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Résumé

Les modèles génératifs sont une grande classe de modèles d’apprentissage automatique pour
l’apprentissage non supervisé. Ils ont diverses applications dans l’apprentissage automatique
et l’intelligence artificielle. Dans cette thèse, nous discutons de nombreux aspects des modèles
génératifs et de leurs applications à d’autres problèmes d’apprentissage automatique. En
particulier, nous discutons de plusieurs sujets importants dans les modèles génératifs, y
compris comment stabiliser la formation GAN discrète avec un échantillonnage d’importance,
comment faire un meilleur échantillonnage à partir de GAN en utilisant une connexion avec
des modèles basés sur l’énergie, comment mieux former des modèles auto-régressifs avec
l’aide d’une formulation de modèle basée sur l’énergie, ainsi que deux applications de modèles
génératifs à d’autres problèmes d’apprentissage automatique, l’une sur les réseaux résiduels,
l’autre sur la vérification de la sécurité.

Mots-clés : apprentissage automatique, Deep Learning, Intelligence Artificielle, Modèles
Génératifs
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Abstract

Generative models are a large class of machine learning models for unsupervised learning.
They have various applications in machine learning and artificial intelligence. In this the-
sis, we discuss many aspects of generative models and their applications to other machine
learning problems. In particular, we discuss several important topics in generative models,
including how to stabilize discrete GAN training with importance sampling, how to do bet-
ter sampling from GANs using a connection with energy-based models, how to better train
auto-regressive models with the help of an energy-based model formulation, as well as two
applications of generative models to other machine learning problems, one about residual
networks, the other about safety verification.

Keywords: Machine Learning, Deep Learning, Artificial Intelligence, Generative Models
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Chapter 1

Background and Introduction

In this chapter, I will first provide a brief introduction of several popular deep generative
models and introduce some notations that will be used throughout this thesis. Furthermore,
I will then discuss several contributions of this thesis made surrounding this topic.

1.1. Motivations and Overview
Deep learning aims at designing learning architectures and algorithms which are able to

discover deep hierarchical representations of complex data. Supervised learning, unsuper-
vised learning and semi-supervised learning are three important learning settings which have
attracted significant attention for many decades.

In supervised learning, one is given a labelled dataset D = {xi,yi}N
i=1, where the task is

usually to predict yi using xi. We have made significant progress on supervised deep learning
in the last few years. The task is clear: we need to design a neural network architecture to
predict y given x, and optimize the trainable weights in the learning architecture with opti-
mization algorithms such as stochastic gradient descent, using backpropagation to compute
the gradients.

Although the recent success in supervised learning has already resulted in a large number
of applications, it is not enough for achieving human-level artificial intelligence (AI). One
of the most important goals for AI is to develop algorithms and techniques that endow
computers with the capability of learning and understanding our world on their own, with
minimal human intervention. This is why a lot of recent research efforts have been devoted to
unsupervised learning. The main goal for unsupervised learning is to learn useful information
from the dataset without any additional label or supervision from humans. In this setting,
one is given an unlabelled dataset D = {Xi}N

i=1. The main goal is usually to discover
the internal properties of D, for example, the principal components, the low dimensional
structure and good representations of D. Unsupervised learning is generally considered to be
a significant part of human learning, as well as an important step toward artificial intelligence.
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Unsupervised learning models are sometimes designed to be useful for downstream tasks, such
as supervised learning and reinforcement learning. However, it is now widely believed that
unsupervised learning itself is a standalone learning problem, even without any downstream
tasks. A typical unsupervised learning model problems is to build a trainable probabilistic
model pθ(x) and then fit the model on D. Then the trained parameters θ contains most
essential information of the data. For example, clustering can be done by fitting a Gaussian
mixture model on training data and the model parameters can determine which cluster a
data point should belong to.

An important class of unsupervised learning is generative modeling. The motivation for
inventing generative models as a way of unsupervised learning is simple: since the perfor-
mance of unsupervised learning algorithms without downstream tasks are sometimes hard to
evaluate, a natural way to test these unsupervised learning methods is to see whether they
are able to generate good and novel samples from the same distribution. For instance, if we
want to know whether a student understands English, a good way is to test if they can write
good articles in English.

Generative models have deep impacts on artificial intelligence in several ways and thus
have a wide range of applications:

• Generative models made it easy for us to generate novel samples from a specific
distribution or conditioned on a specific input. These novel samples can be of very
high dimension and have rich internal structure. In machine learning these kind of
learning problems are also called structured prediction.

• Given a specific dataset, one can devise a generative model endowed with proper
inductive biases based on the insights of the structure of the data. After training
on the dataset, the components of the generative model can capture the structure
of the data generating distribution and can thus be used to complete downstream
tasks. As an example, AIR [Eslami et al., 2016] is a deep generative model with
object-centric inductive biases, so that after training it can identify both the objects
and the background, in other words it can learn to understand the main elements
of a scene. This understanding can be achieved without any human supervision
or labelling. The learned modules of the generative model can be made useful to
downstream tasks, such as object detection and image segmentation.

Generative modeling has a very long history and is deeply rooted in statistics and statis-
tical learning. A first course in statistics in high school is likely to cover the basic techniques
of computing the mean and variance for a given dataset. The motivation behind these tech-
niques is the Gaussian assumption: if we assume the dataset is sampled from a Gaussian
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distribution, then the sufficient statistics of the data are its mean and variance. Here the
Gaussian assumption is the "inductive bias" we are using, and we are learning a generative
model of the data by fitting the two parameters.

In this thesis, we are focusing on so-called deep generative models. The word "deep" has
several implications:

• We are focusing on generative models that utilize deep multi-layer transformations,
the transformations can take the forms of a deep neural network or deep graphical
models.

• We are focusing on modelling data with rich internal structure and complex gener-
ating distributions, such as natural images and natural language text.

In this chapter, we will briefly review some of the most popular generative models, includ-
ing restricted Boltzmann machines[Hinton, 2002a], variational auto-encoders[Kingma and
Welling, 2013], auto-regressive models, generative adversarial networks [Goodfellow et al.,
2014b] and energy-based models.

1.2. Restricted Boltzmann Machines
The Restricted Boltzmann Machine (RBMs) [Rumelhart and McClelland, 1987] is one of

the earliest deep generative models. It is simple because it has only two layers of random
variables, but the idea of the RBM inspired many successful generative models. Let {0,1}d is
the set of binary vectors for any d ∈ N+. In this model we have two binary random vectors:
the observed vector x taking value in {0,1}d and the hidden vector h taking value in {0,1}f .
In order to define the joint probability, the model first defines an energy function:

E(x,h,w) = −x · Wh − w1 · x − w2 · h (1.2.1)

in which w = (W ∈ Rd×f ,w1 ∈ Rd,w2 ∈ Rf ) is the set of trainable weights, and "·" stands
for dot product between vectors. It is further assumed that W is a symmetric matrix. Given
this energy function, the model probability distribution is defined as:

pw(x,h) = e−E(x,h,w)/Z(w) (1.2.2)

where Z(w) =
∑

x,h e−E(x,h,w) is the normalization constant. The marginal probability of
an observed vector x can be written as:

pw(x) =
∑

h∈{0,1}f

e−E(x,h,w)/Z(w). (1.2.3)
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Usually, given a dataset D = {xi}N
i=1, we want to train the parameters by maximiz-

ing the empirical log-likelihood l(w) =
∑

i log pw(xi) as an approximation for L(w) =

Ex∼pd
[log pw(x)]. However, directly optimizing the objective is intractable. A common way

of training RBM is through Contrastive Divergence (CD) algorithm [Hinton, 2002a], which
provides a tractable biased estimator of the log-likelihood gradient. First we can write the
gradient of the log-likelihood objective as:

∇wL(w) = Ex∼pd
[∇wpw(x)/pw(x)]

= Ex∼pd
[
∑

h∈{0,1}f ∇wpw(x,h)/pw(x)]

= Ex∼pd,h∼pw(h|x)[∇wpw(x,h)/pw(x,h)]

= Ex∼pd,h∼pw(h|x)[−∇wE(x,h; w) − ∇w log Z(w)]

= Ex,h∼pw(h,x)[∇wE(x,h; w)] − Ex∼pd,h∼pw(h|x)[∇wE(x,h; w)].

The intractability in the above gradient estimator is due to the hardness of sampling. The
second term Ex∼pd,h∼pw(h|x)[∇wE(x,h; w)] is tractable since the conditional distribution is
much easier to sample. The CD algorithm replaces the sampling distribution x,h ∼ pw(h,x)
with the resulting distribution after one step of Gibbs sampling. More precisely, one first
samples an x′ ∼ pd and gets h′ ∼ pw(h′|x′), then samples x ∼ pw(x|h′), finally getting
h ∼ pw(h|x). We then use (x,h) to provide a biased sampling approximation of the first
term Ex,h[∇wE(x,h; w)].

The binary RBMs is a simple learning machine which is inspired by statistical physics
(Ising model) that could be generalized in multiple ways. For example, by incorporating
Gaussian distributions RBMs have been extended to model continuous variables such as
images [Hinton et al., 2006]. It could also be used as building blocks for much deeper
learning machines such as deep Boltzmann machines [Salakhutdinov and Hinton, 2009a] and
deep belief networks [Hinton et al., 2006].

1.3. Generative Adversarial Networks
Generative adversarial networks (GAN) [Goodfellow et al., 2014c] have demonstrated

their potential on various tasks, such as image generation, image super-resolution, 3D object
generation, and video prediction [Radford et al., 2015, Ledig et al., 2016, Sønderby et al.,
2016, Nguyen et al., 2016, Wu et al., 2016a, Mathieu et al., 2015]. The objective is to
train a parametrized function (the generator) which maps noise samples (e.g., uniform or
Gaussian) to samples whose distribution is close to that of the data generating distribution.
In order to train the generator, the GAN method introduces an additional parametrized
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function, the discriminator, to measure some kind of discrepancy between the generator
distribution pg and the data generating distribution pd. Specifically, the generator and the
discriminator compete in a two-player minimax game, where the generator is trained to map
samples from an simple prior distribution to data points. The goal of the discriminator is to
distinguish between real and generated samples, while the goal of the generator is to “fool”
the discriminator by producing samples that are close to real data points.

GANs have a large number of different formulations and variants. We will briefly review
some of the most popular formulations here.

1.3.1. Original GANs

The basic scheme of the GAN training procedure is to train a discriminator which assigns
higher probabilities to real data samples and lower probabilities to generated data samples,
while simultaneously trying to improve a generator so as to move the generated samples
towards the real data manifold using the gradient information provided by the discriminator.
In a typical setting, the generator Gθ(z) (with parameter θ) and the discriminator Dϕ(x)
(with parameter ϕ) are represented by deep neural networks. The objective for the original
GAN training is:

L(θ,ϕ) = Ex∼pd
[log Dϕ(x)] + Ez∼pz [log(1 − Dϕ(Gθ(z)))] (1.3.1)

where pg is the distribution of the generator, and pd the distribution of data. The GAN
algorithm is listed in Alg 1.

We want to solve the Min-max problem minθ maxϕ L(θ,ϕ). We have the following theo-
rem, whose proof is included in [Goodfellow et al., 2014c].
Theorem 1.3.1. If pd and pg have the same support, then for any fixed θ, write D∗ to be the
optimal discriminator that maximizes L. Then D∗ = pg

pg+pd
. Thus L(θ,D∗) = JSD(pg,pd).

Where JSD(·,·) denotes the Jensen-Shannon divergence.

1.3.2. f-GANs

A generalization for original GAN is the f-GAN. First, assume f : R+ → R is a lower
semi-continuous convex function and satisfies f(1) = 0. Its convex conjugate is f∗ defined
as:

f∗(x) = sup
t∈dom(f)

xt − f(t).

The f-divergence is defined as Df (p||q) = Eq(x)[f(p(x)/q(x))]. There is a duality between
f and f∗, in the sense that for any lower semi-continuous convex function, f = f∗∗. So we
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Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The
number of steps to apply to the discriminator, k, is a hyperparameter. We used k = 1, the least
expensive option, in our experiments.

for number of training iterations do
for k steps do

• Sample minibatch of m noise samples {z(1), . . . , z(m)} from noise prior pg(z).
• Sample minibatch of m examples {x(1), . . . , x(m)} from data generating distribu-

tion pdata(x).
• Update the discriminator by ascending its stochastic gradient:

∇θd

1
m

m∑
i=1

[
log D

(
x(i)

)
+ log

(
1 − D

(
G

(
z(i)

)))]
.

end for
• Sample minibatch of m noise samples {z(1), . . . , z(m)} from noise prior pg(z).
• Update the generator by descending its stochastic gradient:

∇θg

1
m

m∑
i=1

log
(
1 − D

(
G

(
z(i)

)))
.

end for
The gradient-based updates can use any standard gradient-based learning rule.

have:
Df (p||q) = Eq(x)[ sup

t∈dom(f∗)
tp(x)/q(x) − f∗(t)].

Let T : X → R be an arbitrary function, we have the variational lower bound:

Df (p||q) ≥ Eq(x)[T (x)p(x)/q(x) − f∗(T (x))] = Ep(x)[T (x)] − Eq(x)[f
∗(T (x))].

For any fixed convex function f , we are optimizing the loss

L(θ,ϕ) = Ex∼pd
[Tϕ(x)] − Ez∼pz [f

∗(Tϕ(Gθ(z)))]. (1.3.2)

1.3.3. IPM and W-GANs

Besides original GANs, an important class of GAN models are defined by Integral Proba-
bility Metrics (IPMs). Write F a family of functions, P ,Q are two probability distributions.
Define the integral probability metrics as:

dF (P ,Q) = max
f∈F

df (P ,Q) = max
f∈F

|Ex∼P [f(x)] − Ey∼Q[f(y)]| (1.3.3)

This measure of discrepancy corresponds to a GAN formulation:

L(θ,ϕ) = Ex∼pd
[fϕ(x)] − Ez∼pz [fϕ(Gθ(z)))]. (1.3.4)
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A popular choice of F is the class of K-Lipschitz functions, where the GAN formulation
corresponds to Wasserstein GANs. Some other choices are available, for example, mean and
variance matching GANs and Fisher GANs. We have the following theorem:
Theorem 1.3.2. Let F be the class of K-Lipschitz functions with positive constant K > 0.
Consider the GAN formulation corresponding to minθ maxϕ L(θ,ϕ). For an fixed θ, the
optimal discriminator D∗ ∈ F is D∗ = arg maxf∈F df (pg,pd). We have L(θ,D∗) =

Ex∼pd
[D∗(x)] − Ez∼pz [D

∗(Gθ(z)))] = K · DW (pg, pd). DW (pg,pd) is the Wasserstein dis-
tance between the generator distribution and the data distribution.

The proof can be found on [Arjovsky et al., 2017a].
The major challenge for training WGANs is how to impose the K-Lipschitz constraint.

As the discriminator is parameterized as a neural network, it is difficult to find the accurate
constraint in the weight space which corresponds exactly to the K-Lipschitz constraint in
function space. Hence we use approximations instead. K-Lipschitz functions can be realized
approximately using weight clipping [Arjovsky et al., 2017a], gradient penalty [Gulrajani
et al., 2017] and spectral normalization [Miyato et al., 2018a].

Weight clipping directly clips the weights to [−c,c] with a constant c > 0, thus bounding
the L∞ norm of the weights in the discriminator. The resulting weights forms a compact set
and the value maxx,y

|f(x)−f(y)|
|x−y| has a maximum K on this set. Because the weight bound is

a sufficient but not necessary condition of the K-Lipschitz property, the discriminator has to
be K-Lipschitz during optimization, but it can be much more restrictive than the Lipschitz
condition.

The Gradient Penalty [Gulrajani et al., 2017] method randomly samples some points from
the space and imposes the K-Lipschitz condition as a constraint on the gradients at these
points. Note that this is not a sufficient condition for the discriminator to be K-Lipschitz.

It is obvious that the composition of 1-Lipschitz functions is 1-Lipschitz. So if we can
ensure that every transformation layer of a neural network is 1-Lipschitz, then the entire
neural network function is 1-Lipstchiz. The Spectral Normalization method [Miyato et al.,
2018a] tries to ensure each layer of the discriminator is 1-Lipschitz. To do so it only has
to make each linear layer in the discriminator 1-Lipschitz, by dividing the weights by the
absolute value of the spectral value. Similar to weight clipping, this results in a sufficient
condition for the discriminator to be K-Lipschitz, it can also be more restrictive than the
K-Lipschitz condition, but it is much more flexible than weight clipping.
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1.4. Autoregressive Models
Auto-regressive generative models1 is a large class of generative models which rely on

decomposing any joint distribution p(x) into a product of conditional distributions using the
product rule of probability by ordering those random variables within the joint distribution
and characterizing each random variable dependent on all variables prior to it. Formally,
we use x<k denote the vector variable covering all random variables before the timestep k

and use xk denote the random variable at timestep k. Then we have the auto-regressive
decomposition of distribution p:

p(x) =
K∏

k=1
p(xk|x<k). (1.4.1)

In general, modeling distributions with the auto-regressive decomposition has achieved
remarkable accomplishments in numerous areas such as NLP and image generation [Vaswani
et al., 2017, Radford et al., 2019, van den Oord et al., 2016b,c, Salimans et al., 2017] thanks
to its ability to avoid the challenge of modeling joint high-dimensional distributions directly
without necessarily having to face the curse of dimensionality, as originaly highlighted by
[Bengio and Bengio, 2000, Bengio et al., 2000].

A basic example of auto-regressive models is the family of Recurrent Neural Networks
(RNNs). An RNN is a neural architecture to process variable-length sequential data and it
can be naturally used as a learning machine to model distributions with the auto-regressive
distribution decomposition, where the same parameters are used to predict p(xk|x<k) for all
k. Below we briefly discuss RNNs.

Consider an RNN processing an input sequence x = (x1,x2 · · · xT ). At each timestep
t, the RNN computes a hidden state ht using the hidden state in the last timestep ht−1

and input xt. The hidden states are computed step-by-step in an inductive manner: ht =

fθ(ht−1,xt), where fθ is the transition function of the RNN and θ is the trainable parameters
of the RNN. The state ht is also called the "belief state", in the sense that it represents all
the memory of the sequence before timestep t + 1:

pθ(x) =
K∏

k=1
pθ(xk|x<k), pθ(xk|x<k) = gϕ(xk,hk−1)

where pθ is the model distributions and gϕ maps the current belief state to the predicted
distribution of the next token. Different design choices in fθ can lead to different RNN

1In this chapter, the term ”auto-regressive model” is generally used to denote the auto-regressive generative
model for convenience, though strictly speaking, they are different.

26



variants, such as LSTMs[Hochreiter and Schmidhuber, 1997] or GRUs[Cho et al., 2014].
Below we briefly explain LSTMs.

When trained on long sequences, a common problem of RNNs is gradient vanishing
[Bengio et al., 1994]. When doing backpropagation through many timesteps, the gradient
can shrink exponentially with the number of timesteps and the model can fail to capture long
term time dependencies in this case. The LSTM architecture [Hochreiter and Schmidhuber,
1997] was designed to combat the gradient vanishing problem. The core idea behind the
LSTM is to control updates in memory states through sigmoid gates. Besides hidden states
ht as common RNNs, LSTMs represent memory states using cell states, denoted as ct. There
are three kinds of gates in LSTMs, the input gate it, the forget gate ft and the output gate
ot. The update rules are:

it = σ(Wixt + Uiht−1 + bi), ft = σ(Wf xt + Uf ht−1 + bf ) (1.4.2)

ot = σ(Woxt + Uoht−1 + bo), c̃t = tanh(Wcxt + Ucht−1 + bc) (1.4.3)

ct = ft ⊙ ct−1 + (1 − ft) ⊙ c̃t−1, ht = ot ⊙ tanh(ct) (1.4.4)

where ⊙ stands for elementwise multiplication. The gating mechanism of LSTMs controls
the update of the cell states and makes the gradient flow smoothly when ft ≈ 1 and the
gradient vanishing problem becomes much less severe.

1.4.1. Exposure Bias Problem

When training autoregressive generative models, the exposure bias problem [Bengio et al.,
2015a, Ranzato et al., 2016a] is an important issue, which greatly affects the model’s deploy-
ment performance. During the training stage, the autoregressive model is always conditioned
on ground truth token sequences. During the generation stage, however, the model has to
rely on its own previously generated tokens to predict the next token, when the model. If
an incorrect token is selected, this error can be amplified in the following steps because the
next prediction will be made using the incorrect input (one unlike those in the training set).
Namely, the probability distribution of the generated sequence can diverge from the real
data distribution because errors can accumulate with the number of timesteps.

The diverge between training and generating sequence distributions is called the exposure
bias problem. It is the main challenge when training autoregressive models to generate long
sequences.
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1.5. Variational Auto-encoders
Like RBMs and GANs, the variational auto-encoder is a latent variable generative model.

Different from RBMs, the correlation between hidden and observed variables is not given by
a predefined simple energy function, instead it can be highly non-linear and is parameterized
with deep neural networks. Different from GANs, VAEs are trained to approximately but
more directly maximize the likelihood of training data.

Suppose we want to train a latent variable model pθ(x) = Ez∼p(z)pθ(x|z) on dataset D =

{xi}N
i=1, where p(z) is a simple prior distribution such as isotropic Gaussian. In practice, the

distributions pθ(x|z) are also assumed to be simple distributions such as isotropic Gaussians.
The main complexity of the model lies in the mapping z → pθ(x|z), which can be highly
nonlinear and is parameterized with a deep neural network called the decoder in VAEs.

Usually one want to optimize the log-likelihood of data L(θ) =
∑

i log pθ(xi), however the
log-likelihood log pθ(x) is intractable. The only tractable likelihood quantities are pθ(x,z) =
p(z)pθ(x|z), p(z) and pθ(x|z). Thus one wants to represent log pθ(x) in terms of these
quantities. Let pθ(z|x) be the conditional distribution defined by pθ(x,z), and qϕ(z|x) be a
trained approximation of pθ(z|x), which is usually parameterized by another neural network
called the encoder.

Variational auto-encoders [Kingma and Welling, 2013] provide a way for training the
generative model by using a variational lower bound:

log pθ(xi) ≥ Ez∼q(·|xi)[log pθ(x,z) − log q(z|xi)] = L(θ,ϕ; xi) (1.5.1)

where q(z|x) = qϕ(z|x) is a trained inference model. With VAEs we train both q and p to
maximize the lower bound. The training objective of a VAE is:

LVAE(θ,ϕ; D) = −
N∑
i

L(θ,ϕ; xi). (1.5.2)

The error term for the lower bound is:

log pθ(xi) − L(θ,ϕ; xi) = KL(q(·|xi)||pθ(·|xi)). (1.5.3)

Thus, minimizing LVAE is equivalent to maximizing Ex∼pd
[log pθ(x)] and at the same time

minimizing Ex∼pd
[KL(q(·|x)||pθ(·|x))]. The lower bound is tight when the model qϕ is

expressive enough to represent real pθ(z|x). The main optimization trick of LVAE is to
backpropagate the objective into q. Consider the more general problem of optimizing
Ez∼qϕ(z|x)[f(z,x)], where f is a smooth function and qϕ(z|x) = N (z; µϕ(x),σ2

ϕ(x)). The
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reparameterization trick relies on the following transform:

Ez∼qϕ(z|x)[f(z,x)] = Eϵ∼N(0,1)[f(ϵ · σϕ(x) + µϕ(x),x)].

We can backprop through f into µϕ and σϕ. After training, the resulting generative model
pθ(x) = Ez[pθ(x|z)] is an approximation to real data distribution. One can sample from
pθ(x) by first drawing samples from z ∼ p(z), and then mapping z to pixel space x ∼ pθ(x|z).

1.6. Deep Energy-based Models
Energy-based models [LeCun et al., 2006] can express any probability density p(x) for

x ∈ RD as
pθ(x) =

exp(−Eθ(x))
Zθ

, (1.6.1)

where Eθ : RD → R denotes an energy function which aims to map a D-dimensional
datapoint to a scalar, and Z(θ) = ∑

x exp(−Eθ(x)) denotes the normalizing constant, also
known as the partition function. Any function can be used as an energy function to represent
an EBM as long as it can generate a single scalar given some input x and the normalization
constant Z(θ) exists (is not infinite). EBMs can be viewed as a mathematical model for
associative memory, observed originally by Hopfield [Hopfield, 1982]. After the model is
trained to fit a dataset, the model should have low energies on data points that satisfy the
same statistical structure in the training data and captured by the model, and high energies
elsewhere.

Some energy-based models use shallow predefined energy functions, such as RBMs. In
this section we are talking about deep energy-based models. Namely the energy functions
are not predefined, they can be highly nonlinear and very complex. In other words, they are
parameterized by deep neural networks.

Several algorithms have been devised to optimize EBMs [Hinton, 2002b, Kim and Bengio,
2016a, Grathwohl et al., 2020, Xiao et al., 2021], in particular via gradient-based maximum
likelihood. Specifically, the gradient of the log-likelihood with respect to θ can be expressed
as

Epd(x)

[
∂

∂θ
log qθ(x)

]
= Epθ(x)

[
∂

∂θ
Eθ(x)

]
− Epd(x)

[
∂

∂θ
Eθ(x)

]
. (1.6.2)

We call the first term in the right part of Eq. 1.6.2 the negative phase term while call
the second term the positive phase term. For the positive phase, we can very easily derive a
gradient estimator by sampling from pd, which is the distribution where the training samples
come from. For the negative phase, the story is more involved because pθ is implicitly defined
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and there is no easy way to sample from this distribution. People usually adopt MCMC
methods [Hinton, 2002b, Welling and Teh, 2011a] to sample data from pθ(x) for estimating
the expectation Epθ(x).

1.7. Main Contributions
The main contributions of this thesis are about discovering new connections between

different classes of generative models. First, we discuss several contributions and progress
made by the author and the collaborators on generative models, including GANs, auto-
regressive models and energy-based models.

A core problem of training auto-regressive models is the exposure bias problem which we
discussed above. In chapter 2 and 3, we bridge the gap between auto-regressive models, GANs
and energy-based models to solve the exposure bias problem. In this thesis we propose two
principled ways to address the exposure bias problem. In Chapter 2, we show that exposure
bias can be solved with GANs, since GAN discriminator can evaluate the quality of very long
sequences as a whole. However, training GAN models on discrete data is very challenging due
to the high variances of gradient estimators. In order to address this challenge, we discuss
how to stabilize training of discrete GANs with importance sampling. This chapter can be
viewed as a contribution of bridging the gap between auto-regressive models and GANs.

In Chapter 3, we also discuss another way of solving the exposure bias problem in auto-
regressive models with the help of energy-based models. In order to train energy-based
models, one has to consider the contributions of both the negative phase and the positive
phase to the gradient estimator. In the positive phase, the models are conditioned on the
training data in the same way as teacher forcing. While in the negative phase, the models
are conditioned on self-generated data. In this way, the models can learn how to deal with
self-generated data during training. This chapter can be viewed as a contribution of bridging
the gap between auto-regressive models and energy-based models.

In Chapter 4, we discuss a new theoretical connection between GANs and Energy-based
models which yield a novel method to sample from trained GAN models. We start from
an implicit energy-based model defined jointly by a GAN generator and discriminator. We
find that the implicit energy-based model takes on a simpler, tractable form when it is
written as an energy-based model over the generator’s latent space. In this way, we propose
a theoretically grounded way of generating high quality samples from GANs through what
we call Discriminator Driven Latent Sampling (DDLS). DDLS leverages the information
contained in the discriminator to re-weight and correct the biases and errors in the generator.
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This chapter can be viewed as a contribution of bridging the gap between energy-based
models and GANs.

We also discuss an application of generative models. Specifically, in Chapter 6, we con-
sider the problem of verifying the predictions of deep discriminative models with deep gen-
erative models. This verification problem is very important for safety-critical applications
of deep learning. We propose to perform such verification of deep discriminative models
by using deep generative models that try to generate the input conditioned on the label
selected by the discriminative model. We call this concept "deep verifier". The high-level
idea is simple: we train an inverse verification model p(x|y) on the training data pairs (x,y).
Intuitively speaking, for an input-output pair (x,y) with y picked by the predictive model,
we verify whether the input x is consistent with y, by estimating if p(x|y) is larger than a
threshold. We design a density estimator of p(x|y) using modified conditional VAEs. To
ensure that the class code y is not ignored as a conditioning variable, we impose a disentan-
glement constraint based on minimizing mutual information between latent variable z and
the label y. Although many different kinds of density estimators can be used in theory, we
argue that the design of our model is robust to OOD samples and adversarial attacks, due
to the use of latent variables with explicit and accurate density estimation.

These contributions have been published in the following papers:
• R Devon Hjelm, Athul Jacob, Tong Che, Kyunghyun Cho, and Yoshua Bengio.

Boundary seeking generative adversarial networks. ICLR 2018 [Hjelm et al., 2017]
• Tong Che, Yanran Li, Ruixiang Zhang, R Devon Hjelm, Wenjie Li, Yangqiu Song,

and Yoshua Bengio. Maximum-likelihood augmented discrete generative adversarial
networks. arXiv preprint arXiv:1702.07983, 2017. [Che et al., 2017]

• Tong Che, Ruixiang Zhang, Jascha Sohl-Dickstein, Hugo Larochelle, Liam Paull,
Yuan Cao, and Yoshua Bengio. Your GAN is secretly an energy-based model and
you should use discriminator driven latent sampling. In Advances in Neural Informa-
tion Processing Systems 33: Annual Conference on Neural Information Processing
Systems 2020, NeurIPS 2020, December 6-12, 2020, [Che et al., 2020b]

• Tong Che, Xiaofeng Liu, Site Li, Yubin Ge, Ruixiang Zhang, Caiming Xiong, and
Yoshua Bengio. Deep verifier networks: Verification of deep discriminative models
with deep generative models, AAAI 2021 [Che et al., 2021]

• Stanisław Jastrzebski, Devansh Arpit, Nicolas Ballas, Vikas Verma, Tong Che, and
Yoshua Bengio. Residual connections encourage iterative inference. In International
Conference on Learning Representations, 2018. [Jastrzebski et al., 2018]

The following chapters explain each of these contributions and put them in context.
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Chapter 2

Stabilizing Training of Discrete GANs with
Importance Sampling

2.1. Preface
2.1.1. My Role and Contributions

This paper is an unpublished work, its preprint version was announced on Arxiv[Che
et al., 2017], however a concurrent work [Hjelm et al., 2017] was published at ICLR 18. Thus
we decide to not to publish this paper and let the paper remain on Arxiv.

I proposed this idea independently with the first author of [Hjelm et al., 2017]. These
two projects were completed mostly independently with each other in the early stage. There
were some communications and collaborations between the two teams in the late stage of the
projects. My contributions to [Che et al., 2017] include proposing the idea, formulating the
mathematical details, designing the experiments, and contributing about 20% of the code
for the experiments.

2.1.2. Motivation and Context

Generative adversarial networks play a pivotal role in many natural language processing
tasks such as language modeling, machine translation, and dialogue generation. However,
the generated sentences are often unsatisfactory [Sordoni et al., 2015, Bowman et al., 2015,
Serban et al., 2017, Wiseman and Rush, 2016]. For example, they often lack of consistency
in long-term semantics [Bowman et al., 2015, Zhang et al., 2016a].

This is largely attributed to the defect of teacher forcing [Williams and Zipser, 1989],
which trains auto-regressive models to maximize the conditional probabilities of next tokens
based on the ground-truth histories. It prohibits the trained model to take advantage of
learning in the the context of its previous generated words to make the next prediction, the
so-called exposure bias problem [Ranzato et al., 2016b]. Hence, it is difficult to approach
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the true underlying distribution [Ranzato et al., 2016b, Bengio et al., 2015b]. Another
limitation is that teacher forcing is inapplicable to those auto-regressive models with latent
random variables, which have performed better than vanilla auto-regressive (deterministic
state) recurrent neural networks on multiple tasks [Serban et al., 2017, Zhang et al., 2016a,
Miao et al., 2016].

An attractive solution is using generative adversarial networks (GAN) [Goodfellow et al.,
2014a]. The exposure bias problem could be prevented if the generative model was able to
visit its own predictions during training and had an overall view on the generated sequences.
This can be achieved with an additional discriminator trained to separate real versus gener-
ated sequences. The generative model is then able to exploit signals from the discriminator
to improve itself. Since the discriminator is trained on the entire sequence, it can provide
the training signal to avoid the exposure bias problem.

However, it is nontrivial to apply GANs to discrete data. It is difficult to optimize the
generator using the signal provided by the discriminator. In fact, it is usually very hard to
push the generated distribution to the real data distribution, if not impossible, by moving
the generated sequence (e.g., a faulty sentence) towards a “true” one (e.g., a correct sentence)
in a high-dimensional discrete state space. As standard back-propagation fails in discrete
settings, the generator can be optimized using the discriminator’s output as a reward via
reinforcement learning. Unfortunately, even with careful pre-training, the policy could hardly
get positive and stable reward signals from the discriminator.

2.1.3. Main Contribution

We aim at borrowing the benefit from GAN to avoid exposure bias meanwhile improving
the GAN’s training stability. We achieve this by proposing Maximum-Likelihood Aug-
mented Discrete Generative Adversarial Networks (MaliGAN). At the core of this model
is the novel GAN training objective inspired by [Norouzi et al., 2016]. We use importance
sampling and several variance reduction techniques in order to successfully optimize this
objective. The procedure was discovered independently from us by [Hjelm et al., 2017] in
the context of image generation.

The new target brings several attractive properties in the proposed MaliGAN. First, it is
theoretically consistent and easier to optimize than vanilla sequential GANs (Section 2.3.2).
Second, it allows the model not only to maximize the likelihood of good behaviors, but
also to minimize the likelihood of bad behaviors, with the help of a GAN discriminator.
Equipped with these strengths, the model focuses more on improving itself by gaining bene-
ficial knowledge that is not yet well acquired, and excluding the most probable and harmful
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behaviors. Combined with several proposed variance reduction techniques, the proposed
MaliGAN successfully and stably models discrete data sequences (Section 2.4).

2.1.4. Follow-up works and Impacts

This project, together with its concurrent work [Hjelm et al., 2017] have attracted sig-
nificant amount of attention from the research community. Utilizing GANs to help training
discrete sequential models has been an active area of research, due to the fact that it could
help fighting the exposure bias problem. Below we briefly review several lines of follow-up
works.

To overcome the above shortcomings of MLE training, many new sequential GAN formu-
lations for discrete outputs have been proposed in the literature [Guo et al., 2018, Lamprier
et al., 2022]. To further combat the instability and high variance of training these models
due to the non-stationarity of their reward distribution, recently some advances on smoother
sampling techniques and the use of control variates [Scialom et al., 2020a] was proposed.
GAN approaches usually under-performed MLE training in most real-world tasks [Caccia
et al., 2020], suffering from mode dropping problems [Che et al., 2016] that often sacrifice
diversity for quality. Some recent works based on cooperative decoding [Scialom et al., 2021,
2020b] try to use the discriminator information not only during training but also during test
time, by relying on the discriminator not only as reward, but also for sampling.

It is worth mentioning that [Lamprier et al., 2022] is a direct follow-up of our work. They
extend our formulation and achieved SOTA results on language GAN models. This shows
the power of our proposed framework.

Another line of followup works focus on training language GANs purely from scratch
[de Masson d'Autume et al., 2019], without the MLE pretraining. This can be a challenging
task because discrete GANs can drop modes very easily. Different from our work where
we use only the sequence level discriminator signal, these works rely on the discriminators
providing information (dense reward) at every time-step, to stabilize the training.

In summary, this project has made significant impacts to the research community, evi-
denced by its number of citations (218) and direct followup works.

2.2. Problem Formulation And Analysis
In this work, we aim to fit discrete sequential data under the GAN setting [Goodfellow

et al., 2014a]. GANs defines a framework for training generative models by posing it as a
minimax game against a discriminative model. The goal of the generator G is to match its
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distribution pg to the real data distribution pd. To achieve this, the generator transforms
noise z sampled from p(z) to a data sample G(z). Following this, the discriminator D is
trained to distinguish between the samples coming from pd and pg, and can be used to
provide a training signal to the generator.

When applying the GAN framework to discrete data, the discontinuity prohibits the
update of the generator parameters via standard back-propagation. To tackle this, one way
is to employ a typical reinforcement learning (RL) strategy that directly uses the GAN
discriminator’s output, D or log D as a reward. In practice, the problem is usually solved
by REINFORCE-like algorithms [Williams, 1992], perhaps with some variance reduction
techniques.

In general, we train a generator G(x) together with a discriminator D(x). In its original
form, the discriminator is trained to distinguish between the generating distribution pθ and
the real data distribution pd. The generator is then trained to maximize Ex∼pθ

[log D(x)].1

To better analyze the loss, we slightly modify it by putting on a maximum-entropy
regularizer τH(pθ) to encourage diversity. Now, define the normalized probability distri-
bution q′(x) = 1

Z(D)D(x)1/τ . We can safely assume that D(x) is of compact support, so
Z(D) is finite. We obtain a regularized lossL′

GAN (θ) = −Ex∼pθ
[log D(x)] − τH(pθ) =

τKL(pθ||q′) + c(D), where c(D) is a constant depending only on D. Hence, optimizing
the traditional GAN is almost equivalent to optimizing the KL-divergence KL(pθ||q′). Yet
using this regularized objective to train discrete GANs with REINFORCE, there are still
two major problems. The first problem, called the moving target problem, is that the tar-
get distribution q′ always moves with G during training. It makes the training procedure
unstable and harder to converge to a Nash equilibrium. The second problem is that the
training signal is very weak when the generator is not able to produce plausible sequences.
Having some samples xi ∼ pθ, we want to change θ a bit in order to adjust the likelihood
of samples xi to improve the generator. However, since initially p has a poor policy, it can
hardly generate realistic sequences to get positive rewards, and thus the training progress is
hampered. Though the dedicated pre-training and variance reduction mechanisms help [Yu
et al., 2017], the RL algorithms applied to the moving target distribution still seems very
unstable and unscalable.

To address these two problems, we propose an alternative way to utilize the information
of the discriminator. The discriminator’s output is used to construct a novel objective as a
proxy for the log-likelihood objective (Section 2.3.1). Different from the original objective, the

1One can also minimize Ex∼pθ
[log(1 − D(x))]), but in practice we optimize the log D version as it provides

more stable gradients [Goodfellow et al., 2014a].
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target distribution in our objective is the data generating distribution and thus is fixed. This
addresses the first problem. We then employ importance sampling to make the objective
trainable. The second problem is addressed by using minibatch renormalization, which
reinforces each training sample not based on the absolute value of D, but based on the
relative discriminator output in a mini-batch. Compared with those reinforcement learning
approaches that directly adopt D or log D as reward signals, the novel training objective has
much less variance. The analysis and discussions will be presented in Section 2.3.2.

2.3. Maximum-Likelihood Augmented Discrete Gener-
ative Adversarial Networks

2.3.1. Basic Model of MaliGAN

We propose Maximum-Likelihood Augmented Discrete Generative Adversarial Networks
(MaliGAN) to generate discrete data. With MaliGAN, we train a discriminator D(x) as
standard way in vanilla GAN. The difference comes from a novel objective for the generator
to optimize.

To derive the objective, we keep a fixed copy p′(x) of the current generator pθ. From the
basic property of GANs, we know that an optimal D∗ = pd

pd+p′ [Goodfellow et al., 2014a]. In
this case, we have pd = D∗

1−D∗ p′. Motivated by this observation, we set the target distribution
q for maximum likelihood training to be q = D(x)

1−D(x)p
′. Let rD(x) = D(x)

1−D(x) , we define the
augmented target distribution as:

q(x) =
1
Z

D(x)
1 − D(x)

p′(x) =
rD(x)

Z
p′(x)

where Z is the normalization constant. Note that q is a fixed probability distribution
with respect to θ, the objective to optimize is LG(θ) = KL(q(x)||pθ(x)). This objective has
an attractive property that q is always approximately the data generating distribution pd

when D is sufficiently trained. Hence, q can be viewed as a “fixed” distribution during the
entire training process. By defining the gradient as ∇LG = Eq[∇θ log pθ(x)], we have the
following importance sampling formula:

∇LG = Ep′ [
q(x)
p′(x)

∇θ log pθ(x)] =
1
Z

Epθ
[rD(x)∇θ log pθ(x)]
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This importance sampling procedure was discovered independently from us by [Hjelm et al.,
2017]. We propose to optimize the generator using the following novel gradient estimator:

∇LG(θ) ≈
m∑

i=1
(

rD(xi)∑
j rD(xj)

− b/m)∇ log pθ(xi) = E({xi}m
1 ) (2.3.1)

where b is a baseline adopted widely in RL approaches, which helps reduce variances by
decreasing the probabilities of generating bad samples. In practice, we let b increase very
slowly from 0 to 1, since the coefficients ∑

i
rD(xi)∑
j rD(xj)

= 1. Combined with the objective of
the discriminator in an ordinary GAN, the proposed MaliGAN algorithm is shown in Algo-
rithm 2. This algorithm provides a new way of passing the information of the discriminator
to the generator. Generally speaking, it applies to arbitrary architectures of the generator
with or without latent variables.

2.3.2. Analysis

We analyze the proposed objective in Eq. 2.3.1 from both theoretical and practical per-
spectives. In the following theorem, we show that the novel objective optimizes the KL
divergence KL(q(x)||pθ(x)) when D is optimal. The proof for the theorem is given in sup-
plementary material.
Theorem 2.3.1. We have the following two theoretical guarantees for the objective in
Eq. 2.3.1:

(i) If discriminator D(x) is optimal, we have:

Epd
[log pθ(x)] =

1
Z

Ep′ [rD(x) log pθ(x)], where Z = Ep′ [rD(x)] = 1

(ii) If D(x) is optimal, we also have that the estimator in Eq. 2.3.1 is a consistent estimator
of ∇LG(θ).

Proof. When we are not doing optimization, note that pθ = p′.
For (i), see the arguments in Section 1.3.1. For (ii), we can see that

lim
m→∞ E({xi}m

1 ) = limm→∞
∑m

i=1
rD(xi)∑
j rD(xj)

∇ log pθ(xi) − ∑m
i=1 b/m∇ log pθ(xi)

= T1 − T2
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Where T1 = limm→∞
∑m

i=1
rD(xi)∑
j rD(xj)

∇ log pθ(xi), T2 = limm→∞
∑m

i=1 b/m∇ log pθ(xi).
From central limit theorem,

lim
m→∞

m∑
i=1

b/m∇ log pθ(xi) = bEx∼pθ
[∇ log pθ(x)]

= b
∫
x ∇pθ(x)dx = 0

and

lim
m→∞

m∑
i=1

1/mrD(xi) = Ex∼pθ
[rD(x)] = 1

we also have:

lim
m→∞

m∑
i=1

1/mrD(xi)∇ log pθ(xi) = Epθ
[rD(x)∇ log pθ(x)] = Epd

[∇ log pθ(x)]

T1 = limm→∞
∑m

i=1
rD(xi)∑
j rD(xj)

∇ log pθ(xi)

= limm→∞
m∑

j rD(xj)

∑m
i=1 1/mrD(xi)∇ log pθ(xi)

= limm→∞
m∑

j rD(xj)
· limm→∞

∑m
i=1 1/mrD(xi)∇ log pθ(xi)

= 1 · Epd
[∇ log pθ(x)]

So we have limm→∞ E({xi}m
1 ) = Epd

[∇ log pθ(x)].
□

In addition to its attractiveness in theory, we now demonstrate why the gradient estimator
in Eq. 2.3.1 of ∇LG(θ) practically produces better training signal for the generator than the
original GAN objective. Similar discussions can be found in [Norouzi et al., 2016, Bornschein
and Bengio, 2015].

In the original GAN model (optimizing D or log D) applied to sequence generation,
REINFORCE based gradient estimators would be drastically inefficient when almost all
generated sequences had a very small D value. Unfortunately, this is very common in the
early stage of GAN training.

In the MaliGAN objective, however, the partition function Z is estimated using the
samples from the mini-batch, which helps dealing with the above dilemma. In our approach,
the probability of each sequence is adjusted not according to the absolute value of the
discriminator output, but its relative quality in that mini-batch. This ensures that the
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model can always learn something as long as there exist some generations better than others
in that mini-batch.

From a theoretical point of view, this normalization procedure also helps. Although at
the first glance, when D is optimal, one can prove that Z = 1, so estimating Z seems to only
introduce additional variance to the model. However, using this estimator in fact reduces
the variance due to the following reason: rD(x) is actually a function with singularity when
x is in a region Ω in the data space on which D(x) ≈ 1. On such a region Ω, rD ≫ 0
and p′(Ω) ≈ 0, making the ratio rD blow up. In our target 1

Z(θ′)Ep′ [rD(x) log pθ(x)], since
it is almost impossible to get samples from Ω with p′ in a reasonable size mini-batch, the
actual distribution we are sampling from is a “regularized” distribution p\Ω where p\Ω(Ω) =

0 and p\Ω ≈ p′. So when doing importance sampling to estimate our training objective
∇LG = Epd

[∇θ log pθ(x)] with small mini-batches, we are actually doing normalized-weights
importance sampling based on p\Ω: ∇LG ≈ Ep\Ω [rD(x)∇θ log pθ(x)]/Ep\Ω [rD(x)]. Since
the Monte Carlo estimator has much more variance to estimate Ep′ [rD(x)∇θ log pθ(x)] than
Ep\Ω [rD(x)∇θ log pθ(x)], in practical mini-batch training settings, we can view that we
are doing importance sampling with the distribution p\Ω, and this objective has much less
variance compared to importance sampling with p′ on rD which has an infinite singularity.
This is why estimating Z = Ep\Ω [rD(x)] is important in order to reduce the variance in the
mini-batch training setting.

2.3.3. Variance Reduction Techniques in MaliGAN

2.3.3.1. Monte Carlo Tree Search. Instead of using the same weight for all time steps
in one sample, we use the following formula:

Epθ
[rD(x)∇p(x)] = Epθ

[
L∑

t=1
Q(at,st)∇pθ(at|st)]

where Q(a,s) stands for the “expected total reward” given by rD = D
1−D of generating token

a given previous generation s, which can be estimated with, e.g., Monte Carlo tree search
(MCTS, [Silver et al., 2016]).

Thus, following the gradient estimator presented in Theorem 2.3.1, we derive another
gradient estimator:

∇LG(θ) ≈
∑

i Li

m
∑

Q(ai
t,si

t)

m,Li∑
i,t

Q(ai
t,si

t)∇ log pθ(a
i
t|si

t)
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where m is the minibatch size. Using MCTS brings in two benefits: it allows different steps
of the generated sample to be adjusted with different weights, and it gives us a more stable
estimator of the partition function Z. These two properties dramatically reduce the proposed
estimator’s variance.

2.3.3.2. Mixed MLE-Mali Training. When dealing with long sequences, the above
model may result in accumulated variance. In the context of auto-regressive models where
MLE training is possible, to alleviate the issue, we significantly reduce the variance by
clamping the input using the training data for N time steps, and switch to a free running
mode for the remaining T − N time steps. Then during our training procedure, inspired
from [Ranzato et al., 2016b], we slowly move N from T towards 0.

We first assume D is trained to discriminate generating distribution pd and pN
f , where

the distribution pN
f is defined as pN

f (x0, · · · xL) = pd(x0, · · · xN )pθ(xN+1, · · · xL|x0, · · · xN ).
For any sequence x = {xi}L

i=1, let x≤N = (x0,x1, · · · xN ),x>N = (xN+1, · · · xL), rD = D
1−D .

For each sample xi from the real data batch, if it has length larger than N , we fix the first
N words of xi, and then sample n times from our model till the end of the sequence, and
get n samples {xi,j}n

j=1.
We then have the following series of mini-batch estimators for each 0 ≤ N ≤ T :

∇LN
G ≈ 1

m
[

m,n∑
i=1,j=1

(
rD(xi,j)∑
k rD(xi,k)

− b/n)∇ log pθ(x>N
i,j |x≤N

i ) +
m∑

i=1

N∑
t=0

∇ log pθ(a
i
t|si

t)] = EN ({xi,j})

(2.3.2)

One difference is that here we normalize the coefficients rD(xi,j) based only on samples
generated from a single real sample xi. The reason of using this trick will be explained in
next sub-section.
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Algorithm 2 MaliGAN
f

Require: A generator p with parameters θ.
A discriminator D(x) with parameters θd.
A baseline b.

1: for number of training iterations do
2: for k steps do
3: Sample a minibatch of samples {xi}m

i=1 from
pθ.

4: Sample a minibatch of samples {yi}m
i=1 from

pd.
5: Update the parameter of discriminator by tak-

ing gradient descend of discriminator loss∑
i

[∇θd
log D(yi)] +

∑
i

[∇θd
log(1 − D(xi))]

6: end for
7: (Optional) Sample a mini-batch of la-

tent variables {zi}m
i=1 from prior distribu-

tion.
8: Sample a mini-batch of samples {xi}m

i=1
from pθ(·) (without latent variable) or
pθ(·|zi).

9: Update the generator by applying gra-
dient ∑m

i=1(
rD(xi)∑
j rD(xj)

− b/m)∇ log pθ(xi)

or ∑m
i=1(

rD(xi)∑
j rD(xj)

− b/m)∇ log pθ(xi|zi)

10: end for

Algorithm 3 Sequential MaliGAN with
Mixed MLE Training
Require: A generator p with parameters θ.

A discriminator D(x) with parameters θd.
Maximum sequence length T , step size K.
A baseline b, sampling multiplicity m.

1: N = T
2: Optional: Pretrain model using pure MLE.
3: for number of training iterations do
4: N = N - K
5: for k steps do
6: Sample a minibatch of training data {yi}m

i=1.
7: While keeping the first N words the same as

in {yi}m
i=1, sample a minibatch of sequences {xi}m

i=1
using pθ starting from time step N .

8: Update the discriminator by taking gradient
descend of discriminator loss, same as Alg 2.

9: end for
10: Sample a minibatch of training data {xi}m

i=1.
11: For each sample xi with length larger than N in

the mini-batch, clamp the generator to the first N
words of s, and freely run the model to generate m
samples xi,j ,j = 1, · · · m till the end of the sequence.

12: Update the generator by applying the mixed
MLE-Mali gradient update following Eq. 2.3.2.

13: end for

2.3.3.3. Single real data based renormalization. Many generative models have multiple
layers of randomnesses. In these models, high-level random variables are usually responsible
for modeling high-level decisions or “modes” of the probability distribution. Changing them
can result in much larger effects than those from changing low-level variables. Motivated by
this observation, in each mini-batch we first draw a mini-batch of high-level latent variables
(e.g. 32), and then for each high-level value we draw a number of low-level data samples
(e.g. 32). Then we re-estimate the partition function Z from the low-level samples that
are generated by each high-level samples. Because lower-level sampling has a much smaller
variance, the model can receive better gradient signals from the weights provided by the
discriminator.

This sampling principle corresponds to applying the mixed MLE-Mali training discussed
above in the auto-regressive settings. In this case we first sample a few data samples, then
fix the first N words and let the network generate a lot of samples after the first N to form
the next mini-batch. We refer to this full algorithm as sequential MaliGAN with Mixed MLE
Training, which is summarized in Algorithm 3.

The benefits of this single real sample based renormalization are two-folds. First, consider
S is a sample from the training set and the first N words S≤N are completed by our model.
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The conditional distribution pd(S
′
>N |S≤N ) should be much simpler than the full distribution

pd. Namely, pd(S
′
>N |S≤N ) consists of only one or a few “modes”. So this renormalization

technique can be viewed as training the model on these simpler conditional distributions,
which gives more stable gradients.

Second, this normalization scheme makes our model robust to mode missing, a common
failure pattern during GAN training [Che et al., 2016]. Single sample based renormalization
ensures that for every real sample S, the model can receive a moderately strong training
signal for how to perform better on generating S>N conditioned on S≤N . However, in batch-
wise renormalization as in the basic MaliGAN, this is not possible because there might be
some completions S′ with rD(S′) very large, so other training samples in that mini-batch
receives very little gradient signals.

2.4. Experiments
We conduct experiments on four discrete sequence generation tasks.

2.4.1. Discrete MNIST

We first evaluate MaliGAN on the binarized image generation task for the MNIST hand-
written digits dataset, similar with [Hjelm et al., 2017]. To generate the discrete samples, we
sample from the generator’s output binomial distribution. We compare our MaliGAN with
the models trained using the discriminator’s output as a direct reward, and denote it as the
REINFORCE-like model.

The comparison results are shown in Figure 1. The two figures in the left are training
losses of the generator and discriminator from the proposed MaliGAN. We can see the
training process of MaliGAN is stable and the loss curve is meaningful. The right two
figures are samples generated by the REINFORCE-like model and by MaliGAN. Clearly,
the samples generated by MaliGAN have much better visual quality and resemble closely
the training data.

2.4.2. Poem Generation

The second experiment is a Chinese poem generation task [Zhang and Lapata, 2014].2.
We refer with Poem-5 and Poem-7 to those consisting of 5 or 7 Chinese characters each in
a short sentence, respectively.

2http://homepages.inf.ed.ac.uk/mlap/Data/EMNLP14/
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(a) (b)
(c) (d)

Fig. 1. The training loss of the generator (a) and the discriminator (b) of MaliGAN on
Discrete MNIST task; Samples generated by REINFORCE-like model (c) and by MaliGAN
(d).

We compare four models: (1) The auto-regressive model with same architecture but
trained with maximum likelihood (MLE); (2) MaliGAN-basic trained with Algorithm 2
without MCTS; (3) MaliGAN-full trained by Algorithm 3 with all the variance reduction
techniques included; and (4) SeqGAN [Yu et al., 2017]. Following [Yu et al., 2017], we report
the BLEU-2 scores in Table 1 [Papineni et al., 2002].

On both tasks, MaliGAN-full obtained the best BLEU-2 scores on par, and MaliGAN-
basic was the next best. Clearly, MLE lagged far behind despite the same architecture, which
should be attributed to the inherent defect in the MLE teacher-forcing training framework.
As pointed by previous researchers [Wiseman and Rush, 2016], BLEU might not be a proper
evaluation metric, we also calculate the Perplexity of these four models, obtaining similar
results.
Table 1. Experimental results on Poetry Generation task. The result of SeqGAN is from [Yu
et al., 2017].

Model Poem-5 Poem-7
BLEU-2 PPL BLEU-2 PPL

MLE 0.6934 564.1 0.3186 192.7
SeqGAN 0.7389 - - -

MaliGAN-basic 0.7406 548.6 0.4892 182.2
MaliGAN-full 0.7735 538.4 0.5712 179.1

2.4.3. Sentence-Level Language Modeling

We also examine the proposed algorithm on a more challenging task, sentence-level lan-
guage modeling. We examine three types of models, MLE, MaliGAN without MCTS and
MaliGAN with MCTS. We also examine 1-layer and 2-layer architectures. For evaluation we
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report sentence-level perplexity, which is the averaged perplexity on all sentences in the test
set. We also report BLEU-2 scores. The results are shown in Table 2.
Table 2. Experimental results on PTB. Note that we evaluate the models in sentence-level.

MLE-1-layer MaliGAN (w/o) MaliGAN (full)-1-layer MaliGAN (full)-2-layer

BLEU-2 0.5328 0.7105 0.7464 0.7631
Valid-Perplexity 141.9 131.6 128.0 119.2
Test-Perplexity 138.2 125.3 123.8 118.1

From Table 2 we can see, both MaliGAN-basic and MaliGAN-full obtained a notably
lower perplexity compared with the MLE model. Although the PTB dataset is much more
difficult, we obtain results consistent with Table 1. considering the small size of the PTB
data, it is encouraging to see that our model is more robust to overfitting. These results
strengthen our belief to realize our algorithm on even larger datasets, which we leave as a
future work.

Besides, we can see that with advanced techniques provided in Section 2.3.3, MaliGAN-
full performed in a more stable way during training and can to some extent achieve lower
perplexity scores than MaliGAN-basic. We believe these fruitful techniques will be beneficial
in other similar problem settings. Additionally, the BLEU-2 scores indicate the sentences
generated by MaliGAN are more perceptually natural. We provide some generated sentences
in the supplementary material.

2.4.4. Conditional Dialog Generation

In addition to unconditional discrete data generation, we also validate the proposed
algorithm in a conditional setting. We conduct experiments to generate responses based on
the input dialog utterances. More precisely, both the generator pθ(x|z,C) (or pθ(x|C)) and
the discriminator D(x,C) are now conditioned on a dialog context C. The discriminator in
this case has to not only examine the quality of generated response, but also has to take into
consideration the consistency with the given context.

To augment expressiveness, we experiment with two kinds of models, one with latent
variables using the MCTS version of MaliGAN and one without latent variables using mixed
MLE-Mali Training. The compared models include a conditional VAE model, a vanilla
sequence-to-sequence model trained with MLE, a GAN model with vanilla REINFORCE
and a GAN model with Gumbel-Softmax [Maddison et al., 2016, Jang et al., 2016]. The
latter two GAN models failed to generate any legal sentences, so we remove them from
evaluation pool.
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We perform detailed human evaluations on the generated responses.3 We distribute 50
randomly sampled responses generated from 10 dialog contexts to five evaluators. Detailed
results are given in Table 3.

From the results, we can see that MaliGAN training procedure can significantly improve
the coherence and relevance of the generated response than pure MLE based training. This
validates with the intuition that GAN discriminators is able to detect coherence problems
in dialog responses.

Table 3. Human evaluation results on dialog response generation.

Seq2Seq CVAE Mixed MLE-Mali MaliGAN+latent

Coherence 0.66 0.76 0.98 0.90
Relevance 0.60 0.82 1.04 1.16
Grammar 1.20 1.34 1.42 1.32

2.5. Related Work
To improve the performance of discrete auto-regressive models, some researchers aim to

tackle the exposure bias problem [Wiseman and Rush, 2016, Ranzato et al., 2016b, Serban
et al., 2016]. The second issue is the discrepancy between the objective during training,
i.e., to maximize the word-level probabilities, and the evaluation metric during testing, i.e.,
sequence-level metrics such as BLEU. This discrepancy is analyzed in [Ranzato et al., 2016b]
and then summarized as Loss-Evaluation Mismatch by [Wiseman and Rush, 2016]. Because
these metrics are often discrete, researchers generally seek help from reinforcement learning
to add the evaluation metrics into the objective in the training phase. [Ranzato et al., 2016b]
exploits the REINFORCE algorithm [Williams, 1992] and proposes several model variants.
Similarly, [Liu et al., 2016] directly optimizes image caption metrics through policy gradient
methods [Igel, 2005]. There exists a third issue, namely Label Bias, which makes it difficult
for the MLE trained models to be optimized globally [Wiseman and Rush, 2016, Andor et al.,
2016]

To addresses the abovementioned issues, we propose to formulate the problem under the
setting of GANs. Initially proposed by [Goodfellow et al., 2014a], GANs have attracted ex-
ploding attention and have been successfully applied on image and video generation [Radford
et al., 2015, Mirza and Osindero, 2014, Reed et al., 2016b, Zhang et al., 2016b, Nguyen et al.,
3On the model without latent variable, perplexity is available but previous work found it not a good metric
for measuring the quality of responses [Tao et al., 2017, Lowe et al., 2017].
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2016, Zhu et al., 2016, Sønderby et al., 2016, Ledig et al., 2016, Mathieu et al., 2015, Zhou
and Berg, 2016, Saito and Matsumoto, 2016]. Despite these successes, work on applying
GANs to text generation are not much explored yet noteworthy.

However, it is nontrivial to train GAN on discrete data due to its discontinuous nature.
The instability inherent in GAN training makes things even worse [Salimans et al., 2016a,
Che et al., 2016, Arjovsky and Bottou, 2017, Arjovsky et al., 2017b]. [Lamb et al., 2016]
exploits adversarial domain adaption to regularize RNN’s training. [Yu et al., 2017] applies
GAN to discrete sequence generation by directly optimizing the discriminator’s rewards.
They adopt the Monte-Carlo tree search technique [Silver et al., 2016]. A similar technique
is employed in [Li et al., 2017] which improves response generation by using adversarial
learning.

In [Bornschein and Bengio, 2015], which inspired us, the authors propose a way of doing
mini-batch reweighting when training latent variable models with discrete variables. How-
ever, they utilize an inference network which is infeasible in the GAN setting. Our work
is also closely related to [Norouzi et al., 2016]. They propose to work with the objective
KL(pd||pθ) in a conditional generation setting. However, they directly sample from the
augmented distribution because conditional generation metrics such as BLEU scores are de-
composable into terms for each time step. This is not possible for sequence-level GANs, e.g.,
language modeling. Instead, we use importance sampling in our case.

2.6. Discussions and Future Work
When training discrete GANs, it is notoriously difficult to pass the discriminator infor-

mation to train the generator. In this work, we solve this problem by first starting from
the maximum likelihood training objective KL(pd||pθ), and then using importance sampling
combined with the discriminator output to derive a novel training objective. We prove
that by estimating the partition function Z using samples, we are approximately doing nor-
malized importance sampling with another distribution p\Ω which has much lower variance
(Section 2.3.2). Practically, this single real sample normalization process combined with
mixed training successfully avoided the missing mode problem by providing an equivalent
training signal for each mode (Section 2.3.3.3).

In addition, our algorithm is surprisingly robust to overfitting. Teacher forcing is prone
to overfit, because by maximizing the likelihood of the training data, the model can easily
fit not only the regularities but also the noise in the data. However in our model, if the
generator tries to fit too much noise in the data, the generated sample will become poorer
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and the discriminator will very easily capture the differences between the generated and
the real samples. As for future work, we plan to train the model on large datasets such as
Google’s one billion words [Chelba et al., 2014].
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Chapter 3

Better Auto-Regressive Model Training with
Energy-Based Models

3.1. Preface
3.1.1. My Role and Contributions In This Project

I proposed the idea for this project, derived the mathematical formulation, and super-
vised the experimental work, some debugging and paper writing. The first named author is
responsible for most of the coding work. This is a paper in submission.

3.1.2. Motivation and Context

By factorizing the joint distribution into the product of a series of conditional distribu-
tions, auto-regressive generative models (abbr. ARGMs) [Vaswani et al., 2017, Dai et al.,
2019b, van den Oord et al., 2016a,c, Salimans et al., 2017, Chen et al., 2018] simplify the
difficult challenge of modeling high-dimensional joint distributions. They can be trained
efficiently via maximum likelihood and generate samples of exceptional quality, making this
technique popular for modeling distributions, especially for sequential data. Nonetheless,
despite its potency and flexibility, ARGMs still have a slew of inherent flaws due to the
intrinsic characteristics of chain-style conditional modeling. For example, ARGMs usually
suffer from a discrepancy in the input context distributions between the training and infer-
ence stages, which causes consequent error propagation (i.e., Exposure Bias [Ranzato et al.,
2016a, Bengio et al., 2015a]). Besides, due to the nature of greedy selection of beam search
in the generation, the decoded results by ARGMs also lack long-range coherence. These
remaining issues prevent ARGMs to produce good-quality results.

To address these defects, both heuristic and theoretical methods have been proposed.
For instance, the exposure bias problem of ARGMs can be alleviated to some extent by
mixing the input contexts with both real data and auto-regressively generated data during
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the training stage, which is exactly the core idea of the scheduled sampling methods [Bengio
et al., 2015a, Mihaylova and Martins, 2019]. However, one noteworthy trouble hiding inside
this scheme is the over-correcting problem [Zhang et al., 2019]. In addition, at the inference
stage, beam search enables model to choose more diverse candidates, improving the quality
of generations. Nevertheless, its produced results only provide coherence marginally, since
ARGM can only leverage previous decoded contexts without the consideration of the whole
sequence information. Moreover, regardless its difficulty in optimization, energy-based mod-
els (EBMs) has demonstrated its effectiveness in modeling high-dimensional distributions in
a variety of machine learning applications [Zhao et al., 2017, Arbel et al., 2021, Gao et al.,
2021], which did not require a compromise of transforming the target distribution into a
product of conditional distributions. As a result, some studies [Deng et al., 2020b, Bakhtin
et al., 2021, Durkan and Nash, 2019] attempt to combine EBMs with ARGMs, expecting to
take advantages of both models while eliminate their flaws. However, though obtained some
positive results, the existing works preferred a two-stage optimization, which first obtain
a well-trained ARGM and then train an additional EBM based on it. Such optimization
strategy does not enable ARGM to benefit from the advances of EBM in modeling joint-
distribution.

3.1.3. Main Contribution

In this chapter, we present a novel design for integrating the energy-based modeling
approach into auto-regressive generative models seamlessly (E-ARM for short hereafter) and
optimize it with an energy-based learning objective, which makes ARGMs to train auto-
regressively with a constraint to align the joint sequence distribution at each time step.
Thanks to our well-designed energy function, the two involved models can share a single
base network without additional parameters, that is, the base network not only serves as a
generator that provides fake data to facilitate the training of EBMs like previous works [Che
et al., 2020a, Xiao et al., 2021, Durkan and Nash, 2019, Deng et al., 2020b], but also plays
the role of modeling the energy surface.

Intuitively, the exposure bias in ARGMs is caused by the fact that the model is trained
on real data rather than data generated by the model. On the other hand, in the EBM’s
optimization process for modeling joint densities, the negative phase of wake-sleep algo-
rithms [Hinton, 2002b, Kim and Bengio, 2016a] requires sampling data from the EBM itself.
Along with the fact that our method combines the EBM and the ARGM seamlessly as a
whole, E-ARM can reduce the discrepancy between input data of the training and infer-
ence stage, which mitigates the exposure bias problem of the ARGM. On top of it, unlike
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ARGMs, which factor the joint distribution into a product of conditional distributions, EBMs
are able to model the joint distribution directly and score each input at the sequence level
instead of at the token level, which makes them capable of modeling long-range coherence.
Additionally, in order to optimize the proposed energy-based learning objective efficiently
via gradient-based wake-sleep algorithms [Kim and Bengio, 2016a], we present a way to
estimate the negative gradient (which is a necessary component in the gradient-based wake-
sleep algorithms) through those samples generated by auto-regressive models instead of the
EBM which requires expensive Markov chain monte carlo (MCMC) processes. This allows
us to sidestep the extremely time-consuming MCMC procedures, accelerating the training
processes.

In summary, the following contributions are described in this chapter: i) We introduce
a novel scheme, E-ARM, to integrate an EBM into an ARGM seamlessly. ii) with the
help of a proposed energy-based learning objective, we compel the ARGM to fit not only the
conditional distribution but also the joint distribution at each time step, which can eliminate
those inherent flaws such as exposure bias and enhance the global generational coherence. iii)
We demonstrate how to efficiently optimize our model in a single network using wake-sleep
algorithms without requiring an MCMC. iv) In a number of applications, such as language
modeling, neural machine translation, and image generation, our model can achieve better
results in comparison with baselines.

3.1.4. Follow-up Works and Impacts

This is a new work in submission and its impacts remains to be seen.

3.2. Exposure bias and incoherence problems in Auto-
regressive models

In the discussion about the defects of sequential autoregressive generative models, the
exposure bias problem [Bengio et al., 2015a, Ranzato et al., 2016a] is an important issue,
which greatly affects the model’s deployment performance. During the training stage, the
autoregressive model is always conditioned on ground truth token sequences. In the gen-
eration stage, however, the model has to rely on its own previously generated tokens to
predict the next token, when the model is deployed. If an incorrect token was generated by
the model that conditions future generation, this error can be amplified in following steps
because the next prediction will be made using an unusual input (one unlike those in the
training set). Besides, out of the consideration of efficiency, greedy autoregressive decoding
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usually selects the most probable token at each time step, given the ones previously selected.
Such a scheme assumes the largest joint probability of the whole sequence can be achieved
by separately choosing the most probable next token (given its previous context) over all
time steps, which is generally suboptimal.

3.3. Integrate EBMs into auto-regressive models seam-
lessly

For a long time, as a result of compromises for improved training stability and efficiency
(e.g., modeling a joint distribution by decomposing it and using a teacher-forcing training
strategy), conventional auto-regressive generative models have suffered from flaws such as
the exposure bias and the lack of long-range coherence. To tackle these issues, we attempt to
integrate energy-based models into auto-regressive models seamlessly (E-ARM), which can
be regarded as a variant of ARGMs blending with an energy-based learning objective. Similar
to conventional ARGMs, given a joint sequential distribution, E-ARM also addresses it auto-
regressively, that is, tackling tokens step by step under a specific order. However, what differs
from conventional approaches is that we attempt to model both the conditional and the joint
distributions simultaneously at each time step. In this way, E-ARM can model distributions
conveniently in an auto-regressive manner while avoiding those potential problems brought
about by ARGMs.

Formally, given a sequence of random variables (x1, x2, . . . , xK) with length K, we intro-
duce a parametric ARGM qθ(xk|x<k) (k denotes the time step) with parameters θ, and we
define pθ(xk, x<k) as a product of the base ARGM q(x<k) =

∏k−1
l=1 q(xl|x<l) and an EBM

as follows,

pθ(xk, x<k) = q(x<k) · e−ϕθ(xk,x<k)

Zθ
, (3.3.1)

where the energy function ϕθ(xk, x<k) is defined as the xk’s negative correspond-
ing component of the base network’s output logit with the input prefix context x<k =

(x1, x2, . . . , xk−1) (e.g. given a sequence ”This is Friday.” and assuming the corresponding
index of the token ”Friday” in the vocabulary is i, then the value of −ϕθ(”Friday”, ”This is”)
is the i-th component of the output logit, which is the straight input tensor of the final soft-
max layer), and the normalization term Zθ = Ex′

<k∼qθ(x<k)[
∑

xk
e−ϕθ(xk,x′

<k)].
Practically speaking, q and ϕ share the same parameters, however, in our model, during

the optimization of the EBMs, we treat q as a fixed distribution and only optimize ϕ. This
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is reasonable because the model is also trained with the auto-regressive loss and thus q is
expected to approximate pd as training progresses. In automatic gradient frameworks, this
is equivalent to putting a stop_gradient operator over q.

Our primary goal is to make the distribution qθ(xk|x<k) approach the real conditional
pd(xk|x<k) whilst maintaining pθ(xk, x<k) as close to the real joint pd(xk, x<k) as possible,
which can be achieved by minimizing the appropriate Kullback-Leibler (KL) divergences,

θ∗ = arg min
θ

[
DKL

(
pd(xk|x<k)||pθ(xk|x<k)

)
+ λDKL

(
pd(xk, x<k)||pθ(xk, x<k)

)]
,

(3.3.2)
where λ adjusts the ratio between the two objectives. In Eq. 3.3.2, the first objective can be
easily optimized with the usual cross entropy supervised learning objective while the second
one is optimized in the sense of EBMs by wake-sleep algorithms [Hinton et al., 1995, Kim
and Bengio, 2016a] which minimize the objective by descending the following gradient of θ

according to Eq. 1.6.21

Exk,x<k∼pd(xk,x<k)

[
∂

∂θ
Eθ(xk, x<k)

]
︸ ︷︷ ︸

Positive Phase

− Exk,x<k∼pθ(xk,x<k)

[
∂

∂θ
Eθ(xk, x<k)

]
︸ ︷︷ ︸

Negative Phase

,
(3.3.3)

where we have Eθ(xk, x<k) = ϕθ(xk, x<k)− log qθ(x<k). Since the optimization via Eq. 1.6.2
involves sampling data from the model and can lead to the discovery of non-data-like samples,
whose likelihood is then explicitly reduced by the energy function, E-ARM will not be plagued
by the exposure bias problem. Besides, because we model the joint distribution throughout
the training process, our model can assess the entire sequence as a whole and generate more
coherent data using energy sampling [Deng et al., 2020b]. Next, we show how to efficiently
optimize this model.

3.4. Optimization
We optimize the first objective in Eq. 3.3.2 as in conventional auto-regressive models

by reducing the cross-entropy loss. As for the second objective, we resort to descend the
estimated gradient as shown in Eq. 3.3.3. Thanks to the importance sampling technique and
our well-defined energy function, we show that the improved version of Eq. 3.3.3 has a simple

1here, we take a minimization version of the Eq. 1.6.2. As a result, the sign before each phase in two
equations is converse.
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and symmetric form that can be easily estimated whilst it does not require the expensive
MCMC process.

Specifically, by replacing Eθ(xk, x<k) with the specific form ϕθ(xk, x<k) − log qθ(x<k),
the gradient w.r.t. θ in the positive phase of Eq. 3.3.3 can be written as

−Ex<k∼pd
[

∂

∂θ
log qθ(x<k)] + Exk,x<k∼pd

[
∂

∂θ
ϕθ(xk, x<k)]. (3.4.1)

Similarly, we can get the negative phase gradient as

−Ex<k∼pθ
[

∂

∂θ
log qθ(x<k)] + Exk,x<k∼pθ

[
∂

∂θ
ϕθ(xk, x<k)]. (3.4.2)

The first term −Ex<k∼pθ
[ ∂
∂θ log qθ(x<k)] in Eq. 3.4.1 is equivalent to the log-likelihood

gradient for qθ(x<k), which means this gradient part will automatically descend as the
optimization (the first KL-divergence in Eq. 3.3.2) of ARGM qθ(x<k) =

∏k−1
l=1 qθ(xl|x<l)

is carried on. Besides, because the estimation of the expectation operator over the data
distribution pd is easy, and the score ϕθ(xk, x<k) can be acquired by simply accessing the
ARGM’s output logit (see the definition of ϕθ in Sec. 3.3), the second term can likewise be
readily estimated and optimized. As a result, the positive phase optimization is both feasible
and efficient.

The negative phase gradient estimation, on the other hand, is more involved. In Eq. 3.4.2,
sampling data from pθ is required for estimating the expectation Epθ

, whereas pθ is a para-
metric joint density involving an energy-based unnormalized density estimator that requires
time-consuming MCMC methods to produce data. However, thanks to importance sampling,
we can substitute the troublesome computation of the expectation over the distribution pθ

with the expectation over the distribution qθ, which can generate samples auto-regressively
without MCMC. Formally, we have the following equations:

Ex<k∼pθ
[

∂

∂θ
log qθ(x<k)] =

∑
x<k

pθ(x<k)
∂

∂θ
log qθ(x<k)

=
∑
x<k

∑
xk

pθ(xk, x<k)
∂

∂θ
log qθ(x<k)

=
∑
x<k

qθ(x<k)

∑
xk

e−ϕθ(xk,x<k)

Z
∂

∂θ
log qθ(x<k)

=Ex<k∼qθ(x<k)[w(x<k)
∂

∂θ
log qθ(x<k)],

(3.4.3)
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where we have

w(x<k) =

∑
xk

e−ϕ(xk,x<k)

Z
=

∑
xk

e−ϕ(xk,x<k)∑
x<k

∑
xk

qθ(x<k)e−ϕθ(xk,x<k)

=

∑
xk

e−ϕ(xk,x<k)∑
x<k

qθ(x<k)
∑

xk
e−ϕθ(xk,x<k)

=

∑
xk

e−ϕ(xk,x<k)

Ex<k∼qθ(x<k)[
∑

xk
e−ϕθ(xk,x<k)]

≃
∑

xk
e−ϕθ(xk,x<k)

1
N

∑
x<k

∑
xk

e−ϕθ(xk,x<k)
.

(3.4.4)

From the above equations, we can derive the negative phase gradient Exk,x<k∼pθ
[ ∂
∂θEθ(xk, x<k)]

is equivalent to the following formulation,

−Ex∼pθ
[

∂

∂θ
log qθ(x<k)] + Exk,x<k∼qθ(xk,x<k)[w(x<k)

∂

∂θ
ϕθ(xk, x<k)], (3.4.5)

where w(x<k) =

∑
xk

e−ϕ(xk,x<k)

Ex′
<k∼qθ(x<k)[

∑
xk

e−ϕθ(xk,x′
<k)]

. (3.4.6)

According to Eq. 3.4.5, all expectation estimations only need to sample data from the auto-
regressive model qθ, rather than the distribution pθ, and the reweighing weight w in Eq. 3.4.6
also does not involve an expectation computation over the distribution pθ. Generally, pro-
ducing data from an auto-regressive model is a very simplified process compared to sampling
straight from an EBM, which needs MCMC approaches [Durkan and Nash, 2019]. On ac-
count of that, the optimization process can be much more efficient.

Besides, the term Ex<k∼qθ(x<k)[w(x<k)
∂
∂θ log qθ(x<k)] in Eq.3.4.5 is equivalent to a re-

weighted version of the gradient of qθ’s information entropy with respect to θ. This term
can be optimized similarly to the teacher-forcing training of auto-regressive models with
the "teacher" sequence generated auto-regressively by the model itself. Actually, scheduled
sampling methods [Bengio et al., 2015a, Ranzato et al., 2016a, Mihaylova and Martins, 2019]
shared a similar idea but without reweighting.

Ultimately, combining Eq. 3.4.1 and Eq. 3.4.5, we can optimize pθ(xk, x<k) via descending
the estimated gradient of θ as follows,

 − Ex<k∼pd
[

∂

∂θ
log qθ(x<k)]

+ Exk,x<k∼pd
[

∂

∂θ
ϕθ(xk, x<k)]︸ ︷︷ ︸

Positive Phase

 −

 − Ex<k∼qθ(x<k)[w(x<k)
∂

∂θ
log qθ(x<k)]

+ Exk,x<k∼qθ(xk,x<k)[w(x<k)
∂

∂θ
ϕθ(xk, x<k)]︸ ︷︷ ︸

Negative Phase

.

(3.4.7)
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From Eq. 3.4.7, we can see that the only difference between the two phases is that in
the negative phase, the expectation over qθ has a reweighing weight w for each sample. The
weight w in Eq. 3.4.6 and Eq. 3.4.7 can be deduced a little bit further and we can observe
that

w(x<k) =
µ(x<k)

Ex′
<k

µ(x<k)
, (3.4.8)

where µ(x<k) =
pθ(x<k)
qθ(x<k)

indicating the possibility of which distribution the prefix context
x<k is most likely to come from, the distribution pθ or the distribution qθ. Correspondingly,
w(x<k) reflects the context x<k’s relative magnitude of µ(x<k) compared to the average
among all potential contexts—the larger the value of w(x<k), the more likely the context
x<k in the data space is close to the pθ which is modeled by the product of auto-regressive
models and EBMs. In the training stage, those input sequences with contexts which are
closer to the modeled pθ will be assigned larger weights w while those input sequences with
contexts that are far from pθ will be assigned with smaller weights w.

3.5. Training and Inference
In practice, we approximate Eq. 3.4.7 with the auto-regressive model qθ as a constant in

each update so that we can ignore those gradient terms with respect to qθ in Eq. 3.4.7. Thus
we have

Exk,x<k∼pd
[

∂

∂θ
ϕθ(xk, x<k)] − Exk,x<k∼qθ

[w(x<k)
∂

∂θ
ϕθ(xk, x<k)]. (3.5.1)

Compared with the original version shown in Eq. 3.4.7, this approximation Eq. 3.5.1
achieves marginally better performance. We argue this is because of the imbalanced train-
ing signals among different timesteps. Concretely, at different timesteps during auto-
regressive generation, the global likelihood can be naturally broken up into pieces: the
pθ(xk, x<k) for each k is an independent probabilistic density. The tricky part is that
one cannot simply sum up the losses at all timesteps, because this means summing up
log qθ(x1) + log qθ(x1,x2) + · · · + log qθ(x1, . . . , xK) and will result in earlier timesteps to
get stronger training signals.

We are unable to only train using the EBM training objective mentioned above. The
reason for this is that when qθ does not closely match pθ, the importance weight will have high
variance, and the expectation estimation will be dominated by the data with the most weight
in the process of importance sampling. Moreover, importance sampling underestimates the
gradient w.r.t. θ in the negative phase when qθ does not fully cover regions of high density
under pθ [Salakhutdinov and Murray, 2008]. As a result, in order to make the optimization
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more stable, we must maintain the cross-entropy loss throughout training and warm up the
ARGM for a few epochs. The EBM training objective should be viewed as a regularizer that
ensures our base model does not deviate from the real distribution pd.

Following the excellent work [Deng et al., 2020b, Bakhtin et al., 2021], we also adopt Top-
K energy re-sampling in the inference stage, which means that in the generative procedure,
we first gather multiple candidates of produced sequences auto-regressively, and then re-
sample from them based on their energy scores estimated by the network’s logit at the
last time step where the entire sequence has been processed. Since we employ the EBM
to model the joint distribution at each time step, such a re-sampled strategy can mitigate
the undesirable impact of the greedy selection of one token at a time, which increases the
coherence of generated samples.

3.6. Experiments
To empirically corroborate the effectiveness of E-ARM and show its general applicability,

we conduct extensive experiments covering 3 machine learning applications, which are neural
machine translation (NMT), language modeling, and image generation. In this section, we
will introduce the experimental setup for all applications one by one, followed by an analysis
of the obtained results.

3.6.1. Application to Neural Machine Translation

Model Label Scheduled Beam BLEU4 ↑ Avg.
Smoothing Sampling Searching DE→ EN EN→ DE EN→ IT IT→ EN ES→ EN EN→ ES

Base

- - - 32.44±0.06 26.64±0.10 27.92±0.03 30.48±0.08 38.61±0.11 35.42±0.09 31.92
5 B 33.62±0.07 27.41±0.08 28.72±0.04 31.39±0.05 39.55±0.12 36.38±0.07 32.85

✔ - - 33.68±0.03 27.62±0.04 28.81±0.07 31.42±0.07 39.85±0.13 36.71±0.09 33.02
5 B 34.61±0.08 28.46±0.06 29.72±0.10 32.29±0.03 40.64±0.07 37.48±0.05 33.87

✔ ✔
- 34.23±0.06 27.96±0.03 29.26±0.11 31.93±0.08 40.16±0.03 37.21±0.04 33.46

5 B 35.10±0.04 28.73±0.04 29.97±0.07 32.64±0.12 40.91±0.06 37.93±0.10 34.21

E-ARM

- - - 32.99±0.10 27.15±0.03 28.33±0.12 31.13±0.04 39.56±0.01 36.07±0.02 32.54
5 B 34.06±0.06 27.97±0.08 29.26±0.09 31.90 ±0.13 40.30 ±0.03 36.92 ±0.09 33.40

✔ - - 33.97 ±0.08 28.03 ±0.04 29.13 ±0.02 31.84 ±0.11 40.32 ±0.03 36.96 ±0.07 33.38
5 B 34.93 ±0.05 28.91 ±0.12 30.04 ±0.11 32.56 ±0.04 41.01 ±0.06 37.73 ±0.12 34.20

✔ ✔
- 34.58 ±0.09 28.38 ±0.12 29.56 ±0.10 32.11 ±0.03 40.93 ±0.03 37.56 ±0.07 33.85

5 B 35.36 ±0.05 29.11 ±0.04 30.25 ±0.09 32.82 ±0.11 41.58 ±0.07 38.19 ±0.03 34.55

Table 1. Comparison of BLEU4 scores between our approach E-ARM and the base ARGM trained just
with cross-entropy loss on six translation pairs of IWSLT14 datasets. We use “-” to denote that the training
trick (either label smoothing or scheduled sampling) is not used while “✔” indicates we use it. “5 B” means
that we use beam searching with 5 beams.
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E-ARM is initially evaluated under the neural machine translation (NMT) problem,
which can be considered a conditional generation task and is particularly important in the
natural language processing (NLP) field. We first analyze our E-ARM on IWSLT14 dataset,
which includes six different language pairs ({German, Spanish, Italian} → English and Eng-
lish → {German, Spanish, Italian}). In addition, we test our model on the WMT16 (English
→ German) benchmark for evaluating E-ARM’s performance on a larger scale. Hereafter
we abbreviate English, German, Spanish, Italian as ”En”, ”De”, ”Es”, ”It”. The weight λ

in Eq. 3.3.2 is set as 5e-2 for all translation tasks. We use one size type of transformer
(”Base-IWSLT”) for IWSLT14 benchmark and two size type of transformer (”Base-WMT”,
”Large-WMT”) for WMT16 benchmark 2. Scheduled Sampling is carried out following [Mi-
haylova and Martins, 2019].

2Implementation is developed on Fairseq [Ott et al., 2019].

58



Model L.S. S.S. w/E-ARM BLEU4 ↑

Base-WMT

- - - 27.56
✔ - - 28.04
✔ ✔ - 28.36
✔ ✔ ✔ 28.62

Large-WMT

- - - 28.70
✔ - - 29.05
✔ ✔ - 29.23
✔ ✔ ✔ 29.44

Table 2. Translation performance of our E-ARM on WMT16
English→German, evaluated by BLEU4. We uniformly use 5
beams to apply beams searching. ”L.S.” denotes Label Smooth-
ing and ”S.S.” denotes Scheduled Sampling.

The results of IWSLT14 tasks
are shown in Table 1. We test not
only the pure performance of our
E-ARM but also the compatibil-
ity with other training techniques.
Specifically, we can observe that
(1) without any particular train-
ing skills, our E-ARM outperforms
the base auto-regressive translation
model trained with cross-entropy
singly by 0.62 (31.92 → 32.54)
in average, especially on three
translation pairs—38.61 → 39.56
on Spanish-to-English, 30.48 →
31.13 on Italian-to-English, 35.42
→ 36.07 on English-to-Spanish.

(2) Our E-ARM is compatible with other training technique like scheduled sampling or
beam search which can reduce the exposure bias problem and the lack of long-range coher-
ence to some extent. They are not mutually exclusive and can work together to further
improve the performance of the base ARGM. (3) However, since scheduled sampling can
reduce exposure bias and beam search can somewhat alleviate the flaws caused by greedy
selection at each time step, the performance gain of E-ARM when all training tactics are
used is only 0.34 (34.21 → 34.55), which is lower than 0.62 (31.92 → 32.54) obtained when
pure training without other training techniques.

Additionally, we show the performance of our method on WMT16 English → German
task in Table 2. When enabling label smoothing (L.S.), the model performance increases by
0.52 and 0.35 respectively in two different model scales. When further applying scheduled
sampling (S.S.), the base transformer model performance improves to 28.36 while the larger
one obtains 29.23. The best scores 28.62 and 29.44 are both obtained using E-ARM conbined
with label smoothing and scheduled sampling. Overall, our training scheme performs favor-
ably against the vanilla teacher-forcing training of ARGM and can universally take positive
effects under different scales of models and datasets.

3.6.2. Application to Language Modeling
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Model #Params PPL ↓

Tr-Base 149M 30.56
Tr-Base (w/E-ARM) 149M 29.89

Standard Tr-XL 151M 24.20
Standard Tr-XL (w/E-ARM) 151M 23.81

Table 3. Test set performance of different models on Wiki-
Text103. Evaluation is conducted using perplexity.

To further demonstrate its re-
silience to flaws of auto-regressive
generating models, we also con-
duct experiments on the Language
Modeling task. The WikiText-103
dataset [Merity et al., 2017], which
is the largest word-level language modeling benchmark accessible with long-term reliance,
was chosen as the testbed. It comprises 103 million training tokens from 28 thousand arti-
cles, with an average length of 3.6 thousand tokens per article, which allows evaluating the
ability of long-term dependency modeling. Two network structures are mainly tested, which
are TransformerBase [Vaswani et al., 2017] and Transformer-XL [Dai et al., 2019b](Tr-Base
and Tr-XL for short respectively hereafter).

Start Epoch

5 15 25

λ

0.00 30.56 30.56 30.56
0.01 30.48 30.12 30.22
0.05 30.43 29.89 30.16
0.1 30.60 30.03 30.14
0.5 30.71 30.36 30.47

Table 4. Ablation of different λ and the start
epoch where we introduce the E-ARM into the
training on WikiText103. Evaluation is con-
ducted using perplexity.

The final results are reported in Table 3.
From the results, we observe that E-ARM out-
performs baselines with clear margins in different
scale of models. Specifically, the Transformer-
Base achieves 0.67 PPL points performance gain
(from 30.56 to 29.89) and the Transformer-XL in-
creases from 24.20 to 23.81. Our method neither
modifies the structure of the base network nor do
we introduce any extra module or learnable pa-
rameters, that is, the performance boost comes
only from the introduced energy-based learning
objective. Apart from this, we also conduct some
ablation study of language modeling, which can
be found in Table 4.

3.6.3. Application to Image Generation

In order to examine the effectiveness of our method on additional data modalities in
addition to neural language processing (NLP) tasks, we show the results of applying E-ARM
to the image generating task in this section. We test E-ARM above Pixel-CNN [Van Oord
et al., 2016] and its variant Gated Pixel-CNN [Oord et al., 2016]. Experiments are carried
out on the MNIST and CIFAR-10 datasets.

Table 5 summarizes the quantitative results measured by negative log-likelihood (NLL),
while Figure 1 depicts some of the generated samples. From which we can see that with the
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Model Test (Train) NLL ↓
MNIST CIFAR-10

Pixel-CNN 0.17 (0.13) 3.14 (3.08)
Pixel-CNN (w/E-ARM) 0.14 (0.12) 3.08 (2.95)
Gated Pixel-CNN 0.14 (0.11) 2.98 (2.90)
Gated Pixel-CNN (w/E-ARM) 0.12 (0.10) 2.94 (2.88)

Table 5. Test set performance of different mod-
els on MNIST and CIFAR-10 in bits/dim (lower is
better), training performance in brackets.

Fig. 1. Samples of CIFAR-10 from Gated
Pixel-CNN (w/E-ARM).

help of our E-ARM, both the pixel-cnn and the gated pixel-cnn are improved in all datasets
tested, which suggests a clear advantage of our design of the energy-based learning objective
for improving auto-regressive models.

3.7. Related Works
3.7.1. auto-regressive generative models

Modeling high-dimensional data distribution directly is usually a rather challenging task
due to ”the curse of dimensionality” [Bellman, 1954]. One alternative method is to sequen-
tialize the random variables and then factorize the joint probability distribution into the
product of conditionals based on the appointed sequence, which is exactly the core idea of
auto-regressive generative models. In general, this type of generative models has achieved
prominent improvement in the world of generative modeling, particularly in tasks where
sequential data is involved. For example, ARGMs have been widely used in language mod-
eling [Vaswani et al., 2017, Dai et al., 2019b, Radford et al., 2019], audio synthesis [van den
Oord et al., 2016a], and even image generation [van den Oord et al., 2016b,c, Salimans et al.,
2017]. Nonetheless, what comes with the advantages, such as strong feasibility and high ef-
ficiency, of auto-regressive sequential models are several intrinsic defects: the exposure bias
problem [Ranzato et al., 2016a, Bengio et al., 2015a, Song et al., 2020a], which emerges due
to the discrepancy in input context distributions between the training and inference stages,
as well as the lack of long-range coherence, which occurs because of the inherent greedy
selection of one token at a time without look ahead.
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3.7.2. Energy-based models

In the field of generative modeling, energy-based models have been widely used [Zhao
et al., 2017, Arbel et al., 2021, Gao et al., 2021]. The primary idea behind EBMs is to
understand the dependencies between variables (e.g. images and labels) represented by
energy functions, and to assign low energies to proper configurations while assigning high
energies to incorrect ones [LeCun et al., 2006].

Due to sampling difficulties [Kim and Bengio, 2016a, Grathwohl et al., 2021], training
EBMs has been notoriously difficult, especially on high-dimensional data like images or texts.
Stochastic Gradient Langevin Dynamics (SGLD) [Welling and Teh, 2011a] is a frequently
used gradient-based MCMC approach that injects noises into parameter updates and anneals
the step size during the course of training, which has been adopted by numerous prior
works [Nijkamp et al., 2019, Du and Mordatch, 2019, Grathwohl et al., 2020]. However,
these MCMC methods always require enormous extra computing overheads and are not
applicable when the input is discrete like in text applications [Deng et al., 2020b].

As a result, a variety of recent works attempt to explore the way of training an EBM
without MCMC processes. In particular, [Bakhtin et al., 2021, Xu et al., 2021] optimize the
EBMs using noise contrastive estimation (NCE) [Gutmann and Hyvärinen, 2010, Ma and
Collins, 2018]. [Durkan and Nash, 2019] estimate the intractable normalization component
by utilizing ARGMs and importance sampling. [Che et al., 2020a, Wang et al., 2021] skirt
the challenge of collecting data in the high-dimensional data space by producing data in the
lower-dimensional feature space, which improves the efficiency of sampling.

3.8. Conclusion
In this chapter, we proposed a novel method E-ARM to integrate energy-based models

into the ARGM, as well as a well-designed training objective to train it efficiently. In particu-
lar, we introduce an energy function, defined using the base auto-regressive network’s output
logit, to model the unnormalized joint distribution of real data across the sequence’s time
steps, and importance sampling to avoid the requirement of MCMC processes during energy-
based training, which makes the optimization much more tractable. Experimental results
on two language tasks and one vision task demonstrate that our method has the ability to
ameliorate the current ARGMs by reducing the exposure bias and increasing the long-range
coherence of generated samples. In the future, we expect to extend our method on other
sequential generation tasks, e.g. text summarization, audio generation, and incorporate our
energy-based auto-regressive mechanism into other advanced structures.

62



Chapter 4

Improved GAN sampling with Energy-Based
Models

4.1. Preface
4.1.1. My Role and Contributions In This Project

I proposed the core idea of for this project, worked out the mathematical formulation
through discussions with my co-authors and carried out a small portion of experimental
work. This project was published in [Che et al., 2020b].

4.1.2. Motivation and Context

Despite the ability of GANs to generate high-resolution, sharp samples, the samples of
GAN models sometimes contain bad artifacts or are even not recognizable [Karras et al.,
2019]. It is conjectured that this is due to the inherent difficulty of generating high dimen-
sional complex data, such as natural images, and the optimization challenge of the adversarial
formulation. In order to improve sample quality, conventional sampling techniques, such as
increasing the temperature, are commonly adopted for GAN models [Brock et al., 2019]. Re-
cently, new sampling methods such as Discriminator Rejection Sampling (DRS) [Azadi et al.,
2018], Metropolis-Hastings Generative Adversarial Network (MH-GAN) [Turner et al., 2019],
and Discriminator Optimal Transport (DOT) [Tanaka, 2019] have shown promising results
by utilizing the information provided by both the generator and the discriminator. How-
ever, these sampling techniques are either inefficient or lack theoretical guarantees, possibly
reducing the sample diversity and making the mode dropping problem more severe.

In this chapter, we show that GANs can be better understood through the lens of Energy-
Based Models (EBM). In our formulation, GAN generators and discriminators collaboratively
learn an “implicit” energy-based model. However, efficient sampling from this energy based
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model directly in pixel space is extremely challenging for several reasons. One is that there
is no tractable closed form for the implicit energy function in pixel space.

This motivates an intriguing possibility: that Markov Chain Monte Carlo (MCMC) sam-
pling may prove more tractable in the GAN’s latent space.

4.1.3. Main Contribution

Surprisingly, we find that the implicit energy based model defined jointly by a GAN
generator and discriminator takes on a simpler, tractable form when it is written as an
energy-based model over the generator’s latent space. In this way, we propose a theoret-
ically grounded way of generating high quality samples from GANs through what we call
Discriminator Driven Latent Sampling (DDLS). DDLS leverages the information contained
in the discriminator to re-weight and correct the biases and errors in the generator. Through
experiments, we show that our proposed method is highly efficient in terms of mixing time,
is generally applicable to a variety of GAN models (e.g. Minimax, Non-Saturating, and
Wasserstein GANs), and is robust across a wide range of hyper-parameters. An energy-
based model similar to our work is also obtained simultaneously in independent work [Arbel
et al., 2020] in the form of an approximate MLE lower bound.

We highlight our main contributions as follows:
• We provide more evidence that it is beneficial to sample from the energy-based model

defined both by the generator and the discriminator instead of from the generator
only.

• We derive an equivalent formulation of the pixel-space energy-based model in the
latent space, and show that sampling is much more efficient in the latent space.

• We show experimentally that samples from this energy-based model are of higher
quality than samples from the generator alone.

• We show that our method can approximately extend to other GAN formulations,
such as Wasserstein GANs.

4.1.4. Follow-up Works and Impacts

Although our paper was published only less than two years ago, it has attracted signif-
icant attention from the generative model community. Some follow-up works are directly
generalizations, and some are improvement or applications of our algorithm. For instance,
[Ansari et al., 2021] is a generalization of our algorithm to a larger class of gradient flows. In
their view, our model is a special case of their gradient flows. Another line of work focusing
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on applying our algorithm to compositional or controlled generalization [Nie et al., 2021].
The idea is simple — if we replace the discriminator with a K-way classifier, we can control
the properties of the generated images.

Our idea of moving generative modeling to the latent space has inspired a large number of
high quality research works. [DeVries et al., 2020] considers doing latent space reweighting
during training not sampling, thus improving the training performance of GANs. [Zhou
et al., 2021] considers learning neural Fokker Planck equations in the latent space to model
high dimensional distributions.

Till now, our work has been cited more than 43 times.

4.2. Methodology
4.2.1. GANs as an Energy-Based Model

Suppose we have a GAN model trained on a data distribution pd with a generator G(z)

with generator distribution pg and a discriminator D(x). We assume that pg and pd have
the same support. This can be guaranteed by adding small Gaussian noise to these two
distributions.

The training of GANs is an adversarial game which generally does not converge to the
optimal generator, so usually pd and pg do not match perfectly at the end of training.
However, the discriminator provides a quantitative estimate for how much these two dis-
tributions (mis)match. Let’s assume the discriminator is near optimality, namely [Good-
fellow et al., 2014b] D(x) ≈ pd(x)

pd(x)+pg(x)
. From this equation, let d(x) be the logit of

D(x), in which case pd(x)
pd(x)+pg(x)

= 1
1+ pg(x)

pd(x)

≈ 1
1+exp(−d(x))

, and we have ed(x) ≈ pd/pg,

and pd(x) ≈ pg(x)ed(x). Normalization of pg(x)ed(x) is not guaranteed, and it will not
typically be a valid probabilistic model. We therefore consider the energy-based model
p∗

d = pg(x)ed(x)/Z0, where Z0 is a normalization constant. Intuitively, this formulation has
two desirable properties. First, as we elaborate later, if D = D∗ where D∗ is the optimal
discriminator, then p∗

d = pd. Secondly, it corrects the bias in the generator via weighting
and normalization. If we can sample from this distribution, it should improve our samples.

There are two difficulties in sampling efficiently from p∗
d:

(1) Doing MCMC in pixel space to sample from the model is impractical due to the high
dimensionality and long mixing time.

(2) pg(x) is implicitly defined and its density cannot be computed directly.
In the next section we show how to overcome these two difficulties.
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4.2.2. Rejection Sampling and MCMC in Latent Space

Our approach to the above two problems is to formulate an equivalent energy-based model
in the latent space. To derive this formulation, we first review rejection sampling [Casella
et al., 2004]. With pg as the proposal distribution, we have ed(x)/ Z0 = p∗

d(x) / pg(x). Denote
M = maxx p∗

d(x)/ pg(x) (this is well-defined if we add a Gaussian noise to the output of the
generator and x is in a compact space). If we accept samples from proposal distribution pg

with probability p∗
d / (Mpg), then the samples we produce have the distribution p∗

d.
We can alternatively interpret the rejection sampling procedure above as occurring in

the latent space z. In this interpretation, we first sample z from p(z), and then perform
rejection sampling on z with acceptance probability ed(G(z)) / (MZ0). Only once a latent
sample z has been accepted do we generate the pixel level sample x = G(z).

This rejection sampling procedure on z induces a new probability distribution pt(z). To
explicitly compute this distribution we need to conceptually reverse the definition of rejection
sampling. We formally write down the “reverse” lemma of rejection sampling as Lemma 1,
to be used in our main theorem.
Lemma 4.2.1. On space X there is a probability distribution p(x). r(x) : X → [0,1] is a
measurable function on X. We consider sampling from p, accepting with probability r(x),
and repeating this procedure until a sample is accepted. We denote the resulting probability
measure of the accepted samples q(x). Then we have q(x) = p(x)r(x) / Z,where Z =

Ep[r(x)].
Namely, we have the prior proposal distribution p0(z) and an acceptance probability

r(z) = ed(G(z))/ (MZ0). We want to compute the distribution after the rejection sampling
procedure with r(z). With Lemma 1, we can see that pt(z) = p0(z)r(z) / Z ′. We expand
on the details in our main theorem.

4.2.3. Main Theorem

Lemma 4.2.2. On space X there is a probability distribution p(x). r(x) : X → [0,1] is a
measurable function on X. We consider sampling from p, accepting with probability r(x),
and repeating this procedure until a sample is accepted. We denote the resulting probability
measure of the accepted samples q(x). Then we have:

q(x) = p(x)r(x) / Z, Z = Ep[r(x)]. (4.2.1)

Proof. From the definition of rejection sampling, we can see that in order to get the
distribution q(x), we can sample x from p(x) and do rejection sampling with probability
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r′(x) = q(x) / (Mp(x)), where M ≥ q(x)/ p(x) for all x. So we have r′(x) = r(x) / (ZM).
If we choose M = 1/ Z, then from r(x) ≤ 1 for all x, we can see that M satisfies
M ≥ q(x)/ p(x) = r(x) / Z, for all x. So we can choose M = 1 / Z, resulting in
r(x) = r′(x). □

Theorem 4.2.3. Assume pd is the data generating distribution, and pg is the generator
distribution induced by the generator G : Z → X , where Z is the latent space with prior
distribution p0(z). Define p∗

d = elog pg(x)+d(x)/ Z0, where Z0 is the normalization constant.
Assume pg and pd have the same support. This assumption is typically satisfied when

dim(z) ≥ dim(x). We address the case that dim(z) < dim(x) in Corollary 4.2.3.1. Further,
let D(x) be the discriminator, and d(x) be the logit of D, namely D(x) = σ (d(x)). We
define the energy function E(z) = − log p0(z) − d(G(z)), and its Boltzmann distribution
pt(z) = e−E(z)/ Z. Then we have:

(1) p∗
d = pd when D is the optimal discriminator.

(2) If we sample z ∼ pt, and x = G(z), then we have x ∼ p∗
d. Namely, the induced

probability measure G ◦ pt = p∗
d.

Proof. (1) follows from the fact that when D is optimal, D(x) = pg

pd+pg
, so D(x) =

σ(log pd − log pg), which implies that d(x) = log pd − log pg (which is finite on the support
of pg due to the fact that they have the same support). Thus, p∗

d(x) = pd(x)/ Z0, we must
have Z0 = 1 for normalization, so p∗

d = pd.
For (2), for samples x ∼ pg, if we do rejection sampling with probability

p∗
d(x)/ (Mpg(x)) = ed(x)/ (MZ0) (where M is a constant with M ≥ p∗

d(x)/ pg(x)),
we get samples from the distribution p∗

d. We can view this rejection sampling as a
rejection sampling in the latent space Z, where we perform rejection sampling on p0(z)

with acceptance probability r(z) = p∗
d(G(z))/ (Mpg(G(z))) = ed(G(z))/ M . Applying

lemma 1, we see that this rejection sampling procedure induces a probability distribution
pt(z) = p0(z)r(z)/C on the latent space Z. C is the normalization constant. Thus
sampling from p∗

d(x) is equivalent to sampling from pt(z) and generating with G(z). □

Interestingly, pt(z) has the form of an energy-based model, pt(z) = e−E(z)/ Z ′, with tractable
energy function E(z) = − log p0(z) − d(G(z)). In order to sample from this Boltzmann
distribution, one can use an MCMC sampler, such as Langevin dynamics or Hamiltonian
Monte Carlo.
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4.2.4. Sampling Wasserstein GANs with Langevin Dynamics

Wasserstein GANs are different from original GANs in that they target the Wassertein
loss. Although when the discriminator is trained to optimality, the discriminator can recover
the Kantorovich dual [Arjovsky et al., 2017c] of the optimal transport between pg and pd,
the target distribution pd cannot be exactly recovered using the information in pg and D.
However, in the following we show that in practice, the optimization of WGAN can be viewed
as an approximation of an energy-based model, which can also be sampled with our method.

The objectives of Wasserstein GANs can be summarized as:

LD = Epg [D(x)] − Epd
[D(x)] , LG = −Ep0 [D(G(z))] (4.2.2)

where D is restricted to be a K-Lipschitz function.
On the other hand, consider a new energy-based generative model (which also has a

generator and a discriminator) trained with the following objectives:
(1) Discriminator training phase (D-phase). Unlike GANs, our energy-based model tries

to match the distribution pt(x) = pg(x)eDϕ(x)/ Z with the data distribution pd,
where pt(x) can be interpreted as an EBM with energy Dϕ(x) − log pg(x). In this
phase, the generator is kept fixed, and the discriminator is trained.

(2) Generator training phase (G-phase). The generator is trained such that pg(x)

matches pt(x), in this phase we treat D as fixed and train G.
In the D-phase, we are training an EBM with data from pd. The gradient of the KL-

divergence (which is our loss function for D-phase) can be written as [MacKay, 2003]:

∇ϕKL(pd||pt) = Ept [∇ϕD(x)] − Epd
[∇ϕD(x)] (4.2.3)

Namely we are trying to maximize D on real data and trying to minimize it on fake data.
Note that the fake data distribution pt is a function of both the generator and discriminator,
and cannot be sampled directly. As with other energy-based models, we can use an MCMC
procedure such as Langevin dynamics to generate samples from pt [Tieleman, 2008].

In the G-phase, we can train the model with the gradient of KL-divergence KL(pg || p′
t)

as our loss. Let p′
t be a fixed copy of pt, we can compute the gradient as:

∇θKL(pg || p′
t) = −E[∇θD(G(z))]. (4.2.4)

Note that the losses above coincide with what we are optimizing in WGANs, with two
differences:

(1) In WGAN, we optimize D on pg instead of pt. This may not be a big difference in
practice, since as training progresses pt is expected to approach pg, as the optimizing
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Fig. 1. Progression of Inception Score with more Langevin dynamics sampling steps.

loss for the generator explicitly acts to bring pg closer to pt (Equation 4.2.4). More-
over, it has recently been found in LOGAN [Wu et al., 2019] that optimizing D on
pt rather than pg can lead to better performance.

(2) In WGAN, we impose a Lipschitz constraint on D. This constraint can be viewed
as a smoothness regularizer. Intuitively it will make the distribution pt(x) =

pg(x)e−Dϕ(x)/ Z more “flat” than pd, but pt(x) (which lies in a distribution fam-
ily parameterized by D) remains an approximator to pd subject to this constraint.

Thus, we can conclude that for a Wasserstein GAN with discriminator D, WGAN ap-
proximately optimizes the KL divergence of pt = pg(x)e−D(x)/ Z with pd, with the con-
straint that D is K-Lipschitz. This suggests that one can also perform DDLS on the
WGAN latent space to generate improved samples, using an energy function E(z) =

− log p0(z) − D(G(z)).

4.2.5. DDLS Algorithm

We show the detailed algorithm using Langevin dynamics in Alg. 4.
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Algorithm 4 Discriminator Langevin Sampling
Input: N ∈ N+,ϵ > 0
Output: Latent code zN ∼ pt(z)
Sample z0 ∼ p0(z).
for i < N do

ni ∼ N(0,1)
zi+1 = zi − ϵ/2∇zE(z) +

√
ϵni

i = i + 1
end for

Algorithm 5 WGAN-EBM Hybrid Algorithm
Input: N ∈ N+,ϵ > 0,δ > 0, Initialized Dϕ(x), Gθ(z)
Output: Trained Dϕ(x), Gθ(z)
for Model Not Converged do

Sample a batch zk
0 ∼ p0(z),k = 1,2, · · · M .

Sample a batch of real data xk, k = 1,2, · · · M .
for i < N do

nk
i ∼ N(0,1)

zk
i+1 = zk

i − ϵ/2∇zE(zk
i ) +

√
ϵnk

i , ▷ E(z) = − log p0(x) − D(G(z))
i = i + 1

end for
ϕ = ϕ − δ(

∑M
k=1 ∇ϕD(G(zk

N )) − ∇ϕD(xk))

θ = θ + δ
∑M

k=1 ∇θD(G(zk
0 ))

end for

We described an EBM algorithm which WGAN is approximately optimizing. Here we
detail this algorithm in Alg. 5.

4.2.6. Practical Issues and the Mode Dropping Problem

Mode dropping is a major problem in training GANs. In our main theorem it is assumed
that pg and pd have the same support. We also assumed that G : Z → X is a deterministic
function. Thus, if G cannot recover some of the modes in pd, p∗

d also cannot recover these
modes.

However, we can partially solve the mode dropping problem by introducing an additional
Gaussian noise z′ ∼ N(0,1; z′) = p1(z′) to the output of the generator, namely we define the
new deterministic generator G∗(z,z′) = G(z) + ϵz′. We treat z′ as a part of the generator,
and do DDLS on joint latent variables (z,z′). The Langevin dynamics on this joint energy
will help the model to move data points that are a little bit off-mode to the data manifold,
and we have the follwing Corollary:
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Corollary 4.2.3.1. Assume pd is the data generating distribution with small Gaussian noise
added. The generator G : Z → X is a deterministic function, where Z is the latent space
endowed with prior distribution p0(z). Assume z′ ∼ p1(z′) = N(0,1; z) is an additional
Gaussian noise variable with dim z′ = dim X . Let ϵ > 0, denote the distribution of the
extended generator G∗(z,z′) = G(z)+ ϵz′ as pg. D(x) is the discriminator trained between pg

and pd. Let d(x) be the logit of D, namely D(x) = σ (d(x)). Define p∗
d = elog pg(x)+d(x)/ Z0,

where Z0 is the normalization constant. We define the energy function in the extended
latent space E(z,z′) = − log p0(z)− log p1(z′)− d(G∗(z,z′)), and its Boltzmann distribution
pt(z,z′) = e−E(z,z′)/ Z. Then we have:

(1) p∗
d = pd when D is the optimal discriminator.

(2) If we sample (z,z′) ∼ pt, and x = G∗(z,z′), then we have x ∼ p∗
d. Namely, the

induced probability measure G∗ ◦ pt = p∗
d.

Proof. Let G∗(z,z′) be the generator G defined in Theorem 1, we can see that pd and pg

have the same support. Apply Theorem 1 and we deduce the corollary. □

4.3. Related Work
Previous work has considered utilizing the discriminator to achieve better sampling for

GANs. Discriminator rejection sampling [Azadi et al., 2018] and Metropolis-Hastings GANs
[Turner et al., 2019] use pg as the proposal distribution and D as the criterion of acceptance
or rejection. However, these methods are inefficient as they may need to reject a wechlot of
samples. Intuitively, one major drawback of these methods is that since they operate in the
pixel space, their algorithm can use discriminators to reject samples when they are bad, but
cannot easily guide latent space updates using the discriminator which would improve these
samples. The advantage of DDLS over DRS or MH-GAN is similar to the advantage of SGD
over zero-th order optimization algorithms.

Trained classifiers have similarly been used to correct probabilistic models in other con-
texts [Cranmer et al., 2015]. Discriminator optimal transport (DOT) [Tanaka, 2019] is
another way of sampling GANs. They use deterministic gradient descent in the latent space
to get samples with higher D-values, However, since pg and D cannot recover the data
distribution exactly, DOT has to make the optimization local in a small neighborhood of
generated samples, which hurts the sample performance. Also, DOT is not guaranteed to
converge to the data distribution even under ideal assumptions (D is optimal).

Other previous work considered the usage of probabilistic models defined jointly by the
generator and discriminator. In [Deng et al., 2020a], the authors use the idea of training an
EBM defined jointly by a generator and an additional critic function in the text generation
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setting. [Grover et al., 2019] uses an additional discriminator as a bias corrector for generative
models via importance weighting. [Grover et al., 2018] considered rejection sampling in latent
space in encoder-decoder models.

Energy-based models [Hinton and Salakhutdinov, 2006, Tao et al., 2019, Gao et al., 2020,
2018, Xie et al., 2018, Han et al., 2017, 2019, 2020, Pang et al., 2020] have gained signif-
icant attention in recent years. Most work focuses on the maximum likelihood learning of
energy-based models [LeCun et al., 2006, Du and Mordatch, 2019, Salakhutdinov and Hinton,
2009b]. Other work has built new connections between energy based models and classifiers
[Grathwohl et al., 2019]. The primary difficulty in training energy-based models comes from
effectively estimating and sampling the partition function. The contribution to training
from the partition function can be estimated via MCMC [Du and Mordatch, 2019, Hinton,
2002c, Nijkamp et al., 2019], via training another generator network [Kim and Bengio, 2016b,
Kumar et al., 2019], or via surrogate objectives to maximum likelihood [Hyvärinen, 2005,
Gutmann and Hyvärinen, 2010, Sohl-Dickstein et al., 2011]. The connection between GANs
and EBMs has been studied by many authors [Zhao et al., 2016, Finn et al., 2016, Dai et al.,
2019a, Zhai et al., 2019]. Our result can be viewed as establishing a new connection between
GANs and EBMs which allows efficient latent MCMC sampling.

4.4. Experimental results
In this section we present a set of experiments demonstrating the effectiveness of our

method on both synthetic and real-world datasets. In section 4.4.1 we illustrate how the
proposed method, DDLS, can improve the distribution modeling of a trained GAN and
compare with other baseline methods. In section 4.4.2 we show that DDLS can improve the
sample quality on real world datasets, both qualitatively and quantitatively.

4.4.1. Synthetic dataset

Table 1. DDLS suffers less from mode dropping when modeling the 2d synthetic distribution
in Figure 3. Table shows number of recovered modes, and fraction of “high quality” (less
than four standard deviations from mode center) recovered modes.

# recovered modes % “high quality” std “high quality”
Generator only 24.8 ± 0.2 70 ± 9 0.11 ± 0.01
DRS 24.8 ± 0.2 90 ± 2 0.10 ± 0.01
GAN w. DDLS 24.8 ± 0.2 98 ± 2 0.10 ± 0.01
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Table 2. DDLS has lower Earth Mover’s Distance (EMD) to the true distribution for the
2d synthetic distribution in Figure 3, and matches the performance of DOT on the Swiss
Roll distribution.

EMD 25-Gaussian EMD Swiss Roll
Generator only([Tanaka, 2019]) 0.052(08) 0.021(05)
DOT([Tanaka, 2019]) 0.052(10) 0.020(06)
Generator only(Our imple.) 0.043(04) 0.026(03)
GAN as EBM with DDLS 0.036(04) 0.020(05)

Following the same setting used in [Azadi et al., 2018, Turner et al., 2019, Tanaka, 2019],
we apply DDLS to a WGAN model trained on two synthetic datasets, 25-gaussians and
Swiss Roll, and investigate the effect and performance of the proposed sampling method.

Implementation details We follow the same synthetic experiments design as in
DOT [Tanaka, 2019], while parameterizing the prior with a standard normal distribution
instead of a uniform distribution. The 25-Gaussians dataset is generated by a mixture of
twenty-five two-dimensional isotropic Gaussian distributions with variance 0.01, and means
separated by 1, arranged in a grid. The Swiss Roll dataset is a standard dataset for test-
ing dimensionality reduction algorithms. We use the implementation from scikit-learn, and
rescale the coordinates as suggested by [Tanaka, 2019]. We train a Wasserstein GAN model
with the standard WGAN-GP objective. Both the generator and discriminator are fully con-
nected neural networks with ReLU nonlinearities, and we follow the same architecture design
as in DOT [Tanaka, 2019], while parameterizing the prior with a standard normal distribu-
tion instead of a uniform distribution. We optimize the model using the Adam optimizer,
with α = 0.0001, β1 = 0.5, β2 = 0.9.

Qualitative results With the trained generator and discriminator, we generate 5000
samples from the generator, then apply DDLS in latent space to obtain enhanced samples.
We also apply the DOT method as a baseline. All results are depicted in Figure 3 and
Figure 4 together with the target dataset samples. For the 25-Gaussian dataset we can see
that DDLS recovered and preserved all modes while significantly eliminating spurious modes
compared to a vanilla generator and DOT. For the Swiss Roll dataset we can also observe that
DDLS successfully improved the distribution and recovered the underlying low-dimensional
manifold of the data distribution. This qualitative evidence supports the hypothesis that
our GANs as energy based model formulation outperforms the noisy implicit distribution
induced by the generator alone.
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Quantitative results We first examine the performance of DDLS quantitavely by using
the metrics proposed by DRS [Azadi et al., 2018]. We generate 10,000 samples with the
DDLS algorithm, and each sample is assigned to its closest mixture component. A sample is
of “high quality” if it is within four standard deviations of its assigned mixture component,
and a mode is successfully “recovered” if at least one high-quality sample is assigned to it.

As shown in Table 1, our proposed model achieves a higher “high-quality” ratio. We also
investigate the distance between the distribution induced by our GAN as EBM formulation
and the true data distribution. We use the Earth Mover’s Distance (EMD) between the two
corresponding empirical distributions as a surrogate, as proposed in DOT [Tanaka, 2019].
As shown in Table 2, the EMD between our sampling distribution and the ground-truth
distribution is significantly below the baselines. Note that we use our own re-implementation,
and numbers differ slightly from those previously published.

4.4.2. CIFAR-10 and CelebA

In this section we evaluate the performance of the proposed DDLS method on the CIFAR-
10 dataset and CelebA dataset.

Implementation details We provide detailed description of baseline models, DDLS
hyper-parameters and evaluation protocol as follows.

For CIFAR-10 dataset, we adopt the Spectral Normalization GAN (SN-GAN) [Miyato
et al., 2018b] as our baseline GAN model. We take the publicly available pre-trained models
of unconditional SN-GAN and apply DDLS. For CelebA dataset, we adopt DCGAN and
WGAN as the baseline model following the same setting in [Radford et al., 2015]. We first
sample latent codes from the prior distribution, then run the Langevin dynamics procedure
with an initial step size 0.01 up to 1000 iterations to generate enhanced samples. Following
the practice in [Welling and Teh, 2011b] we separately set the standard deviation of the
Gaussian noise as 0.1. We optionally fine-tune the pre-trained discriminator with an addi-
tional fully-connected layer and a logistic output layer using the binary cross-entropy loss to
calibrate the discriminator as suggested by [Azadi et al., 2018, Turner et al., 2019].

Quantitative results We evaluate the quality and diversity of generated samples via the
Inception Score [Salimans et al., 2016b] and Fréchet Inception Distance (FID) [Heusel et al.,
2017]. In Table 3, we show the Inception score improvements from DDLS on CIFAR-10 and
CelebA, compared to MH-GAN [Turner et al., 2019] and DRS [Azadi et al., 2018], following
the same evaluation protocol and using the same baseline models (DCGAN and WGAN) in
[Turner et al., 2019]. On CIFAR-10, we applied DDLS to the unconditional generator of SN-
GAN to generate 50000 samples and report all results in Table 3. We found that the proposed
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Table 3. Inception and FID scores on CIFAR-10 and CelebA (grouped by corresponding
baseline modles), showing a substantial quantitative advantage from DDLS, compared to
MH-GAN [Turner et al., 2019], DRS [Azadi et al., 2018] and DOT [Tanaka, 2019] using the
same architecture.

Model CIFAR-10 CelebA
Inception FID Inception

DCGAN w/o DRS or MH-GAN 2.8789 - 2.3317
DCGAN w/ DRS(cal) [Azadi et al., 2018] 3.073 - 2.869
DCGAN w/ MH-GAN(cal) [Turner et al., 2019] 3.379 - 3.106
WGAN w/o DRS or MH-GAN 3.0734 - 2.7876
WGAN w/ DRS(cal) [Azadi et al., 2018] 3.137 - 2.861
WGAN w/ MH-GAN(cal) [Turner et al., 2019] 3.305 - 2.889
Ours: DCGAN w/ DDLS 3.681 - 3.372
Ours: WGAN w/ DDLS 3.614 - 3.093
PixelCNN [van den Oord et al., 2016b] 4.60 65.93 -
EBM [Du and Mordatch, 2019] 6.02 40.58 -
WGAN-GP [Gulrajani et al., 2017] 7.86 ± .07 36.4 -
ProgressiveGAN [Karras et al., 2018] 8.80 ± .05 - -
NCSN [Song and Ermon, 2019] 8.87 ± .12 25.32 -
ResNet-SAGAN w/o DOT 7.85 ± .11 21.53 -
ResNet-SAGAN w/ DOT 8.50 ± .12 19.71 -
SNGAN w/o DDLS 8.22 ± .05 21.7 -
Ours: SNGAN w/ DDLS 9.05 ± .11 15.76 -
Ours: SNGAN w/ DDLS(cal) 9.09 ± 0.10 15.42 -

method significantly improves the Inception Score of the baseline SN-GAN model from 8.22 to
9.09 and reduces the FID from 21.7 to 15.42. Our unconditional model outperforms previous
state-of-the-art GANs and other sampling-enhanced GANs [Azadi et al., 2018, Turner et al.,
2019, Tanaka, 2019] and even approaches the performance of conditional BigGANs [Brock
et al., 2019] which achieves an Inception Score 9.22 and an FID of 14.73, without the need of
additional class information, training and parameters.

Qualitative results We illustrate the process of Langevin dynamics sampling in latent
space in Figure 5 by generating samples for every 10 iterations. We find that our method
helps correct the errors in the original generated image, and makes changes towards more
semantically meaningful and sharp output by leveraging the pre-trained discriminator. To
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demonstrate that our model is not simply memorizing the CIFAR-10 dataset, we find the
nearest neighbors of generated samples in the training dataset and show the results in Figure
6.

Mixing time evaluation MCMC sampling methods often suffer from extremely long
mixing times, especially for high-dimensional multi-modal data. For example, more than 600
MCMC iterations are need to obtain the most performance gain in MH-GAN [Turner et al.,
2019] on real data. We demonstrate the sampling efficiency of our method by showing that
we can expect a much shorter time to achieve competitive performance by migrating the
Langevin sampling process to the latent space, compared to sampling in high-dimensional
multi-modal pixel space.

4.4.3. ImageNet

Table 4. Inception score for ImageNet, showing the quantitative advantage of DDLS.

Model Inception
SNGAN [Miyato et al., 2018b] 36.8
cGAN w/o DOT 36.23
cGAN w/ DOT 37.29
Ours: SNGAN w/ DDLS 40.2

In this section we evaluate the performance of the proposed DDLS method on the Ima-
geNet dataset.

Implementation details As with CIFAR-10, we adopt the Spectral Normalization GAN
(SN-GAN) [Miyato et al., 2018b] as our baseline GAN model. We take the publicly available
pre-trained models of SN-GAN and apply DDLS. Fine tuning is performed on the discrimina-
tor, as described in Section 4.4.2. We introduce more details of the preliminary experimental
results on Imagenet dataset here. We run the Langevin dynamics sampling algorithm with
an initial step size 0.01 up to 1000 iterations. We decay the step size with a factor 0.1 for
every 200 iterations. The standard deviation of Gaussian noise is annealed simultaneously
with the step size. The discriminator is not yet calibrated in this preliminary experiment.
We show the quantitative results in Table 4, where we substantially outperform the baseline.
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Fig. 2. CIFAR-10 Langevin dynamics visualization
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Fig. 3. DDLS, generator alone, and gener-
ator + DOT, on 2d mixture of Gaussians
distribution

Fig. 4. DDLS, the generator alone, and
generator + DOT, on the swiss roll dataset.

Fig. 5. CIFAR-10 Langevin dynamics visualization,
initialized at a sample from the generator (left column).
The latent space Markov chain appears to mix quickly,
as evidenced by the diverse samples generated by a short
chain. Additionally, the visual quality of the samples
improves over the course of sampling, providing evi-
dence that DDLS improves sample quality.

Fig. 6. Top-5 nearest neighbor
images (right columns) of gener-
ated CIFAR-10 samples (left col-
umn).
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Chapter 5

Application: Verifying Deep Discriminative
Models with Deep Generative Models

5.1. Preface
5.1.1. My Role and Contributions In This Project

I proposed the idea for this project and worked out most of the details on the algorithms
and experimental settings, and also worked on the paper writing. The experiments was
carried out by the second, third and fourth authors. This project was published at AAAI
2021 [Che et al., 2021].

5.1.2. Motivation and Context

Deep learning models provide state-of-the-art performance in various applications such as
image classification [Krizhevsky et al., 2012], caption generation [Xu et al., 2015], sequence
modeling [Chung et al., 2014] and machine translation [Wu et al., 2016b]. However, such
performance is based on the assumption that the training and test data are sampled from
the same distribution [Goodfellow et al., 2016]. Without this assumption, deep learning
models can fail silently by producing high confidence incorrect predictions even on completely
unrecognizable or irrelevant inputs [Amodei et al., 2016]. For instance, the models trained
on MNIST can produce 91% confidence on random noise images [Hendrycks and Gimpel,
2017]. Without additional assumptions, the behavior of a trained deep learning model on a
slightly different test distribution is unpredictable. One such problematic case is also shown
in Fig. 6.1. Unfortunately, there is very little control over the test distribution in real-world
deployments due to dynamically changing environments or malicious attacks [Guo et al.,
2017]. In fact, well calibrating the predictive uncertainty of DNNs is important for many
production systems, e.g., authentication devices, medical diagnosis and self-driving vehicles
[Lee et al., 2018b].
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Being overconfident on out-of-distribution (OOD) inputs has raised concerns about the
safety of artificial intelligence (AI) systems. Recent research efforts try to address these con-
cerns by developing models that can identify anomalous inputs, i.e., OOD samples [Amodei
et al., 2016]. Formally, the OOD detection problem can be formulated as a binary classifi-
cation problem where the objective is to decide whether a test sample is from the training
distribution (i.e., in-distribution, ID) or from a different distribution (i.e., OOD).

5.1.3. Main Contribution

In this chapter, we propose to verify the predictions of deep discriminative models by
using deep generative models that try to generate the input conditioned on the label se-
lected by the discriminative model. We call this concept "deep verifier". The high-level idea
is simple: we train an inverse verification model p(x|y) on the training data pairs (x,y).
Intuitively speaking, for an input-output pair (x,y) with y picked by the predictive model,
we verify whether the input x is consistent with y, by estimating if p(x|y) is larger than a
threshold. We design a density estimator of p(x|y) using modified conditional VAEs. To
ensure that the class code y is not ignored as a conditioning variable, we impose a disentan-
glement constraint based on minimizing mutual information between latent variable z and
the label y. Although many different kinds of density estimators can be used in theory, we
argue that the design of our model is robust to OOD samples and adversarial attacks, due
to the use of latent variables with explicit and accurate density estimation.

Compared with previous approaches of OOD detection, our proposed method has four
main advantages:

(1) The verifier is trained independently of OOD distributions. Users do not need to
figure out OOD samples before deployment of the system.

(2) The verifier only needs to be trained once. No need to retrain the verifier for a
different classifier trained on the same task.

(3) The verifier can detect ordinary OOD samples and malicious adversarial attacks in
a unified manner.

(4) The framework is very general, so that it applies to structured prediction problems
as well, such as image captioning.

We summarize the comparison of these four advantages with previous methods in Table
1.

The proposed solution achieves the state-of-the-art performance for detecting either OOD
or adversarial samples in all tested classification scenarios, and can be generalized well for
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Hendrycks and Gimpel Liang et al. Devries and Taylor Vyas et al. Lee et al. Choi et al. Hendrycks et al.
1

√
× × × × × ×

2
√

× × ×
√

× ×
3 × × × ×

√
× ×

4 × × × × × × ×

Table 1. Summary comparison of the characteristics of the recent related methods.

structured prediction tasks (e.g., image caption). In Sec 3.4, we analysed why DVN is useful
for both OOD and Adversarial examples.

5.1.4. Follow-up Works and Impacts

As the first general framework to tackle both out-of-distribution and adversarial example
detection, our DVN has a broad impact on these two challenging tasks [Ruff et al., 2021,
Rahman et al., 2021]. The generative model for OOD detection has been further developed
in [Chen et al., 2021]. In [Shao et al., 2020a], the authors investigate another form of
confidence calibration and its corresponding neural network architecture, inspired by the
framework proposed in this paper. The follow-up works [Yang and Ren, 2020, Shao et al.,
2020b] propose to detect the adversarial attacks with an additional classifier, in addition to
our DVN.

Our proposed method of measuring confidence has been applied in [Anil et al., 2021] to
know when to trust the decisions made by machine learning systems. [Oneaţă et al., 2021]
used it for word-level confidence estimation for end-to-end automatic speech recognition.
[Schirrmeister et al., 2020] explained the performance of the inevitable network for OOD
detection, which is investigated in our paper. In addition, our method also inspired the
works on OOD generalization [Liang et al., 2021, Liu et al., 2021], which enable the deep
learning networks to work well on the detected OOD data.

These show that our discovery has a real impact on the confidence calibration and its
application on both out-of-distribution and adversarial example detection. Till today, the
paper has been cited 36 times, this is an evidence of the real impacts brought by the paper.

5.2. Related Work
Detecting the OOD samples in a low-dimensional space using traditional non-parametric

density estimation, nearest neighbor and clustering analysis have been well studied [Pimentel
et al., 2014]. However, these methods are usually unreliable in high-dimensional complex
spaces, e.g., of images [Liang et al., 2018].
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Fig. 1. A network trained on CIFAR-10 with ten-class softmax output will predict the
resized 32x32x3 view of the AAAI logo (OOD sample w.r.t. CIFAR-10) as a plane with high
confidence.

OOD detection with deep neural networks has recently been an active research topic.
[Hendrycks and Gimpel, 2017] found that trained DNNs usually have higher maximum soft-
max output for in-distribution examples than anomalous one. A possible improvement of this
baseline is to consider both the in-distribution and out-of-distribution training samples dur-
ing training [Hendrycks et al., 2019]. However, enumerating all possible OOD distributions
before deployment is usually not possible.

[Liang et al., 2018] proposed that the difference between maximum probabilities in soft-
max distributions on ID/OOD samples can be made more significant by using adversarial
perturbation pre-processing during training. [Devries and Taylor, 2018] augmented the clas-
sifier with a confidence estimation branch, and adjusted the objective using the predicted
confidence score for training. [Lee et al., 2018a] trained a classifier simultaneously with
a GAN, with an additional objective to encourage low confidence on generated samples.
[Hendrycks et al., 2019] proposed to use real OOD samples instead of generated ones to
train the detector. [Vyas et al., 2018] labels a part of training data as OOD samples to train
the classifier, and they dynamically change the partition of ID and OOD samples. These
improvements based on [Hendrycks and Gimpel, 2017] typically need re-training a classifier
with modified structures or optimization objectives. This can make it hard to maintain the
original accuracy and is computationally expensive.

Recently, [Lee et al., 2018b] proposed a new framework for anomaly detection by first
obtaining the class-conditional Gaussian distribution using Gaussian discriminative analysis,
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and then define a confidence score using the Mahalanobis distance between the sample and
the closest class-conditional Gaussian distribution. By modeling each class of in-distribution
samples independently, it showed remarkable results for OOD and adversarial attack de-
tection. Note however that their method also needs changing the input pre-processing and
model. Besides, many previous methods [Liang et al., 2018, Vyas et al., 2018, Lee et al.,
2018b] need OOD samples for hyper-parameter (e.g., threshold for verification) selection,
and these are usually not accessible in the real world.

Recently, [Choi et al., 2018] proposed an unsupervised OOD detector by estimating the
Watanabe-Akaike Information Criterion, which is in turn estimated using an ensemble of
generative models. The goal of our model is different from WAIC in that rather than just
detecting OOD samples, DVNs aim to verify the predictions of a supervised predictive model,
i.e., estimating p(x|y) not just p(x). We argue that modeling p(x|y) is usually easier than
directly modeling p(x) as the former distribution contains less modes. Another motivation for
modelling p(x|y) instead of p(x) is that for an adversarial attack and its classifier prediction
(x′,y′), p(x′) can be large because the adversarial input looks like a normal example by the
eye, while p(x′|y′) is low (if the latter is compatible with the learned pθ(y|x)).

5.3. Methodology
This chapter targets the problem of verification of deep predictive models, as follows. Let

x ∈ X be an input and y ∈ Y be the ground-truth value to be predicted. The in-distribution
examples are sampled from the joint data-generating distribution pin(x,y) = pin(y|x)pin(x).
We propose to reverse the order of the prediction process of p(y|x) and try to compute
the conditional probability p(x|y), where y is the label value guessed by the classifier to
be verified (e.g., the one with the highest probability according to the deep network). We
evaluate whether the input x is consistent with that y.

The predictive model to be verified pθ(y|x) is trained on a dataset set drawn from
the pin(x,y), and may encounter samples from both pin(x,y) and pout(x,y) (i.e., out-of-
distribution or adversarial samples) at test time. Note there is some subtle difference be-
tween OOD (unlikely under pin(x)) and adversarial examples (unlikely under the ground
truth joint, but with high pin(x), especially if a small amount of noise is allowed).

Our goal is to verify if the pair (x,y) for y guessed by the predictive model given x is con-
sistent with pin(x,y). We train a verifier network qϕ(x|y) as an approximation to the inverse
posterior distribution p(x|y). Modelling p(x|y) instead of p(x) as a verification has many
advantages: (1) Usually p(x) is much more diverse than the conditional distribution p(x|y),
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Fig. 2. The architecture of our proposed Deep Verifier Network (DVN). We use ground-
truth label y of training example x during training while using the trained model prediction
y′ of testing image during testing.

so modelling p(x|y) is much easier than modelling p(x). (2) Modelling p(x|y) allows us to
provide a unified framework for verifying OODs, adversarial examples, and mis-classifications
of the classifier.

5.3.1. Basic Model

Our basic model is a conditional variational auto-encoder shown in Fig. 2. The model is
composed of two deep neural networks, a stochastic encoder pϕ(z|x) which takes input x to
predict a latent variable z and a decoder p(x|z,y) which takes both latent variable z and the
label y to reconstruct x. One problem with training of conditional variational auto-encoders
is that the decoder can ignore the effect of input label y, passing all information through the
continuous latent variable z. This is not desirable as we want to use the decoder to model
the conditional likelihood p(x|y), not p(x). Hence in this chapter, we train the encoder so
that it outputs a z which is approximately independent of y. The encoder and decoder are
thus jointly trained to maximize the evidence lower bound (ELBO):

log p(x|y) ≥ Eq(z|x)[log p(x|z,y)] − KL(q(z|x)||p(z)) (5.3.1)

The equality holds if and only if q(z|x) = p(z|x,y), where p(z|x,y) is the ground truth
posterior. We note that the conditional GAN is not applicable here since its objective does
not optimize the likelihood.
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5.3.2. Disentanglement constraints for anomaly detection

To achieve this independence between z and y, we propose to add a disentanglement
penalty to minimize the mutual information between z and y. Namely, besides the ELBO
loss, we also minimize the mutual information estimator Î(z,y) together with the loss, yield-
ing:

L = −Eq(z|x)[logp(x|z,y) + λÎ(y,z)] + KL(q(z|x)||p(z)) (5.3.2)

In this chapter, we use deep Infomax [Hjelm et al., 2018] as the proxy for minimizing the
mutual information (MI) between z and y. The mutual information estimator is defined as:

Î(z,y) = Ep(y,z)[−s+(−T (y,z))] − Ep(y)p(z)[s+(T (z,y))] (5.3.3)

where s+ is the softplus function and T (y,z) is a discriminator network. Just like GAN dis-
criminators, T is trained to maximize Î(y,z), in order to get a better lower-bound estimation
of the (JS-version) mutual information, while L (and in particular the encoder and decoder)
is optimized (considering T fixed) to minimize Î(y,z).

5.3.3. Measuring the likelihood as anomaly score

Our anomaly verification criterion is based on estimating the log-likelihood log p(x|y) for
test samples. Importance sampling is a possible solution to provide an unbiased estimate of
p(x|y) when we have a VAE. Following IWAE [Burda et al., 2015], the k-sample importance
weighting estimate of the log-likelihood is a lower bound of the ground truth likelihood
L(x|y) = Ex∼p(·|y)[log p(x|y)]:

Lk(x|y) = Ez1,...,zk∼q(z|x)[log 1
k

k∑
i=1

q(x,zi|y)
q(zi|x)

]. (5.3.4)

where q(z) is a corrected density described below. We use the fact that Lk(x|y) → L(x|y) as
k → ∞ to estimate the likelihood. As will be discussed below, we want the decoder q(x|z,y)
be evaluated on the same input distribution for z as it is trained, which is not exactly the
original Gaussian prior p(z), so we will form a refined estimator of the prior, denoted p ∗ (z).
The quantities Lk(x|y) form a monotonic series of lower bounds of the exact log-likelihood
log p(x|y), with L1 ≤ L2 ≤ · · · Lk ≤ log p(x|y)). They have the property that when k → ∞,
Lk → log p(x|y). In our experiments we chose k = 100 for a good approximation of the
exact likelihood,

In our algorithm, the distribution of z actually fed into decoder p(x|z,y) during training
is q(z) =

∫
q(z|x)pd(x). However, this distribution q(z) can be drastically different from
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the Gaussian prior p(z). So instead of using the Gaussian p(z) as a prior for the decoder
network in Eq. 5.3.4, we use q(z) and estimate the corrected likelihood of x under this
directed generative model, as p(x,z|y) = q(z)p(x|z,y). In order to estimate the density
q(z), we propose to train an additional discriminator Dz to distinguish p(z) and q(z). Dz is
trained to discriminate the real distribution of latent variable q(z) =

∫
pd(x)e(z|x)dx (pd(x)

is the data distribution of x, e(z|x) is the encoder network) and Gaussian prior distribution
p(z), with ordinary GAN loss. Both q(z) and p(z) are easy to sample, so a discriminator
is easy to train with the samples. In the GAN, the optimal discriminator Dz [Goodfellow,
2016] can be

Dz =
p(z)

p(z) + q(z)
(5.3.5)

After Dz is trained (in theory optimally) and since p(z) is known (i.e., Gaussian), we
can estimate q(z) = 1−Dz(z)

Dz(z)
p(z).

We classify a sample x as an OOD sample if the log-likelihood is below the threshold δ

and the x is an in-distribution sample, otherwise.

x ∈

 in-distribution (ID), if Lk ≥ δ

out-of-distribution (OOD), otherwise
(5.3.6)

We set δ to the threshold corresponding to 95% true positive rate (TPR), where the
TPR refers to the probability of in-distribution validation samples being correctly veri-
fied as in-distribution. Therefore, the threshold selection in our model is only tuned on
in-distribution validation datasets, while most previous methods also need OOD samples
for hyper-parameter validation [Liang et al., 2018, Lee et al., 2018b]. We note that the
distribution of OOD samples is usually not accessible before the system deployment.

5.3.4. Theoretical Justification

The loss function we optimize can be written as:

L =L1 + λL2 = Ex,y∼pd
[−Eq(z|x)[logp(x|z,y)]

+ KL(q(z|x)||p(z)) + λEq(z|x)[Î(y,z)]]
(5.3.7)

where p(x|z,y) is the decoder we are training. In this section, we use the following convention.
Symbol p means probability distributions induced by the decoder, and symbol q means
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probability distributions induced by the encoder. Also denote pd for real data distributions.
Specifically, we define joint distribution q(z,x,y) = q(z|x)pd(x,y)1.

We have the following theorem that justifies the two parts of the above loss.
Theorem 5.3.1.

(i) −L1 is a variational lower bound of Ex,y∼pd
[log p(x|y)].The bound is tight when q is

expressive enough and z,y are conditionally independent given x.
(ii) If we have I(y,z) = 0, where (y,z) ∼ Ex∼pd

[pd(y|x)q(z|x)] (namely L2 ≈ 0), and
assume that the decoder is perfect in the sense that p(x|y,z) = q(x|y,z), then we
have our evaluation metric Ez∼q(z)[p(x|y,z)] = pd(x|y). Namely, if I(y,z) = 0, and
the decoder is trained optimally, , then no matter what the encoder looks like, the
likelihood estimator we are using is Ez∼q(z)[p(x|y,z)], which is equal to the ground
truth likelihood. This justifies why we need loss L2.

Proof. For (i), we have:

−L1 = Ex,y∼pd
[Eq(z|x)[logp(x|z,y)] − KL(q(z|x)||p(z))]

= Ex,y∼pd
[Eq(z|x)[logp(x,z|y) − log p(z|y)]

− KL(q(z|x)||p(z))]

= Ex,y∼pd
[Eq(z|x)[logp(x|y)] − KL(q(z|x)||p(z|x,y))]

≤ Ex,y∼pd
[log p(x|y)]

(5.3.8)

The bound is tight if E[KL(q(z|x)||p(z|x,y))] = 0, which is equivalent to
E[KL(q(z|x)||p(z|x))] = 0 if z,y are conditionally independent give x.

For (ii), we have that if y,z are independent, namely q(y,z) = pd(y)q(z),we have:
q(x|y,z) = q(x,y,z)/q(y,z) = q(z|x)pd(x,y)/pd(y)q(z) = q(z|x)pd(x|y)/q(z). So we have:

Ez∼q(z)[p(x|y,z)] = Ez∼q(z)[q(x|y,z)]

= Ez∼q(z|x)[pd(x|y)] = pd(x|y)

□

5.3.5. Intuitive Justifications

We now present an intuitive justification for the above algorithm. First, consider the
following part of our training loss:

L1 = Eq(z|x)[logp(x|z,y)] − KL(q(z|x)||p(z)) (5.3.9)
1In this chapter we assume q(z|x) = q(z|x,y), the motivation is during test time, y may be a wrong label,
we don’t want it to confuse the encoder.
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It is well known that deep neural networks can generalize well for in-distribution samples,
but their behavior out-of-distribution is less clear. Suppose x is an out-of-distribution sample,
with y be the corresponding output of the classifier. Then the behavior of the stochastic
encoder q(z|x) is undefined. We denote q(z) =

∫
q(z|x)pd(x) the distribution to train

q(x|y,z). There are two cases: (1) q(z|x) maps x to z with low density in q(z). This case
can be easily detected because q(z) is easily computable. In this case the second term in Eq.
5.3.9 is a large negative number. (2) q(z|x) maps x to z with high density in q(z). Then
since we train the decoder network with the input distribution q(z) and because y and z are
approximately independent, so (z,y) looks like an in-distribution input for decoder p(x|z,y).
Thus p(x|y,z) should map to some in-distribution x′ with class label y. Since input x is an
OOD sample and reconstruction x′ is an in-distribution sample, the reconstruction has to
be bad. In this case, the first term in Eq. 5.3.9 is a large negative number. So in both cases,
the log-likelihood score Lk derived from our model should be a large negative number. This
is why our model is robust to both adversarial and OOD samples.

5.3.6. Can We Replace VAEs with Other Density Estimators?

In theory, we can use any other density estimator besides our modified conditional VAE
(such as auto-regressive models and flow-based models) to estimate p(x|y). However, our
experiments and previous observations suggest that these other models may have drawbacks
that would make them less suitable for this task. The comparisons with a DVN that is
based on PixelCNN [Van den Oord et al., 2016] and Glow [Kingma and Dhariwal, 2018] are
compared in Table 2, and they are consistently inferior to our VAE-based solution. Auto-
regressive models are quite slow and may ignore the conditioning label y [Bowman et al.,
2015]. Flow-based models were found to be less robust to adversarial examples, assigning
higher likelihood on OOD samples than in-distribution samples [Nalisnick et al., 2018]. We
have intuitively explained in Sec. 5.3.5 why our modified cVAE based model does not suffer
from the same problem as flow-based models, thanks to our disentanglement regularizer,
which relies on the existence of a latent space.

5.4. Experimental results
In this section, we demonstrate the effectiveness of the proposed DVN on several classi-

fication benchmarks, and show its potential for the image captioning task. We choose the
DenseNet (Huang et al. 2017) and ResNet (He et al. 2016) architectures as the backbones

88



Va
lid

at
io

n
on

O
O

D
sa

m
pl

es
Va

lid
at

io
n

on
ad

ve
rs

ar
ia

ls
am

pl
es

In
-D

O
O

D
T

N
R

@
T

PR
95

%
A

U
RO

C
Ve

rifi
ca

tio
n

ac
c.

T
N

R
@

T
PR

95
%

A
U

RO
C

Ve
rifi

ca
tio

n
ac

c.
O

D
IN

/
SU

F
/

O
ur

D
V

N
/

G
lo

w
ba

se
d

D
V

N
/

Pi
xe

lC
N

N
ba

se
d

D
V

N
O

D
IN

/
SU

F
/O

ur
D

V
N

/
G

lo
w

ba
se

d
D

V
N

/
Pi

xe
lC

N
N

ba
se

d
D

V
N

C
-1

0
SV

H
N

86
.2

/9
0.

8/
92

.4
/9

1.
1/

90
.7

95
.5

/9
8.

1/
99

.0
/9

8.
2/

98
.0

91
.4

/9
3.

9/
95

.1
/9

3.
7/

93
.9

70
.5

/8
9.

6/
91

.2
/8

9.
8/

90
.0

92
.8

/9
7.

6/
98

.1
/9

7.
5/

97
.6

86
.5

/9
2.

6/
94

.2
/9

3.
1/

93
.4

D
en

N
T

-IN
92

.4
/9

5.
0/

96
.2

/9
5.

1/
94

.8
98

.5
/9

8.
8/

99
.0

/9
8.

4/
98

.2
93

.9
/9

5.
0/

97
.3

/9
6.

4/
96

.6
87

.1
/9

4.
9/

95
.6

/9
4.

7/
94

.3
97

.2
/9

8.
8/

99
.1

/9
8.

8/
98

.6
92

.1
/9

5.
0/

97
.4

/9
6.

5/
96

.2
LS

U
N

96
.2

/9
7.

2/
98

.6
/9

7.
5/

97
.3

99
.2

/9
9.

3/
99

.3
/9

8.
9/

98
.9

95
.7

/9
6.

3/
96

.8
/9

6.
2/

96
.0

92
.9

/9
7.

2/
97

.9
/9

7.
2/

97
.3

98
.5

/9
9.

2/
99

.3
/9

8.
7/

98
.8

94
.3

/9
6.

2/
97

.5
/9

6.
6/

96
.3

C
-1

00
SV

H
N

70
.6

/8
2.

5/
85

.2
/8

3.
0/

82
.8

93
.8

/9
7.

2/
97

.3
/9

7.
1/

96
.8

86
.6

/9
1.

5/
93

.4
/9

2.
4/

92
.5

39
.8

/6
2.

2/
70

.5
/6

5.
7/

66
.0

88
.2

/9
1.

8/
92

.2
/9

0.
9/

91
.0

80
.7

/8
4.

6/
86

.3
/8

5.
4/

85
.7

D
en

N
T

-IN
42

.6
/8

6.
6/

89
.0

/8
6.

4/
86

.5
85

.2
/9

7.
4/

97
.4

/9
6.

8/
95

.6
77

.0
/9

2.
2/

93
.8

/9
1.

8/
92

.0
43

.2
/8

7.
2/

89
.1

/8
8.

5/
88

.5
85

.3
/9

7.
0/

97
.8

/9
6.

9/
96

.4
77

.2
/9

1.
8/

93
.0

/9
2.

3/
92

.0
LS

U
N

41
.2

/9
1.

4/
93

.7
/9

2.
5/

93
.1

85
.5

/9
8.

0/
98

.2
/9

7.
6/

97
.5

77
.1

/9
3.

9/
94

.9
/9

3.
0/

93
.2

42
.1

/9
1.

4/
93

.6
/9

1.
8/

92
.0

85
.7

/9
7.

9/
98

.3
/9

7.
9/

97
.8

77
.3

/9
3.

8/
95

.4
/9

4.
2/

94
.6

SV
H

N
C

FR
-1

0
71

.7
/9

6.
8/

97
.4

/9
5.

7/
96

.2
91

.4
/9

8.
9/

99
.2

/9
8.

8/
98

.2
85

.8
/9

5.
9/

96
.5

/9
5.

1/
95

.0
69

.3
/9

7.
5/

97
.8

/9
7.

4/
97

.0
91

.9
/9

8.
8/

99
.1

/9
8.

1/
98

.0
86

.6
/9

6.
3/

97
.4

/9
6.

6/
96

.7
D

en
N

T
-IN

84
.1

/9
9.

9/
10

0/
98

.3
/9

8.
0

95
.1

/9
9.

9/
99

.9
/9

8.
5/

98
.4

90
.4

/9
8.

9/
99

.2
/9

8.
0/

97
.7

79
.8

/9
9.

9/
99

.9
/9

6.
4/

98
.3

94
.8

/9
9.

8/
99

.9
/9

6.
7/

97
.1

90
.2

/9
8.

9/
99

.4
/9

7.
6/

97
.7

LS
U

N
81

.1
/1

00
/1

00
/9

8.
7/

98
.5

94
.5

/9
9.

9/
99

.9
/9

7.
9/

98
.2

89
.2

/9
9.

3/
99

.6
/9

8.
8/

98
.4

77
.1

/1
00

/1
00

/9
8.

2/
98

.5
94

.1
/9

9.
9/

10
0/

96
.8

/9
6.

5
89

.1
/9

9.
2/

99
.5

/9
7.

2/
98

.1
C

-1
0

SV
H

N
86

.6
/9

6.
4/

98
.4

/9
7.

3/
97

.0
96

.7
/9

9.
1/

99
.2

/9
8.

5/
98

.6
91

.1
/9

5.
8/

97
.3

/9
6.

2/
96

.1
40

.3
/7

5.
8/

78
.5

/7
7.

6/
77

.4
86

.5
/9

5.
5/

96
.1

/9
5.

5/
95

.3
77

.8
/8

9.
1/

92
.2

/9
1.

2/
91

.0
R

es
N

T
-IN

72
.5

/9
7.

1/
98

.0
/9

7.
0/

96
.9

94
.0

/9
9.

5/
99

.6
/9

8.
5/

98
.5

86
.5

/9
6.

3/
96

.9
/9

4.
7/

94
.9

96
.6

/9
5.

5/
97

.1
/9

6.
2/

95
.9

93
.9

/9
9.

0/
99

.2
/9

8.
3/

98
.1

86
.0

/9
5.

4/
96

.3
/9

5.
5/

95
.1

LS
U

N
73

.8
/9

8.
9/

99
.0

/9
7.

6/
97

.7
94

.1
/9

9.
7/

99
.7

/9
7.

8/
97

.5
86

.7
/9

7.
7/

97
.9

/9
6.

3/
96

.0
70

.0
/9

8.
1/

98
.9

/9
6.

8/
96

.5
93

.7
/9

9.
5/

99
.5

/9
7.

6/
97

.7
85

.8
/9

7.
2/

98
.0

/9
6.

8/
96

.5
C

-1
00

SV
H

N
62

.7
/9

1.
9/

93
.5

/9
2.

5/
92

.6
93

.9
/9

8.
4/

98
.8

/9
8.

3/
98

.0
88

.0
/9

3.
7/

94
.8

/9
2.

9/
93

.2
12

.2
/4

1.
9/

46
.2

/4
2.

4/
43

.5
72

.0
/8

4.
4/

86
.3

/8
4.

7/
84

.2
67

.7
/7

6.
5/

79
.4

/7
7.

5/
77

.4
R

es
N

T
-IN

49
.2

/9
0.

9/
91

.2
/9

0.
6/

90
.3

87
.6

/9
8.

2/
98

.5
/9

8.
0/

97
.7

80
.1

/9
3.

3/
94

.3
/9

3.
0/

93
.1

33
.5

/7
0.

3/
74

.6
/7

2.
2/

71
.8

83
.6

/8
7.

9/
90

.3
/8

6.
6/

86
.5

75
.9

/8
4.

6/
89

.8
/8

5.
2/

85
.8

LS
U

N
45

.6
/9

0.
9/

92
.3

/8
9.

5/
88

.8
85

.6
/9

8.
2/

98
.6

/9
6.

7/
97

.0
78

.3
/9

3.
5/

95
.7

/9
3.

9/
93

.7
31

.6
/5

6.
6/

63
.5

/6
0.

2/
60

.1
81

.9
/8

2.
3/

85
.2

/8
2.

9/
82

.8
74

.6
/7

9.
7/

81
.9

/8
0.

0/
78

.9
SV

H
N

C
-1

0
79

.8
/9

8.
4/

99
.4

/9
7.

9/
97

.5
92

.1
/9

9.
3/

99
.9

/9
8.

1/
98

.2
89

.4
/9

6.
9/

97
.5

/9
6.

3/
96

.3
79

.8
/9

4.
1/

94
.5

/9
3.

7/
93

.5
92

.1
/9

7.
6/

98
.7

/9
6.

5/
96

.2
89

.4
/9

4.
6/

94
.8

/9
3.

7/
93

.0
R

es
N

T
-IN

82
.1

/9
9.

9/
10

0/
98

.5
/9

8.
4

92
.0

/9
9.

9/
99

.9
/9

6.
3/

96
.5

89
.4

/9
9.

1/
99

.2
/9

5.
8/

96
.7

80
.5

/9
9.

2/
99

.7
/9

8.
5/

98
.3

92
.9

/9
9.

3/
99

.5
/9

7.
2/

97
.0

90
.1

/9
8.

8/
99

.3
/9

8.
0/

98
.2

LS
U

N
77

.3
/9

9.
9/

99
.9

/9
6.

4/
96

.4
89

.4
/9

9.
9/

99
.9

/9
7.

6/
97

.4
87

.2
/9

9.
5/

10
0/

99
.0

/9
8.

9
76

.3
/9

9.
9/

99
.9

/9
6.

5/
97

.4
90

.7
/9

9.
9/

99
.8

/9
6.

8/
96

.7
88

.2
/9

9.
5/

99
.8

/9
8.

3/
98

.1

T
ab

le
2.

O
O

D
ve

rifi
ca

tio
n

re
su

lts
of

im
ag

e
cl

as
sifi

ca
tio

n
un

de
r

di
ffe

re
nt

va
lid

at
io

n
se

tu
ps

.
A

ll
m

et
ric

s
ar

e
pe

rc
en

ta
ge

s
an

d
th

e
be

st
re

su
lts

ar
e

in
bo

ld
.

T
he

ba
ck

bo
ne

cl
as

sifi
er

in
SU

F
[L

ee
et

al
.,

20
18

b]
an

d
ou

r
D

V
N

is
R

es
N

et
34

[H
e

et
al

.,
20

16
],

w
hi

le
O

D
IN

[L
ia

ng
et

al
.,

20
18

]u
se

m
or

e
po

we
rfu

lw
id

e
R

es
N

et
40

w
ith

w
id

th
4

[Z
ag

or
uy

ko
an

d
K

om
od

ak
is,

20
16

].

89



We analyze how the hyperparameters generalize across different OOD datasets. We tune the hyperparameters on one of five 
possible OOD datasets and tested on Tiny-ImageNet or LSUN dataset. Given those OOD datasets, we split each of them to 10% 
images for validation, and 90% images as test set. Firstly, we minimize the FPR at TPR 95% on one of the OOD dataset's 
validation set. Then we plot the threshold corresponding to TPR 95%, and apply this threshold for the test set of Tiny-ImageNet 
or LSUN dataset. Fig. xx shows that the hyperparameters tuned on different OOD validation sets can result on very similar FPR
performance on both of the Tiny-ImageNet and LSUN test sets. This may be because that the FPRs is quite small on all of the 
OOD datasets when we use the threshold corresponding to 95% TPR.
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Fig. 3. FPR (for OOD) and TPR (for ID) under different δ when using CIFAR-10 as the
in-distribution dataset, and use Tiny-ImageNet(resize), LSUN and Gaussian/Uniform noise
as OOD. CIFAR-10 only applicable to the TPR which use the dashed red line and indicated
by the right axis while the other OOD datasets use the left FPR axis.
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Fig. 4. Comparison with baseline MSP [Hendrycks and Gimpel, 2017] using DenseNet, with
Tiny-ImageNet as in-distribution and LSUN as OOD.

of our experiments. Following the definitions in previous work, we denote the in-distribution
images as positive samples, while the OOD ones as the negative samples.

For evaluation, we measure the True Negative Rate or False Positive Rate at 95% True
Positive Rate (i.e., TNR@TPR95% or FPR@TPR95%), Area under the receiver operating
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Table 3. Comparison of AUROC (%) under different validation setups. The best results
are in bold. We also compared the use of negative samples for training and input image
pre-processing.

Dataset Method Negative Pre- Deep CW BIM Dataset Method Negative Pre- Deep CW BIMSample proce Fool Sample proce Fool

D
en

se
N

et

KD+PU FGSM - 68.34 53.21 3.10

R
es

N
et

KD+PU FGSM - 76.80 56.30 16.16
CIFAR LID FGSM - 70.86 71.50 94.55 CIFAR LID FGSM - 71.86 77.53 95.38

-10 SUF FGSM Yes 87.95 83.42 99.51 -10 SUF FGSM Yes 78.06 93.90 98.91
Our - - 96.14 96.38 99.82 Our - - 95.45 99.51 99.57

KD+PU FGSM - 65.30 58.08 66.86 KD+PU FGSM - 57.78 73.72 68.85
CIFAR LID FGSM - 69.68 72.36 68.62 CIFAR LID FGSM - 63.15 75.03 55.82

-100 SUF FGSM Yes 75.63 86.20 98.27 -100 SUF FGSM Yes 81.95 90.96 96.38
Our - - 97.01 98.55 99.94 Our - - 97.22 99.38 99.72

KD+PU FGSM - 84.38 82.94 83.28 KD+PU FGSM - 84.30 67.85 43.21
SVHN LID FGSM - 80.14 85.09 92.21 SVHN LID FGSM - 67.28 76.58 84.88

SUF FGSM Yes 93.47 96.95 99.12 SUF FGSM Yes 72.20 86.73 95.39
Our - - 98.14 99.35 100.00 Our - - 97.13 99.76 100.00

characteristic curve (AUROC), Area under the precision-recall curve (AUPR) and Verifi-
cation accuracy. Noticing that AUROC, AUPR and verification accuracy are threshold
(δ)-independent evaluation metrics.

5.4.1. Detecting OOD samples for classification

Datasets. The Street View Housing Numbers (SVHN) dataset (Netzer et al. 2011)
consists of color images depicting house numbers, which range from 0 to 9. Images have a
resolution of 32×32. For our tests, we use the official training set split which contains 73,257
images, and the test set split, which has 26,032 images. The CIFAR-10/100 dataset
(Krizhevsky and Hinton. 2009) consists of 10/100 classes colour images. The training set
has 50,000 images, while the test set has 10,000 images. The dataset2 is a subset of the
ImageNet dataset (Deng et al. 2009). Its test set contains 10,000 images from 200 different
classes. It contains the original images, downsampled to 32×32 pixels. The Large-scale
Scene UNderstanding dataset (LSUN) (Yu et al. 2015) has a test set with 10,000 images
from 10 different classes. The LSUN (crop) and LSUN (resize) are created in a similar
downsampling manner to the TinyImageNet datasets. The Uniform noise and Gaussian
noise dataset are with 10,000 samples respectively, which are generated by drawing each
pixel in a 32×32 RGB image from an i.i.d uniform distribution of the range [0, 1] or an i.i.d
Gaussian distribution with a mean of 0.5 and variance of 1 [Liang et al., 2018].

Setups. For fair comparisons, the backbones of the classifiers used here are the same
100-layer DenseNet with growth rate 12 [Liang et al., 2018, Lee et al., 2018b] and 34-layer

2https://tiny-imagenet.herokuapp.com/
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Table 4. Test error rate of classification on CIFAR-10/100 using DenseNet as backbone.
Our DVN does not re-train or modify the structure of the original trained classifier.

CIFAR-10 CIFAR-100
ODIN/SUF 4.81 22.37

DenseNet/DVN 4.51 22.27

ResNet [Lee et al., 2018b]. They are trained to classify the SVHN, CIFAR-10, CIFAR-
100 and Tiny-ImageNet datasets, whose test set is regarded as the in-distribution dataset
in our testing stage. The dataset that is of a different type from the training dataset is
considered as OOD. We use four convolution or deconvolution layers for the encoder and
decoder structure, and z is a 128-dimension vector. The discriminator is a two-layer fully
connected layer network with sigmoid output and binary cross-entropy loss. The hyper-
parameters in previous methods [Liang et al., 2018, Lee et al., 2018b] need to be tuned on a
validation set with 1,000 images from each in-distribution and OOD pair. We note that the
threshold of the DVN is tuned on in-distribution only. This corresponds to a more realistic
scenario, since the OOD nature of real-world applications is usually uncontrollable.

Effects of the threshold and performance across datasets. How the hyper-
parameters (e.g., δ) generalize across different OOD datasets is a challenging aspect of the
system deployment. Most of the previous methods require a small set of OOD samples,
with δ calibrated by evaluating the verification error at different values of δ. However, the
more realistic scenario is that we do not have access to the OOD examples in the testing
stage. A promising trend is improving the performance on an unknown OOD when using
the model tuned on a similar OOD [Liang et al., 2018, Lee et al., 2018b]. We argue that our
DVN is essentially free from such worries, since it does not need any OOD sample in the
validation. To investigate how the threshold affects the FPR and TPR, Fig. 3 shows their
relationship when training on CIFAR-10 and different OOD datasets are used in the test
stage, with a DenseNet backbone. Note that the TPR (red axis) is used for in-distribution
dataset CIFAR-10 (red dashed line), while FPR is used for OODs. We can observe that the
threshold corresponding to 95% TPR can produce small FPRs on all OOD datasets. When
the OOD images are sampled from some simple distributions (e.g., Gaussian or Uniform),
the available window of threshold δ can be larger.

Comparison with SOTA. The main results are summarised in Tab. 2. For each
in- and out-of-distribution pair, we report the performance of ODIN [Liang et al., 2018],
SUF [Lee et al., 2018b] and our DVN. Notably, DVN consistently outperforms the previous
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Table 5. The performance of DVN w/o disentanglement of y from z with ResNet backbone,
and using CIFAR-10/SVHN as in-distribution/OOD, respectively.

Disentangle TNR@TPR95% AUROC√
98.4 99.2

- 62.6 84.7

methods and achieves a new state-of-the-art. As shown in Tab. 3, the pre-processing and
model change in ODIN and SUF increase the error rate of the original classifier for the
in-distribution test, while DVN does not affect the classification accuracy on the accepted
in-distribution datasets (i.e., CIFAR-10 or 100), when the OOD examples are not presented.

Considering the technical route of DVN is essentially different from ODIN and SUF, we
compare it with the baseline, maximum softmax probability (MSP) [Hendrycks and Gimpel,
2017], w.r.t. ROC and PR in Fig. 4. DVN shares some nice properties of MSP, e.g., fixed
classifier and single forward pass at the test stage. Moreover, DVN outperforms MSP by a
large margin.

Ablation studies. To demonstrate the effectiveness of each module, we provide the
detailed ablation study w.r.t. the choice of VAE/PixelCNN/Glow, disentanglement of y,
modifying p(z) to q(z) with GAN and conditioned encoder.

• PixelCNN/Glow-based DVN. We also compared with the DVN that use pixel CNN or
Glow rather than VAE as shown in Table 2. The pixelCNN/Glow-based DVN is consistently
inferior than our solution. VAEs do have lower likelihood scores than Glow, but this gap is
due to the different ways of computing likelihood of VAEs and flows. When computing the
likelihood of a VAE, it is usually assumed that there is a unit Gaussian distribution at the
output of the decoder. However the distribution of natural images is on a low dimensional
manifold, so the likelihood number itself cannot be compared with Glow under this assump-
tion. But VAEs are more robust than Glow due to the reason discussed in Sec 3.5, and in our
experiments we found that Glows tend to put higher likelihood on OOD examples, which is
bad for our usage.

• Disentangling y from z is critical to our model. Table 5 validates the contribution
of this manipulation w.r.t. both threshold dependent and independent metrics. One can
see that the DVN with disentanglement significantly outperforms its counterparts without
disentanglement. This also implies the DVN has successfully learned to sufficiently minimize
the mutual information between z and y to circumvent the challenge of conditioning x on y.
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Table 6. The performance of DVN w/o replace p(z) with q(z). We use ResNet backbone,
and choose CIFAR-10/SVHN as in-distribution/OOD.

q(z) TNR@TPR95% AUROC√
98.4 99.2

- 95.3 96.7

Table 7. The performance of DVN use q(z|x) and q(z|x,y) encoder. We use ResNet back-
bone, and choose CIFAR-10/SVHN as in-distribution/OOD.

TNR@TPR95% AUROC
q(z|x) 98.4 99.2

q(z|x,y) 93.7 95.5

• Without modifying p(z) with q(z). Since modeling p(x|y) is the core of DVN, we cannot
remove y. Here, we give another ablation study that without modifying p(z) with q(z). As
shown in Table 6, there is a large margin between the DVN with or without disentanglement
w.r.t. TNR@TPR95 and AUROC. The results demonstrate that disentangle y from z is of
essential important for our framework.

• Encoder condition on y. In this chapter we assume q(z|x) = q(z|x,y), the motivation
is during test time, y may be a wrong label, we don’t want it to confuse the encoder. Table
7 gives a comparison of conditioning our encoder on x or (x,y).

5.4.2. Detecting adversarial examples

To detect adversarial examples, we train our DenseNet and ResNet-based classification
network and DVN using the training set of CIFAR-10, CIFAR-100 or SVHN datasets, and
their corresponding test sets are used as the positive samples for the test. Following the
setting in [Lee et al., 2018b], we applied several attack methods to generate the negative
samples, such as basic iterative method (BIM) [Kurakin et al., 2016], Deepfool [Moosavi-
Dezfooli et al., 2016], and Carlini-Wagner (CW) [Carlini and Wagner, 2017]. The network
structures are the same as for OOD verification.

We compare the DVN with the strategies in KD+PU [Feinman et al., 2017], LID [Ma
et al., 2018], SUF [Lee et al., 2018b] in Tab. 4, and show that the DVN can achieve the
state-of-the-art performance in most cases w.r.t. AUROC. In the "detection of unknown

94



Table 8. OOD verification results of image caption under different validation setups. We
use CUB-200, LSUN and COCO as the OOD of Oxford-102, while using Oxford-102, LSUN
and COCO as OOD of CUB-200.

In-Dist OOD Validation on OOD samples
TNR@TPR 95% AUROC Verif acc.

CUB 55.6 72.3 79.5
Oxford LSUN 50.5 71.8 76.2

COCO 40.3 74.4 73.3
Oxford 39.8 68.4 72.5

CUB LSUN 36.3 65.4 69.5
COCO 35.4 60.7 71.0

attack setting”, we can not access the adversarial examples of the test stage in the training
or validation. Therefore, the previous works choose to use another attack generation method,
i.e., fast gradient sign method (FGSM) [Goodfellow et al., 2014d], to construct a validation
set of adversarial examples. In here, we do not need another attack method as a reference,
since the threshold of the DVN is only related to the validation set of in-distribution samples.
Moreover, the pre-processing and model change as in [Lee et al., 2018b] are not required in
our proposed DVN.

5.4.3. OOD for image captioning

For detecting OOD samples in the image captioning task, we choose Oxford-102 and
CUB-200 as the in-distribution datasets. Oxford-102 contains 8,189 images of 102 classes
of flower. CUB-200 contains 200 bird species with 11,788 images. Each of them has 10
descriptions that are provided by [Reed et al., 2016a]. For these two datasets, we use 80%
of the samples to train our caption generator, and the remaining 20% for testing in a cross-
validation manner. The LSUN and Microsoft COCO datasets are used as our OOD dataset.

The captioner used in here is a classical image caption model [Xu et al., 2015]. We
choose the generator of GAN-INT-CLS [Reed et al., 2016b] as our decoder’s backbone,
and replace its Normal distribution vector as the output of encoder z. A character-level
CNN-RNN model [Reed et al., 2016a] is used for the text embedding which produces the
1,024-dimension vector given the description, and then projected to a 128-dimension code c.
We configure the encoder and decoder with four convolutional layers and the latent vector
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z is a 100-dimension vector. The input of the discriminator is the concatenation of z and c,
which results in a 228-dimension vector. A two-layer fully connected network with sigmoid
output unit is used as the discriminator. Tab. 8 summarizes the performance of DVN in
image caption task and can be regarded as a powerful baseline.

5.5. Conclusions
In this chapter, we propose to enhance the performance of anomaly detection by verifying

predictions of deep discriminative models using deep generative models. The idea is to train a
conditional verifier network q(x|y) as an approximation to the inverse posterior distribution.
We propose Deep Verifier Networks (DVNs) which are based on a modified conditional
variational auto-encoders with disentanglement constraints. We show our model is able to
achieve state-of-the-art performance on benchmark OOD detection and adversarial example
detection tasks.
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Chapter 6

Future Works and Summary of Contributions

6.1. Overall Conclusions
In this thesis, we made several contributions surrounding the topic of generative models,

including an algorithm to stabilize training of discrete generative models, better training of
auto-regressive generative models by combining them with energy-based models, a better
way to sample from generative adversarial networks, and two applications including a con-
nection of energy-based models with residual networks, and a way to verify the predictions
of discriminative models with deep generative models.

6.2. Future Developments of Generative Models
There are many important future directions in the field of generative models following up

on the work in this thesis. I will list my favorite directions here and discuss future research
possibilities.

6.2.1. Better Density Estimation

Currently, we have several methods for density estimation. For example, auto-regressive
models [van den Oord et al., 2016a, Kolesnikov and Lampert, 2017, Germain et al., 2015]
and flow-based models [Dinh et al., 2016, Danihelka et al., 2017]. However, both methods
currently have major drawbacks. Auto-regressive density estimators can be extremely com-
putational expensive. What’s more, they are better at modeling local textures rather than
global contents and consistency, because of the well-known difficulties to capture long-term
dependencies. On the other hand, flow-based models have recently been proven not satisfying
for capturing the likelihood of out-of-distribution samples [Nalisnick et al., 2019]. So there
remains a very interesting open problem of how to train good density estimators on complex
datasets. Fundamentally new ideas and methods are needed to address these problems.
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6.2.2. Generating High Quality Samples and Modeling the Distri-
bution Well

There seems to be a trade-off between generating high quality samples and modeling well
the entire distribution with generative models. For instance, GAN-based models [Goodfellow
et al., 2014c] are very good at generating high-quality samples but they are not able to model
the entire distribution very well, probably leaving out some of its modes. Even the state-of-
the-art GAN-based models are prone to drop modes, according to so-called collision analysis.
On the other hand, autoencoder-based generative models [Kingma and Welling, 2013] and
auto-regressive models [van den Oord et al., 2016a] are very good at modeling the entire
distribution, however their sample quality is not as good. It is thus desirable to design the
next generation of generative models which are able to achieve both.

Nowadays, diffusion-based generative models [Song et al., 2020b, Dhariwal and Nichol,
2021] seem to able to achieve both goals. But they are very expensive to train, as they try
to train a diffusion process in the pixel space. It is an interesting research direction to see if
we can combine benefits of different generative models, including diffusion generative models
and avoid all their weaknesses.

6.2.3. Learning Disentangled/Causal Representations

Learning of disentangled representations [Bengio, 2013] aims to separate different factors
of variations in the data. In many real-world datasets, such as images and natural language,
it is assumed that each data point is generated by some latent causes. How to find the
latent causes of data without supervision is a major challenge for unsupervised learning.
Recently, the problem of learning disentangled representations has become a very popular
topic. InfoGAN [Chen et al., 2016] and Beta-VAE are two typical models which try to
produce good disentangled representations in a certain sense (of independent/causal latent
factors). However, high-level variables manipulated by humans to understand their environ-
ment are not independent, and disentanglement is still an ambiguous concept leaving many
questions open.

My proposed approach is to explore a variety of inductive biases which can encourage
disentanglement. Because learning disentangled representations can only make sense on
several special kinds of data, e.g. natural images, so incorporating good inductive biases is
very important.
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6.2.4. Learning Interpretable Hierarchical Models

It is widely believed that many complex datasets must be modelled with a hierarchy
of latent variables. Each layer of latent variables corresponds to one layer of abstraction.
However, currently the most successful generative models have only one layer of latent vari-
ables. It is thus very interesting to ask whether there are models which can naturally capture
hierarchical structure in the datasets. An important class of temporal generative models is
those with hierarchical temporal abstractions. These models are useful in modelling data
with temporal structure, such as videos and time sequences. These models are essential for
applications in agent learning [Wayne et al., 2018], for example model-based reinforcement
learning. One difficulty for these models is that with we are not currently able to model the
long-term future. By using temporal abstractions, we should be able to design new temporal
generative models which are able to generate at different scales of time. Thus there is a
very important open problem of how to design this kind of temporal generative model with
temporal abstractions.

One direction that has already been explored somewhat is to try to learn hierarchical
latent variable models that update their latent variables at different speeds at each layer.
For example, one can think of imposing structures like Ordered LSTM in latent variable
models.

6.2.5. Large-scale Generative Modelling for Foundations in AI

Recently, it is widely accepted that training large-scale generative models on Internet-
scale datasets could be a key ingredient for next-generation AI systems[Bommasani et al.,
2021]. For example, large-scale language models including BERT[Devlin et al., 2018], GPT-
3[Brown et al., 2020], T5[Raffel et al., 2019] are widely used as prototypes for down-stream
tasks. Multimodal large-scale generative models such as DALL-E-2 [Ramesh et al., 2022] can
handle both natural languages and images. The emergence of these large-scale generative
models are one of the most exciting developments of modern AI. These large-scale generative
models have demonstrated ability to generalize to many down-stream tasks or sometimes,
to out-of-distribution data.

A core future research direction is to see what kind of inductive biases is needed for these
large-scale generative models, which can satisfy three goals: (1) Further boost generalization
performance on out-of-distribution datasets. (2) Do not hurt model capacity and scalability
to learn from large-scale datasets. (3) Can help reducing parameters and increase parameter
efficiency of large-scale models. My current work in this direction including trying to boost
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the generalization performance of large scale vision and NLP transformer based models via
adding the inductive bias that the world is composed of different objects/concepts.

Besides the above research direction, another research topic which is of considerable
importance is to find ways to better embed foundation models in down stream tasks and
AI decision systems. Since foundation models are the most powerful deep learning models
we have, it is natural to think about how to exploit their generalization power to boost the
performance of many important down-stream tasks. As an instance, I am exploring how to
use foundation models to boost exploration performance in reinforcement learning.
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