.96 -1.18 -0.84 1.19 1.67 0.30 1.35 1.46 0.86 -1.93 -0.97 0.17

noa_p5 0.29 -0.91 -0.84 -1.40 -0.76 0.03 0.38 0.10 -0.50 0.25 -0.01 -1.36 -1.20 -0.74

noa_p6 0.88 -0.36 0.11 -0.86 -0.55 0.36 1.48 0.63 0.70 1.27 0.53 -1.28 -1.53 0.98

noa_p7 -0.14 -1.09 -0.97 -1.67 -1.04 0.02 0.90 0.85 -1.13 -0.20 -0.08 -1.34 -1.46 0.85
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noa_p8 0.32 -1.07 -0.59 -1.10 -1.84 0.10 0.46 1.07 -0.08 0.61 -0.28 -1.40 -1.48 0.86

noa_p9 0.03 -1.11 -1.00 -1.37 -0.87 -0.07 0.36 -0.51 -0.08 0.21 -0.03 -0.99 -0.69 0.45

noa_p10 -0.40 -0.71 -0.62 -0.96 -1.04 0.12 0.74 0.59 -1.04 -0.52 -0.82 -0.80 -1.14 -0.33

inv_p1 0.34 -1.23 -1.43 -1.18 -0.80 0.63 2.09 0.87 0.09 0.60 -0.46 -1.77 -0.80 -0.66

inv_p2 0.41 -0.66 -0.76 -1.06 -0.65 0.19 0.68 -0.11 0.22 0.64 0.05 -1.27 -0.68 -0.12

inv_p3 -0.22 -1.06 -0.79 -1.04 -1.03 0.09 0.17 -0.04 -0.87 -0.30 0.03 -0.85 -1.13 0.64

inv_p4 -0.13 -0.90 -0.55 -1.37 -1.44 0.39 0.80 0.89 -0.67 -0.09 -0.45 -1.41 -1.24 0.92

inv_p5 -0.06 -0.63 -0.65 -1.21 -0.74 0.43 1.55 0.32 -0.58 0.05 -0.47 -1.22 -1.14 0.62

inv_p6 -0.03 -0.55 -0.68 -1.97 -0.85 0.19 1.21 1.14 -0.38 0.06 -0.36 -1.33 -0.98 0.67

inv_p7 0.67 -0.59 -0.52 -1.31 -0.80 -0.22 0.08 0.30 0.50 0.99 0.50 -1.28 -1.23 -0.01

inv_p8 0.23 -1.01 -0.77 -1.91 -0.96 0.92 2.58 0.70 0.03 0.57 -0.40 -1.15 -1.02 -0.32

inv_p9 0.21 -0.36 -0.44 -1.03 -1.33 0.46 0.23 0.43 -0.58 0.33 0.13 -2.20 -2.75 -0.44

inv_p10 0.28 -0.99 -0.82 -0.79 -1.04 0.05 0.61 1.33 -0.17 0.55 -0.74 -1.17 -1.01 0.04

invcap_p1 -0.42 -1.04 -0.93 -0.55 -0.99 0.22 0.38 -0.03 -1.05 -0.67 -0.78 -0.79 -0.80 -0.71

invcap_p2 -0.38 -0.84 -0.76 -0.77 -0.90 0.04 0.61 0.52 -1.19 -0.51 -0.94 -1.14 -1.13 -0.33

invcap_p3 0.40 -0.87 -0.84 -1.65 -0.93 0.18 1.27 0.38 0.35 0.81 -0.13 -1.12 -0.77 0.23

invcap_p4 0.25 -0.63 -0.68 -0.91 -0.72 0.55 1.32 2.44 -0.44 0.40 -0.10 -2.20 -1.56 0.78

invcap_p5 0.76 -0.58 -0.36 -1.60 -1.10 0.64 1.57 0.41 0.73 1.52 0.51 -1.27 -1.31 0.20

invcap_p6 0.34 -1.32 -1.07 -1.87 -1.07 0.39 0.87 0.65 0.07 0.50 0.48 -1.23 -0.98 1.03

invcap_p7 0.85 -0.42 -0.40 -2.66 -1.01 0.69 1.07 0.80 0.39 0.88 1.03 -1.62 -1.79 -0.13

invcap_p8 0.25 -0.28 -0.39 -1.63 -1.00 -0.20 0.32 -0.61 -0.14 0.44 0.71 -1.29 -1.34 0.65

invcap_p9 0.07 -0.25 -0.35 -1.50 -0.53 0.46 2.15 0.06 -0.87 -0.03 0.05 -1.43 -1.29 0.07

invcap_p10 0.21 -0.67 -0.59 -1.32 -1.10 0.73 2.44 1.34 -0.46 0.20 -0.47 -1.52 -0.86 -0.02

igrowth_p1 0.01 -1.01 -1.02 -0.76 -0.67 0.19 0.51 -0.04 -0.48 -0.07 -0.11 -1.03 -0.73 -0.37

igrowth_p2 -0.37 -0.83 -0.89 -0.92 -0.80 0.61 1.54 0.26 -1.14 -0.43 -0.90 -1.37 -0.87 -0.30

igrowth_p3 -0.08 -1.03 -0.86 -1.73 -1.06 0.50 0.82 0.79 -0.40 0.20 -0.49 -1.45 -0.92 0.77

igrowth_p4 0.13 -0.98 -0.78 -1.87 -0.88 0.02 0.72 0.76 -0.48 0.12 0.02 -1.32 -0.98 0.18

igrowth_p5 0.16 -0.95 -0.70 -1.62 -1.13 0.15 0.39 1.03 -0.19 0.31 -0.42 -1.37 -1.30 0.96

igrowth_p6 0.31 -0.43 -0.48 -1.36 -1.20 0.16 1.25 1.10 0.08 0.54 0.26 -1.39 -1.63 0.00

igrowth_p7 0.16 -0.57 -0.55 -1.53 -0.93 0.24 1.20 -0.32 -0.18 0.43 0.54 -1.14 -1.53 0.58

igrowth_p8 0.53 -0.57 -0.52 -1.44 -1.12 0.60 1.54 0.59 0.08 0.79 0.00 -1.52 -1.37 -0.43

igrowth_p9 -0.05 -0.93 -0.90 -0.65 -0.81 0.16 0.81 0.34 -0.78 -0.16 -0.52 -1.09 -0.94 -0.06

igrowth_p10 -0.19 -0.99 -1.09 -0.47 -0.73 -0.18 0.18 0.17 -1.11 -0.27 -0.78 -0.94 -0.75 -0.38

sgrowth_p1 -0.25 -0.97 -1.12 -0.77 -0.68 0.56 1.38 0.30 -0.88 -0.31 -0.54 -1.04 -0.70 -0.55

sgrowth_p2 -0.15 -0.99 -0.96 -0.88 -0.91 0.23 0.41 0.04 -0.64 -0.21 -0.55 -0.99 -0.60 0.58

sgrowth_p3 -0.21 -0.56 -0.58 -1.04 -0.68 0.20 0.98 0.64 -1.24 -0.24 -0.51 -1.24 -1.09 0.03

sgrowth_p4 0.21 -0.25 -0.41 -1.30 -0.75 0.72 0.87 0.05 -0.26 0.48 0.14 -1.45 -1.64 -0.17

sgrowth_p5 0.52 -0.79 -0.26 -1.41 -1.41 0.05 1.20 0.81 0.60 1.09 0.31 -0.95 -1.45 -0.34
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sgrowth_p6 -0.08 -0.67 -0.54 -1.21 -1.21 0.80 2.01 0.06 -0.96 -0.03 -0.21 -1.41 -1.69 0.44

sgrowth_p7 0.43 -1.21 -0.91 -2.39 -1.13 0.44 0.80 1.18 0.28 0.46 0.64 -1.80 -1.51 0.65

sgrowth_p8 0.27 -0.51 -0.67 -2.02 -0.75 -0.31 0.03 1.14 -0.42 0.34 -0.16 -2.06 -1.77 0.59

sgrowth_p9 -0.14 -0.87 -1.08 -1.80 -0.83 0.25 1.74 0.97 -0.52 0.13 -1.00 -1.48 -0.90 0.09

sgrowth_p10 0.24 -0.93 -1.38 -0.86 -0.82 -0.05 0.62 1.08 0.08 0.59 -0.09 -1.37 -1.07 -0.06

lev_p1 -0.12 -1.22 -1.06 -1.56 -1.14 0.18 0.51 0.44 -0.34 -0.08 -0.32 -0.95 -1.03 -0.89

lev_p2 0.05 -1.42 -0.90 -1.33 -0.98 -0.12 1.14 0.36 -0.78 0.32 0.22 -1.22 -1.59 -0.47

lev_p3 0.58 -0.92 -0.85 -1.46 -0.84 0.81 2.17 0.41 0.54 1.05 0.32 -1.19 -0.98 0.07

lev_p4 -0.20 -1.03 -0.90 -1.79 -0.64 0.90 1.72 0.84 -1.13 -0.37 -0.69 -2.09 -0.99 1.08

lev_p5 0.20 -1.08 -0.80 -1.40 -1.61 0.45 1.44 0.53 -0.13 0.19 0.03 -1.54 -1.08 0.52

lev_p6 0.35 -0.28 -0.36 -1.75 -0.76 0.23 1.13 1.47 -0.74 0.47 -0.08 -1.98 -1.41 0.70

lev_p7 -0.12 -0.07 -0.30 -1.11 -0.78 0.21 2.00 1.13 -0.97 -0.04 -0.70 -1.75 -1.51 -0.20

lev_p8 0.07 -0.42 -0.39 -0.87 -1.22 0.67 1.21 1.07 -0.46 0.23 -0.64 -2.63 -1.73 -0.15

lev_p9 0.17 -0.48 -0.37 -0.70 -1.33 0.58 0.98 1.20 -0.32 0.32 -0.44 -1.82 -1.84 -0.36

lev_p10 -0.17 -0.50 -0.41 -0.39 -1.26 -0.51 -0.48 2.56 -0.72 -0.12 -1.10 -2.93 -1.88 -1.03

roaa_p1 -0.34 -0.54 -0.74 -0.48 -0.46 -0.23 0.65 -0.09 -0.75 -0.24 -0.85 -0.64 -0.80 -0.65

roaa_p2 0.10 -0.57 -0.51 -0.44 -0.75 -0.16 0.04 2.39 -0.52 0.26 -0.94 -3.05 -1.77 -0.07

roaa_p3 -0.32 -0.42 -0.54 -1.05 -1.22 -0.24 -0.38 1.67 -0.99 -0.16 -1.06 -2.28 -2.27 -1.07

roaa_p4 -0.08 -0.50 -0.61 -1.19 -1.30 0.06 0.19 1.02 -0.67 -0.12 -0.48 -2.19 -1.66 -0.86

roaa_p5 0.67 -0.60 -0.56 -1.11 -0.97 0.65 1.60 0.43 0.55 0.92 0.61 -1.33 -1.09 0.44

roaa_p6 0.82 -0.51 -0.39 -1.25 -0.32 -0.07 0.50 1.67 0.09 1.03 0.41 -1.80 -0.95 0.88

roaa_p7 0.38 -0.85 -0.63 -1.66 -0.56 0.43 2.11 1.86 -0.42 0.55 -0.01 -1.85 -1.22 0.88

roaa_p8 0.10 -1.52 -0.91 -1.38 -1.44 0.10 0.89 0.81 -0.37 0.18 -0.18 -1.28 -1.08 0.92

roaa_p9 0.52 -1.53 -1.11 -1.48 -1.59 1.21 2.37 0.15 0.81 1.17 0.36 -1.34 -1.25 -0.02

roaa_p10 -0.17 -1.03 -0.84 -1.64 -1.46 0.34 0.74 0.26 -0.52 -0.15 -0.19 -1.11 -1.23 -1.02

roea_p1 -0.27 -0.71 -0.98 -0.48 -0.48 -0.19 0.58 0.05 -0.67 0.04 -0.99 -0.86 -0.78 -0.40

roea_p2 0.23 -0.61 -0.76 -1.18 -0.61 0.10 0.65 1.59 -0.26 0.48 -0.54 -1.75 -1.46 -0.06

roea_p3 0.32 -0.54 -0.47 -0.66 -1.05 -0.03 0.61 0.97 0.41 0.77 -0.12 -1.49 -1.14 0.01

roea_p4 0.72 -0.69 -0.74 -1.30 -0.66 -0.13 0.52 1.34 0.36 0.98 0.21 -1.33 -0.79 0.97

roea_p5 0.40 -0.56 -0.48 -1.46 -0.71 0.54 0.64 1.83 -0.41 0.43 0.27 -1.90 -1.76 0.14

roea_p6 0.55 -0.70 -0.48 -1.00 -0.82 0.32 1.06 2.64 0.27 0.82 0.11 -2.13 -1.52 0.93

roea_p7 -0.08 -1.17 -0.77 -1.55 -1.21 0.29 1.09 1.36 -0.66 -0.03 -0.43 -1.77 -1.08 0.81

roea_p8 0.10 -1.00 -0.77 -1.44 -1.51 0.22 0.90 1.22 -0.37 0.35 -0.48 -1.87 -1.62 -0.33

roea_p9 0.12 -1.05 -0.72 -1.38 -1.12 0.62 1.43 0.19 -0.16 0.38 -0.14 -1.12 -1.28 -0.53

roea_p10 0.10 -1.49 -0.89 -1.79 -1.90 0.44 1.12 0.47 -0.29 0.29 0.27 -1.27 -1.77 -0.98

sp_p1 -0.17 -1.17 -1.05 -1.48 -0.99 -0.06 0.35 0.71 -0.40 -0.09 -0.39 -1.07 -0.98 -0.63

sp_p2 0.19 -0.81 -0.70 -1.73 -1.12 0.40 1.88 0.64 -0.16 0.34 0.09 -1.30 -1.17 -0.64

sp_p3 0.01 -0.77 -0.65 -1.33 -0.86 0.15 0.42 1.60 -0.55 0.05 -0.20 -2.43 -1.34 0.38
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sp_p4 0.14 -0.44 -0.44 -1.48 -0.79 -0.07 0.78 1.17 -1.12 -0.09 -0.15 -1.51 -1.21 0.38

sp_p5 -0.30 -0.61 -0.68 -1.68 -1.00 1.45 2.57 1.16 -0.97 -0.27 -1.09 -2.19 -1.35 -0.60

sp_p6 0.50 -0.65 -0.39 -1.57 -1.23 0.30 1.46 1.57 -0.29 0.64 -0.51 -1.98 -1.67 0.12

sp_p7 -0.32 -0.93 -0.71 -0.98 -1.35 0.40 1.98 1.28 -1.01 -0.29 -0.80 -2.23 -1.44 0.64

sp_p8 0.35 -0.82 -0.44 -0.79 -1.25 0.23 0.95 0.67 -0.50 0.43 -0.19 -1.00 -1.32 0.02

sp_p9 -0.34 -0.81 -0.66 -0.60 -1.42 1.43 2.84 1.24 -1.19 -0.20 -0.83 -1.62 -1.76 -0.09

sp_p10 -0.01 -1.06 -0.50 -0.38 -1.13 0.58 2.32 0.72 -0.58 0.31 -0.95 -1.58 -2.02 -0.71

gltnoa_p1 -0.49 -0.93 -0.82 -1.14 -0.79 0.33 0.91 0.48 -1.12 -0.46 -1.04 -1.24 -1.06 -0.78

gltnoa_p2 0.31 -0.50 -0.46 -1.27 -1.41 0.68 1.97 0.26 -0.38 0.62 -0.30 -1.72 -1.73 -0.67

gltnoa_p3 0.47 -0.63 -0.73 -1.87 -0.72 0.43 2.27 0.33 0.10 0.73 0.10 -1.43 -0.88 0.20

gltnoa_p4 0.18 -0.70 -0.67 -1.33 -1.51 0.27 0.85 0.65 0.06 0.47 -0.25 -1.77 -1.28 -0.19

gltnoa_p5 -0.08 -0.50 -0.46 -0.75 -0.86 0.09 0.74 0.13 -0.60 -0.18 -0.28 -1.44 -1.22 0.76

gltnoa_p6 0.08 -0.84 -0.57 -1.62 -0.83 0.12 0.79 1.00 -0.62 -0.02 -0.50 -1.15 -0.90 0.51

gltnoa_p7 0.18 -1.05 -0.97 -1.54 -1.14 0.30 0.62 1.79 -0.15 0.31 0.14 -2.05 -1.20 0.45

gltnoa_p8 0.20 -0.67 -0.61 -1.42 -0.64 1.08 2.32 1.13 -0.26 0.46 -0.40 -1.27 -1.12 -0.26

gltnoa_p9 0.33 -0.75 -0.72 -1.69 -0.90 -0.18 0.71 0.76 -0.35 0.42 -0.12 -1.53 -1.67 0.44

gltnoa_p10 -0.16 -1.40 -1.24 -0.68 -0.91 0.27 1.25 0.26 -0.83 -0.25 -0.46 -1.03 -0.72 -0.24

mom_p1 -0.10 -0.55 -0.74 -0.56 -0.51 1.16 1.57 -1.22 0.14 0.37 -1.28 0.35 0.87 -0.84

mom_p2 0.33 -0.96 -0.81 -0.60 -0.82 1.12 1.70 -0.97 0.80 0.90 -0.99 -0.82 0.18 -1.02

mom_p3 0.39 -0.95 -0.83 -1.05 -1.32 1.19 1.54 -0.61 1.19 1.23 -0.82 -1.45 -0.45 -1.10

mom_p4 0.01 -1.09 -0.80 -0.73 -1.45 1.17 1.07 -0.48 -0.03 0.43 -0.98 -1.83 -1.52 -1.05

mom_p5 0.13 -1.27 -0.91 -1.44 -1.73 0.15 0.93 0.10 0.55 0.79 -0.59 -1.40 -0.77 -0.85

mom_p6 0.31 -0.76 -0.53 -1.49 -0.97 0.97 2.73 0.85 0.32 0.73 -0.42 -1.39 -0.88 0.04

mom_p7 0.13 -0.95 -0.71 -2.39 -1.41 0.60 1.71 1.58 -0.17 0.31 0.16 -1.73 -1.45 0.55

mom_p8 -0.11 -0.75 -0.65 -2.28 -0.76 -0.08 0.81 2.16 -1.57 0.05 -0.52 -1.63 -1.73 0.56

mom_p9 0.14 -0.71 -0.55 -2.29 -0.64 -0.14 1.13 2.18 -1.13 0.22 0.05 -1.36 -1.35 0.93

mom_p10 -0.74 -0.61 -0.61 -0.95 -0.44 -0.34 -0.29 1.96 -2.34 -1.12 0.05 -0.41 -0.88 1.02

indmom_p1 -0.08 -1.06 -1.10 -0.08 -0.89 0.77 1.20 -0.43 -0.20 -0.04 -0.61 -1.26 -0.58 -0.60

indmom_p2 -0.26 -1.20 -1.07 -0.64 -1.07 0.49 0.73 -0.76 -0.41 -0.18 -1.15 -1.91 -0.83 -1.09

indmom_p3 0.03 -0.79 -0.72 -1.23 -1.47 0.45 1.74 -0.54 -0.07 0.30 -0.70 -1.27 -0.83 -1.04

indmom_p4 0.79 -0.52 -0.47 -0.72 -0.88 0.64 2.63 -0.01 0.70 1.50 -0.28 -1.91 -1.21 -1.32

indmom_p5 0.63 -1.27 -1.01 -1.08 -0.98 0.27 2.09 0.69 1.56 1.78 0.22 -0.62 -0.48 -0.30

indmom_p6 -0.05 -0.36 -0.57 -1.45 -0.83 0.65 1.88 -0.04 -1.19 -0.23 -1.04 -1.77 -1.70 -0.29

indmom_p7 -0.08 -1.73 -0.93 -1.43 -2.05 0.33 0.66 1.80 -0.36 -0.12 0.04 -1.46 -1.14 0.32

indmom_p8 -0.46 -0.90 -0.63 -1.68 -1.45 -0.10 -0.53 2.86 -1.38 -0.24 -0.30 -1.95 -2.27 0.66

indmom_p9 1.35 0.20 0.43 -1.83 -1.21 -0.30 -0.02 1.65 0.74 1.49 1.14 -1.20 -1.82 0.95

indmom_p10 -1.63 -0.30 -0.68 -1.09 -0.36 0.01 0.71 0.86 -3.68 -1.96 -1.71 -1.17 -0.44 0.05

valmom_p1 -0.06 -0.87 -0.87 -0.75 -0.95 1.31 1.58 -1.12 0.13 0.32 -0.99 -0.81 0.10 -0.94
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valmom_p2 0.02 -1.49 -1.35 -0.83 -1.37 0.83 1.37 -0.43 0.56 0.57 -0.62 -1.24 -0.66 -0.84

valmom_p3 0.80 -0.93 -0.54 -1.36 -1.71 0.80 1.68 -0.25 1.54 1.63 0.11 -1.37 -1.50 -0.54

valmom_p4 0.85 -0.72 -0.57 -1.59 -1.13 0.28 1.60 1.02 0.88 1.35 0.35 -1.39 -1.54 -0.45

valmom_p5 -0.25 -1.08 -0.87 -1.32 -0.94 0.02 0.74 0.78 -1.00 -0.42 -0.62 -1.41 -1.02 0.30

valmom_p6 0.06 -1.28 -0.91 -1.68 -0.93 0.12 1.10 0.46 -0.54 -0.08 -0.17 -1.37 -0.71 0.17

valmom_p7 -0.48 -0.58 -0.68 -1.24 -0.79 -0.02 1.04 0.19 -1.72 -0.88 -0.75 -1.06 -0.87 0.33

valmom_p8 -0.26 -0.61 -0.50 -2.40 -0.71 -0.14 0.64 2.66 -1.67 -0.35 -0.34 -1.37 -1.21 1.56

valmom_p9 -0.57 -0.53 -0.48 -1.86 -0.61 0.09 0.95 1.76 -2.17 -0.86 -0.62 -1.56 -1.11 1.90

valmom_p10 -1.05 -0.36 -0.38 -0.90 -0.31 -0.03 0.52 1.53 -2.62 -1.11 -1.23 -1.25 -1.38 1.62

valmomprof_p1 0.46 -0.78 -1.12 -0.48 -0.36 0.53 0.89 -0.45 0.74 0.85 -0.52 -1.55 -0.55 -0.54

valmomprof_p2 -0.14 -0.73 -0.74 -0.69 -0.80 0.48 0.84 -0.39 -0.46 -0.11 -0.66 -1.54 -0.92 -0.59

valmomprof_p3 0.11 -1.26 -0.99 -0.82 -1.38 1.19 1.98 -0.50 0.25 0.55 -0.80 -1.26 -0.83 -0.77

valmomprof_p4 0.30 -0.98 -0.88 -1.40 -0.79 0.65 1.96 -0.87 0.45 0.80 -0.32 -1.21 -0.36 -0.66

valmomprof_p5 0.04 -1.83 -1.61 -1.71 -1.42 1.18 2.72 0.43 0.24 0.38 -0.46 -1.41 -0.64 0.12

valmomprof_p6 0.70 -0.98 -0.74 -2.73 -1.34 0.37 1.67 1.37 0.75 1.31 0.39 -1.63 -0.86 0.42

valmomprof_p7 0.44 -1.01 -0.57 -2.29 -1.21 -0.03 1.05 1.41 0.23 0.63 0.29 -1.27 -1.46 1.22

valmomprof_p8 -0.46 -0.42 -0.37 -1.62 -0.85 -0.01 1.00 1.87 -2.27 -0.61 -0.70 -1.28 -1.89 0.57

valmomprof_p9 -1.19 -0.22 -0.35 -0.91 -0.49 -0.04 0.47 0.85 -3.22 -1.48 -1.31 -1.13 -1.58 0.30

valmomprof_p10 -0.98 -0.46 -0.42 -0.92 -0.63 -0.16 -0.06 1.01 -2.45 -1.39 -1.16 -1.17 -1.43 0.87

shortint_p1 0.21 -0.89 -0.45 -0.35 -0.50 0.12 0.83 0.68 -0.32 0.54 -0.95 -1.22 -1.42 -0.67

shortint_p2 0.21 -1.74 -1.16 -0.98 -0.86 0.44 1.30 1.02 0.22 0.46 -0.47 -1.62 -0.89 -0.41

shortint_p3 0.12 -1.33 -0.90 -1.54 -1.28 0.97 2.69 0.39 -0.15 0.26 -0.48 -1.23 -1.09 -0.27

shortint_p4 0.17 -0.65 -0.48 -1.28 -0.71 0.13 1.51 1.74 -0.53 0.61 -0.55 -1.81 -1.36 -0.05

shortint_p5 -0.20 -1.56 -1.13 -1.66 -1.71 0.51 1.21 1.17 -0.51 -0.22 -0.68 -1.64 -0.86 0.65

shortint_p6 0.14 -1.15 -0.85 -1.18 -1.34 0.59 1.49 1.17 -0.13 0.28 -0.09 -1.43 -0.86 0.49

shortint_p7 -0.24 -0.70 -0.68 -1.28 -0.93 0.13 1.43 0.95 -0.84 0.00 -1.07 -1.66 -1.07 0.86

shortint_p8 0.40 -0.50 -0.63 -1.88 -0.80 1.12 2.69 1.23 -0.35 0.66 -0.01 -1.88 -1.32 -0.09

shortint_p9 0.00 -0.49 -0.68 -1.18 -0.98 0.34 0.95 0.67 -1.04 0.21 -0.11 -1.65 -1.08 0.30

shortint_p10 0.49 0.15 -0.19 -1.33 -1.29 -0.62 0.19 3.40 0.11 0.56 0.94 -1.43 -1.61 -0.01

mom12_p1 -0.29 -0.38 -0.49 -0.44 -0.41 0.73 1.50 -0.87 -0.31 0.01 -1.24 -0.85 -0.41 -0.67

mom12_p2 -0.02 -0.80 -0.76 -0.79 -1.08 1.36 2.33 -1.09 0.07 0.24 -1.18 -1.36 -0.68 -0.80

mom12_p3 0.23 -0.81 -0.72 -1.14 -1.45 1.23 1.46 -0.98 0.63 0.84 -1.23 -1.53 -0.61 -1.27

mom12_p4 -0.10 -0.89 -0.69 -1.18 -1.55 1.21 1.55 -0.61 -0.32 0.07 -1.05 -2.26 -1.39 -0.83

mom12_p5 -0.15 -0.81 -0.64 -0.96 -2.07 0.34 0.59 0.05 -0.16 0.12 -1.13 -1.82 -0.89 -1.07

mom12_p6 0.07 -0.92 -0.66 -1.59 -1.09 0.40 0.88 0.93 -0.34 0.67 -1.00 -1.35 -1.40 -0.70

mom12_p7 0.24 -0.73 -0.53 -1.55 -0.81 0.52 1.47 -0.27 -0.15 0.80 -0.23 -1.33 -1.42 -0.40

mom12_p8 0.17 -0.75 -0.54 -1.60 -0.40 0.03 1.08 2.62 -0.77 0.46 0.34 -1.35 -1.53 0.67

mom12_p9 1.00 -0.21 -0.16 -1.27 0.06 0.21 1.76 3.44 -0.59 0.96 1.16 -1.59 -1.43 0.88
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mom12_p10 -0.04 -1.14 -1.00 -0.53 -0.45 -0.27 0.21 1.83 -1.09 -0.37 0.23 -0.86 -0.65 0.65

momrev_p1 -0.03 -1.17 -1.12 -0.81 -0.45 -0.12 0.85 1.05 -0.77 -0.20 -0.51 -1.10 -0.45 0.40

momrev_p2 -0.35 -0.88 -0.84 -1.12 -0.25 0.01 1.24 1.03 -1.32 -0.42 -0.43 -1.32 -0.65 1.07

momrev_p3 -0.30 -0.59 -0.63 -1.67 -0.67 0.26 1.90 1.79 -1.46 -0.22 0.16 -1.15 -1.94 0.07

momrev_p4 0.29 -0.68 -0.61 -1.68 -0.87 0.03 1.08 1.04 -0.06 0.58 -0.16 -1.43 -1.38 -0.35

momrev_p5 0.44 -0.04 -0.18 -1.37 -1.09 0.11 0.57 2.11 -0.74 0.33 0.34 -2.07 -2.60 -0.93

momrev_p6 0.00 -1.16 -0.92 -1.25 -1.53 0.24 0.63 1.07 -0.31 0.11 -0.58 -2.10 -1.90 -0.10

momrev_p7 0.15 -0.56 -0.67 -1.36 -1.20 0.42 0.67 -0.12 -0.15 0.67 -1.11 -1.81 -1.61 -1.36

momrev_p8 0.07 -0.72 -0.65 -0.93 -2.03 0.99 0.70 -0.67 0.00 0.24 -0.83 -1.72 -1.17 -0.93

momrev_p9 0.19 -1.06 -0.91 -0.62 -1.63 0.25 -0.02 0.65 0.05 0.30 -0.76 -1.88 -1.21 -0.36

momrev_p10 -0.32 -0.75 -0.70 -0.20 -1.57 0.36 1.07 0.31 -0.98 -0.37 -0.92 -1.83 -1.52 -0.35

lrrev_p1 -0.14 -1.60 -1.36 -1.60 -0.83 0.40 1.55 0.86 -0.67 -0.16 -0.45 -1.35 -0.79 -0.18

lrrev_p2 -0.09 -1.18 -0.99 -2.25 -0.60 0.23 1.41 0.21 -1.16 -0.13 0.37 -1.05 -0.94 0.97

lrrev_p3 0.29 -1.15 -0.79 -1.67 -0.94 0.39 1.86 0.70 -0.19 0.63 -0.10 -1.57 -1.18 -0.61

lrrev_p4 0.33 -1.10 -0.64 -1.97 -1.50 0.17 1.09 0.30 -0.17 0.64 0.03 -1.59 -1.28 0.50

lrrev_p5 -0.16 -0.46 -0.51 -1.12 -1.01 0.10 0.70 1.56 -1.07 -0.27 -0.33 -1.38 -1.45 0.10

lrrev_p6 -0.04 -1.08 -0.58 -0.87 -1.49 0.52 1.43 2.10 -0.64 0.00 -0.70 -2.08 -1.49 0.16

lrrev_p7 0.30 -0.47 -0.43 -0.93 -1.43 0.40 1.02 1.46 -0.20 0.76 -0.37 -1.94 -1.86 -0.68

lrrev_p8 -0.39 -0.54 -0.36 -0.35 -1.32 0.21 1.03 1.26 -1.13 -0.25 -0.86 -1.24 -2.32 -0.49

lrrev_p9 -0.39 -0.72 -0.72 0.16 -0.80 0.36 0.77 0.06 -0.83 -0.24 -0.85 -1.23 -1.35 -0.65

lrrev_p10 -0.30 -0.87 -0.85 -0.02 -0.96 0.47 1.55 0.02 -0.59 -0.21 -0.72 -0.42 -0.75 -0.82

valuem_p1 -0.01 -1.51 -1.17 -2.07 -1.03 -0.06 0.56 1.00 -0.35 -0.03 0.02 -0.98 -1.13 -0.48

valuem_p2 0.04 -1.25 -0.77 -1.93 -1.20 0.10 0.52 0.02 -0.44 0.39 -0.03 -1.06 -1.70 -0.56

valuem_p3 -0.19 -1.23 -0.99 -1.36 -1.02 0.67 1.65 0.51 -0.74 0.09 -0.56 -1.30 -0.90 -0.15

valuem_p4 0.00 -0.90 -0.99 -1.67 -0.57 0.71 1.48 0.78 -0.47 0.22 -0.31 -1.57 -0.96 0.68

valuem_p5 0.16 -0.74 -0.83 -1.21 -0.41 0.37 0.84 1.38 -0.51 0.21 0.14 -1.57 -1.17 0.63

valuem_p6 0.26 -0.52 -0.66 -1.09 -0.86 1.03 1.75 0.34 -0.28 0.23 -0.01 -1.83 -1.10 0.53

valuem_p7 0.01 -0.74 -0.77 -1.23 -1.71 0.56 1.69 -0.03 -0.01 0.31 -0.74 -1.44 -0.78 -0.07

valuem_p8 0.76 -0.32 -0.32 -0.98 -0.84 1.20 2.26 -0.25 0.98 1.28 -0.20 -1.98 -0.80 -0.34

valuem_p9 0.62 -0.41 -0.48 -0.77 -0.98 1.26 2.29 -1.38 0.76 1.05 -1.23 -1.98 -0.10 -1.28

valuem_p10 0.13 -0.67 -0.55 -0.60 -0.98 1.17 1.85 -1.85 0.33 0.66 -1.46 -1.36 -0.24 -0.99

nissm_p1 0.13 -0.75 -0.72 -1.00 -0.87 -0.35 -0.27 2.23 -0.09 0.49 -0.74 -2.23 -1.54 -1.06

nissm_p2 -0.13 -0.51 -0.64 -0.91 -0.64 0.06 0.50 0.74 -0.86 -0.20 -0.65 -1.77 -1.15 -0.38

nissm_p3 -0.44 -0.81 -0.69 -0.88 -0.81 0.05 1.01 0.61 -1.33 -0.53 -0.77 -1.10 -0.89 -0.15

nissm_p4 0.23 -1.15 -0.70 -1.23 -1.34 0.22 0.96 1.53 -0.10 0.43 -0.19 -1.42 -1.54 -0.38

nissm_p5 0.22 -0.61 -0.84 -1.36 -0.94 1.09 1.77 0.10 -0.06 0.45 -0.31 -1.66 -1.05 -0.49

nissm_p6 -0.04 -1.03 -0.72 -0.87 -0.91 0.51 1.17 0.14 -0.81 -0.07 -0.52 -1.27 -1.32 -0.01

nissm_p7 0.47 -1.17 -0.88 -1.37 -1.09 0.57 1.69 1.30 0.17 0.70 0.54 -1.41 -1.36 0.37
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nissm_p8 -0.05 -1.28 -1.06 -1.45 -1.64 0.41 0.96 0.73 -0.60 -0.01 -0.30 -1.37 -1.28 0.40

nissm_p9 0.15 0.03 -0.31 -2.30 -0.92 0.47 1.65 1.20 -0.58 0.36 0.19 -1.75 -2.05 0.23

nissm_p10 0.17 -1.09 -0.81 -1.27 -1.34 0.83 2.89 0.69 -0.47 0.12 0.04 -1.24 -1.07 0.68

sue_p1 0.06 -0.55 -0.69 -0.72 -0.89 0.36 0.23 0.40 0.15 0.29 -0.81 -2.08 -1.40 0.38

sue_p2 -0.02 -0.62 -0.58 -0.95 -1.17 -0.19 -0.52 1.36 -0.27 0.42 -0.81 -1.68 -1.68 -0.01

sue_p3 0.01 -1.15 -0.73 -1.16 -1.72 0.01 -0.55 2.74 0.03 0.30 -0.47 -2.42 -1.25 0.49

sue_p4 -0.26 -1.03 -0.64 -0.89 -2.31 0.45 -0.11 1.45 -0.84 -0.40 -0.57 -2.20 -1.22 0.25

sue_p5 -0.38 -1.01 -0.64 -1.41 -1.16 0.41 0.95 0.39 -1.03 -0.40 -0.82 -1.59 -0.84 0.72

sue_p6 -0.23 -1.13 -0.78 -1.38 -1.08 0.42 0.33 0.62 -0.58 -0.28 -0.63 -1.71 -0.90 0.57

sue_p7 -0.48 -0.35 -0.51 -1.13 -0.43 0.12 1.13 0.22 -1.43 -0.27 -1.25 -1.42 -1.00 -0.42

sue_p8 0.04 -0.96 -0.78 -1.02 -1.28 0.09 1.48 0.89 -0.61 0.05 0.10 -1.02 -0.67 0.46

sue_p9 -0.03 -0.85 -0.91 -2.14 -0.69 0.34 1.25 0.59 -0.37 0.10 0.24 -1.07 -0.80 0.13

sue_p10 0.69 -0.54 -0.75 -1.37 -0.52 -0.22 0.70 2.19 0.54 0.76 0.05 -1.02 -0.91 0.95

roe_p1 -0.27 -0.59 -0.63 -0.38 -0.61 0.01 0.94 0.49 -0.72 -0.25 -0.78 -1.42 -0.95 0.19

roe_p2 0.44 -0.74 -0.67 -0.57 -0.77 0.51 1.33 1.40 0.47 0.95 -0.62 -1.87 -1.39 -0.40

roe_p3 -0.24 -0.70 -0.63 -1.33 -1.22 0.08 0.14 -0.19 -0.67 -0.01 -1.42 -1.96 -1.77 -0.74

roe_p4 0.13 -0.75 -0.77 -1.36 -1.57 0.20 -0.20 0.66 -0.09 0.31 -0.67 -2.51 -1.24 -0.03

roe_p5 0.31 -0.93 -0.72 -1.42 -1.06 -0.23 -0.09 1.12 0.41 0.63 0.42 -1.22 -0.82 0.22

roe_p6 0.11 -0.45 -0.51 -0.76 -0.56 -0.22 0.01 1.57 -0.61 0.45 -0.72 -1.62 -1.33 0.75

roe_p7 0.06 -0.85 -0.63 -0.96 -0.97 0.34 0.57 1.66 -0.66 0.07 -0.46 -2.32 -1.64 -0.24

roe_p8 0.13 -0.94 -0.66 -1.24 -0.90 0.28 1.67 0.88 -0.54 0.38 -0.22 -1.14 -1.33 -0.21

roe_p9 0.03 -1.25 -0.65 -1.64 -1.41 0.60 2.15 1.24 -0.51 0.17 0.08 -1.12 -1.13 0.57

roe_p10 0.35 -1.10 -1.11 -2.31 -1.14 0.22 0.77 0.34 0.10 0.49 0.68 -1.20 -0.92 -0.13

rome_p1 -0.19 -0.92 -0.78 -0.16 -0.75 0.11 1.34 0.59 -0.56 -0.13 -0.82 -1.43 -1.09 0.20

rome_p2 -0.27 -0.76 -0.73 -0.69 -0.60 -0.09 0.48 0.29 -0.75 -0.18 -1.08 -1.54 -1.22 -0.11

rome_p3 -0.38 -0.86 -0.71 -0.97 -0.81 0.12 -0.30 0.08 -0.83 -0.18 -1.26 -1.80 -1.54 -0.94

rome_p4 0.05 -1.07 -0.86 -1.95 -0.92 0.03 0.89 1.19 -0.48 0.26 -0.47 -1.60 -1.46 -1.53

rome_p5 0.48 -0.93 -0.78 -2.77 -0.73 0.75 1.30 1.46 -0.01 0.71 0.52 -1.37 -1.85 -0.36

rome_p6 -0.09 -1.45 -1.04 -2.43 -1.40 0.45 1.22 1.49 -0.55 -0.10 -0.08 -1.56 -0.88 0.41

rome_p7 0.29 -0.24 -0.54 -1.26 -0.76 0.39 1.79 1.66 -0.15 0.43 1.09 -1.14 -0.87 1.02

rome_p8 0.34 -0.34 -0.43 -0.71 -0.94 0.87 2.82 1.34 -0.36 0.35 0.10 -1.68 -0.98 0.29

rome_p9 -0.24 -0.18 -0.43 -0.58 -0.90 1.20 2.93 -0.09 -1.22 -0.03 -0.82 -1.54 -1.00 -0.20

rome_p10 0.04 -0.55 -0.42 -0.42 -1.06 0.07 2.13 0.16 -0.78 -0.08 -0.77 -1.58 -1.14 -0.20

roa_p1 -0.33 -0.53 -0.63 -0.50 -0.44 -0.15 0.64 0.19 -0.85 -0.42 -0.79 -1.18 -0.76 -0.07

roa_p2 0.02 -0.31 -0.37 0.23 -0.97 0.38 1.76 1.81 -0.45 0.40 -0.83 -1.83 -1.73 0.47

roa_p3 -0.23 -0.65 -0.59 -0.85 -1.12 -0.30 -1.01 1.06 -0.63 -0.14 -1.01 -2.88 -2.04 -1.13

roa_p4 -0.11 -0.60 -0.56 -1.13 -1.42 0.37 0.87 0.92 -0.61 -0.01 -1.11 -2.03 -1.84 -0.43

roa_p5 0.10 -0.79 -0.82 -1.87 -1.39 -0.14 0.05 0.52 -0.28 0.21 -0.47 -2.06 -1.16 -0.59
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b.m tbl lty ntis infl ltr corpr svar Dpr Dy Epr Der Dfy gro_p

roa_p6 0.86 -0.46 -0.44 -1.33 -0.58 0.08 1.12 1.08 0.36 1.26 0.27 -1.60 -0.90 0.44

roa_p7 0.81 -0.99 -0.85 -1.57 -0.38 0.29 1.34 0.77 0.41 1.03 0.33 -1.65 -0.88 0.10

roa_p8 0.07 -1.04 -0.83 -0.88 -0.98 0.54 1.36 0.39 -0.46 0.51 -0.70 -1.02 -1.04 -0.03

roa_p9 -0.02 -1.31 -0.97 -1.71 -1.14 0.42 1.61 1.05 -0.45 0.04 0.09 -1.28 -1.13 1.05

roa_p10 0.02 -1.30 -0.99 -2.02 -1.50 0.28 0.63 0.58 -0.27 0.00 0.32 -0.99 -0.97 -0.06

strev_p1 -0.04 -0.85 -1.06 -0.44 -0.44 -0.09 -0.05 0.37 -0.61 -0.06 -0.80 -1.61 -0.74 -0.12

strev_p2 0.94 -0.45 -0.51 -1.19 -0.65 -0.01 -0.02 -0.69 0.94 1.48 0.05 -2.10 -1.03 -0.80

strev_p3 0.78 -0.34 -0.47 -0.78 -0.49 0.04 -0.07 0.64 0.47 0.96 -0.14 -2.03 -1.11 -0.13

strev_p4 0.22 -0.75 -0.86 -1.68 -0.86 0.51 0.89 0.51 0.46 0.76 -0.58 -1.54 -1.27 -0.09

strev_p5 0.51 -1.63 -0.85 -1.84 -1.53 0.71 1.52 1.31 0.42 0.81 0.79 -1.18 -0.92 0.74

strev_p6 -0.02 -0.56 -0.55 -1.57 -1.47 1.21 2.65 1.71 -0.69 0.18 -0.21 -1.40 -1.94 0.13

strev_p7 -0.24 -0.98 -0.80 -1.29 -1.36 0.83 1.94 1.64 -0.89 -0.30 -0.17 -1.07 -1.26 0.16

strev_p8 -0.08 -0.67 -0.56 -0.95 -1.80 0.29 2.11 1.90 -0.72 -0.02 -0.07 -1.28 -1.46 0.42

strev_p9 -0.41 -0.53 -0.59 -0.78 -0.88 0.20 2.37 1.27 -1.33 -0.27 -0.88 -1.70 -1.34 -0.62

strev_p10 -0.27 -0.66 -0.70 -0.43 -0.76 0.62 1.70 -0.09 -0.98 -0.15 -1.28 -1.95 -1.10 -0.44

ivol_p1 -0.56 -0.30 -0.53 -0.24 -0.21 -0.01 0.54 -0.49 -1.15 -0.82 -1.11 -1.21 -0.55 -0.51

ivol_p2 -0.41 -1.00 -1.01 -0.13 -0.56 -0.03 0.20 -0.06 -0.93 -0.42 -1.30 -1.50 -1.00 -0.52

ivol_p3 -0.13 -0.93 -0.97 -0.54 -0.66 0.52 1.30 0.14 -0.62 0.24 -1.46 -1.74 -0.84 -0.86

ivol_p4 0.66 -1.13 -0.99 -0.61 -0.80 0.63 1.41 -0.43 0.43 1.22 -0.62 -1.50 -0.67 -0.78

ivol_p5 -0.18 -1.00 -0.88 -0.60 -0.75 0.64 2.31 1.72 -1.14 -0.04 -1.03 -1.63 -1.38 -0.14

ivol_p6 0.56 -0.97 -0.80 -1.12 -1.19 0.56 1.47 2.11 0.19 0.93 -0.19 -1.87 -1.22 -0.23

ivol_p7 0.02 -0.94 -0.81 -1.28 -0.99 0.24 1.01 1.75 -0.88 0.11 -0.11 -1.85 -1.40 0.80

ivol_p8 0.43 -0.75 -0.66 -1.89 -0.74 0.25 1.48 0.63 0.22 0.76 -0.26 -1.48 -1.04 -0.05

ivol_p9 0.26 -0.30 -0.40 -1.92 -0.83 0.28 1.40 0.55 0.07 0.47 0.25 -1.37 -1.29 0.94

ivol_p10 0.24 -0.11 -0.21 -2.19 -1.49 -0.06 0.35 1.29 -0.27 0.31 0.77 -1.20 -1.88 -0.42

betaarb_p1 -0.02 -1.43 -1.26 -0.54 -0.59 -0.11 0.79 0.37 0.10 0.37 -1.03 -1.17 -0.70 -0.32

betaarb_p2 -0.05 -1.30 -1.06 -0.94 -0.83 -0.31 -0.12 2.17 -0.22 0.18 -0.86 -2.37 -1.26 0.15

betaarb_p3 0.11 -1.07 -0.95 -1.46 -0.72 0.30 1.97 2.54 0.05 0.48 -0.34 -2.04 -1.13 0.65

betaarb_p4 0.11 -0.94 -0.67 -2.10 -1.20 0.25 1.00 1.57 0.04 0.49 -1.03 -2.42 -1.59 -0.37

betaarb_p5 0.59 -0.43 -0.48 -1.40 -0.46 0.09 1.26 0.52 0.50 1.07 -0.61 -2.21 -1.22 0.24

betaarb_p6 0.55 -0.54 -0.50 -1.47 -0.56 1.36 2.78 0.99 -0.16 0.74 -0.44 -1.88 -1.35 -0.57

betaarb_p7 0.48 -0.07 -0.38 -1.62 -0.82 1.15 2.33 1.60 -0.83 0.37 0.19 -1.80 -2.18 -0.46

betaarb_p8 0.75 -0.31 -0.23 -1.22 -1.81 0.89 2.60 1.08 0.07 0.85 0.22 -1.39 -2.01 -2.05

betaarb_p9 0.18 -0.04 -0.39 -1.20 -1.11 1.68 2.92 0.80 -1.15 -0.15 0.11 -1.31 -1.70 -0.53

betaarb_p10 0.49 0.22 -0.10 -1.20 -1.94 -0.54 0.19 1.43 -0.98 0.43 0.85 -1.10 -2.68 -1.87

season_p1 -0.96 -0.54 -0.73 -0.45 -0.37 0.42 1.34 -0.03 -2.05 -0.72 -1.90 -1.81 -1.50 -0.98

season_p2 -0.30 -0.56 -0.96 -0.80 -0.67 0.73 1.48 0.19 -1.49 0.15 -0.79 -2.08 -2.06 -0.57

season_p3 -0.01 -0.55 -0.60 -1.03 -0.82 0.57 1.21 0.50 -0.55 0.46 -0.97 -2.20 -2.00 -0.29
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b.m tbl lty ntis infl ltr corpr svar Dpr Dy Epr Der Dfy gro_p

season_p4 -0.05 -0.65 -0.63 -0.98 -1.12 1.00 2.27 1.76 -0.64 0.27 -0.26 -1.42 -1.87 0.39

season_p5 -0.04 -0.50 -0.45 -1.10 -1.24 0.45 1.45 1.20 -0.92 0.12 -0.23 -1.63 -1.90 0.13

season_p6 0.61 -0.74 -0.66 -1.40 -1.43 0.19 1.28 0.94 0.41 1.10 0.88 -1.26 -1.22 0.64

season_p7 0.10 -1.04 -0.82 -1.92 -1.28 0.21 0.42 0.82 -0.03 0.36 -0.38 -1.75 -1.10 0.13

season_p8 0.33 -1.06 -0.96 -1.42 -1.12 0.14 1.06 1.01 0.36 0.85 -0.04 -1.01 -0.72 -0.12

season_p9 0.23 -2.31 -2.14 -1.82 -1.43 -0.13 0.48 1.70 0.41 0.55 0.29 -1.45 -0.69 0.52

season_p10 0.10 -2.15 -2.22 -1.06 -0.86 0.12 0.55 1.17 0.08 0.34 0.01 -1.08 -0.36 0.49

indrrev_p1 -0.32 -0.74 -0.83 -0.51 -0.48 -0.05 -0.26 0.52 -1.12 -0.55 -1.05 -1.79 -0.89 -0.26

indrrev_p2 -0.11 -1.22 -1.01 -1.07 -0.90 -0.06 -0.02 -0.88 -0.38 0.13 -1.02 -1.45 -0.61 -0.72

indrrev_p3 -0.14 -0.98 -0.99 -1.30 -0.60 -0.01 0.08 0.75 -0.50 0.02 -0.56 -1.72 -0.98 -0.26

indrrev_p4 0.37 -0.55 -0.73 -1.57 -0.76 0.31 1.14 2.83 -0.15 0.50 0.52 -1.80 -1.54 0.43

indrrev_p5 0.41 -1.16 -0.72 -1.94 -1.52 0.60 1.21 0.73 0.62 0.73 0.19 -1.25 -1.04 0.42

indrrev_p6 0.06 -0.73 -0.56 -1.86 -1.64 0.65 1.55 0.16 -0.15 0.54 -0.34 -1.41 -1.43 0.05

indrrev_p7 0.10 -0.32 -0.35 -1.36 -1.06 0.63 1.94 1.01 -0.46 0.20 -0.13 -1.32 -1.48 -0.33

indrrev_p8 0.43 -0.53 -0.28 -0.82 -1.24 0.06 1.46 2.18 -0.24 0.79 0.25 -1.21 -1.51 0.35

indrrev_p9 0.53 -0.56 -0.48 -0.67 -0.90 0.55 2.21 0.71 0.27 1.05 -0.58 -1.48 -1.23 -0.62

indrrev_p10 0.39 -0.66 -0.68 -0.28 -0.73 0.98 2.32 -0.44 -0.13 0.57 -0.68 -1.27 -0.67 -0.47

indrrevlv_p1 -0.10 -0.86 -0.74 -0.90 -0.86 0.03 0.46 1.38 -0.66 -0.09 -0.35 -1.40 -0.77 0.19

indrrevlv_p2 -0.26 -1.15 -0.83 -1.64 -0.85 -0.17 0.18 -1.26 -0.73 -0.34 -0.74 -1.72 -0.70 0.06

indrrevlv_p3 0.29 -0.63 -0.90 -1.90 -0.60 0.36 0.43 1.55 0.15 0.42 1.22 -1.41 -1.28 -0.08

indrrevlv_p4 -0.10 -0.29 -0.55 -1.78 -0.44 0.54 1.41 1.38 -1.25 -0.36 -0.36 -1.86 -1.72 0.05

indrrevlv_p5 0.18 -0.33 -0.43 -1.68 -1.14 0.19 1.02 2.45 -0.41 0.07 0.15 -1.36 -1.36 0.36

indrrevlv_p6 -0.03 -1.08 -0.68 -2.62 -2.94 0.66 1.70 0.83 0.58 0.76 0.13 -1.43 -1.30 0.40

indrrevlv_p7 0.50 -0.01 -0.12 -1.77 -0.75 0.46 1.05 1.08 0.14 0.70 0.69 -1.33 -1.35 0.67

indrrevlv_p8 0.43 0.53 0.39 -1.47 -1.18 0.04 1.47 0.65 -0.68 0.50 0.35 -1.21 -2.07 0.02

indrrevlv_p9 0.71 -0.29 -0.21 -1.19 -1.07 0.30 1.55 0.02 0.45 1.61 -0.30 -0.94 -0.78 -0.56

indrrevlv_p10 1.24 -0.07 0.19 -0.49 -1.14 0.35 3.01 2.11 0.77 1.62 0.17 -1.40 -1.53 -0.53

indmomrev_p1 -0.31 -0.83 -0.74 -0.85 -1.00 0.11 0.68 0.71 -0.86 -0.42 -0.66 -2.07 -1.13 -0.82

indmomrev_p2 0.04 -1.37 -0.95 -0.99 -1.37 0.13 0.73 -0.97 0.54 0.48 -0.46 -1.58 -0.45 -0.87

indmomrev_p3 0.11 -0.60 -0.63 -1.51 -0.69 0.23 0.60 -0.38 -0.02 0.18 -0.51 -1.20 -0.79 -0.80

indmomrev_p4 -0.06 -0.63 -0.73 -1.43 -1.10 1.05 3.09 0.59 -0.23 0.02 -0.50 -1.33 -1.25 -0.45

indmomrev_p5 0.26 -0.46 -0.30 -1.39 -1.75 0.70 1.59 1.00 -0.05 0.44 0.17 -1.52 -1.78 0.49

indmomrev_p6 0.14 -0.87 -0.58 -2.27 -1.19 0.01 1.01 2.10 -0.22 0.35 0.13 -1.36 -1.23 1.19

indmomrev_p7 -0.14 -0.04 -0.39 -1.88 -1.13 0.03 0.94 1.43 -1.21 -0.05 -0.46 -1.50 -2.24 -0.30

indmomrev_p8 0.30 0.08 -0.04 -1.89 -1.37 0.10 0.93 2.26 -0.50 0.49 0.69 -1.35 -1.99 0.86

indmomrev_p9 0.54 0.93 0.71 -2.27 -0.81 0.35 0.44 1.70 -0.66 0.78 0.51 -1.72 -1.69 1.19

indmomrev_p10 0.75 -0.09 0.17 -1.73 -0.75 0.42 2.23 0.46 -0.51 0.76 0.36 -1.22 -1.22 -0.11

ciss_p1 -0.32 -0.72 -0.74 -0.43 -0.55 0.49 1.70 0.62 -1.16 -0.10 -0.83 -1.38 -1.27 -0.60
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b.m tbl lty ntis infl ltr corpr svar Dpr Dy Epr Der Dfy gro_p

ciss_p2 0.06 -1.10 -0.91 -0.90 -0.80 0.43 0.83 1.46 -0.30 0.17 -0.48 -1.89 -1.46 -0.53

ciss_p3 -0.13 -0.76 -0.71 -0.59 -0.62 0.16 0.89 0.81 -0.95 -0.03 -0.50 -1.31 -1.05 -0.14

ciss_p4 -0.09 -0.67 -0.69 -0.70 -0.96 0.03 1.17 0.92 -0.63 0.14 -0.56 -1.34 -1.16 0.32

ciss_p5 -0.20 -0.73 -0.70 -1.28 -1.00 0.00 1.15 0.16 -0.84 -0.11 -0.71 -1.38 -0.85 -0.25

ciss_p6 -0.06 -0.63 -0.60 -1.03 -1.11 0.06 0.70 0.54 -0.81 0.00 -0.10 -1.69 -1.67 -0.33

ciss_p7 0.32 -0.94 -0.94 -1.78 -1.25 0.63 0.65 1.32 0.03 0.63 0.14 -1.75 -1.36 -0.13

ciss_p8 0.09 -0.63 -0.33 -2.24 -1.47 -0.01 -0.01 1.43 -0.17 0.36 -0.20 -2.06 -2.08 0.24

ciss_p9 0.38 -0.54 -0.44 -2.16 -1.54 0.19 0.95 0.02 -0.04 0.48 -0.33 -1.18 -1.20 0.00

ciss_p10 0.74 -1.41 -0.82 -1.83 -2.34 0.76 2.80 3.20 0.36 1.09 1.15 -1.15 -1.41 1.27

price_p1 -0.61 -0.55 -0.82 -0.37 -0.27 -0.08 0.58 -0.67 -1.02 -0.65 -1.18 -0.54 0.02 -0.70

price_p2 -0.32 -0.61 -0.68 -0.45 -0.57 0.60 0.96 -0.57 -0.67 -0.06 -1.52 -1.56 -0.60 -0.93

price_p3 -0.31 -0.65 -0.65 -0.47 -0.98 0.41 0.90 -0.53 -0.80 -0.16 -1.29 -1.58 -1.19 -1.38

price_p4 0.07 -0.64 -0.66 -0.69 -1.21 0.59 1.00 -0.23 -0.18 0.35 -0.87 -1.36 -1.00 -1.08

price_p5 0.25 -0.83 -0.74 -0.87 -1.33 0.61 0.44 -0.14 0.13 0.49 -0.53 -1.76 -1.38 -1.10

price_p6 0.54 -0.50 -0.50 -0.86 -1.03 0.42 1.17 0.40 0.12 0.77 -0.40 -1.37 -1.27 -0.82

price_p7 0.42 -0.76 -0.68 -1.35 -1.26 0.89 1.68 0.49 0.00 0.58 -0.15 -1.67 -1.23 -0.15

price_p8 0.65 -0.67 -0.51 -1.26 -1.17 0.36 0.94 1.51 0.44 0.96 0.27 -1.79 -1.93 -0.30

price_p9 0.18 -0.97 -0.76 -1.83 -0.96 0.85 2.20 1.09 -0.34 0.48 0.00 -1.53 -1.23 0.63

price_p10 0.08 -0.97 -0.74 -2.02 -0.98 -0.15 0.40 1.53 -0.43 0.19 0.63 -1.04 -1.04 1.12

shvol_p1 -0.38 -0.85 -0.83 -0.19 -0.50 0.19 0.77 0.05 -0.96 -0.36 -1.09 -0.88 -0.57 -0.50

shvol_p2 -0.23 -1.13 -1.05 -0.80 -0.67 0.11 0.78 0.95 -0.87 -0.13 -1.04 -1.41 -0.94 -0.23

shvol_p3 0.07 -0.80 -0.75 -1.10 -0.41 -0.06 0.56 1.68 -0.35 0.58 -0.92 -1.94 -1.17 0.70

shvol_p4 0.34 -1.00 -0.78 -1.09 -0.78 0.73 1.63 2.27 -0.16 0.38 0.42 -1.65 -1.14 0.74

shvol_p5 0.19 -0.69 -0.64 -1.08 -0.76 0.26 1.23 0.64 -0.46 0.38 -0.17 -1.45 -1.26 -0.03

shvol_p6 0.16 -0.48 -0.61 -1.75 -0.65 0.42 1.84 2.03 -0.62 0.33 0.05 -1.76 -1.47 0.46

shvol_p7 0.42 -0.58 -0.57 -2.38 -1.03 0.68 2.19 0.95 0.15 0.65 0.36 -1.40 -1.79 0.08

shvol_p8 0.19 -1.66 -1.08 -2.25 -1.89 0.04 1.07 0.54 0.32 0.50 0.34 -1.43 -0.73 0.61

shvol_p9 0.12 -0.73 -0.64 -1.44 -1.67 0.00 0.21 -0.04 -0.62 0.03 0.40 -1.20 -1.60 0.78

shvol_p10 0.37 -0.18 -0.09 -1.44 -2.42 -0.08 -0.02 1.45 0.16 0.78 -0.07 -1.80 -2.02 -0.90

C.2 Figures
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(a) Betaarb (b) Ivol

(c) Shvol (d) Mom12

Figure C.1: First four highest long minus short mean returns.

In these figures, we plot the time series of the deciles-based and benchmark strategies
returns. Deciles-based strategy: Go long the decile with the highest expected return
and go short the decile with the lowest expected return. Benchmark strategy: Go
long the first (last) decile and go short the last (first) decile based on which extreme
decile has the highest average return. See section 3.2.1 in the main text.

C.3 Additional figures
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(a) Betaarb (b) Ivol

(c) Shvol (d) Mom12

Figure C.2: Cumulative returns of the first four highest long minus short mean returns.

In these figures, we plot the cumulative returns’ time series of the deciles-based and
benchmark strategies returns. Deciles-based strategy: Go long the decile with the
highest expected return and go short the decile with the lowest expected return. Bench-
mark strategy: Go long the first (last) decile and go short the last (first) decile based
on which extreme decile has the highest average return. See section 3.2.1 in the main
text.
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Figure C.3: Long minus short returns of the strategies.

In these figures, we plot the time series of the deciles-based and benchmark strategies
returns. Deciles-based strategy: Go long the decile with the highest expected return
and go short the decile with the lowest expected return. Benchmark strategy: Go
long the first (last) decile and go short the last (first) decile based on which extreme
decile has the highest average return. See section 3.2.1 in the main text.

(a) Size (b) Value

(c) Prof (d) Valprof

(e) Nissa (f) Accruals
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Figure C.3 continued

(a) Growth (b) Aturnover

(c) Gmargins (d) Divp

(e) Divg (f) Dur

(g) Ep (h) Cfp
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Figure C.3 continued

(a) Noa (b) Inv

(c) Invcap (d) Igrowth

(e) Sgrowth (f) Lev

(g) Roaa (h) Roea
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Figure C.3 continued

(a) Sp (b) Gltnoa

(c) Mom (d) Indmom

(e) Valmom (f) Valmomprof

(g) Shortint (h) Momrev
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Figure C.3 continued

(a) Lrrev (b) Valuem

(c) Nissm (d) Sue

(e) Roe (f) Rome

(g) Roa (h) Strev
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Figure C.3 continued

(a) Season (b) Indrrev

(c) Indrrevlv (d) Indmomrev

(e) Ciss (f) Price
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Figure C.9: Cumulative returns of the long minus short returns.

In these figures, we plot the cumulative returns’ time series of the deciles-based and
benchmark strategies returns. Deciles-based strategy: Go long the decile with the
highest expected return and go short the decile with the lowest expected return. Bench-
mark strategy: Go long the first (last) decile and go short the last (first) decile based
on which extreme decile has the highest average return. See section 3.2.1 in the main
text.

(a) Size (b) Value

(c) Prof (d) Valprof

(e) Nissa (f) Accruals
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Figure C.9 continued

(a) Growth (b) Aturnover

(c) Gmargins (d) Divp

(e) Divg (f) Dur

(g) Ep (h) Cfp
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Figure C.9 continued

(a) Noa (b) Inv

(c) Invcap (d) Igrowth

(e) Sgrowth (f) Lev

(g) Roaa (h) Roea
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Figure C.9 continued

(a) Sp (b) Gltnoa

(c) Mom (d) Indmom

(e) Valmom (f) Valmomprof

(g) Shortint (h) Momrev
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Figure C.9 continued

(a) Lrrev (b) Valuem

(c) Nissm (d) Sue

(e) Roe (f) Rome

(g) Roa (h) Strev
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Figure C.9 continued

(a) Season (b) Indrrev

(c) Indrrevlv (d) Indmomrev

(e) Ciss (f) Price
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