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Résumé

Malgré des progrès remarquables dans une grande variété de sujets, les réseaux de neurones
éprouvent toujours des difficultés à exécuter certaines tâches simples pour lesquelles les humains
excellent. Comme indiqué dans des travaux récents, nous émettons l’hypothèse que l’écart qualitatif
entre l’apprentissage en profondeur actuel et l’intelligence humaine est le résultat de biais inductifs
essentiels manquants. En d’autres termes, en identifiant certains de ces biais inductifs essentiels,
nous améliorerons le transfert d’informations dans les réseaux artificiels, ainsi que certaines de leurs
limitations actuelles les plus importantes sur un grand ensemble de tâches. Les limites sur lesquelles
nous nous concentrerons dans cette thèse sont la généralisation systématique hors distribution et
la capacité d’apprendre sur des échelles de temps extrêmement longues. Dans le premier article,
nous nous concentrerons sur l’extension des réseaux de neurones récurrents (RNN) à contraintes
spectrales et proposerons une nouvelle structure de connectivité basée sur la décomposition de
Schur, en conservant les avantages de stabilité et la vitesse d’entraînement des RNN orthogonaux
tout en améliorant l’expressivité pour les calculs complexes à court terme par des dynamiques
transientes. Cela sert de première étape pour atténuer le problème du "exploding vanishing gradient"
(EVGP). Dans le deuxième article, nous nous concentrerons sur les RNN avec une mémoire externe
et un mécanisme d’auto-attention comme un moyen alternatif de résoudre le problème du EVGP.
Ici, la contribution principale sera une analyse formelle sur la stabilité asymptotique du gradient,
et nous identifierons la pertinence d’événements comme un ingrédient clé pour mettre à l’échelle
les systèmes d’attention. Nous exploitons ensuite ces résultats théoriques pour fournir un nouveau
mécanisme de dépistage de la pertinence, qui permet de concentrer l’auto-attention ainsi que
de la mettre à l’échelle, tout en maintenant une bonne propagation du gradient sur de longues
séquences. Enfin, dans le troisième article, nous distillons un ensemble minimal de biais inductifs
pour les tâches cognitives purement relationnelles et identifions que la séparation des informations
relationnelles des entrées sensorielles est un ingrédient inductif clé pour la généralisation OoD sur
des entrées invisibles. Nous discutons en outre des extensions aux relations non-vues ainsi que des
entrées avec des signaux parasites.

Mots clés: réseaux de neurones, apprentissage automatique, apprentissage de représentations
profondes, apprentissage de représentations, réseaux de neurones récurrents, généralisation hors
distribution, généralisation systématique, biais inductifs.
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Abstract

Despite remarkable advances in a wide variety of subjects, neural networks are still struggling
on simple tasks humans excel at. As outlined in recent work, we hypothesize that the qualitative
gap between current deep learning and human-level artificial intelligence is the result of missing
essential inductive biases. In other words, by identifying some of these key inductive biases, we will
improve information transfer in artificial networks, as well as improve on some of their current most
important limitations on a wide range of tasks. The limitations we will focus on in this thesis are
out-of-distribution systematic generalization and the ability to learn over extremely long-time scales.
In the First Article, we will focus on extending spectrally constrained Recurrent Neural Networks
(RNNs), and propose a novel connectivity structure based on the Schur decomposition, retaining
the stability advantages and training speed of orthogonal RNNs while enhancing expressivity for
short-term complex computations via transient dynamics. This serves as a first step in mitigating the
Exploding Vanishing Gradient Problem (EVGP). In the Second Article, we will focus on memory
augmented self-attention RNNs as an alternative way to tackling the Exploding Vanishing Gradient
Problem (EVGP). Here the main contribution will be a formal analysis on asymptotic gradient
stability, and we will identify event relevancy as a key ingredient to scale attention systems. We
then leverage these theoretical results to provide a novel relevancy screening mechanism, which
makes self-attention sparse and scalable, while maintaining good gradient propagation over long
sequences. Finally, in the Third Article, we distill a minimal set of inductive biases for purely
relational cognitive tasks, and identify that separating relational information from sensory input is a
key inductive ingredient for OoD generalization on unseen inputs. We further discuss extensions to
unseen relations as well as settings with spurious features.

Keywords: neural networks, machine learning, deep learning, representation learning, recurrent
neural networks, out-of-distribution generalization, systematic generalization, inductive biases.
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t zt by the asymmetric (W1 · zt)⊤(W2 · zt),

whenever self-attention is performed. Similarly, the prefix "symmetric" stands for replacing

the ’asymmetric’ dot-product (Q · zt)⊤(K · zt) by the symmetric (Q · zt)⊤(Q · zt) counterpart,

whenever self-attention is performed. However in our analysis in the main text for symmetric vs

asymmetric, we did not include symmetric Transformer and Transformer, since they are not built

upon the same inductive bias. The test result accuracies are averaged over 10 random seeds. . . 176

10 Full detailed test accuracy results on the harder relational tasks with unseen relations, across

the full range of values for m (the number of heldout shapes during training, displayed on the

x-axis). There are total of n = 100 shapes, hence 100−m of those are shown during training,

and the test set consists only of the other m shapes. The case m = 98 corresponds to the most

extreme OoD case for same/different 6, and m = 94 for the other three tasks. The case m = 0
corresponds to the in-distribution case, where the same 100 shapes are shown at testing and

training. The test result accuracies are averaged over 10 random seeds. . . . . . . . . . . . . . . . . . . . 177

11 Full random encoder plots. Full detailed test accuracy results on the harder relational tasks with

unseen relations, across the full range of values for m (the number of heldout shapes during

training, displayed on the x-axis). There are total of n = 100 shapes, hence 100−m of those

are shown during training, and the test set consists only of the other m shapes. The case m = 98
corresponds to the most extreme OoD case for same/different 6, and m = 94 for the other three

tasks. The case m = 0 corresponds to the in-distribution case, where the same 100 shapes are

shown at testing and training. Here the prefix "random encoder" stands for randomly initializing

the encoder but not updating it via backpropagation during training. The test result accuracies are

averaged over 10 random seeds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

12 Comparison relational only vs relational + sensory input models, all models are run on 10 seeds

for each task. Left. Average OOD test performance across the three enhanced cognitive relational

tasks same/diff6 (m = 98), RMTS3 (m = 94), identity rules 4 (m = 94). Right. Average OOD

test performance across the three enhanced cognitive relational tasks ’same’, ’between’, ’occurs’,

’xoccurs’, ’left-of’, ’row matching’, ’col./shape’. For the tasks involving stripes and hexominoes

for OOD testing, both test performances were considered and the mean was computed, otherwise

only hexominoes performance was considered. The average OOD test was taken across all tasks.179

13 Additional baselines are being shown, such as MNM, NTM, LSTM and RN. Results are showing

OoD test accuracy averaged across 10 seeds for each task. We took the most extreme OOD cases

such as m = 98 for same/diff and same/diff6, m = 95 for RMTS, identity rules and dist3, and

22



m = 94 for identity rules 4, identity rules 4 missing, RMTS3. . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
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List of acronyms and abbreviations

AI Artificial Intelligence
ML Machine Learning
RL Reinforcement Learning
SM Supplemental Material
SGD Stocastic Gradient Descent
OoD out-of-distribution
GPU Graphics Processing Unit
NLP Natural Language Processing
MLP Multilayer Perceptron
MHA Multi-Head Attention
e.g. exempli gratia [for instance]
i.e. id est [that is]
PTB Penn Tree Bank Corpus task (as defined in Marcus et al. (1993))
BPC Bit per Character
sMNIST sequential MNIST task
pMNIST, psMNIST permuted sequential MNIST task (as defined in Le et al. (2015))
LSTM Long Short-Term Memory network (as defined in Hochreiter and Schmidhuber (1997))
RNN Recurrent Neural Network
expRNN architecture introduced in Lezcano-Casado and Martínez-Rubio (2019)
GRU Gated Recurrent Unit (as defined in Cho et al. (2014b))
GORU Gated Orthogonal Recurrent Unit (as defined in Jing et al. (2019))
EVGP Exploding Vanishing Gradient Problem
FMC Fisher Memory Curve
SAB Sparse Attentive Backtracking (as defined in Ke et al. (2018))
ESBN Emergent Symbol Binding Network (as defined in Webb et al. (2021))
TCN Temporal context normalization (as defined in Webb et al. (2020))
Predi-Net architecture introduced in Shanahan et al. (2019)
RN Relation Net (as defined in Santoro et al. (2017))
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Chapter 1

Introduction

In recent years, neural networks have produced some remarkable advances in a wide variety of
subjects such as computer vision, natural language processing as well as computational biology.
Besides the ongoing efforts to improve model architectures, these advances are due to the increasing
amount of available data and substantial computational resources (Sejnowski, 2018).

Meanwhile, there is a substantial qualitative gap between current deep learning and human
cognitive abilities. This includes: out-of-distribution systematic generalization, transfer learning
with low sample complexity, ability to reason over extremely long time-scales, and the ability to
discover a hierarchy of robust representations that can be flexibly recombined and repurposed in a
variety of tasks. Building on the hypothesis that human intelligence is the result of a few principles
or key inductive biases (Goyal and Bengio, 2020), we argue that studying the inductive biases
humans use, as well as the inductive biases providing substantial improvement on the mentioned
limitations, will bring us a step closer human level AI.

Intuitively, inductive biases are a set of preferences for the learning algorithm to prioritize
solutions with certain properties over others. Common examples are for instance: the use of
convolutions to prioritize solutions with space equivariance, or the use of recurrence to prioritize
solutions with equivariance over time. More generally, we would like to prioritize solutions that
generalize well on the kind of data that is relevant to the human perspective on the world around
us. This is motivated by the no-free-lunch theorem (Wolpert and Macready, 1995; Baxter, 2000),
stating that there is no completely general-purpose learning algorithm generalizing better on all
distributions, and that some inductive biases or preferences over the set of all functions is necessary
for generalization.

1.1. Contributions
In this thesis we will look more closely at (1) specific sequential tasks that require learning

over extremely long time scales and (2) special cases for out-of-distribution generalization, where
current traditional deep learning methods fail. We will then propose and study a set of inductive



biases to circumvent these limitations enhancing information propagation. Here, we will look at
information propagation from multiple angles: for (1), we will look at information propagation
by examining gradient stability/propagation, while for (2), we will consider out-of-distribution
generalization in various purely relational tasks as a way to measure how well relational information
between sensory input is being encoded and propagated. The goal of this thesis is then to study
a new set of inductive biases and their implications on information propagation in settings (1) and (2).

In order to tackle (1), we will look at recurrent neural networks as it is an important and
extremely popular family of neural network models designed to process sequential data of variable
length. One of the main challenges in training recurrent neural networks on longer input sequences
is the so-called exploding and vanishing gradient problem (EVGP), which makes it difficult to
capture long-term dependencies. More specifically, we will see in subsection §2.2.3 that one cannot
robustly store bits of information in an RNN’s hidden states such that small perturbations in the
input do not affect the asymptotic behaviour of the hidden state trajectory in the state space, without
having to face the vanishing gradient problem. One of the first proposed strategies to mitigating
this problem has been to design new RNN architecture with additional gates such as the LSTM or
GRU (Hochreiter and Schmidhuber, 1997; Cho et al., 2014a), while later approaches have explored
spectrally constraining the connectivity matrix in vanilla RNNs either at initialization (Le et al.,
2015; Henaff et al., 2016) or throughout the entire training period (Arjovsky et al., 2016; Wisdom
et al., 2016; Hyland and Rätsch, 2017; Mhammedi et al., 2017; Jing et al., 2017; Vorontsov et al.,
2017; Lezcano-Casado and Martínez-Rubio, 2019). Finally there is substantial empirical evidence
that the use of attention systems in memory augmented recurrent neural networks can help to
bypass this problem (Vaswani et al., 2017; Ke et al., 2018; Graves et al., 2014), but it comes at the
expense of increased computational complexity.

In this thesis, we will first focus on spectrally constrained approaches throughout the entire train-
ing period. We are proposing an extension of orthogonal RNNs offering flexible trade-off between
long-term memorization and short complex computation. More specifically, we are leveraging the
Schur decomposition of the connectivity matrix to increase the expressivity of orthogonal RNNs by
including a non-normal connectivity structure (and hence allowing eigenbases to be non-orthogonal)
while retaining control of the eigenvalues’ norms. We will see that these non-normal dynamics
allow for transient expansion and compression, affording additional expressivity to better encode
complex inputs while retaining control of gradient propagation. This will be the topic of the
First Article entitled "Non-normal Recurrent Neural Network (nnRNN): learning long time
dependencies while improving expressivity with transient dynamics" (Kerg et al., 2019), in Chapter 3.

Further, we will look at self-attention systems, and provide a formal analysis of gradient
propagation for a whole family of memory augmented recurrent neural networks. We derive key
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quantities governing gradient propagation and leverage those findings to propose a novel relevancy
screening mechanism offering a trade-off between computational complexity and good long-term
gradient propagation. More specifically, we will identify "event relevancy" as a key concept to
efficiently scale attention systems to very long sequences. We will experimentally compare our
relevancy screening mechanism with other memory augmented networks, various orthogonal RNNs
as well as gated architectures. This will be the topic of the Second Article entitled "Untangling
trade-offs between recurrence and self-attention in neural networks" (Kerg et al., 2020), in Chapter 4.

In order to tackle (2), we are departing from purely looking at gradient propagation as an indica-
tion for information propagation. We will now be concerned by "associative information" capturing
the relational information between sensory input, and we use out-of-distribution generalization in
various purely relational tasks as a way to measure information propagation. Our goal is to distill a
minimal set of inductive biases sufficient to solve these purely tasks. Among others, we identify the
separation of relational information from the sensory input to be an essential inductive bias for OoD
generalization on unseen inputs. Leveraging our findings, we are proposing a novel architecture
merely based on relational information, and compare its performance with other existing methods
on tasks testing for OoD generalization not only involving unseen inputs but also unseen relations.
We will then look at limitations and possible extensions for the more challenging cases involving
spurious features. This will be the topic of the Third Article entitled "On Neural Architecture
Inductive Biases for Relational Tasks" (Kerg et al., 2022), in Chapter 5.

1.2. List of Excluded Contributions
During my PhD, I made several other contributions, not included in this thesis, on various

machine learning topics such as Computational Neuroscience, Optimization and Meta-Learning.
• Computational Neuroscience:

– Goal-driven optimization of single-neuron properties in artificial networks reveals
regularization role of neural diversity and adaptation. V. Geadah, S. Horoi, G. Kerg,
G. Wolf, G. Lajoie. Under review. (Geadah et al., 2022a)

– Top-down optimization recovers biological coding principles of single-neuron adap-
tation in RNNs. V. Geadah, G. Kerg, S. Horoi, G. Wolf, G. Lajoie. Accepted at
Computational and Systems Neuroscience (COSYNE), 2022. (Geadah et al., 2022b)

– Network-level computational advantages of single-neuron adaptation. V. Geadah, G.
Lajoie, G. Kerg, S. Horoi and G. Wolf. Accepted at Computational and Systems
Neuroscience (COSYNE), 2021. (Geadah et al., 2021)

– Advantages of biologically-inspired adaptive neural activation in RNNs during learn-
ing. V. Geadah, G. Kerg, S. Horoi, G. Wolf and G. Lajoie (Geadah et al., 2020)

• Optimization:
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– Catastrophic Fisher Explosion: Early Phase Fisher Matrix Impacts Generalization. S.
Jastrzebski, D. Arpit, O. Astrand, G. Kerg, H. Wang, C. Xiong, R. Socher, K. Cho
and K. Geras. Accepted at the Thirty-eighth International Conference on Machine
Learning (IMCL), 2021. (Jastrzebski et al., 2021)

– h-detach: Modifying the LSTM gradient towards better optimization. B. Kanuparthi*,
D. Arpit*, G. Kerg, R. Ke, I. Mitliagkas and Y. Bengio. Accepted at the Seventh
International Conference on Learning Representations (ICLR), 2019. (Kanuparthi
et al., 2019), *indicates first authors.

• Meta-Learning:
– Continuous-Time Meta-Learning with Forward Mode Differentiation. T. Deleu, D.

Kanaa, L. Feng, G. Kerg, Y. Bengio, G. Lajoie, P.-L. Bacon. Accepted at the Tenth
International Conference on Learning Representations (ICLR), 2022. (Deleu et al.,
2022)

Before presenting the main articles, we will go over relevant background in Chapter 2: we will
first cover the basics of neural networks and gradient-based learning in Section 2.1, which we will
then use to further expand on recurrent neural networks and their gradient stability issues in Section
2.2. We will then give a brief introduction to the Schur decomposition and normal matrices in
Section 2.3, as well as a short literature review for unitary RNNs in Section 2.4. An introduction to
Fisher information in Section 2.5 will serve as a pre-requisite to study the short-term memory trace
in linear RNNs in Section 2.6. This will be a useful background for the First Article in Chapter
3 as well as the Second Article in Chapter 4. Finally, we will cover the basics of self-attention
and multi-head attention in Section 2.7, which will serve as background for the Second Article in
Chapter 4 and the Third Article in Chapter 5.
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Chapter 2

Background

2.1. Introduction to neural networks
2.1.1. Artificial neurons

An artificial neuron is a data processing system, biologically inspired by the neurons of the
human brain, which attempts to approximate a function f mapping d input scalars to a single output
scalar.

More formally, consider d input scalars {x1,x2, . . . ,xd}, then an artificial neuron h(x) is defined
by:

h(x) = ϕ

(
d∑

i=1
wixi + b

)
where wi ∈ R are the weights, b ∈ R the bias, and ϕ is a non-linear function called the activation

function.
The term

∑d
i=1 wixi + b can be more compactly rewritten as wT · x + b and is referred to as the

pre-activation.

Popular choices for the activation function ϕ are:
• the sigmoid activation function,

σ : R→]0,1[: x 7→ 1
1 + e−x

which is often interpreted as a probability of activation.
• the tanh or hyperbolic tangent activation function,

tanh : R→]− 1,1[: x 7→ ex − e−x

ex + e−x
= e2x − 1
e2x + 1



• the Rectified Linear Unit (ReLU) activation function,

ReLU : R→ R+ : x 7→ max(0,x) = x · 1x≥0 =

0 x < 0,
x x ≥ 0.

One sometimes uses a variant called leaky ReLU defined via a small positive quantity ϵ > 0
called the leak,

leaky ReLU : R→ R : x 7→ max(0,x) + min(0,ϵx) =

ϵx x < 0,
x x ≥ 0.

Fig. 1. Graphs of the most popular activation functions

How the set of parameters θ = {w1,w2, . . . , wd, b} is trained as to approximate f is being
discussed in 2.1.3

2.1.2. Deep feedforward networks

Deep feedforward networks, or feedforward neural networks, or multilayer perceptrons
(MLPs) is a data processing system, composed of artificial neurons organized in a layer-wise
structure as to approximate a function mapping d inputs to a single output.
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More formally, let us assume we have L layers, and in each layer l = 1, . . . , L, we have nl

artificial neurons, indexed j = 1, . . . , nl, defined by

h
(l)
j (x) = ϕl

(
(w(l)

j )Tx+ b
(l)
j

)
where ϕl is the activation function of layer l and (w(l)

j , b
(l)
j ) are the weights and biases respectively.

Note that x needs to be of dimension nl−1, the number of neurons of the previous layer l − 1.

We can write the previous equation more succinctly, by defining the matrix W(l) to be composed
of the row vectors (w(l)

j )T , the column vector b(l) to be composed of the biases b(l)
j and the column

vector h(l)(x) to be composed of the outputs h(l)
j (x), as follows

h(l)(x) = ϕl

(
W(l)x+ b(l)

)
where ϕl is applied element-wise, h(l) : Rnl−1 → Rnl , W(l) ∈ Rnl×nl−1 , b(l) ∈ Rnl , n0 = d the
number of inputs, and nL = 1. Then we can define the deep feed-forward network as

F (x) = (h(L) ◦ h(L−1) ◦ . . . ◦ h(2) ◦ h(1))(x)

where the layers l = 1, . . . , L− 1 are called the hidden layers, l = 0 the input layer, and l = L the
output layer.

The universal approximation theorem (Hornik et al., 1989) states that a feedforward network
with one hidden layer can uniformly approximate any continuous function on compact sets of Rn

to any desired degree of accuracy, given enough neurons in the hidden layer. The theorem does
not provide any practical steps to find the weights and biases, but at least it gives us a guarantee
that feedforward networks can express most functions that we wish to express or approximate for
practical purposes. The drawback, however, is that the hidden layer might need to be too large to be
useful and potentially fail to learn and generalize correctly. The challenges faced when attempting
to find the appropriate weights and biases will be discussed in 2.1.3

2.1.3. Training neural networks

The process of continuously adapting the weights and biases of a feedforward network as to
optimize a given performance measure P is called training.

Given a data setD = {(x(1),y1), (x(2),y2), . . . ,(x(n),yn)}, we usually partitionD = Dtrain∪Dtest

into a training set Dtrain and test set Dtest, where during training the model only uses Dtrain to adapt
weights an biases. Ideally, we would like our performance measure P to be solely defined on the
test set Dtest, but this is intractable and hence we can only optimize P indirectly.

More formally, let
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• θ be the set of parameters (i.e. the set of weights and biases)
• pdata the underlying data-generating distribution of D,
• L : R× R→ R the per-example loss function,
• f(x; θ) the predicted output when the input is x, and
• y the target output.

We would then like to minimize the objective function, also called risk,

J∗(θ) = E(x,y)∼pdataL(f(x; θ),y)

However we don’t have access to pdata directly, but only to the empirical distribution p̂data via the
training set Dtrain. We could therefore attempt to minimize the empirical risk

Ĵ(θ) = E(x,y)∼p̂dataL(f(x; θ),y) = 1
|Dtrain|

∑
(x(i),yi)∈Dtrain

L(f(x(i); θ),yi)

This procedure is called empirical risk minimization, and we hope that by reducing the empirical
risk, we would reduce the risk as well. Unluckily, this approach might not work either as we
are prone to overfitting: as we have seen with the universal approximation theorem, feedforward
networks can potentially have very large capacity and thus might risk to simply memorize the
dataset, in which case the empirical risk would be small but the actual risk would be high.

Instead, we take out a validation set Dval from the training set Dtrain, leaving us with a remaining
training set D′

train = Dtrain \Dval, we then minimize the empirical risk on D′
train while keeping track

of the empirical risk or some other chosen performance measure on the held-out validation set Dval.
We then choose to stop the empirical risk minimization procedure on D′

train, when the empirical
risk on Dval (or some other chosen performance measure) starts to go up. This procedure is a
regularization technique called early stopping.

2.1.4. Gradient-based learning

The empirical risk minimization on D′
train is usually done with a gradient based-optimization

procedure such as as Gradient Descent or one of its variants. Gradient Descent is an iterative
procedure that takes small steps in the steepest descent direction attempting to find a local minimum,
following the update rule:

θt+1 ← θt − η∇Ĵ(θt)

where η is called the learning rate, which can amplify or reduce the step size. Note that the
algorithm stops whenever we are at a critical point θ∗ (i.e. ∇Ĵ(θ∗) = 0), or slows down whenever
we are close to a critical point. Critical points are not necessarily local minima (or maxima), but can
also be saddle points. Regions around saddle points are often hard to escape and are an active area
of research in deep learning optimization.
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In practice, we typically use Stochastic Gradient Descent (SGD) rather than plain Gradient
Descent (also called ’batch Gradient Descent’, implying that we use the full training set), where
instead of calculating Ĵ(θ) over the entire data set D′

train, we use an approximation ĴS(θ) calculated
via a small randomly selected subset S of D′

train at each iteration. Since the small subset S is
randomly selected, we have

ES∇θĴS(θ) = ∇θĴ(θ)

and VarS ĴS(θ) is a decreasing function in |S|.

In fact one can prove that the standard error SE((∇θĴS(θ))i) = σi√
n

, where σi is the standard
deviation of (∇θL(f(x,θ),y))i across S , and n = |S|. Thus we can see that we have less than linear
returns to using more examples to estimate the gradient, while the computational costs grow linearly.

Also, there might potentially be a lot of redundancies in the training set, either identical copies
or examples having negligible influence on the final gradient.

Further, small batches can offer a regularizing effect (Wilson and Martinez, 2003): the smaller
the batch, the more noise we add to the gradient, and the stronger the regularization becomes.

Finally, in order to efficiently calculate gradients we would like the per-example loss function to
be differentiable.

Commonly chosen per-example loss functions are:
• the L2-loss defined by L(x,y) = (x− y)2, mostly used in regression tasks.
• the cross-entropy loss defined by L(x,y) = CE(x,y) = −x log y, mostly used in classifica-

tion tasks.

2.1.5. Back-propagation algorithm

The Back-propagation algorithm is an iterative algorithm that efficiently computes gradients
of the empirical risk. In the case of deep feedforward networks, the algorithm recursively applies
the chain rule from layer to layer in order to compute the gradient in such a way as to avoid the
exponential explosion of repeated subexpressions.

At each iteration, the algorithm contains one forward pass and one backward pass.
In the forward pass, it computes the pre-activations and activations, layer by layer starting from

the input layer all the way to the output layer, and finally computing the empirical risk.
In the backward pass, it computes the error on the activations and pre-activations starting from

the output layer all the way to the input layer.
Now we will derive two lemmas that are useful for the calculation of gradients in deep feedfor-

ward networks:
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Lemma 2.1.1. Let L be a real valued loss function, that depends on some vector v = f(w), where
f : Rm → Rn. Then

∇wL = JT
f · ∇vL

where Jf is the Jacobian matrix of f .

PROOF. For each i ∈ {1,2, . . . ,m}, we have

∂L

∂wi

=
∑

j

∂vj

∂wi

∂L

∂vj

=
∑

j

(
JT

f

)
ij
· ∂L
∂vj

In matrix form this rewrites as,

∇wL = JT
f · ∇vL

□

Lemma 2.1.2. Let L be a real valued loss function, that depends on some vector v = Aw + b,
where A ∈ Rn×m, v,b ∈ Rn and w ∈ Rm . Then

∇AL = ∇vL · wT

and
∇bL = ∇vL

PROOF. For each pair (i,j) ∈ {1,2, . . . , n} × {1,2, . . . ,m}, only vi is a function of Aij , and thus

∂L

∂Aij

= ∂vi

∂Aij

· ∂L
∂vi

= wj ·
∂L

∂vi

Thus we see that∇AL is the exterior product between∇vL and w, and thus

∇AL = ∇vL⊗ w = ∇vL · wT

Finally, it is trivial that for each i ∈ {1,2, . . . ,n}, we have

∂L

∂bi

= ∂L

∂vi

and thus

∇bL = ∇vL

□
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As in §2.1.2, let us rewrite a deep feedforward network as

F (x,θ) = (h(L) ◦ h(L−1) ◦ . . . ◦ h(1))(x)

and define f (l)(x) = (h(l) ◦ h(l−1) ◦ . . . ◦ h(1))(x) and a(l)(x) = W (l)f (l−1)(x) + b(l) for each
l = 1, . . . ,L.

Then using Lemma 2.1.1 repeatedly, we get

∇f (l)L = JT
h(l+1) · ∇f (l+1)L (2.1.1)

= JT
h(l+1) · . . . · JT

h(L) · ∇f (L)L (2.1.2)

=
 L∏

k=l+1
JT

h(k)

 · ∇FL (2.1.3)

Using Lemma 2.1.1 again, we get

∇a(l)L = JT
ϕl
· ∇f (l)L (2.1.4)

= diag(ϕ′
l(a(l))) · ∇f (l)L (2.1.5)

= diag(ϕ′
l(a(l))) ·

 L∏
k=l+1

JT
h(k)

 · ∇FL (2.1.6)

Then using Lemma 2.1.2, we get

∇W (l)L = ∇a(l)L · f (l−1)(x)T (2.1.7)

= diag(ϕ′
l(a(l))) ·

 L∏
k=l+1

JT
h(k)

 · ∇FL · f (l−1)(x)T (2.1.8)

and

∇b(l)L = ∇a(l)L (2.1.9)

= diag(ϕ′
l(a(l))) ·

 L∏
k=l+1

JT
h(k)

 · ∇FL (2.1.10)

Note that the key quantity
(∏L

k=l+1 J
T
h(k)

)
· ∇FL can be efficiently computed from left to right (i.e.

starting with ∇FL and left-multiplying with the Jacobian matrices) as opposed to from right to
left. Once∇f (l+1)L has been computed we store it and compute∇f (l)L by left-multiplying with the
Jacobian JT

h(l+1) .
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2.2. Recurrent neural networks
2.2.1. Definition

Recurrent neural networks (or RNNs in short), introduced by Rumelhart et al. (1986), are a type
of neural networks designed to process (varying length) sequential input data, outputting either
a scalar or an output sequence. RNNs exploit the topology of sequential data via the so-called
parameter sharing idea: the same parameters are used across different time steps making it possible
to generalize to sequence lengths not seen during training.

Let us take an example of a recurrent network that maps an input sequence to an output sequence
of the same length. More, formally let x1,x2, . . . , xτ with xi ∈ Rn be an input sequence , and
y1,y2, . . . , yτ with yi ∈ Rk the target output sequence, then at each time step from t = 1 to t = τ ,
we apply the equations:

ht = ϕ(Uxt + V ht−1 + b︸ ︷︷ ︸
at

) (2.2.1)

ot = Wht + c (2.2.2)

ŷt = softmax(ot) (2.2.3)

where h0 is a specified initial state, ht ∈ Rm, V ∈ Rm×m, U ∈ Rm×n, W ∈ Rm×k, b ∈ Rm, c ∈ Rk

and ϕ is an activation function R→ R inducing a function Rm → Rm via element-wise application.
We refer to ot as the output, ht the hidden state, ŷt the predicted output and xt the input at time t
respectively.

Let us recall that softmax is a function Rk → Rk : (z1,z2, . . . ,zk) 7→ g(z), where for j =
1,2, . . . ,k, we have

g(z)j = ezj∑k
i=1 e

zi

This can be seen as smoothed argmax function, where the maximum of (z1,...,zk) is replaced by a
value close to 1, and all the other values are being pushed close to 0. Since the sum of output vector
sums to 1, we can view it as a vector of probabilities over the output. Also note that for k = 2 this
boils down to using the sigmoid function.
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We typically take the cross-entropy loss between yt and ŷt for each time step t, i.e. our total loss
L writes as L = ∑

t Lt, where

Lt = CE(yt, ŷt) (2.2.4)

= −
∑

i

(yt)i · log((ŷt)i) (2.2.5)

= −
∑

i

(yt)i · log(softmax(ot)i) (2.2.6)

= log
(
e(ot)1 + . . .+ e(ot)n

)
−
∑

i

(yt)i(ot)i (2.2.7)

2.2.2. Gradient computation in recurrent neural networks

Now let us think how we would compute the gradient of this loss function with respect to the
parameters (i.e. weights and biases) of the recurrent network. The gradient computation needs to
perform a forward pass moving from t = 1 to t = τ , followed by a backward pass from t = τ to
t = 1, which is a runtime complexity of O(τ). Note that we cannot speed up the computation via
parallelization since in the forward pass the state at each time step needs to be computed after the
other, and needs to be stored until being used during the backward pass, thus the memory cost being
O(τ). This back-propagation algorithm is called back-propagation through time (BPTT).

Let us remark that there is a way to achieve parallelization of computation of the gradient in
recurrent networks by omitting hidden-to-hidden recurrent connections, and having connections
from the output of one time step to the hidden state of the next time step instead. These models can
be trained with what is called teacher forcing, but are less powerful because the output units need to
capture all the information about the past, which is unlikely to happen unless the user finds a way to
engrain the full state information of the system into the target output. For more information see
Goodfellow et al. (2016).

Let V (t), U (t),W (t) be the matrices V,U,W multiplying ht−1, xt, ht respectively, and let b(t), c(t)

be the vectors b,c in at, ot respectively.

By first applying Lemma 2.1.2 and then Lemma 2.1.1, we get:

• ∇VL =
∑

t

∇V (t)L =
∑

t

∇atL · hT
t−1 =

∑
t

diag(ϕ′(at)) · ∇htL · hT
t−1

• ∇UL =
∑

t

∇U(t)L =
∑

t

∇atL · xT
t =

∑
t

diag(ϕ′(at)) · ∇htL · xT
t

• ∇WL =
∑

t

∇W (t)L =
∑

t

∇otL · hT
t

• ∇bL =
∑

t

∇b(t)L =
∑

t

∇atL =
∑

t

diag(ϕ′(at)) · ∇htL
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• ∇cL =
∑

t

∇c(t)L =
∑

t

∇otL

We are thus left with two key terms: ∇otL and ∇htL

For∇otL : Let us recall from equation 2.2.7 that our total loss L writes as L = ∑
t Lt, where

Lt = log
(
e(ot)1 + . . .+ e(ot)n

)
−
∑

i

(yt)i(ot)i

thus
(∇otL)j = (∇otLt)j = ∂Lt

∂(ot)j

= softmax(ot)j − (yt)j = (ŷt)j − (yt)j

or equivalently in vector form,
∇otL = ŷt − yt

For∇htL : let us distinguish between the cases t = τ and t < τ , where τ is the last time step.
• If t = τ , we use Lemma 2.1.1 to get

∇hτL =
(
∂oτ

∂hτ

)T

· ∇oτL = W T · ∇oτL

• If t < τ , we notice that the loss L is impacted by ht through ot and ht+1, thus

∇htL =
(
∂ot

∂ht

)T

· ∇otL+
(
∂ht+1

∂ht

)T

· ∇ht+1L = W T · ∇otL+ JT
t+1 · ∇ht+1L

where
Jt+1 = ∂ht+1

∂ht

= ∂ht+1

∂at+1

∂at+1

∂ht

= diag(ϕ′(at+1))︸ ︷︷ ︸
=:Dt+1

·V

Unrolling the recursive expression until timestep τ , we get

∇htL = W T · ∇otL+ . . .+ JT
t+1 · . . . · JT

τ ·W T · ∇oτL (2.2.8)

=
τ∑

l=t

(
l∏

s=t+1
JT

s

)
·W T · ∇ol

L (2.2.9)

=
τ∑

l=t

(
l∏

s=t+1
JT

s

)
·W T · (ŷl − yl) (2.2.10)

2.2.3. Exploding vanishing gradient problem (EVGP)

Note that in the terms ∇UL, ∇VL and ∇bL, we can spot the term ∇htL, which contains the
products

l∏
s=t+1

JT
s =

l∏
s=t+1

(V T ·DT
s )

for l = t, . . . ,τ .

If for one moment, we would imagine to be in the case of a linear recurrent neural network,
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where Ds = Id, and we would assume the connectivity matrix V to admit an eigendecomposition
of the form

V = QΛQT

then for l ≥ t+ 1, we would get
l∏

s=t+1
JT

s = QΛl−tQT

where the (l − t)-th power of the eigenvalues less than one would decay to zero, and (l − t)-th
power of the eigenvalues greater than one would explode, if (l − t) is sufficiently large.

Thus, unless the eigenvalues of V are all on the complex unit circle, the product
∏l

s=t+1 J
T
s

either explodes or vanishes given enough time steps (l − t). This problem is called the exploding
and vanishing gradient problem (EVGP) and was independently discovered by Bengio et al. (1993),
Bengio et al. (1994) and Hochreiter (1991).

In fact, the results in Bengio et al. (1993) and Bengio et al. (1994) show that in order to for the
hidden state to store bits of information in a way that is resistant to noise (i.e. small perturbation in
the input do not affect the asymptotic behaviour of the hidden state trajectory in the state space),
we need to have the spectral radii of the Jacobian matrices Js to be smaller than one, leading to
gradient vanishing. In other words we cannot robustly store information for an extended period of
time in an RNN, without having to face the vanishing gradient problem.

One way to mitigate the vanishing gradient problem is to use "gated recurrent neural networks",
most popular of which are long-short term memory (LSTM) networks (Hochreiter and Schmidhuber,
1997), and gated recurrent unit (GRU) networks (Cho et al., 2014a). Gates are additional paths
through time that have been added such that the gradient can flow for longer durations, without
vanishing or exploding as quickly as in the vanilla RNN case.

Another way has been to control the spectrum of the connectivity matrix, either at initialization
or during the entire training period (Le et al., 2015; Henaff et al., 2016; Arjovsky et al., 2016;
Wisdom et al., 2016; Lezcano-Casado and Martínez-Rubio, 2019). For a more detailed overview
see Subsection 2.4 and for a very detailed discussion see Appendix §D.4.

2.3. Schur decomposition
In this subsection, we are going to present the Schur decomposition, which is a matrix decom-

position we will make use of later on in chapter 3, in order to control the eigenspectrum and the
non-normality of the eigenbasis of the RNN connectivity matrix.
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Theorem. Let A ∈ Cn×n, then there exists a unitary matrix P and an upper-triangular matrix U
(called the Schur form of A) such that

A = PUP ∗

where P ∗ is the conjugate transpose of P . This decomposition is called the Schur decomposition.

Note that the diagonal elements of U are the eigenvalues of A. In fact,

det{(A− λId)} = det{(PUP ∗ − λPP ∗)}

= det{[P (U − λId)P ∗]}

= det{P} · det{(U − λId)} · det{P ∗}

= det{(U − λId)}

2.3.1. Normal matrices

Definition. A matrix A ∈ Cn×n is normal if A∗A = AA∗, where A∗ is the conjugate transpose
of A.

(Note that all unitary matrices are normal matrices.)
Lemma 2.3.1. A ∈ Cn×n is normal if and only if its Schur form is normal.

PROOF. Consider the Schur decomposition A = PUP ∗, where U is the Schur form of A. Then,

A∗A = (PU∗P ∗)(PUP ∗) = PU∗UP ∗

AA∗ = (PUP ∗)(PU∗P ∗) = PUU∗P ∗

And finally,

A∗A = AA∗ ⇔ PU∗UP ∗ = PUU∗P ∗

⇔ U∗U = UU∗

⇔ U is normal

□

Lemma 2.3.2. Let U ∈ Cn×n be an upper-triangular matrix. Then U is normal if and only if U is
diagonal.

PROOF. Let us prove this claim by induction on n. The case n = 1 is trivial.
Let us now assume the claim to be true for n ≥ 1, and consider an upper-triangular matrix
U ∈ C(n+1)×(n+1) that is also normal. Then,

(UU∗)1,1 =
n+1∑
k=1
|U1,k|2
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while
(U∗U)1,1 = |U1,1|2

Hence U1,k = 0 for all k > 1.

Thus if V is the n× n sub-matrix of U , obtained by deleting the first row and first column of U ,
then we need to have V ∗V = V V ∗, which by induction hypothesis is diagonal. Thus U is diagonal.

Conversely, every diagonal matrix is trivially normal. □

Definition. A matrix A ∈ Cn×n is said to be diagonalizable if there exists an invertible matrix
P ∈ Cn×n and a diagonal matrix D ∈ Cn×n such that

A = PDP−1

(Note that here P defines an eigenbasis that is not necessarily orthogonal) Defintion. A matrix
A ∈ Cn×n has an orthonormal eigenbasis if there exists a unitary matrix P ∈ Cn×n and a diagonal
matrix D ∈ Cn×n such that,

A = PDP ∗

(Note that here P−1 = P ∗)
Corollary 2.3.3. A matrix A ∈ Cn×n is normal if and only if it has an orthonormal eigenbasis.

PROOF. Let us assume the matrix A ∈ Cn×n is normal, and consider its Schur decomposition
A = PUP ∗, then by Lemma 2.3.1, we know that U is normal, and by Lemma 2.3.2, we know that
U is diagonal.

Conversely, every matrix which has an orthonormal eigenbasis is trivially normal. □

Intuition. Hence, one way of understanding normal vs non-normal matrices, is that normal
matrices are exactly those matrices which have a diagonal Schur form and thus an orthonormal
eigenbasis.

This view might allows to quantitatively describe "how non-normal" a matrix is, by looking "how
far" its Schur form is from being diagonal. One example of such a measure has been introduced by
Henrici (1962) and is given by

d : Rn×n → R+ : A 7→
√
∥A∥2

F −
∑

i

|λi|2

where ∥.∥F denotes the Frobenius norm and λi is the i-th eigenvalue of A. If we now consider the
Schur decomposition of A = PUP ∗, then

∥A∥2
F = tr(AA∗) = tr(PUU∗P ∗) = tr(UU∗) ≥

∑
i

|λi|2
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thus d(W ) = 0 if and only if W is normal, and d(W ) > 0 for all W non-normal.

2.3.2. The real Schur decomposition

Theorem. Let A ∈ Rn×n, then there exists an orthogonal matrix Q ∈ Rn×n and a block
upper-triangular matrix T of order 2 (i.e. T has diagonal blocks of size at most 2), such that

A = QTQT

where QT is the transpose of Q. We call T the real Schur form of A, and the decomposition is
called the real Schur decomposition.

Before starting to derive this results, let us first consider some basic facts about linear algebra.
Lemma 2.3.4. Let A ∈ Rn×n. The eigenvalues of A are either real or come in pairs of complex
conjugates.

PROOF. One way to prove this, goes by considering the Schur decomposition of A = PUP ∗, and
taking the complex conjugate:

PUP ∗ = A = Ā = P̄ Ū P̄ ∗

(where Ā denotes conjugate of A and P̄ ∗ denotes the conjugate of the conjugate transpose of P , thus
simply the transpose of P ) and noting that the set of eigenvalues of A, are the diagonal elements of
U as well as of Ū .

Another way to prove this, goes by consider the characteristic polynomial

p(λ) = det{(A− λId)}

and noting that if p(λ) = 0, then p(λ̄) = p(λ) = 0̄ = 0, since p ∈ R[X]. □

In other words, if we consider the Schur decomposition A = PUP ∗, then the diagonal elements
of U are either real or have pairs of complex conjugates.
Let us recall that each complex number z can be written as z = reiθ, where r = |z| and eiθ =
cos θ + i sin θ. Further note that z̄ = re−iθ, and let us consider the identity, r cos θ −r sin θ

r sin θ r cos θ


︸ ︷︷ ︸

=:R(r,θ)

=
 1√

2 − i√
2

− i√
2

1√
2


︸ ︷︷ ︸

=:W

 reiθ 0
0 re−iθ

 1√
2

i√
2

i√
2

1√
2


︸ ︷︷ ︸

W ∗

where WW ∗ = W ∗W = Id is a unitary matrix, andR(r,θ) is called a rotation block.

Now in order to outline the derivation of the real Schur decomposition from the Schur decom-
position, let us construct a unitary matrix Wn composed of W sub-matrices (one for each pair of
complex conjugates on the diagonal of U ) such that PW ∗

n is orthogonal and WnUW
∗
n is block
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upper-triangular of order 2, where the order 2 blocks on the diagonal come from the corresponding
rotation blocks. In other words, we have

A = (PW ∗
n)︸ ︷︷ ︸

=Q

(WnUW
∗
n)︸ ︷︷ ︸

=T

(PW ∗
n)T︸ ︷︷ ︸

=QT

2.4. Unitary RNN Literature Review
As already outlined in subsection §2.2.3, recurrent neural networks suffer from the exploding

and vanishing gradient problem. One approach to mitigate this problem has been to use gates in
order to have the gradient flow more efficiently along longer time horizons and therefore better
capture long-term dependencies (Hochreiter and Schmidhuber, 1997; Cho et al., 2014a). Another
approach is to stick with the vanilla RNN and constrain the spectrum of the connectivity matrix
either at initialization (Le et al., 2015; Henaff et al., 2016) or throughout the entire training period
(Arjovsky et al., 2016; Wisdom et al., 2016; Hyland and Rätsch, 2017; Mhammedi et al., 2017; Jing
et al., 2017; Vorontsov et al., 2017; Lezcano-Casado and Martínez-Rubio, 2019).

Using orthogonal or identity connectivity matrices at initialization has been discussed in Saxe
et al. (2014) and Le et al. (2015) (IRNN), which then became a stepping-stone for the seminal
work of Arjovsky et al. (2016), called unitary evolution RNN (uRNN), outlining the use of unitary
connectivity matrices in vanilla RNNs throughout the entire training procedure. In Arjovsky
et al. (2016), unitary weight matrices have been parametrized as a product of several structured
matrices, whose parameters are learned during training. However, the main drawback is that this
parametrization does not have full capacity over the full unitary matrix group. For a more detailed
discussion see Appendix §D.1.

To address this problem, Wisdom et al. (2016) provides necessary condition for a family of
parametrized n× n unitary matrices to satisfy in order to contain all n× n unitary matrices, using
Sard’s theorem (Sard, 1942), and then leverages the theory of Riemannian gradient descent in order
to show how to directly optimize a full-capacity unitary matrix along the Stiefel manifold (i.e. the
manifold consisting of all n× n unitary matrices). Around the same time, another interesting and
somewhat similar approach has been suggested in Hyland and Rätsch (2017) which parametrizes
U(n) directly in the corresponding Lie algebra u(n) of skew- Hermitian matrices via the exponential
matrix map.

Even though both methods Wisdom et al. (2016) and Hyland and Rätsch (2017) provide full-
capacity parametrizations, it comes at the expense of increased computational cost O(n3).

Meanwhile Mhammedi et al. (2017) and Jing et al. (2017) both propose parametrizations where
the user can decide how much of the matrix space should be covered by the parametrization, by
tuning the number m of matrices involved in the parametrization product, leading to computational
complexity O(mn) if n is the number of hidden units. This is of particular use since for a lot of
tasks a small subspace of the unitary matrix space is sufficient to solve the task. For more detailed
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discussions see Appendix D.3.
Building on the works of Wisdom et al. (2016) and Hyland and Rätsch (2017), Vorontsov

et al. (2017) and Helfrich et al. (2018) both propose a real-valued full-capacity orthogonal matrix
parametrization, where the connectivity matrix is updated using an additive update rule avoiding the
compounded roundoff errors that would otherwise come in with a multiplicative update rule.

Finally, in the same spirit as Hyland and Rätsch (2017), Lezcano-Casado and Martínez-Rubio
(2019) propose to parametrize the special orthogonal matrix group SO(n) (or the unitary matrix
group U(n) for the complex case) via the exponential matrix map. Here, however, the exponential
matrix map is approximated up to machine precision by combining the scaling-square trick with
the Padé approximation as shown in Al-Mohy and Higham (2009), leading to efficient gradient
calculations. It is further shown that, using the exponential map, a (constraint) minimization
problem on connected and compact Lie groups (such as SO(n) and U(n)) reduces to an equivalent
(unconstraint) minimization problem on the respective Lie algebras which are isomorphic to a
Euclidean vector space. The mentioned method is called expRNN and outperforms all other
mentioned models across the board. For more detailed discussions see Appendix §D.4.

2.5. Fisher information theory
This section is provided in order to give some background for the tools used in subsection 2.6.

Let us consider an observable random variableX whose probability distribution p(X|θ) depends
on some unknown parameter θ ∈ R. In frequentist statistics, one typically picks θ as to maximize
the log-likelihood of p(x|θ) for some observed x’s. In order to assess how good the estimate for θ is
one defines the score function

s(x,θ) = ∂

∂θ
log p(x|θ)

which, if θ is the true underlying parameter, gives zero in expectation:

Ep(X|θ) [s(X,θ)] = Ep(X|θ)

[
∂

∂θ
log p(X|θ)

]

=
∫ ∂

∂θ
p(x|θ)
p(x|θ) p(x|θ)dx

= ∂

∂θ

∫
p(x|θ)dx

= ∂

∂θ
1 = 0

Intuitively, if p is sharply peaked around its optimal value for θ given the observed x’s, then we
would need much less observation to give a good estimate for θ than in the case where the shape p
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as a function of θ would be rather flat. In the former case, we would think of X as carrying a lot of
information about the parameter θ, while in the latter case we would think of X as carrying not so
much information about θ. In order to measure how much information X carries about θ, our first
reflex would be to think of second derivatives or some sort of variance.

Formally we define the Fisher information

I(θ) = Varp(X|θ) [s(X,θ)] = Ep(X|θ)
[
s(X,θ)2

]
Intuitively, the Fisher information measures how much information X carries about the

parameter θ, by measuring the amount of variance we get in our assessment via s. The larger
I(θ) is, the more information the assessment s provides us about our estimate, the more informa-
tionX carries about θ and the less data we need to be sufficiently confident about our estimates for θ.

To link it back to our intuition of second derivatives, we can observe that

∂2

∂θ2 log p(X|θ) = ∂

∂θ

∂
∂θ
p(X|θ)
p(X|θ)

=

(
∂2

∂θ2p(X|θ)
)
· p(X|θ)−

(
∂
∂θ
p(X|θ)

)2

p(X|θ)2

=
∂2

∂θ2p(X|θ)
p(X|θ) −

(
∂
∂θ
p(X|θ)
p(X|θ)

)2

=
∂2

∂θ2p(X|θ)
p(X|θ) − s(X,θ)2

taking the expectation both sides, gives

Ep(X|θ)

[
∂2

∂θ2 log p(X|θ)
]

=
∫ ∂2

∂θ2p(x|θ)
p(x|θ) p(x|θ)dx− I(θ)

= ∂2

∂θ2

∫
p(X|θ)dx− I(θ)

= ∂2

∂θ2 1− I(θ)

= −I(θ)

and thus

I(θ) = −Ep(X|θ)

[
∂2

∂θ2 log p(X|θ)
]

which measures the expected amount of curvature or the expected amount of "spread-out-ness"
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of the log-likelihood function log p(X|θ). Near the maximum log-likelihood, large Fisher
information indicates a sharp maximum, and thus we don’t need as many observations in order to
be confident about our estimate for θ, while low Fisher information indicates low curvature around
the maximum, hence many nearby values have similar log-likelihood than the maximum and a lot
more observations are needed.

Note that above derivation is only correct if log p(X|θ) is twice differentiable with respect to θ,
and if some further regularity conditions on p are satisfied so that the Leibniz rule can be applied
(which is usually the case in most practical situations).

If we now consider the higher dimensional case where θ = [θ1, . . . , θn]T , we analogously define
the score function as the gradient

s(x,θ) = ∇θ log p(x|θ)

where Ep(X|θ)[s(X,θ)] = 0 and the Fisher information matrix (FIM) as

[I(θ)]i,j = Covp(X|θ)[s(X,θ)i, s(X,θ)j]

= Ep(X|θ)[s(X,θ)is(X,θ)j]

= Ep(X|θ)

[(
∂

∂θi

log p(x|θ)
)(

∂

∂θj

log p(x|θ)
)]

Similarly as in the one-dimensional case, one can prove that the FIM is equal to the negative
Hessian matrix of the log-likelihood function,

[I(θ)]i,j = −Ep(X|θ)

[
∂2

∂θi∂θj

log p(X|θ)
]

under the analogous regularity assumptions for the higher dimensional case.

2.6. Non-normal dynamics in linear RNNs
A lot of the theory about non-normal dynamics and temporal memory capacity in neural

networks have been developed in the computational neuroscience literature (Ganguli et al., 2008;
Hennequin et al., 2012; L White et al., 2004), which highlights how attempting to understand the
human brain can lead to a useful development of artificial neural networks.

In this section we are going to discuss the work of Ganguli et al. (2008), where Fisher information
theory is applied to study the short-term memory trace of the recurrent network with update equation

ht = ϕ(Wht−1 + vst + zt)
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where ϕ is an activation function, W ∈ RN×N , v ∈ RN with ∥v∥ = 1, st is a scalar input signal,
and zt ∼ N (0,ϵ · IdN) is a multivariate Gaussian noise of dimension N .

We would like to study the limits of these short-term memory traces as well as the properties of
the recurrent networks necessary to achieve these limits. For this purpose we introduce the Fisher
memory matrix (FMM) given by

Jkl (s≤t) = Ep(ht|s≤t)

[
− ∂2

∂st−k∂st−l

log p (ht|s≤t)
]

where s≤t = {st−k|k ≥ 0} denotes the history of past input signals. Note that the FMM can be
viewed as a Fisher information matrix (seen in §2.5) where the parameters are the past signals s≤t,
and (similar to the derivation in §2.5) one can rewrite the FMM as

Jkl (s≤t) = Ep(ht|s≤t)

[(
∂

∂st−k

log p (ht|s≤t)
)(

∂

∂st−l

log p (ht|s≤t)
)]

Similarly to the FIM, the FMM measures how much information the current state ht carries about
the past signals s≤t. The diagonal element Jkk(s≤t) of the FMM is precisely Fisher information
ht retains about the input signal st−k, while the off-diagonal element Jkl(s≤t) measures the
interference between two past signals st−k and st−l.

In order to gain a better intuition of the above definitions, one considers the case where ϕ is the
identity. We then get

ht =
∞∑

k=0
W kv · st−k +

∞∑
k=0

W kzt−k

where ht|s≤t is a multivariate Gaussian of mean

µt := E[ht|s≤t] =
∞∑

k=0
W kv · st−k

and covariance matrix

C := Var[ht|s≤t] = ϵ ·
∞∑

k=0
(W k)(W k)T

Hence a simple calculation shows that

Jkl(s≤t) = (W kv)TC−1(W lv)

which is an expression independent of the signal history s≤t, thus we will simply write Jkl from
now onwards. Note that the elements Jkk are proportional to 1

ϵ
, which intuitively means that, the

larger the magnitude ϵ of the noise we inject at each time step, the smaller the Fisher information,
and the less information ht seems to carry about the past input signals s≤t.
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The signal-to-noise ratio (SNR) of the input vector vsn + zn at any given time n is defined as
the Fisher information

Var
[
∂

∂sn

log p(vsn + zn|sn)
]

= vT · (ϵId)−1 · v = 1
ϵ

and viewing Jkk as a multiple of 1
ϵ
, one can think of Jkk as the fraction of the input SNR at time

t− k that is remaining in the system at time t. Since all input SNRs are equal to 1
ϵ
, the following

sum can be interpreted as the total SNR embedded in ht relative to the input SNRs 1
ϵ
:

Jtot =
∞∑

k=0
Jkk

=
∞∑

k=0
(W kv)T · C−1 · (W kv)

= vT ·
[ ∞∑

k=0
(W k)T · C−1 ·W k

]
︸ ︷︷ ︸

=:J(s)

·v

where J (s) is called the spatial Fisher information matrix.

If W is normal, a simple calculation using the matrix eigendecomposition shows that J (s) = 1
ϵ
Id,

and thus Jtot = 1
ϵ
, which is independent of the direction v by which the input signals are fed into

the system. This implies that the total SNR has to stay constant regardless of how one picks v and
W , as long as W is normal. Either one chooses W and v to enhance memory of the inputs from the
recent past, while sacrificing memory from the remote past, or the other way around.

However when W is non-normal, the expression Jtot = vT · J (s) · v does not simplify and thus
stays dependent on the direction v. Hence Jtot is maximized when taking v as the eigenvector of
the largest eigenvalue of J (s), and minimized when taking v as the eigenvector of the smallest
eigenvalue of J (s).

Now note that Tr(J (s)) = N
ϵ

, and thus we get the bound Jtot ≤ N
ϵ

, and it turns out that there are
choices for W and v such that the inequality becomes an equality. Let us consider the non-normal
matrix Wij =

√
αδj,i−1 +

√
βδj,i+1 and the vector vi = δi,1, where we can spot the feed-forward

connections
√
α (giving rise to a delay line) as well as the feedback connections

√
β (giving rise to

a feedback delay line).

For β = 0 and α > 1, we get Jtot ≈ N
ϵ
(1− 1

ϵ
), where the stronger the delay line, the closer we

get to optimal memory in the network. Here the signal comes in at the source and while propagating
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form layer to layer, gets amplified exponentially until the last layer where the signal then dies
out after a time of order of N . Note that the larger N becomes, the bigger the extensive memory
difference to normal matrices becomes.

An alternative would be to consider a delay line with feedback connections, where β > 0 and
α < 1, with the additional condition 1 −

√
α <

√
β < 1

4
√

α
. Here again the signal enters at the

source and getting exponentially amplified from layer to layer, while at each layer having part of
the signal being fed backwards into the previous layer. This allows the amplification to last longer
than order of N time steps, at the expense of having less aggressive amplification.

Let us fix k, and consider the sequence of signal amplification Am = ∥Wmv∥2, for 0 ≤ m ≤ k,
then it is shown that

Jkk ≤
1

ϵ
∑k

m=0 A
−1
m

with equality if and only if Wij =
√

Ai−1
Ai−2

δj,i−1 for i = 2, . . . ,k + 1 and vi = δi,1. Hence for a given

amount of signal amplification, the delay line is the unique network that achieves minimal noise
amplification.

Finally note that when performing a change of basis (i.e. replacing W by PWP T , with
P being an orthogonal matrix) in the expression of Jkl, we would only need to pick a new
vector v′ = Pv to get the same Jkl and thus the same Jtot. Hence one can view the matrices
that are unitarily equivalent to simple delay lines as opposites to normal matrices, and extreme
examples of non-normal matrices when comparing their ability to propagate signal in the above
recurrent network. One can further prove that matrices that are unitarily equivalent to simple
delay lines have a diagonal Fisher memory matrix, and thus they do not give rise to any in-
terference between signals injected at different time steps. For more details, see Ganguli et al. (2008).

2.7. Attention
An attention function Φ maps a query q ∈ Rd and a set of key-value pairs {(k1,v1), . . . , (kn,vn)}

where ki ∈ Rd and vi ∈ Rm to an output o ∈ Rm. More precisely,

Φ(q,{(k1,v1), . . . , (kn,vn)}) = α1v1 + . . .+ αnvn = o ∈ Rm

where ᾱ = (α1, . . . , αn) = softmax[a(q,k1), . . . , a(q,kn)] and a : Rd × Rd → Rd is the attention
alignment function. Note that the output is a weighted sum or convex combination of the value
vectors vi, where the weight αi assigned to each value vi quantifies how well the query q "aligns"
with the corresponding key vector ki, according to the attention alignment function a. We will now
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look at two common attention functions used in the literature which distinguish themselves merely
by the choice of their alignment function.

Additive Attention. The first attention function proposed in the literature by Bahdanau et al.
(2014) is often referred to "Additive Attention". It uses the following "additive" attention alignment
function:

a(q,k) = vT
a · tanh (Wa · q + Ua · k)

where va ∈ Rn, and Wa,Ua ∈ Rn×d.

Scaled Dot-Product Attention. Later on the seminal work of Vaswani et al. (2017) proposes
the "Scaled Dot-Product Attention" defined via the following attention alignment function:

a(q,k) = q⊤ · k√
d

One sometimes uses the simple "Dot-Product Attention" where one leaves out the scaling
factor

√
d, but for large values of d, one prefers to use the "Scaled Dot-Product Attention" as

otherwise the dot-product q⊤k can grow large in magnitude, which after application of the softmax
function might result in extremely small gradients. For small values of d, both dot-products
perform similarly, while additive attention outperforms the dot-product attention without scaling
factor (Britz et al., 2017). While both additive and dot-product attention have similar theoretical
complexity, dot-product attention is faster and more memory-efficient in practice as it can be
implemented with a highly optimized matrix multiplication code.

Multi-Head Attention. Instead of using one attention function, one can use multiple attention
functions Φi in parallel to enable the model to jointly attend to different positions and hence increase
representational capacity. The outputs o(i) of each attention head are concatenated and projected
to give the final output. More precisely, for each of the h attention heads Φi, we define separate
alignment functions

ai(q,k) = fi(q)⊤ · gi(k)√
n

where the functions fi,gi : Rd → Rn are projecting q and k onto a common space Rn. Hence

Φi(q,{(k1,v1), . . . , (kn,vn)}) = α
(i)
1 v1 + . . .+ α(i)

n vn = o(i) ∈ Rm

where ᾱ(i) = (α(i)
1 , . . . , α

(i)
n ) = softmax[ai(q,k1), . . . , ai(q,kn)].

One commonly chooses fi and gi to be linear maps, in which case one has weight matrices
W (i)

q ∈ Rn×d and W (i)
k ∈ Rn×d such that

ai(q,k) =
(W (i)

q · q)⊤ · (W (i)
k · k)

√
n
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To get the final result, one concatenates the outputs o(i) and performs an additional linear
projection to get the final output:

o = Wo[o(i), . . . , o(h)]

where Wo ∈ Rdo×hm.

2.7.1. Self-Attention in RNNs

Let xt ∈ Rm be the input and ht ∈ Rn be the RNN hidden state at time step t, satisfying the
update equation for all t ≥ 1,

ht+1 = ϕ(V st + Uxt+1 + b) (2.7.1)

st = f(ht,ct) (2.7.2)

ct = Φ(st−1, {(h1,h1), . . . , (hn,hn)}) (2.7.3)

= α
(t)
1 h1 + . . .+ α

(t)
t ht (2.7.4)

where ᾱ(t) = (α(t)
1 , . . . , α

(t)
t ) = softmax[a(st−1,h1), . . . , a(st−1,ht)], ϕ is a non-linearity, f : Rn ×

Rn → Rp, V ∈ Rn×p, U ∈ Rn×m, b ∈ Rn and where a : Rp × Rn → Rn is the attention alignment
function.

In the original paper Bahdanau et al. (2014), one used f(ht,ct) = ht + ct in which case p = n,
but concatenation f(ht,ct) = (ht,ct) would be more general and tends to improve performance in a
lot of cases. One can then either use "additive attention" (as in Bahdanau et al. (2014)),

a(st−1,hj) = v⊤
a · tanh (Wa · st−1 + Ua · hj)

or one can use "scaled dot-product attention" (as suggested in Vaswani et al. (2017)),

a(st−1,hj) = (Wa · st−1)⊤ · (Ua · hj)√
n

where va ∈ Rn, Wa ∈ Rn×p and Ua ∈ Rn×n.
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Chapter 3

Non-normal Recurrent Neural Network (nnRNN):
learning long time dependencies while improving

expressivity with transient dynamics

This chapter is based on a NeurIPS 2019 paper (Kerg et al., 2019).

3.1. Prologue to the First Article
3.1.1. Article Details

Title: Non-normal Recurrent Neural Network (nnRNN): learning long time dependencies while
improving expressivity with transient dynamics

Authors: Giancarlo Kerg1,2,∗, Kyle Goyette1,2,3,∗, Maximilian Puelma Touzel1,4, Gauthier
Gidel1,2, Eugene Vorontsov1,5, Yoshua Bengio1,2,6, Guillaume Lajoie1,7

∗ Indicates first authors. Ordering determined by coin flip.
Affiliations:

1: Mila - Quebec AI Institute, Canada
2: Université de Montréal, DIRO, Montreal, Canada
3: Université de Montréal, CIRRELT, Montreal, Canada
4: IVADO post-doctoral fellow
5: Ecole Polytechnique de Montréal, Montreal,Canada
6: CIFAR senior fellow
7: Université de Montréal, Département de Mathématiques et Statistiques, Montreal, Canada

3.1.2. Contributions

Giancarlo Kerg had the main idea of using the Schur decomposition to train non-normal
spectrally constrained matrices. Giancarlo Kerg did most of the smaller scale toy experiments



supporting the design and directions of the larger scale experiments while Kyle Goyette implemented
all of the larger scale experiments, and did all the hyperparameter tuning. Giancarlo Kerg derived
most theorems and led the writing of the article.

3.1.3. Paper Abstract

A recent strategy to circumvent the exploding and vanishing gradient problem in RNNs, and to
allow the stable propagation of signals over long time scales, is to constrain recurrent connectivity
matrices to be orthogonal or unitary. This ensures eigenvalues with unit norm and thus stable
dynamics and training. However this comes at the cost of reduced expressivity due to the limited
variety of orthogonal transformations. We propose a novel connectivity structure based on the Schur
decomposition and a splitting of the Schur form into normal and non-normal parts. This allows to
parametrize matrices with unit-norm eigenspectra without orthogonality constraints on eigenbases.
The resulting architecture ensures access to a larger space of spectrally constrained matrices, of
which orthogonal matrices are a subset. This crucial difference retains the stability advantages and
training speed of orthogonal RNNs while enhancing expressivity, especially on tasks that require
computations over ongoing input sequences.

3.2. Introduction
Training recurrent neural networks (RNN) to process temporal inputs over long timescales is no-

toriously difficult. A central factor is the exploding and vanishing gradient problem (EVGP) (Hochre-
iter and Schmidhuber, 1997; Bengio et al., 1994; Pascanu et al., 2013a), which stems from the
compounding effects of propagating signals over many iterates of recurrent interactions. Sev-
eral approaches have been developed to mitigate this issue, including the introduction of gating
mechanisms (e.g. (Jing et al., 2019; Hochreiter and Schmidhuber, 1997)), purposely using non-
saturating activation functions (Chandar et al., 2019), and manipulating the propagation path of
gradients (Kanuparthi et al., 2019). Another way is to constrain connectivity matrices to be or-
thogonal (and more generally, unitary) leading to a class of models we refer to as orthogonal
RNNs (Mhammedi et al., 2017; Maduranga et al., 2019; Lezcano-Casado and Martínez-Rubio,
2019; Wisdom et al., 2016; Jing et al., 2017; Vorontsov et al., 2017; Helfrich et al., 2018; Arjovsky
et al., 2016). Orthogonal RNNs have eigenspectra with unit norm, therefore helping to prevent
exponential growth or decay in long products of Jacobians associated with EVGP. They perform
exceptionally well on tasks requiring memorization of inputs over long time-scales (Henaff et al.,
2016) (outperforming gated networks) but struggle on tasks involving continued computations
across timescales. A contributing factor to this limitation is the mutually orthogonal nature of
connectivity eigendirections which substantially limits the space of solutions available to orthogonal
RNNs.
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In this paper, we propose a first step toward a solution to this expressivity problem in orthogonal
RNNs by allowing non-orthogonal eigenbases while retaining control of eigenvalues’ norms. We
achieve this by leveraging the Schur decomposition of the connectivity matrix, providing a separation
into "diagonal" and "feed-forward" parts, with their own optimization constraints. Mathematically,
this amounts to adding "non-normal" connectivity, and we call our novel architecture non-normal
RNN (nnRNN). In linear algebra, a matrix is called normal if its eigenbasis is orthogonal, and
non-normal if not. Orthogonal matrices are normal, with eigenvalues with norm one (i.e. on the
unit circle). In recurrent networks, normal connectivity produces dynamics solely characterized
by the eigenspectrum while non-normal connectivity allows transient expansion and compression.
Transient dynamics have known computational advantages (Hennequin et al., 2012; Ganguli et al.,
2008), but orthogonal RNNs cannot produce them. The added flexiblity in nnRNN allows such
transients, and we show analytically how they afford additional expressivity to better encode
complex inputs, while at the same time retaining efficient signal propagation to learn long-term
dependencies. Through a series of numerical experiments, we show that the nnRNN provides two
main advantages:

(1) On tasks well suited for orthogonal RNNs, nnRNN learns orthogonal (normal) connectivity
and matches state-of-the art performance while training as fast as orthogonal RNNs.

(2) On tasks requiring additional expressivity, non-normal connectivity emerges from training
and nnRNN outperforms orthogonal RNNs.

From a parametric standpoint, this advantage can be attributed to the fact that the nnRNN has access
to all matrices with unit-norm eigenspectra, of which orthogonal ones are only a subset.

3.3. Background
3.3.1. Unitary RNNs and constrained optimization

First outlined in Arjovsky et al. (2016) and inspired by Saxe et al. (2014); Yang et al. (2015);
Le et al. (2015), RNNs whose recurrent connectivity is determined by an orthogonal, or unitary
matrix are a direct answer to the EVGP since their eigenspectra exactly lie on the complex unit
circle. The same mechanism was invoked in a series of theoretical studies for deep and recurrent
networks in the large size limit, showing that ideal regimes for effective network performance are
those initialized with such spectral attributes (Raghu et al., 2017; Pennington et al., 2017; Chen
et al., 2018). By construction, orthogonal matrices and their complex-valued counterparts, unitary
matrices, are isometric operators and do not expand or contract space, which helps to mitigate the
EVGP. A central challenge to train unitary RNNs is to ensure that parameter updates are restricted
to the manifolds satisfying orthogonality constraints known as Stiefel manifolds (see review in Jiang
and Dai (2015)). This is an active area of optimization research, and several techniques have been
used for orthogonal or unitary RNN training. In Arjovsky et al. (2016), the authors construct
connectivity matrices with long products of rotation matrices leveraging fast Fourier transforms.
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In Wisdom et al. (2016); Vorontsov et al. (2017); Helfrich et al. (2018), the Cayley transform is
used, which parametrizes weight matrices using skew-symmetric matrices that need to be inverted
(c.f. Chang et al. (2019) for an RNN implementation directly using skew-symmetric matrices).
Another approach uses Householder reflections (Mhammedi et al., 2017). Recent studies also adapt
some of these methods to the quaternion domain (Parcollet et al., 2019). The methods listed above
have their advantages by either being fast, or memory efficient, but suffer from only parametrizing
a subset of all orthogonal (unitary) matrices. A novel approach considering the group of unitary
matrices as a Lie group and leveraging a parametrization via the exponential map applied to its Lie
algebra, addresses this problem and currently outperforms the rest on many tasks (Lezcano-Casado
and Martínez-Rubio, 2019). Still, of all matrices with unit-norm eigenvalues, unitary matrices are
only a small subset and remain limited in their expressivity since they are restricted to isometric
transformations (Henaff et al., 2016). This is why orthogonal RNNs, while performing better than a
conventional RNN or LSTM at some tasks (e.g. copy task (Hochreiter and Schmidhuber, 1997), or
sequential MNIST (Le et al., 2015)), struggle at more complex tasks requiring computations across
multiple timescales.

3.3.2. Non-normal connectivity

Any diagonalizable matrix V can be expressed as V = PΘP−1 where P ’s columns are V ’s
eigenvectors and Θ is a diagonal matrix containing its eigenvalues. V is said to be normal if its
eigenbasis is orthogonal and thus, P−1 = P⊤ and V = PΘP⊤. Orthogonal matrices are normal
matrices with eigenvalues on the unit circle. When a matrix is non-normal, it is diagonalized with
a non-orthogonal basis. However, it is still possible to express it using an orthogonal basis at the
cost of adding (lower) triangular structure to Θ. This is known as the Schur decomposition: for any
matrix V , we have V = P (Λ + T )P⊤ with P an orthogonal matrix, Λ a diagonal matrix containing
the eigenvalues, and T a strictly lower-triangular matrix.1 In short, T contains the interactions
between the orthogonal column vectors of P (called Schur modes). P and T are obtained from
orthogonalizing the non-orthogonal eigenbasis of V , and do not affect the eigenspectrum. As
a recurrent matrix, T represents purely feed-forward structure that produces strictly transient
dynamics impossible to produce in normal (orthogonal) matrices. In other words, if a normal
and non-normal matrix share exactly the same eigenspectrum, their long-term dynamics will be
equivalent, but their short-term activity can differ greatly. We revisit this distinction in §3.4. It was
exploited by Goldman (2009); Hennequin et al. (2012) to analyze the decomposition of the activity
of recurrent networks (in continuous time) into a normal part responsible for slow fluctuations, and
a non-normal part producing fast, transient ones. How this mechanism propagates information was
studied in Ganguli et al. (2008) for stochastic linear dynamics. The authors show analytically that

1When eigenvalues and eigenvectors are complex, P is unitary and P ⊤ corresponds to conjugate transposition. However
for any real V , it is possible to find an orthogonal (real) P with Λ being block-diagonal with 2× 2 blocks instead of
complex-conjugate eigenvalues.
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Fig. 1. Benefits of non-normal dynamics. (a) The Schur decomposition provides the lower-triangular Schur
form (top). A feed-forward interaction coupling among Schur modes underlies non-normal dynamics (bottom).
(b) Lower triangle generates stronger transients. Trajectories of standard deviation across hidden units (top)
and norm of hidden state vector (bottom) obtained from the dynamics of Eq. equation 3.4.1. Lines and
shading are average and standard deviation, respectively, over 103 initial conditions uniformly distributed on
the unit hypersphere. Parameters: d = 0. (c) Fisher memory curves across α and β (see legend in (b)) as
computed by Eq. A.2.2. Parameters: d = 0 (■), d = 0.2 (▲). N = 100 for (b) and (c).

non-normal dynamics can lead to extensive memory traces, as measured by the Fisher information
of the trajectory ensemble parametrized by the input signal. To the best of our knowledge, an
explicit demonstration and explanation of the benefits of non-normal dynamics for learning in RNNs
is lacking, though see Orhan and Pitkow (2019) for similar ideas used for initialization.

3.4. Non-normal matrices are more expressive and propagate
information more robustly than orthogonal matrices

We now outline the role of non-normal dynamics exploited here. To provide mathematically-
grounded intuition for the benefit it provides to learning, we first present a generic RNN dynamics,

ht+1 = ϕ(V ht + Uxt+1 + b)

V = PΘP⊤, Θ = Λ + T
(3.4.1)

where ht ∈ RN is the time-varying hidden state vector, ϕ is a nonlinear function, xt is the input
sequence projected into the dynamics via matrix U , and b is a bias (we omit the output for brevity).
V is the matrix of recurrent weights, which in line with Section 3.3.2 we decompose into its
lower-triangular Schur form Θ in Eq. equation 3.4.1, with P orthogonal and Θ lower triangular. Θ
has two parts: a (block) diagonal part Λ, and a strictly lower triangular part T .2

The Schur decomposition maps the hard problem of controlling the directions of a non-
orthogonal basis to the easier problem of specifying interactions between fixed orthogonal modes.
It is important to highlight the fact that an orthonormalization of the eigenbasis is just a change

2We use the real Schur decomposition but a similar treatment can be derived for the complex case.
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in representation and thus has no effect on the spectrum of V , which still lies on the diagonal of
Λ. The triangular part T can thus be modified independently from the constraint (employed in
orthogonal RNN approaches) that the spectrum have values equal or near 1. The ability to encode
complex signals and then selectively recall past inputs is a basic requirement needed to solve many
sequence-based tasks. Intuitively, the two features that allow systems to perform well in such tasks
are:

(1) High dimensional activity to better encode complex input.
(2) Efficient signal propagation, to better learn long-term dependencies.

To illustrate how non-normal dynamics controlled by the entries in the lower triangle of T contribute
to these two features, we consider a simplified linear case where ϕ(ht) = ht and Θ is parametrized
as follows and illustrated in Fig. 1(a)):

(Θ)i,j = dδi,j + αδi,j+1 + β
∑

2≤k≤i

δi,j+k . (3.4.2)

Here, diagonal entries are set to d, sub-diagonal entries to α, and the remaining entries in the lower
triangle to β. By varying α and β we will show how the lower triangle in T enhances expressivity
and information propagation.

3.4.1. Non-normality drives expressive transients

RNNs can be made more expressive with stronger fluctuations of hidden state dynamics.
The dependence of hidden state variance on the values of Θ was studied in depth in Hennequin
et al. (2012). Here, we present experiments where the RNN parametrized by Eqs. equation 3.4.1,
equation 3.4.2 exemplifies some of those results. We numerically compute a set of trajectories over
a sampled ensemble of inputs with xt > 0 for t = 0 and 0 otherwise. Without loss of generality
we assume a form of U and distribution of x0 that leads to input-dependent initial conditions on
the unit hypersphere in the space of ht. For α = 0.95,1.0,1.05, β = 0, 0.005 and d = 0, we see that
trajectories of single units exhibit increasing large transients with increasing α and β, that abruptly
end at t = N (Fig. 1(b)). The latter is a result of the nilpotent property of a strictly triangular matrix:
each iteration removes the top entries in each column until ΘN = 0. Computing ensemble statistics,
we find that α contributes significantly to the strength of the exponential amplification, while β
structures the shape of the transient. This ability of T to both exhibit amplification, and to control its
shape, is what endows the Schur form Θ with expressivity (see Section 3.6.3 for empirical evidence
in trained nnRNNs).

3.4.2. Non-normality allows for efficient information propagation

Propagation of information in a network requires feed-forward interactions. Perhaps the most
simple example of a feed-forward structure is the local feed-forward chain (also called delay-
line (Ganguli et al., 2008)), where each mode feeds its signal only to the next mode in the chain
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(α > 0, β = 0, d = 0; see Fig. 1(a)). In this case, we denote Θ by Θdelay. As a consequence,
signals feeding the first entry of Θdelay propagate down the chain and are amplified or attenuated
according to the values of these non-zero entries. Moreover, inputs from different time steps do not
interact with each other thanks to this ordered propagation down the line. In contrast, the signal is
not propagated across modes for dynamics given by a purely (block) diagonal Θ. It instead simply
decays within the mode into which it was injected on the timescale intrinsic to that mode, which
can be much less than the O(N) timescale of the chain.

To quantify the efficiency with which a RNN can store inputs, we follow and extend the approach
of Ganguli et al. (2008). For a given scalar-valued input sequence, xt = st + ξt, t ∈ N, composed
of signal st and injected noise ξt, the noise ensemble induces the conditional distribution, P (h:t|s:t),
over trajectories of hidden states, h:t, given the received input, s:t, where : t subscript is short hand
for (k : k ≤ t). Taking the signal sequence s:t as a set of parameters of a model, and P (h:t|s:t) as
this model’s likelihood, the corresponding Fisher information matrix that captures how P (h:t|s:t)
changes with the input s:t is,

Jk,l(s:t) =
〈
− ∂2

∂sk∂sl

logP (h:t|s:t)
〉

P (h:t|s:t)
k,l ≤ t . (3.4.3)

The diagonal of this matrix, J(t) := Jt,t is called the Fisher memory curve (FMC) and has a simple
interpretation: if a single signal s0 is injected into the network at time 0, then J(t) is the Fisher
information that ht retains about this single signal.

Ganguli et al. (2008) proved that the delay line Θdelay achieves the highest possible values for
the FMC when k ≤ N : J(k) = αk α−1

αk+1−1 . However, we show (proof in §A.2) that any strictly
lower-triangular matrix may approach the performance of a delay line:
Proposition 3.4.1. Let Θ ∈ RN×N be any strictly lower-triangular matrix with

√
α on the lower

diagonal and let TGram ∈ RN×N be the triangular matrix associated with the Gram–Schmidt
orthogonalization process of the columns of Θ (thus with only 1 on the diagonal). Then,

J(k) ≥ αk

σ
2(N−1)
max

α− 1
αk+1 − 1 , (3.4.4)

where σmax is the maximum singular value of TGram.
Note that σmax ≥ 1 and is equal to 1 for a delay line and close to 1 when Θ is close to a delay

line. In Fig. 1(a) we present a class of matrices providing feed-forward interaction and compute
the FMC of some matrices of this class in fig. 1(c). The delay line from Ganguli et al. (2008) with
α > 1 (shown to be optimal for t ≤ N ) retains the most Fisher information across time up to time
step N , when the nilpotency of Θ erases all information. As expected from Prop.3.4.1, non-zero
β, which endows the dynamics with expressivity (Fig. 1(b)), does not significantly degrade the
information propagation of the delay line. Interestingly, the addition of diagonal terms (d > 0), i.e.
Λ non-zero, helps to maintain almost optimal values of the FMC for t < N , while extending the
memory beyond t = N , and thus outperforming the delay line with regards to the area under the
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FMC (see Table 5 in the supplemental materials (SM)).
Together with the last section, these results demonstrate that non-normal dynamics, as

parametrized through the entries in the lower triangle of Θ, provide significant benefits to ex-
pressivity and information propagation. What remains to show is how these benefits translate into
enhanced performance of our nnRNN on actual tasks.

3.4.3. Non-normal matrix spectra and gradient propagation

While eigenvalues control the exponential growth and decay of matrix iterates, the spectral
norm of these iterates may behave differently (Bengio et al., 1994). This norm is dominated by
the modulus of the largest singular value of the matrix, and can thus differ from the eigenvalues’
moduli. This is a subtle difference influencing gradient growth rates, and is explicitly revealed by
different spectral constraints on RNNs. For comparison, a singular value decomposition (SVD) is
presented in Zhang et al. (2018) with the same motivation as our Schur-decomposition: to maintain
expressivity, whilst controlling a sprectrum (both using regularization). First note that, while
constraining the eigenspectrum to the unit circle, non-normality implies having the largest singular
value (and thus the spectral norm of the Jacobian) greater than 1. Hence, our approach mitigates
gradient vanishing, but not necessarily gradient explosion. In this case however, gradients explode
polynomially in time rather than exponentially (Pascanu et al., 2013b; Arjovsky et al., 2016). We
provide a theorem (proof in SM§A.3) to establish this for triangular matrices.
Proposition 3.4.2. Let A ∈ Rn×n be a matrix such that Aii = 1, Aij = x for i < j, and Aij = 0
otherwise. Then for all integer t ≥ 1 and j > i, we have (At)ij = p

(t)
j−i(x) is polynomial in x

of degree at most j − i, where the coefficient of x0 is zero and the coefficient of xl is O(
(

t
l

)
) for

l = 1,2, . . . ,j − i (which is polynomial in t of degree at most l).
This reveals that gradient explosion in nnRNN with unit-norm eigenspectrum, if present, is

polynomial and thus not as severe as the case where eigenvalues are larger than one (in which case
the gradient explosion is exponential). In §3.6.3, we illustrate that relaxing unit-norm requirements
for eigenvalues using regularization allows the optimizer to find a task-dependent trade-off, thus
balancing control over exponential vanishing and polynomial exploding gradients respectively. See
also SM§A.6 for gradient propagation measurements.
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3.5. Implementing a non-normal RNN
The nnRNN is a standard RNN model where we parametrize the recurrent connectivity matrix

V using its real Schur decomposition3 as in Eq. equation 3.4.1, yielding the form:

V = P




R1 0 . . . 0
0 R2 . . . 0
...

... . . . ...
0 0 . . . RN/2

+


0 0 . . . 0
t2,1 0 . . . 0

...
... . . . ...

tN,1 tN,2 . . . 0



P
⊤ (3.5.1)

with

Ri(γi,θi) def= γi

cos θi − sin θi

sin θi cos θi

 ,
where P is constrained to be an N ×N orthogonal matrix. Each parameter above (including entries
in P ) is subject to optimization, as well as specific constraints outlined below. We note that although
this parametrizattion uses the Schur form, we never explicitly compute Schur decompositions,
which would be expensive and has stability issues.4 Note that Eq. 3.5.1 can express any matrix V
with a set of complex-conjugate pairs of eigenvalues.

During training, the orthogonal matrix P is optimized using the expRNN algorithm (Lezcano-
Casado and Martínez-Rubio, 2019), a Riemannian gradient descent-like algorithm operating inside
the Stiefel manifold of orthogonal matrices. We note that other suitable orthogonality-preserving
algorithms could be used here (see §3.3) but we found expRNN to be the fastest and most stable.
Instead of rigidly enforcing that eigenvalues be of unit norm, we found relaxing this constraint to
be helpful. We therefore allow γi to be optimized but add a strong L2 regularization constraint
δ∥|1− γi∥|22 to encourage them to be to close to 1. The hyperparameter δ is tuned differently for
each task (see SM§A.1) but remains high overall, indicating only mild departure from unit-norm
eigenvalues. Both θi and tij are freely optimized via automatic differentiation. The non-linearity
we use is modReLU, as defined in Arjovsky et al. (2016); Helfrich et al. (2018). We initialize P as
in Lezcano-Casado and Martínez-Rubio (2019) using Henaff or Cayley initialization scheme (Henaff
et al., 2016), θi from a uniform distribution between 0 and 2π, and γi’s are initialized at 1.

We reiterate that the set of orthogonal matrices is a subset of all the connectivity matrices
covered by nnRNN, by setting all γ’s to 1, and T = 0. Consequently the connectivity matrix in
nnRNN has more parameters than an orthogonal matrix: N(N − 1)/2 for T , and N/2 γi’s, which
in total gives roughly N2/2 more parameters than orthogonal RNNs.

The forward pass of the nnRNN has the same complexity as that of a vanilla RNN, that
is O(Tn2 ), for a hidden state of size n and a sequence of length T . The backward pass is
similarly O(Tn2 ) plus the update cost of P , in addition to a once-per-update cost of O(n3 ) to
combine the Schur parametrization via matrix multiplication. Importantly, the nnRNN leverages

3See discussion for more details about complex-valued implementations.
4See §A.4 for a discussion.
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any orthogonal/unitary optimizer for P which have complexities ranging from O(n log n) to O(n3 )
at each update, with their own advantages and caveats (see §3.3.1). We chose the expRNN scheme,
which is O(n3 ) in the worst case, but has fast run-time in practice.

3.6. Numerical experiments
In this section, we test the performance of our nnRNN on various sequential processing tasks.

We have two goals:
(1) Establish the nnRNN’s ability to perform as well as orthogonal RNNs on tasks with patho-

logically long term dependencies: the copy task and the permuted sequential MNIST task.
(2) Demonstrate improved performance over orthogonal RNNs on a more realistic task requiring

ongoing computation and output: the Penn Tree Bank character-level benchmark.
We compare our nnRNN model to the following architectures: vanilla RNN (RNN), the orthogonally
initialized RNN (RNN-orth) (Henaff et al., 2016), the Efficient Unitary RNN (EURNN) (Mhammedi
et al., 2017), and the Exponential RNN (expRNN) (Lezcano-Casado and Martínez-Rubio, 2019).
Our goal is to establish performance for non-gated models, but we include LSTM (Hochreiter and
Schmidhuber, 1997) for reference. For comparison, models are separately matched in the number of
hidden units and number of parameters. Every training run was tuned with a thorough optimization
hyper-parameter search. Model training and task setup are detailed in the SM§A.1.
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Fig. 2. Holding the number N of hidden units constant, model performance is plotted for the copy task
(T=200, left; cross-entropy loss; N ∼ 128) and for the permuted sequential MNIST task (right; accuracy;
N ∼ 512). Shading indicates one standard error of the mean.

3.6.1. Copy task & Permuted sequential MNIST

The copy task, introduced in Hochreiter and Schmidhuber (1997), requires that a model read
a sequence of inputs, wait for some delay T (here we use T = 200), and then output the same
sequence. Fig. 2 shows the cross entropy of each tested with N = 128 hidden units. We see little
difference if we match the number of parameters with ∼ 18.9K (see Fig. 1 in SM§A.1.2). For
reference, a model that simply predicts a constant set of output tokens for every input sequence
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is expected to achieve a baseline loss of 0.095. As shown in Henaff et al. (2016), an orthogonal
RNN is an optimal solution for the copy task. Indeed, the LSTM struggled to solve the task and
RNN failed completely, unlike all orthogonal RNNs who learn to solve at very high performance
very quickly. The proposed nnRNN matched the performance of orthogonal RNNs, as well as best
training timescales.

Sequential MNIST (Le et al., 2015) requires a model to classify an MNIST digit after reading
the digit image one pixel at a time. The pixels are permuted in order to increase the time delay
between inter-dependent pixels, making the task harder. Fig. 2 shows mean validation accuracy of
each tested model with with N = 512 hidden units (see Fig. 1 in SM§A.1.2 for parameter match).
As with the copy task, the nnRNN matches orthogonal RNNs in performance, whereas RNN and
LSTM show lesser performances.

3.6.2. Penn Tree Bank (PTB) character-level prediction

Character level language modelling with the Penn Treebank Corpus (PTB) (Marcus et al., 1993)
consists of predicting the next character at each character in a sequence of text (see SM§A.1.3 for
test accuracy). We compare the performance of different models on this task in Table 1 in terms of
test mean bits per character (BPC), where lower BPC indicates better performance. We compare
truncated backpropagation through time over 150 time steps and over 300 time steps.

Test Bit per Character (BPC)
Fixed # params (∼1.32M) Fixed # hidden units (N = 1024)

Model TP T B = 150 TP T B = 300 TP T B = 150 TP T B = 300
RNN 2.89 ± 0.002 2.90 ± 0.0016 2.89 ± 0.002 2.90 ± 0.002

RNN-orth 1.62 ± 0.004 1.66 ± 0.006 1.62 ± 0.004 1.66 ± 0.006
EURNN 1.61 ± 0.001 1.62 ± 0.001 1.69 ± 0.001 1.68 ± 0.001
expRNN 1.49 ± 0.008 1.52 ± 0.001 1.51 ± 0.005 1.55 ± 0.001
nnRNN 1.47 ± 0.003 1.49 ± 0.002 1.47 ± 0.003 1.49 ± 0.002

Table 1. PTB test performance: Bit per Character (BPC), for sequence lengths TP T B = 150, 300.
Two comparisons across models shown: fixed number of parameters (left), and fixed number of
hidden units (right). Error range indicates standard error of the mean.

In contrast to the copy and psMNIST tasks (see §3.6.1), the PTB task requires online computation
across several inputs received in the past. Furthermore, it is a task that demands an output from the
network at each time step, as opposed to a prompted one. These ingredients are not particularly
well-suited for orthogonal transformations since it is not enough to simply keep inputs in memory or
integrate input paths to a classification outcome, the network must transform past inputs to compute
a probability distribution. Gated networks are well-suited for such tasks, and we could get an LSTM
with N = 1024 hidden units to achieve 1.37 ± 0.003 BPC (see §3.7 for a discussion).

Importantly, without the use of gating mechanisms, our nnRNN outperformed all other models
we tested. To our knowledge, it also surpasses all reported performances for other non-gated
models. While the performance gap to expRNN (the state-of-the-art orthogonal RNN) is modest for
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equal number of parameters and shorter time scale (TP T B = 150), it appreciatively improves for
TP T B = 300. Where the nnRNN shines is for equal numbers of hidden units, where the performance
gap to expRNN is much greater. This suggests two things (i) the nnRNN improves propagation
of meaningful signals over longer time scales, and (ii) it’s connectivity structure provides superior
expressivity for a fixed number of neurons, a desirable feature for efficient model deployment. In the
next section, we explore the structure of trained nnRNN weights to illustrate that the mechanisms
responsible for this performance gain are consistent with the arguments presented in §3.4.

3.6.3. Analysis of learned connectivity structure
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Fig. 3. Learned Θs show decomposition into Λ and T . Elements of learned Θ matrix entries for copy task (a)
are concentrated on the diagonal, and distributed in the lower triangle for the PTB task (b). Insets in (a) and
(b) show the distribution of eigenvalues angles θi (c.f. Eq. 3.5). (c) The mean magnitude of entries along the
kth sub-diagonal of the lower triangle in (b) shows both a delay-line and lower triangle component. Inset:
the distribution of entry magnitudes along the delay line is bimodal from its two contributions: the cosine of
uniformily distributed angles, and the relatively small, but significant pure delay line entries.

To validate the theoretical arguments in favor of non-normal dynamics presented in §3.4, we
take a look at the connectivity structure that emerges from our training procedure (see §3.5). Fig. 3
(and 2 in SM§A.5) shows the triangular Schur form Θ = Λ + T of the recurrent connectivity matrix
V = PΘP⊤, at the end of training. For the copy task, Θ is practically composed of 2× 2 rotation
blocks along its diagonal (i.e. T = 0). This indicates that the learned dynamics are normal, and
orthogonal. In contrast, for the PTB task we find that the lower triangular part T shows a lot of
structure, indicating that non-normal transient dynamics are used to solve the prediction task.

The distributions of elements of T away from the diagonal highlights the nature of the tasks.
The network distributes the angles roughly uniformly in the case of the copy task, consistent with
the explicit optimal solution that involves such a distribution of rotations (Henaff et al., 2016). For
the PTB task however, the angles strongly align, promoting the delay-line motif in Θ, shown in §3.4
to be optimal for the information propagation useful for character prediction. This is more clearly
demonstrated by the mean absolute value of entries away from the diagonal, shown in Fig. 3. The
rest of the triangle also shows structure, consistent with our proof that the lower triangle and delay
line can jointly contribute to information propagation.

68



In summary, these findings indicate that when tasks are well-suited for isometric transformations
(e.g. storing things in memory for later recall) the nnRNN easily learns to eliminate non-normal
dynamics and restricts itself to the set of orthogonal matrices. Moreover, it does so without any
penalty on learning speed, as shown in Fig. 2. However, when tasks require online computations,
non-normal dynamics come into play and enable transient activity to be shaped for computations.

Lastly, as already discussed in §3.4.3, the expressivity afforded by non-normality must come
with a trade-off between maintaining the eigen and singular spectra "close" to the unit circle,
balancing control over exponential vanishing and polynomial exploding gradients respectively.
This fact remains true for any parametrization of non-normal matrices, including the SVD used in
spectral RNN Zhang et al. (2018). The nnRNN is naturally suited to target this balance by explicitly
allowing regularization over normal and non-normal parts of a matrix, and enabling the optimizer to
find that trade-off. This explains why we find that allowing eigenvalues to deviate slightly from the
unit circle throughout training (regularization on γ), along with weight decay for the non-normal
part, yields the best results with most stable training. Further evidence of this balancing mechanism
is found in trained matrices (see Fig. 3). For the PTB task, non-normal structure emerges and the
mean eigenvalue norm is balanced at γ̄ ∼ 0.958. In contrast for the copy task, matrices remain
normal and γ̄ ∼ 1. See SM§A.6 for additional experiments with fixed γ further outlining their role
in this trade-off.

3.7. Discussion
With the nnRNN, we showed that augmenting orthogonal recurrent connectivity matrices with

non-normal terms increases the flexibility of a recurrent network. We compared the nnRNN’s
performance to several other recurrent models on distinct tasks; some that are well suited for
orthogonal RNNs, and another that targets their limitations. We find that non-normal structure
affords two distinct improvements for nnRNNs:

(1) Preservation of advantages from purely orthogonal RNNs (long-term gradient propagation;
fast learning on tasks involving long-term memory)

(2) Compared to orthogonal RNNs, increased expressivity on tasks requiring online computa-
tions thanks to transient dynamics.

To better understand why this is, we derived analytical expressions that outline the role of
non-normal dynamics that were corroborated by an analysis of nnRNN connectivity structure after
training. Importantly, the nnRNN leverages existing optimization algorithms for orthogonal matrices
with increased scope, all the while retaining learning speed.

The principal contribution of this paper is not to report major gains in performance as measured
by tests, but rather to convincingly outline a promising novel direction for spectrally constrained
RNNs. This spans the expressivity and ability to handle long-term dependencies of orthogonal
RNNs on one hand, and completely unconstrained RNNs on the other. The nnRNN is a first step
toward a trainable RNN parametrization where regularization over the eigenspectrum is readily
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available while conserving the flexibility of arbitrary eigenbases. This allows explicit control
over quantities with direct impact on gradient propagation and expressivity, providing a promising
RNN toolbox. Unlike the orthogonal RNNs present in our tests, which have benefited over the
years from a series of algorithmic improvements, our nnRNN is basic in its implementation, and
presents a number of areas for direct improvement. These include (i) using a complex-valued
parametrization as in Arjovsky et al. (2016), (ii) exploring better initializations, and (iii) identifying
helpful regularization schemes for the non-normal part. Beyond these, we should mention that the
Schur decomposition presents implicit instabilities which can jeopardize training when eigenbases
become degenerate (see SM§A.4). Simple perturbation schemes to prevent this should greatly
improve performance.

Finally, we acknowledge that on a number of time-dependent tasks, gated recurrent networks
such as the LSTM or the GRU (Jing et al., 2019) have clear advantages (see also Tallec and Ollivier
(2018) for a derivation of gated dynamics from first principles). Building on these, there is promising
evidence that combining orthogonal connectivity with gates can greatly help learning (Jing et al.,
2019). This further motivates the development of spectrally constrained recurrent architectures to
be combined with gating, thereby optimizing the efficiency of gradient propagation and expressivity
with both explicit mechanisms, and implicit structure. Ongoing work in this direction is under way,
leveraging our nnRNN findings.
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Chapter 4

Untangling tradeoffs between recurrence and
self-attention in neural networks

This chapter is based on a NeurIPS 2020 paper. (Kerg et al., 2020)

4.1. Prologue to the Second Article
4.1.1. Article Details

Title: Untangling tradeoffs between recurrence and self-attention in neural networks
Authors: Giancarlo Kerg1,2,, Bhargav Kanuparthi 1,2,∗, Anirudh Goyal 1,2, Kyle Goyette 1,2,3,

Yoshua Bengio1,2,4, Guillaume Lajoie1,2,5

∗ Indicates first authors. Ordering determined by coin flip.
Affiliations:

1: Mila - Quebec AI Institute, Canada
2: Université de Montréal, Département d’Informatique et Recherche Opérationelle, Montreal,
Canada
3: Université de Montréal, CIRRELT, Montreal, Canada
4: CIFAR senior fellow
5: Université de Montréal, Département de Mathématiques et Statistiques, Montreal, Canada

4.1.2. Contributions

Giancarlo Kerg derived the entire formal analysis including all theorems, propositions and proofs.
Further Giancarlo Kerg also came up with the relevancy screening mechanism, after plotting the
attention heat diagrams. Bhargav Kanuparthi ran all large scale experiments, did all hyperparameter
tuning and produced the majority of the code. Giancarlo Kerg led the writing of the article.



4.1.3. Paper Abstract

Attention and self-attention mechanisms, are now central to state-of-the-art deep learning on
sequential tasks. However, most recent progress hinges on heuristic approaches with limited
understanding of attention’s role in model optimization and computation, and rely on considerable
memory and computational resources that scale poorly. In this work, we present a formal analysis
of how self-attention affects gradient propagation in recurrent networks, and prove that it mitigates
the problem of vanishing gradients when trying to capture long-term dependencies by establishing
concrete bounds for gradient norms. Building on these results, we propose a relevancy screening
mechanism, inspired by the cognitive process of memory consolidation, that allows for a scalable use
of sparse self-attention with recurrence. While providing guarantees to avoid vanishing gradients,
we use simple numerical experiments to demonstrate the tradeoffs in performance and computational
resources by efficiently balancing attention and recurrence. Based on our results, we propose a
concrete direction of research to improve scalability of attentive networks.

4.2. Introduction
We live in a world where most of the information takes a sequential form, largely because it is

delivered over time. Performing computations on streams of sequential inputs requires extracting
relevant temporal dependencies and learning to recognize patterns across several timescales. Humans
can effortlessly make associations relating events stored in memory which are far from each other
in time and thus, capture long-term dependencies.

Historically, recurrent neural networks (RNNs) have been the deep network architecture of
choice for this type of task since, just like neural circuits in the brain, they enable dynamics that can
be shaped to interact with input streams. However, RNNs (including gated RNNs Schmidhuber and
Hochreiter (1997); Cho et al. (2014b)) still struggle with large timescales as their iterative nature
leads to unstable information propagation Bengio et al. (1994); Pascanu et al. (2013a); Schmidhuber
and Hochreiter (1997); Hochreiter (1991).This is because most standard RNNs rely on their current
state ht, a vector of fixed dimension, to represent a summary of relevant past information. Indeed,
Bengio et al. (1994) showed that without making additional assumptions, storing information
in a fixed-size state vector in a stable way necessarily leads to vanishing gradients when back-
propagating through time (see also (Hochreiter, 1991)). Several attempts have been made to augment
RNN dynamics with external memory to mitigate these issues Sukhbaatar et al. (2015); Graves et al.
(2014); Santoro et al. (2018); Graves et al. (2016), but it is only recently that access to externally
stored information has become effective with the introduction of attention, and more particularly
soft attention mechanisms Bahdanau et al. (2014). Attention provides a way by which a system can
dynamically access past states and inputs across several timescales, bypassing the need of sequential
propagation and ignoring irrelevant information (or distractor information). There is substantial
empirical evidence that attention, especially self-attention (Vaswani et al. (2017); Ke et al. (2018)),
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is very helpful to improve learning and computations over long-term dependencies. However, to the
best of our knowledge, there is currently limited understanding of gradient scaling properties in the
presence of attention. Moreover, attending over long sequences requires to hold inputs and/or past
states in memory, a process that typically scales quadratically with sequence length.

Much like work from the ’90s established formal results for gradient exploding/vanishing in
deep/recurrent networks Bengio et al. (1994), we believe it is crucial to establish similar theoretical
tools for attention mechanisms, as these methods are under intense development where scalability
and complexity are important issues. In this paper, we contribute to this direction with a formal
analysis of gradient propagation in self-attentive systems which precisely quantify trade-offs between
recurrence and attention, offering valuable guarantees for attention mechanism development.
Concretely exploiting these theorems, we propose a simple family of screening mechanisms to
maximally reduce computational complexity and memory usage, while simultaneously maintaining
good gradient propagation over large time scales. Using simple tasks for their ease of interpretation,
and their variety of computational demands, we illustrate the efficacy of this approach in numerical
experiments.

The remainder of this paper is as follows. In Section §4.3, we give a brief outline of related
cognitive processes and neural network mechanisms. In §4.4, we present our central results:
asymptotic guarantees for gradient propagation in self-attentive recurrent networks. To illustrate
how to exploit these guarantees, in §4.5, we showcase a simple relevancy screening mechanism
that aims to efficiently consolidate relevant memory, reducing the size of the computational graph
from quadratic to linear in sequence length. Finally, in §4.6, we compare various recurrent and
attention models with our proposed relevancy screening mechanism on a series of simple numerical
experiments, while, in §4.7, we analyze their gradient propagation properties together with their
GPU usage.

4.3. Background
To perform complex tasks, our brains rely on mechanisms to encode and retrieve information to

and from memory (Zacks et al., 2007; Radvansky and Zacks, 2017).
In contrast, standard RNNs follow rigid sequential dynamics as they are parametric i.e with

a fixed-size state vector. Self-attention methods can overcome this limitation by giving access
to previous past states for computing the next state. For the sake of the discussion, we call such
RNNs, which are augmented by the memory of the past states as semi-parametric RNNs. The
use of soft-attention (Bahdanau et al., 2014) in such models has improved performance on many
tasks such as reading comprehension, abstractive summarization, textual entailment and learning
task-independent sentence representations (Parikh et al., 2016; Lin et al., 2017; Paulus et al., 2017;
Yang et al., 2019) as well as in the self-supervised training of extremely large language models
(Devlin et al., 2018; Radford et al., 2019) due to their ability to handle long-term dependencies.
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Intriguingly, the most notable advances in the use of attention is in purely attention-based
systems such as the Transformer Vaswani et al. (2017), which completely foregoes recurrence and
inspired some of the work listed above. While the performance of these systems is impressive, their
memory and computation requirements grows quadratically with the total sequence length.

To address this issue, many variants that aim to "sparsify" the attention matrix have been
proposed. Notably, Ke et al. (2018) developed the Sparse Attentive Backtracking model (SAB),
a self-attentive Long Short-Term Memory network (LSTM) Hochreiter and Schmidhuber (1997)
that leverages sparsity by selecting only the top-k states in memory based on an attention score,
propagating gradients only to those chosen hidden states. Recently, Zhao et al. (2019) propose to use
a similar top-k attention, and Child et al. (2019) introduce sparse masks which attends to roughly
√
n locations in memory, implementing explicit selection methods for Transformers. Reformer

models (Kitaev et al., 2020) replace the dot-product attention by locality-sensitive hashing, changing
its complexity from O(T 2) to O(T ), where T is the sequence length. Finally, TransformerXL
(Dai et al., 2019) enables learning dependencies beyond a fixed length without disrupting temporal
coherence and has resulted in state of the art performance in language models.

Still, most of these approaches naively sub-sample input streams for memory storage. Our brains
on the other hand, seem to select relevant information from the recent past to commit to long term
memory based on their relevancy, a process often referred to as memory consolidation Alberini et al.
(2013). Attempts at mimicking this sparse temporal selectivity process has shown great promise in
a variety of contexts (Graves et al., 2014; Munkhdalai et al., 2019; Harutyunyan et al., 2019; Goyal
et al., 2019), and our work aims to formalize this idea for self-attentive recurrent networks.

4.4. Theoretical analysis of gradient propagation
In this section, we analyze the influence of self-attention onto gradient propagation in recurrent

networks with self-attention. In order to do so let us first recall the equations of a recurrent
neural network with self-attention. We note that even though we are using "vanilla RNNs" in the
formulations of our results, any recurrent network can take its place (see §4.6 where we use LSTMs
in the experiments). Let xt ∈ Rm be the input and ht ∈ Rn be the hidden state at time step t,
satisfying the update equation for all t ≥ 1,

ht+1 = ϕ(V st + Uxt+1 + b) (4.4.1)

st = f(ht,ct) (4.4.2)

where ϕ is a non-linearity, f : Rn × Rn → Rn, V ∈ Rn×n, U ∈ Rn×m, b ∈ Rn and ct = α1,th1 +
α2,th2 + . . . + αt,tht with αi,t := exp{(ei,t)}∑t

j=1 exp{(ej,t)}
and ei,t := a(st−1,hi), where a : Rn × Rn → Rn

is the attention alignment function. Throughout, we assume training is done via gradient descent of
a cost function L using back-propagation.
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Oftentimes, one uses st = f(ht,ct) = ht + ct (but concatenation would be more general), and
for all t > 1 and 1 ≤ j ≤ t, a(st−1,hj) = vT

a · tanh (Wa · st−1 + Ua · hj), where va ∈ Rn, and
Wa,Ua ∈ Rn×n. The latter choice for alignment function is sometimes referred to as "additive
self-attention" and was used in the original paper Bahdanau et al. (2014). We emphasize that the
results presented in this section hold independently of the choice of the alignment function as, we
will discuss later in this section. Lastly, while results presented below are relatively succinct, their
derivations are involved and we refer the interested reader to the Appendix for detailed proofs.

4.4.1. Preliminaries

Our goal in this section is to establish formal propagation rules for a system where multiple
paths of signal propagation are possible. We would like to understand the relationship between
skip connections (those coming from self-attention) and recurrent connections, as well as how the
interplay between the two leads to good gradient propagation. In order to achieve this, we seek
to analyze the asymptotic behaviour of ∥∇htL∥ = ∥

(
dsT

dht

)T
∇sT

L∥, as T → ∞. We accomplish
this by decomposing ∇htL with respect to all possible gradient backpropagation paths, or in other
words, by decomposing dsT

dht
into sums of products of Jacobian matrices corresponding to those

gradient paths, using Proposition B.1.7.
Proposition 4.4.1. For all t ≥ 1, k ≥ j ≥ 0, k′ ≥ 0, let E(t)

k′ = ∂st+k′

∂ht
, and F (t)

k+1,j = ∂st+k+1
∂ht+j+1

·Jt+j +
1j=k · ∂st+k+1

∂st+k
, with Jt+j the Jacobian matrix dht+j+1

dst+j
. Then, we have

dst+k

dht

=
k∑

s=0
ξ̄

(t)
0:k(s) (4.4.3)

where for all s ≥ 1, ξ̄(t)
0:k(s) = ∑

0≤i1<...<is<k F
(t)
k,is
·F (t)

is,is−1 · . . . ·F
(t)
i2,i1 ·E

(t)
i1 and where ξ̄(t)

0:k(0) = E
(t)
k .

(Proof in Appendix B.1.2, Proposition B.1.7)
Here, each term F

(t)
k,is
·F (t)

is,is−1 · . . . ·F
(t)
i2,i1 ·E

(t)
i1 corresponds to exactly one gradient path involving

exactly s+ 1 skip connections going from t to t+ k, via the s hidden states ht+is+1, . . . , ht+i1+1.
In particular, ξ̄(t)

0:k(s) is the sum of all terms containing exactly s Jacobian matrices J , and thus the
larger s is, the more ξ̄(t)

0:k(s) is prone to vanishing.
Intuition: In order to find paths that are not vanishing as T →∞, we want to find gradient paths

with: (i) a bounded path length s so that the number of Jacobian matrices involved in the product
is limited. (ii) attention scores that are sufficiently bounded away from 0, so that the resulting
product of attention scores is sufficiently bounded away from 0 as well. In order to see how exactly
the attention weights come into play via matrices E and F , we refer to Proposition B.1.12 from
Appendix B.1.2.

Defintions: Let us fix an integer t ≥ 1, an integer s ∈ {1,2, . . . ,T − t}, and an ordered set of
indices i1,i2, . . . , is ∈ {0,1, . . . ,T − t− 1}, verifying i1 ≤ i2 ≤ . . . ≤ is.
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• For sequences {g(T )}T ≥1 and {f(T )}T ≥1, we say that f(T ) = Ω(g(T )) if there exists
positive constants c and T0 such that f(T ) ≥ c · g(T ) for all T ≥ T0.
• At time t, we call a past hidden state hi a relevant event if the attention weight αi,t is

sufficiently bounded away from zero.
• We call the s-tuple (i1,i2, . . . ,is) a dependency chain γ of depth s, as it induces a gradient

backpropagation path going via the s hidden states ht+is+1, . . . , ht+i1+1.
• We call dependency depth the smallest depth among all dependency chains where the

product of the corresponding attention scores is Ω(1) as T →∞.
The central message is that if the dependency depth is bounded from above and sufficiently

small, then we mitigate gradient vanishing. As we see below, task structure introduces different
ways in which this may happen. We now present a formal treatment for specific cases, and lay the
groundwork to take advantage of this structure during learning.

4.4.2. Uniform relevance case

Suppose each state has equal relevance in some task. What can be said about gradient prop-
agation? This translates to having each attention weight αi,t = 1/t for all t ≥ i ≥ 1. We then
have dependency chains of depth 1 but with vanishing rate Ω(1/T ), as formalized in the following
theorem (cf. §B.1.3)
Theorem 4.4.2. Let ht be the hidden state at time t of a vanilla RNN with uniform attention, under
mild assumptions on the connectivity matrix V , and trained with respect to a loss L, then if T is the
total sequence length, we have

∥∇htL∥ = Ω(1/T ) (4.4.4)

as T →∞. (proof in Appendix §B.1.3, Theorem B.1.34)
This corresponds to the case where all past events contribute equally error signals. We also note

that this result is independent of the choice of the alignment function a (cf. Remark B.1.19 in the
Appendix §B.1.3).

Intuition: As a "worst case scenario" Theorem 4.4.2 reveals the true trade-off of early self-
attentive recurrent networks Bahdanau et al. (2014). On one hand, the lower bound obtained on
gradient norm is substantially better than in a vanilla RNN without attention, where vanishing
happens at an exponential rate, as opposed to a polynomial one here. This situation does not
lend itself to sparse memory approaches as all events need to be held in memory, thus conserving
quadratically scaling complexity. In contrast many inputs and tasks do not call for uniform attention
and naturally lend themselves to sparse dependency paths for computation. The next case treats this
situation. Nevertheless, this uniform attention bound is applicable in practice for two reasons: (1)
typically, attention weights are initialized uniformly, and early training may result in gradients best
described by this regime. (2) We experimentally verified that gradient propagation remains stable
throughout training for a fully self-attentive RNN, where this bound is relevant, see Fig 2 (§4.7).
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Fig. 1. Magnitude of attention weights between states in a trained, fully recurrent and fully attentive model (Bahdanau
et al. (2014)). Each pixel in the lower triangle corresponds to the attention weight of the skip connection departing from
the the state marked on the y-axis to the state marked on the x-axis. Left shows Copy task, right shows Denoise task.
Task details in § 4.6

4.4.3. Sparse relevance case with bounded dependency depth

Now let us look at a more realistic case where only a sparse subset of past states are relevant for
the task at hand, and the gradient needs to access those states efficiently for good learning. Figure 1
illustrates this scenario by showing the attention scores for two input examples computed by a
simple self-attentive model Bahdanau et al. (2014), trained on Copy and Denoise tasks respectively
(see § 4.6). This structure introduces the possibility to impose sparsity in the computational graph,
and to limit memory use. With these constraints in mind, the goal is to engineer dependency chains
that enable best gradient propagation between these relevant events.

Notation: We consider a κ-sparse attention mechanism of dependency depth d.
• Sparsity coefficient: κ ≥ 1. Borrowing from the SAB model Ke et al. (2018), at each time

step, attention is allowed at most κ relevant events from the past. That is, for any t there are
at most κ indices i such that αi,t ̸= 0, which gives rise to a sparse temporal segmentation
via the most relevant events.
• Maximal dependency depth: d. This is the maximal dependency depth across all time steps
t.

Theorem 4.4.3. Let ht be the hidden state at time t of a vanilla RNN with κ-sparse uniform attention
mechanism of maximal dependency depth d, and under mild assumptions on the connectivity matrix
V , then

∥∇htL∥ = Ω(1/κd) (4.4.5)

as T →∞. (proof in Appendix §B.1.4, Theorem B.1.39)
Similarly to uniform case, Theorem 4.4.3 is independent of the choice of the alignment function

a (cf. remark B.1.37 in the appendix).
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Intuition: Notice the dependency depth d affects the lower bound exponentially, while κ
affects it polynomially. In other words, the number of relevant events attended to at each time step
contributes far less to gradient vanishing than the number of events in the longest dependency chain.
Theorem 4.4.3 outlines the tradeoff between computational complexity as T → ∞ and gradient
propagation when balancing attention and recurrence. Attending directly to many relevant past
events reduces d and ensures good gradients at the expense of the complexity cost associated with
storing past events and computing attention scores (the strategy employed by Transformers Vaswani
et al. (2017)). On the other hand, enforcing small sparsity coefficient κ helps keep computational
complexity low (O(κT )), but forces the error gradient through recurrent paths, thereby augmenting
the dependency depth d and degrading gradient signal strength. Importantly, κ and d co-vary in
ways that depend on the task’s underlying relevancy structure, a point that is explained in detail in
Appendix §B.3 (See Fig 1). In the extreme case where κ and d are assumed to be bounded, we have
Ω(1/κd) = Ω(1), and thus we mitigate gradient vanishing. In other situations where κ and d scale
in other ways, an explicit sparsification strategy can be derived by exploiting Theorem 4.4.3, as we
illustrate in the next section.

4.5. Relevancy screening mechanism
Equipped with the results from the previous section, we wish to refine heuristics that strike a

balance between good gradient propagation and computational/memory complexity. Building on
the SAB model Ke et al. (2018), we remark that although sparse attention attends to the top-κ events
at any point in time, attention scores must be computed on all events stored in memory to extract
the κ best ones. Thus, the resource bottleneck is not controlled by κ, but rather by the number of
stored events in memory. In SAB, there is a naive attempt to control this number by only recording
network states at each 10 time steps. However, this reduces the size of the computational graph
only by a constant factor, but retains O(T 2) complexity. In contrast, Theorem 4.4.3 tells us that
the only important events to conserve for good gradient propagation are the relevant ones (also see
Remark B.1.17 in Appendix §B.1.2). Thus, we propose to reduce complexity while maintaining
good gradient propagation by selectively storing events that are predicted to be relevant in the future,
using a relevancy screening mechanism.

The idea is simple: devise a screening function C(i) which estimates the future relevance of hi,
and store selected events in a relevant set Rt = {hi|i < t ∧ C(i) = True} for future attention. In
principle, one can explicitly control how Rt grows with t, thus mitigating the complexity scaling
outlined above.

Here, C(i) could take many forms, the best of which depends on task structure. In what
follows, we present an example screening mechanism meant to showcase the lessons learned from
Theorem 4.4.3, but we refer the interested reader to §4.8 for further possibilities.
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We take inspiration from memory consolidation principles in human cognition Alberini et al.
(2013), which defines the transfer of events from short-term to long-term memory. We remark
that for some tasks such as those depicted in Figure 1, relevance varies very little across time. To
implement relevancy screening for such tasks, at every time step t we attend to two subsets of the
past hidden states. We call the first subset a short-term buffer St = {ht−ν , ht−ν+1, .., ht−1} which
consists of the hidden states of the last ν time steps, while the second subset is the relevant set
Rt. We compute the relevance score at time step i, β(i) = ∑i+ν−1

j=i αi,j , measuring the integrated
attention scores over our short-term buffer St. More precisely, C(i) is satisfied if β(i) is part of
the top ρ relevance scores when compared to all previously observed hidden states, where ρ is a
fixed hyper-parameter satisfying ρ ≥ |Rt| for all t. The pseudo-code in Algorithm 1 describes the
screening mechanisms and the interaction between the short-term buffer St and a finite size relevant
set Rt. ’.replaceWith()’ is a function replacing the hidden state with the lowest relevance score by
the hidden state in the argument.

Algorithm 1 Relevancy Screening

1: procedure: RelRNN(st−1,xt)
Require: Previous macro-state - st−1

Require: Input - xt, ν > 0, ρ > 0
Require: Short-term buffer s(i)

t−1 ∈ St−1

Require: Relevant set r(i)
t−1 ∈ Rt−1

2: ht ← ϕ(V st−1 + Uxt + b)
3: St = St−1.add(ht)
4: if t− ν > 0 then
5: St = St.remove(ht−ν)

6: if t− ρ > 0 and C(t− ρ) = True then
7: Rt = Rt−1.replaceWith(ht−ρ)

8: Mt = [St, Rt]
9: for all m(i) ∈Mt do

10: z̃(i) ← vT
a · tanh (Wast−1 + Uam

(i))
11: z ← softmax(z̃)
12: st = ht +∑

i z
(i)m(i)

13: return st

To see how the relevancy screening mech-
anism is grounded in the theory developed in
§4.4, note that the sets St and Rt give rise to a
sparse attention mechanism with sparsity co-
efficient κ satisfying κ = ν + ρ ≥ |St|+ |Rt|.
Hence, memory complexity is constant while
the O(T 2) bottleneck of computational com-
plexity is replaced by O((ρ+ ν) ·T ) = O(T ).
Lastly, applying Theorem 4.4.3, we get the
following guarantee for all t ≥ 0: ∥∇htL∥ =
Ω(1/(ρ+ ν)d) as T →∞. Thus the choices
of ν and ρ not only directly impact computa-
tional complexity and gradient propagation,
but also indirectly influence gradient propaga-
tion via the implicit effect of κ = ν + ρ on
d as already discussed in §4.4. Finally, as al-
ready mentioned, see Fig 1 in Appendix §B.3,
where we perform an experimental trade-off
analysis between κ and d by tweaking ρ and
ν in the relevancy screening mechanism.

4.6. Experiments
Before describing experiments, we make a few remarks. First, we stress that Relevancy

Screening can be applied to any semi-parametric attentive model but we refer to the version presented
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below, which uses an RNN/LSTM base, as RelRNN/RelLSTM ("Relevance RNN /LSTM"). Second,
our objective is not to find state-of-the-art performance but to highlight the advantages of event
relevancy and selective sparsity. Finally, we note that relevancy-based sparsity does not necessarily
improve performance over fully attentive models, but rather allows efficient and scalable usage. As
we show below, RelRNN and RelLSTM perform almost identically to other self-attentive recurrent
models (e.g. Bahdanau et al. (2014); Ke et al. (2018)) on simple tasks, but use considerably less
memory and compute complexity. In what follows, we denote MemRNN/MemLSTM for vanilla
self-attention RNN/LSTM as defined in Bahdanau et al. (2014). We also refer to Appendices §B.3,
§B.2, §B.4 for additional experimental results and implementation details.

4.6.1. Tasks with sparse dependency chains

A good stereotypical task type that captures sparse sequences of important events are memoriza-
tion tasks. Here, the network has to memorize a sequence of relevant characters presented among
several non-relevant ones, store it for some given time delay and output them in the same order as
they were read towards the end of the sequence.

Copy task (Hochreiter and Schmidhuber, 1997): The characters to be copied are presented in
the first 10 time steps, then must be outputted after a long delay of T time steps (see full description
in Arjovsky et al. (2016)). Thus, all the relevant events occur in the first 10 time steps. This can be
corroborated by the attention score found in Figure 1 which was generated using full self-attention.
Henaff et al. (2016) show that orthogonal RNNs (orth-RNN) provide an optimal solution. We also
consider expRNN (Casado and Martínez-Rubio, 2019) which does optimization in the unitary space
and is so far the best purely performing recurrent model for large time delays for this task.

Table 2 (Appendix §B.4) reports test performances of orth-RNN, expRNN, MemRNN, SAB,
RelRNN and RelLSTM for T = {100, 200, 300, 500, 1000, 2000} on the Copy Task. We find that
orth-RNN solves this task up to T = 500, but that accuracy decays beyond that point, similarly
to LSTM. RelRNN, RelLSTM, SAB and expRNN perfectly solve this task with 100% accuracy
for all T , while Fig 2 in Appendix §B.4 shows that RelRNN learn copy and denoise tasks with
significantly fewer number of updates as compared to other baselines. MemRNN solves this task
until T = 100 but overflows memory (OOM) afterwards.

Transfer Copy task: An important advantage of sparse attentive recurrent models such as
RelRNN is that of generalization. This is illustrated by the Transfer Copy scores (Hochreiter and
Schmidhuber, 1997) where models are trained on Copy task for T = 100 and evaluated for T > 100.
Table 1 shows results for the models listed above, in addition to h-detach (Kanuparthi et al., 2019),
an LSTM-based model with improved gradient propagation. Importantly, where purely recurrent
networks performed well on the original task, all fail to transfer, with discrepancy growing with
T . As expected, MemRNN and SAB keep good performance but RelRNN outperforms them, with
almost perfect performance for all T . While both SAB and RelRNN use sparse memory storage
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Table 1. Results for Transfer Copy task.

T 100 200 400 2000 5000

orth-RNN 99% 4% 16% 10% 0%
expRNN 100% 86% 73% 58% 50%

MemRNN 99% 99% 99% 92% OOM
RelRNN 100% 99% 99% 99% 99%

LSTM 99% 64% 48% 19% 14%
h-detach 100% 91% 77% 51% 42%

SAB 99% 95% 95% 95% 95%
RelLSTM 100% 99% 99% 99% 99%

Table 2. Results for Denoise task.

T 100 300 500 1000 2000

orth-RNN 90% 71% 61% 29% 3%
expRNN 34% 25% 20% 16% 11%

MemRNN 99% 99% 99% 99% OOM
RelRNN 100% 99% 99% 99% 99%

LSTM 82% 41% 33% 21% 15%
GORU 92% 93% 91% 93% 73%
SAB 99% 99% 99% 99% 99%

RelLSTM 100% 99% 99% 99% 99%

and retrieval, the distinguishing factor is RelRNN’s use of relevancy screening, indicating it’s
importance for transfer. The performance of RelLSTM on Transfer Copy is exactly the same as
RelRNN.

Denoise task Jing et al. (2019): This generalizes the Copy task as the symbols that need to be
copied are now randomly distributed among the T time steps, requiring the model to selectively
pick the inputs that need to be copied. We test our method against all the previously mentioned
models in addition to GORU Jing et al. (2019) for various values of T (Table 2). RelLSTM performs
exactly as RelRNN and again, we see RelRNN maintain complete performance across all T values,
outperforming all purely recurrent models. MemRNN performs as RelRNN/RelLSTM but fails to
train due to memory overflow beyong T = 500.

4.6.2. Tasks with dense temporal dependencies

In contrast to sparse information found in the tasks above, we now illustrate RelRNN and
RelLSTM’s performance on tasks with densely distributed information on long sequences.

Here, we perform tests on pMNIST Le et al. (2015), a variant of MNIST LeCun and Cortes
(2010) where pixels are fed sequentially in a permuted order to the network, as well as character
level Penn Tree Bank corpus (PTB) (Marcus et al., 1993) where the next letter in a text needs to be
predicted.

See Table 3 for results. Implementation details and further test data found in Appendix §B.4,
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including attention heatmaps such as the ones found in Figure 1, showing dense attention for
RelRNN in both tasks. We note that gated RNNs such as LSTMs are known to perform well here,
and that orthogonal RNNs such as those tested here are also very good. The full attention model
(MemRNN) fails to train on the optimization setup used here for both tasks, again due to overflow
in memory.

4.7. Analysis

Table 3. PTB and pMNIST results.

PTB Task pMNIST
Model BPC Accuracy Accuracy

RNN 1.56 66% 90.4%
orth-RNN 1.53 66% 93.4%
expRNN 1.49 68% 96.6%
RelRNN 1.43 69% 92.8%

LSTM 1.36 73% 91.1%
h-detach - - 92.3%

SAB 1.37 - 94.2%
RelLSTM 1.36 73% 94.3%

In this section we analyze the maximal GPU us-
age and gradient norm of ∥∇htL∥ across time t for
the Denoise Task. All the models were run using
a NVIDIA TitanXP GPU and their peak usage was
recorded in order to quantify the amount of compu-
tational resources used for each of them. We varied
sequence length T from 200 to 2000 in order to mea-
sure the trend in the usage. To measure propagating
gradients as a function of t, we trained models on
T = 1000 and computed log ∥∇htL∥.

As illustrated in Figure 2 (center), we confirm
MemRNN scales quadratically with T , same as SAB
which shows an improvement but only by a constant
factor. We also confirm that RelLSTM scales linearly

with T similar to RNN and LSTM. Figure 2 (left) shows that the gradient norms for RNN explode
and for LSTM vanish as t increases. The gradient norms of all attention models were stable, as
expected from the results of Section §4.4. To better visualize the interplay between gradient norm
and GPU usage, Figure 2 (right) shows the final averaged log gradient norm against Max GPU usage
for different times T = {400, 600, 800}. As expected, purely recurrent models (RNN, LSTM) show
very little GPU usage differences across distinct T values, while their performance and gradients
degrade with increasing t. Note that the RNN’s gradients explode while the LSTM’s vanish, both
exponentially in t. Standard self attentive models (MemRNN, SAB) on the other hand, show
opposite trends, with stable gradients but GPU usage quadratically increasing in T . As expected
from Theorem 2 (§4.4), RelLSTM shows both stable gradients and stable GPU usage1.

The optimal trade-off between memory usage and good gradient propagation achieved by
RelLSTM highlights the importance of a dynamic memory that attempts to predict relevancy in
order to only store exactly those events that help with learning. We note the Denoise task has a small
number of relevant events and that not all tasks share this structure. Nevertheless, this experiment

1The measurements for both GPU usage and gradient norm are identical for both RelLSTM and RelRNN.
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Fig. 2. (Left) gradient norm plots of ∥∇htL∥ in log scale after training for Denoise Task with t ranging from 0 (latest
time step) to 1000 (furthest time step).(Center) Maximal GPU usage as a function of total sequence length T .(Right)
Mean log gradient norm v.s. Max GPU usage for T = 400,600,800. Model testing accuracy is 100% unless indicated
by marker label (see Table 2).

highlights how important resource gains can be made by shifting efforts from offsetting memory
growth by a constant factor, to a relevancy screening method.

4.8. Conclusion & Discussion
Our main contribution is a formal analysis of gradient propagation in self-attention RNNs, from

which we derive two quantities that are governing gradient propagation: sparsity and dependency
depth. Meanwhile we identify event relevancy as a key concept to efficiently scale attentive systems
to very long sequential computations. This is illustrated via a Relevancy Screening Mechanism,
inspired by the cognitive process of memory consolidation in the brain, that efficiently selects
network states, called relevant events, to be committed to long-term memory based on a screening
heuristic operating on a fixed-size short-term memory buffer. We showcase the benefits of this
mechanism in an attentive RNN and LSTM which we call RelRNN and RelLSTM respectively,
using simple but illustrative numerical experiments, and demonstrate the optimal trade-off between
memory usage and good gradient propagation it achieves.

As outlined in §4.4 and §4.5, this trade-off is a reflection of the task-specific balance between
sparsity and dependency depth parameters. While our proposed relevancy screening mechanism
exploits "local" attention scores (measured while events are in short-term memory buffer), we
acknowledge other types of relevancy could be formulated with heuristics better suited to distinct
environments. For instance, promising directions include leveraging predictive coding principles to
select "surprising events", or neural networks could be used to learn the screening function C(i) in
an end-to-end fashion.

Broader Impact
We provide a framework for researchers to shape gradient propagation and memory footprint in

self-attentive RNNs, which is helpful in tasks requiring ongoing online predictions that cannot be
based on future inputs (i.e. in an online sequential setting) and where long-term credit assignment is
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crucial, such as various RL tasks Harutyunyan et al. (2019); Hung et al. (2019). The added resource
gains can save GPU hours and thus have a positive environmental impact. Along this line, we firmly
believe that researchers should take environmental impact of model training seriously, and we are
hopeful that our work contributes to this direction.

Meanwhile, the theoretical tools provided in the proofs lay the ground for more theoretical work
on attentive systems to emerge in the future. More effective RNN models can amplify already
existing biases in RNN-based NLP systems through an increased exposure to bias. Finally, we
cannot exclude that the cognitive inductive bias we use to build our relevancy screening mechanism
may induce prediction quality disparity (e.g. in language modelling) because of the memory tokens
it throws away.
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Chapter 5

On Neural Architecture Inductive Biases for
Relational Tasks

This chapter is based on a NeurIPS 2022 submission (under review). (Kerg et al., 2022)

5.1. Prologue to the Third Article
5.1.1. Article Details

Title: On Neural Architecture Inductive Biases for Relational Tasks
Authors: Giancarlo Kerg1,2, Sarthak Mittal1,2, David Rolnick1,3,5, Yoshua Bengio1,2,4,5, Blake

Richards1,3,5, Guillaume Lajoie1,2,5

Affiliations:
1: Mila - Quebec AI Institute, Canada
2: Université de Montréal
3: McGill University
4: CIFAR Senior Fellow
5: CIFAR AI Chair

5.1.2. Contributions

Giancarlo Kerg produced most of the experiments, code and hyperparameter search. Giancarlo
Kerg came up with the full architecture of CoRelNet and CoRelNet-T, after running a series of
ablations on the ESBN architecture. Giancarlo Kerg also designed all newly developed tasks in this
paper and led the writing of the article.

5.1.3. Paper Abstract

Current deep learning approaches have shown good in-distribution generalization performance,
but struggle with out-of-distribution generalization. This is especially true in the case of tasks



involving abstract relations like recognizing rules in sequences, as we find in many intelligence tests.
Recent work has explored how forcing relational representations to remain distinct from sensory
representations, as it seems to be the case in the brain, can help artificial systems. Building on this
work, we further explore and formalize the advantages afforded by “partitioned” representations
of relations and sensory details, and how this inductive bias can help recompose learned relational
structure in newly encountered settings. We introduce a simple architecture based on similarity
scores which we name Compositional Relational Network (CoRelNet). Using this model, we
investigate a series of inductive biases that ensure abstract relations are learned and represented
distinctly from sensory data, and explore their effects on out-of-distribution generalization for a
series of relational psychophysics tasks. We find that simple architectural choices can outperform
existing models in out-of-distribution generalization. Together, these results show that partitioning
relational representations from other information streams may be a simple way to augment existing
network architectures’ robustness when performing out-of-distribution relational computations.

5.2. Introduction
Current deep learning systems have performed astonishingly well on a multitude of domains,

ranging from natural language (Devlin et al., 2018; Child et al., 2019; Dai et al., 2019) and
speech recognition (Pratap et al., 2019; Oord et al., 2016) to image classification (Dosovitskiy
et al., 2020; He et al., 2015). This progress has been obtained with extensive compute and data
(Brown et al., 2020). However, a line of research shows that deep learning models still struggle to
perform well in tasks that require abstract relational reasoning, especially in low data regimes and
out-of-distribution (OoD) settings (Webb et al., 2021; Kim and Linzen, 2020; Johnson et al., 2017;
Yi et al., 2019; Newman et al., 2020; Nogueira et al., 2021; Mittal et al., 2021; Ke et al., 2021).

A working hypothesis we explore here is that most artificial systems do not work well on
relational reasoning because they do not encode an explicit notion of relations between different
objects, and rather rely too much on representations of object features. There is a body of machine
learning approaches exploiting relational structure (Scarselli et al., 2008; Velicković et al., 2017;
Kipf et al., 2018; Battaglia et al., 2018; Bengio et al., 2019; Webb et al., 2020; Zhang et al.,
2019), but the majority of machine learning systems do not explicitly encode such relations. In
contrast, in our brains, relational dependencies across high-level entities form a key ingredient
to our understanding of the world and augment our ability to reason in potentially unseen scenarios
(Whittington et al., 2019), For example, the relationship between a parent and their child often
generalizes to different animal groups and thus explicit modeling of relationships between objects
could lead to better out-of-distribution (OoD) generalization, since a number of generic relation
types generalize over multiple domains.

Recently, there has been substantial work on attention-based systems (Bahdanau et al., 2014;
Luong et al., 2015; Vaswani et al., 2017; Hudson and Manning, 2018) that do compute a notion of
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similarity between objects, which can be understood as relations between said objects. For example,
transformers (Vaswani et al., 2017) compute multiple parallel relational connections between the
objects in a scene (Dosovitskiy et al., 2020; Parmar et al., 2018). However, the relational connections
computed by transformers are only used as a means to route information between different objects
(i.e. via attention scores), and they are not explicitly leveraged for predictions themselves. However,
some work does address this shortcoming by explicitly focusing on encoding relational information
between objects. One approach is to group objects with similar features, and to attend to these
groupings based on context (Santoro et al., 2017; Locatello et al., 2020; Santoro et al., 2018). This
has shown promising aptitudes, but suffers from a few issues such as scaling, and may generalize
poorly in OoD settings where group membership is not straightforward. Another approach, first
outlined by Webb et al. (2021) with the Emergent Symbols through Binding in Memory (ESBN)
method, leverages the abstract nature of relations (e.g. parent and child) by explicitly segregating
sensory information from relational encoding. While showcasing the importance of separate sensory
and relational encodings, ESBN also includes a number of architectural design choices that may or
may not be important for OoD generalization in relational tasks.

Here we build on previous relational approaches and explore in depth the inductive bias of
separating sensory information from abstract, relational representations. We do so using a model
that we call Compositional Relational Network (CoRelNet). CoRelNet uses the simplest possible
architecture to distill a minimal set of inductive biases that allow for OoD generalization in relational
tasks. Thanks to this simplicity, CoRelNet allows for considerably more robust performance and
generalization than several benchmarks, including ESBN. Through a series of numerical experiments
involving relational tasks on data with spurious features, scaled input size, and variable contexts,
we demonstrate and analyze why the simple act of building representations of similarity relations
between objects, irrespective of sensory encoding, is enough to improve a range of widely used
model architectures (e.g. multi-layer perceptrons and transformers). Thus, CoRelNet variants
confirm the importance of abstract relational encoding and helps to establish minimal inductive
biases to enhance other architectures. We find that focusing on these inductive biases to design new
and simpler architectures considerably improves OoD generalization across all settings tested, and
thus is a promising approach for other machine learning researchers to adopt.

5.3. Motivation and Related Work
Human cognition is heavily dependent on the ability to understand relationships between

different entities in the world, regardless of their sensory attributes (Kriete et al., 2013). This ability
allows us to excel at a number of tasks that require understanding of abstract rules that govern
the relationships between objects in a way that abstracts out the purely perceptual qualities of
those objects (see e.g. (Jones and Love, 2007)). For example, people can easily grasp that different
institutions can have the same organizational structure, e.g. different high schools will have a
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principal, teachers, and students with similar relations between these individuals regardless of the
specific people who hold those roles.

Ongoing work in neuroscience aims to understand how our brains represent such abstract
relationships. Early results identified cognitive maps (Tolman, 1948) and so-called relational
memories (Cohen and Eichenbaum, 1993) which seem to encode abstract relational information
invariant to some perceptual features (see also Sedda and Scarpina (2012); Goodale and Milner
(1992)). While this abstraction of relational knowledge from memory is not entirely disconnected
from sensory modality (Barsalou et al., 2003), there is evidence that isolated perceptual features
alone are not principally driving relational reasoning, and that complex interdependence of processed
features and memory gives rise to abstraction (Goldstone et al., 1989).

Consistent with this neuro-cognitive picture, AI systems which work well on a variety of
domains like machine translation (Vaswani et al., 2017; Dehghani et al., 2018; Devlin et al., 2018),
image classification (Dosovitskiy et al., 2020), etc. do not perform as well on tasks that explicitly
require inference of relational structure between entities (Webb et al., 2021; Johnson et al., 2017;
Yi et al., 2019). An example of such a task is Raven’s Progressive Matrices (Raven and Court,
1938) which, given a sequence of objects, tests the ability to infer the relations between objects
and to use it to select candidate objects that satisfy the underlying relational structure. In response
to this shortcoming, a number of AI elements inspired from neuroscience have been proposed to
tackle relational abstractions. A fruitful approach has been to endow AI systems with memory and
with various mechanisms that enforce abstract representations (Santoro et al., 2018; Graves et al.,
2014; Mittal et al., 2020; Pritzel et al., 2017; Hill et al., 2020; Fortunato et al., 2019). Recent work
combines this approach with the explicit separation of memory-stored representations and sensory
inputs in the ESBN model (Webb et al., 2021) (see also Whittington et al. (2019)), and reveals
impressive performance and OoD generalization properties on relational tasks. In this work, we
develop CoRelNet, with the goal of identifying a minimal architecture needed to impart an effective
inductive bias towards OoD generalizable relational representations.

5.4. Relational Tasks
In this section we describe the collection of tasks used to evaluate relational learning, these

range from commonly used tasks in cognitive tests to tasks purposely designed to evaluate artificial
systems.

5.4.1. Relational Cognitive Tests

We first describe a set of four relational tasks which are used to assess abstract relational
reasoning in cognitive tests. In each of the tasks, object images are provided sequentially such that
some specific abstract rule governs the relationship among them. To test for OoD generalization, the
objects used for training are different from those used during testing while keeping the abstract rule
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Fig. 1. Top left. Relational cognitive tasks. Same/different discrimination task (answer: “different”). RMTS
task (here the source pair (top row) has two identical objects matching the second candidate pair in the bottom
row). Dist3 task, choosing a candidate in the bottom row to replace the white square (answer: 2). Identity
rules task (ABA pattern, answer: 3). Top right. Relational Games tasks. Example objects from the training
set (’pentominoes’), two held-out test sets (’hexominoes’ and ’stripes’), as well as examples from the tasks
’between’ (label: True), ’occurs’ (label: False) ,’same’ (label: False), ’match rows’ (label: True, matching
pattern: ABA) Bottom left. Examples from relational tasks with a spurious feature (background color). In
same/diff. (shapes+colors), the label is ’same’ as the two shapes are identical. In RMTS (shapes+colors),
the source pair (top row) has two distinct shapes, matching the second candidate pair in the bottom row.
Bottom right. In RMTS3, the source triplet matches the first target triplet. In same/diff 6, the two triplets are
’different’. In identity rules 4, the answer is 4.

consistent. See Figure 1 for illustrations. Even though these tasks might appear simple at first, it is
indeed very challenging for deep neural network architectures to generalize well in OoD settings
like this (Kim J, 2018; Webb et al., 2021), including LSTM, Transformers, Relation Networks,
Predi-Net, ESBN and others.

Same/different discrimination. Two objects are shown, and the task is to determine whether
they are the same or different.

Relational match-to-sample (RMTS). Three pairs of objects are presented: a source pair and
two target pairs. The task consists of identifying which target pair has the same relational structure
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as the source pair, i.e., if the source pair consists of two identical/different objects, the task is to
identify the target pair which contains two identical/different objects.

Distribution-of-three (Dist3). Two rows of three objects followed by a row of four objects are
presented. The same set of 3 (distinct) objects that are shown in the first row are in the second row
in a permuted order, but with the last object masked. The task is to identify the missing object of
the second row from the set of four objects shown in the third row. See P. A. Carpenter (1990) for
more details.

Identity rules. Objects are presented in the same manner as in Dist3. However here, the first
row contains a sequential pattern of objects (e.g. ABA or ABB or AAA). The task is to pick the
object from the last row which completes the second row’s sequence such that the sequential pattern
of the first row matches the one of the second row. See Marcus et al. (1999) for more details.

5.4.2. Relational Games

This is a set of binary classification tasks first outlined by Shanahan et al. (2019). Each Relational
Game is governed by some underlying abstract rule (see list below) and involves the presentation of
an image containing objects laid out on a 3× 3 grid. An image is labelled as “True" if the objects in
the image satisfy the abstract rule, and False otherwise. The training set consists of simple geometric
shapes called “pentominoes", and we use two held-out OoD test sets consisting of different shapes
called “hexominoes" and “stripes". See Figure 1 for illustrations. Contrary to the implementation
by Shanahan et al. (2019), and more in line with the tasks above, here the 3× 3 grid is presented
sequentially. The rules considered are as follows.

Same/Different. Objects are “same" if they have the same shape, colour and orientation.
Between. This relation holds if the image is composed of three objects displayed in a straight

line where the outer objects are “same".
Occurs. This relation holds if the object in the top row is the “same" as one of the objects in the

bottom row.
Row Matching. This relation holds that the first row and last row of objects are governed by

the same underlying abstract pattern such as AAB, AAA, or ABB.
Xoccurs. This relation holds if the object in the top row is the “same" as one of the objects in

the bottom row, while the other two objects in the bottom row are different.
Colour/Shape. This relation has four labels: same-same, same-different, different-same and

different-different, depending on whether the two objects shown in the image have the same or
different colour/shape.

Left-of. This positional task is slightly different. Only two objects with different luminance are
presented somewhere in the 3× 3 grid (other places are left blank). The relation holds if the object
of lower luminance is to the ’left-of’ the other object. Note that this relation is antisymmetric, since
interchanging the objects changes the label of the image.
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5.4.3. Enhanced Relational Cognitive Tests

We modify tasks from §5.4.1 to probe more difficult and abstract relations in order to further
explore OoD generalization and model limitations. Modifications probe two aspects: unseen
relations, and spurious correlations/distractors.

Unseen Relations. We construct tasks where we restrict not only the set of objects but also the
set of relations seen during training, while testing on unseen objects as well as unseen relations.
These include RMTS 3: similar to RMTS where for training only triplets of the form (AAA, ABA
and BAA) are shown, while testing only involves triplets of the form (ABC, AAB). Same/diff 6:
Similar to Same/Different but comparing 2 triplets instead of single objects. Each triplet consists of
at most two distinct objects (thereby of forms AAA, AAB, ABA or BAA). During training, only
triplets of the form (AAA, ABA, BAA) are shown, while evaluation is done on examples that have
at least one triplet of the form (AAB). Identity rules 4: Similar to ’Identity rules’ but with rows
of 4 objects and multiple choice of 6. Note that for each quadruple in row 1 or 2, we can have at
most three distinct objects. During training, only quadruples with at most two distinct objects are
shown, while testing relies only on quadruples with exactly three distinct objects. Identity rules 4
Missing: Identical to Identity rules 4 but the training set does not include quadruples of the form
(ABAA, ABAB). See also Appendix §C.3 where we include another variation called identity rules
4 [flipped] where testing and training sets are swapped. Distribution-of-N : Same as Dist-3 but
with N objects. See also Appendix §C.4 for results.

Spurious Correlations. In this last set of tasks, we add spurious features to objects. We
again consider the four relational tasks from § 5.4.1, but this time we provide each object with a
(distracting) background color. The tasks consist of identifying the same relational structure but
based solely on shapes.

5.5. Models
Using tasks described in § 5.4, we compare five models1: Transformers, PrediNet, ESBN, and

two versions of our model: CoRelNet, and CoRelNet-T. All the models use an encoder q which is
sequentially applied to each of the inputs {xt}T

t=1 followed by a temporal context normalization
(TCN) step, which has shown to significantly improve OoD generalization in relational reasoning
tasks (Webb et al., 2020).

{xt}T
t=1 7−→ q({xt}T

t=1) 7−→ TCN(q({xt}T
t=1)) = {zt}T

t=1

The encoded inputs {zt}T
t=1 are then being fed to the respective models. Transformer. Introduced

in Vaswani et al. (2017), transformers rely on multiple parallel attention mechanisms (Multi-Head
Attention or MHA) to route information between different input tokens, which can be elements
in a set or in a sequence, etc. While these systems do compute multiple similarity matrices in
1All models were trained on single RTX8000 GPUs and each experiment took a few hours.
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Fig. 2. Illustration of Relational Architecture. (top) The backbone relational architecture describes the
common backbone present in all of the relational architectures considered in this work, with a similarity
matrix with entries for each pair of input objects. (bottom) CoRelNet considers an MLP to process the
similarity matrix obtained at the end of the backbone while CoRelNet-T uses a Transformer.

parallel, these are further combined with sensory information to drive final prediction and hence
the dichotomy between explicit relational and sensory structure is absent. Prior work (Webb et al.,
2021) hypothesizes that the absence of this dichotomy leads to poor OoD generalization, and we
analyze this further through our ablations in §5.6.

PrediNet. Introduced by Shanahan et al. (2019), PrediNet leverages Multi-Head Attention
(MHA) to map inputs onto objects, relations and propositions, thereby attempting to extract the
underlying relational structure via propositional representations compatible with predicate calculus.
ESBN. Emergent Symbol Binding Network introduced in Webb et al. (2021) constructs an external
memory through a recurrent controller and is the first model to make use of the separation of
sensory and relational information. This means the model is separated into two distinct information
processes. An LSTM is used to process relational data, incurring additional processing.

CoRelNet. In our main model, CoRelNet, we compute the self-attention coefficients

{Ri,·}T
i=1 = {softmax(z⊤

i · z)}T
i=1

over the encoded inputs {zt}T
t=1, and feed those directly into an MLP decoder to produce the final

output o (see Figure 2):
R

flatten7−→ flatten(R) MLP7−→ o
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Task Test Set CoRelNet CoRelNet-T ESBN PrediNet* Transformer

same Hex. 94.7±5.4 98.7±0.5 60.9±18.0 99.1±0.5 96.3±3.6

Str. 90.4±9.0 98.4±0.6 60.5±17.0 97.7±1.5 93.6±4.5

between Hex. 96.6±2.2 91.9±3.3 79.5±2.7 94.4±3.6 90.9±4.2

Str. 93.1±5.4 87.0±4.7 82.5±4.5 92.4±5.4 87.5±6.4

occurs Hex. 96.2±2.2 91.6±4.6 74.3±0.9 92.9±3.3 95.9±2.4

Str. 88.7±5.3 79.3±12.1 73.3±0.9 87.4±6.5 88.7±5.4

xoccurs Hex. 92.2±6.4 91.7±6.9 63.0±0.8 67.2±8.7 75.1±11.9

Str. 83.6±10.9 85.4±6.4 64.7±2.1 61.3±6.3 69.4±13.0

row
matching

Hex. 97.7±0.8 95.4±5.1 81.1±2.7 50.3±0.5 50.3±0.6

Str. 94.8±1.3 90.5±5.2 76.8±4.3 50.5±0.5 50.4±0.5

col./shape Hex. 47.2±3.7 49.6±0.8 31.2±10.1 74.9±10.6 89.1±2.9

left-of Hex. 99.2±0.7 97.6±1.2 49.9±0.3 94.9±0.9 96.0±1.9

Table 1. Out-Of-Distribution test accuracies for the Relational Game tasks on the two held-out sets "Hex-
ominoes" (Hex.) and "Stripes" (Str.). Results reflect test accuracies averaged over 10 seeds (Details in
Appendix §C.2).

First note that self-attention is computed via dot products and hence can be interpreted as giving
rise to a (symmetric) similarity measure encoding relational information of the objects in the input
sequence. Since the input to the MLP decoder is only composed of self-attention coefficients Ri,j

(carrying the relational information), and not any sensory information, we make use of the mentioned
important inductive bias of separating sensory details from relational information. Meanwhile, the
MLP applies independent weights to each Ri,j which allows for maximal flexibility and enables the
model to remain sensitive to positional information when making use of the mentioned relational
information provided. This advantage will be of specific use in later experiments (see Figure 5)

CoRelNet-T. This is a variation of the CoRelNet model where the MLP decoder is replaced
by a Multi-Head Attention layer (Transformer) with 8 heads to produce the final output. Each row
of the similarity matrix is treated as an individual token, and these tokens, combined with learned
positional embeddings, are fed to the transformer system to provide the prediction (see Figure 2;
bottom right).

In both CoRelNet and CoRelNet-T, we also explore different sensory encoding schemes based
on either a learned or a random encoder, as part of our analysis which is described in more detail in
§5.6. We also refer the reader to Appendix §C.1 for hyperparameters and more architectural details.
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Fig. 4. Test accuracies on the 4 basic relational tasks. Results are displayed for the OOD cases for each
task. Results reflect test accuracies averaged over 10 seeds. Left. Results showing average accuracy of
relational only models (ESBN, CoRelNet and CoRelNet-T) vs average accuracy of relational + sensory input
models (here for all three models (ESBN, CoRelNet and CoRelNet-T) we concatenated the encoded input
vectors to the input of the decoder.) For detailed performances see Figure 7 in the appendix. Middle. Results
showing average accuracy of symmetric models (ESBN, CoRelNet, CoRelNet-T) vs average accuracy of their
asymmetric counterparts. For detailed performances see Figure 9 in the appendix. Right. Results showing
average test accuracy of ESBN, CoRelNet and CoRelNet-T with a random encoder vs learned encoder. For
the random encoder, the weights of the encoder are randomly initialized, but not updated via backpropagation.
For detailed performances see Figure 8 in the appendix.

5.6. Results

Fig. 3. Test accuracies on the relational tasks. Results
are displayed for OoD cases for each task. Results
reflect test accuracies averaged over 10 seeds. For
details see Figure 6 in the appendix.

We note that given the structure of the rela-
tional cognitive tasks, the ground-truth predic-
tion is completely de-coupled from the actual
shapes of individual objects, and relies entirely
on relations between them. In this section, we
analyze the specific inductive biases that allow
our models to perform well in OoD settings that
respect this assumption. For hyperparameters
see Table 1 in Appendix C.1.

All you need is a set of similarity scores.
We first evaluate the hypothesis that the rela-
tional information between the objects seen in
the input sequence is all we need for OoD gen-
eralization on these relational cognitive tasks.
To this end, we first investigate the importance of disconnection of relational information from
the sensory input for OoD generalization. We hypothesize that if a model learns this function and
ignores any information regarding the absolute identity of the objects, then it will be able to general-
ize well in the OoD settings where the only change performed is the identity of objects considered.
This is indeed what we find in experiments, where the models that make predictions solely based
on similarity scores between objects (ESBN, CoRelNet and CoRelNet-T) do exceptionally well
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on OoD generalization, as opposed to models that also rely on the sensory details of the objects
(Transformer, LSTM, RN, etc). This is illustrated in Figure 3 as well as in the results outlined by
Webb et al. (2021). This makes the point that the relational information alone in the form of a T ×T
similarity matrix between objects is sufficient to generalize OoD on these tasks, where T is the
number of objects in the sequence.

Next, we also show experimentally that a a simple MLP decoder, like in CoRelNet, outperforms
more complex architecture like ESBN or CoRelNet-T on OoD generalization (also see Figure 5),
assuming the number of objects is fixed. Thus, having stripped away all the additional inductive
biases regarding writing keys and recurrence from ESBN, we actually see better performance and
optimal OoD generalization.

As additional evidence for the hypothesis of this section, we see in Figure 4 (left) that the
concatenation of sensory information to the already present relational information in input to the
classifier stage degrades the OoD generalization capacity of the models. This is because overfitting
on the sensory information of objects cannot lead to generalization in the OoD settings, while
memorizing the similarity matrix patterns does generalize on unseen new shapes, since the prediction
rule as a function of the similarity matrix remains the same in as well as out-of-distribution.

Symmetry. Having established that learning using the similarity matrix can work well for the
tasks at hand, the problem reduces to finding a similarity measure that can decide same-vs-different
even for unseen objects. We note that the use of a (symmetric) dot-product leads to an important
bias: it always scores identical objects higher than different objects. To understand how much
the symmetric nature of the dot-product plays a role as a relevant inductive bias, we ablate over
an asymmetric version of the dot-product, defined as (W1 · zt)⊤(W2 · zt), where W1 and W2 are
learnable matrices, learned via backpropagation. We train ESBN, CoRelNet and CoRelNet-T with
symmetric vs asymmetric versions and see that indeed a symmetric dot-product is essential for OoD
generalization on these relational tasks (see Figure 4 (center)). Note that the symmetric dot-product
can be recovered from the asymmetric one but the model is not able to learn it, indicating that it
needs to be explicitly encoded as an inductive bias.

Learning a sensory encoder. From results presented in the last two paragraphs and Figure
4 (left and center), we conclude that if the encoder provides an injective mapping (mapping two
distinct objects to two distinct encodings), the symmetric inductive bias of the dot-product allows
the model to detect same-vs-different without any encoder training. Given sufficient representation
capacity, it becomes hard for a random encoder to lead to a non-injective mapping. This begs the
question as to whether the models will maintain their performance even with a randomly initialized
and untrained encoder (random encoder)? Figure 4 (right) shows that for the relational cognitive
tasks, this is indeed the case, hence, in these tasks, the only part that needs to be trained (besides
potentially the parameters of the normalization step) is the decoder (an RNN-based system for
ESBN; MLP for CoRelNet, etc.). The job of this decoder is essentially to map patterns in the
similarity matrix to final predictions. Note that reducing the data-setting from a sequence of objects
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Fig. 5. Test accuracies on the relational tasks with unseen relations. Results are for the OOD cases for each
task. Results reflect test accuracies averaged over 10 seeds. Left. Overall performance for all 5 models. For
full details see Figure 10 in the appendix. Right. Results showing average test accuracy of ESBN, CoRelNet
and CoRelNet-T with a random encoder vs learned encoder. For the random encoder, the weights of the
encoder are randomly initialized, but not updated via backpropagation. For full details see Figure 11 in the
appendix.

with various shapes to a similarity matrix reduces the hypothesis space and incentivizes the decoder
to learn the true prediction rule for these set of tasks.

Generalization with unseen relations. Next, we consider a scenario where only a subset of rela-
tions are shown during training. We see that CoRelNet outperforms ESBN and Transformer on all of
these tasks (Figure 5), with near perfect accuracy on RMTS 3 and identity rules 4, confirming that it
is not only able to generalize to unseen objects but also to unseen relations. We hypothesize that the
drop in performance of all models in the identity rules for 4 elements (with missing variations) task
is due to the fact that some of the “essential base elements" that span the space of all possible abstract
relations are left out. We specifically set up this task in order to see a substantial drop in performance.
We also note that leaving out either ABAA or ABAB alone is not sufficient for CoRelNet to expe-
rience a drop in performance, both classes of quadruples need to be removed from the training set.

Generalization with spurious features. Results in Figure 6 show that random encoder performs
poorly (averaged over ESBN and CoRelNet models) in the presence of spurious features. In the
relational cognitive tasks, the entire input image can be considered to compute the underlying
relational structure, and all the encoder had to accomplish is distinguish two distinct images. In the
spurious feature tasks, the encoder not only has to learn what features to ignore on seen shapes but
also do so on unseen shapes. Hence a random encoder is not sufficient to accomplish this goal. We
also included ESBN and CoRelNet with a linear L1-regularization layer after the encoder in order
to dampen the effect of spurious features. We see that even a trained encoder struggles on ignoring
the color, and often requires strong regularization to do well.
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Fig. 6. Test accuracies on the relational tasks with spurious features. Results are displayed for the OOD
cases, and reflect test accuracy averaged over 10 seeds. The random encoder model class displays the average
accuracies of ESBN and CoRelNet with random encoder, while the learned encoder model class displays the
average accuracies of ESBN and CoRelNet with a trained encoder. The L1-regularized include ESBN and
CoRelNet, both having L1-regularization on learnt representations (with λ = 5 for RMTS and λ = 1 for the
other three tasks). For more details see Appendix §C.5.

5.7. Conclusion
We conclude that for purely relational tasks, the relational information between the objects

is all that is needed for good OoD generalization. In particular, for the models we considered,
disconnecting the said relational information from the sensory input is an essential inductive bias for
OoD generalization on unseen inputs (Figure 4 (left)). This is further strengthened by the fact that
after removing the effects of encoder-training as well as additional inductive biases in the decoder,
we still achieve good OoD generalization as long as final prediction is driven solely by relational
information.

Further, we see that computing the relational information through a (symmetric) dot-product is
useful, as it always scores higher on identical objects than on different objects (Figure 4 (center)).
We also conclude that as long as the encoder is injective and there are no spurious features, even
a random encoder can accomplish good OoD generalization not only on unseen objects but often
also on unseen relations (Figure 4 (right) and Figure 5 (right)). In other words, OoD performance
on purely relational tasks without spurious features is a direct reflection of how well the decoder
translates the relational information encoded in the similarity matrix to the correct output. It turns
out that even a simple MLP decoder does the job. We also note that OoD performance on unseen
objects and relations can deteriorate if certain crucial classes of training samples are withheld (refer
to Identity rules 4 task with missing examples in §5.4.3 and Figure 5 (left)).

In the presence of spurious features, we see that a random encoder no longer does well, as
expected since the encoder now needs to selectively encode only a subset of features (also on
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unseen objects) which are directly relevant for the underlying rule while ignoring the rest. We
experimentally show that this is substantially harder as even using a learned encoder is often not
enough and requires strong regularizations on the representations (see Figure 6).

Finally, we highlight that the use of network architectures that promote the dichotomy of
relational and sensory signals could potentially promote unwanted biases when sub-optimal, as
seen in models that were not able to ignore distracting features. The framework and analysis
proposed in this work could help better disentangle sensory and relational information to mitigate
this potentially problematic impact on society.

5.8. Future work
This work analyses the use of self-attention coefficients or some kind of similarity measure

between objects as sole inputs for downstream predictions to implement the inductive bias of
separating sensory inputs from relational information. This procedure is easy and flexible to
implement in a variety of settings, potentially addressing some limitation of current large scale
models that struggle with OoD generalization. We would also like to explore this inductive bias in
several architectures with potentially more general similarity measures which not only rely on a
notion of "sameness".

We also see that in some OoD tasks, separating sensory inputs from relational information might
be beneficial, but sometimes only by a small margin (Figure 4 (left); for instance in the Dist3 task
the difference is smallest). Meanwhile, there might be more complex real-world tasks which may
require heavier reliance on sensory information. A potential idea would be to explore a flexible
task-based competition structure between the use of sensory and relational information, where
the use of sensory information for downstream prediction has to undergo a bottleneck due to the
competition structure as well as additional task-specific regularization.

Another interesting avenue is to explore settings where multiple abstract rules are at play and
need to be individually inferred and combined in a flexible manner, often in the presence of spurious
features and out-of-distribution compositions. This is a challenging problem as the encoder has
to learn to ignore spurious features for a given rule, which is crucial especially when combined
with multiple rules at play. We believe that understanding these settings and distilling a key set of
inductive biases that may make artificial systems succeed in these complex domains is an important
future work.
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Chapter 6

Conclusion

The aim of this thesis was to understand the qualitative gap between current deep learning and
human cognitive abilities in regards to out-of-distribution systematic generalization as well as
learning over extremely long time scales, by studying a specific set of key inductive biases to
circumvent these limitations and thus enhancing information propagation.

• The exploding and vanishing gradient problem (EVGP) is one of the main challenges
in training recurrent neural networks on longer input sequences, making it difficult to
capture long-term dependencies. In chapter 3, we focussed on spectrally constrained
approaches throughout the entire training period, extending existing methods to include
non-normal dynamics in the connectivity matrix allowing connectivity eigendirections to be
non-orthogonal.

Inspired by previous work on non-normal RNN dynamics in the computational neuroscience
literature (Ganguli et al., 2008; Goldman, 2009; Hennequin et al., 2012), we trained directly
on the factorized Schur decomposition of the connectivity matrix, hence gaining direct
access to the eigenvalues as well as the non-normal parts quantifying the interactions
between the different Schur modes. This bypasses the need to compute a costly factorization
explicitly at each update of gradient descent. In other words, we can directly control
gradient stability by enforcing constraints on the connectivity eigenvalues, while allowing
the transient dynamics of the non-normal part to perform additional short term computations.
We therefore preserve the advantages from purely orthogonal RNNs (such as long-term
gradient propagation and fast learning on tasks involving long-term memorization), while
providing increased expressivity for tasks requiring online computations.

We further show in Proposition 3.4.2 that nnRNN with unit-norm eigenspectra can have
at most polynomial gradient explosion. Thus, relaxing the unit-norm constraint on the



eigenspectra of the connectivity matrix will lead to a trade-off between exponential
vanishing and polynomial exploding gradients, which can be modulated by the L2
regularization hyperparameter δ. This naturally translates into task-specific trade-off
between long-term memorization and short-term complex computation. By examining
the learned connectivity structure after training, we noted that on some tasks long-term
memorization is more important (such as the copy task), while on other tasks (such as PTB)
short-term complex computations become more relevant for good performance.

• Motivated by the empirical evidence that memory augmented recurrent networks mitigate
the mentioned exploding and vanishing gradient problem (EVGP), we provide a formal
gradient propagation analysis with asymptotic guarantees for a whole family of memory
augmented recurrent networks in chapter 4. We identify the sparsity coefficient κ and
maximal dependency depth d as two key quantities governing gradient stability. We saw
that modulating the sparsity coefficient κ, implicitly influences maximal dependency
depth d and hence gradient stability, which directly translates into a trade-off between
computational complexity and good long-term gradient propagation.

Inspired by the cognitive process of memory consolidation, and in order to leverage
the findings of our theoretical analysis, we are proposing a novel relevancy screening
mechanism allowing explicit control over the sparsity coefficient κ, by modulating the
hyperparameters ν and ρ, which are the sizes of the short-term buffer and relevant set
respectively.

After comparing our method to other gated, spectrally constraint or memory augmented
recurrent networks, it turns out that the relevancy screening mechanism is the only
architecture achieving a linear memory usage and compute complexity, while maintaining
good gradient stability on very long sequences. This is reflected in the experimental
results, where RelLSTM and RelRNN outshine all other recurrent models on tasks with very
long input sequences and a sparse dependency structure. More specifically, models with
quadratic complexity typically run into memory overflow issues, while models with poor
gradient stability deteriorate in performance for longer input sequences.

Finally, it is worth noting that all spectrally constraint methods struggle to solve the Transfer
copy and Denoise tasks for very long sequences, hinting towards the fact that, in the context
of recurrent networks, sparse self-attention is a much more useful inductive prior when it
comes to learning over very long time scales in a robust manner dealing while mitigating
the gradient vanishing problem.
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• We finally studied a family of various purely relational tasks to distill a minimal set of
inductive biases for out-of-distribution generalization in chapter 5. We found out that
relational information is all you need in tasks where the final prediction is solely driven
by an abstract rule, and where inputs are not containing any spurious features. We further
noted that adding sensory information to the relational information as being part of the input
to the decoder degrades OoD performance on unseen inputs, indicating that the dichotomy
of sensory details and relational information is a useful inductive bias in the context of
purely relational tasks.

The OoD performance on unseen inputs does not deteriorate after removing the effects of
encoder-training, and thus reflects how well the decoder translates the relational information
to the correct output. Meanwhile, in the presence of spurious features, a random encoder no
longer gives good OoD performance, and needs to selectively encode a subset of relevant
input features even on unseen inputs, which is a challenging problem requiring further
regularization.

Finally, we investigated harder tasks, involving not only unseen inputs but also unseen
relations, where specific classes of relational configurations are completely withheld from
the training set. It turns out that our proposed model, does well as long as all ’crucial’
classes are present in the training set, and deteriorates substantially if some of those classes
are not shown during training.
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Chapter 7

Future Work

7.1. Synthesizing sensory input and relational information
Behavioural experiments in (Barsalou et al., 2003) implicate modality-specific systems in the

representation and use of conceptual knowledge, highlighting that higher level processing is not
easily decoupled from perception. Further, (Goldstone and Barsalou, 1998) and (Ottmar et al., 2015)
conclude that perceptual processes provide useful mechanisms that may be co-opted by abstract
thought, and that perceptual manipulations have an effect on conceptual processing.

Hence, even though CoRelNet might provide a useful inductive bias for purely relational tasks
based on a notion of sameness, one might want to investigate how to synthesize computational
pathways stemming directly from sensory inputs with pathways using purely relational information,
in order to design biologically plausible architectures solving more complex real-world tasks.

7.2. Asymmetric similarity measures
Both (Tversky, 1977) and (Nosofsky, 1991) argue that human similarity judgement is asymmet-

ric. Namely, when asking ’is A similar to B’, B becomes the reference/anchor, and one focusses on
context-dependent features of B, and compares them to A.

Meanwhile, it is straightforward that the use of a symmetric similarity measure (here a simple
dot-product) in purely relational architectures such as ESBN and CoRelNet limits us to tasks with
underlying symmetric relations. In fact, let us consider the ’comparison task’ (see Figure 1 for an
example), where one gets to see two objects with identical shape, one of which is small and the
other one large. The tasks consists in picking the position of the larger object. This relationship is
antisymmetric and clearly cannot be learned by architectures with a symmetric similarity measure
such as ESBN or CoRelNet. We will also consider a variation of the ’comparison task’, called the
’transitive comparison task’, where one gets to see two objects with identical shape, but of different
sizes. During training, one gets to see pairs of objects of sizes (medium, large), (large, medium),
(small, medium) or (medium, small) respectively. At testing, one gets to see only pairs of objects



Fig. 1. Example of the ’comparison task’. Here the larger object is at position ’0’, hence the answer is ’0’.

Fig. 2. Results reflect test accuracies averaged over 10 seeds, for ’comparison task’ (left) and ’transitive
comparison task’ (right).

of sizes (small, large) and (large, small). Hence one not only needs to be able to generalize the
comparison task to unseen shapes but also be able to do so transitively.

Hence, we would like to revisit the use of a symmetric similarity measure and instead use an
asymmetric one. One first step would be to use a modified similarity measure zt′ ·Wzt, where
W := W⊤

1 W2 is a learned linear transformation between a "reference" and a "comparison" space.
We implemented this modified similarity measure within ESBN and CoRelNet, and labelled it
’asymmetric ESBN’ and ’asymmetric CoRelNet’. Results in Figure 2 indicate that this
modified similarity measure enhances the ability to learn the comparison task compared to ESBN and
CoRelNet. Another idea, is to project the encoded sensory inputs zt down to a scalar via z′

t = W ·zt,
where W is a learned linear transformation Rdim(zt) 7−→ R, and one constructs the mutual difference
matrix D (instead of the similarity matrix via the dot-product), where Dij = z′

i − z′
j = W (zi − zj).

flatten(D) is then fed to the final output MLP. Let us denote this model by ’CoRelNet diff’.
It turns out that ’CoRelNet diff’ solves both the ’comparison’ and ’transitive comparison’
tasks. (See Fig. 2).

7.3. Competition of rules in relational reasoning
As we can see in Figure 2, some similarity measures work well on some tasks, and worse on

others. This motivates the idea of using multiple candidate rules (each using a different similarity
measure), computed independently within the same model. To get the final output, one uses a
competition mechanism between the rules to pick the winning rule, the output of which then
constitutes the input to the final output MLP. (The competition mechanisms involves rule signature
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Fig. 3. Results reflect test accuracies averaged over 10 seeds, for relational cognitive tasks for the most
extreme OOD cases m = 98 for same/diff and m = 95 for all other tasks.

embeddings as ’keys’ and uses a learned linear transformation of the encoded sensory inputs as
’queries’ to perform a key-query dot-product attention mechanism via a gumbel-softmax.) We denote
this model by ’CoRelNet mix’ for the case where we consider two rules, one stemming from the
difference matrix, and one from the dot-product similarity matrix. ’CoRelNet mix’ performs
decent across a variety of tasks (see Figures 2 and 3). The high variance in the ’same/diff’ and
’RMTS’ tasks is due to the high sensitivity of the competition mechanism to initialization. Improving
this competition mechanism constitutes an interesting avenue for future work. ’CoRelNet mix’

might give rise to interesting multi-task experiments involving a variety of tasks and relationship
types.

7.4. Handling spurious features in relational reasoning
As already mentioned in Section 7.2, human similarity judgment involves selecting salient

features in the reference object, and thus generalization in humans builds on the ability to pick up
rules in environments with spurious or distracting features. Meanwhile, (Tran and Pashler, 2017)
show that humans struggle to find relevant features in perceptual classification tasks, involving more
than two dimensions along which stimuli vary. Moreover, (Goldstone et al., 1989) argue that in
human cognition, featural similarity depends on or is influenced by other features being present,
hinting towards the hypothesis that humans are instance-based learners doing nearest-neighbor
classification, and that the ability to pick up relevant features among irrelevant ones comes from
a lot of prior experience. Hence, one potential avenue to explore is using a multi-task set up or
a curriculum learning approach to facilitate the encoder to pick up on relevant features in noisy
environments, using a flexible top-down context-dependent attention mechanism.
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7.5. Extending the notion of relevancy for long-range sequential
processing

The relevancy screening mechanism outlined in Chapter 4 uses a hard-coded screening heuristic
C(i), which might potentially overemphasize "local" attention scores. A more agnostic approach
might involve learning or meta-learning C(i) end-to-end, either by leveraging predictive coding
principles emphasizing more on "surprising events", or via RL based methods inspired by the Gating
Model (Braver and Cohen, 1999; Todd et al., 2008).
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Appendix A

Appendix for ’Non-normal Recurrent Neural
Network (nnRNN): learning long time dependencies

while improving expressivity with transient dynamics’

A.1. Task setup and training details
All code freely available at https://github.com/nnRNN/nnRNN_release.

A.1.1. Copy task

For the copy task, networks are presented with an input sequence xt of length 10 + Tc. For
t = 1, . . . , 10, xt can take one of 8 distinct values {ai}8

i=1. For the following Tc − 1 time steps, xt

takes the same value a9. At t = Tc, a cue symbol xt = a10 prompts the model to recall the first 10
symbols and output them sequentially in the same order they were presented. Models are trained to
minimize the average cross entropy loss of symbol recalls. A model that simply predicts a constant
set of output tokens for every input sequence would achieve a baseline loss of 10 log(8)

T +20 . All models
were trained using a mini batch size of 10. All non-gated models except "RNN" were initialized such
that the recurrent network was orthogonal. The non-normal RNN had it’s orthogonal weight matrix
initialized as in expRNN with the log weights initialized using Henaff intialization. Importantly,
all non-gated models used the modReLU activation function for state-to-state transitions. This is
critical for the copy task since a nonlinearity makes the task very difficult to solve (Vorontsov et al.,
2017) and modReLU acts as identity at initialization. Fig. 1 (left) shows cross entropy loss for all
models throughout training when the number of parameters is held constant. Model and training
hyperparameters are summarized in Table 1.

A.1.2. Sequential MNIST classification task

The sequential MNIST task (Le et al., 2015) measures the ability of an RNN to model complex
long term dependencies. In this task, each pixel is fed into the network one at a time, after

https://github.com/nnRNN/nnRNN_release


Model hid LR LR orth α δ T decay V init
nnRNN 128 0.0005 10−6 0.99 0.0001 10−6 Henaff
expRNN 128 0.001 0.0001 0.99 Henaff
expRNN 176 0.001 0.0001 0.99 Henaff
LSTM 128 0.0005 0.99 Glorot Normal
LSTM 63 0.001 0.99 Glorot Normal

RNN Orth 128 0.0002 0.99 Random orth
EURNN 128 0.001 0.5
EURNN 256 0.001 0.5

RNN 128 0.001 0.9 Glorot Normal

Table 1. Hyperparameters for the copy task. Here, "hid" is hidden state size, "LR" is learning rate, "LR
orth" is the learning rate of the orthogonal transition matrix (its skew symmetric matrix), α is the smoothing
parameter of RMSprop, δ is as in equation 3.5.1, T decay is the weight of the L2 penalty applied on T in
equation 3.5.1, and "V init" is the initialization scheme for the state transition matrix.

which the network must classify the digit. Permutation increases the difficulty of the problem by
applying a fixed permutation to the sequence of the pixels, which creates longer term dependencies
between the pixels. We train this task for all networks using mini batch sizes of 100. All non-
gated networks except "RNN" were initialized with orthogonal recurrent weight matrices using
Cayley initialization(Helfrich et al., 2018). The non-normal RNN has it’s orthogonal weight
matrix initialized as in Lezcano-Casado and Martínez-Rubio (2019) with the log weights initialized
using Cayley initialization. Fig. 1 (right) shows validation accuracy for all models throughout
training when the number of parameters is held constant. Model and training hyperparameters are
summarized in Table 2.
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Fig. 1. Holding the number of parameters constant, model performance is plotted for the copy task (T=200,
left; cross-entropy loss; 18.9K parameters) and for the permuted sequential MNIST task (right; accuracy;
269K parameters). Shading indicates one standard error of the mean.
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Model hid LR LR orth α δ T decay V init
nnRNN 512 0.00015 1.5 ∗ 10−5 0.99 0.15 0.0001 Cayley
expRNN 512 0.0005 5 ∗ 10−5 0.99 Cayley
expRNN 722 0.0005 5 ∗ 10−5 0.99 Cayley
LSTM 512 0.0005 0.9 Glorot Normal
LSTM 257 0.0005 0.9 Glorot Normal

RNN Orth 512 5 ∗ 10−5 0.99 Random orth
EURNN 512 0.0001 0.9
EURNN 1024 0.0001 0.9

RNN 512 0.0001 0.9 Glorot Normal

Table 2. Hyperparameters for the permuted sequential mnist task. Here, "hid" is hidden state size, "LR" is
learning rate, "LR orth" is the learning rate of the orthogonal transition matrix (its skew symmetric matrix), α

is the smoothing parameter of RMSprop, δ is as in equation 3.5.1, T decay is the weight of the L2 penalty
applied on T in equation 3.5.1, and "V init" is the initialization scheme for the state transition matrix.

A.1.3. Penn Tree Bank character prediction task

The Penn Tree Bank character prediction task is that of predicting the next character in a text
corpus at every character position, given all previous text. Code is adapted from Merity et al. (2018).
We trained all models sequentially on the entire corpus, splitting it into sequences of length 150
or 300 for truncated backpropagation through time. Consequently, the initial hidden state for a
sequence is the last hidden state produced from its preceding sequence. All models were trained
for 100 epochs with a mini batch size of 128. Following training, for each model, the state which
yielded the best performance on the validation data was evaluated on the test data. Table 2 reports
the same performance for the same model states as in Table 1 in the main text but presents test
accuracy instead of BPC. Model and training hyperparameters are summarized in Table 4.

Test Accuracy
Fixed # params (∼1.32M) Fixed # hidden units (N = 1024)

Model TP T B = 150 TP T B = 300 TP T B = 150 TP T B = 300
RNN 40.01 ± 0.026 39.97 ± 0.025 40.01 ± 0.026 39.97 ± 0.025

RNN-orth 66.29 ± 0.07 65.53 ± 0.09 66.29 ± 0.07 65.53 ± 0.09
EURNN 65.68 ± 0.002 65.55 ± 0.002 64.01 ± 0.002 64.20 ± 0.003
expRNN 68.07 ± 0.15 67.58 ± 0.04 67.51 ± 0.11 66.89 ± 0.024
nnRNN 68.78 ± 0.0006 68.52 ± 0.0004 68.78 ± 0.0006 68.52 ± 0.0004

Table 3. PTB test performance: Test Accuracy, for sequence lengths TP T B = 150, 300. Two
comparisons across models shown: fixed number of parameters (left), and fixed number of hidden
units (right). Error range indicates standard error of the mean.
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Model hid LR LR orth α δ T decay V init
Length 150

nnRNN 1024 0.0008 8 ∗ 10−5 0.9 1 0.0001 Cayley
expRNN 1024 0.005 0.0001 0.9 Cayley
expRNN 1386 0.005 0.0001 0.9 Cayley
LSTM 1024 0.008 0.9 Glorot Normal
LSTM 475 0.001 0.99 Glorot Normal

RNN Orth 1024 0.0001 0.9 Random orth
EURNN 1024 0.001 0.9
EURNN 2048 0.001 0.9

RNN 1024 10−5 0.9 Glorot Normal
Length 300

nnRNN 1024 0.0008 6 ∗ 10−5 0.9 0.0001 0.0001 Cayley
expRNN 1024 0.005 0.0001 0.9 Cayley
expRNN 1386 0.005 0.0001 0.9 Cayley
LSTM 1024 0.008 0.9 Glorot Normal
LSTM 475 0.003 0.9 Glorot Normal

RNN Orth 1024 0.0001 0.9 Cayley
EURNN 1024 0.001 0.9
EURNN 2048 0.001 0.9

RNN 1024 1 ∗ 10−5 0.9 Glorot Normal

Table 4. Hyperparameters for the Penn Tree Bank task (at 150 and 300 time step truncation for gradient
backpropagation). Here, "hid" is hidden state size, "LR" is learning rate, "LR orth" is the learning rate of the
orthogonal transition matrix (its skew symmetric matrix), α is the smoothing parameter of RMSprop, δ is as
in equation 3.5.1, T decay is the weight of the L2 penalty applied on T in equation 3.5.1, and "V init" is the
initialization scheme for the state transition matrix.

A.1.4. Hyperparameter search

For all models with a state transition matrix that is initialized as orthogonal (nnRNN, expRNN,
RNN-orth), three orthogonal initialization schemes were tested: (1) random, (2) Cayley, and (3)
Henaff. Random initialization is achieved by sampling a random matrix whose QR decomposition
yields an orthogonal matrix with positive determinant 1 and then mapping this orthogonal matrix
via a matrix logarithm to the skew symmetric parameter matrix used in expRNN. Cayley and
Henaff initializations initialize this skew symmetric matrix as described in Lezcano-Casado and
Martínez-Rubio (2019). The vanilla RNN is also tested with a Glorot Normal initialization, with
the model then referred to as simply "RNN".

For training, learning rates were searched between 0.01 and 0.0001 in increments of 0.0001,
0.0002 or 10×; the learning rate for the orthogonal matrix was always kept near 10× lower;
and RMSprop was used as the optimizer with smoothing parameter α as 0.5, 0.9, or 0.99. In
equation 3.5.1, δ was searched in 0, 0.0001, 0.001, 0.01, 0.1, 0.15, 1.0, 10; the L2 decay on the
strictly lower triangular part of the transition matrix T was searched in 0, 10−6, 10−5, 10−4.
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A.2. Fisher Memory Curves for strictly lower-triangular matri-
ces

Let, Θ be a strictly lower triangular matrix such that [Θ]i+1,i =
√
α for 1 ≤ i ≤ N − 1 and A

be the associated lower triangular Gram-Schmidt orthogonalization matrix. We have that,

Θ = DA (A.2.1)

where D is the delay line, Di+1,i =
√
α and Ai,i = 1 for 1 ≤ i ≤ N . Let us recall the expression of

J(k) for independent Gaussian noise derived by (Ganguli et al., 2008, Eq. 3),

J(k) = UT (Θk)⊤C−1
n ΘkU , where Cn = ϵ

∞∑
k=0

Θk(Θk)⊤ , (A.2.2)

and U = [1,0, . . . ,0] is the source. We have that for any vector u,

u⊤Cnu = ϵ
∞∑

k=0
((Dk)⊤u)⊤AAT ((Dk)⊤u) (A.2.3)

= ϵ
N−1∑
k=0

((Dk)⊤u)⊤AAT ((Dk)⊤u) (A.2.4)

≤ ϵσ2(N−1)
max (A)

N−1∑
k=0

u⊤Dk(Dk)⊤u (A.2.5)

where for the first equality we used the fact that Θ is nilpotent and for the last inequality the fact
that σmax(A) ≥ 1. Recall that for two symmetric matrices we define: A ⪰ B if and only if B − A
is positive semidefinite. By definition we have,

Cn ⪯ ϵσ2(N−1)
max (A)

∞∑
k=0

Dk(Dk)⊤ = ϵσ2
max(A)

(
diag(1,1−α2

1−α
, . . . , 1−αN

1−α
)
)

(A.2.6)

where the last equality is due to [Dk(Dk)⊤]i,j = αk if i = j ≥ k + 1 and 0 otherwise. Thus
using (Lax, 2007, Theorem 2 P. 146) we can take the inverse to get,

C−1
n ⪰

1
ϵσ

2(N−1)
max (A)

(
diag(1,1−α2

1−α
, . . . , 1−αN

1−α
)
)−1

= 1
ϵσ

2(N−1)
max (A)

diag(1, 1−α
1−α2 , . . . ,

1−α
1−αN )

Finally, using that ΘkU = [0, . . . ,0︸ ︷︷ ︸
k

,
√
α

k
, ∗ , . . . ,∗], we have that for 0 ≤ k ≤ N − 1,

J(k) = UT (Θk)⊤C−1
n ΘkU (A.2.7)

≥ 1
ϵσ

2(N−1)
max (A)

αk α− 1
αk+1 − 1 . (A.2.8)
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α β d Jtot =
∑∞

t=0 J(t)
0.95 0.0 0.0 3.03
1.00 0.0 0.0 5.19
1.05 0.0 0.0 12.1
0.95 0.005 0.0 3.18
1.00 0.005 0.0 5.30
1.05 0.005 0.0 12.1
0.95 0.0 0.2 12.0
1.00 0.0 0.2 16.2
1.05 0.0 0.2 20.5
0.95 0.005 0.2 12.1
1.00 0.005 0.2 16.3
1.05 0.005 0.2 20.4

Table 5. Fisher memory curve performance: Shown is the sum of the FMC for the models consid-
ered in §3.4.

A.3. Proof of proposition 3.4.2
Let us prove this claim by induction on t. The case t = 1 is trivial, so let us assume the claim to

be true for t = r, then for each k = 1, . . . n− 1, we expand Ar+1 as Ar · A and get

p
(r+1)
k (x) = x ·

[
1 +

k−1∑
s=1

p(r)
s (x)

]
+ p

(r)
k (x)

which again is a polynomial of degree at most k, where the coefficient of x0 in p(r+1)
k is zero and the

coefficient of xl in p(r+1)
k is O

((
r

l−1

))
+ O

((
r
l

))
= O

((
r+1

l

))
for all l = 1,2, . . . ,k, concluding

the induction.

A.4. Numerical instablities of the Schur decomposition
The Schur decomposition is computed via multiple iterations of the QR algorithm. The QR

algorithm is known to be backward stable, which gives accurate answers as long as the eigenvalues
of the matrix at hand are well-conditioned, as is explained in Anderson et al. (1999).

Eigenvalue-sensitivity is measured by the angle formed between the left and right eigenvectors
of the same eigenvalues. Normal matrices have coinciding left and right eigenvectors but non-normal
matrices do not, and thus certain non-normal matrices such as the Grcar matrix have very high
eigenvalue-sensitivity, and thus gives rise to inaccuracies in the Schur decomposition.

This motivates training the connectivity matrix in the Schur decomposition directly instead of
applying the Schur decomposition in a separate step.
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Fig. 2. .Learned Θ on psMNIST task. Inset: angles θi distribution of block diagonal rotations. (c.f. Eq.3.5).

A.5. Learned connectivity structure on psMNIST
For completeness, let us take a look at the Schur matrix after training on psMNIST in Fig. 2.

We can see that the distribution of learned angles in the rotation blocks is rather flat, and thus is
very different from the distribution learned in the PTB task, as can be seen in Fig. 3. The flatness in
distribution comes somewhat close to the flatness of the learned angle distribution in the copy task.
In other words, the angle distribution in the PTB task is highly structured, while in the Copy task
and psMNIST task, it seems to be close to uniform.

Furthermore, we can also observe that the connectivity structure learned in the lower triangle is
significantly weaker in the psMNIST task than in the PTB task, while not being completely absent
as in the copy task.

Thus it seems that we can spot a spectrum of connectivity structure:
• the Copy task, with no connectivity structure in the lower triangle, close to uniform angle

distribution and the absence of a delay line, on the one end.
• the PTB task, with a lot of connectivity structure in the lower triangle, a very narrow angle

distribution and the presence of a delay line, on the other end.
For the psMNIST task, it appears that we are located somewhere in the middle of that spectrum.

A.6. Gradient propagation analysis
In the results from the main text, the parameter γ (scaling factor for eigenvalues) is allowed to

be changed by the optimizer, but is heavily regularized to force it to stay close to one. As argued, a
mean value of γ̄ ∼ 0.958 found for the best solutions on the PTB task is indicative of a trade-off
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between eigenvalues and singular values to allow stable propagation and good expressivity. To
further elucidate the effect, we train nnRNNs with clamped values of γ at 1, and at 0.958.

Results are found in Table 7 and complement those of Table 1 in the main text (∼1.32M params,
N = 1024 units). As expected for γ = 1, some run did not converge (asterisks indicate number out
of 5) as the emergence of non-normal structure pushes singular values above one. Despite this, on
runs that did converge we found the best performance out of all methods (including regularized
γ nnRNN), strongly indicating that non-normality does indeed provide more expressivity. For γ
clamped at 0.958 the performance was virtually identical to that of nnRNN with regularized γ,
indicating non-normal connectivity learning appears robust and independent of γ learning.

Model TP T B = 150 TP T B = 300
nnRNN 1.47 ± 0.003 1.49 ± 0.002

nnRNN-γ = 1 1.46 ± 0.005* 1.49 ± 0.022**
nnRNN-γ = 0.958 1.47 ± 0.005 1.49 ± 0.008

Table 6. PTB test performance: Bit per Character (BPC), for sequence lengths TP T B = 150, 300.
Three version of nnRNN shown: nnRNN (reproduced from main text), γ clamped at 1, γ clamped
at 0.958. All models have ∼1.32M parameters and N = 1024. Error range indicates standard error
of the mean. Asterisks indicate number of failed runs out of 5.

Fig. 3 shows example gradient norms for nnRNN on PTB task, with eigenvalues clamped or
regularized. In this example, all runs converged, and we can observe that gradient norms behave
nicely during backpropagation and throughout training. This is indicative that although γ plays an
important stabilizing role, gradient explosion leading to diverging training runs appears to be an
all-or-nothing event.

Fig. 3. Gradient propagation. The plot on the left shows the gradient magnitude while backpropa-
gating from time step to time step (growing polynomially). The plot on the right shows the gradient
magnitude during training
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Appendix B

Appendix for ’Untangling tradeoffs between
recurrence and self-attention in neural networks’

B.1. Theoretical analysis of gradient propagation
B.1.1. Notational convention

In this paper, we use the notation df
dx

to denote the total derivative of f with respect to x, and ∂f
∂x

to denote the partial derivative of f with respect to x.

If we assume f : Rn → Rm, and x ∈ Rn, then df
dx

denotes the Jacobian matrix Jf such that

(Jf )ij = dfi

dxj

(B.1.1)

In particular, with this notation, we have that if a function L : Rm → R, and y ∈ Rm then dL
dy

is
a row vector, while the conventional notation for∇yL indicates a column vector. In other words,
(∇yL)T = dL

dy
. Hence if L is a function of f(x), then

dL

dx
= dL

df
· df
dx

(B.1.2)

while

∇xL =
(
df

dx

)T

· ∇f(x)L = JT
f · ∇f(x)L (B.1.3)

Similarly, we have that ∂L
∂y

is a row vector.



B.1.2. Preliminary results

Let

st = ψt(h1,h2, . . . ,ht,st−1) (B.1.4)

where

hi+1 = ϕ(V si + Uxi+1 + b) (B.1.5)

Lemma B.1.1. For all t,k ≥ 0, we have

dst+k+1

dht

= ∂st+k+1

∂ht

+
 k∑

j=0

∂st+k+1

∂ht+j+1

dht+j+1

dht

+ ∂st+k+1

∂st+k

dst+k

dht

(B.1.6)

PROOF. Follows directly from the following multivariable chain rule: if

g(t) = f(g1(t),g2(t), . . . ,gn(t)) (B.1.7)

then
dg

dt
=

n∑
i=1

∂f

∂gi

dgi

dt
(B.1.8)

□

Lemma B.1.2. If we further denote the Jacobian matrix Jk = ∂sk+1
∂hk

, then we get that for all t,k ≥ 0,
we have

dst+k+1

dht

= ∂st+k+1

∂ht

+
k∑

j=0

(
∂st+k+1

∂ht+j+1
· Jt+j + 1j=k ·

∂st+k+1

∂st+k

)
· dst+j

dht

(B.1.9)

PROOF. Follows directly from the observation that

dht+j+1

dht

= ∂ht+j+1

∂st+j

dst+j

dht

= Jt+j ·
dst+j

dht

(B.1.10)

□

Remark B.1.3. Let us denote

C
(t)
k+1 = dst+k+1

dht

(B.1.11)

E
(t)
k+1 = ∂st+k+1

∂ht

(B.1.12)
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and

F
(t)
k+1,j = ∂st+k+1

∂ht+j+1
· Jt+j + 1j=k ·

∂st+k+1

∂st+k

(B.1.13)

and thus the recursion formula in Lemma B.1.2 rewrites as

C
(t)
k+1 = E

(t)
k+1 +

k∑
j=0

F
(t)
k+1,j · C

(t)
j (B.1.14)

The next two results highlight how to solve this recursion.

Lemma B.1.4. Let Ci,Ei, Fi,j ∈ Rn×n such that for all k ≥ 0, we have

Ck+1 = Ek+1 +
k∑

j=0
Fk+1,j · Cj (B.1.15)

Then for all k ≥ 1, we have

Ck = ξ0:kC0 +
k∑

r=1
ξr:kEr (B.1.16)

where

ξr:k =
k−r∑
s=1

ξr:k(s) (B.1.17)

with

ξr:k(s) =
∑

r=i1<...<is+1=k

Fis+1,is · Fis−1,is−2 · . . . · Fi2,i1 (B.1.18)

and ξk:k = Id.

PROOF. Let us prove the statement by induction on k ≥ 1.
For k = 1, we have

C1 = E1 + F1,0C0 = ξ1:1E1 + ξ0:1C0 (B.1.19)
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Now let us assume the statement to be true for k, then we get

Ck+1 = Ek+1 +
k∑

j=0
Fk+1,j ·

ξ0:jC0 +
j∑

r=1
ξr:jEr

 (B.1.20)

= Ek+1 +
 k∑

j=0
Fk+1,j · ξ0:j

 · C0 +
k∑

j=0

j∑
r=1

Fk+1,jξr:jEr (B.1.21)

= Ek+1 + ξ0:k+1C0 +
k∑

r=1

 k∑
j=r

Fk+1,jξr:j

 · Er (B.1.22)

= ξk+1:k+1Ek+1 + ξ0:k+1C0 +
k∑

r=1
ξr:k+1Er (B.1.23)

= ξ0:k+1C0 +
k+1∑
r=1

ξr:k+1Er (B.1.24)

(B.1.25)

□

Lemma B.1.5. If we further assume that C0 = E0, then we have for all k ≥ 1

Ck = Ek +
k∑

s=1

k∑
q=s

ξk−q:k(s)Ek−q (B.1.26)

PROOF. Using the previous lemma, we get

Ck = Ek +
k∑

s′=1
ξ0:k(s′)C0 +

k−1∑
r=1

k−r∑
s=1

ξr:k(s)Er (B.1.27)

Using the assumption C0 = E0, we get

Ck = Ek +
k∑

s′=1
ξ0:k(s′)E0 +

k−1∑
r=1

k−r∑
s=1

ξr:k(s)Er (B.1.28)

= Ek +
k−1∑
r=0

k−r∑
s=1

ξr:k(s)Er (B.1.29)

(B.1.30)

Now let us put q = k − r, we get

Ck = Ek +
k∑

q=1

q∑
s=1

ξk−q:k(s)Ek−q (B.1.31)

= Ek +
k∑

s=1

k∑
q=s

ξk−q:k(s)Ek−q (B.1.32)

(B.1.33)
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□

Remark B.1.6. First, note that Lemma B.1.5 applies here, since C(t)
0 = E

(t)
0 , and thus

C
(t)
k = E

(t)
k +

k∑
s=1

k∑
q=s

ξ
(t)
k−q:k(s)E(t)

k−q (B.1.34)

The idea of Lemma B.1.5 was to regroup all terms with the same number of F factors (where each
F contains a Jacobian matrix Jk which contains the connectivity matrix V of the recurrent net).
One could roughly perceive the term

k∑
q=s

ξ
(t)
k−q:k(s)E(t)

k−q (B.1.35)

as being the term of degree s for s = 1,2, . . . ,k and E(t)
k the term of degree 0. This will allow us to

consider the terms C roughly as a polynomial in V and we can look the asymptotic behaviour of
each of the coefficients of this polynomial individually. This will then give us a very good under-
standing on how the distribution of the attention weights are affecting the magnitude of total gradient.

Proposition B.1.7. For all t ≥ 1, and all k ≥ 0, we have that

dst+k

dht

=
k∑

s=0
ξ̄

(t)
o:k(s) (B.1.36)

where for all s ≥ 1,

ξ̄
(t)
o:k(s) =

∑
0≤i1<...<is<k

F
(t)
k,is
· F (t)

is,is−1 · . . . · F
(t)
i2,i1 · E

(t)
i1 (B.1.37)

and where ξ̄(t)
o:k(0) = E

(t)
k . With for all k ≥ 0 we have

E
(t)
k = ∂st+k

∂ht

(B.1.38)

and for all k ≥ j we have

F
(t)
k+1,j = ∂st+k+1

∂ht+j+1
· Jt+j + 1j=k ·

∂st+k+1

∂st+k

(B.1.39)

PROOF. Let t ≥ 1, and recall that we defined C(t)
k = dst+k

dht
, for all k ≥ 0.

As already pointed out, we know that C(t)
0 = E

(t)
0 (thus the claim holds for k = 0).

129



Then by Lemma B.1.5, we know that for all k ≥ 1 we have

C
(t)
k = E

(t)
k +

k∑
s=1

k∑
q=s

ξ
(t)
k−q:k(s)E(t)

k−q (B.1.40)

= ξ̄
(t)
o:k(0) +

k∑
s=1

k∑
q=s

∑
k−q=i1<...<is+1=k

F
(t)
k,is
· F (t)

is,is−1 · . . . · F
(t)
i2,i1 · E

(t)
i1 (B.1.41)

= ξ̄
(t)
o:k(0) +

k∑
s=1

∑
0≤i1<...<is<k

F
(t)
k,is
· F (t)

is,is−1 · . . . · F
(t)
i2,i1 · E

(t)
i1 (B.1.42)

= ξ̄
(t)
o:k(0) +

k∑
s=1

ξ̄
(t)
o:k(s) (B.1.43)

=
k∑

s=0
ξ̄

(t)
o:k(s) (B.1.44)

□

Remark B.1.8. In what follows the main emphasis will be to calculate the F (t)
i,j and E(t)

i terms
explicitly, since they are the building blocks of the mentioned polynomials in B.1.6.

We will assume that

st = f(ht,ct) (B.1.45)

with

ct = α1,th1 + α2,th2 + . . .+ αt,tht (B.1.46)

and

αj,t = exp{(ej,t)}∑t
i=1 exp{(ei,t)}

(B.1.47)

where

ei,t = a(st−1,hi) (B.1.48)

Let us recall that for all k ≥ 0 we have

E
(t)
k = ∂st+k

∂ht

(B.1.49)

and for all k ≥ j we have

F
(t)
k+1,j = ∂st+k+1

∂ht+j+1
· Jt+j + 1j=k ·

∂st+k+1

∂st+k

(B.1.50)
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Lemma B.1.9. With the assumption of Remark B.1.8, we have that for all t ≥ 2

∂st

∂st−1
= ∂2f(ht,ct) ·

(
t∑

i=1
αi,tYi,t

)
(B.1.51)

where ∂2f is the the partial derivative of f with respect to the second variable, and where we define

Yi,t = hi ·

 ∂ei,t

∂st−1
−

t∑
j=1

αj,t ·
∂ej,t

∂st−1

 (B.1.52)

PROOF.
∂st

∂st−1
= ∂2f(ht,ct) ·

∂ct

∂st−1
(B.1.53)

= ∂2f(ht,ct) ·
[

t∑
i=1

hi ·
(
∂αi,t

∂st−1

)]
(B.1.54)

= ∂2f(ht,ct) ·
 t∑

i=1
hi ·

 t∑
j=1

∂αi,t

∂ej,t

· ∂ej,t

∂st−1

 (B.1.55)

= ∂2f(ht,ct) ·
 t∑

i=1
hi ·

 t∑
j=1

αi,t(1i=j − αj,t) ·
∂ej,t

∂st−1

 (B.1.56)

= ∂2f(ht,ct) ·
 t∑

i=1
αi,thi

 ∂ei,t

∂st−1
−

t∑
j=1

αj,t
∂ej,t

∂st−1

 (B.1.57)

= ∂2f(ht,ct) ·
(

t∑
i=1

αi,tYi,t

)
(B.1.58)

□

Lemma B.1.10. With the assumption of Remark B.1.8, we have that for all k ≥ j:

∂sk

∂hj

= 1k=j · ∂1f(hk,ck) + αj,k∂2f(hk,ck) · (I +Xj,k) (B.1.59)

where ∂1f and ∂2f are the partial derivatives of f with respect to the first and second variable,
respectively, and where we define

Xj,k =
(
hj −

k∑
i=1

hiαi,k

)
· ∂ej,k

∂hj

(B.1.60)
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PROOF.
∂sk

∂hj

= 1k=j · ∂1f(hk,ck) · ∂hk

∂hk

+ ∂2f(hk,ck) · ∂ck

∂hj

(B.1.61)

= 1k=j · ∂1f(hk,ck) + ∂2f(hk,ck) ·
[
αj,k · I +

k∑
i=1

hi ·
∂αi,k

∂hj

]
(B.1.62)

= 1k=j · ∂1f(hk,ck) + ∂2f(hk,ck) ·
[
αj,k · I +

k∑
i=1

hi ·
∂αi,k

∂ej,k

∂ej,k

∂hj

]
(B.1.63)

= 1k=j · ∂1f(hk,ck) + ∂2f(hk,ck) ·
[
αj,k · I +

k∑
i=1

hi · αi,k(1i=j − αj,k)∂ej,k

∂hj

]
(B.1.64)

= 1k=j · ∂1f(hk,ck) + ∂2f(hk,ck) ·
[
αj,k · I +

(
hjαj,k − αj,k

k∑
i=1

hi · αi,k

)
∂ej,k

∂hj

]
(B.1.65)

= 1k=j · ∂1f(hk,ck) + αj,k∂2f(hk,ck) ·
[
I +

(
hj −

k∑
i=1

hi · αi,k

)
∂ej,k

∂hj

]
(B.1.66)

= 1k=j · ∂1f(hk,ck) + αj,k∂2f(hk,ck) · (I +Xj,k) (B.1.67)

□

Corollary B.1.11. With the assumption of Remark B.1.8, and the notations of lemma B.1.9 and
B.1.10, we have for all k′ ≥ 0,

E
(t)
k′ = 1k′=0∂1f(ht,ct) + αt,t+k′∂2f(ht+k′ ,ct+k′) · [I +Xt,t+k′ ] (B.1.68)

and for all k ≥ j,

F
(t)
k+1,j = αt+j+1,t+k+1 · ∂2f(ht+k+1,ct+k+1) · [I +Xt+j+1,t+k+1] · Jt+j (B.1.69)

+ 1k=j ·
(
∂1f(ht+k+1,ct+k+1)Jt+j + ∂2f(ht+k+1,ct+k+1) ·

[
t+k+1∑

i=1
αi,t+k+1Yi,t+k+1

])
(B.1.70)

PROOF. Applying lemma B.1.10, we get that for all k ≥ 0,

E
(t)
k′ = ∂st+k′

∂ht

(B.1.71)

= 1k′=0 · ∂1f(ht,ct) + αt,t+k′ · ∂2f(ht+k′ ,ct+k′) · [I +Xt,t+k′ ] (B.1.72)

(B.1.73)

and then by applying lemma B.1.9 and B.1.10, we get that for all k ≥ j,
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F
(t)
k+1,j = ∂st+k+1

∂ht+j+1
· Jt+j + 1j=k ·

∂st+k+1

∂st+k

(B.1.74)

= [1k=j∂1f(ht+k+1,ct+k+1) (B.1.75)

+ αt+j+1,t+k+1∂2f(ht+k+1,ct+k+1) · (I +Xt+j+1,t+k+1)] · Jt+j (B.1.76)

+ 1k=j · ∂2f(ht+k+1,ct+k+1) ·
(

t+k+1∑
i=1

αi,t+k+1Yi,t+k+1

)
(B.1.77)

= αt+j+1,t+k+1 · ∂2f(ht+k+1,ct+k+1) · [I +Xt+j+1,t+k+1] · Jt+j (B.1.78)

+ 1k=j ·
(
∂1f(ht+j+1,ct+k+1)Jt+j + ∂2f(ht+k+1,ct+k+1) ·

[
t+k+1∑

i=1
αi,t+k+1Yi,t+k+1

])
(B.1.79)

□

Proposition B.1.12. We can rewrite for all k′ ≥ 0 and all k ≥ j ≥ 0

E
(t)
k′ = αt,t+k′ · D̃(t)

k′,0 + 1k′=0R̃
(t)
0 (B.1.80)

F
(t)
k+1,j = αt+j+1,t+k+1 ·D(t)

k+1,j + 1k=j ·R(t)
k+1 (B.1.81)

where

D
(t)
k+1,j+1 = ∂2f(ht+k+1,ct+k+1) · [I +Xt+j+1,t+k+1] · Jt+j (B.1.82)

R
(t)
k+1 = ∂1f(ht+k+1, ct+k+1) · Jt+k + ∂2f(ht+k+1,ct+k+1) · [

t+k+1∑
i=1

αi,t+k+1Yi,t+k+1] (B.1.83)

D̃
(t)
k′ = ∂2f(ht+k′ ,ct+k′) · [I +Xt,t+k′ ] (B.1.84)

R̃
(t)
0 = ∂1f(ht,ct) (B.1.85)

while Xi,i′ and Yi,i′ are defined as in lemma B.1.9 and B.1.10.

PROOF. Follows straight from Corollary B.1.11. □

Remark B.1.13. If we are further assuming that

st = f(ht,ct) = ht + ct (B.1.86)

then for all k ≥ 0, we have

E
(t)
k = 1k=0 · I + αt,t+k · [I +Xt,t+k] (B.1.87)
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and for all k ≥ j, we have

F
(t)
k+1,j = αt+j+1,t+k+1 · [I +Xt+j+1,t+k+1] · Jt+j + 1k=j ·

(
Jt+j +

[
t+k+1∑

i=1
αi,t+k+1Yi,t+k+1

])
(B.1.88)

PROOF. This follows directly form corollary B.1.11 and the observation that

∂1f(ht,ct) = ∂2f(ht,ct) = I (B.1.89)

□

Remark B.1.14. If we are further assuming that

ej,t = a(st−1,hj) = vT
a · tanh (Wast−1 + Uahj) (B.1.90)

as done in Bahdanau et al. (2014), we get that

∂ej,t

∂hj

= vT
a · diag[1− tanh2 (Wast−1 + Uahj)] · Ua (B.1.91)

and
∂ej,t

∂st−1
= vT

a · diag[1− tanh2 (Wast−1 + Uahj)] ·Wa (B.1.92)

which we can plug into the definitions of Xj,k and Yj,k to get explicit expressions for matrices E(t)
k′

and F (t)
k+1,j .

Lemma B.1.15. If, with the assumptions Remark B.1.8, we assume that for all i,t ≥ 1, we have
ei,t = a(st−1,hi, θ) depending on some parameter θ ∈ RN×M , then we have

dL

dθ
=
∑
j,t

αj,t ·
dL

dst

· ∂2f(ht,ct) · hj ·
[∑

i

(1i=j − αi,t) ·
∂ei,t

∂θ

]
(B.1.93)

PROOF. If we denote θ(i,t) to be the parameter for ei,t, then we have

dL

dθ
=
∑
i,t

dL

dθ(i,t) (B.1.94)

=
∑
i,j,t

dL

dαj,t

· ∂αj,t

∂ei,t

· ∂ei,t

∂θ(i,t) (B.1.95)

=
∑
i,j,t

αj,t(1i=j − αi,t) ·
dL

dαj,t

· ∂ei,t

∂θ
(B.1.96)

where
dL

dαj,t

= dL

dst

· ∂st

∂ct

· ∂ct

∂αj,t

= dL

dst

· ∂2f(ht,ct) · hj (B.1.97)
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Hence
dL

dθ
=
∑
i,j,t

αj,t(1i=j − αi,t) ·
dL

dst

· ∂2f(ht,ct) · hj ·
∂ei,t

∂θ
(B.1.98)

=
∑
j,t

αj,t ·
dL

dst

· ∂2f(ht,ct) · hj ·
[∑

i

(1i=j − αi,t) ·
∂ei,t

∂θ

]
(B.1.99)

□

Lemma B.1.16. Let us recall that for all t ≥ 0, we have

ht+1 = ϕ(V st + Uxt+1 + b︸ ︷︷ ︸
=at

) (B.1.100)

where ϕ is a non-linear activation function, V ∈ Rn×n, U ∈ Rn×m and b ∈ Rn. Then we have that[
dL

dV
,
dL

dU
,
dL

db

]
=

T∑
t=1

[st−1,xt,1] · dL
dht

· diag(ϕ′(at)) (B.1.101)

PROOF. Let us denote V (t), U (t), b(t) the matrices V,U,b of at−1 respectively, then[
dL

dV
,
dL

dU
,
dL

db

]
=
∑

t

[
dL

dV (t) ,
dL

dU (t) ,
dL

db(t)

]
(B.1.102)

=
∑

t

[st−1,xt,1] · dL

dat−1
(B.1.103)

=
∑

t

[st−1,xt,1] · dL
dht

· dht

dat−1
(B.1.104)

=
∑

t

[st−1,xt,1] · dL
dht

· diag(ϕ′(at−1)) (B.1.105)

□

Remark B.1.17. Combining the fact that dL
dht

= dL
dsT

dsT

dht
, the results from propositions B.1.7 and

B.1.12, with lemma B.1.16, we see that attention weights αi,t which are very close to 0, do not
contribute to the gradient and the learning of V,U and b.

Similarly, it follows directly from lemma B.1.15, that attention weights αi,t which are very
close to 0, do not contribute to the gradient and the learning of any parameters θ of the alignment
function ei,t = a(st−1,hi,θ). In case we have an alignment function as in remark B.1.14, these
parameters are Wa, Ua and va.

If we have the case where one state hi is such that all attention weights αi,t ≈ 0 for all t ≥ i,
then we can see that hi does not contribute to the gradient and learning to any parameters be it
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parameters from the recurrence or the alignment function.

In practice we have observed that in the majority of tasks, most states hi fall in either of two
categories:

• αi,t is sufficiently bounded away from 0 for most t ≥ i, and thus contributes to learning.
This is what we call a "relevant state".
• αi,t ≈ 0 for almost all t ≥ i, and thus doesn’t contribute much to learning, and the gradient

can be approximated by assuming αi,t = 0 for all t ≥ i. This is what he call a "non-relevant
state".

This observation is what lead us to the intuition that we can approximate the gradient, by decompos-
ing it via proposition B.1.7, into gradient paths involving only skip connections between "relevant
states".

B.1.3. Uniform attention case

Remark B.1.18. In this subsection, we are going to assume:
• no non-linearity in the hidden-to-hidden connection: Jt = V for all t.
• all assumptions from Remark B.1.8.
• uniform attention: αi,t = 1/t for all t ≥ 1.

B.1.3.1. Overview.
Remark B.1.19. Recalling corollary B.1.11, together the main proposition B.1.7 form last section,
we can hope to simplify these expressions using the new assumptions from the previous remark
B.1.18. Recalling expression from lemma B.1.9 and B.1.10:

Xj,t =
(
hj −

t∑
i=1

hiαi,t

)
· ∂ej,t

∂hj

(B.1.106)

=
(
hj −

1
t

t∑
i=1

hi

)
· ∂ej,t

∂hj

(B.1.107)
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Hence, for our calculations we are going to assume that
(
hj − 1

t

∑t
i=1 hi

)
≈ 0, and thus Xj,t ≈ 0

for all 1 ≤ j ≤ t. Similarly,

t∑
i=1

αi,tYi,t =
t∑

i=1
αi,thi ·

 ∂ei,t

∂st−1
−

t∑
j=1

αj,t ·
∂ej,t

∂st−1

 (B.1.108)

= 1
t

t∑
i=1

hi ·

 ∂ei,t

∂st−1
−

t∑
j=1

1
t
· ∂ej,t

∂st−1

 (B.1.109)

= 1
t

t∑
i=1

hi ·
∂ei,t

∂st−1
− 1
t

t∑
j=1

(
1
t

t∑
i=1

hi

)
· ∂ej,t

∂st−1
(B.1.110)

= 1
t

t∑
i=1

hi ·
∂ei,t

∂st−1
− 1
t

t∑
i=1

1
t

t∑
j=1

hj

 · ∂ei,t

∂st−1
(B.1.111)

= 1
t

t∑
i=1

hi −
1
t

t∑
j=1

hj

 · ∂ei,t

∂st−1
(B.1.112)

≈ 0 (B.1.113)

Recalling the expression from corollary B.1.11 and that f(ht,ct) = ht + ct by remark B.1.8, and
that Jt = V for all t, this will give for all k′ ≥ 0

E
(t)
k′ =

( 1
t+ k′ + 1k′=0

)
· I (B.1.114)

and for all k ≥ j, we get

F
(t)
k+1,j =

( 1
t+ k + 1 + 1k=j

)
· V (B.1.115)

Hence by recalling proposition B.1.7, the main expression of interest becomes

dst+k

dht

=
k∑

s=0
ξ̄

(t)
0:k(s) =

k∑
s=0

V s · χ(t)
0:k(s) (B.1.116)

where

χ
(t)
0:k(s)def=

∑
0≤i1<...<is<k

( 1
t+ k

+ 1k−is=1

)
·
( 1
t+ is

+ 1is−is−1=1

)
· . . . (B.1.117)

. . . ·
( 1
t+ i2

+ 1i2−i1=1

)
·
( 1
t+ i1

+ 1i1=0

)
(B.1.118)

Remark B.1.20. The goal is thus to have a good estimation of the terms

χ
(t)
0:k(s) (B.1.119)

137



in order to then find an asymptotic estimation for

dst+k

dht

=
k∑

s=0
V s · χ(t)

0:k(s) (B.1.120)

as k →∞. In order to do so, we will adopt the following strategy:

Step 1. Estimate the expression

ω
(t)
l:k(s)def=

∑
l≤i1<...<is<k

1
t+ is

· 1
t+ is−1

· . . . · 1
t+ i2

· 1
t+ i1

(B.1.121)

for all s ≥ 1. This will be done in §B.1.3.2.

Step2. Estimate the expression

θ
(t)
l:k(s)def=

∑
l≤i1<...<is<k

( 1
t+ is

+ 1is−is−1=1

)
·
(

1
t+ is−1

+ 1is−1−is−2=1

)
· . . . (B.1.122)

. . . ·
( 1
t+ i2

+ 1i2−i1=1

)
·
( 1
t+ i1

+ 1i1=0

)
(B.1.123)

for all s ≥ 1, because as we will see the expression θ
(t)
l:k(s) can be decomposed into ω

(t)
l′:k′(s′)

expressions for s ≥ s′ ≥ 1. This will be done in §B.1.3.3.

Step 3. The final step will consist in putting the results from the two previous sub-subsections
together, and getting a final asymptotic estimate for dst+k

dht
as k →∞, by noting that

χ
(t)
0:k(s) = 1

t+ k
· θ(t)

0:k(s) + 1
t+ k − 1 · θ

(t)
0:k−1(s− 1) + . . . (B.1.124)

. . .+ 1
t+ k − s+ 1 · θ

(t)
0:k−s+1(1) + 1

t+ k − s
+ 1k=s (B.1.125)

This will be treated in §B.1.3.4.

B.1.3.2. Estimating ω.
Remark B.1.21. In this sub-subsection we are going to estimate ω(t)

0:k(s), which is a sum of products
of s distinct factors. The idea will be to start from the expression(1

t
+ 1
t+ 1 + . . .+ 1

t+ k − 1

)s

(B.1.126)

and substract all products containing at least two identical factors, followed by a division by s!.

This approach will be similar in spirit to the inclusion-exclusion principle, with the only
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difference that the desired term will not computed directly, but instead one first establishes a
recursive formula using ω(t)

0:k(s′) with s′ ≤ s.

Solving this recursive formula will enable us to express ω
(t)
0:k(s) only in terms of

(1
t
+ 1

t+1 + . . .+ 1
t+k−1). In fact, ω(t)

0:k(s) will be a polynomial of degree s in (1
t
+ 1

t+1 + . . .+ 1
t+k−1).

We adopt this approach, because we have a very good estimate for

1
t

+ 1
t+ 1 + . . .+ 1

t+ k − 1 (B.1.127)

Namely, we know that for all n, we have

1 + 1
2 + . . .+ 1

n− 1 + 1
n

= lnn+ γ + εn ≤ lnn+ 1 (B.1.128)

where γ > 1
2 is the Euler-Mascheroni constant and εn behaves asymptotically as 1

2n
. In other words,

1
t

+ 1
t+ 1 + . . .+ 1

t+ k − 1 = ln
(
t+ k − 1
t− 1

)
+ εt+k−1 − εt−1 (B.1.129)

= ln
[
t+ k − 1
t− 1 · exp{(εt+k−1 − εt−1)}

]
(B.1.130)

= ln βt−1,t+k−1 (B.1.131)

where βl,l′
def= l′

l
· exp{(εl′ − εl)}. In order to reinforce the intuition here, let us imagine that

T = t+ k, then

ln βt−1,t+k−1 ∼ lnT (B.1.132)

as T →∞. Hence we should expect ω(t)
0:k(s) to behave asymptotically as a polynomial of degree s

in lnT .
Let us emphasize that we would like to express ω(t)

0:k(s) with as much precision as possible (i.e.
not omitting the monomials in lnT of degree less than s), since we would like to later on use this
estimate in subsequent steps when summing multiple ω(t)

0:k(s) terms over s.

In order to further ease notation, we will simply write ω(s) for ω(t)
0:k(s), whenever there is no

ambiguity.

Finally, for this sub-subsection only we will use the following notation

Sl
def= 1

tl
+ 1

(t+ 1)l
+ . . .+ 1

(t+ k − 1)l
(B.1.133)
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for all l ≥ 1, and keeping in mind that Sl converges as k →∞, for all l ≥ 2.

Remark B.1.22. Let us now build a first intuition on how to apply an inclusion-exclusion-like
principle in order to calculate ω(s) for small s.

For s = 1:

ω(1) = S1 (B.1.134)

For s = 2:

ω(2) = 1
2!
(
S2

1 − S2
)

(B.1.135)

Here we expand S2
1 , then substract the sum of products of doubles S2, followed by a division of

2! = 2 to divide out the number of permutations.

For s = 3: first we need to substract the sum of products of triples S3, and then the sum products
where exactly two factors are identical S2 · ω(1)− S3. The latter appears

(
3

2,1

)
= 3!

2!1! = 3 times in
the expansion of S3

1 . Similarly, we need to divide out the number of permutations 3!. Hence

ω(3) = 1
3!
[
S3

1 − S3 − 3 · (S2 · ω(1)− S3)
]

= S3
1

3! −
1
2S2 · ω(1) + 1

3S3 (B.1.136)

Let us form now on denote (3) for the sum of products of triples, and (2,1) the sum of products
where exactly two factors are the same.

More generally we would denote

(j1,j2, . . . ,jk) (B.1.137)

with j1 ≥ j2 ≥ . . . ≥ jk ≥ 1, to denote the sum of products where one factor appears exactly j1

times, another factor (distinct from the previous one!) appears exactly j2 times, and another factor
(distinct from the previous two!) appears exactly j3 times, etc. This leaves us with exactly k distinct
factors each having multiplicity j1,j2, . . . ,jk respectively. This sum appears with

(
s

j1,j2, . . . ,jk

)
= s!
j1! · j2! · . . . · jk! (B.1.138)

repetitions in the expansion of Ss
1, where s = j1 + j2 + . . .+ jk.

For s = 4: when expanding S4
1 , we need to take into account

• (4) = S4 with
(

4
4

)
= 4!

4! = 1 repetition.
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• (3,1) = S3 · ω(1)− S4 with
(

4
3,1

)
= 4!

3!·1! = 4 repetitions.

• (2,2) = S2
2 − S4 with

(
4

2,2

)
= 4!

2!·2! = 6 repetitions.

• (2,1,1) = S2 · ω(2) − (3,1) = S2 · ω(2) − S3 · ω(1) + S4 with
(

4
2,1,1

)
= 4!

2!·1!·1! = 12
repetitions.

Hence we get

ω(4) = 1
4! [S

4
1 − S4 − 4 · (S3 · ω(1)− S4)− 6 · (S2

2 − S4) (B.1.139)

− 12 · (S2 · ω(2)− S3 · ω(1) + S4)] (B.1.140)

= 1
4![S

4
1 − 4 · S3 · ω(1) + 4 · S4 − 6 · S2

2 + 6 · S4 − 12 · S2ω(2) (B.1.141)

+ 12 · S3 · ω(1)− 12 · S4 − S4] (B.1.142)

= 1
4!
[
S4

1 − 12 · S2 · ω(2) + 8 · S3 · ω(1)− 3 · (S4 + S2
2)
]

(B.1.143)

= S4
1

4! −
S2

2 ω(2) + S3

3 ω(1)− (S4 + 2 · S2
2)

8 (B.1.144)

Notice how, as we progress with higher values of s, we build a recursive formula in ω(s′) with
s′ ≤ s.
Intuition. Note that the coefficient of ω(2) for s = 4, is the same as the coefficient for ω(1) for
s = 3, and is the same as the ’constant term’ for s = 2. Similarly, the coefficient of ω(1) for s = 4
is the same as the ’constant term’ for s = 3. (By convention here, we don’t consider the terms Ss

1
s! to

not be part of the ’constant term’.)
Hence, in the recursive formula for ω(s), we would expect the coefficient of ω(s′) with s′ < s

to be equal to the ’constant term’ in the formula for ω(s− s′).
Notation. For all s > l ≥ 0, let us denote δs,l to be the coefficient of the term ω(l) in the recursive
formula for ω(s). By convention, we denote δs,0 for the ’constant term’ in the recursive formula for
ω(s). Hence for all s ≥ 1, we have

ω(s) = Ss
1
s! + δs,s−1 · ω(s− 1) + δs,s−2 · ω(s− 2) + . . .+ δs,1 · ω(1) + δs,0 (B.1.145)

Hypothesis. The hypothesis will thus rewrite as

δs,l = δs−l,0 (B.1.146)

for all s > l ≥ 0, which will prove by induction on s in the next lemma.
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Lemma B.1.23. Let s ≥ 1. Then

ω(s) = Ss
1
s! + δ1,0 · ω(s− 1) + δ2,0 · ω(s− 2) + . . .+ δs−1,0 · ω(1) + δs,0 (B.1.147)

PROOF. Let us prove by induction on s that for all s > l ≥ 0, we have

δs,l = δs−l,0 (B.1.148)

. We already verified the cases s = 1,2,3,4 in the previous remark. Thus let us suppose the induction
hypothesis is true for s, and consider the mapping

Υ : (j1,j2, . . . ,jk) 7→ (j1,j2, . . . ,jk,1) (B.1.149)

where j1 ≥ j2 ≥ . . . ≥ jk ≥ 1 and s = j1 + j2 + . . .+ jk, mapping a partition of s onto a partition
of s+ 1.

If we suppose that (j1,j2, . . . ,jk) consists of exactly r 1’s, then we can write

(j1,j2, . . . ,jk) = cr · ω(r) + cr−1 · ω(r − 1) + . . .+ c1 · ω(1) + c0 (B.1.150)

for some coefficients cr,cr−1, . . . ,c1,c0, and with(
s

j1,j2, . . . ,jk

)
= s!
j1! · j2 · . . . · jk! (B.1.151)

repetitions in the expansion of Ss
1.

The contribution of (j1,j2, . . . ,jk) to the coefficient δs,r′ of ω(r′) with r′ ≤ r < s, in the final
recursive formula of ω(s) will be

cr′

j1! · j2! · . . . · jk! (B.1.152)

(keeping in mind that we are dividing by s! after having done all the substractions from Ss
1).

Meanwhile,

(j1,j2, . . . ,jk,1) = cr · ω(r + 1) + cr−1 · ω(r) + . . .+ c1 · ω(2) + c0 · ω(1) + c̃0 (B.1.153)

for some coefficient c̃0, with (
s+ 1

j1,j2, . . . ,jk,1

)
= (s+ 1)!
j1! · j2 · . . . · jk! (B.1.154)

repetitions in the expansion of Ss+1
1 .

The contribution of (j1,j2, . . . ,jk,1) to the coefficient δs+1,r′+1 of ω(r′ + 1) with r′ ≤ r < s, in
the final recursive formula of ω(s+ 1) will be

cr′

j1! · j2! · . . . · jk! (B.1.155)

(keeping in mind that we are dividing by (s+ 1)! after having done all the substractions from Ss+1
1 ).

Conversely, the coefficient δs+1,r′+1 only receives contributions from partitions of (s+1) having
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at least (r′ + 1) 1’s, which correspond exactly to the contributions from the partitions of s having at
least r′ 1’s. Hence

δs+1,r′+1 = δs,r′ (B.1.156)

Then by the induction hypothesis, we have δs,r′ = δs−r′,0. In other words

δs+1,r′+1 = δs−r′,0 (B.1.157)

which completes the proof by induction. □

Remark B.1.24. Note that all the coefficients δs,l consist of linear combination of products with
factors equal to Sj with j ≥ 2, which are known to converge as T → ∞. Thus those can be
considered constants when doing an asymptotic analysis in the subsequent sub-subsections. Also
note that δs,s−1 = δ1,0 = 0.

Proposition B.1.25. For all s ≥ 1, we have

ω(s) =
s∑

r=0
ψs−r

Sr
1
r! (B.1.158)

where for l ≥ 2

ψl
def=

l−1∑
k=1

∑
(j1,j2,...,jk)∈Ψl,k

δj1,0 · . . . · δjk,0 (B.1.159)

with

Ψl,k
def= {(j1,j2, . . . ,jk) with j1 ≥ . . . ≥ jk > 1 and j1 + . . .+ jk = l} (B.1.160)

and where we define ψ0 = 1 and ψ1 = 0.

143



PROOF. For l ≥ 2, we have

ψl =
l−1∑
k=1

∑
(j1,j2,...,jk)∈Ψl,k

δj1,0 · . . . · δjk,0 (B.1.161)

= δl,0 +
l−1∑
k=1

l−2∑
j=2

∑
(j2,...,jk)∈Ψl−j,k−1

δj,0 · δj2,0 · . . . · δjk,0

 (B.1.162)

= δl,0 +
l−2∑
j=2

 l−j∑
k=1

∑
(j2,...,jk)∈Ψl−j,k−1

δj,0 · δj2,0 · . . . · δjk,0

 (B.1.163)

= δl,0 +
l−2∑
j=2

δj,0 ·

 l−j∑
k=1

∑
(j2,...,jk)∈Ψl−j,k−1

δj2,0 · . . . · δjk,0

 (B.1.164)

= δl,0 +
l−2∑
j=2

δj,0 · ψl−j (B.1.165)

=
l∑

j=1
δj,0 · ψl−j (B.1.166)

(B.1.167)

In other words, we have shown that for all l ≥ 2,

ψl =
l−1∑
j=0

δl−jψj (B.1.168)

Let us now prove the proposition by induction on s.
The case s = 1 is trivial by the definition of ψ0 and ψ1.
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Let us now assume the formula is true for s, and let us prove it for s+ 1. By the previous lemma
B.1.25, we know that

ω(s+ 1) = Ss+1
1

(s+ 1)! +
s∑

l=1
δs+1−l,0 · ω(l) + δs+1,0 (B.1.169)

= Ss+1
1

(s+ 1)! +
s∑

l=1
δs+1−l,0 ·

(
l∑

r=0
ψl−r ·

Sr
1
r!

)
+ δs+1,0 (B.1.170)

= Ss+1
1

(s+ 1)! +
s∑

l=1

l∑
r=0

δs+1−l,0 · ψl−r ·
Sr

1
r! + δs+1,0 (B.1.171)

= Ss+1
1

(s+ 1)! +
s∑

l=0

l∑
r=0

δs+1−l,0 · ψl−r ·
Sr

1
r! (B.1.172)

= Ss+1
1

(s+ 1)! +
s∑

r=0

s∑
l=r

δs+1−l,0 · ψl−r ·
Sr

1
r! (B.1.173)

= Ss+1
1

(s+ 1)! +
s∑

r=0

s−r∑
l′=0

δs+1−r−l′,0 · ψl′ ·
Sr

1
r! (B.1.174)

= Ss+1
1

(s+ 1)! +
s∑

r=0
ψs+1−r ·

Sr
1
r! (B.1.175)

=
s+1∑
r=0

ψs+1−r ·
Sr

1
r! (B.1.176)

completing the proof by induction. □

Remark B.1.26. Hence we have shown that for all s ≥ 1

ω(s) =
s∑

r=0
ψs−r

Sr
1
r! = Ss

1
s! +

s−2∑
r=0

ψs−r
Sr

1
r! (B.1.177)

or in other words

ω(s) = (ln βt−1,t+k−1)s

s! +
s−2∑
r=0

ψs−r
(ln βt−1,t+k−1)r

r! ∼ (lnT )s

s! +
s−2∑
r=0

ψs−r
(lnT )r

r! (B.1.178)

as t+ k = T →∞, which is roughly the polynomial in lnT of degree s we were anticipating.

B.1.3.3. Estimating θ.
Remark B.1.27. Let us now recall the definition for all s ≥ 1,

θ
(t)
l:k(s)def=

∑
l≤i1<...<is<k

( 1
t+ is

+ 1is−is−1=1

)
·
(

1
t+ is−1

+ 1is−1−is−2=1

)
· . . . (B.1.179)

. . . ·
( 1
t+ i2

+ 1i2−i1=1

)
·
( 1
t+ i1

+ 1i1=0

)
(B.1.180)
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which we would like to estimate using ω(t)
l:k(s).

In order to build a first intuition, let us look at how it plays out for small values for s.
Notation. In this subsection we omit the superscript (t) notation because there is no ambiguity. We
will also occasionally do the abuse of notation and assume ωl:k(0) = 1 for all l < k.

For s = 1, we get

θ0:k(1) = 1 + ω0:k(1) (B.1.181)

For s = 2, we get

θ0:k(2) = 1 + ω1:k(1) + ω0:k−1(1) + ω0:k(2) (B.1.182)

In what follows, we will use the following recursive formula quite frequently

θ0:k(s+ 1) = θ0:k−1(s) +
k−1∑
j=s

1
t+ j

θ0:j(s) (B.1.183)

Hence for s = 3, we get

θ0:k(3) = 1 + ω1:k−1(1) + ω0:k−2(1) + ω2:k(1) + ω0:k−1(2) (B.1.184)

+ ω1:k(2) +
k−1∑
j=2

ω0:j−1(1)
t+ j

+ ω0:k(3) (B.1.185)

Now let us further observe that for all s ≥ 1 and 0 ≤ r ≤ l, we have

ωl+r:k+r(s) ≤ ωl:k(s) ≤ ωl−r:k−r(s) (B.1.186)

This implies that

1 + 2 · ω1:k(1) + ω0:k(2) ≤ θ0:k(2) ≤ 1 + 2 · ω0:k−1(1) + ω0:k(2) (B.1.187)

and, similarly,

1 + 3 · ω2:k(1) + 3 · ω1:k(2) + ω0:k(3) ≤ θ0:k(3) ≤ 1 + 3 · ω0:k−2(1) + 3 · ω0:k−1(2) + ω0:k(3)
(B.1.188)

Hypothesis. We can thus see the binomial coefficients arising, and we would expect that in general,
we have

s∑
r=0

(
s

r

)
· ω0:k−s+r(r) ≥ θ0:k(s) ≥

s∑
r=0

(
s

r

)
· ωs−r:k(r) (B.1.189)

Lemma B.1.28. For all k ≥ s ≥ 1, we have
s∑

r=0

(
s

r

)
· ω(t)

0:k−s+r(r) ≥ θ
(t)
0:k(s) ≥

s∑
r=0

(
s

r

)
· ω(t)

s−r:k(r) (B.1.190)
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PROOF. Let us prove this lemma by induction on s. The cases s = 1,2,3 have already been treated
in the previous remark.

Let us now assume that the claim holds for s, and prove it for s+ 1 using the recursive formula

θ0:k(s+ 1) = θ0:k−1(s) +
k−1∑
j=s

1
t+ j

θ0:j(s) (B.1.191)

For the lower bound, using the induction hypothesis, we get

θ0:k(s+ 1) ≥
s∑

r=0

(
s

r

)
· ωs−r:k−1(r) +

k−1∑
j=s

1
t+ j

s∑
r=0

(
s

r

)
· ωs−r:j(r) (B.1.192)

=
s∑

r=0

(
s

r

)
· ωs−r:k−1(r) +

s∑
r=0

(
s

r

)
·

k−1∑
j=s

1
t+ j

· ωs−r:j(r) (B.1.193)

=
s∑

r=0

(
s

r

)
· ωs−r:k−1(r) +

s∑
r=0

(
s

r

)
· ωs−r:k(r + 1) (B.1.194)

=
s∑

r=0

(
s

r

)
· ωs−r:k−1(r) +

s+1∑
r=1

(
s

r − 1

)
· ωs−r+1:k(r) (B.1.195)

= 1 + ω0:k(s+ 1) +
s∑

r=1

[(
s

r

)
+
(

s

r − 1

)]
· ωs−r+1:k(r) (B.1.196)

= 1 + ω0:k(s+ 1) +
s∑

r=1

(
s+ 1
r

)
· ωs−r+1:k(r) (B.1.197)

=
s+1∑
r=0

(
s+ 1
r

)
· ωs−r+1:k(r) (B.1.198)

(B.1.199)
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For the upper bound, using the induction hypothesis, we get

θ0:k(s+ 1) ≤
s∑

r=0

(
s

r

)
· ω0:k−1−(s−r)(r) +

k−1∑
j=s

1
t+ j

s∑
r=0

(
s

r

)
· ω0:j−(s−r)(r) (B.1.200)

=
s∑

r=0

(
s

r

)
· ω0:k−1−(s−r)(r) +

s∑
r=0

(
s

r

)
·

k−1∑
j=s

1
t+ j

· ω0:j−(s−r)(r) (B.1.201)

≤
s∑

r=0

(
s

r

)
· ω0:k−1−(s−r)(r) +

s∑
r=0

(
s

r

)
·

k−1∑
j=s

1
t+ j − (s− r) · ω0:j−(s−r)(r)

(B.1.202)

=
s∑

r=0

(
s

r

)
· ω0:k−1−(s−r)(r) +

s∑
r=0

(
s

r

)
·

k−1−(s−r)∑
j′=r

1
t+ j′ · ω0:j′(r) (B.1.203)

=
s∑

r=0

(
s

r

)
· ω0:k−1−(s−r)(r) +

s∑
r=0

(
s

r

)
· ω0:k−(s−r)(r + 1) (B.1.204)

=
s∑

r=0

(
s

r

)
· ω0:k−1−(s−r)(r) +

s+1∑
r=1

(
s

r − 1

)
· ω0:k−(s+1−r)(r) (B.1.205)

= 1 + ω0:k(s+ 1) +
s∑

r=1

[(
s

r

)
+
(

s

r − 1

)]
· ω0:k−(s+1−r)(r) (B.1.206)

= 1 + ω0:k(s+ 1) +
s∑

r=1

(
s+ 1
r

)
· ω0:k−(s+1−r)(r) (B.1.207)

=
s+1∑
r=0

(
s+ 1
r

)
· ω0:k−(s+1−r)(r) (B.1.208)

(B.1.209)

completing the proof by induction. □

Remark B.1.29. Let us recall that

ωl:k(r) =
r∑

q=0
ψr−q

(ln βt+l−1,t+k−1)q

q! (B.1.210)

Thus the difference between the upper-bound and the lower-bound becomes

s∑
r=0

(
s

r

) [
ωo:k−(s−r)(r)− ωs−r:k(r)

]
=

s∑
r=0

(
s

r

)
·

 r∑
q=0

ψr−q

(ln βt−1,t+k−(s−r)−1)q − (ln βt+s−r−1,t+k−1)q

q!


(B.1.211)

which converges to zero as T = t+ k →∞.

B.1.3.4. Putting it all together.
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Remark B.1.30. Now it is time to turn to χ(t)
0:k(s) and finally put it all together, so that we can finally

estimate

dst+k

dht

=
k∑

s=0
V s · χ(t)

0:k(s) (B.1.212)

and get the asymptotic estimate when T = t+ k →∞.
Let us recall that

χ
(t)
0:k(s) = 1

t+ k
· θ(t)

0:k(s) + 1
t+ k − 1 · θ

(t)
0:k−1(s− 1) + . . . (B.1.213)

. . .+ 1
t+ k − s+ 1 · θ

(t)
0:k−s+1(1) + 1

t+ k − s
+ 1k=s (B.1.214)

Using the abuse of notation θl:k(0) = 1 for l < k, we can rewrite it as follows

χ
(t)
0:k(s) = 1k=s +

s∑
i=0

1
t+ k − i

· θ0:k−i(s− i) (B.1.215)

The idea is to use the inequality from lemma B.1.28, and get a similar result for χ(t)
0:k(s), then show

that the lower and upper bound are no more than Θ(1/T ) apart, thus enabling us to eventually get
an asymptotic estimate for dst+k

dht
.

We are also omitting the superscript (t) notation here because of lack of ambiguity.

Lemma B.1.31. For all s ≥ 0 and k ≥ 1, we have

1k=s + 1
t+ k

·
s∑

r=0

(
s+ 1
r + 1

)
· ωs−r:k(r) ≤ χ0:k(s) ≤ 1k=s + 1

t+ k − s
·

s∑
r=0

(
s+ 1
r + 1

)
· ω0:k−(s−r)(r)

(B.1.216)

PROOF. Using the upper-bound of lemma B.1.28, we get

χ0:k(s) = 1k=s +
s∑

i=0

1
t+ k − i

· θ0:k−i(s− i) (B.1.217)

≤ 1k=s +
s∑

i=0

1
t+ k − i

·
s−i∑
r=0

(
s− i
r

)
· ω0:k−s+r(r) (B.1.218)

≤ 1k=s + 1
t+ k − s

·
s∑

i=0

s−i∑
r=0

(
s− i
r

)
· ω0:k−s+r(r) (B.1.219)

= 1k=s + 1
t+ k − s

·
s∑

r=0

[
s−r∑
i=0

(
s− i
r

)]
· ω0:k−s+r(r) (B.1.220)

= 1k=s + 1
t+ k − s

·
s∑

r=0

(
s+ 1
r + 1

)
· ω0:k−s+r(r) (B.1.221)
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Similarly, using the lower-bound of lemma B.1.28, we get

χ0:k(s) = 1k=s +
s∑

i=0

1
t+ k − i

· θ0:k−i(s− i) (B.1.222)

≥ 1k=s +
s∑

i=0

1
t+ k − i

·
s−i∑
r=0

(
s− i
r

)
· ωs−r:k(r) (B.1.223)

≥ 1k=s + 1
t+ k

·
s∑

i=0

s−i∑
r=0

(
s− i
r

)
· ωs−r:k(r) (B.1.224)

= 1k=s + 1
t+ k

·
s∑

r=0

[
s−r∑
i=0

(
s− i
r

)]
· ωs−r:k(r) (B.1.225)

= 1k=s + 1
t+ k

·
s∑

r=0

(
s+ 1
r + 1

)
· ωs−r:k(r) (B.1.226)

□

Lemma B.1.32. For all s ≥ 0, we have

χ0:k(s) = 1k=s + 1
t+ k

[
s∑

r=0

(
s+ 1
r + 1

)
· ωs−r:k(r)

]
+ Θ

( 1
t+ k

)
(B.1.227)

for all large enough k > 1, and where the implicit constants from the Θ(.) notation are dependent
on s.

PROOF. Building on the previous lemma B.1.31, and substracting the lower bound from the upper
bound, we get

s∑
r=0

(
s+ 1
r + 1

)
·
[
ω0:k−s+r(r)
t+ k − s

− ωs−r:k(r)
t+ k

]
=

s∑
r=0

r∑
q=0

(
s+ 1
r + 1

)
ψr−q

q! ·
[

(ln βt−1,t+k−s+r−1)q

t+ k − s
− (ln βt+s−r−1,t+k−1)q

t+ k

]
(B.1.228)

When assuming that for large k, we have

(ln βt−1,t+k−s+r−1)q ≈ (ln βt+s−r−1,t+k−1)q (B.1.229)

then
(ln βt−1,t+k−s+r−1)q

t+ k − s
− (ln βt+s−r−1,t+k−1)q

t+ k
≈ 1
t+ k

·
[

s

t+ k − s
· (ln βt−1,t+k−s+r−1)q

]
(B.1.230)

≤ 1
t+ k

·
[

s

t+ k − s
· (ln βt−1,t+k−s+r−1)s

]
(B.1.231)

≤ τs

t+ k
(B.1.232)

for some τs > 0 depending on s, for all sufficiently large k.
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In other words, we have
s∑

r=0

(
s+ 1
r + 1

)
·
[
ω0:k−s+r(r)
t+ k − s

− ωs−r:k(r)
t+ k

]
≤ τ̃s

t+ k
(B.1.233)

for for some τ̃s > 0 depending on s, for all sufficiently large k.
Meanwhile, for all large enough k, we have

s∑
r=0

(
s+ 1
r + 1

)
·
[
ω0:k−s+r(r)
t+ k − s

− ωs−r:k(r)
t+ k

]
≈ s

(t+ k)(t+ k − s) ·
s∑

r=0

r∑
q=0

(
s+ 1
r + 1

)
ψr−q

q! · (ln βt−1,t+k−s+r−1)q

(B.1.234)

≥ τ ′
s

(t+ k)2 ·
s∑

r=0

r∑
q=0

(
s+ 1
r + 1

)
ψr−q

q! · (ln βt−1,t+k−s+r−1)q

(B.1.235)

≥ τ ′
s

(t+ k)2 ·
s∑

r=0

r∑
q=0

ψr−q

q! · (ln βt−1,t+k−s+r−1)q

(B.1.236)

= τ ′
s

(t+ k)2 ·
s∑

q=0

s−q∑
r′=0

ψr′

q! · (ln βt−1,t+k−s+r′+q−1)q

(B.1.237)

≈ τ ′
s

(t+ k)2 ·
s∑

q=0

( s−q∑
r′=0

ψr′

)
· (ln (t+ k))q

q! (B.1.238)

≥ τ ′′
s

(t+ k)2 ·
s∑

q=0

(ln (t+ k))q

q! (B.1.239)

≈ τ ′′
s · exp{[ln (t+ k)]}

(t+ k)2 (B.1.240)

= τ ′′
s

t+ k
(B.1.241)

for some τ ′
s, τ

′′
s > 0 depending on s. □

Proposition B.1.33. If V is a normal matrix with eigenvalues λ1,λ2, . . . ,λn of modulus smaller
than 1, then

dsT

dht

= PΛTP
∗ (B.1.242)

where P ∗ is the conjugate transpose of the unitary matrix P (independent of T ) and where ΛT is a
diagonal matrix satisfying

(ΛT )ii ∼ T−1 · c+ T λi−1 · c′ (B.1.243)

for some positive real constants c,c′, as T →∞.
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PROOF. Let V = PΛP ∗ be the Schur decomposition of V , with Λ = diag(λ1,λ2, . . . ,λn). Note
that since we supposed that V is normal, we thus have that the Schur matrix Λ is indeed diagonal
and is composed of the eigenvalues on the diagonal.

Based on lemma B.1.32, one can show that there exists a function g : N→ R+
0 such that

χ0:k(s) = 1k=s + 1
t+ k

[
s∑

r=0

(
s+ 1
r + 1

)
· ωs−r:k(r) + g(s)

]
(B.1.244)

Thus

dst+k

dht

=
k∑

s=0
V s · χ0:k(s) (B.1.245)

= V k + 1
t+ k

[
k∑

s=0
g(s) · V s +

k∑
s=0

s∑
r=0

(
s+ 1
r + 1

)
· ωs−r:k(r) · V s

]
(B.1.246)

= V k + 1
t+ k

 k∑
s=0

g(s) · V s +
k∑

s=0

s∑
r=0

r∑
q=0

(
s+ 1
r + 1

)
· ψr−q

(ln βt+s−r−1,t+k−1)q

q! · V s


(B.1.247)

(B.1.248)

Since the eigenvalues of V are of modulus smaller than 1, we can assume that there exists a constant
d > 0 (dependent on the choice of eigenvalues of V ) such that for all k > d we have V k ≈ 0.
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Furthermore since V m = (PΛP ∗)m = PΛmP ∗ for all m ∈ N0, while keeping in mind that we
pick T = t+ k, we can write

ΛT = 1
T

 d∑
s=0

g(s) · Λs +
d∑

s=0

s∑
r=0

r∑
q=0

(
s+ 1
r + 1

)
· ψr−q

(ln βt+s−r−1,T −1)q

q! · Λs

 (B.1.249)

= 1
T

 d∑
s=0

g(s) · Λs +
d∑

s=0

s∑
q=0

s∑
r=q

(
s+ 1
r + 1

)
· ψr−q

(ln βt+s−r−1,T −1)q

q! · Λs

 (B.1.250)

= 1
T

 d∑
s=0

g(s) · Λs +
d∑

q=0

d∑
s=q

s∑
r=q

(
s+ 1
r + 1

)
· ψr−q

(ln βt+s−r−1,T −1)q

q! · Λs

 (B.1.251)

= 1
T

 d∑
s=0

g(s) · Λs +
d∑

q=0

d∑
s=q

s∑
r=q

(
s+ 1
r + 1

)
· ψr−q

(Λ · ln βt+s−r−1,T −1)q

q! · Λs−q

 (B.1.252)

= 1
T

 d∑
s=0

g(s) · Λs +
d∑

q=0

d−q∑
s′=0

s′∑
r′=0

(
s′ + q + 1
r′ + q + 1

)
· ψr′

(Λ · ln βt+s′−r′−1,T −1)q

q! · Λs′

 (B.1.253)

∼ 1
T

 d∑
s=0

g(s) · Λs +
d∑

q=0

d−q∑
s′=0

s′∑
r′=0

(
s′ + q + 1
r′ + q + 1

)
· ψr′

(Λ · lnT )q

q! · Λs′

 (B.1.254)

= 1
T

[
d∑

s=0
g(s) · Λs

]
+ 1
T

 d∑
q=0

(Λ · lnT )q

q! ·

d−q∑
s′=0

s′∑
r′=0

(
s′ + q + 1
r′ + q + 1

)
· ψr′ · Λs′

 (B.1.255)

≈ 1
T

[
d∑

s=0
g(s) · Λs

]
+ 1
T

exp{(Λ · lnT )} · (c0 + c1 · Λ + . . .+ cd · Λd) (B.1.256)

∼ c

T
+ c′

T
exp{(Λ · lnT )} (B.1.257)

for some positive constants c′,c,c0,c1, . . . ,cd.
Hence

(ΛT )ii ∼ c · T−1 + c′ · T λi−1 (B.1.258)

□

Theorem B.1.34. If V is a normal matrix with eigenvalues of modulus smaller than 1, then

∥dsT

dht

∥ = Ω(1/T ) (B.1.259)

as T →∞. (here ∥.∥ is the Frobenius norm.)

PROOF. Let us start off with the observation that

T−1 · c+ T λi−1 · c′ = Ω
(
T− min (1,1−Re(λi))

)
(B.1.260)
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as T →∞. And thus, by using proposition B.1.33, we get

∥dsT

dht

∥ = Ω(T−η) (B.1.261)

where

η = min
i=1,...,n

{min (1,1−Re(λi))} ≤ 1 (B.1.262)

□

Remark B.1.35. Note that V being normal is not a necessary condition for the generality of the
theorem to hold. We simply chose V to be normal in order to make the calculations less cumbersome.

In case V is non-normal, its Schur matrix Λ becomes triangular instead of diagonal. In fact, if
ti,j are the off-diagonal elements of Schur matrix of V (with i < j), then

∥V ∥ =
√

Tr(V ∗V ) =
√

Tr(Λ∗Λ) =
√√√√ n∑

i=1
|λi|2 +

∑
i<j

|ti,j|2 ≥

√√√√ n∑
i=1
|λi|2 (B.1.263)

Thus every lower bound on
√∑n

i=1 |λi|2 induces a lower bound on ∥V ∥, and in particular an
asymptotic lower bound on the modulus of one of the eigenvalues of dsT

dht
induces an asymptotic

lower bound on ∥dsT

dht
∥.

B.1.4. Sparse relevance case with bounded dependency depth

Remark B.1.36. Similarly to remark B.1.18, we are going to assume for this subsection:
• no non-linearity in the hidden-to-hidden connection: Jt = V for all t.
• all assumptions from Remark B.1.8.
• κ-sparse attention: for each t ≥ 1, there are at most κ ≤ t values for i such that αi,t ̸= 0.

(Let us define κt
def= |{i such that αi,t ̸= 0}|)

• uniform attention across attended states: for all t ≥ 1, and all i ≤ t such that αi,t ̸= 0, we
have αi,t = 1/κt ≥ 1/κ.

Remark B.1.37. Similarly to remark B.1.19, let us recall that

Xi,t =
hi −

t∑
j=1

αj,thj

 · ∂ei,t

∂hi

(B.1.264)

and that
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t∑
i=1

αi,tYi,t =
t∑

i=1
αi,t · hi ·

 ∂ei,t

∂st−1
−

t∑
j=1

αj,t ·
∂ej,t

∂st−1

 (B.1.265)

=
t∑

i=1
αi,t · hi ·

∂ei,t

∂st−1
−

t∑
i=1

αi,t

 t∑
j=1

αj,t · hj

 · ∂ei,t

∂st−1
(B.1.266)

=
t∑

i=1
αi,t ·

hi −
t∑

j=1
αj,thj

 · ∂ei,t

∂st−1
(B.1.267)

Thus we can see that both expressions have the common factor
(
hi −

∑t
j=1 αj,thj

)
.

By defining

At
def= {i such that αi,t ̸= 0} (B.1.268)

we see that

hi −
t∑

j=1
αj,thj = hi −

1
κt

∑
j∈At

hj (B.1.269)

and we are going to assume for the sake of simplicity that

hi ≈
1
κt

∑
j∈At

hj (B.1.270)

and thus Xi,t ≈ 0 and
∑t

i=1 αi,tYi,t ≈ 0.
Recalling the expression from corollary B.1.11 and that f(ht,ct) = ht + ct by remark B.1.8, and

that Jt = V for all t, this will give for all k′ ≥ 0

E
(t)
k′ =

(1t∈At+k′

κt+k′
+ 1k′=0

)
· I (B.1.271)

and for all k ≥ j, we get

F
(t)
k+1,j =

(
1t+j+1∈At+k+1

κt+k+1
+ 1k=j

)
· V (B.1.272)

Hence by recalling proposition B.1.7, the main expression of interest becomes

dst+k

dht

=
k∑

s=0
ξ̄

(t)
0:k(s) =

k∑
s=0

V s · χ(t)
0:k(s) (B.1.273)

where

χ
(t)
0:k(s)def=

∑
0≤i1<...<is<k

(
1t+is+1∈At+k

κt+k

+ 1k−is=1

)
·
(

1t+is−1+1∈At+is

κt+is

+ 1is−is−1=1

)
· (B.1.274)

. . . ·
(1t+i1+1∈At+i2

κt+i2

+ 1i2−i1=1

)
·
(1t∈At+i1

κt+i1

+ 1i1=0

)
(B.1.275)

155



Remark B.1.38. Let us now have a look at how we could potentially simplify the analysis of χ(t)
0:k(s).

If we further assume V to be normal we can write

V = PΛP ∗ (B.1.276)

where Λ = diag(λ1,λ2, . . . , λn) is the diagonal matrix consisting of the eigenvalues of V , and P ∗ is
the conjugate transpose of P .

Hence, we can rewrite

dst+k

dht

=
k∑

s=0
V s · χ(t)

0:k(s) = P ·
(

k∑
s=0

Λs · χ(t)
0:k(s)

)
· P ∗ (B.1.277)

We can therefore see that the asymptotic behaviour of dst+k

dht
depends largely on the asymptotic

behaviour of the modulus of the complex-valued polynomial

p0:k(λ)def=
k∑

s=0
λs · χ(t)

0:k(s) (B.1.278)

and thus

∥dst+k

dht

∥ =
√√√√ n∑

i=1
|p0:k(λi)|2 (B.1.279)

where ∥.∥ is the Frobenius norm. Hence in order to prove that

∥dst+k

dht

∥ = Ω(1/κd) (B.1.280)

for all large enough k (note that k and κ here are two different symbols), it would suffice to show
that there exists λ ∈ {λ1, . . . ,λn} such that, for all large enough k, we have

|p0:k(λ)| = Ω(1/κd) (B.1.281)

For simplicity we are going to assume that for all t, we have κt = κ.
Let us further define for all s ≥ 1,

f
(s)
0:k(i1, . . . ,is)def=

(
1t+is+1∈At+k

κt+k

+ 1k−is=1

)
·
(

1t+is−1+1∈At+is

κt+is

+ 1is−is−1=1

)
· . . . (B.1.282)

. . . ·
(1t+i1+1∈At+i2

κt+i2

+ 1i2−i1=1

)
·
(1t∈At+i1

κt+i1

+ 1i1=0

)
(B.1.283)

whenever (i1, . . . ,in) satisfies 0 ≤ i1 < i2 < . . . < is < k, and

f
(s)
0:k(i1, . . . ,is)def= 0 (B.1.284)
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otherwise.

Theorem B.1.39. Given the κ-sparsity assumption and the dependency depth d, we have that if V
is normal and has one positive real eigenvalue, then

∥dst+k

dht

∥ = Ω(1/κd) (B.1.285)

for all large enough k.

PROOF. By the hypothesis on the dependency depth d, we know that for each k, there exists s′ ≤ d

and (i1,i2, . . . ,is′) such that

f
(s′)
0:k (i1, . . . ,is′) ≥

(1
κ

)s′+1
≥
(1
κ

)d+1
(B.1.286)

Hence if λ is real and positive, then for all large enough k, we have

|p0:k(λ)| = Ω(1/κd) (B.1.287)

Let us recall that, since V is normal we can write

∥dst+k

dht

∥ =
√√√√ n∑

i=1
|p0:k(λi)|2 (B.1.288)

where λ1, . . . ,λn are the eigenvalues of V .
Hence, if V has at least one positive real eigenvalue then

∥dst+k

dht

∥ = Ω(1/κd) (B.1.289)

for all large enough k. □

Remark B.1.40. As already mentioned, since κ and d are assumed to be constant, the theorem states
that

∥dst+k

dht

∥ = Ω(1) (B.1.290)

The dependence on κ and d was simply given in order to get an intuition on how κ and d are
influencing the lower bound, and that d has more leverage on the lower bound than κ.

Regarding the normality of V , the same remark can be made as in remark B.1.35.
Then note that if V is a (real) n×n matrix, with n odd, then we have at least one real eigenvalue.

Thus the restriction of having at least one positive real eigenvalue is not that severe.
Further, one can show that the theorem holds in a slightly more general setting where one might

not have at least one positive real eigenvalue.
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Let us consider the case where κ = 1, |λ| < 1 such that we could consider λc ≈ 0 for some
large enough positive integer c, and that all states between T and T − c have dependency depth of
exactly d (where T = t+ k), then

p0:k(λ) = λd

κd
· (1 + λ+ . . .+ λc−d) = λd

κd
·
(

1− λc−d+1

1− λ

)
(B.1.291)

Hence we can see that if we can show that
∣∣∣1−λc−d+1

1−λ

∣∣∣ is lower bounded asymptotically by a
constant, independent of d and κ, (which it is in this case), then we have

|p0:k(λ)| = Ω(1/κd) (B.1.292)

We also see that we would like λ to be sufficiently bounded away from a small set of critical values
such as the (c− d)-th roots of unity.

In a more general setting, we can rewrite

p0:k(λ) = λd

κd
· q0:k(λ) (B.1.293)

for some polynomial q0:k with positive real coefficients, and we would like λ to be such that
|q0:k(λ)| = Ω(1) for all sufficiently large k.

Our hypothesis is that the theorem holds as long as λ is sufficiently bounded away from a small
set of critical values in C \ R+, or in other words, we would need only at least one eigenvalue to
satisfy this condition. This set of critical values is a dependent on κ, d and the overall configuration
of the attention weights.
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B.2. Effects of memory sparsity on basic reinforcement learning
tasks

We consider a few tasks from MiniGrid Chevalier-Boisvert and Willems (2018) in the OpenAI
gym Brockman et al. (2016) in which an agent must get to certain goal states. We use a partially
observed formulation of the task, where the agent only sees a small number of squares ahead of it.
Our goal is to compare generalization of the solutions learned by full and sparse memory-augmented
models, by training on smaller version of an environment and testing it on a larger version. To do
so, we compare the use of MemLSTM (full attention) and RelLSTM (sparse attention). We note
that some purely recurrent models can perform well on these tasks where sequence lengths are
rather short, but the scope of this experiment is to explicitly compare the effect of different memory
densities.

Table 1. Average Train and Test Rewards for MiniGrid Reinforcement Learning task. The models were
trained on the smaller version of the environment and tested on the larger version to test to generalization of
the solution learned.

Environment MemLSTM RelLSTM

Train

RedBlueDoors-6x6 0.97 0.97
GoToObject-6x6 0.85 0.84

MemoryS7 0.4 0.94
GoToDoor-5x5 0.17 0.25

Fetch-5x5 0.42 0.5
DoorKey-5x5 0.94 0.93

Test

RedBlueDoors-8x8 0.95 0.95
GoToObject-8x8 0.66 0.74

MemoryS13 0.24 0.30
GoToDoor-8x8 0.11 0.15

Fetch-8x8 0.44 0.45
DoorKey-16x16 0.31 0.44

These tasks are difficult to solve with standard RL algorithms, due to (1) the partial observability
of the environment and (2) the sparsity of the reward, given that the agent receives a reward only
after reaching the goal. We use Proximal Policy Optimization (PPO, Schulman et al. (2017))
along with MemLSTM, and RelLSTM as the recurrent modules. All models were each trained
for 5000000 steps on each environment. The hyperparameters used for RelLSTM are ν = 5 and
ρ = 5. On the MiniGrid-DoorKey-5x5-v0 environment the average reward for MemLSTM is 0.94
and RelLSTM is 0.93. On transferring the learned solution to the 16x16 version of that environment
the average reward for MemLSTM is 0.31 and RelLSTM is 0.44. As illustrated in 1, we find that
transfer scores for RelLSTM are much higher than for MemLSTM across several environments.
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B.3. Tradeoff analysis between sparsity and gradient propaga-
tion

As already discussed in §4.5, the sparsity coefficient κ verifies κ = ν + ρ ≥ |St|+ |Rt| for all
time step t, where we denote ν for the size of the short-term buffer, and ρ for the maximal size of
the relevant sets Rt. In this section we would like to see how gradient propagation varies when
changing sparsity. As already discussed at the end of §4.4 as well as at the end of §4.5, decreasing
κ, would increasingly force gradients to backpropagate through the recurrent connections, thus
degrading gradient stability. Meanwhile, increasing κ would increase the size of the computational
graph. Thus we would like to find the optimal trade-off between sparsity and gradient propagation.
This trade-off is clearly task-specific and needs to be determined experimentally. The only way to
do so is by either changing ν or changing ρ (or both). Hence we are going to analyze the effects on
gradient propagation by separately changing ν and ρ.

Fig. 1. Both sides show gradient norm plots of ∥∇htL∥ in log scale after training for Denoise Task with t
ranging from 0 (latest time step) to 1000 (furthest time step). (Left) We took four MemLSTM models for
ρ = 3,8,18,25 while keeping ν = 15 fixed. (Right) We took four MemLSTM models for ν = 3,8,18,25
while keeping ρ = 15 fixed. (Note that the y-axis of the two plots have different scales, as indicated in the
plots.)

For Figure 1 (left), we can see that when choosing ρ too small (here for instance ρ = 3), gradient
propagation becomes unstable, while larger values for ρ all show stable gradient propagation. This
confirms our initial intuition that we can decrease ρ until a task-specific threshold and maintain stable
gradient propagation, while decreasing ρ beyond this threshold would cause gradient propagation to
become unstable.

For Figure 1 (right), we can see that changing ν has much less leverage on gradient propagation
than changing ρ. Gradient propagation stays relatively stable regardless of the values for ν. The
only difference is that for the extreme value of ν = 3, we can see that gradient propagation became
slightly less stable, because with smaller ν predictions for future relevancy might become less
accurate.
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B.4. Additional Results

Fig. 2. Cross-entropy vs training updates for Copy (top) and Denoise (bottom) tasks for
T = {100, 200, 300, 500, 1000, 2000}. 1 unit of the x-axis is equal to 100 iterations of training
with the exception of expRNN where 1 unit on the x-axis is 10 iterations of training.

Table 2. Results for Copy Task

T LSTM orth-RNN expRNN MemRNN SAB RelRNN RelLSTM

100 100% 100% 100% 100% 100% 100% 100%
200 100% 100% 100% 100% 100% 100% 100%
300 100% 100% 100% 100% 100% 100% 100%
500 12% 100% 100% 100% 100% 100% 100%
1000 12% 80% 100% 100% 100% 100% 100%
2000 12% 11% 100% OOM 100% 100% 100%

Table 3. Hyperparameters used for Copy task

Model lr optimizer non-linearity ν ρ

orthRNN 0.0002 RMSprop modrelu - -
expRNN 0.0002 RMSprop modrelu - -
LSTM 0.0002 Adam - - -

RelRNN 0.0002 Adam tanh 10 10
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Table 4. Hyperparameters used for Denoise task

Model lr optimizer non-linearity ν ρ

orthRNN 0.0002 RMSprop modrelu - -
expRNN 0.0002 RMSprop modrelu - -
LSTM 0.0002 Adam - - -
GORU 0.001 RMSprop - - -

RelRNN 0.0002 RMSprop modrelu 10 10

Table 5. Hyperparameters used for sequential MNIST

Model lr (lr orth) optimizer non-linearity ν ρ

orthRNN 0.0001 Adam modrelu - -
expRNN 0.0001(0.00001) Adam modrelu - -
LSTM 0.0002 - - -
GORU - -

RelRNN 0.0003 Adam modrelu 10 10

Table 6. Hyperparameters used for PTB

Model lr (lr orth) optimizer non-linearity ν ρ

orthRNN 0.001 Adam tanh - -
expRNN 0.003(0.0003) Adam tanh - -
LSTM 0.0002 - - -
GORU - -

RelRNN 0.0003 Adam tanh 10 5

Fig. 3. Training curves for LSTM on Denoise task
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Fig. 4. Training curves for GORU on Denoise task

Fig. 5. Heatmap of attention scores on PTB task training with full attention and BPTT of 125
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Fig. 6. Validation accuracy curves for pMNIST

Fig. 7. Heatmap of attention scores on MNIST digit classification. 7 pixels were grouped at each time step to
make visualization of heatmap easier.
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Fig. 8. Heatmap of attention scores on Copy task when only doing attention over the Short Term Buffer.

Fig. 9. Heatmap of attention scores on Denoise task when only doing attention over the Short Term Buffer.
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Appendix C

Appendix for ’On Neural Architecture Inductive
Biases for Relational Tasks’

C.1. Hyperparameters
Table 1 shows the default hyperparameters used for the experiments reported in the main text.

All other hyperparamaters, including those of all other models are exactly the same as in Webb et al.
(2021).

C.2. Relational Games - additional results
Table 2 displays additional baselines.

C.3. Identity rules 4 (flipped version) results
In the section, we briefly outline a version of the identity rules 4 task, where training and test set

have been swapped, which we call identity rules 4 [flipped]. In this task, we only train on quadruples
with 3 distinct images (only including quadruples of the form ABCA, BACA and BCAA), while
testing only on quadruples with at most two distinct images. We also include a version of this task,
with missing variations, where we excluded all quadruples of the form ABCA from the training set.
For results, see Figure 1.

C.4. Distribution-of-N results
In this section we are going to look at extensions of the distribution-of-three task: we will be

looking at distributions of 10 elements, as well as a variation where the set of permutations shown in
the training set is restricted and the test set is constructed of permutations not shown during training.
We recall that in distribution-of-three, the second row in Figure 1 (top left) is a permutation of the
first row. The last element of the second row is "removed", and needs to be inferred from the options
in the last row, which contains all images shown in the first row and one additional element. In



Table 1. Default hyperparameters

Parameter Value

Input images size for relational games tasks 36× 36× 3
Iterations for relational games tasks 2500
Input images size for relational cognitive tasks 32× 32× 3
Iterations for relational cognitive tasks 5000
Runs per experiment 10
Optimiser Gradient descent
Learning rate 5e− 4
Encoder output dimension 128
Encoder non-linearity ReLU
Encoder CNN stride 2
Encoder CNN padding 1
Encoder CNN first layer input channels 3
Encoder CNN output channels 32
Encoder CNN kernel size 4
Encoder nb. conv layers 3
Encoder fully connected layer hidden dim 256
CoRelNet decoder fully connected layer with 1 hidden layer
CoRelNet decoder hidden layer dim 256
CoRelNet normalization type contextnorm

CoRelNet-T heads 8
CoRelNet-T transformer dim 512
CoRelNet-T query dim 8
CoRelNet-T positional encoding dim 8
CoRelNet-T transformer nb. layers 1
CoRelNet-T normalization type contextnorm

distribution-of-N , we imagine N distinct images in the first row, and a permutation thereof in the
second row. Again, the last element of the second row is "removed" and needs to be inferred from
the N + 1 (the N images shown in the first row and one additional element) options shown in the
last row. For the variations of distribution-of-N , for which we want to only include unseen relations
in the test set, we are going to restrict the training set to only contain permutations (sending the first
row to the second row) preserving the set of the first N − 3 elements, while all the other remaining
permutations are used to construct the test set. Hence test and training set have disjoint sets of
underlying permutations, and thus relations. For results see Figure 2.

C.5. Details on relational tasks with spurious features
Please see Figure 3.
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Task Test Set CoRelNet CoRelNet-T MNM LSTM NTM RN

same Hex. 94.7±5.4 98.7±0.5 97.3±1.5 96.4±1.6 97.2±1.7 92.9±2.8

Str. 90.4±9.0 98.4±0.6 95.5±2.0 90.3±6.4 93.4±5.3 83.7±10.2

between Hex. 96.6±2.2 91.9±3.3 93.6±2.3 94.9±3.3 96.3 ±0.7 73.6±8.2

Str. 93.1±5.4 87.0±4.7 90.2±5.2 91.7±4.5 93.5±2.5 54.5±5.7

occurs Hex. 96.2±2.2 91.6±4.6 84.9±2.8 92.2±2.4 93.5±8.1 71.2±6.6

Str. 88.7±5.3 79.3±12.1 77.0±4.5 79.8±10.0 87.1±11.0 54.6±4.0

xoccurs Hex. 92.2±6.4 91.7±6.9 73.8±6.6 79.1±2.8 84.2±5.0 65.7±5.5

Str. 83.6±10.9 85.4±6.4 70.6±6.2 77.2±5.9 81.7±5.8 61.7±7.4

row
matching

Hex. 97.7±0.8 95.4±5.1 49.9±0.3 50.1±0.6 50.2±0.5 50.5±0.3

Str. 94.8±1.3 90.5±5.2 49.8±0.6 50.2±0.5 49.9±0.5 50.4±0.4

col./shape Hex. 47.2±3.7 49.6±0.8 75.7±12.1 80.1±7.0 88.0±2.4 77.5±9.2

left-of Hex. 99.2±0.7 97.6±1.2 97.5±1.2 97.2±1.2 97.5±0.9 51.0±2.1

Table 2. Out-Of-Distribution test accuracies for the Relational Game tasks on the two held-out sets "Hex-
ominoes" (Hex.) and "Stripes" (Str.). Results reflect test accuracies averaged over 10 seeds.

Fig. 1. Results for identity rules 4 [flipped] and identity rules 4 [flipped] (with missing variations) for m = 94,
which is the most extreme OOD case. Here m denotes the number of shapes not seen during training. There
are a total of 100 shapes, and m = 94 here means 6 shapes are shown during training, and testing involves
only the 94 unseen shapes. The test result accuracies are averaged over 10 random seeds.

C.6. Spurious features in separated inputs
In this section we investigate a variation of the same different discrimination task with shapes

and colours as outlined in Section §5.4.3. Instead of presenting colour and shape in the same image
we provide shapes and colours alternatively in different images. Hence we expect that the model
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Fig. 2. The test result accuracies for distribution-of-10 and distribution-of-10 (restricted - with unseen
permutations during testing) for the most extreme OOD case (m = 89). Here m denotes the number of
shapes not seen during training. There are a total of 100 shapes, and m = 89 here means 11 shapes are shown
during training, and testing involves only the 89 unseen shapes. The test result accuracies are averaged over
10 random seeds.

Fig. 3. Figure displaying average test performance across 10 seeds for the respective models displayed in the
plot. For RMTS regularization coefficient λ = 5 was used for both models, otherwise λ = 1 was used.

can more easily discern the spurious features, as the heavy lifting for ignoring spurious features
no longer needs to be done on the level of the encoder but can instead be done on the level of the
relational matrix. This is where we believe our model CoRelNet has an advantage over ESBN,
as it gets to see the whole similarity matrix all at once, and since spurious features are position
dependent, it can decide which positions of the similarity matrix it should consistently ignore. See
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Fig. 4. Left. Task illustration: example for same different task (shapes+colours) on separated inputs. Inputs
are given in sequential order shapes, colour, shapes, colour (4 inputs). The task consists in determining
whether the two shapes are the same or different irrespective of the colours shown in the sequence. Here
the answer would be "same", since both shapes are identical. Right. OoD test accuracy for same different
(shapes+colours) on separated inputs. Here the values on the x axis denote the holdout value m, for shapes
not shown during training. There are a total of 100 shapes, and m = 98 here means 2 shapes are shown
during training, and testing involves only the 98 unseen shapes. The set of 100 colours used in training and
testing regimes are the same. The case m = 0 corresponds to the in-distribution case, where the same 100
shapes are shown at testing and training. The test result accuracies are averaged over 10 random seeds. We
can see that for increasing values for the shape holdout parameter m the testing accuracies of ESBN and
Transformer are degrading, while CoRelNet maintains close to perfect accuracy.

Figure 4 for details.

C.7. Ablation for matching number of parameters in CoRelNet
and ESBN

In this section we present an additional ablation where we match the number of parameters of
CoRelNet with the number of parameters of ESBN. We call this additional baseline CoRelNet-nhid,
and we modify the number of hidden units in the MLP decoder for each task in order to match model
size with ESBN. As one can infer from Table 3, CoRelNet has much fewer parameters than ESBN,
while showing superior performance. In other words, CoRelNet-nhid as much more parameters
than CoRelNet and thus Figure 5 shows that increasing the number of parameters in CoRelNet does
not degrade performance.
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(a) Basic cognitive relational tasks (b) Harder cognitive relational tasks

Fig. 5. The additional baseline ’CoRelNet nhid’ is being compared to CoRelNet and ESBN.
’CoRelNet nhid’ is equivalent to CoRelNet where the hidden size of the decoder MLP is adjusted as
to match the number of parameters with ESBN on each of the shown tasks. Results are showing
OoD test accuracy averaged across 10 seeds for each task. We took the most extreme OOD cases
such as m=98 for same/diff and same/diff6, m= 95 for RMTS, identity rules and dist3, and m=94
for identity rules 4, identity rules 4 missing, RMTS3. The number of parameters is listed in Table 3.

Table 3. Number of parameters

Task CoRelNet CoRelNet-nhid ESBN

Same different 200418 1910760 1910757
RMTS 205026 1910754 1910757
Dist3 211684 1911784 1911783
Identity rules 211684 1911784 1911783

Same diff. 6 205026 1910760 1910757
RMTS 3 211170 1910754 1910757
Identity rules 4 223974 1912808 1912809
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C.8. Full plots

Fig. 6. Full detailed test accuracy results for the four basic relational tasks, across the full range of values for
m (the number of heldout shapes during training only shown at testing, displayed on the x-axis). There are
total of n = 100 shapes, hence 100−m of those are shown during training, and the test set consists only of
the other m shapes. The most extreme OoD case corresponds to m = 98 for the same different task (98% of
the possible combinations of shapes are in the test set and not shown during training), and m = 95 for the 3
other tasks. The case m = 0 corresponds to the in-distribution case, where the same 100 shapes are shown at
testing and training. The test result accuracies are averaged over 10 random seeds.
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Fig. 7. Full concatenation plots. Full detailed test accuracy results on the four basic relational tasks, across
the full range of values for m (the number of heldout shapes during training, displayed on the x-axis). There
are total of n = 100 shapes, hence 100−m of those are shown during training, and the test set consists only
of the other m shapes. The case m = 0 corresponds to the in-distribution case, where the same 100 shapes
are shown at testing and training. Here the suffix "cat" stands for concatenating the encoded input on top of
the input of the decoder. The test result accuracies are averaged over 10 random seeds.
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Fig. 8. Full random encoder plots. Full detailed test accuracy results on the four basic relational tasks, across
the full range of values for m (the number of heldout shapes during training, displayed on the x-axis). There
are total of n = 100 shapes, hence 100 −m of those are shown during training, and the test set consists
only of the other m shapes. The case m = 0 corresponds to the in-distribution case, where the same 100
shapes are shown at testing and training. Here the prefix "random encoder" stands for randomly initializing
the encoder but not updating it via backpropagation during training. The test result accuracies are averaged
over 10 random seeds.
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Fig. 9. Full symmetry plots. Full detailed test accuracy results on the four basic relational tasks, across the
full range of values for m (the number of heldout shapes during training, displayed on the x-axis). There
are total of n = 100 shapes, hence 100 −m of those are shown during training, and the test set consists
only of the other m shapes. The case m = 0 corresponds to the in-distribution case, where the same 100
shapes are shown at testing and training. Here the prefix "asymmetric" stands for replacing the symmetric
dot-product z⊤

t zt by the asymmetric (W1 · zt)⊤(W2 · zt), whenever self-attention is performed. Similarly,
the prefix "symmetric" stands for replacing the ’asymmetric’ dot-product (Q · zt)⊤(K · zt) by the symmetric
(Q · zt)⊤(Q · zt) counterpart, whenever self-attention is performed. However in our analysis in the main text
for symmetric vs asymmetric, we did not include symmetric Transformer and Transformer, since they are not
built upon the same inductive bias. The test result accuracies are averaged over 10 random seeds.
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Fig. 10. Full detailed test accuracy results on the harder relational tasks with unseen relations, across the full
range of values for m (the number of heldout shapes during training, displayed on the x-axis). There are
total of n = 100 shapes, hence 100−m of those are shown during training, and the test set consists only of
the other m shapes. The case m = 98 corresponds to the most extreme OoD case for same/different 6, and
m = 94 for the other three tasks. The case m = 0 corresponds to the in-distribution case, where the same
100 shapes are shown at testing and training. The test result accuracies are averaged over 10 random seeds.
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Fig. 11. Full random encoder plots. Full detailed test accuracy results on the harder relational tasks with
unseen relations, across the full range of values for m (the number of heldout shapes during training, displayed
on the x-axis). There are total of n = 100 shapes, hence 100−m of those are shown during training, and the
test set consists only of the other m shapes. The case m = 98 corresponds to the most extreme OoD case for
same/different 6, and m = 94 for the other three tasks. The case m = 0 corresponds to the in-distribution
case, where the same 100 shapes are shown at testing and training. Here the prefix "random encoder" stands
for randomly initializing the encoder but not updating it via backpropagation during training. The test result
accuracies are averaged over 10 random seeds.
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Fig. 12. Comparison relational only vs relational + sensory input models, all models are run on 10 seeds for
each task. Left. Average OOD test performance across the three enhanced cognitive relational tasks same/diff6
(m = 98), RMTS3 (m = 94), identity rules 4 (m = 94). Right. Average OOD test performance across the
three enhanced cognitive relational tasks ’same’, ’between’, ’occurs’, ’xoccurs’, ’left-of’, ’row matching’,
’col./shape’. For the tasks involving stripes and hexominoes for OOD testing, both test performances were
considered and the mean was computed, otherwise only hexominoes performance was considered. The
average OOD test was taken across all tasks.

Fig. 13. Additional baselines are being shown, such as MNM, NTM, LSTM and RN. Results are showing
OoD test accuracy averaged across 10 seeds for each task. We took the most extreme OOD cases such as
m = 98 for same/diff and same/diff6, m = 95 for RMTS, identity rules and dist3, and m = 94 for identity
rules 4, identity rules 4 missing, RMTS3.
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Appendix D

Unitary RNNs and constraint optimization

As already outlined in subsection §2.2.3, recurrent neural networks suffer from the exploding and
vanishing gradient problem. One approach to mitigate this problem has been to use gates in order to
have the gradient flow more efficiently along longer time horizons and therefore better capture
long-term dependencies (Hochreiter and Schmidhuber, 1997; Cho et al., 2014a). Another approach
is to stick with the vanilla RNN and constrain the spectrum of the connectivity matrix either at
initialization (Le et al., 2015; Henaff et al., 2016) or throughout the entire training period (Arjovsky
et al., 2016; Wisdom et al., 2016; Hyland and Rätsch, 2017; Mhammedi et al., 2017; Jing et al.,
2017; Vorontsov et al., 2017; Lezcano-Casado and Martínez-Rubio, 2019).

The literature review of this section is given in chronological order in which the papers appeared
on arxiv for the first time.

D.1. Unitary evolution RNN
Using orthogonal or identity connectivity matrices at initialization has been discussed in Saxe

et al. (2014) and Le et al. (2015) (IRNN), which then became a stepping-stone for the seminal
work of Arjovsky et al. (2016), called unitary evolution RNN (uRNN), outlining the use of unitary
connectivity matrices in vanilla RNNs throughout the entire training procedure. In Arjovsky et al.
(2016), unitary weight matrices have been parametrized as a product of several structured matrices,
whose parameters are learned during training. More precisely, the unitary connectivity matrix W is
parametrized as follows:

W = D3R2F−1D2ΠR1FD1

where the matrices Di are diagonal unitary matrices, the matrices Ri are Householder reflection
matrices, Π is a permutation matrix (all prior matrices can be computed in O(n) time, if n is the
number of hidden units) and F is a discrete Fourier transform matrix (which can be computed in
O(n log n) time using the Fast Fourier Transform algorithm). Hence the whole product can be



computed in O(n log n) time. In terms of memory, there are 7n parameters (n for each diagonal
matrix, 2n for each Householder reflection matrix and none for the discrete Fourier transform
matrices as well as the permutation matrix). Also note that all mentioned matrices are unitary, and
thus the product is unitary. This parametrization was inspired by Yang et al. (2015) and Le et al.
(2013).

In Arjovsky et al. (2016), uRNN was evaluated against LSTM, RNN with tanh activation, and
IRNN on a handful of tasks especially created to test the model’s ability to capture long-term
dependencies such as: the copying memory problem, the adding problem as well as pixel-by-pixel
MNIST (permuted and non permuted).

Most striking was the copying memory problem, where even when having to recall sequences
for more than 500 time steps, uRNN achieves almost perfect performance relatively quickly, while
the other models get stuck at the baseline performance of the memoryless strategy.

Another interesting find is that for the non-permuted version of pixel-by-pixel MNIST,
the LSTM performs better than uRNN, while for the permuted version, uRNN outperforms
LSTM suggesting that the LSTM is better suited to learn local dependencies, while uRNN seems
to deal better with complicated dependencies across varying and potentially much longer time scales.

Further, an exploratory experiment where norms of gradients with respect to hidden states were
tracked across time (after 100 iterations of training on the adding problem) suggests that the LSTM
experiences vanishing gradient much more rapidly than the uRNN.

Finally, the uRNN doesn’t suffer from the "hidden state saturation" phenomenon nearly as badly
as the LSTM. The "hidden state saturation" phenomenon is a behaviour exhibited in recurrent
architectures where the hidden states’ flexibility to change and use new information diminishes
with sequence length.

The main drawback of this approach is that the parametrization in Arjovsky et al. (2016) does
not have full capacity over the full unitary matrix group whenever n ≥ 8, as pointed out in Wisdom
et al. (2016). This problem will be addressed in §D.3

D.2. Henaff initialization
Inspired by the works of Saxe et al. (2014) and Le et al. (2015), Henaff et al. (2016) constructed

explicit solutions to the copying memory and adding tasks, using a modified RNN architecture with
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update equations

ht = σ (Uxt + b) + V ht−1

yt = Wht

specifically designed to solve simple long-term memory tasks.

For the copying memory task, an orthogonally initialized (2d+ 1)× (2d+ 1) block matrix is
being used as the connectivity matrix

Q =


Q1 0 · · · 0
0 Q2 · · · 0
... . . . 0
0 0 Qd

 , V =
 Q 0

0 1



consisting of rotation blocks

Qj =
 cos (2ljπ/(T + S)) sin (2ljπ/(T + S))
− sin (2ljπ/(T + S)) cos (2ljπ/(T + S))


where lj’s are uniformly sampled from {1, . . . , T + S}, S is the length of the sequence to be
remembered, T the length of time to remember, and d is a fixed positive integer. Note that
V T +S = Id, so we can that each Qj can be considered as a "rotating clock" rotating at an individual
speed while aligning with all other "rotating clocks" after T + S time steps. This allows different
symbols to surface from the hidden state in the order in which they were seen, while the other
symbols remain hidden.

For the adding task, the one-dimensional solution V = 1 is being used, while a more redundant
higher dimensional solution using V to be an identity matrix could be used as well. Note that this
corresponds to case where lj = 0 for all j in the above block matrix Q. Since having lj’s uniformly
distributed is an important feature for the solution of the copying memory problem, one can view
the two solutions as opposites. It turns out that it is hard to to learn the adding task, when given the
initialization from the memory task and vice-versa.

D.3. Full-Capacity Unitary RNNs and subsequent literature
As already pointed out in §D.1, uRNN does not have full capacity. In fact Wisdom et al. (2016)

provides necessary condition for a family of parametrized n× n unitary matrices to satisfy in order
to contain all n × n unitary matrices, using Sard’s theorem (Sard, 1942), and then leverages the
theory of Riemannian gradient descent in order to show how to directly optimize a full-capacity
unitary matrix along the Stiefel manifold (i.e. the manifold consisting of all n×n unitary matrices).
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More precisely, if we denote U(n) the Lie group of n× n unitary matrices, and making use that
the fact that the dimension of a Lie group is equal to the dimension of the Lie algebra, we have that

dimRU(n) = dimRu(n) = n2

where u(n) is the Lie algebra of U(n) consisting of all skew-Hermitian matrices. Then if Γ is a
subset of U(n) with dimRΓ = k, then as a consequence Sard’s theorem, Γ cannot contain all of
U(n) if k < n2. In the parametrization of Arjovsky et al. (2016), we have k ≤ 7n, thus failing to
contain U(n) for all n > 7. More generally, this proves that we cannot explicitly parametrize a
full-capacity unitary matrix using only O(n) parameters. For an overview to Lie groups and Lie
algebras, see Appendix §E.

In order to directly optimize a full-capacity unitary matrix, Wisdom et al. (2016) considers the
Stiefel manifold as a Riemannian manifold where for each unitary matrix W its tangent space TW

is equipped with the inner product defined by

⟨Z1,Z2⟩W = Tr(Z∗
1(Id− 1

2WW ∗)Z2)

as suggested by Tagare (2011), such that the gradient in the Stiefel manifold of some loss function
L with respect to W becomes AW ·W , where AW = (∇WL)∗W −W ∗∇WL is skew-Hermitian,
and uses the multiplicative update rule at training iteration k,

W (k+1) = Cay
(
λ

2AW (k)

)
·W (k)

where λ is the learning rate and Cay(A) = (Id + A)−1 (Id− A) is the Cayley transformation of A.
Note that since λ

2AW (k) is skew-Hermitian for each k, Cay
(

λ
2AW (k)

)
is unitary, and thus if W (0)

is initialized as a unitary matrix, W (k) will be unitary for all k. Let us keep in mind that, even
if W (0) might be unitary up to machine precision, the rounding errors are compounded by the
repeated matrix multiplications from multiplicative update rules. Nonetheless, this approach clearly
outperforms uRNN on the copy task for longer sequence lengths such as T=1000. In the literature,
one refers to Wisdom et al. (2016)’s model as full-capacity uRNN, and to Arjovsky et al. (2016)’s
model as restricted-capacity uRNN.

Around the same time, another interesting and somewhat similar approach has been suggested
in Hyland and Rätsch (2017) which parametrizes U(n) directly in the corresponding Lie algebra
u(n) of skew- Hermitian matrices via the exponential matrix map

exp : u(n)→ U(n) : L 7→
∞∑

j=0

Lj

j!

which is surjective in the case of a compact and connected Lie group U(n). Since u(n) can be
viewed a real vector space of real dimension equal to n2, one can find a basis {Tj}n2

j=1, and express
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every matrix W ∈ U(n) as

W = exp
 n2∑

j=1
νjTj


where νj are parameters to be learned. Even though, the idea of using gradient descent in vector
space sounds appealing, experimentally this approach doesn’t provide groundbreaking results and
struggles to efficiently compute the matrix exponential.

Even though both methods Wisdom et al. (2016) and Hyland and Rätsch (2017) provide
full-capacity parametrizations, it comes at the expense of increased computational cost O(n3): for
the inverse in the Cayley transformation in the case of Wisdom et al. (2016) and for the matrix
exponential in Hyland and Rätsch (2017).

Meanwhile Mhammedi et al. (2017) and Jing et al. (2017) both propose parametrizations
allowing efficient training of orthogonal/unitary RNNs, using products of Householder reflection
matrices (oRNN) and Givens rotation matrices (EURNN) respectively. Here the user can decide
how much of the matrix space should be covered by the parametrization, by tuning the number m
of matrices involved in the parametrization product, leading to computational complexity O(mn) if
n is the number of hidden units. Jing et al. (2017) shows that for some tasks such as the copy task, a
small subspace of unitary space is sufficient, while other tasks such as permuted MNIST or the
TIMIT speech prediction dataset, only perform well when a larger subspace is covered.

Vorontsov et al. (2017) builds on the approach of Wisdom et al. (2016) using Riemannian
gradient descent along the Stiefel manifold, but for real valued martices only, while allowing
matrices to step away from the Stiefel manifold using hard and soft constraints.

The soft constraint simply consists in adding the regularization term λ∥W TW − Id∥2, where
∥.∥ is the spectral norm, and λ a hyperparameter. For the hard constraint, one parametrizes the
connectivity matrix W using the singular value decomposition

W = UΣV T

where U and V are optimized via the Riemannian gradient descent algorithm mentioned in Wisdom
et al. (2016). The singular values si are parametrized with a parameter pi, and a hyperparameter
m ∈ [0,1] such that

si = 2m(σ(pi)− 0.5) + 1

where pi is updated freely via stochastic gradient descent. We observe that si ∈ [1 −m,1 + m],
where m = 0 corresponds exactly to W being orthogonal since orthogonal matrices have all their
singular values equal to one. Let us further keep in mind that we are performing Cayley transforms
in the Riemannian gradient descent algorithms for U and V , thus requiring O(n3) computational
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complexity with n being the number of hidden units.

For tasks requiring more long term memory (copy, adding, permuted MNIST), increasing
the margin improves convergence rate and performance, while too large margins might lead to
instability and worse performance. Even if permitted a larger margin, singular values tend to stay
close to one once orthogonally initialized. For PTB, singular values have more of a tendency to
drift away. Here, for longer sentences it is more beneficial to use smaller margins, while shorter
sentences perform better with larger margins, because they allow more expressivity.

Then the work of Helfrich et al. (2018) introduced another real-valued full-capacity orthogonal
matrix parametrization using a scaled version of the Cayley transform. The n × n connectivity
matrix then rewrites as

W = Cay(A)D

where A is a n× n skew-symmetric matrix and D a n× n diagonal matrix with ±1 entries, ρ of
which are equal to −1 (ρ being a hyperparameter). The intention to scale with D is due the identity

Id− Cay(A) = (Id + Cay(A))A

suggesting that Id + Cay(A) needs to be invertible (or equivalently W cannot have −1 eigenvalues)
for W to have a unique pre-image via the Cayley transform. In particular, having Cay(A) with
eigenvalues very close to −1, requires pretty large entries in A, and thus gradient descent would
slow down significantly when learning A. Finally Kahan (2006) showed that every orthogonal
matrix W can be written Cay(A)D, with bounded entries |Aij| ≤ 1 and by finding a suitable matrix
D. In other words, instead of hoping that Id +W is invertible, we now tune ρ hoping that D +W

is invertible (locally around the matrix we are attemping to learn) and that the corresponding A
doesn’t have exploding entries.

Unlike the multiplicative update rule used in Wisdom et al. (2016) and Vorontsov et al. (2017),
Helfrich et al. (2018) uses an additive update rule at each iteration k,

A(k+1) = A(k) − λ∇̃A(k)L

W (k+1) = Cay(A(k+1))D

where ∇̃A(k)L =
(
V (k)

)T
− V (k) and V (k) = (Id + A(k))−T · ∇W (k)L ·

(
D +

(
W (k)

)T
)

. Here,

∇W (k)L being computed first using standard backpropagation, followed by the additive update rule
and the scaled Cayley transform. Inspired by the Henaff initialization (Henaff et al., 2016), they also
introduce a new initialization scheme for the n× n skew-symmetric matrix A, which is referred to
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as the Cayley initialization:

A =


B1

. . .

B⌊n/2⌋

 where Bj =
 0 sj

−sj 0



with sj =
√

1−cos(tj)
1+cos(tj) and tj is uniformly sampled from

[
0, π

2

]
, which ensures that the eigenvalues of

Cay(A) are distributed uniformly on the right unit half-circle, ρ of which will be reflected across
the imaginary axis to get the spectrum of Cay(A)D.

This method uses a simpler implementation scheme than previous methods while still having
full-capacity orthogonal connectivity matrices, and making use of an additive update rule thus
avoiding the compounded roundoff errors that would otherwise come in with a multiplicative update
rule. It is reported to have smoother and more stable convergence than previous models while being
among the top performers in all tests.

In the follow-up paper Maduranga et al. (2019) it is argued that having to tune ρ individually for
every task might critically affect performance, and that it might be better to work in a setting where
D would be learnable. They are proposing the complex analogue of the scaled Cayley transform,
parametrizing unitary matrices via skew-Hermitian and having the entries of the diagonal matrix D
lie on the complex circle thus of the form eiθ, which is differentiable with respect to θ and learnable
via gradient descent. However, by doing so, Lezcano-Casado and Martínez-Rubio (2019) argues
that the parametrization is not locally unique anymore and therefore can create spurious minima.
The method proposed by Lezcano-Casado and Martínez-Rubio (2019) is called (expRNN) will be
discussed in the following subsection §D.4.

D.4. expRNN
In the same spirit as Hyland and Rätsch (2017), Lezcano-Casado and Martínez-Rubio (2019)

propose to parametrize the special orthogonal matrix group SO(n) (or the unitary matrix group
U(n) for the complex case) via the exponential matrix map, with the update equation:

ht+1 = σ (exp(A)ht + Txt+1)

where A ∈ Skew(p), T ∈ Rp×d and σ is the modReLU activation as used in Arjovsky et al. (2016).
Beside the theoretical analysis of the proposed method, the main difference with Hyland and
Rätsch (2017) lies in the efficient approximation of the exponential matrix map and in the gradient
calculations.

Exponential matrix map approximation. The exponential matrix map is approximated up to
machine precision by combining the scaling-square trick with the Padé approximation as shown in
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Al-Mohy and Higham (2009): the scaling-square trick makes use of the identity

eA = (eA/2k)2k

(where k is the smallest positive integer such that ∥A∥/2k ≤ 1
2 ) approximates eA/2k using the Padé

approximants. Padé approximants are approximations of the form

exp(A) ≈ pn(A)qn(A)−1

where pn and qn are polynomials of degree n with rational coefficients. For instance, we get the
Cayley transform for n = 1

Gradient calculation. For gradient calculation one uses the formula:

∇(f ◦ exp)(A) = B(d exp)−A

(1
2
(
∇f(B)⊤B −B⊤∇f(B)

))
with B = exp(A), A ∈ Skew(n) and f : Rn×n → R any differentiable function.
• B is calculated again via the Padé approximation and the scaling trick as in Al-Mohy and

Higham (2009).
• the stochastic gradient∇f(B) is calculated via auto-differentiation.
• (d exp)−A is approximated to machine-precision by calculating the Fréchet derivative of the

expression eA = (eA/2k)2k recursively, while using again the Padé approximation and the
scaling trick for all the exponential maps emerging in the recursion as shown in Al-Mohy
and Higham (2008). This algorithm is about three times as expensive as calculating eA in
the above fashion.

Theoretical analysis. First it is shown that for every connected and compact Lie group G, the
(constraint) minimization problem

min
B∈G

f(B)

is equivalent to (unconstraint) minimization problem

min
A∈g

f(exp(A))

where g is the Lie algebra of G. In fact, it is shown that the exponential map is surjective whenever
G is connected and compact. Thus if Â ∈ g is minimizer of the second problem, then exp

(
Â
)
∈ G

must be a minimizer of the first problem. Conversely, if B̂ ∈ G is minimizer for the first problem,
there exists Â′ ∈ g which is a minimizer for the second problem and verifies exp Â′ = B̂. Finally
note that SO(n) and U(n) are both compact and connected Lie groups, with the vector spaces of
skew-symmetric so(n) and skew-Hermitian matrices u(n) as respective Lie algebras, both of which
are isomorphic to a Euclidean vector space. For an introduction to Lie Groups and Lie algebras see
appendix §E

Then it is argued that since exp is bi-analytical on an open neighbourhood around the origin,
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it cannot create spurious minima because it is an immersion, and it cannot create saddle points,
because it is a diffeomorpshim. Hence, we have desirable properties to use gradient descent for the
optimization problem.

Experiments. expRNN has been tested against LSTM (Hochreiter and Schmidhuber, 1997),
the restricted-capacity uRNN (Arjovsky et al., 2016), the full-capacity uRNN (Wisdom et al., 2016),
EURNN (Jing et al., 2017), and the scaled Cayley transform orthogonal RNN "scoRNN" (Helfrich
et al., 2018), on the copy task, permuted and ordered pixel-by-pixel MNIST, as well as the TIMIT
speech dataset.

expRNN outperforms all other models across the board, and is the only architecture to fully
converge to the correct answer for the copy task with length T = 2000. For both ordered and
permuted pixel-by-pixel MNIST tasks, expRNN outperforms scoRNN only slightly and it is further
conjectured that using the parametrization of expRNN with an LSTM or GRU would result in
even better performance. For the TIMIT dataset, expRNN outperforms all other models by a large
margin.
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Appendix E

A primer on Lie groups and Lie algebras

E.1. Lie groups
Definition A Lie group is a finite dimensional smooth manifoldG together with a group structure

on G, such that the multiplication G×G→ G and the attaching of an inverse g 7→ g−1 : G→ G

are smooth maps.
A morphism between two Lie groups G and H is a map f : G→ H , which at the same time is

smooth and a group homomorphism. An isomorphism is a bijective map f such that f and f−1 are
morphisms. A Lie subgroup is a subgroup H in G such that H is also a smooth submanifold of G.

Cartan’s Theorem. Any closed subgroupH of a Lie groupG, is again a Lie group (in particular,
H is an analytic submanifold of G, with the induced analytic structure).

Heine-Borel Theorem. A subset K of Rn / Cn (for n ≥ 1) is compact if and only if K is closed
and bounded.

Path-connectedness. A path-connected topological space is also connected.
Proof. Assume X is a path-connected topological space that is not connected, then there exists

two disjoint subsets A,B ⊂ X such that X = A ∪ B. Now choose a ∈ A and b ∈ B, and since
X is path-connected, there exists a path γ : [0,1]→ X in X such that γ(0) = a and γ(1) = b, and
thus [0,1] = γ−1(A) ∪ γ−1(B) is not connected. Contradiction.

Compact sets. Every closed subset F of a compact set K, is also compact. Thus every closed
subgroup of a compact Lie group is also compact Lie group.

Notation
• Let t(n) be the subgroup of Mat(n,C) that consists of only upper-triangular matrices with

all elements on the diagonal having complex norm 1.
• Let e(n) be the maximal subgroup of t(n) consisting only of diagonal matrices (i.e. diagonal

matrices with all elements on the diagonal having complex norm 1)



• Let U(n) be the subgroup of Mat(n,C) consisting of unitary matrices (thus e(n) is a
subgroup of U(n))
• O(n) be the subgroup of Mat(n,R) consisting of orthogonal matrices.
• SO(n) be the subgroup of O(n) consisting of matrices with determinant 1.
• For a Lie group G, we denote Lie(G) the Lie algebra of G.

Proposition U(n) is a connected and compact Lie Group.
Proof. The map det : U(n)→ U(1) is continuous, and U(1) is a closed subset of C, thus U(n)

must be closed seen as the pre-image of a closed set via a continuous map. Since U(n) is a subgroup
of the Lie Group Mat(n,C), it is a closed subgroup, and thus by Cartan’s theorem U(n) is also a
Lie Group.

Since U(n) is also a bounded subset of Mat(n,C), we conclude that U(n) is compact subset by
Heine-Borel Theorem.

It can easily been seen that every P ∈ U(n) is diagonalizable and thus giving rise to a path from
the identity to P , proving that U(n) is path-connected and therefore also connected.

Proposition e(n) is a connected and compact Lie Group and subgroup of U(n).
Proof. The map det : e(n)→ U(1) is continuous, and since U(1) is closed, e(n) must be closed

as well. e(n) is a closed subgroup of the compact Lie group U(n), and thus is also a compact Lie
group. It is obvious to see that e(n) is path-connected and thus also connected.

Proposition t(n) is a connected and locally compact Lie Group.
Proof. Since every element of t(n) can be path-connected to the identity, we have that t(n) is a

connected group. The map det : e(n)→ U(1) is continuous, and since U(1) is closed, e(n) must
be closed as well, and thus t(n) must be a Lie group by Cartan’s theorem.

Let ξn : t(n)→ R be the map computing the sum of the complex norms of each element of a
matrix in t(n). We know that ξn is continuous. For each P ∈ t(n), construct an small open ball
BP around ξn(P ), then UP = ξ−1

n (BP ) is an open neighbourhood of P , and ξ−1
n (BP ) = UP is an

closed set containing the open neighbourhood UP . It is also obvious to prove that UP is bounded
and thus by Heine-Borel is compact neighbourhood of P . This shows that t(n) is locally compact.

E.2. Lie algebras
Intuitively, one can think of Lie algebras at tangent planes of a Lie Group at the identity.
Definition A Lie algebra is a vector space g over some field F together with a binary operation

[·,·] : g× g→ g called the Lie bracket that satisfies bilinearity, alternativity and the Jacobi identity.
• Bilinearity:

[ax+ by,z] = a[x,z] + b[y,z],
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[z,ax+ by] = a[z,x] + b[z,y]

for all scalars a, b ∈ F and all elements x, y, z ∈ g.
• Alternativity:

[x,x] = 0

for all x ∈ g.
• The Jacobi identity:

[x,[y,z]] + [z,[x,y]] + [y,[z,x]] = 0

for all x, y, z ∈ g.
Remark Note that using bilinearity and alternativity to expand the Lie bracket [x+ y,x+ y]

shows the anticommutativity [x,y] = −[y,x], for all elements x, y ∈ g

Remark Any matrix Lie group G defines an associated real Lie algebra g = Lie(G), which can
be computed as g = {X ∈ Mat(n,C) | (∀t ∈ R)(exp(tX) ∈ G)}.

The Lie bracket of g is given by the commutator of matrices [X,Y ] = XY − Y X .
Remark In order to practically find the Lie algebras of matrix Lie group G, a common technique

is to construct a paths of matrices A(t) ∈ G (for t ∈ R) such that A(0) = I , and compute Ȧ(0).
Then we know that Ȧ(0) is in the Lie algebra of G. If we find a way to parametrize all matrices in
G via such paths, then we can find the full Lie algebra.

Proposition The Lie algebra of e(n) consists of all diagonal matrices in Mat(n,C) such that the
diagonal elements have zero real part.

Proof. Every matrix Λ ∈ e(n) can be written as diag(eiθ1 , . . . , eiθn), for some well-chosen
θ1, . . . , θn ∈ R. Thus the path Λ(t) = diag(eitθ1 , . . . , eitθn) ∈ G verifies Λ(0) = I , and thus
Λ̇(0) = diag(iθ1, . . . , iθn) is in the Lie algebra of e(n). Since this path construction can be done for
every matrix Λ ∈ e(n), we have a full description of the Lie algebra of e(n).

Proposition The Lie algebra of t(n) consists of all upper-triangular matrices in Mat(n,C) such
that the diagonal elements have zero real part.

Proof. Every matrix M ∈ t(n) can be written as diag(eiθ1 , . . . , eiθn) + T , for some well-chosen
θ1, . . . , θn ∈ R and where T is some upper-triangular matrix in Mat(n,C) with zero diagonal
elements. Thus the path M(t) = diag(eitθ1 , . . . , eitθn) + t ·T is entirely in G and verifies M(0) = I .
Hence Ṁ(0) = diag(iθ1, . . . , iθn) + T is in the Lie algebra of t(n). Since this path construction
can be done for every matrix M ∈ t(n), we have a full description of the Lie algebra of t(n).

Proposition Let G be a Lie Group that is a subgroup of Mat(n,C), then we have

Lie(P ·G · P ∗) = P · Lie(G) · P ∗

for any P ∈ U(n).
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Proof. Follows from the fact that P · exp(A) · P ∗ = exp(PAP ∗) for any A ∈ Mat(n,C)

Corollary Lie(U(n)) is the set of n× n skew-Hermitian matrices (oftentimes denoted as u(n)).
Proof. Using the Schur decomposition one can see that skew-Hermitian matrices are precisely

the matrices in Mat(n,C) with all eigenvalues having zero real part. The rest follows from the fact
that U(n) = {P · e(n) · P ∗|P ∈ U(n)}.

Remark Similarly one can prove that Lie(SO(n)) is the set of n× n skew-symmetric matrices
(oftentimes denoted so(n) )

Proposition Let P ∈ U(n). If G is a connected/compact/locally compact Lie Group, then
P ·G · P ∗ is a connected/compact/locally compact Lie Group.

Proof. Follows from the fact that the map ΨP : G→ P ·G · P ∗ : A 7→ PAP ∗ is smooth group
homomorphism.
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