
Université de Montréal

Adversarial Games in Machine Learning:
Challenges and Applications

par

Hugo Berard

Département d’informatique et de recherche opérationnelle
Faculté des arts et des sciences

Thèse présentée à la Faculté des arts et des sciences
en vue de l’obtention du grade de Philosophiæ Doctor (Ph.D.)

en informatique

August, 2022

© Hugo Berard, 2022.

Université de Montréal
Faculté des arts et des sciences

Cette thèse intitulée:

Adversarial Games in Machine Learning:
Challenges and Applications

présentée par:

Hugo Berard

a été évaluée par un jury composé des personnes suivantes:

Ioannis Mitliagkas, président-rapporteur
Pascal Vincent, directeur de recherche
Simon Lacoste-Julien, codirecteur
Margarida Carvalho, membre du jury
Lillian J. Ratliff, examinateur externe

Thèse acceptée le: .

Résumé

L’apprentissage automatique repose pour un bon nombre de problèmes sur la
minimisation d’une fonction de coût, pour ce faire il tire parti de la vaste littérature
sur l’optimisation qui fournit des algorithmes et des garanties de convergences pour
ce type de problèmes. Cependant récemment plusieurs modèles d’apprentissage
automatique qui ne peuvent pas être formulé comme la minimisation d’un coût
unique ont été propose, à la place ils nécessitent de définir un jeu entre plusieurs
joueurs qui ont chaque leur propre objectif. Un de ces modèles sont les réseaux
antagonistes génératifs (GANs). Ce modèle génératif formule un jeu entre deux
réseaux de neurones, un générateur et un discriminateur, en essayant de tromper le
discriminateur qui essaye de distinguer les vraies images des fausses, le générateur
et le discriminateur s’améliore résultant en un équilibre de Nash, ou les images
produites par le générateur sont indistinguable des vraies images. Malgré leur
succès les GANs restent difficiles à entrainer à cause de la nature antagoniste
du jeu, nécessitant de choisir les bons hyperparamètres et résultant souvent en
une dynamique d’entrainement instable. Plusieurs techniques de régularisations
ont été propose afin de stabiliser l’entrainement, dans cette thèse nous abordons
ces instabilités sous l’angle d’un problème d’optimisation. Nous commençons par
combler le fossé entre la littérature d’optimisation et les GANs, pour ce faire nous
formulons GANs comme un problème d’inéquation variationnelle, et proposons
de la littérature sur le sujet pour proposer des algorithmes qui convergent plus
rapidement. Afin de mieux comprendre quels sont les défis de l’optimisation des
jeux, nous proposons plusieurs outils afin d’analyser le paysage d’optimisation des
GANs. En utilisant ces outils, nous montrons que des composantes rotationnelles
sont présentes dans le voisinage des équilibres, nous observons également que les
GANs convergent rarement vers un équilibre de Nash mais converge plutôt vers des
équilibres stables locaux (LSSP). Inspirer par le succès des GANs nous proposons
pour finir, une nouvelle famille de jeux que nous appelons adversarial example games
qui consiste à entrainer simultanément un générateur et un critique, le générateur
cherchant à perturber les exemples afin d’induire en erreur le critique, le critique
cherchant à être robuste aux perturbations. Nous montrons qu’à l’équilibre de ce
jeu, le générateur est capable de générer des perturbations qui transfèrent à toute
une famille de modèles.

iii

Abstract

Many machine learning (ML) problems can be formulated as minimization problems,
with a large optimization literature that provides algorithms and guarantees to solve
this type of problems. However, recently some ML problems have been proposed
that cannot be formulated as minimization problems but instead require to define
a game between several players where each player has a different objective. A
successful application of such games in ML are generative adversarial networks
(GANs), where generative modeling is formulated as a game between a generator and
a discriminator, where the goal of the generator is to fool the discriminator, while
the discriminator tries to distinguish between fake and real samples. However due
to the adversarial nature of the game, GANs are notoriously hard to train, requiring
careful fine-tuning of the hyper-parameters and leading to unstable training. While
regularization techniques have been proposed to stabilize training, we propose in
this thesis to look at these instabilities from an optimization perspective. We start
by bridging the gap between the machine learning and optimization literature by
casting GANs as an instance of the Variational Inequality Problem (VIP), and
leverage the large literature on VIP to derive more efficient and stable algorithms
to train GANs. To better understand what are the challenges of training GANs,
we then propose tools to study the optimization landscape of GANs. Using these
tools we show that GANs do suffer from rotation around their equilibrium, and that
they do not converge to Nash-Equilibria. Finally inspired by the success of GANs
to generate images, we propose a new type of games called Adversarial Example
Games that are able to generate adversarial examples that transfer across different
models and architectures.

iv

Keywords - Mots-clés

Keywords. machine learning, neural networks, generative modeling, generative
adversarial networks (GAN), adversarial attacks, adversarial training, game theory,
optimization, variational inequality, Nash-equilibrium, extragradient, visualization

Mots-clés. apprentissage automatique, réseaux de neurones, modèles génératifs,
réseaux antagonistes génératifs, exemples antagonistes, théorie des jeux, optimisa-
tion, inéquation variationelle, équilibre de Nash, extragradient, visualisation

v

Contents

1 Introduction . 1

1 Overview of Thesis . 3

1.1 Optimization of GANs . 3

1.2 Adversarial Attacks . 4

2 Excluded Research . 4

2 Background . 5

1 Statistical Decision Theory . 5

1.1 Statistical Divergence . 5

1.2 Empirical Risk Minimization 7

1.3 Maximum Likelihood Estimation 8

2 Linear models . 9

2.1 Probabilistic Perspective . 10

2.2 Logistic Regression . 11

3 Deep Neural Networks . 12

4 Generative models . 13

4.1 Variatonal Auto-encoder (VAE) 13

4.2 Generative Adversarial Networks 14

5 Adversarial Learning . 17

vi

6 Optimization . 18

6.1 Gradient Descent . 19

6.2 Stochastic Gradient Descent 20

6.3 Non-convex optimization . 20

7 Smooth multi-player games . 21

3 Prologue to the First Contribution 23

1 Article Details . 23

2 Contributions of the authors . 23

3 Context and Impact . 23

4 A Variational Inequality Perspective on Generative Adversarial
Networks . 25

1 Introduction . 25

2 GAN optimization as a variational inequality problem 27

2.1 GAN formulations . 27

2.2 Equilibrium . 27

2.3 Variational inequality problem formulation 28

3 Optimization of Variational Inequalities (batch setting) 29

3.1 Averaging . 30

3.2 Extrapolation . 31

3.3 Extrapolation from the past 32

4 Optimization of VIP with stochastic gradients 33

5 Combining the techniques with established algorithms 37

6 Related Work . 37

vii

7 Experiments . 39

7.1 Bilinear saddle point (stochastic) 40

7.2 WGAN and WGAN-GP on CIFAR10 40

8 Conclusion . 42

5 Prologue to the Second Contribution 43

1 Article Details . 43

2 Contributions of the authors . 43

3 Context and Impact . 43

6 A Closer Look at the Optimization Landscapes of Generative
Adversarial Networks . 45

1 Introduction . 45

2 Related work . 47

3 Formulations for GAN optimization and their practical implications 48

3.1 The standard game theory formulation 48

3.2 An alternative formulation based on the game vector field . 49

3.3 Rotation and attraction around locally stable stationary
points in games . 51

4 Visualization for the vector field landscape 53

4.1 Standard visualizations for the loss surface 53

4.2 Proposed visualization: Path-angle 53

4.3 Archetypal behaviors of the Path-angle around a LSSP . . . 54

5 Numerical results on GANs . 56

5.1 Evidence of rotation around locally stable stationary points
in GANs . 56

viii

5.2 The locally stable stationary points of GANs are not local
Nash equilibria . 58

6 Discussion . 59

7 Prologue to the Third Contribution 61

1 Article Details . 61

2 Contributions of the authors . 61

3 Context and Impact . 61

8 Adversarial Example Games . 63

1 Introduction . 63

2 Background and Preliminaries . 65

2.1 NoBox Attacks . 65

3 Adversarial Example Games . 67

4 Theoretical results . 69

4.1 A simple setup: binary classification with logistic regression 70

4.2 General multi-class classification 71

5 Attacking in the Wild: Experiments and Results 73

5.1 NoBox Attacks on a Known Architecture Class but Unknown
Train Set . 74

5.2 NoBox Attacks Across Distinct Architectures 75

5.3 NoBox Attacks Against Robust Classifiers 75

6 Related Work . 76

ix

7 Conclusion . 78

9 Conclusions, Discussions, and Perspectives 80

1 Summary and Conclusions . 80

2 Discussions and Perspectives . 81

A A Variational Inequality Perspective on Generative Adversarial
Networks . 100

1 Definitions . 100

1.1 Projection mapping . 100

1.2 Smoothness and Monotonicity of the operator 101

2 Gradient methods on unconstrained bilinear games 101

2.1 Proof of Proposition 1 . 101

2.2 Implicit and extrapolation method 103

2.3 Extrapolation from the past 104

3 More on merit functions . 107

3.1 More general merit functions 108

3.2 On the importance of the merit function 109

3.3 Variational inequalities for non-convex cost functions 110

4 Another way of implementing extrapolation to SGD 110

5 Variance comparison between AvgSGD and SGD with prediction
method . 111

6 Proof of Theorems . 111

6.1 Proof of Thm.2 . 113

6.2 Proof of Thm.3 . 115

x

6.3 Proof of Thm. 4 . 116

6.4 Proof of Theorem 1 . 119

7 Additional experimental results . 122

7.1 Toy non-convex GAN (2D and deterministic) 122

7.2 DCGAN with WGAN-GP objective 123

7.3 Comparison of the methods with the same learning rate . . . 125

7.4 Comparison of the methods with and without averaging . . 127

B A Closer Look at the Optimization Landscapes of Generative
Adversarial Networks . 131

1 Proof of theorems and propositions 131

1.1 Proof of Theorem 1 . 131

1.2 Being a DNE is neither necessary or sufficient for being a LSSP132

2 Computation of the top-k Eigenvalues of the Jacobian 134

3 Experimental Details . 134

3.1 Mixture of Gaussian Experiment 134

3.2 MNIST Experiment . 135

3.3 Path-Angle Plot . 136

3.4 Instability of Gradient Descent 137

3.5 Additional Results with Adam 137

C Adversarial Example Games . 139

1 Proofs for Section 4 (Theoretical results) 139

2 Experimental Details . 142

2.1 Source of variations . 142

xi

3 Additional results . 143

3.1 Quantitative Results . 143

3.2 Qualitative Results . 143

4 Implementation Details . 144

4.1 Generator Architecture . 145

4.2 Baseline Implementation Details 147

4.3 Ensemble Adversarial Training Architectures 148

5 Further Related Work . 149

xii

List of Tables

4.1 Best inception scores (averaged over 5 runs) achieved on CIFAR10 for

every considered Adam variant. OptimAdam is the related Optimistic

Adam [Daskalakis et al., 2018] algorithm. EMA denotes exponential

moving average (with β = 0.999, see Eq. 3.2). We see that the techniques

of extrapolation and averaging consistently enable improvements over the

baselines (in italic). 41

6.1 Summary of the implications between Differentiable Nash Equilibrium

(DNE) and a locally stable stationnary point (LSSP): in general, being a

DNE is neither necessary or sufficient for being a LSSP. 50

8.1 Attack success rates, averaged across target models with 95% confi-
dence intervals shown. †indicates a statistically significant result as
determined by the paired T-test when compared to AEG. CIFAR-10
results are with a Res18 architecture. 75

8.2 Error rates on D for average NoBox architecture transfer attacks with

ǫ = 0.03125. The ± correspond to 2 standard deviations (95.5% confidence

interval for normal distributions). 76

8.3 Error rates on D for NoBox known architecture attacks against Adversarial

Training and Ensemble Adversarial Training. ∗ Attacks were done using

WR. † Deterministic attack. 77

A.1 Best inception scores (averaged over 5 runs) achieved on CIFAR10 for

every considered Adam variant. OptimAdam is the related Optimistic

Adam [Daskalakis et al., 2018] algorithm. We see that the techniques of

extrapolation and averaging consistently enable improvements over the

baselines (in italic). 123

xiii

C.1 Test error rates for average blackbox transfer over architectures at
ǫ = 0.3 for MNIST and ǫ = 0.03125 for CIFAR-10 (higher is better) 144

C.2 Error rates on D for average NoBox architecture transfer attacks
with ǫ = 0.03125 with Wide-ResNet architecture 144

C.3 ResNet blocks used for the ResNet architectures (see Table C.4) for
the Generator. Each ResNet block contains skip connection (bypass),
and a sequence of convolutional layers, normalization, and the ReLU
non–linearity. 146

C.4 Encoder and Decoder for the convolutional generator used for the
MNIST dataset. 146

C.5 Encoder and Decoder for the ResNet generator used for the MNIST
dataset. 148

C.6 MNIST Ensemble Adversarial Training Architectures) 148

xiv

List of Figures

4.1 Comparison of the basic gradient method (as well as Adam) with the tech-

niques presented in §3 on the optimization of (3.3). Only the algorithms

advocated in this paper (Averaging, Extrapolation and Extrapolation

from the past) converge quickly to the solution. Each marker represents

20 iterations. We compare these algorithms on a non-convex objective in

§7.1. 34

4.2 Three variants of SGD using the techniques introduced in §3. . . . 34

4.3 Performance of the considered stochastic optimization algorithms on the

bilinear problem (7.1). Each method uses its respective optimal step-size

found by grid-search. 40

4.4 Left: Mean and standard deviation of the inception score computed over

5 runs for each method on WGAN trained on CIFAR10. To keep the

graph readable we show only SimAdam but AltAdam performs similarly.

Middle: Samples from a ResNet generator trained with the WGAN-

GP objective using AvgExtraAdam. Right: WGAN-GP trained on

CIFAR10: mean and standard deviation of the inception score computed

over 5 runs for each method using the best performing learning rate

plotted over wall-clock time; all experiments were run on a NVIDIA

Quadro GP100 GPU. We see that ExtraAdam converges faster than the

Adam baselines. 42

6.1 Visualizations of Example 1. Left: projection of the game vector field on

the plane θ2 = 1. Right: Generator loss. The descent direction is (1, ϕ)

(in grey). As the generator follows this descent direction, the discriminator

changes the value of ϕ, making the saddle rotate, as indicated by the

circular black arrow. 52

xv

6.2 Above: game vector field (in grey) for different archetypal behaviors.
The equilibrium of the game is at (0, 0). Black arrows correspond
to the directions of the vector field at different linear interpolations
between two points: • and ⋆. Below: path-angle c(α) for different
archetypal behaviors (right y-axis, in blue). The left y-axis in orange
correspond to the norm of the gradients. Notice the "bump" in
path-angle (close to α = 1), characteristic of rotational dynamics. . 55

6.3 Path-angle for NSGAN (top row) and WGAN-GP (bottom row)
trained on the different datasets, see Appendix 3.3 for details on
how the path-angle is computed. For MoG the ending point is
a generator which has learned the distribution. For MNIST and
CIFAR10 we indicate the Inception score (IS) at the ending point
of the interpolation. Notice the “bump" in path-angle (close to
α = 1.0), characteristic of games rotational dynamics, and absent in
the minimization problem (d). Details on error bars in §3.3. 57

6.4 Eigenvalues of the Jacobian of the game for NSGAN (top row)
and WGAN-GP (bottom row) trained on the different datasets.
Large imaginary eigenvalues are characteristic of rotational behavior.
Notice that NSGAN and WGAN-GP objectives lead to very different
landscapes (see how the eigenvalues of WGAN-GP are shifted to the
right of the imaginary axis). This could explain the difference in
performance between NSGAN and WGAN-GP. 58

6.5 NSGAN. Top k-Eigenvalues of the Hessian of each player (in terms
of magnitude) in descending order. Top Eigenvalues indicate that the
Generator does not reach a local minimum but a saddle point (for
CIFAR10 actually both the generator and discriminator are at saddle
points). Thus the training algorithms converge to LSSPs which are
not Nash equilibria. 59

6.6 WGAN-GP. Top k-Eigenvalues of the Hessian of each player (in
terms of magnitude) in descending order. Top Eigenvalues indicate
that the Generator does not reach a local minimum but a saddle
point. Thus the training algorithms converge to LSSPs which are
not Nash equilibria. 60

xvi

8.1 Illustration of Proposition 3 for three classes of classifiers in the context

of logistic regression for the two moon dataset of scikit-learn [Pedregosa

et al., 2011] with linear and polynomial (of degree 3 and 5) features. Left:

Scatter plot of the clean or adversarial dataset and the associated optimal

decision boundary. For the adversarial dataset, each corresponding clean

example is represented with a N/N and is connected to its respective

adversarial example •/•. Right: value of the F -entropy for the different

classes as a function of the number of iterations. 72

8.2 AEG framework architecture . 74

A.1 Comparison of five algorithms (described in Section 3) on the non-
convex gan objective (7.1), using the optimal step-size for each
method. Left: The gradient vector field and the dynamics of the
different methods. Right:The distance to the optimum as a function
of the number of iterations for each methods. 122

A.2 DCGAN architecture with WGAN-GP trained on CIFAR10: mean
and standard deviation of the inception score computed over 5 runs
for each method using the best performing learning rate plotted
over wall-clock time; all experiments were run on a NVIDIA Quadro
GP100 GPU. We see that ExtraAdam converges faster than the
Adam baselines. 124

A.3 Inception score on CIFAR10 for WGAN-GP over number of generator
updates for different learning rates. We can see that AvgExtraSGD
is less sensitive to the choice of learning rate. 125

A.4 Comparison of the samples quality on the WGAN-GP experiment
for different methods and learning rate η. 126

A.5 Inception Score on CIFAR10 for WGAN over number of generator
updates with and without averaging. We can see that averaging
improve the inception score. 127

A.6 Inception score on CIFAR10 for WGAN-GP over number of generator
updates . 128

A.7 Comparison of the samples of a WGAN trained with the different
methods with and without averaging. Although averaging improves
the inception score, the samples seem more blurry 129

xvii

A.8 The Fréchet Inception Distance (FID) from Heusel et al. [2017]
computed using 50,000 samples, on the WGAN experiments. ReEx-
traAdam refers to Alg. 5 introduced in §4. We can see that averaging
performs worse than when comparing with the Inception Score. We
observed that the samples generated by using averaging are a little
more blurry and that the FID is more sensitive to blurriness, thus
providing an explanation for this observation. 130

B.1 The norm of gradient during training for the standard GAN objec-
tive. We observe that while extra-gradient reaches low norm which
indicates that it has converged, the gradient descent on the contrary
doesn’t seem to converge. 137

B.2 Path-angle and Eigenvalues computed on MNIST with Adam. 138

B.3 Path-angle and Eigenvalues for NSGAN on CIFAR10 computed on CI-

FAR10 with Adam. We can see that the model has eigenvalues with

negative real part, this means that we’ve actually reached an unstable point.138

C.1 Attacks generated on MNIST by our method. 145

C.2 Left: CIFAR examples to attack. Right: Pertubations generated
by our method amplified by a factor 10. An interesting observation is
that the generator learns not to attack the pixel where the background
is white. 147

xviii

List of acronyms and
abbreviations

e.g. exempli gratia [for instance]
i.e. ide est [that is]
iff if and only if
resp. respectively
ML Machine Learning
DL Deep Learning
DNN Deep Neural Networks
KL Kullback-Leibler
MMD Maximum Mean Discrepancy
RKHS Reproducing Kernel Hilbert Space
ERM Empirical Risk Minimization
MLE Maximum Likelihood Estimation
CNN Convolutional Neural Network
VAE Variational Auto-Encoder
NLL Negative Log-Likelihood
GANs Generative Adversarial Networks
PGD Projected Gradient Descent
LSSP Locally Stable Stationary Point
NE Nash Equilibrium
SGD Stochastic Gradient Descent
SGDA Stochastic Gradient Descent-Ascent
VIP Variational Inequality Problem
AEG Adversarial Example Game
HGD Hamiltonian Gradient Descent

xix

Notation

The set of real numbers R

The set of complex numbers C

The real and imaginary part of z ∈ C ℜ(z) and ℑ(z)
Scalars are lower-case letters λ
Vectors are lower-case bold letters θ

Matrices are upper-case bold letters. A

Operators are upper-case letters F
The spectrum of a squared matrix A Sp(A)
The spectral radius of a squared matrix A . . . ρ(A)
The largest and the smallest singular values of A σmin(A) and σmax(A)
The identity matrix of Rd×d Id

Standard asymptotic notations O, Ω and Θ

xx

1 Introduction

The first transistor was invented in 1947 by Bardeen and Brattain [1948] paving the
way for modern electronics and computers. Since then progress in the semiconductor
industry has lead to significant improvement in transistor size and density, enabling
to drastically increase the number of transistor in a chip. The most recent chips
to date are manufactured using extreme ultraviolet lithography (ULV) [Wu and
Kumar, 2007] allowing for a density of over 100 millions transistors per mm2. Those
major innovations have enabled two things: 1) this significantly decreased the cost
and the size of electronic circuits and sensors making them widely available to
collect and store data. 2) This greatly increased the computational power available
to us, enabling us to run much more complex and expensive algorithms. This
combination of large amounts of readily available data with large computational
power has propelled the field of Machine Learning (ML) forward.

Machine Learning is the science of using data and algorithms to learn models and
make predictions, by using data we are able to infer a model that can then be used
to make predictions. One of the first descriptions of using a technique to infer a
mathematical model from observations was proposed by Legendre [1806] to predict
the orbits of comets by fitting a linear model with least squares regression. Since
then ML techniques have greatly improved enabling a wide range of applications that
continues to grow. Among the many successful applications of ML, we can mention
spam filtering [Guzella and Caminhas, 2009], image classification [Krizhevsky
et al., 2012], image generation [Goodfellow et al., 2014], language modeling [Brown
et al., 2020], and achieving superhuman performance at Go [Silver et al., 2016].
Furthermore, recent applications to other scientific domains have also shown great
promise with the potential to accelerate scientific discoveries in several fields. For
example Jumper et al. [2021] was recently able to predict the structure of proteins
with high accuracy enabling potential important discovery in biology or accelerating
drug research. This potential for accelerating scientific discoveries by using ML has
also been recently used for material science [Schmidt et al., 2019]. A recent example
is the Open Catalyst challenge [Zitnick et al., 2020] where researchers are trying to
find better catalysts to produce hydrogen more efficiently and help countries move
away from fossil fuels by providing clean alternatives that do not emit green house
gases (GHG) in the atmosphere, in order to respect the Paris Agreement and limit

1

global warming to 2°C above pre-industrial levels.

A lot of the progress made relies on deep neural networks (DNN) [LeCun et al.,
2015a], a class of non-convex models with a very large number of parameters which
can approximate any functions [Hornik et al., 1989]. Furthermore the gradient of
such models can be efficiently computed using the back-propagation algorithms
[Rumelhart et al., 1986], and can thus be optimized by using gradient methods
[Ruder, 2016]. Such models are usually trained by minimizing a single objective
function by using gradient methods.

However some problems cannot be formulated as minimization problems. For
example Goodfellow et al. [2014] proposed generative adversarial network (GAN),
a generative model that combines two neural networks: a generator that tries
to generate data points, and a discriminator that tries to classify if a data point
comes from the generator or the dataset. This problem is formulated as a game
between the generator and the discriminator, where the generator is trying to fool
the discriminator, where the generator and discriminator are trying to optimize
different objectives that are in competition with one another. Thus this problem
cannot be formulated as a single objective minimization problem. GANs have been
very successfully used to generate high resolution images [Brock et al., 2019] showing
that using game formulations can outperform standard minimization approaches.
Despite their success, GANs are challenging to train due the min-max nature of the
game they are trying to solve. Successful training of GANs thus requires a careful
choice of hyperparameters and the use of regularization techniques [Gulrajani et al.,
2017, Miyato et al., 2018]. In this thesis we look at those instabilities during training
by adopting an optimization perspective, we analyze where the instabilities come
from and how to reduce those instabilities by using algorithms that are more suited
to game optimization.

Other type of ML problems can also benefit from adopting a game formulation.
Szegedy et al. [2014] showed that adding a small amount of noise to the input of
a DNN can fool the classifier into predicting the wrong label for the input, such
perturbations are called adversarial attacks. To fix this problem, Madry et al. [2018]
proposed to train the models using a robust optimization formulation which involves
adding a maximization over all perturbations inside the objective function. We
propose to formulate this problem as a game between a generator and a critic. We
show that using this approach the adversarial attacks generated can successfully
transfer to different models.

Overall this thesis looks at how to leverage game formulations in machine learning
applications, and tries to address some of the challenges of game optimization.

2

1 Overview of Thesis

Beyond this introduction and the conclusion, this thesis includes a background
section that presents the key notions necessary to understand the rest of this thesis,
as well as three contributions that each correspond to a research paper which
was published in a conference. The contributions are organized as follows. The
first contribution presents a connection between variational inequalities and GANs,
showing some limitations of current algorithms and proposing new algorithms to
train GANs. The second contribution looks at the optimization landscape of GANs
through empirical observations. Finally the third contribution, presents a new
application of games to the generation of adversarial attacks.

1.1 Optimization of GANs

GANs are notoriously hard to train, being very unstable and requiring a lot of
fine tuning of the hyper-parameters. Several works looked at those instabilities
from a divergence perspective [Arjovsky et al., 2017, Nowozin et al., 2016]. A few
works also looked at such instabilities from an optimization perspective [Mescheder
et al., 2017, Nagarajan and Kolter, 2017]. However no formal connection was made
between GANs and the relevant optimization literature. In our first contribution
we framed GANs as an instance of the variational inequality problem. By making
this connection we were able to provide insight in the instability of GANs, we
showed that in bilinear games Stochastic Gradient Descent-Ascent (SGDA) does
not converge. Making this connection also enabled us to bring techniques from the
variational inequality literature to improve the training in GANs. In particular by
combining Adam with averaging and an extrapolation step, we proposed a new
algorithm called ExtraAdam. We showed that this new algorithm consistently
outperformed existing algorithms in several experiments. Averaging was also shown
to be beneficial when used with other algorithms such as Adam.

The optimization literature usually assumes games are monotone to be able to
derive convergence guarantees. However GANs are highly non-monotone, thus it
is not clear whether analysis in the monotone case can provide insight into the
behavior of GANs. In particular, while the presence of rotation is highly problematic
from a theoretical point of view as it leads to convergence problem for SGDA for
example, it is not clear if GANs exhibit such properties in practice. The second
contribution tries to answer this question through empirical observations. We first
provide a formal definition of the notion of the rotation in games by relating it
to the imaginary part of the eigenvalues of the Jacobian of the game. We then
propose two different visualization techniques to try to quantify the amount of

3

rotation and other properties around a stationary point. Using those visualization
techniques we studied the optimization landscape of GANs which enabled us to
make several observations. We first noticed that contrary to popular beliefs GANs
rarely converge to Nash-Equilibrium in practice but instead often converge to locally
stable stationary points (LSSP). We further show that GANs while not being
fully rotational, exhibit some amount of rotations that could explain why they are
unstable.

1.2 Adversarial Attacks

In the third and last contribution we look at the problem of adversarial attacks.
We propose a new framework to formulate adversarial attacks as a game, where the
attacker is also a deep neural networks that crafts the attack. By formulating this
problem as a game, the attacker is able to attack a class of functions instead of a
specific function. We showed experimentally that this is indeed the case and that
using this framework the attacks we generate are able to transfer to a wide range of
neural networks.

2 Excluded Research

During my PhD I also contributed to the following works which will be excluded
from this thesis to keep the manuscript consistent and succinct:

• Parametric Adversarial Divergences are Good Losses for Generative Modeling
[Huang et al., 2017a]

• Stochastic hamiltonian gradient methods for smooth games [Loizou et al.,
2020]

• Online Adversarial Attacks [Mladenovic et al., 2022]

• Stochastic gradient descent-ascent and consensus optimization for smooth
games: Convergence analysis under expected co-coercivity [Loizou et al., 2021]

• Stochastic gradient descent-ascent: Unified theory and new efficient methods
[Beznosikov et al., 2022]

• Stochastic extragradient: General analysis and improved rates [Gorbunov
et al., 2022]

4

2 Background

1 Statistical Decision Theory

Let us consider the universe to be non-deterministic. We can represent it as a
distribution PD. This distribution represents the fundamental truth that governs
the universe which is not known to us. While this distribution is unknown to us,
we can formulate different hypothesis h ∈ H, where H is the set of hypothesis we
consider. Our goal is to find the hypothesis h ∈ H that is as close as possible to the
ground-truth distribution of the universe PD. To find such an hypothesis, we can
use the observations we make about the universe by sampling from the distribution
of the universe PD. We will denote those observations D ∼ PD. We also define an
estimator δ ∈ A, a function that given some observations selects an hypothesis, we
denote this estimator by δ : ΩD → H. To measure the quality of an hypothesis
we define a loss function L(h, PD) ∈ R+, it represents the error of choosing the
hypothesis h instead of the ground-truth PD. To compare two different estimators
δ1 and δ2, and decide if one is better than the other at selecting the best hypothesis,
we can use the frequentist risk:

R(δ, PD) = ED∼PD
[L(δ(D), PD)] (1.1)

Note that in practice this quantity cannot be evaluated since we do not know PD,
this is thus a purely theoretical quantity. Also note that this quantity depends on
PD, thus an estimator δ1 can outperform another estimator δ2 on PD but might
perform worse on a different universe with distribution P ′

D.

1.1 Statistical Divergence

As mentioned in the previous section to be able to compare hypothesis and measure
how close an hypothesis is to the ground-truth we need to define a loss function L.

In this section we will look at loss functions defined as distance between probability

5

distribution. There is a large literature about statistical distances and their proper-
ties, here we will present a few statistical distances that are often used in machine
learning.

Let us first introduce some notations. Let X be a compact metric space, and let
Σ be the set of all Borel subsets of X . Let Prob(X) be the space of probability
measures defined on X , we can now define distances between probability distributions
P,Q ∈ Prob(X).

KL-divergence [Kullback and Leibler, 1951]. One of the most used and
popular statistical distance is the Kullback–Leibler divergence:

KL(P,Q) =
∫

X
log

(

p(x)

q(x)

)

p(x)dx (1.2)

The KL is not symmetric and can be infinite if the supports of P and Q do not fully
overlap, i.e. ∃x ∈ X such that q(x) = 0 and p(x) > 0.

f-divergence family [Rényi et al., 1961]. The f -divergence family is a
generalization of Kullback-Leibler divergence:

Df (P,Q) =
∫

X
f

(

p(x)

q(x)

)

p(x)dx (1.3)

where the function f : R+ → R is convex, lower-semicontinuous and satisfies
f(1) = 0.

Wasserstein-p distance [Kantorovich, 1960]. Another type of divergence is
the Wasserstein-p distance:

Wp(P,Q) =

(

inf
γ∈Γ(P,Q)

∫

d(x, y)pdγ(x, y)

)
1

p

(1.4)

where Γ(P,Q) is the set of all joint distributions such that with marginals P and Q,
and where d is a metric on X .

The Wasserstein distance was first proposed to solve optimal transport problems,
see Villani [2009] for a comprehensive introduction to optimal transport and the
Wasserstein distance.

6

Maximum Mean Discrepancy (MMD) [Gretton et al., 2012]. This di-
vergence is also known as an integral probability metric [Müller, 1997], and is a
generalization of the Wasserstein metric:

MMD(P,Q) = sup
f∈F

(
∫

f(x)dp(x)−
∫

f(y)dq(y)) (1.5)

where F is a class of functions f : X → R. Note that MMD usually refers to the
case where F is chosen to be the unit ball in a reproducing kernel Hilbert space
(RKHS).

Those divergences have different properties. For a comparison refer to Huang et al.
[2017a] which provides a in-depth analysis of different choice of divergence.

1.2 Empirical Risk Minimization

Now that we introduced several notions of distance, we can look at different
estimators.

The first estimator we will present is called the empirical risk minimizer (ERM),
and is one of the core principles of machine learning.

One of the most common use case for machine learning, is when we want to
understand the relationship between two variables. Let us assume we collect some
pair of observations D = {(xi, yi)}n

i=1, where xi ∈ X , yi ∈ Y . We want to understand
the relation between x and y, in particular we want to be able to predict y given
x. We thus want to find the best function f : X → Y, where the set of functions
f ∈ F is our hypothesis class. Our goal is to find the best possible hypothesis f ∗:

f ∗ = arg min
f∈F

ED∼PD
[ℓ(f(x), y)] (1.6)

where here ℓ(ŷ, y) is a function that represents the error of making prediction ŷ
instead of y.

However we don not know PD and usually only have access to a finite subset. An
alternative is thus to solve the following problem:

f̂ERM(D) = arg min
f∈F

1

n

n
∑

i=1

ℓ(f(xi), yi) (1.7)

7

This problem is called empirical risk minimization, and the estimator we derive
from solving this problem is called the empirical risk minimizer. In practice we
often only have access to a finite-sample dataset, and we will thus often rely on
empirical risk minimization to get an estimator of f ∗.

1.3 Maximum Likelihood Estimation

Sometimes instead of learning a function we are interested in approximating some
distribution P with some distribution Q, we can formulate this problem like this:

min
Q∈P

D(P,Q) (1.8)

Where D : P × P → R+ is a function that measures the distance between two
distributions. A divergence that is commonly used is the KL divergence (1.2).

Let us now go back to the case where we want to find a distribution Q that
approximates a distribution P. From far the KL divergence seems to be intractable
since it involves the knowledge of p(x). However by using a clever decomposition
we can show that we can minimize the KL divergence and that minimizing the KL
divergence only requires to be able to sample from P:

min
Q∈P

DKL(P,Q) = min
Q∈P

Ex∼P

[

log

(

p(x)

q(x)

)]

(1.9)

= min
Q∈P

Ex∼P[log p(x)]− Ex∼P [log q(x)] (1.10)

Since the first term is a constant, we can ignore it and it doesn’t change the solution
of the minimization problem:

min
Q∈P

DKL(P,Q) = max
Q∈P

Ex∼P[log q(x)] + c (1.11)

We usually only have access to a finite sample dataset of sP , making this problem
impossible to solve. However, we can apply the ERM principle from the previous
section and replace the expectation by a finite sum, the problem thus becomes:

max
Q∈P

1

n

n
∑

i=1

log q(xi) = max
Q∈P

log
n
∏

i=1

q(xi) = max
Q∈P

log q(x) (1.12)

8

where log q(x) is called the log likelihood and q(x) = q(x1, · · · , xn) =
∏n

i=1 q(xi).

We call this estimator, the Maximum Likelihood Estimator (MLE):

Q̂MLE = arg max
Q∈P

log q(x) (1.13)

Maximum likelihood estimation and ERM are at the core of many machine learning
algorithms. However these relatively simple principles raise many questions: how do
we solve the underlying minimization or maximization problem? What hypothesis
class should we consider for f and Q? And, what loss should we use for ERM? We
will introduce some popular choice in the next sections.

2 Linear models

Let us consider the ERM problem from the previous section, one of the
simplest hypothesis class we can consider is the class of linear models
LM = {fθ(x) = θTx,θ ∈ Rd}. Such models are extremely popular due to
their simplicity. If we decide to use the square loss ℓ(ŷ, y) = (y − ŷ)2, we get the
linear least squares problem:

θ̂ = arg min
θ∈Rd

1

n

n
∑

i=1

(θTxi − yi)
2 (2.1)

By using matrix notation, we can define, X ∈ Rn×d with Xi = xT
i , and y =

y1
...
yn

,

we can rewrite the previous problem:

θ̂ = arg min
θ∈Rd

‖Xθ − y‖2 (2.2)

To find ŵ we can compute the gradient:

∇θ‖Xθ − y‖2 = 2XTXθ − 2XTy (2.3)

Since we want to find the minimum, we want the gradient to be zero, we thus want
to solve:

2XTXθ̂ − 2XTy = 0 (2.4)

9

If the matrix XTX is invertible the solution is unique:

θ̂ = (XTX)−1XTy (2.5)

While this model is very interesting due to simplicity, it suffers from several limi-
tations. First while it is adapted to the case where y is a real value variable, we
are often confronted to problems where y might be a categorical or binary variable.
The class of linear functions is also very restricted and we might be interested more
complex functions. We will see how to improve over linear models next.

2.1 Probabilistic Perspective

We have approached the linear least squares problem from the ERM perspective.
Here we will show how we can adopt a probabilistic perspective and relate it to
MLE.

Let us consider that y is a random variable that follows some unknown conditional
distribution p(y|x) that we want to approximate. To approximate it we consider
the following distribution:

q(y|x;θ) = N (θT x, σ2) (2.6)

We thus model y as a gaussian random variable with a mean that linearly depends
on x. We can also write this in the following alternative fashion:

y = θT x + ǫ (2.7)

where ǫ = N (0, σ2) is a random variable independent of x.

We want to find the maximum likelihood estimator for this problem:

max
θ∈Rd

log q(y|x;θ) (2.8)

where:

log q(y|x;θ) = log q(yi, · · · , yn|x1, · · · ,xn;θ) = log
n
∏

i=1

log q(yi|xi;θ) (2.9)

=
n
∑

i=1

q(yi|xi;θ) =
n
∑

i=1

−
(

yi − θ⊤xi

)2

2σ2
− 1

2
log

(

2πσ2
)

 (2.10)

= −n
2

log
(

2πσ2
)

− 1

2

n
∑

i=1

(

yi − θ⊤xi

)2

σ2
(2.11)

10

Since the first term is a constant we can rewrite the MLE problem as:

min
θ∈Rd

1

n

n
∑

i=1

(θTxi − yi)
2 (2.12)

which is the exact same problem as the linear least square problem. This shows
that a lot of methods can both be derived from the ERM principal and from the
MLE principle.

2.2 Logistic Regression

In the model we have presented above the variable y we want to predict takes real
values. However in practice we are often interested in problems where y ∈ {0, 1}.
Such problems are called binary classification problem. One simple but popular
model for this setting is called logistic regression. In logistic regression we choose
to model y has a Bernoulli random variable, such that:

q(y = 1|x;θ) =
1

1 + exp(−fθ(x))
(2.13)

= 1− q(y = 0|x) (2.14)

= σ(f(x)) (2.15)

Where σ is often called the sigmoid function. The sigmoid function has two
interesting properties:

σ(−x) = 1− σ(x) (2.16)

σ′(x) = σ(x)σ(−x) = σ(x)(1− σ(x)) (2.17)

Similarly to the previous section we will consider linear functions f of the form
fθ(x) = θTx. We can compute the log likelihood of the corresponding model:

log q(y|x;θ) =
n
∑

i=1

log q(y = yi|xi;θ) (2.18)

=
n
∑

i=1

yi log q(y = 1|xi;θ) + (1− yi) log q(y = 0|xi;θ) (2.19)

=
n
∑

i=1

yi log σ(fθ(xi)) + (1− yi) log(1− σ(fθ(xi)) (2.20)

=
n
∑

i=1

BCE(fθ(xi), yi) (2.21)

11

The function BCE is often called Binary Cross Entropy and is often used in machine
learning.

Contrary to the linear least square problem, there is no closed form solution for this
problem. We will in future sections show how we can find approximate solutions
efficiently, using iterative methods such as gradient descent.

3 Deep Neural Networks

The choice of function fθ is very important in ML. While computing solutions for
problems involving linear models can often be done efficiently, such models are not
very expressive and can only model simple relations between variables. The world
is often very non-linear, we thus need a way to express more complex functions that
can captures those non-linearities. A class of models which is very popular and
is able to model complex relationship between variables is deep neural networks
(DNN).

DNN are composed of several layers where the different layers are separated by
non-linear activation functions. We can represent such models as a composition of
functions:

fθ(x) = fL ◦ · · · f2 ◦ f1(x) (3.1)

Each layer will take as input the output of the previous layer and transform it.
The output of each layer is called the activations and the final layer outputs the
prediction.

The simplest type of DNN is the multi-layer perceptron (MLP), where each layer
applies a linear transformation to the input followed by a non-linearity where
fl(x) = σ(θlx) is the activation and θl ∈ Rdl×dl−1 is the parameter of the l-th layer,
σ is a non-linear function, a popular choice is the ReLU function σ(x) = max(0, x).
This type of model is highly expressive and can approximate any functions if the
model is sufficiently large, i.e. L ≥ 2 and dl is large enough [Hornik et al., 1989].

Another very popular type of DNN which are used to process images are Con-
volutional neural networks (CNN). They use convolutions operation to allow for
parameter sharing and thus decrease the number of parameters while remaining
highly expressive. To train very deep networks, He et al. [2016] proposed to use
residual connections, allowing to train deeper networks with up to 152 layers. Re-
cently, attention mechanisms have been shown to greatly improve the performance of
DNN on a variety of tasks. Vaswani et al. [2017] first proposed the Transformer for

12

language modeling. A variant of Transformer networks was proposed by Dosovitskiy
et al. [2021] for image classification and other computer vision application.

One of the main advantages of DNN is that we can compute the gradient of such
models efficiently using the back-propagation algorithm, which enable us to use
gradient methods to solve the minimization problem and find a solution to (1.7).
For further details about deep learning please refer [Goodfellow et al., 2016].

4 Generative models

Sometimes we want to be able to model distributions by approximating the dis-
tribution PD of the data by a parametric distribution Pθ, where the distribution
Pθ depends on some parameters θ that we want to learn. We can formulate this
problem as minimizing the divergence between PD and Pθ:

min
θ

Div(Pθ, PD) (4.1)

Here Div is a statistical divergence that measures a distance between two distribu-
tions as described in Section 1.1.

Several methods have been proposed to solve such problems and generate images.
In this section, we present variational auto-encoders (VAE) [Kingma and Welling,
2014], and generative adversarial networks (GANs) [Goodfellow et al., 2015a]. Other
models have also been proposed such as autoregressive models [Van Oord et al.,
2016], and diffusion models [Ho et al., 2020]. Recently some models have achieved
impressive resulst in image generation, in particular Ramesh et al. [2022] proposed
DALL-E-2 a generative model that can generate realistic images based on text
queries with impressive results.

4.1 Variatonal Auto-encoder (VAE)

Variational auto-encoder were first porposed by [Kingma and Welling, 2014]. VAE
are a latent variable model that use an encoder-decoder architecture, and are
optimizing a lower-bound on the negative log-likelihood (NLL).

We first introduce some random variables z ∼ Pz, such that we can write the
distribution pθ:

pθ(x) = Ez∼Pz [pθ(x|z)] (4.2)

13

Unfortunately, directly computing the likelihood of such models is intractable.
However we can derive a lower bound on the log-likelihood, using Jensen-Inequality
and by introducing a new distribution q(z|x) that we call the approximate posterior.

We first introduce the approximate posterior by rewriting the likelihood as:

pθ(x) = Ep(z)[pθ(x|z)] = Eq(z|x)

[

pθ(x|z)p(z)
q(z|x)

]

(4.3)

Then using the Jensen-Inequality, we can derive a lower-bound on the log-likelihood:

log pθ(x) ≥ Eq(z|x)

[

log
pθ(x|z)p(z)
q(z|x)

]

= Eq(z|x)[log pθ(x|z)]−KL(q(z|x)|p(z)) (4.4)

The first term is often referred to as the reconstruction error and the second term
as the regularization term.

In practice both pθ(x|z) and q(z|x) are parameterized by deep neural networks, and
we can thus use SGD to solve the following maximization problem:

max
θ,φ

Eqφ(z|x)[log pθ(x|z)]−KL(qφ(z|x)|p(z)) (4.5)

Several extensions of VAE have been proposed in the literature, such as VQ-VAE
Van Den Oord et al. [2017] which uses discrete latent variables.

4.2 Generative Adversarial Networks

Generative adversarial Networks are a type of generative model proposed by Good-
fellow et al. [2014] that defines a game between two neural networks, a generator and
a discriminator, the generator tries to fool the discriminator while the discriminator
tries to distinguish between fake and real images. They show that this game has
a Nash-Equilibrium and that at this equilibrium the samples generated by the
generator are indistinguishable from the real samples. Radford et al. [2016] were the
first to successfully train a GAN to generate 64x64 images by using convolutional
neural networks. However GANs remained challenging to train, Arjovsky and
Bottou [2017] adopted a divergence perspective and showed that the game was not
well defined leading to unstable training. In Arjovsky et al. [2017], they derive a
new game from the dual formulation of the Wasserstein metric which requires the
discriminator to be Lipschitz. Gulrajani et al. [2017], Miyato et al. [2018] propose
different type of regularization to force the discriminator to be Lipschitz. To stabilize

14

the training Lim and Ye [2017] propose to use the Hinge loss. Zhang et al. [2019]
introduce SAGAN which uses a self-attention mechanism in the generator and
discriminator to better capture long range dependencies. Combining those different
techniques Brock et al. [2019] were able to train GANs on imagenet and produced
high quality images up to 512x512 resolution. In parallel, Karras et al. [2019]
proposed StyleGAN another architecture, able to generate high quality images of
faces at a 1024x1024 resolution. Most recently, Sauer et al. [2022] improved the
architecture and achieved state of the art results on generating images at 1024x1024
resolution. This impressive achievements also bring new ethical concerns, the use of
such algorithms to spread disinformation, blackmail or discredit people has caught
the attention of the media and coined the term deep fake, to refer to videos that
have been manipulated using deep learning algorithms.

Most GANs objectives are derived from the dual formulation of the corresponding
divergence they are trying to minimize. For example the family of f-divergence,
admits the following dual formulation:

Div(Pθ, PD) = sup
D:X →R

Ex∼Pθ
[D(x)]− Ex′∼PD

[f ∗(D(x′))] (4.6)

where f ∗ is the convex conjugate of f .

This dual formulation is useful because it does not requires to know neither pθ nor
pD to be computed, but instead we only need to be able to draw samples from pθ

and pD to estimate it.

The Wasserstein-1 distance also admits a dual representation:

W1(Pθ, PD) = sup
‖D‖L≤1

Ex∼Pθ
[D(x)]− Ex′∼PD

[D(x′)] (4.7)

Following Huang et al. [2017a], we adopt a unifying view and propose to call this
type of divergence, adversarial divergence:

Divadv(Pθ, PD) = sup
D∈D

Ex∼Pθ,x′∼PD
[∆(D(x), D(x′))] (4.8)

where D is called the discriminator. The choice of family D and of δ will induce
different divergence with different properties. For example choosing D to be the
set of 1-Lipshitz function and choosing ∆(x, x′) = x − x′, is equivalent to the
Wassertein-1 distance.

Finally we introduce the notion of parametric divergence, where the discriminator

15

D is parametric, and D is parametric class of functions:

Divφ(Pθ, PD) = sup
φ∈Φ

Ex∼Pθ,x′∼PD
[∆(Dφ(x), Dφ(x′))] (4.9)

In addition GANs use a parametric generator that generates samples x ∼ Pθ through
the following process:

x = gθ(ǫ) with ǫ ∼ Pǫ (4.10)

where Pǫ could be any distribution but in practice the normal or uniform distribution
are often used.

By combining this parametric generator with the parametric divergence defined
above, we can derive the min-max problem GANs are trying to solve:

min
θ

max
φ

Eǫ∼Pǫ,x′∼PD
[∆(Dφ(gθ(ǫ)), Dφ(x′))] (4.11)

Most GAN formulations can be viewed as an instance of this problem, with difference
choice of ∆, Θ and Φ leading to different formulations with different properties
and solutions which are not yet fully understood. For an overview and comparison
about the properties of the different adversarial divergence refer to Huang et al.
[2017a].

Several papers proposed to apply separate regularization to the generator and the
discriminator Gulrajani et al. [2017], we can adopt a more general game formulation
that can capture this regularization, where we define different objective functions
for the generator and the discriminator:

min
θ
Lθ(θ, φ) and min

φ
Lφ(θ, φ) (4.12)

whereLθ(θ, φ) is the loss of the generator and Lφ(θ, φ) is the loss of the discriminator.

The goal of GANs is to find the equilibrium of this game. Given that both
the generator and discriminator are expressive enough this game admits a Nash-
Equilibrium where the optimal samples generated by the generator are identical to
the real samples.

This type of problem is a particular instance of a 2-player game, we will discuss
multi-player games in Section 7.

16

5 Adversarial Learning

Along the great success and deployment of machine learning models in the real
world, some concerns have been raised about the security of such system. One such
concern is the ability to manipulate the prediction of a model through different
type of attacks. In this section we will look at a particular type of attacks called
Adversarial attacks.

Adversarial Attacks. Adversarial attacks is a type of attack that is able to
disrupt the prediction of a model by adding a small amount of noise to the input
of the model. Here we will take the point of view of the attacker and explain how
someone with ill-intentions could construct such an attack. We will look at such
problems in the context of classification.

As a reminder the classification problem is the following:

min
θ

Ex,y∼PD
[L(y, fθ(x))] (5.1)

where fθ(x) is the prediction of the model for input x.

The goal of the attacker is to solve the following problem:

max
ǫ
L(y, fθ(x+ ǫ)) with ||ǫ|| ≤ r (5.2)

We impose a constraint on the perturbation the attacker can produce, since the
goal of the attacker is to remain undetected we constraint the attack to be in a ball
of small radius ǫ.

Two types of attacks have been proposed. In black-box attacks, we assume the
attacker can only query the output of the model but does not have access to the
parameters of the model and thus the attacker cannot compute the gradient of the
model. In white-box attacks, the attacker also has access to the parameters and
the gradient of the model.

Several works proposed to use gradient based methods to craft such attacks. Good-
fellow et al. [2015a] proposed the fast gradient sign method (FGSM) by taking the
sign of the gradient of the loss function, and Madry et al. [2018] proposed to use
projected gradient descent (PGD) to solve (5.2).

Adversarial training.

17

To prevent such attacks several defense strategies have been proposed. One popular
solution is to formulate the problem as a robust optimization problem.

min
θ

Ex,y∼pD
[max

ǫ
L(y, fθ(x+ ǫ))] (5.3)

To solve this problem Madry et al. [2018] proposed at each iteration to construct
attacks using PGD and then train the model on both the original and perturbed
examples. This method greatly improved the robustness of the model to such
attacks.

6 Optimization

In previous sections we have looked at several machine learning problems, we have
seen that a lot of those problems can be formulated as unconstrained minimization
problem:

min
θ
f(θ) (6.1)

In this section we will present some useful concept and algorithms from optimization
to solve such problems. We first introduce some definitions and notions that are
useful:

Convexity. A function f is said to be convex if it satisfies the following condition:

f(tx+ (1− t)y) ≤ tf(x) + (t− 1)f(y) (6.2)

If f is differentiable another equivalent condition is the following:

f(x)− f(y) ≤ ∇f(x)(x− y) (6.3)

Strong-convexity. A slightly stronger condition for a function is for the function
to be µ-strongly convex:

f(tx+ (1− t)y) ≤ tf(x) + (t− 1)f(y) +
µ

2
||x− y||2 (6.4)

18

Smoothness. Another useful notion is the notion of smoothness, a function is
said to be L-smooth if its gradient is L-Lipschitz:

||∇f(x)−∇f(y)|| ≤ L||x− y|| (6.5)

If the function is twice differentiable we can characterize the spectrum of the Hessian
of f , denoted by ∇2f :

f is µ-strongly convex iff ∇2f � µ (6.6)

f is L-smooth iff − L � ∇2f � L (6.7)

6.1 Gradient Descent

To solve (6.1), we can use iterative methods. A popular iterative method to solve
this type of problems are gradient based methods. The most simple version is called
Gradient Descent:

θk+1 = θk − γ∇f(θk) (6.8)

where γ is called the step-size or the learning rate.

If we assume that f is µ-strongly convex and L-smooth, we can show that gradient
descent converges linearly to the solution with γ = 1

L
, see Gower [2018] for a proof:

||xk − x∗||2 ≤
(

1− 1

κ

)k

||x0 − x∗|| (6.9)

Where κ = L
µ

is called the condition number, this number provides an indication
of the tightness on the bounds of the curvature of f , and thus of the difficulty to
optimize f , larger κ will lead to slower convergence.

This rate of convergence can be improved by using accelerated methods, for example
Nesterov [2013] proposed Nesterov’s acceleration which is optimal for this type of
problems. For an overview of accelerated methods see d’Aspremont et al. [2021].
Other methods have been proposed, some are specifically tailored to deep learning
applications such as Adam [Kingma and Ba, 2015]. For further information, Ruder
[2016] provides an overview of existing algorithms for training deep learning models.

19

6.2 Stochastic Gradient Descent

In ML, we are often interested in solving stochastic minimization problems of the
form:

min
θ

Ex∼pD
[f(θ;x)] (6.10)

A particular case of this is when we have a finite dataset, and have the following
finite sum problem:

min
θ

n
∑

i=1

fi(θ) (6.11)

In order to solve this type of problems we can use stochastic algorithms that use
unbiased estimate of the gradients gk such that E[gk] = Ex∼pD

[f(θk;x)], by using
unbiased estimate of the gradient with gradient descent we get the stochastic
gradient descent (SGD) algorithm:

θk+1 = θk − γgk (6.12)

Contrarly to the deterministic case, SGD does not converge to the solution but
instead only converges to a neighborhood of the solution when the function is
µ-strongly convex and L-smooth. In order to converge to the exact solution,
we need to use a decreasing step-size, however by doing so we lose the linear
convergence guarantees. To fix this issue, variations have been proposed that use
variance reduction techniques to get linear convergence to the solution. For example,
Johnson and Zhang [2013] proposed SVRG a method that computes the full batch
gradient every n iterations. Defazio et al. [2014] proposed SAGA another variance
reduced method, that keeps the gradients of all the samples in memory.

6.3 Non-convex optimization

In practice the problems we are trying to solve are often non-convex and thus
the assumptions we made to provide convergence guarantees do not hold anymore.
However it has been observed, in the case of deep neural networks, that using
gradient methods often perform really well and converge to very good solutions.
Several works have tried to provide convergence guarantees for non-convex problems.
[Gower et al., 2019] derived convergence guarantees for SGD for a class of non-convex
problem which has a unique global minimum. Allen-Zhu et al. [2019] show that
when a neural network is overparametrized, i.e. the number of parameters in the

20

model is large compared to the number of training examples, SGD converges to a
global minimum of the training objective.

Some good reference on optimization includes Boyd and Vandenberghe [2004],
Bubeck et al. [2015], Hazan [2019].

7 Smooth multi-player games

In the previous section we looked at unconstrained minimization problem. However
some problem such as GANs requires solving a different type of problems, where
instead of minimizing a single objective, the goal is to find the Nash-Equilibrium of
a game between two players with opposite objectives, where the solution of a player
depends on the solution of the other player. This type of games are referred to as
multi-player games.

In multi-player games we can have n different players, each with their own objective
function and with their own set of parameters. We will denote the loss and
parameter of player k by Lk and θk, respectively. We will also define a vector θ
as the concatenation of the parameters of all the players. Each player is trying to
minimize its own loss, we are thus trying to solve n problems simultaneously:

min
θ1

L1(θ)

...

min
θn

Ln(θ)

In the rest of this thesis, we will assume that all Lk are twice differentiable.

When the losses Lk are differentiable, another way to represent such a game is
through its vector field, which is the concatenation of the loss of all the players:

F (θ) =

∇L1(θ)
...

∇Ln(θ)

(7.1)

Solving this type of problems require finding equilibrium points. We define equilib-
rium points as stationary points of the vector field F (θ) where F (θ) = 0. Several
notion of equilibrium and optimality have been proposed in the literature. A first

21

notion of optimality was introduced by Nash et al. [1950], are called Nash-Equilibria.
A Nash-equlibrium is a point such that no player can improve its own loss by
deviating from its current strategy given all the other players remain fixed. We can
characterize such point by their first and second order condition:

First order condition: F (θ) = 0

Second order condition: ∇2
θk
Lk(θ) � 0 ∀k ∈ {1, · · · , n}

Another notion of optimality that comes from the dynamical system literature
comes, is the notion of locally stable stationary point (LSSP). A point is locally
stable, if for every possible small perturbations in a radius ǫ, the dynamic of the
game F (θ) will converge back to that point. Such points can also be characterized
using first and second order conditions:

First order condition: F (θ) = 0

Second order condition: ℜ(λ) ≥ 0 ∀λ ∈ Sp(∇F (θ))

Variational Inequality Problem (VIP). In the previous section we considered
the unconstrained case, however sometimes we might consider some problems where
we add constraints on θ. For example, Arjovsky et al. [2017] propose to constraint
the parameters of the discriminator to lie inside a l∞ ball.

In that case we can formulate the problem of finding a stationary point of the game
as a variational inequality problem :

find θ∗ ∈ Θ such that F (θ∗)T (θ − θ∗) ≥ 0, ∀θ ∈ Θ (7.2)

Solving this problem is equivalent to find stationary point of the vector field F (θ).

We can generalize the notion of convexity, by defining motonicity. F is said to be
monotone iff:

(F (θ)− F (θ′))T (θ − θ′) ≥ 0 ∀θ, θ′ ∈ Θ (7.3)

For further details on VIP, see Harker and Pang [1990], Facchinei and Pang.

Algorithms. Several algorithms have been proposed to solve VIP. In particular,
gradient descent is not guaranteed to converge to the solution of the game when F
is monotone. To adress this issue, [Korpelevich, 1976] proposed extragradient, an
algorithm that uses an extrapolation step before updating the parameters. More
recently [Mescheder et al., 2017] proposed two new algorithms hamiltonian gradient
descent (HGD) and consensus optimization to solve games by minimizing the norm
of F . [Loizou et al., 2020] derived convergence guarantees for SHGD on a special
class of nonconvex-nonconcave games. Finally, Gidel et al. [2019b] proposed to fix
gradient descent by adding a negative momentum term.

22

3
Prologue to the First
Contribution

1 Article Details

A Variational Inequality Perspective on Generative Adversarial Net-
works. Gauthier Gidel, Hugo Berard, Gaëtan Vignoud, Pascal Vincent and Simon
Lacoste-Julien. This paper was published at ICLR 2019 [Gidel et al., 2019a].

2 Contributions of the authors

This contribution resulted from the interaction between Hugo Berard interested in
GANs and Gauthier Gidel interested in min-max optimization. By merging their
expertise they were able to bring tools and results from the optimization literature to
the GAN community. Hugo Berard contributed his knowledge and experience about
training GANs, while Gauthier Gidel contributed his knowledge of optimization
and variatonal inequality. The idea of ExtraAdam emerged from combining those
two expertises. They both contributed to the writing of the paper, with Hugo
Berard focusing more on GANs and on the experimental results and Gauthier Gidel
focusing more on VIP and on the theoretical results. Gaëtan Vignoud came up
with the idea for extragradient from the past and proof-read the proofs of the
paper. Pascal Vincent and Simon Lacoste-Julien supervised the project, Simon
Lacoste-Julien also orignially came up with the idea of making a connection between
the variational inequality literature and GANs.

3 Context and Impact

At the time of writing this article GANs started to become hugely popular and
the first large-scale results on CIFAR-10 and CelebA were published. However the

23

quality of the results were still far from perfect and generative models could only
generate relatively low dimensional images. Furthermore GANs were notoriously
hard to train requiring a lot of fine-tuning of the hyper-parameters, and requiring
a lot of tricks [Salimans et al., 2016] to make the training more stable. Most of
the theory about GANs adopted a divergence perspective. For example, Arjovsky
et al. [2017] proposed the Wasserstein distance as a solution to the limitations of
the KL divergence. Based on those theoretical results people started using different
regularization techniques to stabilize training [Gulrajani et al., 2017, Miyato et al.,
2018]. One of the first article, to look at the instability in GANs from an optimization
perspective was Mescheder et al. [2017], they were the first to show that instabilities
during training came from the adversarial nature of the game that leads to the
Jacobian of the game having imaginary eigenvalues that make gradient descent-
ascent diverge. Starting from this observation and by tapping in the optimization
literature, we tried in this work to bridge the gap between the optimization literature
and GANs. To do so we cast GANs as an instance of the variational inequality
problem. Leveraging the vast literature on variational inequality, we proposed to
use extragradient and combined it to Adam, a popular method used to train GANs,
resulting in a new algorithm that we call ExtraAdam. This work also highlighted
some of the limitations of current theoretical results. Since then several works
have tried to extend the theory to provide better algorithms and guarantees for
stochastic and non-monotone games. A non-exhaustive list of papers that extend
this work includes, Lin et al. [2020] who provides convergence guarantees for GDA
on nonconvex-concave games. Yang et al. [2020] that derive convergence guarantees
for SGDA on a class of nonconvex-nonconcave games. Chavdarova et al. [2019]
proposes a variance-reduced version of extragradient to train GANs. Gorbunov
et al. [2022] provide a general analysis of extragradient for quasi-strongly-monotone
VIP. Some observations made in the paper such as for example the observation that
averaging can help improve performance are now widely used in the GAN literature
[Brock et al., 2019].

Limitations and Remarks. We would like to mention some limitations of
this work. First, we could not derive an algorithm with last-iterate convergence
guarantees for monotone games in the stochastic setting. Extragradient by itself
was not able to improve over Adam, instead we proposed to combine extragradient
with Adam resulting in a new algorithm called ExtraAdam, this improved the
results over Adam and training was more stable. However it still required careful
tuning of the hyper-parameters in particular the different step-sizes for the generator
and the discriminator. It is still not clear why Adam is necessary to achieve good
performance, Jelassi et al. [2021] proposed an explanation showing that the main
advantage of Adam comes from the normalization of the gradients. Choosing
different step-size for both players seemed to have a major impact on performance,
we were not able to provide any theoretical reason for this observation.

24

4
A Variational Inequality
Perspective on Generative
Adversarial Networks

Abstract

Generative adversarial networks (GANs) form a generative modeling approach
known for producing appealing samples, but they are notably difficult to train.
One common way to tackle this issue has been to propose new formulations of
the GAN objective. Yet, surprisingly few studies have looked at optimization
methods designed for this adversarial training. In this work, we cast GAN optimiza-
tion problems in the general variational inequality framework. Tapping into the
mathematical programming literature, we counter some common misconceptions
about the difficulties of saddle point optimization and propose to extend techniques
designed for variational inequalities to the training of GANs. We apply averaging,
extrapolation and a novel computationally cheaper variant that we call extrapolation
from the past to the stochastic gradient method (SGD) and Adam.

1 Introduction

Generative adversarial networks (GANs) [Goodfellow et al., 2014] form a generative
modeling approach known for producing realistic natural images [Karras et al., 2018]
as well as high quality super-resolution [Ledig et al., 2017] and style transfer [Zhu
et al., 2017]. Nevertheless, GANs are also known to be difficult to train, often
displaying an unstable behavior [Goodfellow, 2016]. Much recent work has tried to
tackle these training difficulties, usually by proposing new formulations of the GAN
objective [Nowozin et al., 2016, Arjovsky et al., 2017]. Each of these formulations
can be understood as a two-player game, in the sense of game theory [Neumann
and Morgenstern, 1944], and can be addressed as a variational inequality problem
(VIP) [Harker and Pang, 1990], a framework that encompasses traditional saddle
point optimization algorithms [Korpelevich, 1976].

Solving such GAN games is traditionally approached by running variants of stochas-
tic gradient descent (SGD) initially developed for optimizing supervised neural

25

network objectives. Yet it is known that for some games [Goodfellow, 2016, §8.2]
SGD exhibits oscillatory behavior and fails to converge. This oscillatory behavior,
which does not arise from stochasticity, highlights a fundamental problem: while a
direct application of basic gradient descent is an appropriate method for regular
minimization problems, it is not a sound optimization algorithm for the kind of
two-player games of GANs. This constitutes a fundamental issue for GAN training,
and calls for the use of more principled methods with more reassuring convergence
guarantees.

Contributions.. We point out that multi-player games can be cast as variational
inequality problems and consequently the same applies to any GAN formulation
posed as a minimax or non-zero-sum game. We present two techniques from this
literature, namely averaging and extrapolation, widely used to solve variational
inequality problems (VIP) but which have not been explored in the context of
GANs before.1

We extend standard GAN training methods such as SGD or Adam into variants
that incorporate these techniques (Alg. 3, 4 are new). We also explain that the
oscillations of basic SGD for GAN training previously noticed [Goodfellow, 2016]
can be explained by standard variational inequality optimization results and we
illustrate how averaging and extrapolation can fix this issue.

We introduce a new technique, called extrapolation from the past, that only requires
one gradient computation per iteration compared to extrapolation which requires to
compute the gradient twice. We prove its convergence in the stochastic variational
inequality setting, i.e. when applied to SGD.

Finally, we test these techniques in the context of standard GAN training. We
observe a 4%-6% improvement on the inception score [Salimans et al., 2016] of
WGAN [Arjovsky et al., 2017] and WGAN-GP [Gulrajani et al., 2017] on the
CIFAR-10 dataset.

Outline.. §2 presents the background on GAN and optimization, and shows how
to cast this optimization as a VIP. §3 presents standard techniques to optimize
variational inequalities in a batch setting as well as our new one, extrapolation
from the past. §4 considers these methods in the stochastic setting, yielding three
corresponding variants of SGD, and provides their respective convergence rates.
§5 develops how to combine these techniques with already existing algorithms. §6
discusses the related work and §7 presents experimental results.

1Independent works [Mertikopoulos et al., 2019] and [Yazıcı et al., 2019] respectively explored
extrapolation and averaging in the context of GANs. More details in related work section §6.

26

2 GAN optimization as a variational inequality

problem

2.1 GAN formulations

The purpose of generative modeling is to generate samples from a distribution qθ
that matches best the true distribution p of the data. The generative adversarial
network training strategy can be understood as a game between two players called
generator and discriminator. The former produces a sample that the latter has to
classify between real or fake data. The final goal is to build a generator able to
produce sufficiently realistic samples to fool the discriminator.

In the original GAN paper [Goodfellow et al., 2014], the GAN objective is formulated
as a zero-sum game where the cost function of the discriminator Dϕ is given by the
negative log-likelihood of the binary classification task between real or fake data
generated from qθ by the generator,

min
θ

max
ϕ
L(θ,ϕ) where L(θ,ϕ) := −E

x∼p
[logDϕ(x)]− E

x′∼qθ
[log(1−Dϕ(x′))] . (2.1)

However Goodfellow et al. [2014] recommends to use in practice a second formulation,
called non-saturating GAN. This formulation is a non-zero-sum game where the
aim is to jointly minimize:

L(θ)(θ,ϕ) := − E
x′∼qθ

logDϕ(x′) and L(ϕ)(θ,ϕ) := −E
x∼p

logDϕ(x)− E
x′∼qθ

log(1−Dϕ(x′)) .

(2.2)
The dynamics of this formulation have the same stationary points as the zero-sum
one (2.1) but are claimed to provide “much stronger gradients early in learn-
ing” [Goodfellow et al., 2014] .

2.2 Equilibrium

The minimax formulation (2.1) is theoretically convenient because a large literature
on games studies this problem and provides guarantees on the existence of equilibria.
Nevertheless, practical considerations lead the GAN literature to consider a different
objective for each player as formulated in (2.2). In that case, the two-player game
problem [Neumann and Morgenstern, 1944] consists in finding the following Nash
equilibrium:

θ∗ ∈ arg min
θ∈Θ

L(θ)(θ,ϕ∗) and ϕ∗ ∈ arg min
ϕ∈Φ

L(ϕ)(θ∗,ϕ) . (2.3)

27

Only when L(θ) = −L(ϕ) is the game called a zero-sum game and (2.3) can be
formulated as a minimax problem. One important point to notice is that the two
optimization problems in (2.3) are coupled and have to be considered jointly from
an optimization point of view.

Standard GAN objectives are non-convex (i.e. each cost function is non-convex),
and thus such (pure) equilibria may not exist. As far as we know, not much is
known about the existence of these equilibria for non-convex losses (see Heusel et al.
[2017] and references therein for some results). In our theoretical analysis in §4, our
assumptions (monotonicity (4.1) of the operator and convexity of the constraints
set) imply the existence of an equilibrium.

In this paper, we focus on ways to optimize these games, assuming that an equi-
librium exists. As is often standard in non-convex optimization, we also focus on
finding points satisfying the necessary stationary conditions. As we mentioned
previously, one difficulty that emerges in the optimization of such games is that the
two different cost functions of (2.3) have to be minimized jointly in θ and ϕ. Fortu-
nately, the optimization literature has for a long time studied so-called variational
inequality problems, which generalize the stationary conditions for two-player game
problems.

2.3 Variational inequality problem formulation

We first consider the local necessary conditions that characterize the solution of
the smooth two-player game (2.3), defining stationary points, which will motivate
the definition of a variational inequality. In the unconstrained setting, a stationary
point is a couple (θ∗,ϕ∗) with zero gradient:

‖∇θL(θ)(θ∗,ϕ∗)‖ = ‖∇ϕL(ϕ)(θ∗,ϕ∗)‖ = 0 . (2.4)

When constraints are present,2 a stationary point (θ∗,ϕ∗) is such that the directional
derivative of each cost function is non-negative in any feasible direction (i.e. there
is no feasible descent direction):

∇θL(θ)(θ∗,ϕ∗)⊤(θ−θ∗) ≥ 0 and ∇ϕL(ϕ)(θ∗,ϕ∗)⊤(ϕ−ϕ∗) ≥ 0 , ∀ (θ,ϕ) ∈ Θ×Φ.
(2.5)

Defining ω := (θ,ϕ), ω∗ := (θ∗,ϕ∗), Ω := Θ × Φ, Eq. (2.5) can be compactly
formulated as:

F (ω∗)⊤(ω−ω∗) ≥ 0 , ∀ω ∈ Ω where F (ω) :=
[

∇θL(θ)(θ,ϕ) ∇ϕL(ϕ)(θ,ϕ)
]⊤

.

(2.6)

2An example of constraint for GANs is to clip the parameters of the discriminator [Arjovsky
et al., 2017].

28

These stationary conditions can be generalized to any continuous vector field: let
Ω ⊂ Rd and F : Ω → Rd be a continuous mapping. The variational inequality
problem [Harker and Pang, 1990] (depending on F and Ω) is:

find ω∗ ∈ Ω such that F (ω∗)⊤(ω − ω∗) ≥ 0 , ∀ω ∈ Ω . (VIP)

We call optimal set the set Ω∗ of ω ∈ Ω verifying (VIP). The intuition behind it is
that any ω∗ ∈ Ω∗ is a fixed point of the constrained dynamic of F (constrained to
Ω).

We have thus showed that both saddle point optimization and non-zero sum game
optimization, which encompasses the large majority of GAN variants proposed in
the literature, can be cast as Variational Inequality Problems. In the following
section, we turn to suitable optimization techniques for such problems.

3 Optimization of Variational Inequalities

(batch setting)

Let us begin by looking at techniques that were developed in the optimization
literature to solve (VIP). We present the intuitions behind them as well as their
performance on a simple bilinear problem (see Fig. 4.1). Our goal here is to provide
mathematical insights into the techniques of averaging (§3.1) and extrapolation
(§3.2), to inspire their application to extending other optimization algorithm. We
then propose a novel variant of the extrapolation technique in §3.3 extrapolation
from the past. We here treat the batch setting, i.e. considering that the operator
F (ω) as defined in Eq. 2.6 yields an exact full gradient. We will present extensions
of these techniques to the stochastic setting later in §4.

The two standard methods studied in the VIP literature are the gradient
method [Bruck, 1977] and the extragradient method [Korpelevich, 1976]. The
iterates of the basic gradient method are given by ωt+1 = PΩ[ωt − ηF (ωt)] where
PΩ[·] is the projection onto the constraints set (if constraints are present) associated
to (VIP). These iterates are known to converge linearly under an additional
assumption on the operator3 [Chen and Rockafellar, 1997], but oscillate for a
bilinear operator as shown in Fig. 4.1. On the other hand, the uniform average
of these iterates converge for any bounded monotone operator with a O(1/

√
t)

rate [Nedić and Ozdaglar, 2009], motivating the presentation of averaging in §3.1.
By contrast, the extragradient method (extrapolated gradient) does not require any

3Strong monotonicity, a generalization of strong convexity. See §1.

29

averaging to converge for monotone operators (in the batch setting), and can even
converge at the faster O(1/t) rate [Nesterov, 2007]. The idea of this method is
to compute a lookahead step (see intuition on extrapolation in §3.2) in order to
compute a more stable direction to follow.

3.1 Averaging

More generally, we consider a weighted averaging scheme with weights ρt ≥ 0. This
weighted averaging scheme have been proposed for the first time for (batch) VIP
by Bruck [1977],

ω̄T :=

∑T −1
t=0 ρtωt

ST

, ST :=
T −1
∑

t=0

ρt . (3.1)

Averaging schemes can be efficiently implemented in an online fashion noticing that,

ω̄t = (1− ρ̃t)ω̄t−1 + ρ̃tωt where 0 ≤ ρ̃t ≤ 1 . (3.2)

For instance, setting ρ̃t = 1
t

provides uniform averaging (ρt = 1) and ρ̃t = 1− β < 1
provides geometric averaging also known as exponential moving averaging (ρt = βt).
Averaging is experimentally compared with the other techniques presented in this
section in Fig. 4.1.

In order to illustrate how averaging tackles the oscillatory behavior in game opti-
mization, we consider a toy example where the discriminator and the generator are
linear: Dϕ(x) = ϕT x and Gθ(z) = θz (implicitly defining qθ). By replacing these
expressions in the WGAN objective,4 we get the following bilinear objective:

min
θ∈Θ

max
ϕ∈Φ,||ϕ||≤1

ϕTE[x]−ϕTθE[z] . (3.3)

A similar task was presented by Nagarajan and Kolter [2017] where they consider a
quadratic discriminator instead of a linear one, and show that gradient descent is
not necessarily asymptotically stable. The bilinear objective has been extensively
used [Goodfellow, 2016, Mescheder et al., 2018, Yadav et al., 2018] to highlight the
difficulties of gradient descent for saddle point optimization. Yet, ways to cope
with this issue have been proposed decades ago in the context of mathematical
programming. Simplifying further by setting the dimension to 1 and centering the
equilibrium to the origin, Eq. 3.3 becomes:

min
θ∈R

max
φ∈R

θ · φ and (θ∗, φ∗) = (0, 0) . (3.4)

4Wasserstein GAN (WGAN) proposed by Arjovsky et al. [2017] boils down to the following
minimax formulation: minθ∈Θ maxϕ∈Φ,||Dϕ||L≤1 Ex∼p[Dϕ(x)]− Ex

′∼qθ
[Dϕ(x′)].

30

The operator associated with this minimax game is F (θ, φ) = (φ,−θ). There are
several ways to compute the discrete updates of this dynamics. The two most
common ones are the simultaneous and the alternated gradient update rules,

Simultaneous:

{

θt+1 = θt − ηφt

φt+1 = φt + ηθt

, Alternated:

{

θt+1 = θt − ηφt

φt+1 = φt + ηθt+1

. (3.5)

Interestingly, these two choices give rise to have a completely different behavior.
The norm of the simultaneous updates diverges geometrically whereas the alternated
iterates are bounded but do not converge to the equilibrium. As a consequence,
their respective uniform average has a different behavior, as highlighted in the
following proposition (more details and proof in §2.1):

Proposition 1. The simultaneous iterates diverge geometrically and the alternated
iterates defined in (3.5) are bounded but do not converge to 0 as

Simultaneous: θ2
t+1+φ2

t+1 = (1+η2)(θ2
t +φ2

t) , Alternated: θ2
t +φ2

t = Θ(θ2
0 +φ2

0)
(3.6)

where ut = Θ(vt)⇔ ∃α, β > 0 : αvt ≤ ut ≤ βvt.

The uniform average (θ̄t, φ̄t) := 1
t

∑t−1
s=0(θs, φs) of the simultaneous updates (resp.

the alternated updates) diverges (resp. converges to 0) as,

Simultaneous: θ̄2
t +φ̄2

t = Θ

(

θ2
0 + φ2

0

η2t2
(1 + η2)t

)

, Alternated: θ̄2
t +φ̄2

t = Θ

(

θ2
0 + φ2

0

η2t2

)

.

(3.7)

This sublinear convergence result, proved in §2, underlines the benefits of averaging
when the sequence of iterates is bounded (i.e. for alternated update rule). When
the sequence of iterates is not bounded (i.e. for simultaneous updates) averaging
fails to ensure convergence. This theorem also shows how alternated updates may
have better convergence properties than simultaneous updates.

3.2 Extrapolation

Another technique used in the variational inequality literature to prevent oscilla-
tions is extrapolation. This concept is anterior to the extragradient method since
Korpelevich [1976] mentions that the idea of extrapolated “prices” to give “stability”
had been already formulated by Polyak [1963, Chap. II]. The idea behind this
technique is to compute the gradient at an (extrapolated) point different from the
current point from which the update is performed, stabilizing the dynamics:

Compute extrapolated point: ωt+ 1

2

= PΩ[ωt − ηF (ωt)] , (3.8)

Perform update step: ωt+1 = PΩ[ωt − ηF (ωt+ 1

2

)] . (3.9)

31

Note that, even in the unconstrained case, this method is intrinsically different from
Nesterov’s momentum5 [Nesterov, 1983, Eq. 2.2.9] because of this lookahead step
for the gradient computation:

Nesterov’s method: ωt+ 1

2

= ωt − ηF (ωt) , ωt+1 = ωt+ 1

2

+ β(ωt+ 1

2

− ωt) .

(3.10)
Nesterov’s method does not converge when trying to optimize (3.4). One intu-
ition explaining why extrapolation provides better convergence properties than the
standard gradient method comes from Euler’s method framework (see for instance
[Atkinson, 2003] for more details on that topic). Actually, if we consider a first
order approximation of ωt+ 1

2

, we have ωt+ 1

2

≈ ωt+1 + o(η) and consequently, the

update step (3.9) is close to an implicit method step:

Implicit step: ωt+1 = ωt − ηF (ωt+1) . (3.11)

In the literature on Euler’s method, implicit methods are known to be more stable
and to benefit from better convergence properties [Atkinson, 2003] than explicit
methods. They are not often used in practice though since they require to solve a
potentially non-linear system at each iteration.

Taking back the simplified WGAN toy example (3.4) from §3.1 we get the following
update rules,

Implicit:

{

θt+1 = θt − ηφt+1

φt+1 = φt + ηθt+1

, Extrapolation:

{

θt+1 = θt − η(φt + ηθt)

φt+1 = φt + η(θt − ηφt)
.

(3.12)
In the following proposition, we will see that the respective convergence rates of
the implicit method and extrapolation are highly similar. Keeping in mind that
the latter has the major advantage of being more practical, this proposition clearly
underlines the benefits of extrapolation (more details and proof in §2.2),

Proposition 2. The squared norm of the iterates Nt := θ2
t + φ2

t , where the update
rule of θt and φt are defined in (3.12), decreases geometrically for any η < 1 as,

Implicit: Nt+1 =
(

1−η2+η4+O(η6)
)

Nt , Extrapolation: Nt+1 = (1−η2+η4)Nt .

(3.13)

3.3 Extrapolation from the past

One issue with extrapolation is that the algorithm “wastes” a gradient (3.8). Indeed
we need to compute the gradient at two different positions for every single update

5Sutskever [2013, §7.2] showed the equivalence between “standard momentum” and Nesterov’s
formulation.

32

of the parameters. [Popov, 1980] proposed a similar technique that only requires
a single gradient computation per update. The idea is to store and re-use the
extrapolated gradient for the extrapolation:

Extrapolation from the past: ωt+ 1

2

= PΩ[ωt − ηF (ωt− 1

2

)] (3.14)

Perform update step: ωt+1 = PΩ[ωt − ηF (ωt+ 1

2

)] (3.15)

and store: F (ωt+ 1

2

) .

A similar update scheme was proposed by Chiang et al. [2012, Alg. 1] in the context
of online convex optimization and generalized by Rakhlin and Sridharan [2013]
for general online learning. Without projection, (3.14) and (3.15) reduce to the
optimistic mirror descent described by Daskalakis et al. [2018]:

Optimistic mirror descent (OMD): ωt+ 1

2

= ωt− 1

2

−2ηF (ωt− 1

2

)+ηF (ωt− 3

2

) (3.16)

OMD was proposed with similar motivation as ours, namely tackling oscillations due
to the game formulation in GAN training, but with an online learning perspective.
Using the VIP point of view, we are able to prove a linear convergence rate for
extrapolation from the past (see details and proof of Theorem 1 in §2.3). We also
provide results on the averaged iterate for a stochastic version in §4. In comparison
to the convergence results from Daskalakis et al. [2018] that hold for a bilinear
objective, we provide a faster convergence rate (linear vs sublinear) on the last
iterate for a general (strongly monotone) operator F and any projection on a convex
Ω. One thing to notice is that the operator of a bilinear objective is not strongly
monotone, but in that case one can use the standard extrapolation method (3.8)
which converges linearly for an unconstrained bilinear game [Tseng, 1995, Cor. 3.3].

Theorem 1 (Linear convergence of extrapolation from the past). If F is µ-strongly
monotone (see Appendix A §1 for the definition of strong monotonicity) and L-
Lipschitz, then the updates (3.14) and (3.15) with η = 1

4L
provide linearly converging

iterates,

‖ωt − ω∗‖2
2 ≤

(

1− µ

4L

)t

‖ω0 − ω∗‖2
2 , ∀t ≥ 0 . (3.17)

4 Optimization of VIP with stochastic gradients

In this section, we consider extensions of the techniques presented in section §3
for solving (VIP), to the context of a stochastic operator. In this case, at each
time step we no longer have access to the exact gradient F (ω) but to an unbiased
stochastic estimate of it F (ω, ξ) where ξ ∼ P and F (ω) := Eξ∼P [F (ω, ξ)]. This is

33

motivated from the GAN formulation where we only have access to a finite sample
estimate of the expected gradient, computed on a mini-batch. For GANs, ξ is thus
a mini-batch of points coming from the true data distribution p and the generator
distribution qθ.

For our analysis, we require at least one of the two following assumptions on the
stochastic operator:

Assumption 1. Bounded variance by σ2: Eξ[‖F (ω)− F (ω, ξ)‖2] ≤ σ2 , ∀ω ∈ Ω .

Assumption 2. Bounded expected squared norm by M2:

Eξ[‖F (ω, ξ)‖2] ≤M2, ∀ω ∈ Ω.

Assump. 1 is standard in stochastic variational analysis, while Assump. 2 is a stronger
assumption sometimes made in stochastic convex optimization. To illustrate how
strong Assump. 2 is, note that it does not hold for an unconstrained bilinear
objective like in our example 3.4 in §3. It is thus mainly reasonable for bounded
constraint sets. Note that in practice we have σ ≪M .

We now present and analyse three algorithms, variants of SGD that are appropriate
to solve (VIP). The first one Alg. 1 (AvgSGD) is the stochastic extension of the
gradient method for solving (VIP); Alg. 2 (AvgExtraSGD) uses extrapolation and
Alg. 3 (AvgPastExtraSGD) uses extrapolation from the past. A fourth variant (Alg.5)
is proposed in §4. These three algorithms return an average of the iterates. The
proofs of the theorems presented in this section are in §6.

To handle constraints such as parameter clipping [Arjovsky et al., 2017], we present
a projected version of theses algorithms, where PΩ[ω′] denotes the projection of ω′

onto Ω (see §1). Note that when Ω = Rd, the projection is the identity mapping
(unconstrained setting). In order to prove the convergence of these three algorithms
we will assume that F is monotone:

(F (ω)− F (ω′))⊤(ω − ω′) ≥ 0 ∀ω,ω′ ∈ Ω . (4.1)

If F can be written as (2.6), it implies that the cost functions are convex.6 Conse-
quently, GANs parametrized with neural networks lead to non-monotone VIPs.

Assumption 3. F is monotone and Ω is a compact convex set, such that
maxω,ω′∈Ω ‖ω − ω′‖2 ≤ R2.

6The convexity of the cost functions in (2.3) is a necessary condition (not sufficient) for the
operator to be monotone. In the context of a zero-sum game, the convexity of the cost functions
is a sufficient condition.

35

In that setting the quantity g(ω) := maxω∈Ω F (ω∗)⊤(ω̄∗ − ω) is well de-
fined and is equal to 0 if and only if ω∗ is a solution of (VIP). Moreover,
if we are optimizing a zero-sum game, we have ω = (θ,ϕ), Ω = Θ × Φ
and F (θ,ϕ) = [∇θL(θ,ϕ) − ∇ϕL(θ,ϕ)]⊤. Hence, the quantity
h(θ,ϕ) := maxθ∈Θ L(θ,ϕ∗) − minϕ∈Φ L(θ∗,ϕ) is well defined and equal to
0 if and only if (θ∗,ϕ∗) is a Nash equilibrium of the game. The two functions g and
h are called merit functions (more details on the concept of merit functions in §3).
In the following, we call,

Err(ω) :=

max
θ,ϕ∈Θ×Φ

L(θ,ϕ∗)− L(θ∗,ϕ) if F (θ,ϕ) = [∇θL(θ,ϕ) −∇ϕL(θ,ϕ)]⊤

max
ω∈Ω

F (ω∗)⊤(ω̄∗ − ω) otherwise.

(4.2)
Averaging.. Alg. 1 (AvgSGD) presents the stochastic gradient method with
averaging, which reduces to the standard (simultaneous) SGD updates for the
two-player games used in the GAN literature, but returning an average of the
iterates.

Theorem 2. Under Assump. 1, 2 and 3, SGD with averaging (Alg. 1) with a
constant step-size gives,

E[Err(ω̄T)] ≤ R2

2ηT
+ η

M2 + σ2

2
where ω̄T :=

1

T

T −1
∑

t=0

ωt , ∀T ≥ 1 . (4.3)

Thm. 2 uses a similar proof as [Nemirovski et al., 2009]. The constant term
η(M2 + σ2)/2 in (4.3) is called the variance term. This type of bound is standard
in stochastic optimization. We also provide in §6 a similar rate with an extra log
factor when ηt = η√

t
. We show that this variance term is smaller than the one of

SGD with prediction method [Yadav et al., 2018] in §5.

Extrapolations.. Alg. 2 (AvgExtraSGD) adds an extrapolation step compared
to Alg. 1 in order to reduce the oscillations due to the game between the two players.
A theoretical consequence is that it has a smaller variance term than (4.3). As
discussed previously, Assump. 2 made in Thm. 2 for the convergence of Alg. 1 is
very strong in the unbounded setting. One advantage of SGD with extrapolation is
that Thm. 3 does not require this assumption.

Theorem 3. [Juditsky et al., 2011, Thm. 1] Under Assump. 1 and 3, if Eξ[F] is
L-Lipschitz, then SGD with extrapolation and averaging (Alg. 2) using a constant
step-size η ≤ 1√

3L
gives,

E[Err(ω̄T)] ≤ R2

ηT
+

7

2
ησ2 where ω̄T :=

1

T

T −1
∑

t=0

ω′
t , ∀T ≥ 1 . (4.4)

36

Since in practice σ ≪M , the variance term in (4.4) is significantly smaller than the
one in (4.3). To summarize, SGD with extrapolation provides better convergence
guarantees but requires two gradient computations and samples per iteration. This
motivates our new method, Alg. 3 (AvgPastExtraSGD) which uses extrapolation
from the past and achieves the best of both worlds.

Theorem 4. Under Assump. 1 and 3, if Eξ[F] is L-Lipschitz then SGD with
extrapolation from the past using a constant step-size η ≤ 1

2
√

3L
, gives that the

averaged iterates converge as,

E[Err(ω̄T)] ≤ R2

ηT
+

13

2
ησ2 where ω̄T :=

1

T

T −1
∑

t=0

ω′
t ∀T ≥ 1 . (4.5)

The bounds is similar to the one provided in Thm. 3 but each iteration of Alg. 3 is
computationally half the cost of an iteration of Alg. 2.

5 Combining the techniques with established

algorithms

In the previous sections we presented several techniques that converge on a simple
bilinear example. These techniques can be combined in practice with existing
algorithms. We propose to combine them to two standard algorithms used for
training deep neural networks: the Adam optimizer [Kingma and Ba, 2015] and the
SGD optimizer [Robbins and Monro, 1951]. Note that in the case of a two-player
game (2.3), the previous results can be generalized to gradient updates with a
different step-size for each player by simply rescaling the objectives L(θ) and L(ϕ)

by a different scaling factor. A detailed pseudo-code for Adam with extrapolation
step (Extra-Adam) is given in Algorithm 4.

6 Related Work

The extragradient method is the standard algorithm to optimize variational in-
equalities. This algorithm has been originally introduced by Korpelevich [1976]
and extended by Nesterov [2007] and Nemirovski [2004]. Stochastic versions of
the extragradient have been recently analyzed [Juditsky et al., 2011, Yousefian
et al., 2014, Iusem et al., 2017] for stochastic variational inequalities with bounded

37

Algorithm 4 Extra-Adam: proposed Adam with extrapolation step.

input: step-size η, decay rates for moment estimates β1, β2, access to the stochastic
gradients ∇ℓt(·) and to the projection PΩ[·] onto the constraint set Ω, initial parameter
ω0, averaging scheme (ρt)t≥1

for t = 0 . . . T − 1 do
Option 1: Standard extrapolation.

Sample new minibatch and compute stochastic gradient: gt ← ∇ℓt(ωt)
Option 2: Extrapolation from the past

Load previously saved stochastic gradient: gt = ∇ℓt−1/2(ωt−1/2)
Update estimate of first moment for extrapolation: mt−1/2 ← β1mt−1 + (1− β1)gt

Update estimate of second moment for extrapolation: vt−1/2 ← β2vt−1 + (1−β2)g2
t

Correct the bias for the moments: m̂t−1/2 ← mt−1/2/(1 − β2t−1
1),

v̂t−1/2 ← vt−1/2/(1− β2t−1
2)

Perform extrapolation step from iterate at time t: ωt−1/2 ← PΩ[ωt − η mt−1/2√
vt−1/2+ǫ

]

Sample new minibatch and compute stochastic gradient: gt+1/2 ← ∇ℓt+1/2(ωt+1/2)
Update estimate of first moment: mt ← β1mt−1/2 + (1− β1)gt+1/2

Update estimate of second moment: vt ← β2vt−1/2 + (1− β2)g
2
t+1/2

Compute bias corrected for first and second moment: m̂t ← mt/(1 − β2t
1),

v̂t ← vt/(1− β2t
2)

Perform update step from the iterate at time t: ωt+1 ← PΩ[ωt − η m̂t√
v̂t+ǫ

]
end for
Output: ωT −1/2, ωT or ω̄T =

∑T −1
t=0 ρt+1ωt+1/2/

∑T −1
t=0 ρt+1 (see (3.2) for online aver-

aging)

constraints. A linearly convergent variance reduced version of the stochastic gradient
method has been proposed by Palaniappan and Bach [2016] for strongly monotone
variational inequalities.

Several methods to stabilize GANs consist in transforming a zero-sum formulation
into a more general game that can no longer be cast as a saddle point problem.
This is the case of the non-saturating formulation of GANs [Goodfellow et al.,
2014, Fedus et al., 2018], the DCGANs [Radford et al., 2016], the gradient penalty7

for WGANs [Gulrajani et al., 2017]. Yadav et al. [2018] propose an optimization
method for GANs based on AltSGD using a momentum based step on the generator.
Daskalakis et al. [2018] proposed a method inspired from game theory. Li et al.
[2017] suggest to dualize the GAN objective to reformulate it as a maximization
problem and Mescheder et al. [2017] propose to add the norm of the gradient in
the objective and provide an interesting perspective on GANs, interpreting the

7The gradient penalty is only added to the discriminator cost function. Since this gradient
penalty depends also on the generator, WGAN-GP cannot be cast as a SP problem and is actually
a non-zero sum game.

38

training as the search of a two-player game equilibrium. A study of the continuous
version of two player games has been conducted by Ratliff et al. [2016]. Interesting
non-convex results were proved, for a new notion of regret minimization, by Hazan
et al. [2017] and in the context of GANs by Grnarova et al. [2018].

The technique of unrolling steps proposed by Metz et al. [2017] can be confused
with extrapolation but is actually fundamentally different: the perspective is to
try to construct the “true generator objective function“ unrolling for K steps the
updates of the generator and then update the discriminator. Nevertheless the fact
that this “true generator function“ may not be found with a satisfying accuracy
may lead to a different behavior than the one expected.

Regarding the averaging technique, some recent work appear to have already
successfully used geometric averaging (3.1) for GANs in practice, but only briefly
mention it [Karras et al., 2018, Mescheder et al., 2018]. By contrast the present
work formally motivates and justifies the use of averaging for GANs by relating
them to the VIP perspective, and sheds light on its underlying intuitions in §3.1.
Another independent work [Yazıcı et al., 2019] made a similar attempt but in
the context of regret minimization in games. Mertikopoulos et al. [2019] also
independently explored extrapolation providing asymptotic convergence results
(i.e. without any rate of convergence) in the context of coherent saddle point. The
coherence assumption is slightly weaker than monotonicity.

7 Experiments

Our goal in this experimental section is not to provide new state-of-the art results
with architectural improvements or a new GAN formulation but to show that using
the techniques (with theoretical guarantees in the monotone case) that we introduced
earlier allow us to optimize standard GANs in a better way. These techniques,
which are orthogonal to the design of new formulations of GAN optimization
objectives, and to architectural choices, can potentially be used for the training
of any type of GAN. We will compare the following optimization algorithms:
baselines are SGD and Adam using either simultaneous updates on the generator
and on the discriminator (denoted SimAdam and SimSGD) or k updates on the
discriminator alternated with 1 update on the generator (denoted AltSGD{k}
and AltAdam{k})8. Variants that use extrapolation are denoted ExtraSGD
(Alg. 2) and ExtraAdam (Alg. 4). Variants using extrapolation from the past are
PastExtraSGD (Alg. 3) and PastExtraAdam (Alg. 4). We also present results

8In the original WGAN [Arjovsky et al., 2017] paper the authors use k = 5.

39

Model WGAN (DCGAN) WGAN-GP (ResNet)

Method no averaging uniform avg EMA no averaging uniform avg

SimAdam 6 .05 ± .12 5.83± .16 6.08± .10 7.54± .21 7.74± .27
AltAdam5 5 .45 ± .08 5.72± .06 5.49± .05 7.20± .06 7.67± .15
ExtraAdam 6.38± .09 6.38± .20 6.37± .08 7.79± .09 8.26± .12
PastExtraAdam 5.98± .15 6.07± .19 6.01± .11 7.71± .12 7.84± .18
OptimAdam 5.74± .10 5.80± .08 5.78± .05 7.80± .07 7.99± .12

Table 4.1: Best inception scores (averaged over 5 runs) achieved on CIFAR10
for every considered Adam variant. OptimAdam is the related Optimistic

Adam [Daskalakis et al., 2018] algorithm. EMA denotes exponential moving average

(with β = 0.999, see Eq. 3.2). We see that the techniques of extrapolation and
averaging consistently enable improvements over the baselines (in italic).

non-convex. We propose to evaluate the Adam variants of the different optimization
algorithms (see Alg. 4 for Adam with extrapolation) by training two different
architectures on the CIFAR10 dataset [Krizhevsky and Hinton, 2009]. First we
consider a constrained zero-sum game by training the DCGAN architecture [Radford
et al., 2016] with the WGAN objective and weight clipping as proposed in Arjovsky
et al. [2017]. Then we compared the different methods on a state of the art
architecture, by training a ResNet with the WGAN-GP objective similar to Gulrajani
et al. [2017]. Models are evaluated using the inception score [Salimans et al., 2016]
computed on 10,000 samples.

For each algorithm we did an extensive search over the hyperparameters of Adam,
we fixed β1 = 0.5 and β2 = 0.9 for all methods as they seemed to perform well. We
want to emphasize that as proposed by Heusel et al. [2017] it is quite important to
set different learning rate for the generator and the discriminator. Each experiments
were run with 5 different random seeds for 500,000 updates of the generator.

Table 4.1 reports the best inception score achieved on this problem by each considered
method. We see that the techniques of extrapolation and averaging consistently
enable improvements over the baselines (see §7.4 for more experiments on averaging).
Fig. 4.4 shows training curves for each method (for their best performing learning
rate), as well as samples from an ExtraAdam-trained WGAN. For both tasks, using
an extrapolation step and averaging with Adam (ExtraAdam) outperformed all
other methods. ExtraAdam with averaging is able to reach state of the art results
on CIFAR10 similar to Miyato et al. [2018]. We also observed that methods based
on extrapolation are less sensitive to the choice of learning rate and can be used
with higher learning rates with less degradation; see App. §7.3 for more details.

41

5
Prologue to the Second
Contribution

1 Article Details

A Closer Look at the Optimization Landscapes of Generative Adversarial
Networks. Hugo Berard∗, Gauthier Gidel∗, Amjad Almahairi, Pascal Vincent and
Simon Lacoste-Julien. This paper was published at ICLR 2020 [Berard et al., 2020].

∗Equal contribution.

2 Contributions of the authors

The idea for this paper emerged from frequent meeting and discussion between
Hugo Berard and Gauthier Gidel, where they discussed and tried to understand
the challenges and instabilities of training GANs. Hugo Berard contributed his
knowledge and experience with GANs and deep learning, while Gauthier Gidel
contributed his knowledge and expertise of optimization. They both contributed to
the writting of the paper with Hugo Berard focusing more on the visualization tools
and the numerical experiments, and Gauthier Gidel focusing more on the theoretical
results and the theoretical justifications for the visualizations and observations.
Amjad Almahairi also contributed to the writing of the paper and to the experiments.
Pascal Vincent and Simon Lacoste-Julien supervised the project.

3 Context and Impact

At the time of this article, while there was some theoretical results about smooth
games optimization, a lot of questions were still open and the assumptions were
often unrealistic. In particular, there was almost no results about non-monotone
variational inequality and games. Inspired by empirical work on understanding the

43

loss landscape of deep neural networks [Goodfellow et al., 2015b], we tried to adopt
a similar empirical approach to study GANs. We decided to focus our attention
on trying to evaluate the properties of the stationary points of GANs. The main
observation we made was to observe that actually GANs often do not converge to
Nash-Equilibria contrary to popular beliefs. This lead several works to consider
new notions of equilibria for smooth games Fiez et al. [2020], Jin et al. [2020].

Limitations and Remarks. There are several limitations to this work. First
in our work we consider that a stationary point has been reached when the gradient
norm is sufficiently small, however in some cases this gradient norm is still relatively
high which raises the question whether we have indeed converge to a stationary
point. This observation was also made in Jelassi et al. [2021] where they observe
that models that achieve good results often do not converge to very low gradient
norm solutions. Furthermore we only consider the stationary points extragradient
converge to, this might not be representative of the full landscape of GANs and
might be biased to a certain type of stationary points. We tried to use SGDA,
but SGDA was too unstable and was often not converging. Finally most of the
observation we make are local, they only look at small neighborhood around the
solution, and do not tell us about the rest of the landscape of GANs outside of the
points the GAN has converged too, in particular while we observe that extragradient
in GANs does not converge to Nash-Equilibria, Nash-Equilibria might still exist.

44

6

A Closer Look at the
Optimization Landscapes of
Generative Adversarial
Networks

Abstract

Generative adversarial networks have been very successful in generative modeling,
however they remain relatively challenging to train compared to standard deep
neural networks. In this paper, we propose new visualization techniques for the
optimization landscapes of GANs that enable us to study the game vector field
resulting from the concatenation of the gradient of both players. Using these
visualization techniques we try to bridge the gap between theory and practice by
showing empirically that the training of GANs exhibits significant rotations around
Local Stable Stationary Points (LSSP), similar to the one predicted by theory on toy
examples. Moreover, we provide empirical evidence that GAN training converges
to a stable stationary point which is a saddle point for the generator loss, not a
minimum, while still achieving excellent performance.1

1 Introduction

Deep neural networks have exhibited remarkable success in many applications
[Krizhevsky et al., 2012]. This success has motivated many studies of their non-
convex loss landscape [Choromanska et al., 2015, Kawaguchi, 2016, Li et al., 2018b],
which, in turn, has led to many improvements, such as better initialization and
optimization methods [Glorot and Bengio, 2010, Kingma and Ba, 2015].

While most of the work on studying non-convex loss landscapes has focused on single
objective minimization, some recent class of models require the joint minimization
of several objectives, making their optimization landscape intrinsically different.
Among these models is the generative adversarial network (GAN) [Goodfellow
et al., 2014] which is based on a two-player game formulation and has achieved

1Code available at https://bit.ly/2kwTu87

45

state-of-the-art performance on some generative modeling tasks such as image
generation [Brock et al., 2019].

On the theoretical side, many papers studying multi-player games have argued
that one main optimization issue that arises in this case is the rotation due to the
adversarial component of the game [Mescheder et al., 2018, Balduzzi et al., 2018,
Gidel et al., 2019b]. This has been extensively studied on toy examples, in particular
on the so-called bilinear example [Goodfellow, 2016] (a.k.a Dirac GAN [Mescheder
et al., 2018]). However, those toy examples are very far from the standard realistic
setting of image generation involving deep networks and challenging datasets. To
our knowledge it remains an open question if this rotation phenomenon actually
occurs when training GANs in more practical settings.

In this paper, we aim at closing this gap between theory and practice. Follow-
ing Mescheder et al. [2017] and Balduzzi et al. [2018], we argue that instead of
studying the loss surface, we should study the game vector field (i.e., the concate-
nation of each player’s gradient), which can provide better insights to the problem.
To this end, we propose a new visualization technique that we call Path-angle which
helps us observe the nature of the game vector field close to a stationary point for
high dimensional models, and carry on an empirical investigation of the properties
of the optimization landscape of GANs. The core questions we want to address
may be summarized as the following:

Is rotation a phenomenon that occurs when training GANs on real world
datasets, and do existing training methods find local Nash equilibria?

To answer this question we conducted extensive experiments by training different
GAN formulations (NSGAN and WGAN-GP) with different optimizers (Adam
and ExtraAdam) on three datasets (MoG, MNIST and CIFAR10). Based on our
experiments and using our visualization techniques we observe that the landscape of
GANs is fundamentally different from the standard loss surfaces of deep networks.
Furthermore, we provide evidence that existing GAN training methods do not
converge to a local Nash equilibrium.

Contributions. More precisely, our contributions are the following: (i) We
propose studying empirically the game vector field (as opposed to studying the
loss surfaces of each player) to understand training dynamics in GANs using a
novel visualization tool, which we call Path-angle and that captures the rotational
and attractive behaviors near local stationary points (ref. §4.2). (ii) We observe
experimentally on both a mixture of Gaussians, MNIST and CIFAR10 datasets that
a variety of GAN formulations have a significant rotational behavior around their
locally stable stationary points (ref. §5.1). (iii) We provide empirical evidence that

46

existing training procedures find stable stationary points that are saddle points, not
minima, for the loss function of the generator (ref. § 5.2).

2 Related work

Improving the training of GANs has been an active research area in the past few
years. Most efforts in stabilizing GAN training have focused on formulating new
objectives [Arjovsky et al., 2017], or adding regularization terms [Gulrajani et al.,
2017, Mescheder et al., 2017, 2018]. In this work, we try to characterize the difference
in the landscapes induced by different GAN formulations and how it relates to
improving the training of GANs.

Recently, Nagarajan and Kolter [2017], Mescheder et al. [2018] show that a local
analysis of the eigenvalues of the Jacobian of the game can provide guarantees
on local stability properties. However, their theoretical analysis is based on some
unrealistic assumptions such as the generator’s ability to fully capture the real
distribution. In this work, we assess experimentally to what extent these theoretical
stability results apply in practice.

Rotations in differentiable games have been mentioned and interpreted by [Mescheder
et al., 2018, Balduzzi et al., 2018] and Gidel et al. [2019b]. While these papers
address rotations in games from a theoretical perspective, it was never shown that
GANs, which are games with highly non-convex losses, suffered from these rotations
in practice. To our knowledge, trying to quantify that GANs actually suffer from
this rotational component in practice for real world dataset is novel.

The stable points of the gradient dynamics in general games have been studied
independently by Mazumdar et al. [2020] and Adolphs et al. [2018]. They notice
that the locally stable stationary point of some games are not local Nash equilibria.
In order to reach a local Nash equilibrium, Adolphs et al. [2018], Mazumdar et al.
[2019] develop techniques based on second order information. In this work, we argue
that reaching local Nash equilibria may not be as important as one may expect and
that we do achieve good performance at a locally stable stationary point.

Several works have studied the loss landscape of deep neural networks. Goodfellow
et al. [2015b] proposed to look at the linear path between two points in parameter
space and show that neural networks behave similarly to a convex loss function
along this path. Draxler et al. [2018] proposed an extension where they look at
nonlinear paths between two points and show that local minima are connected in
deep neural networks. Another extension was proposed by [Li et al., 2018a] where

47

they use contour plots to look at the 2D loss surface defined by two directions
chosen appropriately. In this paper, we use a similar approach of following the
linear path between two points to gain insight about GAN optimization landscapes.
However, in this context, looking at the loss of both players along that path may be
uninformative. We propose instead to look, along a linear path from initialization
to best solution, at the game vector field, particularly at its angle w.r.t. the linear
path, the Path-angle.

Another way to gain insight into the landscape of deep neural networks is by
looking at the Hessian of the loss; this was done in the context of single objective
minimization by [Dauphin et al., 2014, Sagun et al., 2016, 2017, Alain et al., 2019].
Compared to linear path visualizations which can give global information (but only
along one direction), the Hessian provides information about the loss landscape
in several directions but only locally. The full Hessian is expensive to compute
and one often has to resort to approximations such has computing only the top-k
eigenvalues. While, the Hessian is symmetric and thus has real eigenvalues, the
Jacobian of a game vector field is significantly different since it is in general not
symmetric, which means that the eigenvalues belong to the complex plane. In the
context of GANs, Mescheder et al. [2017] introduced a gradient penalty and use the
eigenvalues of the Jacobian of the game vector field to show its benefits in terms
of stability. In our work, we compute these eigenvalues to assess that, on different
GAN formulations and datasets, existing training procedures find a locally stable
stationary point that is a saddle point for the loss function of the generator.

3 Formulations for GAN optimization and their

practical implications

3.1 The standard game theory formulation

From a game theory point of view, GAN training may be seen as a game be-
tween two players: the discriminator Dϕ and the generator Gθ, each of which is
trying to minimize its loss LD and LG, respectively. Using the same formulation
as Mescheder et al. [2017], the GAN objective takes the following form (for simplicity
of presentation, we focus on the unconstrained formulation):

θ∗ ∈ arg min
θ∈Rp

LG(θ,ϕ∗) and ϕ∗ ∈ arg min
ϕ∈Rd

LD(θ∗,ϕ) . (3.1)

48

The solution (θ∗,ϕ∗) is called a Nash equilibrium (NE). In practice, the considered
objectives are non-convex and we typically cannot expect better than a local Nash
equilibrium (LNE), i.e. a point at which (3.1) is only locally true (see e.g. [Adolphs
et al., 2018] for a formal definition). Ratliff et al. [2016] derived some derivative-
based necessary and sufficient conditions for being a LNE. They show that, for
being a local NE it is sufficient to be a differential Nash equilibrium:

Definition 1 (Differential NE). A point (θ∗,ϕ∗) is a differential Nash equilibrium
(DNE) iff

‖∇θLG(θ∗,ϕ∗)‖ = ‖∇ϕLD(θ∗,ϕ∗)‖ = 0 , ∇2
θLG(θ∗,ϕ∗) ≻ 0 and ∇2

ϕLD(θ∗,ϕ∗) ≻ 0
(3.2)

where S ≻ 0 if and only if S is positive definite.

Being a DNE is not necessary for being a LNE because a local Nash equilibrium
may have Hessians that are only semi-definite. NE are commonly used in GANs
to describe the goal of the learning procedure [Goodfellow et al., 2014]: in this
definition, θ∗ (resp. ϕ∗) is seen as a local minimizer of LG(·,ϕ∗) (resp. LD(θ∗, ·)).

Under this view, however, the interaction between the two networks is not taken
into account. This is an important aspect of the game stability that is missed in
the definition of DNE (and Nash equilibrum in general). We illustrate this point in
the following section, where we develop an example of a game for which gradient
methods converge to a point which is a saddle point for the generator’s loss and
thus not a DNE for the game.

3.2 An alternative formulation based on the game vector
field

In practice, GANs are trained using first order methods that compute the gradients
of the losses of each player. Following Gidel et al. [2019a], an alternative point of
view on optimizing GANs is to jointly consider the players’ parameters θ and ϕ

as a joint state ω := (θ,ϕ), and to study the vector field associated with these
gradients,2 which we call the game vector field

v(ω) :=
[

∇θLG(ω)⊤ ∇ϕLD(ω)⊤
]⊤

where ω := (θ,ϕ) . (3.3)

With this perspective, the notion of DNE is replaced by the notion of locally stable
stationary point (LSSP). Verhulst [1989, Theorem 7.1] defines a LSSP ω∗ using the
eigenvalues of the Jacobian of the game vector field ∇v(ω∗) at that point.

2Note that, in practice, the joint vector field (3.3) is not a gradient vector field, i.e., it cannot
be rewritten as the gradient of a single function.

49

Zero-sum game Non-zero-sum game

NE ⇒ LSSP [Mescheder et al., 2018] NE 6⇒ LSSP (Example 2, §1.2)
NE 6⇐ LSSP [Adolphs et al., 2018] NE 6⇐ LSSP (Example 1)

Table 6.1: Summary of the implications between Differentiable Nash Equilibrium
(DNE) and a locally stable stationnary point (LSSP): in general, being a DNE is
neither necessary or sufficient for being a LSSP.

Definition 2 (LSSP). A point ω∗ is a locally stable stationary point (LSSP) iff

v(ω∗) = 0 and ℜ(λ) > 0 , ∀λ ∈ Sp(∇v(ω∗)) . (3.4)

where ℜ denote the real part of the eigenvalue λ belonging to the spectrum of ∇v(ω∗).

This definition is not easy to interpret but one can intuitively understand a LSSP as
a stationary point (a point ω∗ where v(ω∗) = 0) to which all neighbouring points
are attracted. We will formalize this intuition of attraction in Proposition 1. In our
two-player game setting, the Jacobian of the game vector field around the LSSP
has the following block-matrices form:

∇v(ω∗) =

[

∇2
θLG(ω∗) ∇ϕ∇θLG(ω∗)

∇θ∇ϕLD(ω∗) ∇2
ϕLD(ω∗)

]

=

[

S1 B

A S2

]

. (3.5)

When B = −A⊤, being a DNE is a sufficient condition for being of LSSP [Mazumdar
et al., 2020]. However, some LSSP may not be DNE [Adolphs et al., 2018], meaning
that the optimal generator θ∗ could be a saddle point of LG(·,ϕ∗), while the optimal
joint state (θ∗,ϕ∗) may be a LSSP of the game. We summarize these properties in
Table 6.1. In order to illustrate the intuition behind this counter-intuitive fact, we
study a simple example where the generator is 2D and the discriminator is 1D.

Example 1. Let us consider LG as a hyperbolic paraboloid (a.k.a., saddle point
function) centered in (1, 1) where (1, ϕ) is the principal descent direction and (−ϕ, 1)
is the principal ascent direction, while LD is a simple bilinear objective.

LG(θ1, θ2, ϕ) = (θ2−ϕθ1− 1)2− 1
2
(θ1 +ϕθ2− 1)2 , LD(θ1, θ2, ϕ) = ϕ(5θ1 + 4θ2− 9)

We plot LG in Fig. 6.1b. Note that the discriminator ϕ controls the principal descent
direction of LG.

We show (see § 1.2) that (θ∗
1, θ

∗
2, ϕ

∗) = (1, 1, 0) is a locally stable stationary point but
is not a DNE: the generator loss at the optimum (θ1, θ2) 7→ LG(θ1, θ2, ϕ

∗) = θ2
2− 1

2
θ2

1

is not at a DNE because it has a clear descent direction, (1, 0). However, if the
generator follows this descent direction, the dynamics will remain stable because
the discriminator will update its parameter, rotating the saddle and making (1, 0)

50

an ascent direction. We call this phenomenon dynamic stability: the loss LG(·, ϕ∗)
is unstable for a fixed ϕ∗ but becomes stable when ϕ dynamically interacts with
the generator around ϕ∗.

A mechanical analogy for this dynamic stability phenomenon is a ball in a rotating
saddle—even though the gravity pushes the ball to escape the saddle, a quick enough
rotation of the saddle would trap the ball at the center (see [Thompson et al., 2002]
for more details). This analogy has been used to explain Paul’s trap [Paul, 1990]: a
counter-intuitive way to trap ions using a dynamic electric field. In Example 1, the
parameter ϕ explicitly controls the rotation of the saddle.

This example illustrates the fact that the DNE corresponds to a notion of static
stability: it is the stability of one player’s loss given the other player is fixed.
Conversely, LSSP captures a notion of dynamic stability that considers both players
jointly.

By looking at the game vector field we capture these interactions. Fig. 6.1b only
captures a snapshot of the generator’s loss surface for a fixed ϕ and indicates static
instability (the generator is at a saddle point of its loss). In Fig. 6.1a, however, one
can see that, starting from any point, we will rotate around the stationary point
(ϕ∗, θ∗

1) = (0, 1) and eventually converge to it.

The visualization of the game vector field reveals an interesting behavior that
does not occur in single objective minimization: close to a LSSP, the parameters
rotate around it. Understanding this phenomenon is key to grasp the optimization
difficulties arising in games. In the next section, we formally characterize the
notion of rotation around a LSSP and in §4 we develop tools to visualize it in high
dimensions. Note that gradient methods may converge to saddle points in single
objective minimization, but these are not stable stationary points, unlike in our
game example.

3.3 Rotation and attraction around locally stable station-
ary points in games

In this section, we formalize the notions of rotation and attraction around LSSP
in games, which we believe may explain some difficulties in GAN training. The
local stability of a LSSP is characterized by the eigenvalues of the Jacobian ∇v(ω∗)
because we can linearize v(ω) around ω∗:

v(ω) ≈ ∇v(ω∗)(ω − ω∗). (3.6)

If we assume that (3.6) is an equality, we have the following theorem.

51

minimum, because the eigenvalues of the Hessian of the objective are always real.
Mescheder et al. [2017] discussed that difficulties in training GANs may be a result
of the imaginary part of the eigenvalues of the Jacobian of the game vector field
and Gidel et al. [2019b] mentioned that games have a natural oscillatory behavior.
This cyclic behavior has been explained in [Balduzzi et al., 2018] by a non-zero
Hamiltonian component in the Helmholtz decomposition of the Jacobian of the
game vector field. All these explanations are related to the spectral properties of
this Jacobian. The goal of Proposition 1 is to provide a formal definition to the
notions of rotation and attraction we are dealing with in this paper.

In the following section, we introduce a new tool in order to assess the magnitude
of the rotation around a LSSP compared to the attraction to this point.

4 Visualization for the vector field landscape

Neural networks are parametrized by a large number of variables and visualizations
are only possible using low dimensional plots (1D or 2D). We first present a standard
visualization tool for deep neural network loss surfaces that we will exploit in §4.2.

4.1 Standard visualizations for the loss surface

One way to visualize a neural network’s loss landscape is to follow a parametrized
path ω(α) that connects two parameters ω,ω′ (often one is chosen early in learning
and another one is chosen late in learning, close to a solution). A path is a
continuous function ω(·) such that ω(0) = ω and ω(1) = ω′. Goodfellow et al.
[2015b] considered a linear path ω(α) = αω + (1 − α)ω′. More complex paths
can be considered to assess whether different minima are connected [Draxler et al.,
2018].

4.2 Proposed visualization: Path-angle

We propose to study the linear path between parameters early in learning and
parameters late in learning. We illustrate the extreme cases for the game vector
field along this path in simple examples in Figure 6.2(a-c): pure attraction occurs
when the vector field perfectly points to the optimum (Fig. 6.2a) and pure rotation
when the vector field is orthogonal to the direction to the optimum (Fig. 6.2b).

53

In practice, we expect the vector field to be in between these two extreme cases
(Fig. 6.2c). In order to determine in which case we are, around a LSSP, in practice,
we propose the following tools.

Path-norm.. We first ensure that we are in a neighborhood of a stationary point
by computing the norm of the vector field. Note that considering independently the
norm of each player may be misleading: even though the gradient of one player may
be close to zero, it does not mean that we are at a stationary point since the other
player might still be updating its parameters. Path-angle.. Once we are close
to a final point ω′, i.e., in a neighborhood of a LSSP, we propose to look at the
angle between the vector field (3.3) and the linear path from ω to ω′. Specifically,
we monitor the cosine of this angle, a quantity we call Path-angle:

c(α) := 〈ω′−ω,vα〉
‖ω′−ω‖‖vα‖ where vα := v(αω′ + (1− α)ω) , α ∈ [a, b] . (4.1)

Usually [a, b] = [0, 1], but since we are interested in the landscape around a LSSP,
it might be more informative to also consider further extrapolated points around
ω′ with b > 1.

Eigenvalues of the Jacobian.. Another important tool to gain insights on
the behavior close to a LSSP, as discussed in §3.2, is to look at the eigenvalues of
∇v(ω∗). We propose to compute the top-k eigenvalues of this Jacobian. When all
the eigenvalues have positive real parts, we conclude that we have reached a LSSP,
and if some eigenvalues have large imaginary parts, then the game has a strong
rotational behavior (Thm. 1). Similarly, we can also compute the top-k eigenvalues
of the diagonal blocks of the Jacobian, which correspond to the Hessian of each
player. These eigenvalues can inform us on whether we have converged to a LSSP
that is not a LNE.

An important advantage of the Path-angle relative to the computation of the
eigenvalues of ∇v(ω∗) is that it only requires computing gradients (and not second
order derivatives, which may be prohibitively computationally expensive for deep
networks). Also, it provides information along a whole path between two points
and thus, more global information than the Jacobian computed at a single point.
In the following section, we use the Path-angle to study the archetypal behaviors
presented in Thm 1.

4.3 Archetypal behaviors of the Path-angle around a LSSP

Around a LSSP, we have seen in (3.6) that the behavior of the vector field is mainly
dictated by the Jacobian matrix ∇v(ω∗). This motivates the study of the behavior

54

and the bump due to the rotation. The higher the bump, the closer we are to
pure rotations. Since we are performing a low dimensional visualization, we
actually project the gradient onto our direction of interest. That is why the
Path-angle is significantly smaller than 1 in Fig. 6.2c.

5 Numerical results on GANs

Losses. We focus on two common GAN loss formulations: we consider both the
original non-saturating GAN (NSGAN) formulation proposed in Goodfellow et al.
[2014] and the WGAN-GP objective described in Gulrajani et al. [2017].

Datasets. We first propose to train a GAN on a toy task composed of a 1D mixture
of 2 Gaussians (MoG) with 10,000 samples. For this task both the generator and
discriminator are neural networks with 1 hidden layer and ReLU activations. We
also train a GAN on MNIST, where we use the DCGAN architecture [Radford
et al., 2016] with spectral normalization(see §3.2 for details). Finally we also look
at the optimization landscape of a state of the art ResNet on CIFAR10 [Krizhevsky
and Hinton, 2009].

Optimization methods. For the mixture of Gaussian (MoG) dataset, we used
the full-batch extragradient method [Korpelevich, 1976, Gidel et al., 2019a]. We
also tried to use standard batch gradient descent, but this led to unstable results
indicating that gradient descent might indeed be unable to converge to stable
stationary points due to the rotations (see §3.4). On MNIST and CIFAR10, we
tested both Adam [Kingma and Ba, 2015] and ExtraAdam [Gidel et al., 2019a].
The observations made on models trained with both methods are very similar.
ExtraAdam gives slightly better performance in terms of inception score [Salimans
et al., 2016], and Adam sometimes converge to unstable points, thus we decided to
only include the observations on ExtraAdam, for more details on the observations
on Adam (see §3.5). As recommended by Heusel et al. [2017], we chose different
learning rates for the discriminator and the generator. All the hyper-parameters
and precise details about the experiments can be found in §3.1.

5.1 Evidence of rotation around locally stable stationary
points in GANs

We first look, for all the different models and datasets, at the path-angles between
a random initialization (initial point) and the set of parameters during training

56

7
Prologue to the Third
Contribution

1 Article Details

Adversarial Example Games. Avishek Joey Bose, Gauthier Gidel, Hugo Berard,
Andre Cianflone, Pascal Vincent, Simon Lacoste-Julien and William L. Hamilton.
This paper was published at NeurIPS 2020 [Bose et al., 2020].

2 Contributions of the authors

Gauthier Gidel came up with the original idea for the game formulation and
approached Hugo Berard and Joey Bose to work on the idea. The idea of the NoBox
threat model, the architecture for the model and the experimental setup emerged
from many discussions between all of them. They all participated to the writing
of the paper, with Hugo Berard focusing more on the experiments by bringing his
expertise in running large scale experiments and training adversarial games, Joey
Bose focused more on the NoBox threat model contributing his experience with
adversarial attacks, Gauthier Gidel focused on the theoretical results contributing
his knowledge of game theory and coming up with the idea for the regularization.
Pascal Vincent, Simon Lacoste-Julien and William L. Hamilton supervised the
project.

3 Context and Impact

Adversarial attacks usually assume knowledge about the model they’re trying to
attack. In white-box attack, we usually assume that the attacker has full access
to the model, by knowing the parameters of the model and being able to compute
the gradient of the model. In the real world this is highly unrealistic, instead some

61

work proposed to consider the case where the attacker only has access to the output
of the model. However this is still unrealistic since most methods need to query
the model several times to be able to craft the attack augmenting the chance of
the attacker to be detected. Instead we proposed the NoBox attack model, which
has only limited knowledge about the model it tries to attacks, and only requires
to know the hypothesis class the model we want to attack belongs to. Several
works proposed to study the transferability of adversarial attacks to other models,
for example Papernot et al. [2016b] train a substitute model that is then used to
craft attacks that are then used to attack the target model. Instead we propose
a game called adversarial example game, that is specifically designed to generate
attacks that transfer across all models in the same hypothesis class. We showed
experimentally that using this formulation we can generate attacks that transfer
across a wide variety of models and outperform the existing approach in the NoBox
setting.

Limitations and Remarks. Although we do not assume access to the original
training set to train the attacker, we still assume that the distribution of samples
used to train the attacker are close to the real distribution. In practice we only tested
on different splits of the same dataset. Further experiments would be needed to test
if the attacker can be trained with examples that come from a different distribution
and still be able to transfer attacks. AEG trains the generator and the representative
classifier jointly, according to Prop. 1 AEG admits a Nash-Equilibrium, at this
equilibrium both the generator and representative classifier are optimal, thus we
should expect the representative classifier to be robust, however we haven’t tested
this hypothesis and leave this for future work to see if this game can also be used
to train more robust classifiers.

62

8 Adversarial Example Games

Abstract

The existence of adversarial examples capable of fooling trained neural network
classifiers calls for a much better understanding of possible attacks to guide the
development of safeguards against them. This includes attack methods in the
challenging non-interactive blackbox setting, where adversarial attacks are generated
without any access, including queries, to the target model. Prior attacks in this
setting have relied mainly on algorithmic innovations derived from empirical obser-
vations (e.g., that momentum helps), lacking principled transferability guarantees.
In this work, we provide a theoretical foundation for crafting transferable adversarial
examples to entire hypothesis classes. We introduce Adversarial Example Games
(AEG), a framework that models the crafting of adversarial examples as a min-max
game between a generator of attacks and a classifier. AEG provides a new way to
design adversarial examples by adversarially training a generator and a classifier
from a given hypothesis class (e.g., architecture). We prove that this game has an
equilibrium, and that the optimal generator is able to craft adversarial examples that
can attack any classifier from the corresponding hypothesis class. We demonstrate
the efficacy of AEG on the MNIST and CIFAR-10 datasets, outperforming prior
state-of-the-art approaches with an average relative improvement of 29.9% and
47.2% against undefended and robust models (Table 8.2 & 8.3) respectively.

1 Introduction

Adversarial attacks on deep neural nets expose critical vulnerabilities in traditional
machine learning systems [Moosavi-Dezfooli et al., 2016, Athalye et al., 2018, Sun
et al., 2018, Bose and Aarabi, 2018]. In order to develop models that are robust
to such attacks, it is imperative that we improve our theoretical understanding of
different attack strategies. While there has been considerable progress in under-
standing the theoretical underpinnings of adversarial attacks in relatively permissive

63

settings (e.g. whitebox adversaries; Madry et al. [2018]), there remains a substantial
gap between theory and practice in more demanding and realistic threat models.

In this work, we provide a theoretical framework for understanding and analyzing
adversarial attacks in the highly-challenging Non-interactive blackBox adversary
(NoBox) setting, where the attacker has no direct access, including input-output
queries, to the target classifier it seeks to fool. Instead, the attacker must generate
attacks by optimizing against some representative classifiers, which are assumed to
come from a similar hypothesis class as the target.

The NoBox setting is a much more challenging setting than more traditional threat
models, yet it is representative of many real-world attack scenarios, where the
attacker cannot interact with the target model [Carlini et al., 2019]. Indeed, this
setting—as well as the general notion of transferring attacks between classifiers—has
generated an increasing amount of empirical interest [Dong et al., 2019, Liu et al.,
2016, Xie et al., 2019, Wu et al., 2020]. The field, however, currently lacks the
necessary theoretical foundations to understand the feasibility of such attacks.

Contributions. To address this theoretical gap, we cast NoBox attacks as a kind
of adversarial example game (AEG). In this game, an attacker generates adversarial
examples to fool a representative classifier from a given hypothesis class, while the
classifier itself is trained to detect the correct labels from the adversarially generated
examples. Our first main result shows that the Nash equilibrium of an AEG leads
to a distribution of adversarial examples effective against any classifier from the
given function class. More formally, this adversarial distribution is guaranteed to
be the most effective distribution for attacking the hardest-to-fool classifiers within
the hypothesis class, providing a worst-case guarantee for attack success against an
arbitrary target. We further show that this optimal adversarial distribution admits
a natural interpretation as being the distribution that maximizes a form of restricted
conditional entropy over the target dataset, and we provide detailed analysis on
simple parametric models to illustrate the characteristics of this optimal adversarial
distribution. Note that while AEGs are latent games [Gidel et al., 2020], they are
distinct from the popular generative adversarial networks (GANs) [Goodfellow et al.,
2014]. In AEGs, there is no discrimination task between two datasets (generated
one and real one); instead, there is a standard supervised (multi-class) classification
task on an adversarial dataset.

Guided by our theoretical results we instantiate AEGs using parametric functions
—i.e. neural networks, for both the attack generator and representative classifier
and show the game dynamics progressively lead to a stronger attacker and robust
classifier pairs. We empirically validate AEG on standard CIFAR and MNIST
benchmarks and achieve state-of-the-art performance —compared to existing heuris-
tic approaches— in nearly all experimental settings (e.g., transferring attacks to

64

unseen architectures and attacking robustified models), while also maintaining a
firm theoretical grounding.

2 Background and Preliminaries

Suppose we are given a classifier f : X → Y, an input datapoint x ∈ X , and a
class label y ∈ Y , where f(x) = y. The goal of an adversarial attack is to produce
an adversarial example x′ ∈ X , such that f(x′) 6= y, and where the distance1

d(x, x′) ≤ ǫ. Intuitively, the attacker seeks to fool the classifier f into making the
wrong prediction on a point x′, which is ǫ-close to a real data example x.

Adversarial attacks and optimality. A popular setting in previous research is
to focus on generating optimal attacks on a single classifier f [Carlini and Wagner,
2017a, Madry et al., 2018]. Given a loss function ℓ, used to evaluate f , an adversarial
attack is said to be optimal if,

x′ ∈ arg maxx′∈X ℓ(f(x′), y) , s.t. d(x, x′) ≤ ǫ . (2.1)

In practice, attack strategies that aim to realize (2.1) optimize adversarial examples
x′ directly using the gradient of f . In this work, however, we consider the more
general setting of generating attacks that are optimal against entire hypothesis
classes F , a notion that we formalize below.

2.1 NoBox Attacks

Threat models specify the formal assumptions of an attack (e.g., the information the
attacker is assumed to have access to), which is a core aspect of adversarial attacks.
For example, in the popular whitebox threat model, the attacker is assumed to have
full access to the model f ’s parameters and outputs [Szegedy et al., 2014, Goodfellow
et al., 2015a, Madry et al., 2018]. In contrast, the blackbox threat model assumes
restricted access to the model, e.g., only access to a limited number of input-out
queries [Chen et al., 2017, Ilyas et al., 2017, Papernot et al., 2016a]. Overall, while
they consider different access to the target model, traditional whitebox and blackbox
attacks both attempt to generate adversarial examples that are optimal for a specific
target (i.e., Equation 2.1).

1We assume that the ℓ∞ is used in this work, Goodfellow et al. [2015a], Madry et al. [2018] ,
but our results generalize to any distance d.

65

In this paper, we consider the more challenging setting of non-interactive blackBox

(NoBox) attacks, intending to generate successful attacks against an unknown
target. In the NoBox setting, we assume no interactive access to a target model;
instead, we only assume access to a target dataset and knowledge of the function
class to which a target model belongs. Specifically, the NoBox threat model relies
on the following key definitions:

• The target model ft. The adversarial goal is to attack some target model
ft : X → Y, which belongs to an hypothesis class F . Critically, the adversary
has no access to ft at any time. Thus, in order to attack ft, the adversary must
develop attacks that are effective against the entirety of F .

• The target examples D. The dataset D contains the examples (x, y) that
attacker seeks to corrupt.

• An hypothesis class F . As noted above, we assume that the attacker has
access to a hypothesis class F to which the target model ft belongs.2 One can
incorporate in F as much prior knowledge one has on ft (e.g., the architecture,
dataset, training method, or regularization), going from exact knowledge of the
target F = {ft} to almost no knowledge at all (e.g., F = {f ∈ DenseNets}).

• A reference dataset Dref. The reference dataset Dref, which is similar to the
training data of the target model (e.g., sampled from the same distribution) is
used to reduce the size of the hypothesis class F (e.g., we know that the target
model perfoms well at classification on Dref).

• A representative classifier fc. Finally, we assume that the attacker has the
ability to optimize a representative classifier fc from the hypothesis class F .

Given these four key components, we formalize the NoBox setting as follows:

Definition 1. The NoBox threat model corresponds to the setting where the attacker
(i) knows a hypothesis class F that the target model ft belongs to, (ii) has access to a
reference dataset Dref that is similar to the the dataset used to train ft (e.g., sampled
from the same distribution), and (iii) can optimize a representative classifier fc ∈ F .
The attacker has no other knowledge of—or access to—the target model ft (e.g., no
queries to ft are allowed). The goal is, for the attacker, to use this limited knowledge
to corrupt the examples in a given target dataset D.

Our definition of a NoBox adversary (Def. 1) formalizes similar notions used in
previous work (e.g., see Def. 3 in Tramèr et al. [2018]). Previous work also often
refers to related settings as generating blackbox transfer attacks, since the goal is to

2Previous work [Tramèr et al., 2018] usually assumes to have access to the architecture of ft;
we are more general by assuming access to a hypothesis class F containing ft; e.g., DenseNets can
represent ConvNets.

66

attack the target model ft while only having access to a representative classifier fc

[Dong et al., 2019, Liu et al., 2016, Xie et al., 2019].

Note, that our assumptions regarding dataset access are relatively weak. Like prior
work, the attacker is given the target data (i.e., the examples to corrupt) as input,
but this is constitutive of the task (i.e., we need access to a target example in order
to corrupt it). Our only assumption is to have access to a reference dataset Dref,
which is similar to the dataset used to train the target model. We do not assume
access to the exact training set. A stronger version of this assumption is made in
prior works on blackbox transfer, as these approaches must craft their attacks on a
known source model which is pretrained on the same dataset as the target model
[Tramèr et al., 2018].

3 Adversarial Example Games

In order to understand the theoretical feasibility of NoBox attacks, we view the
attack generation task as a form of adversarial game. The players are the generator
network g—which learns a conditional distribution over adversarial examples—and
the representative classifier fc. The goal of the generator network is to learn a
conditional distribution of adversarial examples, which can fool the representative
classifier fc. The representative classifier fc, on the other hand, is optimized to detect
the true label y from the adversarial examples (x′, y) generated by g. A critical
insight in this framework is that the generator and the representative classifier are
jointly optimized in a maximin game, making the generator’s adversarial distribution
at the equilibrium theoretically effective against any classifier from the hypothesis
class F that fc is optimized over. At the same time, we will see in Proposition 1 that
the min and max in our formulation (AEG) can be switched. It implies that, while
optimized, the model fc converges to a robust classifier against any attack generated
by the generator g [Madry et al., 2018, Wald, 1945], leading to increasingly powerful
attacks as the adversarial game progresses.

Framework. Given an input-output pair of target datapoints (x, y) ∼ D, the gener-
ator network g is trained to learn a distribution of adversarial examples pcond(·|x, y)
that—conditioned on an example to attack (x, y)—maps a prior distribution pz on
Z onto a distribution on X . The classifier network fc is simultaneously optimized
to perform robust classification over the resulting distribution pg defined in (3.1)
(below). Overall, the generator g and the classifier fc play the following, two-player

67

zero-sum game:

max
g∈Gǫ

min
fc∈F

E(x,y)∼D,z∼pz [ℓ(fc(g(x, y, z)), y)] =: ϕ(fc, g), (AEG)

where the generator g ∈ Gǫ is restricted by the similarity constraint
d(g(x, y, z), x) ≤ ǫ , ∀x, y, z ∈ X × Y × Z. Once the generator g is trained,
one can generate adversarial examples against any classifier in ft ∈ F , without
queries, by simply sampling z ∼ pz and computing g(x, y, z).

Connection with NoBox attacks. The NoBox threat model (Def. 1) corresponds
to a setting where the attacker does not know the target model ft but only a
hypothesis class F such that ft ∈ F . With such knowledge, one cannot hope to
be better than the most pessimistic situation where ft is the best defender in F .
Our maximin formulation (AEG) encapsulates such a worst-case scenario, where
the generator aims at finding attacks against the best performing f in F .

Objective of the generator. When trying to attack infinite capacity classifiers—
i.e., F contains any measurable function—the goal of the generator can be seen
as generating the adversarial distribution pg with the highest expected conditional
entropy Ex[

∑

y pg(y|x) log pg(y|x)], where pg is defined as

(x′, y) ∼ pg ⇔ x′ = g(x, y, z) , (x, y) ∼ D , z ∼ pz with d(x′, x) ≤ ǫ . (3.1)

When trying to attack a specific hypothesis class F (e.g., a particular CNN archi-
tecture), the generator aims at maximizing a notion of restricted entropy defined
implicitly through the class F . Thus, the optimal generator in an (AEG) is primarily
determined by the statistics of the target dataset D itself, rather any specifics of a
target model. We formalize these high level concepts in §4.2.

Regularizing the Game. In practice, the target ft is usually trained on a non-
adversarial dataset and performs well at a standard classification task. In order to
reduce the size of the class F , one can bias the representative classifier fc towards
performing well on a standard classification task with respect to Dref, which leads
to the following game:

max
g∈Gǫ

min
fc∈F

E(x,y)∼D,z∼pz [ℓ(fc(g(x, y, z)), y)] + λE(x,y)∼Dref
[ℓ(fc(x), y)] =: ϕλ(f, g).

(3.2)
Note that λ = 0 recovers (AEG). Such modifications in the maximin objective
as well as setting the way the models are trained (e.g., optimizer, regularization,
additional dataset) biases the training of the fc and corresponds to an implicit
incorporation of prior knowledge on the target ft in the hypothesis class F . We
note that in practice, using a non-zero value for λ is essential to achieve the most
effective attacks as the prior knowledge acts as a regularizer that incentivizes g to
craft attacks against classifiers that behave well on data similar to Dref.

68

4 Theoretical results

When playing an adversarial example game, the generator and the representative
classifier try to beat each other by maximizing their own objective. In games, a
standard notion of optimality is the concept of Nash equilibrium [Nash, 1951] where
each player cannot improve its objective value by unilaterally changing its strategy.
The minimax result in Prop. 1 implies the existence of a Nash equilibrium for the
game, consequently providing a well defined target for learning (we want to learn
the equilibrium of that game). Moreover, a Nash equilibrium is a stationary point
for gradient descent-ascent dynamics; we can thus hope for achieving such a solution
by using a gradient-descent-ascent-based learning algorithm on (AEG).3

Proposition 1. If ℓ is convex (e.g., cross entropy or mean squared loss), the
distance x 7→ d(x, x′) is convex for any x′ ∈ X , one has access to any measurable g
respecting the proximity constraint in (3.1), and the hypothesis class F is convex,
then we can switch min and max in (AEG), i.e.,

min
fc∈F

max
g∈Gǫ

ϕλ(fc, g) = max
g∈Gǫ

min
fc∈F

ϕλ(fc, g) (4.1)

Proof sketch. We first notice that, by (3.1) any g corresponds to a distribution pg

and thus we have,

ϕ(fc, g) := E(x,y)∼D,z∼pz [ℓ(fc(g(x, y, z)), y)] = E(x′,y)∼pg [ℓ(fc(x
′), y)] =: ϕ(fc, pg)

Consequently, we also have ϕλ(fc, g) = ϕλ(fc, pg). By noting ∆ǫ := {pg : g ∈ Gǫ},
we have that,

min
fc∈F

max
pg∈∆ǫ

ϕλ(fc, pg) = min
fc∈F

max
g∈Gǫ

ϕλ(fc, g) and max
pg∈∆ǫ

min
fc∈F

ϕλ(fc, pg) = max
g∈Gǫ

min
fc∈F

ϕλ(fc, g)

In other words, we can replace the optimization over the generator g ∈ Gǫ with
an optimization over the set of possible adversarial distributions ∆ǫ induced by
any g ∈ Gǫ. This equivalence holds by the construction of ∆ǫ, which ensures that
maxg∈Gǫ ϕλ(fc, g) = maxpg∈∆ǫ ϕλ(fc, pg) for any fc ∈ F.

We finally use Fan’s theorem [Fan, 1953] after showing that (fc, pg) 7→ ϕλ(fc, pg)
is convex-concave (by convexity of ℓ and linearity of pg 7→ Epg) and that ∆ǫ is a
compact convex set. In particular, ∆ǫ is compact convex under the assumption that
we can achieve any measurable g (detailed in §C).

3Note that, similarly as in practical GANs training, when the classifier and the generator are
parametrized by neural networks, providing convergence guarantees for a gradient based method
in such a nonconvex-nonconcave minimax game is an open question that is outside of the scope of
this work.

69

The convexity assumption on the hypothesis class F , Prop. 1 applies in two main
cases of interest: (i) infinite capacity, i.e., when F is any measurable function. (ii) lin-
ear classifiers with fixed features ψ : X → Rp, i.e., F = {w⊤ψ(·) , w ∈ R|Y|×p}. This
second setting is particularly useful to build intuitions on the properties of (AEG),
as we will see in §4.1 and Fig. 8.1. The assumption that we have access to any mea-
surable g, while relatively strong, is standard in the literature and is often stated in
prior works as “if g has enough capacity” [Goodfellow et al., 2015a, Prop. 2]. Even
if the class of neural networks with a fixed architecture do not verify the assumption
of this proposition, the key idea is that neural networks are good candidates to
approximate that equilibrium because they are universal approximators [Hornik,
1991] and they form a set that is “almost convex" [Gidel et al., 2020]. Proving a
similar minimax theorem by only considering neural networks is a challenging prob-
lem that has been considered by Gidel et al. [2020] in a related setting. It requires
a fined grained analysis of the property of certain neural network architecture and
is only valid for approximate minimax. We believe such considerations outside of
the scope of this work.

4.1 A simple setup: binary classification with logistic re-
gression

Let us now consider a binary classification setup where Y = {±1} and F is the
class of linear classifiers with linear features, i.e fw(x) = w⊤x. In this case, the
payoff of the game (AEG) is,

ϕ(fω, g) := E(x,y)∼D, z∼pz [log(1 + e−y·w⊤g(x,y,z))] (4.2)

This example is similar to the one presented in [Goodfellow et al., 2015a]. However,
our purpose is different since we focus on characterizing the optimal generator
in (4.1). We show that the optimal generator can attack any classifier in F by
shifting the means of the two classes of the dataset D.

Proposition 2. If the generator is allowed to generate any ℓ∞ perturbations. The
optimal linear representative classifier is the solution of the following ℓ1 regularized
logistic regression

w∗ ∈ arg min
w

E(x,y)∼D[log(1 + e−y·w⊤x+ǫ‖w‖1)] . (4.3)

Moreover if ω∗ has no zero entry, the optimal generator is g∗(x, y) = x−y ·ǫ sign(w∗),
is deterministic and the pair (fw∗ , g∗) is a Nash equilibrium of the game (4.2).

A surprising fact is that, unlike in the general setting of Prop. 1, the generator in

70

Prop.2 is deterministic (i.e., does not depend on a latent variable z).4 This follows
from the simple structure of classifiers in this class, which allow for a closed form
solution for g∗. In general, one cannot expect to achieve an equilibrium with a
deterministic generator. Indeed, with this example, our goal is simply to illustrate
how the optimal generator can attack an entire class of functions with limited
capacity: linear classifiers are mostly sensitive to the mean of the distribution of
each class; the optimal generator exploits this fact by moving these means closer to
the decision boundary.

4.2 General multi-class classification

In this section, we show that, for a given hypothesis class F , the generated dis-
tribution achieving the global maximin against fc ∈ F can be interpreted as the
distribution with the highest F -entropy. For a given distribution pg, its F -entropy
is the minimum expected risk under pg one can achieve in F .

Definition 2. For a given distribution (x, y) ∼ pg we define the F-entropy of pg as

HF(pg) := min
fc∈F

E(x,y)∼pg [ℓ(fc(x), y)] where ℓ is the cross entropy loss. (4.4)

Thus F-entropy quantifies the amount of “classification information" available in
pg using the class of classifiers F . If the F-entropy is large, (x, y) ∼ pg cannot be
easily classified with a function fc in F . Moreover, it is an upper-bound on the
expected conditional entropy of the distribution pg.

Proposition 3. The F-entropy is a decreasing function of F , i.e., for any F1 ⊂ F2,

HF1
(pg) ≥ HF2

(pg) ≥ Hy(pg) := Ex∼px [H(pg(·|x))] .

where H(p(·|x)) :=
∑

y∈Y p(y|x) ln p(y|x) is the entropy of the conditional distribution
p(y|x).

Here pg is defined as in (3.1) and implicity depends on D. For a given class F , the
solution to an (AEG) game can be seen as one which finds a regularized adversarial
distribution of maximal F -entropy,

max
g∈Gǫ

min
fc∈F

ϕλ(fc, g) = (1 + λ) max
g∈Gǫ

HF(1
(1+λ)

pg + λ
(1+λ)
Dref)] , (4.5)

4Note also that one can generalize Prop. 2 to a perturbation with respect to a general norm
‖ · ‖, in that case, the ǫ-regularization for the classifier would be with respect to the dual norm
‖ · ‖∗ := max‖u‖≤1〈·, u〉. E.g., as previously noted by Goodfellow et al. [2015a], ℓ∞ adversarial
perturbation leads to a ℓ1 regularization.

71

p′
g against this new classifier. The left plot illustrates the fact that the way of

attacking a dataset depends on the class considered. For instance, when considering
linear classifiers, the attack is a uniform translation on all the data-points of the
same class. While when considering polynomial features, the optimal adversarial
dataset pushes the the corners of the two moons closer together. In the right plot,
we can see an illustration of Proposition 3, where the F -entropy takes on a smaller
value for larger classes of classifiers.

5 Attacking in the Wild: Experiments and

Results

We investigate the application of our AEG framework to produce adversarial exam-
ples against MNIST and CIFAR-10 classifiers. First we investigate our performance
in a challenging NoBox setting where we must attack an unseen target model with
knowledge of only its hypothesis class (i.e., architecture) and a sample of similar
training data (§5.1). Following this, we investigate how well AEG attacks transfer
across architectures (§5.2), as well as AEG’s performance attacking robust classifiers
(§5.3).

Experimental setup. We perform all attacks, including baselines, with respect
to the ℓ∞ norm constraint with ǫ = 0.3 for MNIST and ǫ = 0.03125 for CIFAR-10.
For AEG models, we train both generator (g) and representative classifier (fc)
using stochastic gradient descent-ascent with the ExtraAdam optimizer [Gidel et al.,
2019a] and held out target models, ft, are trained offline using SGD with Armijo
line search [Vaswani et al., 2019]. Full details of our model architectures, including
hyperparameters, employed in our AEG framework can be found in Appendix §4.5

Baselines. Throughout our experiments we rely on four standard blackbox transfert
attack strategies adapted to the NoBox setting: the Momentum-Iterative Attack
(MI-Attack) [Dong et al., 2018], the Input Diversity (DI-Attack) [Xie et al., 2019],
the Translation-Invariant (TID-Attack) [Dong et al., 2019] and the Skip Gradient
Method (SGM-Attack) [Wu et al., 2020]. For fair comparison, we inherit all
hyperparameter settings from their respective papers. Note that SGM-attack is
only defined with architectures that contain skip connections (e.g. ResNets).

AEG Architecture. The high-level architecture of our AEG framework is illus-
trated in Figure 8.2. The generator takes the input x and encode it into ψ(x),
then the generator uses this encoding to compute a probability vector p(ψ(x)) in

5Code: https://github.com/joeybose/Adversarial-Example-Games.git

73

on this task, averaged across all splits and folds. We see that our AEG approach
achieves state-of-the-art results, either outperforming or matching (within a 95%
confidence interval) all baselines in both settings. Note that this task is significantly
more challenging than many prior blackbox attack setups, which assume access to
the full training data of the target model.6

Dataset MI-Attack DI-Attack TID-Attack SGM-Attack AEG (Ours)

MNIST 87.5 ± 2.7 89.5 ± 2.5 85.4 ± 2.8 † N/A 89.5 ± 3.2

CIFAR-10 56.8 ± 1.2 † 84.0 ± 1.5 † 9.1 ± 1.6 † 60.5 ± 1.5 † 87.0 ± 2.1

Table 8.1: Attack success rates, averaged across target models with 95% confidence
intervals shown. †indicates a statistically significant result as determined by the paired
T-test when compared to AEG. CIFAR-10 results are with a Res18 architecture.

5.2 NoBox Attacks Across Distinct Architectures

We now consider NoBox attacks where we do not know the architecture of the target
model but where the training data is known—a setting previously referred to as
blackbox transfer [Tramèr et al., 2018]. For evaluation, we use CIFAR-10 and train
10 instances of VGG-16 [Simonyan and Zisserman, 2015], ResNet-18 (RN-18) [He
et al., 2016], Wide ResNet (WR) [Zagoruyko and Komodakis, 2016], DenseNet-121
(DN-121) [Huang et al., 2017b] and Inception-V3 architectures (Inc-V3) [Szegedy
et al., 2016]. Here, we optimize the attack approaches against a single pre-trained
classifier from a particular architecture and then evaluate their attack success on
classifiers from distinct architectures averaged over 5 instantiations. Our findings
when using ResNet-18, DenseNet-121 and the VGG-16 as the source architecture
are provided in Table 2. Overall we find that AEG beats all other approaches and
lead to a new state of the art. In particular AEG outperforms the best baseline in
each setting by an average of 29.9% across the different source architectures with
individual average gains of 9.4%, 36.2%, and 44.0% when using a RN-18 model,
DN-121, and VGG-16 source models respectively.

5.3 NoBox Attacks Against Robust Classifiers

We now test the ability of our AEG framework to attack target models that have
been robustified using adversarial and ensemble adversarial training [Madry et al.,

6We include results on a more permissive settings with access to the full training data in
Appendix 3.1

75

Source Attack VGG-16 RN-18 WR DN-121 Inc-V3

Clean 11.2 ± 1.8 13.1 ± 4.0 6.8 ± 1.4 11.2 ± 2.8 9.9 ± 2.6

RN-18

MI-Attack 63.9 ± 2.6 74.6 ± 0.8 63.1 ± 2.4 72.5 ± 2.6 67.9 ± 3.2
DI-Attack 77.4 ± 3.4 90.2 ± 1.6 74.0 ± 2.0 87.1 ± 2.6 85.8 ± 1.6

TID-Attack 21.6 ± 2.6 26.5 ± 4.8 14.0 ± 3.0 22.3 ± 3.2 19.8 ± 1.8
SGM-Attack 68.4 ± 3.6 79.5 ± 1.0 64.3 ± 3.2 73.8 ± 2.0 70.6 ± 3.4
AEG (Ours) 93.8 ± 0.7 97.1 ± 0.4 80.2 ± 2.2 93.1 ± 1.3 88.4 ± 1.6

DN-121

MI-Attack 54.3 ± 2.2 62.5 ± 1.8 56.3 ± 2.6 66.1 ± 3.0 65.0 ± 2.6
DI-Attack 61.1 ± 3.8 69.1 ± 1.6 61.9 ± 2.2 77.1 ± 2.4 71.6 ± 3.2

TID-Attack 21.7 ± 2.4 23.8 ± 3.0 14.0 ± 2.8 21.7 ± 2.2 19.3 ± 2.4
SGM-Attack 51.6 ± 1.4 60.2 ± 2.6 52.6 ± 1.8 64.7 ± 3.2 61.4 ± 2.6
AEG (Ours) 93.7 ± 1.0 97.3 ± 0.6 81.8 ± 3.0 96.7 ± 0.8 92.7 ± 1.6

VGG-16

MI-Attack 49.9 ± 0.2 50.0 ± 0.4 46.7 ± 0.8 50.4 ± 1.2 50.0 ± 0.6
DI-Attack 65.1 ± 0.2 64.5 ± 0.4 58.8± 1.2 64.1 ± 0.6 60.9 ± 1.2

TID-Attack 26.2 ± 1.2 24.0 ± 1.2 13.0 ± 0.4 20.8 ± 1.4 18.8 ± 0.4
AEG (Ours) 97.5 ± 0.4 96.1 ± 0.5 85.2 ± 2.2 94.1 ± 1.2 89.5 ± 1.3

Table 8.2: Error rates on D for average NoBox architecture transfer attacks with
ǫ = 0.03125. The ± correspond to 2 standard deviations (95.5% confidence interval
for normal distributions).

2018, Tramèr et al., 2018]. For evaluation against PGD adversarial training, we
use the public models as part of the MNIST and CIFAR-10 adversarial examples
challenge.7 For ensemble adversarial training, we follow the approach of Tramèr
et al. [2018] (see Appendix 4.3). We report our results in Table 3 and average the
result of stochastic attacks over 5 runs. We find that AEG achieves state-of-the-art
performance in all settings, proving an average improvement in success rates of
54.1% across all robustified MNIST models and 40.3% on robustified CIFAR-10
models.

6 Related Work

In addition to non-interactive blackbox adversaries we compare against, there exists
multiple hybrid approaches that combine crafting attacks on surrogate models
which then serve as a good initialization point for queries to the target model

7https://github.com/MadryLab/[x]_challenge, for [x] in {cifar10, mnist}. Note that
our threat model is more challenging than these challenges as we use non-robust source models.

76

Dataset Defence Clean MI-Att† DI-Att TID-Att SGM-Att † AEG (Ours)

MNIST

Aens4 0.8 43.4 42.7 16.0 N/A 65.0

Bens4 0.7 20.7 22.8 8.5 N/A 50.0

Cens4 0.8 73.8 30.0 9.5 N/A 80.0

Dens4 1.8 84.4 76.0 81.3 N/A 86.7

Madry-Adv 0.8 2.0 3.1 2.5 N/A 5.9

CIFAR-10

RN-18ens3 16.8 17.6 21.6 33.1 19.9 52.2

WRens3 12.8 18.4 20.6 28.8 18.0 49.9

DN-121ens3 21.5 20.3 22.7 31.3 21.9 41.4

Inc-V3ens3 14.8 19.5 42.2* 30.2∗ 35.5* 47.5

Madry-Adv 12.9 17.2 16.6 16.6 16.0 21.6

Table 8.3: Error rates on D for NoBox known architecture attacks against
Adversarial Training and Ensemble Adversarial Training. ∗ Attacks were done
using WR. † Deterministic attack.

Papernot et al. [2016a], Shi et al. [2019], Huang and Zhang [2020]. Other notable
approaches to craft blackbox transfer attacks learning ghost networks Li et al.
[2018c], transforming whitebox gradients with small ResNets Li et al. [2020], and
transferability properties of linear classifiers and 2-layer ReLu Networks Charles
et al. [2019]. There is also a burgeoning literature of using parametric models to craft
adversarial attacks such as the Adversarial Transformation Networks framework
and its variants Baluja and Fischer [2018], Xiao et al. [2018]. Similar in spirit to
our approach many attack strategies benefit from employing a latent space to craft
attacks Zhao et al. [2018], Tu et al. [2019], Bose et al. [2019]. However, unlike our
work, these strategies cannot be used to attack entire hypothesis classes.

Adversarial prediction games between a learner and a data generator have also been
studied in the literature [Brückner et al., 2012], and in certain situations correspond
to a Stackelberg game Brückner and Scheffer [2011]. While similar in spirit, our
theoretical framework is tailored towards crafting adversarial attacks against a fixed
held out target model in the novel NoBox threat model and is a fundamentally
different attack paradigm. Finally, Erraqabi et al. [2018] also investigate an
adversarial game framework as a means for building robust representations in which
an additional discriminator is trained to discriminate adversarial example from
natural ones, based on the representation of the current classifier.

77

7 Conclusion

In this paper, we introduce the Adversarial Example Games (AEG) framework
which provides a principled foundation for crafting adversarial attacks in the NoBox
threat model. Our work sheds light on the existence of adversarial examples as a
natural consequence of restricted entropy maximization under a hypothesis class
and leads to an actionable strategy for attacking all functions taken from this class.
Empirically, we observe that our approach leads to state-of-the-art results when
generating attacks on MNIST and CIFAR-10 in a number of challenging NoBox
attack settings. Our framework and results point to a promising new direction for
theoretically-motivated adversarial frameworks. However, one major challenge is
scaling up the AEG framework to larger datasets (e.g., ImageNet), which would
involve addressing some of the inherent challenges of saddle point optimization
[Berard et al., 2020]. Investigating the utility of the AEG framework for training
robustified models is another natural direction for future work.

Broader Impact

Adversarial attacks, especially ones under more realistic threat models, pose several
important security, ethical, and privacy risks. In this work, we introduce the NoBox
attack setting, which generalizes many other blackbox transfer settings, and we
provide a novel framework to ground and study attacks theoretically and their
transferability to other functions within a class of functions. As the NoBox threat
model represents a more realistic setting for adversarial attacks, our research has
the potential to be used against a class of machine learning models in the wild. In
particular, in terms of risk, malicious actors could use approaches based on our
framework to generate attack vectors that compromise production ML systems or
potentially bias them toward specific outcomes.

As a concrete example, one can consider creating transferrable examples in the
physical world, such as the computer vision systems of autonomous cars. While
prior works have shown the possibility of such adversarial examples —i.e., adver-
sarial traffic signs, we note that there is a significant gap in translating synthetic
adversarial examples to adversarial examples that reside in the physical world [45].
Understanding and analyzing the NoBox transferability of adversarial examples
to the physical world—in order to provide public and academic visibility on these
risks—is an important direction for future research. Based on the known risks of
designing new kinds of adversarial attacks—discussed above—we now outline the
ways in which our research is informed by the intent to mitigate these potential

78

societal risks. For instance, our research demonstrates that one can successfully
craft adversarial attacks even in the challenging NoBox setting. It raises many
important considerations when developing robustness approaches. A straightforward
extension is to consider our adversarial example game (AEG) framework as a tool
for training robust models. On the theoretical side, exploring formal verification of
neural networks against NoBox adversaries is an exciting direction for continued
exploration. As an application, ML practitioners in the industry may choose to
employ new forms of A/B testing with different types of adversarial examples, of
which AEG is one method to robustify and stress test production systems further.
Such an application falls in line with other general approaches to red teaming
AI systems [10] and verifiability in AI development. In essence, the goal of such
approaches, including adversarial examples for robustness, is to align AI systems’
failure modes to those found in human decision making.

Acknowledgments and Disclosure of Funding

The authors would like to acknowledge Olivier Mastropietro, Chongli Qin and David
Balduzzi for helpful discussions as well as Sebastian Lachapelle, Pouya Bashivan,
Yanshuai Cao, Gavin Ding, Ioannis Mitliagkas, Nadeem Ward, and Damien Scieur
for reviewing early drafts of this work.

Funding. This work is partially supported by the Canada CIFAR AI Chair Program
(held at Mila), NSERC Discovery Grant RGPIN-2019-05123 (held by Will Hamilton
at McGill), NSERC Discovery Grant RGPIN-2017-06936, an IVADO Fundamental
Research Project grant PRF-2019-3583139727, and a Google Focused Research
award (both held at U. Montreal by Simon Lacoste-Julien). Joey Bose was also
supported by an IVADO PhD fellowship, Gauthier Gidel by a Borealis AI fellowship
and by the Canada Excellence Research Chair in "Data Science for Real-Time
Decision-making" (held at Polytechnique by Andrea Lodi), and Andre Cianflone
by a NSERC scholarship and a Borealis AI fellowship. Simon Lacoste-Julien and
Pascal Vincent are CIFAR Associate Fellows in the Learning in Machines & Brains
program. Finally, we thank Facebook for access to computational resources.

Competing interests. Joey Bose was formerly at FaceShield.ai which was acquired
in 2020. W.L. Hamilton was formerly a Visiting Researcher at Facebook AI Research.
Simon Lacoste-Julien additionally works part time as the head of the SAIT AI Lab,
Montreal from Samsung.

79

9
Conclusions, Discussions,
and Perspectives

1 Summary and Conclusions

In this thesis we looked at the challenges and applications of adversarial games in
machine learning. We first looked at the challenges of optimizing such games in
the context of training GANs, looking at instabilities resulting from the adversarial
nature of the game, and proposing new algorithms with better properties. We then
proposed a new application of games to the generation of adversarial attacks that
transfer across models.

In the first contribution, we bridged the gap between the GAN and the optimization
literature by casting GANs as an instance of a variational inequality problem. This
enabled us to leverage tools from the variational inequality literature to provide
algorithms with convergence guarantees in the monotone settings for training GANs.
In particular we proposed to use extrapolation and averaging and combined them
with Adam, we called the resulting algorithm ExtraAdam and showed through
several experiments on GANs that it provided better results. We also proposed
another variant that uses extrapolation form the past, that only requires to compute
one gradient at each iteration and prove its convergence for stochastic monotone
VIP.

In the second contribution, we proposed to experimentally analyze the vector field
of GANs. To do so we proposed a new tool called Path-angle to analyze whether
a stationary point exhibits rotational or attractive behavior. By running several
experiments with different GANs architectures on different datasets, we showed
that most GAN problems converge to local stationary point that have a rotational
behavior. We also looked at the eigenvalues of the Jacobian of the vector field of
the game, and showed that GANs do not converge to Nash-equilibria but instead
converge to local stable stationary points.

In the third and final contribution, we proposed a new game that we call adversarial
example game to train a generator to produce adversarial attacks that transfer
across models. In this game, an attacker tries to generate adversarial examples
that fools a representative classifier that belongs to a given hypothesis class, while

80

the classifier itself is trained to correctly classify the perturbed examples. We first
showed that such games admit a Nash equilibrium, and that at this equilibrium the
adversarial examples produced by the generator are effective against any classifier
in the hypothesis class. We then tested AEG on several datasets and architectures,
and showed that it achieved state-of-the-art performance outperforming previous
approaches in almost all experiments.

2 Discussions and Perspectives

Using game formulations in machine learning can lead to new algorithms and
new advances, as demonstrated by the success of GANs. However using game
formulations comes with several challenges as we have highlighted in this thesis. In
particular games which are adversarial in nature often have rotational dynamics
which affects convergence and performance. Better understanding those dynamics
and having better algorithms could open the door to more applications of games in
machine learning.

Equilibrium in Games. As mentioned in the second contribution of this thesis,
GANs generally do not converge to a Nash equilibrium which raises the question
of their existence. Farnia and Ozdaglar [2020] showed that indeed such equilibria
might not exist and instead propose a new notion of equilibria called proximal
equilibrium. Other notions of optimality have also been proposed, Jin et al. [2020]
propose to take into account the sequential nature of the game and proposed the
notion of local minimax equilibrium. Finally, Fiez et al. [2020] look at the notion of
Stackelberg equilibrium and analyze the convergence of GDA to such equilibrium.

Non-Monotone Games. Another challenge of games, is that machine learning
models are often highly non-linear leading to problems which are non-monotone
and thus requires new assumptions and convergence guarantees. Several recent
works have tried to extend existing results to non-monotone games. For example,
Lin et al. [2020] provides convergence guarantees for GDA on nonconvex-concave
games. Yang et al. [2020] that derive convergence guarantees for SGDA on a class
of nonconvex-nonconcave games. Gorbunov et al. [2022] provide a general analysis
of extragradient for a class of non-monotone games called quasi-strongly-monotone
VIP.

Hamiltonian Gradient Methods. Another avenue consists in designing new
algorithms with better convergence guarantees for games. Mescheder et al. [2017]
proposed Hamiltonian gradient descent and consensus optimization to avoid the
rotational behavior in games. Loizou et al. [2020] provided convergence guarantees

81

for HGD for a class of nonconvex-nonconcave game, and provided an extension
with linear convergence using variance reduction. An analysis of both consensus
optimization and SGDA was provided in Loizou et al. [2021]. Azizian et al. [2020]
showed that HGD is optimal for bilinear games and that CO can be accelerated.

GANs. Recently GANs have had great success, paving the way to high quality
and high resolution image generation. Brock et al. [2019] were the first to generate
images at 512x512 resolution with impressive results. Recently, Sauer et al. [2022]
achieved event better quality and higher resolution, producing images at a 1024x1024
resolution. However Brock et al. [2019] mentions instabilities during training where
the generator collapses if trained for too long, showing the need for a better
understanding of such dynamics and more stable algorithms. Recently, other
models have also been proposed that achieve results of similar quality to Sauer et al.
[2022]. For example, Dhariwal and Nichol [2021] use diffusion models to achieve
state-of-the-art results.

Games in ML. Finally, games have a large potential for being applied to a
wide variety of ML problems. For example we can mention, Ahuja et al. [2020]
who propose invariant risk minimization games for domain generalization, Rahme
et al. [2020] who formulate Auction Design as a two-player game between two
neural networks, and multi-agent reinforcement learning [Zhang et al., 2021] who is
becoming increasingly popular can be formulated as a game between several agents,
and can heavily benefit from advances in both game theory and machine learning.

82

Bibliography

L. Adolphs, H. Daneshmand, A. Lucchi, and T. Hofmann. Local saddle point opti-
mization: A curvature exploitation approach. arXiv preprint arXiv:1805.05751,
2018.

K. Ahuja, K. Shanmugam, K. Varshney, and A. Dhurandhar. Invariant risk mini-
mization games. arXiv preprint arXiv:2002.04692, 2020.

N. Akhtar and A. Mian. Threat of adversarial attacks on deep learning in computer
vision: A survey. IEEE Access, 6:14410–14430, 2018.

G. Alain, N. Le Roux, and P.-A. Manzagol. Negative eigenvalues of the hessian in
deep neural networks. arXiv, 2019.

Z. Allen-Zhu, Y. Li, and Z. Song. A convergence theory for deep learning via
over-parameterization. In International Conference on Machine Learning, pages
242–252. PMLR, 2019.

M. Andriushchenko, F. Croce, N. Flammarion, and M. Hein. Square attack: a
query-efficient black-box adversarial attack via random search. Sixteenth European
Conference On Computer Vision (ECCV), 2020.

M. Arjovsky and L. Bottou. Towards principled methods for training generative
adversarial networks. In International Conference on Learning Representations,
2017. URL https://openreview.net/forum?id=Hk4_qw5xe.

M. Arjovsky, S. Chintala, and L. Bottou. Wasserstein generative adversarial
networks. In ICML, 2017.

A. Athalye, L. Engstrom, A. Ilyas, and K. Kwok. Synthesizing robust adversarial
examples. In The Thirty-fifth International Conference on Machine Learning
(ICML), 2018.

K. E. Atkinson. An introduction to numerical analysis. John Wiley & Sons, 2003.

W. Azizian, D. Scieur, I. Mitliagkas, S. Lacoste-Julien, and G. Gidel. Accelerating
smooth games by manipulating spectral shapes. In AISTATS, 2020.

83

D. Balduzzi, S. Racaniere, J. Martens, J. Foerster, K. Tuyls, and T. Graepel. The
mechanics of n-player differentiable games. In ICML, 2018.

S. Baluja and I. Fischer. Learning to attack: Adversarial transformation networks.
In Thirty-second aaai conference on artificial intelligence (AAAI), 2018.

J. Bardeen and W. H. Brattain. The transistor, a semi-conductor triode. Physical
Review, 74(2):230, 1948.

H. Berard, G. Gidel, A. Almahairi, P. Vincent, and S. Lacoste-Julien. A closer look
at the optimization landscapes of generative adversarial networks. In ICLR, 2020.

A. Beznosikov, E. Gorbunov, H. Berard, and N. Loizou. Stochastic gradient
descent-ascent: Unified theory and new efficient methods. arXiv preprint
arXiv:2202.07262, 2022.

S. Bhambri, S. Muku, A. Tulasi, and A. B. Buduru. A survey of black-box adversarial
attacks on computer vision models. arXiv preprint arXiv:1912.01667, 2019.

P. Billingsley. Convergence of probability measures. John Wiley & Sons, 1999.

A. J. Bose and P. Aarabi. Adversarial attacks on face detectors using neural net
based constrained optimization. In 2018 IEEE 20th International Workshop on
Multimedia Signal Processing (MMSP). IEEE, 2018.

A. J. Bose, A. Cianflone, and W. Hamiltion. Generalizable adversarial attacks using
generative models. arXiv preprint arXiv:1905.10864, 2019.

A. J. Bose, G. Gidel, H. Berrard, A. Cianflone, P. Vincent, S. Lacoste-Julien, and
W. L. Hamilton. Adversarial example games. arXiv preprint arXiv:2007.00720,
2020.

S. Boyd and L. Vandenberghe. Convex optimization. Cambridge university press,
2004.

A. Brock, J. Donahue, and K. Simonyan. Large scale GAN training for high fidelity
natural image synthesis. In ICLR, 2019.

T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Nee-
lakantan, P. Shyam, G. Sastry, A. Askell, et al. Language models are few-shot
learners. Advances in neural information processing systems, 33:1877–1901, 2020.

R. E. Bruck. On the weak convergence of an ergodic iteration for the solution
of variational inequalities for monotone operators in hilbert space. Journal of
Mathematical Analysis and Applications, 1977.

84

M. Brückner and T. Scheffer. Stackelberg games for adversarial prediction problems.
In Proceedings of the 17th ACM SIGKDD international conference on Knowledge
discovery and data mining, 2011.

M. Brückner, C. Kanzow, and T. Scheffer. Static prediction games for adversarial
learning problems. The Journal of Machine Learning Research, 13(1):2617–2654,
2012.

S. Bubeck et al. Convex optimization: Algorithms and complexity. Foundations
and Trends® in Machine Learning, 8(3-4):231–357, 2015.

J. Buckman, A. Roy, C. Raffel, and I. Goodfellow. Thermometer encoding: One
hot way to resist adversarial examples. In International Conference on Learning
Representations (ICLR 2018), 2018.

N. Carlini and D. Wagner. Magnet and efficient defenses against adversarial attacks
are not robust to adversarial examples. arXiv preprint arXiv:1711.08478, 2017a.

N. Carlini and D. Wagner. Towards evaluating the robustness of neural networks.
In 2017 ieee symposium on security and privacy (sp). IEEE, 2017b.

N. Carlini, A. Athalye, N. Papernot, W. Brendel, J. Rauber, D. Tsipras, I. Good-
fellow, A. Madry, and A. Kurakin. On evaluating adversarial robustness. arXiv
preprint arXiv:1902.06705, 2019.

A. Chakraborty, M. Alam, V. Dey, A. Chattopadhyay, and D. Mukhopadhyay.
Adversarial attacks and defences: A survey. arXiv preprint arXiv:1810.00069,
2018.

Z. Charles, H. Rosenberg, and D. Papailiopoulos. A geometric perspective on the
transferability of adversarial directions. In The Twenty-Second International
Conference on Artificial Intelligence and Statistics, 2019.

T. Chavdarova, G. Gidel, F. Fleuret, and S. Lacoste-Julien. Reducing noise in gan
training with variance reduced extragradient. In NeurIPS, pages 393–403, 2019.

G. H. Chen and R. T. Rockafellar. Convergence rates in forward–backward splitting.
SIAM Journal on Optimization, 1997.

P.-Y. Chen, H. Zhang, Y. Sharma, J. Yi, and C.-J. Hsieh. Zoo: Zeroth order
optimization based black-box attacks to deep neural networks without training
substitute models. In Proceedings of the tenth ACM Workshop on Artificial
Intelligence and Security. ACM, 2017.

C.-K. Chiang, T. Yang, C.-J. Lee, M. Mahdavi, C.-J. Lu, R. Jin, and S. Zhu. Online
optimization with gradual variations. In COLT, pages 6–1, 2012.

85

A. Choromanska, M. Henaff, M. Mathieu, G. B. Arous, and Y. LeCun. The loss
surfaces of multilayer networks. In AISTATS, pages 192–204, 2015.

G. P. Crespi, A. Guerraggio, and M. Rocca. Minty variational inequality and
optimization: Scalar and vector case. In A. Eberhard, N. Hadjisavvas, and D. T.
Luc, editors, Generalized Convexity, Generalized Monotonicity and Applications,
2005.

F. Croce and M. Hein. Minimally distorted adversarial examples with a fast adaptive
boundary attack. Eighth International Conference on Learning Representations
(ICLR), 2019.

F. Croce and M. Hein. Reliable evaluation of adversarial robustness with an ensemble
of diverse parameter-free attacks. Thirty-seventh International Conference on
Machine Learning (ICML), 2020.

C. Daskalakis, A. Ilyas, V. Syrgkanis, and H. Zeng. Training GANs with optimism.
In ICLR, 2018.

Y. N. Dauphin, R. Pascanu, C. Gulcehre, K. Cho, S. Ganguli, and Y. Bengio.
Identifying and attacking the saddle point problem in high-dimensional non-
convex optimization. In NeurIPS, 2014.

A. Defazio, F. Bach, and S. Lacoste-Julien. Saga: A fast incremental gradient
method with support for non-strongly convex composite objectives. Advances in
neural information processing systems, 27, 2014.

P. Dhariwal and A. Nichol. Diffusion models beat gans on image synthesis. Advances
in Neural Information Processing Systems, 34:8780–8794, 2021.

G. S. Dhillon, K. Azizzadenesheli, Z. C. Lipton, J. Bernstein, J. Kossaifi, A. Khanna,
and A. Anandkumar. Stochastic activation pruning for robust adversarial defense.
Sixth International Conference on Learning Representations (ICLR), 2018.

G. W. Ding, L. Wang, and X. Jin. AdverTorch v0.1: An adversarial robustness
toolbox based on pytorch. arXiv preprint arXiv:1902.07623, 2019.

G. W. Ding, Y. Sharma, K. Y. C. Lui, and R. Huang. MMA training: Direct
input space margin maximization through adversarial training. In International
Conference on Learning Representations, 2020.

Y. Dong, F. Liao, T. Pang, H. Su, J. Zhu, X. Hu, and J. Li. Boosting adversarial
attacks with momentum. In Proceedings of the IEEE conference on computer
vision and pattern recognition, 2018.

86

Y. Dong, T. Pang, H. Su, and J. Zhu. Evading defenses to transferable adversarial
examples by translation-invariant attacks. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2019.

A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner,
M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby.
An image is worth 16x16 words: Transformers for image recognition at scale.
In International Conference on Learning Representations, 2021. URL https:

//openreview.net/forum?id=YicbFdNTTy.

F. Draxler, K. Veschgini, M. Salmhofer, and F. Hamprecht. Essentially no barriers
in neural network energy landscape. In ICML, 2018.

J. Du, H. Zhang, J. T. Zhou, Y. Yang, and J. Feng. Query-efficient meta at-
tack to deep neural networks. Eighth International Conference on Learning
Representations (ICLR 2020), 2020.

A. d’Aspremont, D. Scieur, A. Taylor, et al. Acceleration methods. Foundations
and Trends® in Optimization, 5(1-2):1–245, 2021.

A. Erraqabi, A. Baratin, Y. Bengio, and S. Lacoste-Julien. A3t: Adversarially
augmented adversarial training. arXiv preprint arXiv:1801.04055, 2018.

F. Facchinei and J.-S. Pang. Finite-dimensional variational inequalities and com-
plementarity problems. Springer.

K. Fan. Minimax theorems. Proceedings of the National Academy of Sciences of
the United States of America, 1953.

F. Farnia and A. Ozdaglar. Do gans always have nash equilibria? In International
Conference on Machine Learning, pages 3029–3039. PMLR, 2020.

W. Fedus, M. Rosca, B. Lakshminarayanan, A. M. Dai, S. Mohamed, and I. Good-
fellow. Many paths to equilibrium: GANs do not need to decrease a divergence
at every step. In ICLR, 2018.

T. Fiez, B. Chasnov, and L. Ratliff. Implicit learning dynamics in stackelberg
games: Equilibria characterization, convergence analysis, and empirical study. In
International Conference on Machine Learning, pages 3133–3144. PMLR, 2020.

G. Gidel, T. Jebara, and S. Lacoste-Julien. Frank-Wolfe algorithms for saddle point
problems. AISTATS, 2017.

G. Gidel, H. Berard, P. Vincent, and S. Lacoste-Julien. A variational inequality
perspective on generative adversarial nets. In ICLR, 2019a.

87

G. Gidel, R. A. Hemmat, M. Pezeshki, R. Lepriol, G. Huang, S. Lacoste-Julien, and
I. Mitliagkas. Negative momentum for improved game dynamics. In AISTATS,
2019b.

G. Gidel, D. Balduzzi, W. M. Czarnecki, M. Garnelo, and Y. Bachrach. Minimax
theorem for latent games or: How i learned to stop worrying about mixed-nash
and love neural nets. arXiv preprint arXiv:2002.05820, 2020.

X. Glorot and Y. Bengio. Understanding the difficulty of training deep feedforward
neural networks. In AISTATS, 2010.

Z. Gong, W. Wang, and W.-S. Ku. Adversarial and clean data are not twins. arXiv
preprint arXiv:1705.04960, 2017.

I. Goodfellow. Nips 2016 tutorial: Generative adversarial networks.
arXiv:1701.00160, 2016.

I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio. Generative adversarial nets. In NeurIPS, 2014.

I. Goodfellow, Y. Bengio, and A. Courville. Deep learning. MIT press, 2016.

I. J. Goodfellow, J. Shlens, and C. Szegedy. Explaining and harnessing adversarial
examples. Third International Conference of Learning Representations (ICLR),
2015a.

I. J. Goodfellow, O. Vinyals, and A. M. Saxe. Qualitatively characterizing neural
network optimization problems. In ICLR, 2015b.

E. Gorbunov, H. Berard, G. Gidel, and N. Loizou. Stochastic extragradient: General
analysis and improved rates. In International Conference on Artificial Intelligence
and Statistics, pages 7865–7901. PMLR, 2022.

R. M. Gower. Convergence theorems for gradient descent. Lecture notes for
Statistical Optimization, 2018.

R. M. Gower, N. Loizou, X. Qian, A. Sailanbayev, E. Shulgin, and P. Richtárik. Sgd:
General analysis and improved rates. In International Conference on Machine
Learning, pages 5200–5209. PMLR, 2019.

A. Gretton, K. M. Borgwardt, M. J. Rasch, B. Schölkopf, and A. Smola. A kernel
two-sample test. The Journal of Machine Learning Research, 13(1):723–773, 2012.

P. Grnarova, K. Y. Levy, A. Lucchi, T. Hofmann, and A. Krause. An online learning
approach to generative adversarial networks. In ICLR, 2018.

88

K. Grosse, P. Manoharan, N. Papernot, M. Backes, and P. McDaniel. On the
(statistical) detection of adversarial examples. arXiv preprint arXiv:1702.06280,
2017.

I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville. Improved
training of wasserstein GANs. In NeurIPS, 2017.

C. Guo, M. Rana, M. Cisse, and L. Van Der Maaten. Countering adversarial
images using input transformations. Sixth International Conference on Learning
Representations (ICLR), 2018.

C. Guo, J. R. Gardner, Y. You, A. G. Wilson, and K. Q. Weinberger. Simple black-
box adversarial attacks. In Thirthy-Sixth International Conference on Machine
Learning (ICML), 2019.

T. S. Guzella and W. M. Caminhas. A review of machine learning approaches to
spam filtering. Expert Systems with Applications, 36(7):10206–10222, 2009.

P. T. Harker and J.-S. Pang. Finite-dimensional variational inequality and nonlinear
complementarity problems: a survey of theory, algorithms and applications.
Mathematical programming, 1990.

E. Hazan. Lecture notes: Optimization for machine learning. arXiv preprint
arXiv:1909.03550, 2019.

E. Hazan, K. Singh, and C. Zhang. Efficient regret minimization in non-convex
games. In ICML, 2017.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition.
In Proceedings of the IEEE conference on computer vision and pattern recognition,
2016.

M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter. GANs
trained by a two time-scale update rule converge to a local Nash equilibrium. In
NeurIPS, 2017.

J. Ho, A. Jain, and P. Abbeel. Denoising diffusion probabilistic models. Advances
in Neural Information Processing Systems, 33:6840–6851, 2020.

K. Hornik. Approximation capabilities of multilayer feedforward networks. Neural
networks, 1991.

K. Hornik, M. Stinchcombe, H. White, et al. Multilayer feedforward networks are
universal approximators. Neural networks, 2(5):359–366, 1989.

89

G. Huang, H. Berard, A. Touati, G. Gidel, P. Vincent, and S. Lacoste-Julien.
Parametric adversarial divergences are good task losses for generative modeling.
arXiv preprint arXiv:1708.02511, 2017a.

G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger. Densely connected
convolutional networks. In Proceedings of the IEEE conference on computer vision
and pattern recognition, 2017b.

Z. Huang and T. Zhang. Black-box adversarial attack with transferable model-based
embedding. Eighth International Conference on Learning Representations (ICLR),
2020.

A. Ilyas, L. Engstrom, A. Athalye, and J. Lin. Query-efficient black-box adversarial
examples. arXiv preprint arXiv:1712.07113, 2017.

A. Ilyas, L. Engstrom, A. Athalye, and J. Lin. Black-box adversarial attacks with
limited queries and information. Thirty-fifth International Conference on Machine
Learning (ICML), 2018.

A. Ilyas, L. Engstrom, and A. Madry. Prior convictions: Black-box adversarial
attacks with bandits and priors. Seventh International Conference on Learning
Representations (ICLR), 2019.

A. Iusem, A. Jofré, R. I. Oliveira, and P. Thompson. Extragradient method
with variance reduction for stochastic variational inequalities. SIAM Journal on
Optimization, 2017.

E. Jang, S. Gu, and B. Poole. Categorical reparameterization with gumbel-softmax.
Fifth International Conference on Learning Representations (ICLR), 2017.

S. Jelassi, A. Mensch, G. Gidel, and Y. Li. Adam is no better than normalized sgd:
Dissecting how adaptivity improves gan performance. preprint, 2021.

L. Jiang, X. Ma, S. Chen, J. Bailey, and Y.-G. Jiang. Black-box adversarial
attacks on video recognition models. In Proceedings of the twenty-seventh ACM
International Conference on Multimedia, 2019.

C. Jin, P. Netrapalli, and M. Jordan. What is local optimality in nonconvex-
nonconcave minimax optimization? In International conference on machine
learning, pages 4880–4889. PMLR, 2020.

R. Johnson and T. Zhang. Accelerating stochastic gradient descent using predictive
variance reduction. Advances in neural information processing systems, 26, 2013.

A. Juditsky, A. Nemirovski, and C. Tauvel. Solving variational inequalities with
stochastic mirror-prox algorithm. Stochastic Systems, 2011.

90

J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ronneberger, K. Tun-
yasuvunakool, R. Bates, A. Žídek, A. Potapenko, et al. Highly accurate protein
structure prediction with alphafold. Nature, 596(7873):583–589, 2021.

L. V. Kantorovich. Mathematical methods of organizing and planning production.
Management science, 6(4):366–422, 1960.

T. Karras, T. Aila, S. Laine, and J. Lehtinen. Progressive growing of GANs for
improved quality, stability, and variation. In ICLR, 2018.

T. Karras, S. Laine, and T. Aila. A style-based generator architecture for generative
adversarial networks. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 4401–4410, 2019.

K. Kawaguchi. Deep learning without poor local minima. In NeurIPS, pages
586–594, 2016.

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In ICLR,
2015.

D. P. Kingma and M. Welling. Auto-encoding variational bayes. In International
Conference on Learning Representations (ICLR), 2014.

G. Korpelevich. The extragradient method for finding saddle points and other
problems. Matecon, 1976.

A. Krizhevsky and G. Hinton. Learning multiple layers of features from tiny images.
Technical report, Citeseer, 2009.

A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep
convolutional neural networks. In NeurIPS, 2012.

S. Kullback and R. A. Leibler. On information and sufficiency. The annals of
mathematical statistics, 22(1):79–86, 1951.

T. Larsson and M. Patriksson. A class of gap functions for variational inequalities.
Math. Program., 1994.

Y. LeCun, C. Cortes, and C. Burges. Mnist handwritten digit database, 2010.

Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. nature, 521(7553):436–444,
2015a.

Y. LeCun et al. Lenet-5, convolutional neural networks. URL: http://yann. lecun.
com/exdb/lenet, 2015b.

91

C. Ledig, L. Theis, F. Huszár, J. Caballero, A. Cunningham, A. Acosta, A. Aitken,
A. Tejani, J. Totz, Z. Wang, et al. Photo-realistic single image super-resolution
using a generative adversarial network. In CVPR, 2017.

A. M. Legendre. Nouvelles méthodes pour la détermination des orbites des comètes;
par AM Legendre... chez Firmin Didot, libraire pour lew mathematiques, la
marine, l . . . , 1806.

H. Li, Z. Xu, G. Taylor, C. Studer, and T. Goldstein. Visualizing the loss landscape
of neural nets. In NeurIPS, 2018a.

J. Li, A. Madry, J. Peebles, and L. Schmidt. On the limitations of first order
approximation in gan dynamics. In ICML, 2018b.

Y. Li, A. Schwing, K.-C. Wang, and R. Zemel. Dualing GANs. In NeurIPS, 2017.

Y. Li, S. Bai, Y. Zhou, C. Xie, Z. Zhang, and A. Yuille. Learning transferable
adversarial examples via ghost networks. Thirty-Fourth AAAI Conference on
Artificial Intelligence (AAAI), 2018c.

Y. Li, L. Li, L. Wang, T. Zhang, and B. Gong. Nattack: Learning the distributions
of adversarial examples for an improved black-box attack on deep neural networks.
Thirty-Sixth International Conference on Machine Learning (ICML), 2019.

Y. Li, S. Bai, C. Xie, Z. Liao, X. Shen, and A. L. Yuille. Regional homogeneity:
Towards learning transferable universal adversarial perturbations against defenses.
European Conference on Computer Vision (ECCV), 2020.

J. H. Lim and J. C. Ye. Geometric gan. arXiv preprint arXiv:1705.02894, 2017.

T. Lin, C. Jin, and M. Jordan. On gradient descent ascent for nonconvex-concave
minimax problems. In International Conference on Machine Learning, pages
6083–6093. PMLR, 2020.

Y. Liu, X. Chen, C. Liu, and D. Song. Delving into transferable adversarial examples
and black-box attacks. arXiv preprint arXiv:1611.02770, 2016.

N. Loizou, H. Berard, A. Jolicoeur-Martineau, P. Vincent, S. Lacoste-Julien, and
I. Mitliagkas. Stochastic hamiltonian gradient methods for smooth games. In
International Conference on Machine Learning, pages 6370–6381. PMLR, 2020.

N. Loizou, H. Berard, G. Gidel, I. Mitliagkas, and S. Lacoste-Julien. Stochastic
gradient descent-ascent and consensus optimization for smooth games: Conver-
gence analysis under expected co-coercivity. Advances in Neural Information
Processing Systems, 34:19095–19108, 2021.

92

C. J. Maddison, A. Mnih, and Y. W. Teh. The concrete distribution: A continu-
ous relaxation of discrete random variables. Fifth International Conference on
Learning Representations (ICLR), 2017.

A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu. Towards deep learning
models resistant to adversarial attacks. In ICLR, 2018.

E. Mazumdar, L. J. Ratliff, and S. S. Sastry. On gradient-based learning in
continuous games. SIAM Journal on Mathematics of Data Science, 2(1):103–131,
2020.

E. V. Mazumdar, M. I. Jordan, and S. S. Sastry. On finding local nash equilibria (and
only local nash equilibria) in zero-sum games. arXiv preprint arXiv:1901.00838,
2019.

P. Mertikopoulos, B. Lecouat, H. Zenati, C.-S. Foo, V. Chandrasekhar, and G. Pil-
iouras. Optimistic mirror descent in saddle-point problems: Going the extra
(gradient) mile. In ICLR, 2019.

L. Mescheder, S. Nowozin, and A. Geiger. The numerics of GANs. In NeurIPS,
2017.

L. Mescheder, A. Geiger, and S. Nowozin. Which Training Methods for GANs do
actually Converge? In ICML, 2018.

L. Metz, B. Poole, D. Pfau, and J. Sohl-Dickstein. Unrolled generative adversarial
networks. In ICLR, 2017.

J. H. Metzen, T. Genewein, V. Fischer, and B. Bischoff. On detecting adversar-
ial perturbations. Sixth International Conference on Learning Representations
(ICLR), 2017.

T. Miyato, T. Kataoka, M. Koyama, and Y. Yoshida. Spectral normalization for
generative adversarial networks. In ICLR, 2018.

A. Mladenovic, J. Bose, H. berard, W. L. Hamilton, S. Lacoste-Julien, P. Vincent,
and G. Gidel. Online adversarial attacks. In International Conference on Learning
Representations, 2022. URL https://openreview.net/forum?id=bYGSzbCM_i.

S.-M. Moosavi-Dezfooli, A. Fawzi, and P. Frossard. Deepfool: a simple and accurate
method to fool deep neural networks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, 2016.

A. Müller. Integral probability metrics and their generating classes of functions.
Advances in Applied Probability, 29(2):429–443, 1997.

93

V. Nagarajan and J. Z. Kolter. Gradient descent GAN optimization is locally stable.
In NeurIPS, 2017.

J. Nash. Non-cooperative games. Annals of mathematics, pages 286–295, 1951.

J. F. Nash et al. Equilibrium points in n-person games. Proceedings of the national
academy of sciences, 1950.

A. Nedić and A. Ozdaglar. Subgradient methods for saddle-point problems. J
Optim Theory Appl, 2009.

A. Nemirovski. Prox-method with rate of convergence O(1/t) for variational
inequalities with lipschitz continuous monotone operators and smooth convex-
concave saddle point problems. SIAM J. Optim., 2004.

A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro. Robust stochastic approx-
imation approach to stochastic programming. SIAM Journal on optimization,
2009.

Y. Nesterov. Introductory Lectures On Convex Optimization. Springer, 1983.

Y. Nesterov. Dual extrapolation and its applications to solving variational inequali-
ties and related problems. Math. Program., 2007.

Y. Nesterov. Gradient methods for minimizing composite functions. Mathematical
programming, 140(1):125–161, 2013.

J. v. Neumann and O. Morgenstern. Theory of games and economic behavior.
Princeton University Press, 1944.

S. Nowozin, B. Cseke, and R. Tomioka. f-GAN: Training generative neural samplers
using variational divergence minimization. In NeurIPS, 2016.

B. Palaniappan and F. Bach. Stochastic variance reduction methods for saddle-point
problems. In NeurIPS, 2016.

N. Papernot, P. McDaniel, and I. Goodfellow. Transferability in machine learning:
from phenomena to black-box attacks using adversarial samples. arXiv preprint
arXiv:1605.07277, 2016a.

N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. B. Celik, and A. Swami. Practical
black-box attacks against deep learning systems using adversarial examples. arXiv
preprint arXiv:1602.02697, 1(2):3, 2016b.

N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. B. Celik, and A. Swami.
Practical black-box attacks against machine learning. In Proceedings of the 2017
ACM on Asia Conference on Computer and Communications Security. ACM,
2017.

94

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, et al. Pytorch: An imperative style, high-performance
deep learning library. In Advances in Neural Information Processing Systems,
2019.

W. Paul. Electromagnetic traps for charged and neutral particles. Reviews of
modern physics, 1990.

B. A. Pearlmutter. Fast exact multiplication by the hessian. Neural computation, 6
(1):147–160, 1994.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research, 2011.

B. T. Polyak. Gradient methods for minimizing functionals. Zhurnal Vychislitel’noi
Matematiki i Matematicheskoi Fiziki, 3(4):643–653, 1963.

L. D. Popov. A modification of the arrow-hurwicz method for search of saddle
points. Mathematical notes of the Academy of Sciences of the USSR, 1980.

A. Radford, L. Metz, and S. Chintala. Unsupervised representation learning with
deep convolutional generative adversarial networks. In ICLR, 2016.

J. Rahme, S. Jelassi, and S. M. Weinberg. Auction learning as a two-player game.
In International Conference on Learning Representations, 2020.

A. Rakhlin and K. Sridharan. Online learning with predictable sequences. In COLT,
2013.

A. Ramesh, P. Dhariwal, A. Nichol, C. Chu, and M. Chen. Hierarchical text-
conditional image generation with clip latents. arXiv preprint arXiv:2204.06125,
2022.

L. J. Ratliff, S. A. Burden, and S. S. Sastry. On the characterization of local nash
equilibria in continuous games. In IEEE Transactions on Automatic Control,
2016.

A. Rényi et al. On measures of entropy and information. In Proceedings of the
fourth Berkeley symposium on mathematical statistics and probability, volume 1.
Berkeley, California, USA, 1961.

H. Robbins and S. Monro. A stochastic approximation method. The annals of
mathematical statistics, pages 400–407, 1951.

95

S. Ruder. An overview of gradient descent optimization algorithms. arXiv preprint
arXiv:1609.04747, 2016.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations by
back-propagating errors. nature, 323(6088):533–536, 1986.

L. Sagun, L. Bottou, and Y. LeCun. Eigenvalues of the hessian in deep learning:
Singularity and beyond. arXiv, 2016.

L. Sagun, U. Evci, V. U. Guney, Y. Dauphin, and L. Bottou. Empirical analysis of
the hessian of over-parametrized neural networks. arXiv, 2017.

T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen.
Improved techniques for training GANs. In NeurIPS, 2016.

A. Sauer, K. Schwarz, and A. Geiger. Stylegan-xl: Scaling stylegan to large diverse
datasets. In ACM SIGGRAPH 2022 Conference Proceedings, pages 1–10, 2022.

J. Schmidt, M. R. Marques, S. Botti, and M. A. Marques. Recent advances and ap-
plications of machine learning in solid-state materials science. npj Computational
Materials, 5(1):1–36, 2019.

Y. Shi, S. Wang, and Y. Han. Curls & whey: Boosting black-box adversarial
attacks. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2019.

D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche,
J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. nature, 529(7587):
484–489, 2016.

K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale
image recognition. Third International Conference on Learning Representations
(ICLR), 2015.

Y. Song, T. Kim, S. Nowozin, S. Ermon, and N. Kushman. Pixeldefend: Leveraging
generative models to understand and defend against adversarial examples. Sixth
International Conference on Learning Representations (ICLR), 2018.

L. Sun, M. Tan, and Z. Zhou. A survey of practical adversarial example attacks.
Cybersecurity, 1(1):9, 2018.

I. Sutskever. Training recurrent neural networks. University of Toronto Toronto,
Canada, 2013.

96

C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and R. Fer-
gus. Intriguing properties of neural networks. Second International Conference
on Learning Representations (ICLR), 2014.

C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna. Rethinking the
inception architecture for computer vision. In Proceedings of the IEEE conference
on computer vision and pattern recognition, 2016.

R. Thompson, T. Harmon, and M. Ball. The rotating-saddle trap: A mechanical
analogy to rf-electric-quadrupole ion trapping? Canadian journal of physics,
2002.

F. Tramèr, A. Kurakin, N. Papernot, I. Goodfellow, D. Boneh, and P. McDaniel. En-
semble adversarial training: Attacks and defenses. Sixth International Conference
on Learning Representations (ICLR), 2018.

P. Tseng. On linear convergence of iterative methods for the variational inequality
problem. Journal of Computational and Applied Mathematics, 60(1-2):237–252,
1995.

C.-C. Tu, P. Ting, P.-Y. Chen, S. Liu, H. Zhang, J. Yi, C.-J. Hsieh, and S.-M.
Cheng. Autozoom: Autoencoder-based zeroth order optimization method for
attacking black-box neural networks. In Proceedings of the AAAI Conference on
Artificial Intelligence, 2019.

A. Van Den Oord, O. Vinyals, et al. Neural discrete representation learning.
Advances in neural information processing systems, 30, 2017.

A. Van Oord, N. Kalchbrenner, and K. Kavukcuoglu. Pixel recurrent neural networks.
In International conference on machine learning, pages 1747–1756. PMLR, 2016.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser,
and I. Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017.

S. Vaswani, A. Mishkin, I. Laradji, M. Schmidt, G. Gidel, and S. Lacoste-Julien.
Painless stochastic gradient: Interpolation, line-search, and convergence rates. In
NeurIPS, 2019.

F. Verhulst. Nonlinear differential equations and dynamical systems. Springer
Science & Business Media, 1989.

C. Villani. Optimal transport: old and new, volume 338. Springer, 2009.

A. Wald. Statistical decision functions which minimize the maximum risk. Annals
of Mathematics, 1945.

97

B. Wu and A. Kumar. Extreme ultraviolet lithography: A review. Journal of
Vacuum Science & Technology B: Microelectronics and Nanometer Structures
Processing, Measurement, and Phenomena, 25(6):1743–1761, 2007.

D. Wu, Y. Wang, S.-T. Xia, J. Bailey, and X. Ma. Skip connections matter: On the
transferability of adversarial examples generated with resnets. Eigth International
Conference on Learning Representations (ICLR), 2020.

C. Xiao, B. Li, J.-Y. Zhu, W. He, M. Liu, and D. Song. Generating adversarial exam-
ples with adversarial networks. Proceedings of the Twenty-Seventh International
Joint Conference on Artificial Intelligence (IJCAI), 2018.

C. Xie, Z. Zhang, Y. Zhou, S. Bai, J. Wang, Z. Ren, and A. L. Yuille. Improving
transferability of adversarial examples with input diversity. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2019.

H. Xu, Y. Ma, H. Liu, D. Deb, H. Liu, J. Tang, and A. Jain. Adversarial attacks and
defenses in images, graphs and text: A review. arXiv preprint arXiv:1909.08072,
2019.

A. Yadav, S. Shah, Z. Xu, D. Jacobs, and T. Goldstein. Stabilizing adversarial nets
with prediction methods. In ICLR, 2018.

J. Yang, N. Kiyavash, and N. He. Global convergence and variance-reduced opti-
mization for a class of nonconvex-nonconcave minimax problems. arXiv preprint
arXiv:2002.09621, 2020.

Y. Yazıcı, C.-S. Foo, S. Winkler, K.-H. Yap, G. Piliouras, and V. Chandrasekhar.
The unusual effectiveness of averaging in gan training. In ICLR, 2019.

F. Yousefian, A. Nedić, and U. V. Shanbhag. Optimal robust smoothing extragra-
dient algorithms for stochastic variational inequality problems. In CDC. IEEE,
2014.

S. Zagoruyko and N. Komodakis. Wide residual networks. In Proceedings of the
British Machine Vision Conference (BMVC). BMVA Press, September 2016.

H. Zhang, I. Goodfellow, D. Metaxas, and A. Odena. Self-attention generative
adversarial networks. In International conference on machine learning, pages
7354–7363. PMLR, 2019.

K. Zhang, Z. Yang, and T. Başar. Multi-agent reinforcement learning: A selective
overview of theories and algorithms. Handbook of Reinforcement Learning and
Control, pages 321–384, 2021.

Z. Zhao, D. Dua, and S. Singh. Generating natural adversarial examples. Sixth
International Conference on Learning Representations, 2018.

98

J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros. Unpaired image-to-image translation
using cycle-consistent adversarial networks. In ICCV, pages 2223–2232, 2017.

C. L. Zitnick, L. Chanussot, A. Das, S. Goyal, J. Heras-Domingo, C. Ho, W. Hu,
T. Lavril, A. Palizhati, M. Riviere, et al. An introduction to electrocatalyst
design using machine learning for renewable energy storage. arXiv preprint
arXiv:2010.09435, 2020.

99

A
A Variational Inequality
Perspective on Generative
Adversarial Networks

1 Definitions

In this section we recall usual definitions and lemmas from convex analysis. We
start with the definitions and lemmas regarding the projection mapping.

1.1 Projection mapping

Definition 3. The projection PΩ onto Ω is defined as,

PΩ(ω′) ∈ arg min
ω′∈Ω

‖ω − ω′‖2
2 . (1.1)

When Ω is a convex set this projection is unique. This is a consequence of the
following lemma that we will use in the following sections: the non-expansiveness
of the projection onto a convex set.

Lemma 1. Let Ω a convex set, the projection mapping PΩ : Rd → Ω is nonexpansive,
i.e.,

‖PΩ(ω)− PΩ(ω′)‖2 ≤ ‖ω − ω′‖2 , ∀ω,ω′ ∈ Ω . (1.2)

This is standard convex analysis result which can be found for instance in [Boyd
and Vandenberghe, 2004]. The following Lemma is also standard in convex analysis
and its proof uses similar arguments as the proof of Lemma 1.

Lemma 2. Let ω ∈ Ω and ω+ := PΩ(ω + u) then for all ω′ ∈ Ω we have,

‖ω+ − ω′‖2
2 ≤ ‖ω − ω′‖2

2 + 2u⊤(ω+ − ω′)− ‖ω+ − ω‖2
2 . (1.3)

Proof of Lemma 2. We start by simply developing,

‖ω+ − ω′‖2
2 = ‖(ω+ − ω) + (ω − ω′)‖2

2 = ‖ω − ω′‖2
2 + 2(ω+ − ω)⊤(ω − ω′) + ‖ω+ − ω‖2

2

= ‖ω − ω′‖2
2 + 2(ω+ − ω)⊤(ω+ − ω′)− ‖ω+ − ω‖2

2 .

100

Then since ω+ is the projection onto the convex set Ω of ω + u we have that
(ω+ − (ω + u))⊤(ω+ − ω′) ≤ 0 , ∀ω′ ∈ Ω, leading to the result of the Lemma.

1.2 Smoothness and Monotonicity of the operator

Another important property used is the Lipschitzness of an operator.

Definition 4. A mapping F : Rp → Rd is said to be L-Lipschitz if,

‖F (ω)− F (ω′)‖2 ≤ L‖ω − ω′‖2 , ∀ω,ω′ ∈ Ω . (1.4)

Definition 5. A differentiable function f : Ω→ R is said to be µ-strongly convex
if

f(ω) ≥ f(ω′) +∇f(ω′)⊤(ω − ω′) +
µ

2
‖ω − ω′‖2

2 ∀ω,ω′ ∈ Ω . (1.5)

Definition 6. A function (θ,ϕ) 7→ L(θ,ϕ) is said convex-concave if L(·,ϕ) is
convex for all ϕ ∈ Φ and L(θ, ·) is concave for all θ ∈ Θ. An L is said to be
µ-strongly convex concave if (θ,ϕ) 7→ L(θ,ϕ)− µ

2
‖θ‖2

2 + µ
2
‖ϕ‖2

2 is convex concave.

Definition 7. For µ > 0, an operator F : Ω→ Rd is said to be µ-strongly monotone
if

(F (ω)− F (ω′))⊤(ω − ω′) ≥ µ‖ω − ω′‖2
2 . (1.6)

2 Gradient methods on unconstrained bilinear

games

In this section we will prove the results provided in §3, namely Proposition 1,
Proposition 2 and Theorem 1. For Proposition 1 and 2 let us recall the context.
We wanted to derive properties of some gradient methods on the following simple
illustrative example

min
θ∈R

max
φ∈R

θ · φ (2.1)

2.1 Proof of Proposition 1

Let us first recall the proposition:

101

Proposition 1. The simultaneous iterates diverge geometrically and the alternated
iterates defined in (3.5) are bounded but do not converge to 0 as

Simultaneous: θ2
t+1+φ2

t+1 = (1+η2)(θ2
t +φ2

t) , Alternated: θ2
t +φ2

t = Θ(θ2
0 +φ2

0)
(2.2)

where ut = Θ(vt)⇔ ∃α, β > 0 : αvt ≤ ut ≤ βvt.

The uniform average (θ̄t, φ̄t) := 1
t

∑t−1
s=0(θs, φs) of the simultaneous updates (resp.

the alternated updates) diverges (resp. converges to 0) as,

Simultaneous: θ̄2
t +φ̄2

t = Θ

(

θ2
0 + φ2

0

η2t2
(1 + η2)t

)

, Alternated: θ̄2
t +φ̄2

t = Θ

(

θ2
0 + φ2

0

η2t2

)

.

(2.3)

Proof. Let us start with the simultaneous update rule:
{

θt+1 = θt − ηφt

φt+1 = φt + ηθt .
(2.4)

Then we have,

θ2
t+1 + φ2

t+1 = (θt − ηφt)
2 + (φt + ηθt)

2 (2.5)

= (1 + η2)(θ2
t + φ2

t) . (2.6)

The update rule (2.4) also gives us,

{

ηφt = θt − θt+1

ηθt+1 = φt+1 − φt .
(2.7)

Summing these equation for 0 ≤ t ≤ T − 1 we get,

φ̄2
T + θ̄2

T = (θ0 − θT)2 + (φ0 − φT)2 (2.8)

= ((1 + η2)T + 1)(θ2
0 + φ2

0)− 2θ0θT − 2φ0φT (2.9)

= Θ
(

(1 + η2)T ((θ2
0 + φ2

0)
)

(2.10)

Let continue start with the alternated update rule
{

θt+1 = θt − ηφt

φt+1 = φt + ηθt+1 = φt + η(θt − ηφt)
(2.11)

Then we have
[

θt+1

φt+1

]

=

[

1 −η
η 1− η2

] [

θt

φt

]

(2.12)

102

by simple linear algebra, for η < 2, the matrix M :=

[

1 −η
η 1− η2

]

has two complex

conjugate eigenvalues which are

λ± = 1− ηη ± i
√

4− η2

2
(2.13)

and their squared magnitude is equal to det(M) = 1 − η2 + η2 = 1. We
can diagonalize M meaning that there exist P an invertible matrix such that
M = P−1 diag(λ+, λ−)P . Then, we have

[

θt

φt

]

= M t

[

θ0

φ0

]

= P−1 diag(λt
+, λ

t
−)P

[

θ0

φ0

]

(2.14)

and consequently,

θ2
t + φ2

t =

∥

∥

∥

∥

∥

[

θt

φt

]∥

∥

∥

∥

∥

2

C

=

∥

∥

∥

∥

∥

P−1 diag(λt
+, λ

t
−)P

[

θ0

φ0

]∥

∥

∥

∥

∥

2

C

≤ ‖P−1‖‖P‖(θ2
0 + φ2

0) (2.15)

where ‖ · ‖C is the norm in C2 and ‖P‖ := maxu∈C2
‖P u‖C
‖u‖C is the induced matrix

norm. The same way we have

θ2
0 + φ2

0 =

∥

∥

∥

∥

∥

M−t

[

θt

φt

]∥

∥

∥

∥

∥

2

C

=

∥

∥

∥

∥

∥

P−1 diag(λ−t
+ , λ−t

−)P

[

θt

φt

]∥

∥

∥

∥

∥

2

C

≤ ‖P−1‖‖P‖(θ2
t + φ2

t)

(2.16)
Hence, if θ2

0 + φ2
0 > 0 the sequence (θt, φt) is bounded but do not converge to 0.

Moreover the update rule gives us,

{

ηφt = θt − θt+1

ηθt = φt − φt−1

⇒

η

T

T −1
∑

t=0

φt =
θ0 − θT

T

η

T

T −1
∑

t=0

θt =
φT −1 − φ0 + ηθ0

T

⇒

φ̄T =
θ0 − θT

ηT

θ̄T =
φT −1 − φ0 + ηθ0

ηT

(2.17)
Consequently, since θ2

t + φ2
t = O(θ2

0 + φ2
0),

√

θ̄2
t + φ̄2

t = O

√

θ2
0 + φ2

0

ηt

 (2.18)

2.2 Implicit and extrapolation method

In this section we will prove a slightly more precise proposition than Proposition 2,

103

Proposition 2. The squared norm of the iterates Nt := θ2
t + φ2

t , where the update
rule of θt and φt defined in (3.12), decrease geometrically for any 0 < η < 1 as,

Implicit: Nt+1 =
Nt

1 + η2
, Extrapolation: Nt+1 = (1− η2 + η4)Nt , ∀t ≥ 0

(2.19)

Proof. Let us recall the update rule for the implicit method
{

θt+1 = θt − ηφt+1

φt+1 = φt + ηθt+1

⇒
{

(1 + η2)θt+1 = θt − ηφt

(1 + η2)φt+1 = φt + ηθt

(2.20)

Then,

(1 + η2)2(θ2
t+1 + φ2

t+1) = (θt − ηφt)
2 + (φt + ηθt)

2 (2.21)

= θ2
t + φ2

t + +η2(θ2
t + φ2

t) (2.22)

Implying that

θ2
t+1 + φ2

t+1 =
θ2

t + φ2
t

1 + η2
(2.23)

For the extrapolation method we have the update rule
{

θt+1 = θt − η(φt + ηθt)

φt+1 = φt + η(θt − ηφt)
(2.24)

Implying that,

θ2
t+1 + φ2

t+1 = (θt − η(φt + ηθt))
2 + (φt + η(θt − ηφt))

2 (2.25)

= θ2
t + φ2

t − 2η2(θ2 + φ2) + η2((θt − ηφt)
2 + (φt + ηθt)

2) (2.26)

= (1− η2 + η4)(θ2
t + φ2

t) (2.27)

2.3 Extrapolation from the past

Let us recall what we call projected extrapolation form the past, where we used the
notation ω′

t = ωt+1/2 for compactness,

Extrapolation from the past: ω′
t = PΩ[ωt − ηF (ω′

t−1)] (2.28)

Perform update step: ωt+1 = PΩ[ωt − ηF (ω′
t)] and store: F (ω′

t) (2.29)

104

where PΩ[·] is the projection onto the constraint set Ω. An operator F : Ω→ Rd is
said to be µ-strongly monotone if

(F (ω)− F (ω′))⊤(ω − ω′) ≥ µ‖ω − ω′‖2
2 . (2.30)

If F is strongly monotone we can prove the following theorem:

Theorem 1. If F is µ-strongly monotone (see Appendix A §1 for the definition
of strong monotonicity) and L-Lipschitz, then the updates (3.14) and (3.15) with
η = 1

4L
provide linearly converging iterates,

‖ωt − ω∗‖2
2 ≤

(

1− µ

4L

)t

‖ω0 − ω∗‖2
2 , ∀t ≥ 0 . (2.31)

Proof. In order to prove tis theorem we will prove a slightly more general result,

‖ωt+1 −ω∗‖2
2 + ‖ω′

t−1 −ω′
t‖2

2 ≤
(

1− µ

4L

)

(‖ωt −ω∗‖2
2 + ‖ω′

t−1 −ω′
t−2‖2

2) . (2.32)

implying that

‖ωt+1 − ω∗‖2
2 ≤ ‖ωt+1 − ω∗‖2

2 + ‖ω′
t−1 − ω′

t‖2
2 ≤

(

1− µ

4L

)t

‖ω0 − ω∗‖2
2 . (2.33)

with the convention that ω′
0 = ω′

−1 = ω′
−2.

Let us first proof three technical lemmas,

Lemma 3. If F is µ-strongly monotone we have,

µ
(

‖ωt − ω∗‖2
2 − 2‖ω′

t − ωt‖2
2

)

≤ 2F (ω′
t)

⊤(ω′
t − ω∗) , ∀ω∗ ∈ Ω∗ . (2.34)

Proof. By strong monotonicity and optimality of ω∗,

2µ‖ω′
t − ω∗‖2

2 ≤ 2F (ω∗)⊤(ω′
t − ω∗) + 2µ‖ω′

t − ω∗‖2
2 ≤ 2F (ω′

t)
⊤(ω′

t − ω∗) (2.35)

and then we use the inequality 2‖ω′
t −ω∗‖2

2 ≥ ‖ωt −ω∗‖2
2 − 2‖ω′

t −ωt‖2
2 to get the

result claimed.

Lemma 4. If F is L-Lipschitz, we have for any ω ∈ Ω,

2ηtF (ω′
t)

⊤(ω′
t −ω) ≤ ‖ωt −ω‖2

2 − ‖ωt+1 −ω‖2
2 − ‖ω′

t −ωt‖2
2 + η2

tL
2‖ω′

t−1 −ω′
t‖2

2 .
(2.36)

105

Proof. Applying Lemma 2 for (ω,u,ω+,ω′) = (ωt,−ηtF (ω′
t),ωt+1,ω) and

(ω,u,ω+,ω′) = (ωt,−ηtF (ω′
t−1),ω

′
t,ωt+1), we get,

‖ωt+1 − ω‖2
2 ≤ ‖ωt − ω‖2

2 − 2ηtF (ω′
t)

⊤(ωt+1 − ω)− ‖ωt+1 − ωt‖2
2 (2.37)

and

‖ω′
t − ωt+1‖2

2 ≤ ‖ωt − ωt+1‖2
2 − 2ηtF (ω′

t−1)
⊤(ω′

t − ωt+1)− ‖ω′
t − ωt‖2

2 . (2.38)

Summing (2.37) and (2.38) we get,

‖ωt+1 − ω‖2
2 ≤ ‖ωt − ω‖2

2 − 2ηtF (ω′
t)

⊤(ωt+1 − ω) (2.39)

− 2ηtF (ω′
t−1)

⊤(ω′
t − ωt+1)− ‖ω′

t − ωt‖2
2 − ‖ω′

t − ωt+1‖2
2 (2.40)

= ‖ωt − ω‖2
2 − 2ηtF (ω′

t)
⊤(ω′

t − ω)− ‖ω′
t − ωt‖2

2 − ‖ω′
t − ωt+1‖2

2

− 2ηt(F (ω′
t−1)− F (ω′

t))
⊤(ω′

t − ωt+1) . (2.41)

Then, we can use the Young’s inequality 2a⊤b ≤ ‖a‖2
2 + ‖b‖2

2 to get,

‖ωt+1 − ω‖2
2 ≤ ‖ωt − ω‖2

2 − 2ηtF (ω′
t)

⊤(ω′
t − ω) + η2

t ‖F (ω′
t−1)− F (ω′

t)‖2
2

+ ‖ω′
t − ωt+1‖2

2 − ‖ω′
t − ωt‖2

2 − ‖ω′
t − ωt+1‖2

2 (2.42)

= ‖ωt − ω‖2
2 − 2ηtF (ω′

t)
⊤(ω′

t − ω) + η2
t ‖F (ω′

t−1)− F (ω′
t)‖2

2 − ‖ω′
t − ωt‖2

2

≤ ‖ωt − ω‖2
2 − 2ηtF (ω′

t)
⊤(ω′

t − ω) + η2
tL

2‖ω′
t−1 − ω′

t‖2
2 − ‖ω′

t − ωt‖2
2 .

(2.43)

Lemma 5. For all t ≥ 0, if we set ω′
−2 = ω′

−1 = ω′
0 we have

‖ω′
t−1 − ω′

t‖2
2 ≤ 4‖ωt − ω′

t‖2
2 + 4η2

t−1L
2‖ω′

t−1 − ω′
t−2‖2

2 − ‖ω′
t−1 − ω′

t‖2
2 . (2.44)

Proof. We start with ‖a+ b‖2
2 ≤ 2‖a‖2 + 2‖b‖2.

‖ω′
t−1 − ω′

t‖2
2 ≤ 2‖ωt − ω′

t‖2
2 + 2‖ωt − ω′

t−1‖2
2 . (2.45)

Moreover, since the projection is contractive we have that

‖ωt − ω′
t−1‖2

2 ≤ ‖ωt−1 − ηt−1F (ω′
t−1)− ωt−1 − ηt−1F (ω′

t−2)‖2
2 (2.46)

= η2
t−1‖F (ω′

t−1)− F (ω′
t−2)‖2

2 (2.47)

≤ η2
t−1L

2‖ω′
t−1 − ω′

t−2‖2
2 . (2.48)

Combining (2.45) and (2.48) we get,

‖ω′
t−1 − ω′

t‖2
2 = 2‖ω′

t−1 − ω′
t‖2

2 − ‖ω′
t−1 − ω′

t‖2
2 (2.49)

≤ 4‖ωt − ω′
t‖2

2 + 4‖ωt − ω′
t−1‖2

2 − ‖ω′
t−1 − ω′

t‖2
2 (2.50)

≤ 4‖ωt − ω′
t‖2

2 + 4η2
t−1L

2‖ω′
t−1 − ω′

t−2‖2
2 − ‖ω′

t−1 − ω′
t‖2

2 . (2.51)

106

Proof of Theorem 1. Let ω∗ ∈ Ω∗ be an optimal point of (VIP). Combining
Lemma 3 and Lemma 4 we get,

ηtµ
(

‖ωt − ω∗‖2
2 − 2‖ω′

t − ωt‖2
2

)

≤ ‖ωt−ω∗‖2
2−‖ωt+1−ω∗‖2

2+η
2
tL

2‖ω′
t−1−ω′

t‖2
2−‖ω′

t−ωt‖2
2

leading to,

‖ωt+1 − ω∗‖2
2 ≤ (1− ηtµ) ‖ωt − ω∗‖2

2 + η2
tL

2‖ω′
t−1 − ω′

t‖2
2 − (1− 2ηtµ)‖ω′

t − ωt‖2
2

(2.52)
Now using Lemma 5 we get,

‖ωt+1 − ω∗‖2
2 ≤ (1− ηtµ) ‖ωt − ω∗‖2

2 + η2
tL

2(4η2
t−1L

2‖ω′
t−1 − ω′

t−2‖2
2 − ‖ω′

t−1 − ω′
t‖2

2)

− (1− 2ηtµ− 4η2
tL

2)‖ω′
t − ωt‖2

2 (2.53)

Now with ηt = 1
4L
≤ 1

4µ
we get,

‖ωt+1 − ω∗‖2
2 ≤

(

1− µ

4L

)

‖ωt − ω∗‖2
2 +

1

16

(

1

4
‖ω′

t−1 − ω′
t−2‖2

2 − ‖ω′
t−1 − ω′

t‖2
2

)

Hence, using the fact that µ
4L
≤ 1

4
we get,

‖ωt+1 − ω∗‖2
2 + 1

16
‖ω′

t−1 − ω′
t‖2

2 ≤
(

1− µ

4L

)

(

‖ωt − ω∗‖2
2 + 1

16
‖ω′

t−1 − ω′
t−2‖2

2

)

.

(2.54)

3 More on merit functions

In this section, we will present how to handle unbounded constaints set Ω with a
more refined merit function than (4.2) used in the main paper. Let F the continuous
operator and Ω the constraints set associated with the VIP

find ω∗ ∈ Ω such that F (ω∗)⊤(ω − ω∗) ≥ 0 , ∀ω ∈ Ω . (VIP)

When the operator F is monotone, we have that F (ω∗)⊤(ω−ω∗) ≤ F (ω)⊤(ω−ω∗) , ∀ω,ω∗.
Hence, in this case (VIP) implies a stronger formulation sometimes called Minty
variational inequality [Crespi et al., 2005]:

find ω∗ ∈ Ω such that F (ω)⊤(ω − ω∗) ≥ 0 , ∀ω ∈ Ω . (MVI)

This formulation is stronger in the sense that if (MVI) holds for some ω∗ ∈ Ω,
then (VIP) holds too. A merit function useful for our analysis can be derived

107

from this formulation. Roughly, a merit function is a convergence measure. More
formally, a function g : Ω→ R is called a merit function if g is non-negative such
that g(ω) = 0⇔ ω ∈ Ω∗ [Larsson and Patriksson, 1994]. A way to derive a merit
function from (MVI) would be to use g(ω∗) = supω∈Ω F (ω)⊤(ω∗ − ω) which is
zero if and only if (MVI) holds for ω∗. To deal with unbounded constraint sets
(leading to a potentially infinite valued function outside of the optimal set), we use
the restricted merit function [Nesterov, 2007]:

ErrR(ωt) := max
ω∈Ω,‖ω−ω0‖≤R

F (ω)⊤(ωt − ω) . (3.1)

This function acts as merit function for (VIP) on the interior of the open ball
of radius R around ω0, as shown in Lemma 1 of Nesterov [2007]. That is, let
ΩR := Ω ∩ {ω : ‖ω − ω0‖ < R}. Then for any point ω̂ ∈ ΩR, we have:

ErrR(ω̂) = 0⇔ ω̂ ∈ Ω∗ ∩ ΩR. (3.2)

The reference point ω0 is arbitrary, but in practice it is usually the initialization
point of the algorithm. R has to be big enough to ensure that ΩR contains a
solution. ErrR measures how much (MVI) is violated on the restriction ΩR. Such
merit function is standard in the variational inequality literature. A similar one
is used in [Nemirovski, 2004, Juditsky et al., 2011]. When F is derived from the
gradients (2.5) of a zero-sum game, we can define a more interpretable merit function.
One has to be careful though when extending properties from the minimization
setting to the saddle point setting (e.g. the merit function used by Yadav et al.
[2018] is vacuous for a bilinear game as explained in App 3.2).

In the appendix we adopt a set of assumptions a little more general than the one in
the main paper

Assumption 4. • F is monotone and Ω is convex and closed.

• R is set big enough such that R > ‖ω0 − ω∗‖ and F is a monotone operator.

Contrary to Assumption 3, in Assumption 4 the constraints set in no longer assumed
to be bounded. Assumption 4 is more general than Assumption 3 since that if Ω is
bounded then with R set to the diameter of Ω, Assumption 4 is true.

3.1 More general merit functions

In the appendix we will note Err
(VI)
R the restricted merit function defined in (3.1).

Let us recall its definition,

Err
(VI)
R (ωt) := max

ω∈Ω,‖ω−ω0‖≤R
F (ω)⊤(ωt − ω) . (3.3)

108

When the objective is a saddle point problem i.e.,

F (θ,ϕ) = [∇θL(θ,ϕ) −∇ϕL(θ,ϕ)]⊤ (3.4)

and L is convex-concave (see Definition 6 in §1), we can use another merit function
than (3.3) on ΩR that is more interpretable and more directly related to the cost
function of the minimax formulation:

Err
(SP)
R (θt,ϕt) := max

ϕ∈Φ,θ∈Θ
‖(θ,ϕ)−(θ0,ϕ0)‖≤R

L(θt,ϕ)− L(θ,ϕt) . (3.5)

In particular, if the equilibrium (θ∗,ϕ∗) ∈ Ω∗ ∩ ΩR and we have that L(·,ϕ∗) and
−L(θ∗, ·) are µ-strongly convex (see §1), then the merit function for saddle points
upper bounds the distance for (θ,ϕ) ∈ ΩR to the equilibrium as:

Err
(SP)
R (θ,ϕ) ≥ µ

2
(‖θ − θ∗‖2

2 + ‖ϕ−ϕ∗‖2
2) . (3.6)

In the appendix, we provide our convergence results with the merit functions (3.3)
and (3.5), depending on the setup:

ErrR(ω) :=

Err
(SP)
R (ω) if F is a SP operator (2.5)

Err
(VI)
R (ω) otherwise.

(3.7)

3.2 On the importance of the merit function

In this section, we illustrate the fact that one has to be careful when extending
results and properties from the minimization setting to the minimax setting (and
consequently to the variational inequality setting). Another candidate as a merit
function for saddle point optimization would be to naturally extend the suboptimality
f(ω)− f(ω∗) used in standard minimization (i.e. find ω∗ the minimizer of f) to
the gap P (θ,ϕ) = L(θ,ϕ∗)− L(θ∗,ϕ). In a previous analysis of a modification of
the stochastic gradient descent (SGD) method for GANs, Yadav et al. [2018] gave
their convergence rate on P that they called the “primal-dual“ gap. Unfortunately,
if we do not assume that the function L is strongly convex-concave (a stronger
assumption defined in §1 and which fails for bilinear objective e.g.), P may not be a
merit function. It can be 0 for a non optimal point, see for instance the discussion on
the differences between (3.5) and P in [Gidel et al., 2017, Section 3]. In particular,
for the simple 2D bilinear example L(θ,ϕ) = θ ·ϕ, we have that θ∗ = ϕ∗ = 0 and
thus P (θ,ϕ) = 0 ∀θ,ϕ .

109

3.3 Variational inequalities for non-convex cost functions

When the cost functions defined in (3.1) are non-convex, the operator F is no longer
monotone. Nevertheless, (VIP) and (MVI) can still be defined, though a solution
to (MVI) is less likely to exist. We note that (VIP) is a local condition for F (as
only evaluating F at the points ω∗). On the other hand, an appealing property
of (MVI) is that it is a global condition. In the context of minimization of a function
f for example (where F = ∇f), if ω∗ solves (MVI) then ω∗ is a global minimum
of f (and not just a stationary point for the solution of (MVI); see Proposition 2.2
from Crespi et al. [2005]).

A less restrictive way to consider variational inequalities in the non-monotone setting
is to use a local version of (MVI). If the cost functions are locally convex around
the optimal couple (θ∗,ϕ∗) and if our iterates eventually fall and stay into that
neighborhood, then we can consider our restricted merit function ErrR(·) with a
well suited constant R and apply our convergence results for monotone operators.

4 Another way of implementing extrapolation

to SGD

We now introduce another way to combine extrapolation and SGD. This extension
is very similar to Alg. 5, the only difference is that it re-uses the minibatch sample
of the extrapolation step for the update of the current point. The intuition is that
it correlates the estimator of the gradient of the extrapolation step and the one of
the update step leading to a better correction of the oscillations which are also due
to the stochasticity. One emerging issue (for the analysis) of this method is that
since ω′

t depend on ξt, the quantity F (ω′
t, ξt) is a biased estimator of F (ω′

t).

Algorithm 5 Re-used minibatches for stochastic extrapolation (ReExtraSGD)

1: Let ω0 ∈ Ω
2: for t = 0 . . . T − 1 do
3: Sample ξt ∼ P
4: ω′

t := PΩ[ωt − ηtF (ωt, ξt)] ⊲ Extrapolation step
5: ωt+1 := PΩ[ωt − ηtF

(

ω′
t, ξt

)

] ⊲ Update step wit the same sample
6: end for
7: Return ω̄T =

∑T −1
t=0 ηtω

′
t/
∑T −1

t=0 ηt

110

Theorem 1. Assume that ‖ω′
t −ω0‖ ≤ R, ∀t ≥ 0 where (ω′

t)t≥0 are the iterates of
Alg. 5. Under Assumption 1 and 4, for any T ≥ 1, Alg. 5 with constant step-size
η ≤ 1√

2L
has the following convergence properties:

E[ErrR(ω̄T)] ≤ R2

ηT
+ η

σ2 + 4L2(4R2 + σ2)

2
where ω̄T :=

1

T

T −1
∑

t=0

ω′
t .

Particularly, ηt = η√
T

gives E[ErrR(ω̄T)] ≤ O(1)√
T

.

The assumption that the sequence of the iterates provided by the algorithm is
bounded is strong, but has been also done for instance in [Yadav et al., 2018]. The
proof of this result is provided in §6.

5 Variance comparison between AvgSGD and

SGD with prediction method

To compare the variance term of AvgSGD in (4.3) with the one of the SGD with
prediction method [Yadav et al., 2018], we need to have the same convergence
certificate. Fortunately, their proof can be adapted to our convergence criterion
(using Lemma 6 in §6), revealing an extra σ2/2 in the variance term from their paper.
The resulting variance can be summarized with our notation as (M2(1 +L) + σ2)/2
where the L is the Lipschitz constant of the operator F . Since M ≫ σ, their
variance term is then 1 + L time larger than the one provided by the AvgSGD
method.

6 Proof of Theorems

This section is dedicated on the proof of the theorems provided in this paper in a
slightly more general form working with the merit function defined in (3.7). First
we prove an additional lemma necessary to the proof of our theorems.

Lemma 6. Let F be a monotone operator and let (ωt), (ω
′
t), (zt), (∆t), (ξt) and (ζt)

be six random sequences such that, for all t ≥ 0

2ηtF (ω′
t)

⊤(ω′
t − ω) ≤ Nt −Nt+1 + η2

t (M1(ωt, ξt) +M2(ω
′
t, ζt)) + 2ηt∆

⊤
t (zt − ω) ,

111

where Nt = N(ωt,ω
′
t−1,ω

′
t−2) ≥ 0 and we extend (ω′

t) with ω′
−2 = ω′

−1 = ω′
0. Let

also assume that with N0 ≤ R , E[‖∆t‖2
2] ≤ σ2, E[∆t|zt,∆0, . . . ,∆t−1] = 0 , E[M1(ωt, ξt)] ≤M1

and E[M2(ω
′
t, ζt)] ≤M2 , then,

E[ErrR(ω̄T)] ≤ R2

ST

+
M1 +M2 + σ2

2ST

T −1
∑

t=0

η2
t (6.1)

where ω̄T :=
∑T −1

t=0 ηtω
′
t/ST and ST :=

∑T −1
t=0 ηt.

Proof of Lemma 6. We sum (6) for 0 ≤ t ≤ T − 1 to get,

2
T −1
∑

t=0

ηtF (ω′
t)

⊤(ω′
t − ω) ≤

T −1
∑

t=0

[

(Nt −Nt+1) + η2
t ((M1(ωt, ξt) +M2(ω

′
t, ζt)) + 2ηt∆

⊤
t (zt − ω)

]

.

(6.2)

We will then upper bound each sum in the right-hand side,

∆⊤
t (zt − ω) = ∆⊤

t (zt − ut) + ∆⊤
t (ut − ω)

where ut+1 := PΩ(ut − ηt∆t) and u0 := ω0. Then,

‖ut+1 − ω‖2
2 ≤ ‖ut − ω‖2

2 − 2ηt∆
⊤
t (ut − ω) + η2

t ‖∆t‖2
2

leading to

2ηt∆
⊤
t (zt − ω) ≤ 2ηt∆

⊤
t (zt − ut) + ‖ut − ω‖2

2 − ‖ut+1 − ω‖2
2 + η2

t ‖∆t‖2
2 (6.3)

Then noticing that z0 := ω0, back to (6.2) we get a telescoping sum,

2
T −1
∑

t=0

ηtF (ω′
t)

⊤(ω′
t−ω) ≤ 2N0+

T −1
∑

t=0

[

η2
t ((M1(ωt, ξt)+M2(ω

′
t, ζt))+‖∆t‖2

2)+2ηt∆
⊤
t (zt−ut)

]

.

(6.4)
If F is the operator of a convex-concave saddle point (2.5), we get, with ω′

t = (θt,ϕt)

F (ω′
t)

⊤(ω′
t − ω) ≥ ∇θL(θt,ϕt)

⊤(θt − θ)−∇ϕL(θt,ϕt)
⊤(ϕt −ϕ)

≥ L(θt,ϕ)− L(θt,ϕt) + L(θt,ϕt)− L(θ,ϕt)

(by convexity and concavity)

= L(θt,ϕ)− L(θ,ϕt)

then by convexity of L(·,ϕ) and concavity of L(θ, ·), we have that,

2ST

T −1
∑

t=0

ηt

ST

F (ω′
t)

⊤(ω′
t−ω) ≥ 2ST

T −1
∑

t=0

ηt

ST

(L(θt,ϕ)−L(θ,ϕt)) ≥ 2̄ST (L(θ̄t,ϕ)−L(θ̄,ϕt))

(6.5)

112

Otherwise if the operator F is just monotone since F (ω′
t)

⊤(ω′
t−ω) ≥ F (ω′)⊤(ω′

t−ω)
we have that

2ST

T −1
∑

t=0

ηtF (ω′
t)

⊤(ω′
t−ω) ≥ 2ST

T −1
∑

t=0

ηtF (ω′)⊤(ω′
t−ω) = 2STF (ω′)⊤(ω̄t−ω) (6.6)

In both cases, we can now maximize the left hand side respect to ω (since the RHS
does not depend on ω) to get,

2ST ErrR(ω̄t) ≤ 2R2 +
T −1
∑

t=0

[

η2
t ((M1(ωt, ξt)+M2(ω

′
t, ζt))+‖∆t‖2

2)+2ηt∆
⊤
t (zt−ut)

]

.

(6.7)
Then taking the expectation, since E[∆t|zt,ut] = E[∆t|zt,∆0, . . . ,∆t−1] = 0,
Eζt [‖∆t‖2

2] ≤ σ2, Eξt [M1(ωt, ξt)] ≤M1 and Eζt [M2(ω
′
t, ζt)] ≤M2 , we get that,

E[ErrR(ω̄T)] ≤ R2

ST

+
M1 +M2 + σ2

2ST

T −1
∑

t=0

η2
t (6.8)

6.1 Proof of Thm.2

First let us state Theorem 2 in its general form,

Theorem 2. Under Assumption 1, 2 and 4, Alg. 1 with constant step-size η has
the following convergence rate for all T ≥ 1,

E[ErrR(ω̄T)] ≤ R2

2ηT
+ η

M2 + σ2

2
where ω̄T :=

1

T

T −1
∑

t=0

ωt . (6.9)

Particularly, η = R√
T (M2+σ2)

gives E[ErrR(ω̄T)] ≤ R
√

M2+σ2√
T

.

Proof of Theorem 2. Let any ω ∈ Ω such that ‖ω0 − ω‖2 ≤ R,

‖ωt+1 − ω‖2
2 = ‖PΩ(ωt − ηtF (ωt, ξt))− ω‖2

2

≤ ‖ωt − ηtF (ωt, ξt))− ω‖2
2

(projections are non-contractive, Lemma 1)

= ‖ωt − ω‖2
2 − 2ηtF (ωt, ξt)

⊤(ωt − ω) + ‖ηtF (ωt, ξt)‖2
2

Then we can make appear the quantity F (ωt)
⊤(ωt − ω) on the left-hand side,

2ηtF (ωt)
⊤(ωt−ω) ≤ ‖ωt−ω‖2

2−‖ωt+1−ω‖2
2+η

2
t ‖F (ωt, ξt)‖2

2+2ηt(F (ωt)−F (ωt, ξt))
⊤(ωt−ω)

(6.10)

113

we can sum (6.10) for 0 ≤ t ≤ T − 1 to get,

2
T −1
∑

t=0

ηtF (ωt)
⊤(ωt − ω) ≤

T −1
∑

t=0

[

(‖ωt − ω‖2 − ‖ωt+1 − ω‖2) + η2
t ‖F (ωt, ξt)‖2

2 + 2ηt∆
⊤
t (ωt − ω)

]

(6.11)

where we noted ∆t := F (ωt)− F (ωt, ξt).
By monotonicity, F (ωt)

⊤(ωt − ω) ≥ F (ω)⊤(ωt − ω) we get,

2STF (ω)⊤(ω̄T−ω) ≤
T −1
∑

t=0

[

(‖ωt − ω‖2 − ‖ωt+1 − ω‖2) + η2
t ‖F (ωt, ξt)‖2

2 + 2ηt∆
⊤
t (ωt − ω)

]

,

(6.12)
where ST :=

∑T −1
t=0 ηt and ω̄T := 1

ST

∑T −1
t=0 ηtωt.

We will then upper bound each sum in the right hand side,

∆⊤
t (ωt − ω) = ∆⊤

t (ωt − ut) + ∆⊤
t (ut − ω)

where ut+1 := PΩ(ut − ηt∆t) and u0 = ω0. Then,

‖ut+1 − ω‖2
2 ≤ ‖ut − ω‖2

2 − 2ηt∆
⊤
t (ut − ω) + η2

t ‖∆t‖2
2

leading to

2ηt∆
⊤
t (ωt − ω) ≤ 2ηt∆

⊤
t (ωt − ut) + ‖ut − ω‖2

2 − ‖ut+1 − ω‖2
2 + η2

t ‖∆t‖2
2 (6.13)

Then noticing that u0 := ω0, back to (6.12) we get a telescoping sum,

2STF (ω)⊤(ω̄T − ω) ≤ 2‖ω0 − ω‖2 +
T −1
∑

t=0

η2
t (‖F (ωt, ξt)‖2

2 + ‖∆t‖2
2) + 2

T −1
∑

t=0

ηt∆
⊤
t (ωt − ut)

≤ 2R +
T −1
∑

t=0

η2
t (‖F (ωt, ξt)‖2

2 + ‖∆t‖2
2) + 2

T −1
∑

t=0

ηt∆
⊤
t (ωt − ut)

Then the right hand side does not depends on ω, we can maximize over ω to get,

2ST ErrR(ω̄T) ≤ 2R +
T −1
∑

t=0

η2
t (‖F (ωt, ξt)‖2

2 + ‖∆t‖2
2) + 2

T −1
∑

t=0

ηt∆
⊤
t (ωt − ut) (6.14)

Noticing that E[∆t|ωt,ut] = 0 (the estimates of F are unbiased), by Assumption 2
E[(‖F (ωt, ξt)‖2

2] ≤M2 and by Assumption 1 E[‖∆t‖2
2] ≤ σ2 we get,

E[ErrR(ω̄T)] ≤ R

ST

+
M2 + σ2

2ST

T −1
∑

t=0

η2
t (6.15)

114

particularly for ηt = η and ηt = η√
t+1

we respectively get,

E[ErrR(ω̄T)] ≤ 2R

ηT
+
η

2
(M2 + σ2) (6.16)

and

E[ErrR(ω̄T)] ≤ 4R

η
√
T + 1− 1

+ 2η ln(T + 1)
M2 + σ2

√
T + 1− 1

(6.17)

6.2 Proof of Thm.3

Theorem 3. Under Assumption 1 and 4, if Eξ[F] is L-Lipschitz, then Alg. 2 with
a constant step-size η ≤ 1√

3L
has the following convergence rate for any T ≥ 1,

E[ErrR(ω̄T)] ≤ R2

ηT
+

7

2
ησ2 where ω̄T :=

1

T

T −1
∑

t=0

ω′
t . (6.18)

Particularly, η =
√

2R
σ

√
7T

gives E[ErrR(ω̄T)] ≤
√

14Rσ√
T

.

Proof of Thm.3. Let any ω ∈ Ω such that ‖ω0 − ω‖2 ≤ R. Then, the update
rules become ωt+1 = PΩ(ωt − ηtF (ω′

t, ζt)) and ω′
t = PΩ(ωt − ηF (ωt, ξt)). We

start by applying Lemma 2 for (ω,u,ω′,ω+) = (ωt,−ηF (ω′
t, ζt),ω,ωt+1) and

(ω,u,ω′,ω+) = (ωt,−ηtF (ωt, ξt),ωt+1,ω
′
t),

‖ωt+1 − ω‖2
2 ≤ ‖ωt − ω‖2

2 − 2ηtF (ω′
t, ζt)

⊤(ωt+1 − ω)− ‖ωt+1 − ωt‖2
2

‖ω′
t − ωt+1‖2

2 ≤ ‖ωt − ωt+1‖2
2 − 2ηtF (ωt, ξt)

⊤(ω′
t − ωt+1)− ‖ω′

t − ωt‖2
2

Then, summing them we get

‖ωt+1 − ω‖2
2 ≤ ‖ωt − ω‖2

2 − 2ηtF (ω′
t, ζt)

⊤(ωt+1 − ω)

− 2ηtF (ωt, ξt)
⊤(ω′

t − ωt+1)− ‖ωt − ω′
t‖2

2 − ‖ωt+1 − ω′
t‖2

2 (6.19)

leading to

‖ωt+1 − ω‖2
2 ≤ ‖ωt − ω‖2

2 − 2ηtF (ω′
t, ζt)

⊤(ω′
t − ω)

+ 2ηt(F (ω′
t, ζt)− F (ωt, ξt))

⊤(ω′
t − ωt+1)− ‖ωt − ω′

t‖2
2 − ‖ωt+1 − ω′

t‖2
2

Then with 2a⊤b ≤ ‖a‖2
2 + ‖b‖2

2 we get

‖ωt+1 − ω‖2
2 ≤ ‖ωt − ω‖2

2 − 2ηtF (ω′
t, ζt)

⊤(ω′
t − ω)

− ‖ωt − ω′
t‖2

2 + η2
t ‖F (ω′

t, ζt)− F (ωt, ξt)‖2
2

115

Using the inequality ‖a + b + c‖2
2 ≤ 3(‖a‖2

2 + ‖b‖2
2 + ‖c‖2

2) we get,

‖ωt+1 − ω‖2
2 ≤ ‖ωt − ω‖2

2 − 2ηtF (ω′
t, ζt)

⊤(ω′
t − ω)− ‖ωt − ω′

t‖2
2

+ 3η2
t (‖F (ωt)− F (ωt, ξt)‖2

2 + ‖F (ω′
t)− F (ω′

t, ζt)‖2
2 + ‖F (ω′

t)− F (ωt)‖2
2)

Then we can use the L-Lipschitzness of F to get,

‖ωt+1 − ω‖2
2 ≤ ‖ωt − ω‖2

2 − 2ηtF (ω′
t, ζt)

⊤(ω′
t − ω)− ‖ωt − ω′

t‖2
2

+ 3η2
t (‖F (ωt)− F (ωt, ξt)‖2

2 + ‖F (ω′
t)− F (ω′

t, ζt)‖2
2 + L2‖ωt − ω′

t‖2
2)

As we restricted the step-size to ηt ≤ 1√
3L

we get,

2ηtF (ω′
t)

⊤(ω′
t − ω) ≤ ‖ωt − ω‖2

2 − ‖ωt+1 − ω‖2
2 + 2ηt(F (ω′

t)− F (ω′
t, ζt))

⊤(ω′
t − ω)

+ 3η2
t ‖F (ωt)− F (ωt, ξt)‖2

2 + 3η2
t ‖F (ω′

t)− F (ω′
t, ζt)‖2

2

We get a particular case of (6) so we can use Lemma 6 where Nt = ‖ωt − ω‖2
2,

M1(ωt, ξt) = 3‖F (ωt)−F (ωt, ξt)‖2
2 , M2(ω′

t, ζt) = 3‖F (ω′
t)−F (ω′

t, ζt)‖2
2, ∆t = F (ω′

t)−F (ω′
t, ζt)

and zt = ω′
t. By Assumption 1, M1 = M2 = 3σ2 and by the fact that

E[F (ω′
t)−F (ω′

t, ζt) |ω′
t,∆0, . . . ,∆t−1] = E[E[F (ω′

t)−F (ω′
t, ζt) |ω′

t]|∆0, . . . ,∆t−1] = 0
the hypothesis of Lemma 6 hold and we get,

E[ErrR(ω̄T)] ≤ R2

ST

+
7σ2

2ST

T −1
∑

t=0

η2
t (6.20)

6.3 Proof of Thm. 4

Theorem 4. Under Assumption 1, if Eξ[F] is L-Lipschitz, then AvgPastExtraSGD
(Alg. 3) with a constant step-size η ≤ 1

2
√

3L
has the following convergence rate for

any T ≥ 1,

E[ErrR(ω̄T)] ≤ R2

ηT
+

13

2
ησ2 where ω̄T :=

1

T

T −1
∑

t=0

ω′
t . (6.21)

Particularly, η =
√

2R
σ

√
7T

gives E[ErrR(ω̄T)] ≤
√

14Rσ√
T

.

First let us recall the update rule

{

ωt+1 = PΩ[ωt − ηtF (ω′
t, ξt)]

ω′
t+1 = PΩ[ωt+1 − ηt+1F (ω′

t, ξt)] .
(6.22)

116

Lemma 7. We have for any ω ∈ Ω,

2ηF (ω′
t, ξt)

⊤(ω′
t − ω) ≤ ‖ωt − ω‖2

2 − ‖ωt+1 − ω‖2
2 − ‖ω′

t − ωt‖2
2 + 3η2

tL
2‖ω′

t−1 − ω′
t‖2

2

+ 3η2
t

[

‖F (ω′
t−1, ξt−1)− F (ω′

t−1)‖2
2 + ‖F (ω′

t)− F (ω′
t, ξt)‖2

2

]

.

(6.23)

Proof. Applying Lemma 2 for (ω,u,ω+,ω′) = (ωt,−ηtF (ω′
t, ξt),ωt+1,ω) and

(ω,u,ω+,ω′) = (ωt,−ηtF (ω′
t−1, ξt−1),ω

′
t,ωt+1), we get,

‖ωt+1 − ω‖2
2 ≤ ‖ωt − ω‖2

2 − 2ηtF (ω′
t, ξt)

⊤(ωt+1 − ω)− ‖ωt+1 − ωt‖2
2 (6.24)

and

‖ω′
t−ωt+1‖2

2 ≤ ‖ωt−ωt+1‖2
2− 2ηtF (ω′

t−1, ξt−1)
⊤(ω′

t−ωt+1)−‖ω′
t−ωt‖2

2 . (6.25)

Summing (6.24) and (6.25) we get,

‖ωt+1 − ω‖2
2 ≤ ‖ωt − ω‖2

2 − 2ηtF (ω′
t, ξt)

⊤(ωt+1 − ω) (6.26)

− 2ηtF (ω′
t−1, ξt−1)

⊤(ω′
t − ωt+1)− ‖ω′

t − ωt‖2
2 − ‖ω′

t − ωt+1‖2
2

(6.27)

= ‖ωt − ω‖2
2 − 2ηtF (ω′

t, ξt)
⊤(ω′

t − ω)− ‖ω′
t − ωt‖2

2 − ‖ω′
t − ωt+1‖2

2

(6.28)

− 2ηt(F (ω′
t−1, ξt−1)− F (ω′

t, ξt))
⊤(ω′

t − ωt+1) . (6.29)

Then, we can use the inequality of arithmetic and geometric means
2a⊤b ≤ ‖a‖2

2 + ‖b‖2
2 to get,

‖ωt+1 − ω‖2
2 ≤ ‖ωt − ω‖2

2 − 2ηtF (ω′
t, ξt)

⊤(ω′
t − ω) + η2

t ‖F (ω′
t−1, ξt−1)− F (ω′

t, ξt)‖2
2

+ ‖ω′
t − ωt+1‖2

2 − ‖ω′
t − ωt‖2

2 − ‖ω′
t − ωt+1‖2

2 (6.30)

= ‖ωt − ω‖2
2 − 2ηtF (ω′

t, ξt)
⊤(ω′

t − ω) (6.31)

+ η2
t ‖F (ω′

t−1, ξt−1)− F (ω′
t, ξt)‖2

2 − ‖ω′
t − ωt‖2

2 . (6.32)

Using the inequality ‖a + b + c‖2
2 ≤ 3(‖a‖2

2 + ‖b‖2
2 + ‖c‖2

2) we get,

‖F (ω′
t−1, ξt−1)− F (ω′

t, ξt)‖2
2 ≤ 3(‖F (ω′

t−1, ξt−1)− F (ω′
t−1)‖2

2 + ‖F (ω′
t−1)− F (ω′

t)‖2
2

+ ‖F (ω′
t)− F (ω′

t, ξt)‖2
2) (6.33)

≤ 3(‖F (ω′
t−1, ξt−1)− F (ω′

t−1)‖2
2 + L2‖ω′

t−1 − ω′
t‖2

2

+ ‖F (ω′
t)− F (ω′

t, ξt)‖2
2) , (6.34)

where we used the L-Lipschitzness of F for the last inequality.

117

Combining (6.32) with (6.34) we get,

‖ωt+1 − ω‖2
2 ≤ ‖ωt − ω‖2

2 − 2ηtF (ω′
t, ξt)

⊤(ω′
t − ω)− ‖ω′

t − ωt‖2
2 + 3η2

tL
2‖ω′

t−1 − ω′
t‖2

2

+ 3η2
t

[

‖F (ω′
t−1, ξt−1)− F (ω′

t−1)‖2
2 + ‖F (ω′

t)− F (ω′
t, ξt)‖2

2

]

.

(6.35)

Lemma 8. For all t ≥ 0, if we set ω′
−2 = ω′

−1 = ω′
0 we have

‖ω′
t−1 − ω′

t‖2
2 ≤ 4‖ωt − ω′

t‖2
2 + 12η2

t−1

(

‖F (ω′
t−1, ξt−1)− F (ω′

t−1)‖2
2 + L2‖ω′

t−1 − ω′
t−2‖2

2

+ ‖F (ω′
t−2)− F (ω′

t−2, ξt−2)‖2
2)
)

− ‖ω′
t−1 − ω′

t‖2
2 . (6.36)

Proof. We start with ‖a+ b‖2
2 ≤ 2‖a‖2 + 2‖b‖2.

‖ω′
t−1 − ω′

t‖2
2 ≤ 2‖ωt − ω′

t‖2
2 + 2‖ωt − ω′

t−1‖2
2 . (6.37)

Moreover, since the projection is contractive we have that

‖ωt − ω′
t−1‖2

2 ≤ ‖ωt−1 − ηt−1F (ω′
t−1, ξt−1)− ωt−1 − ηt−1F (ω′

t−2, ξt−2)‖2
2 (6.38)

= η2
t−1‖F (ω′

t−1, ξt−1)− F (ω′
t−2, ξt−2)‖2

2 (6.39)

≤ 3η2
t−1

(

‖F (ω′
t−1, ξt−1)− F (ω′

t−1)‖2
2 + L2‖ω′

t−1 − ω′
t−2‖2

2

+ ‖F (ω′
t−2)− F (ω′

t−2, ξt−2)‖2
2)
)

. (6.40)

where in the last line we used the same inequality as in (6.34). Combining (6.36)
and (6.40) we get,

‖ω′
t−1 − ω′

t‖2
2 = 2‖ω′

t−1 − ω′
t‖2

2 − ‖ω′
t−1 − ω′

t‖2
2 (6.41)

≤ 4‖ωt − ω′
t‖2

2 + 4‖ωt − ω′
t−1‖2

2 − ‖ω′
t−1 − ω′

t‖2
2 (6.42)

≤ 4‖ωt − ω′
t‖2

2 + 12η2
t−1

(

‖F (ω′
t−1, ξt−1)− F (ω′

t−1)‖2
2 + L2‖ω′

t−1 − ω′
t−2‖2

2

+ ‖F (ω′
t−2)− F (ω′

t−2, ξt−2)‖2
2)
)

− ‖ω′
t−1 − ω′

t‖2
2 . (6.43)

Proof of Theorem 4. Combining Lemma 8 and Lemma 7 we get,

2ηtF (ω′
t, ξt)

⊤(ω′
t − ω) ≤ ‖ωt − ω‖2

2 − ‖ωt+1 − ω‖2
2

+ 36η2
t η

2
t−1L

2
(

‖F (ω′
t−1, ξt−1)− F (ω′

t−1)‖2
2 + L2‖ω′

t−1 − ω′
t−2‖2

2

+ ‖F (ω′
t−2)− F (ω′

t−2, ξt−2)‖2
2

)

− 3η2
tL

2‖ω′
t−1 − ω′

t‖2
2 + (12η2

tL
2 − 1)‖ω′

t − ωt‖2
2

+ 3η2
t

[

‖F (ω′
t−1, ξt−1)− F (ω′

t−1)‖2
2 + ‖F (ω′

t)− F (ω′
t, ξt)‖2

2] .

(6.44)

118

Then for ηt ≤ 1
2
√

3L
we have 36η2

t η
2
t−1L

4 ≤ 3η2
t−1L

2,

2ηtF (ω′
t)

⊤(ω′
t − ω) ≤ ‖ωt − ω‖2

2 − ‖ωt+1 − ω‖2
2

+ 3L2(η2
t−1‖ω′

t−1 − ω′
t−2‖2

2 − η2
t ‖ω′

t−1 − ω′
t‖2

2)

+ 2ηt(F (ω′
t)− F (ω′

t, ξt))
⊤(ω′

t − ω)

+ 3η2
t

[

|F (ω′
t−2, ξt−2)− F (ω′

t−2)‖2
2 + 2‖F (ω′

t−1, ξt−1)− F (ω′
t−1)‖2

2

+ ‖F (ω′
t)− F (ω′

t, ξt)‖2
2] . (6.45)

We can then use Lemma 6 where

Nt = ‖ωt − ω‖2
2 + 3L3ηt−1‖ω′

t−1 − ω′
t−2‖2

2,

M1(ωt, ξt) = 0

M2(ω
′
t, ξt) = 3‖F (ω′

t)− F (ω′
t, ξt)‖2

2 + 6‖F (ω′
t−1)− F (ω′

t−1, ξt−1)‖2
2

+ 3‖F (ω′
t−2)− F (ω′

t−2, ξt−2)‖2
2

∆t = F (ω′
t)− F (ω′

t, ξt)

zt = ω′
t .

By Assumption 1, M2 = 12σ2 and by the fact that E[F (ω′
t)−F (ω′

t, ξt) |ω′
t,∆0, . . . ,∆t−1] = E[E[F (ω′

t)
the hypothesis of Lemma 6 hold and we get,

E[ErrR(ω̄T)] ≤ R2

ST

+
13σ2

2ST

T −1
∑

t=0

η2
t (6.46)

6.4 Proof of Theorem 1

Theorem 1 has been introduced in §4. This theorem is about Algorithm 5 which
consists in another way to implement extrapolation to SGD. Let us first restate this
theorem,

Theorem 1. Assume that ‖ω′
t −ω0‖ ≤ R, ∀t ≥ 0 where (ω′

t)t≥0 are the iterates of
Alg. 5. Under Assumption 1 and 4, for any T ≥ 1, Alg. 5 with constant step-size
η ≤ 1√

2L
has the following convergence properties:

E[ErrR(ω̄T)] ≤ R2

ηT
+ η

σ2 + 4L2(4R2 + σ2)

2
where ω̄T :=

1

T

T −1
∑

t=0

ω′
t .

Particularly, ηt = η√
T

gives E[ErrR(ω̄T)] ≤ O(1)√
T

.

119

Proof of Thm.1. Let any ω ∈ Ω such that ‖ω0 − ω‖2 ≤ R.
Then, the update rules become ωt+1 = PΩ(ωt − ηtF (ω′

t, ξt)) and
ω′

t = PΩ(ωt − ηF (ωt, ξt)). We start the same way as the proof of Thm. 3
by applying Lemma 2 for (ω,u,ω′,ω∗) = (ωt,−ηF (ω′

t, ξt),ω,ωt+1) and
(ω,u,ω′,ω+) = (ωt,−ηtF (ωt, ξt),ωt+1,ω

′
t),

‖ωt+1 − ω‖2
2 ≤ ‖ωt − ω‖2

2 − 2ηtF (ω′
t, ξt)

⊤(ωt+1 − ω)− ‖ωt+1 − ωt‖2
2

‖ω′
t − ωt+1‖2

2 ≤ ‖ωt − ωt+1‖2
2 − 2ηtF (ωt, ξt)

⊤(ω′
t − ωt+1)− ‖ω′

t − ωt‖2
2

Then, summing them we get

‖ωt+1 − ω‖2
2 ≤ ‖ωt − ω‖2

2 − 2ηtF (ω′
t, ξt)

⊤(ωt+1 − ω)

− 2ηtF (ωt, ξt)
⊤(ω′

t − ωt+1)− ‖ω′
t − ωt‖2

2 − ‖ωt+1 − ω′
t‖2

2 (6.47)

leading to

‖ωt+1 − ω‖2
2 ≤ ‖ωt − ω‖2

2 − 2ηtF (ω′
t, ξt)

⊤(ω′
t − ω)

+ 2ηt(F (ω′
t, ξt)− F (ωt, ξt))

⊤(ω′
t − ωt+1)− ‖ω′

t − ωt‖2
2 − ‖ωt+1 − ω′

t‖2
2

Then with 2a⊤b ≤ ‖a‖2
2 + ‖b‖2

2 we get

‖ωt+1 − ω‖2
2 ≤ ‖ωt − ω‖2

2 − 2ηtF (ω′
t, ξt)

⊤(ω′
t − ω)

+η2
t ‖F (ω′

t, ξt)− F (ωt, ξt)‖2
2 − ‖ω′

t − ωt‖2
2

Using the Lipschitzness assumption we get

‖ωt+1 − ω‖2
2 ≤ ‖ωt − ω‖2

2 − 2ηtF (ω′
t, ξt)

⊤(ω′
t − ω) + (η2

tL
2 − 1)‖ωt − ω′

t‖2
2

Then we add 2ηtF (ω′
t)

⊤(ω′
t − ω) in both sides to get,

2ηtF (ω′
t)

⊤(ω′
t − ω) ≤ ‖ωt − ω‖2

2 − ‖ωt+1 − ω‖2
2

− 2ηt(F (ω′
t, ξt)− F (ω′

t))
⊤(ω′

t − ω) + (η2
tL

2 − 1)‖ωt − ω′
t‖2

2 (6.48)

Here, unfortunately we cannot use Lemma 6 because F (ω′
t, ξt) is biased. We will

then deal with the quantity A = (F (ω′
t, ξt)− F (ω′))⊤(ω′

t − ω) . We have that,

A = (F (ω′
t, ξt)− F (ωt, ξt))

⊤(ω − ω′
t) + (F (ωt)− F (ω′

t))
⊤(ω − ω′

t)

+ (F (ωt, ξt)− F (ωt))
⊤(ωt − ω′

t) + (F (ωt, ξt)− F (ωt))
⊤(ω − ωt)

≤ 2L‖ω′
t − ωt‖2‖ω′

t − ω‖2 + ‖F (ωt, ξt)− F (ωt)‖‖ω′
t − ωt‖2

+ (F (ωt, ξt)− F (ωt))
⊤(ω − ωt)

(Using Cauchy-Schwarz and the L-Lip of F)

120

Then using 2‖a‖‖b‖ ≤ δ‖a‖2
2 + 1

δ
‖b‖2

2, for δ = 4,

−2ηt(F (ω′
t, ξt)− F (ω′

t))
⊤(ω′

t − ω) ≤ 1

2
‖ω′

t − ωt‖2 + 8η2
tL

2‖ω′
t − ω‖2

2

+ 4η2
t ‖F (ωt, ξt)− F (ωt)‖2

2

+
1

4
‖ω′

t − ωt‖2
2 + 2ηt(F (ωt, ξt)− F (ωt))

⊤(ω − ωt)

leading to,

2ηtF (ω′
t)

⊤(ω′
t − ω) ≤ ‖ωt − ω‖2

2 − ‖ωt+1 − ω‖2
2 + 2ηt(F (ωt, ξt)− F (ωt))

⊤(ω − ωt)

+ (η2
tL

2 − 1
4
)‖ωt − ω′

t‖2
2

+ 4η2
t (2L2‖ω′

t − ω‖2
2 + ‖F (ωt, ξt)− F (ωt)‖2

2)

If one assumes finally that ‖ω′
t − ω0‖2 ≤ R (assumption of the theorem) and that

ηt ≤ 1
2L

we get,

2ηtF (ω′
t)

⊤(ω′
t − ω) ≤ ‖ωt − ω‖2

2 − ‖ωt+1 − ω‖2
2 + 2ηt(F (ωt, ξt)− F (ωt))

⊤(ω − ωt)

+ 4η2
t (4L2R2 + ‖F (ωt, ξt)− F (ωt)‖2

2)

where we used that ‖ω′
t − ω‖2 ≤ ‖ω′

t − ω0‖2 + ‖ω0 − ω‖2 ≤ 2R. Once
again this equation is a particular case of Lemma 6 where Nt = ‖ωt − ω‖2

2,
M1(ωt, ξt) = 4(4L2R2 + ‖F (ωt, ξt) − F (ωt)‖2

2), M2(ω
′
t, ζt) = 0, zt = ωt and

∆t = F (ωt, ξt) − F (ωt). By Assumption 1 E[M1(ωt, ξt)] ≤ 16L2R2 + 4σ2 and
E[∆t|ωt,∆0, . . . ,∆t−1] = E[E[∆t|ωt]|∆0, . . . ,∆t−1] = 0 so we can use Lemma 6 and
get,

E[ErrR(ω̄T)] ≤ R2

ST

+
σ2 + 16L2R2 + 4σ2

2ST

T −1
∑

t=0

η2
t . (6.49)

121

Model WGAN-GP (DCGAN)

Method no averaging uniform avg

SimAdam 6 .00 ± .07 6.01± .08
AltAdam5 6 .25 ± .05 6.51± .05
ExtraAdam 6.22± .04 6.35± .05
PastExtraAdam 6.27± 0.06 6.23± 0.13
OptimAdam - -

Table A.1: Best inception scores (averaged over 5 runs) achieved on CIFAR10
for every considered Adam variant. OptimAdam is the related Optimistic

Adam [Daskalakis et al., 2018] algorithm. We see that the techniques of ex-
trapolation and averaging consistently enable improvements over the baselines (in
italic).

7.2 DCGAN with WGAN-GP objective

We also trained the DCGAN architecture of the WGAN experiments but this time
with the WGAN-GP objective. The results are shown in Table A.1. The best results
are achieved with uniform averaging of AltAdam5, However its iterations require to
update the discriminator 5 times for every generator update. With a small drop in
best final score, ExtraAdam can train WGAN-GP significantly faster (see Fig. A.2
right) as the discriminator and generator are updated only twice.

123

(a) AvgExtraAdam with η = 10−3 (b) AvgExtraAdam with η = 10−4

(c) AltAdam with η = 10−3 (d) AltAdam with η = 10−4

Figure A.4: Comparison of the samples quality on the WGAN-GP experiment for different
methods and learning rate η.

126

(a) AvgPastExtraSGD without averaging (b) AvgPastExtraSGD with averaging

(c) AltSGD without averaging (d) AltSGD with averaging

Figure A.7: Comparison of the samples of a WGAN trained with the different methods
with and without averaging. Although averaging improves the inception score, the samples
seem more blurry

129

B

A Closer Look at the
Optimization Landscapes of
Generative Adversarial
Networks

1 Proof of theorems and propositions

1.1 Proof of Theorem 1

Let us recall the theorem of interest:

Proposition 1. Let us assume that (3.6) is an equality and that ∇v(ω∗) is diago-
nalizable, then there exists a basis P such that the coordinates ω̃(t) := P (ω(t)−ω∗)
have the following behavior,

1. For λj ∈ Sp∇v(ω∗), λj ∈ R, we observe pure attraction: ω̃j(t) = e−λjt[ω̃j(0) .

2. For λj ∈ Sp∇v(ω∗), ℜ(λj) = 0, we observe pure rotation:

[

ω̃j(t)
ω̃j+1(t)

]

= R|λj |t

[

ω̃j(0)
ω̃j+1(0)

]

.

3. Otherwise, we observe both:

[

ω̃j(t)
ω̃j+1(t)

]

= e− Re(λj)tRIm(λj)t

[

ω̃j(0)
ω̃j+1(0)

]

.

The matrix Rϕ corresponds to a rotation of angle ϕ. Note that, we re-ordered the
eigenvalues such that the complex conjugate eigenvalues form pairs: if λj /∈ R then
λj+1 = λ̄j.

Proof. The ODE we consider is,

dω(t)

dt
= −∇v(ω∗)(ω(t)− ω∗) (1.1)

The solution of this ODE is

ω(t) = e−(t−t0)∇v(ω∗)(ω(t0)− ω∗) + ω∗ (1.2)

Let us now consider λ an eigenvalue of Sp(∇v(ω∗)) such that Re(λ) > 0 and
Im(λ) 6= 0. Since ∇v(ω∗) is a real matrix and Im(λ) 6= 0 we know that the complex

131

conjugate λ̄ of λ belongs to Sp(∇v(ω∗)). Let u0 be a complex eigenvector of λ,
then we have that,

∇v(ω∗)u0 = λu0 ⇒ ∇v(ω∗)ū0 = λ̄ū0 (1.3)

and thus ū0 is a eigenvector of λ̄. Now if we set u1 := u0 + ū0 and iu2 := u0 − ū0,
we have that

e−t∇v(ω∗)u1 = e−tλu0 + e−tλ̄ū0 = Re(e−tλ)u1 + Im(e−tλ)u2 (1.4)

e−t∇v(ω∗)iu2 = e−tλu0 − e−tλ̄ū0 = i(Re(e−tλ)u2 − Im(e−tλ)u1) (1.5)

Thus if we consider the basis that diagonalizes ∇v(ω∗) and modify the complex
conjugate eigenvalues in the way we described right after 1.3 we get the expected
diagonal form in a real basis. Thus there exists P such that

∇v(ω∗) = PDP−1 (1.6)

where D is the block diagonal matrix with the block described in Theorem 1.

1.2 Being a DNE is neither necessary or sufficient for being
a LSSP

Let us first recall Example 1.

Example 1. Let us consider LG as a hyperbolic paraboloid (a.k.a., saddle point
function) centered in (1, 1) where (1, ϕ) is the principal descent direction and (−ϕ, 1)
is the principal ascent direction, while LD is a simple bilinear objective.

LG(θ1, θ2, ϕ) = (θ2−ϕθ1− 1)2− 1
2
(θ1 +ϕθ2− 1)2 , LD(θ1, θ2, ϕ) = ϕ(5θ1 + 4θ2− 9)

We want to show that (1, 1, 0) is a locally stable stationary point.

Proof. The game vector field has the following form,

v(θ1, θ2, ϕ) =

(2ϕ2 − 1)θ1 − 3ϕθ2 + 2ϕ+ 1
(2− ϕ2)θ2 − 3ϕθ1 − 2 + ϕ

5θ1 + 4θ2 − 9

 (1.7)

Thus, (θ∗
1, θ

∗
2, ϕ

∗) := (1, 1, 0) is a stationary point (i.e., v(θ∗
1, θ

∗
2, ϕ

∗) = 0). The
Jacobian of the game vector field is

∇v(θ1, θ2, ϕ) =

2ϕ2 − 1 −3ϕ 2− 3θ2

−3ϕ 2− ϕ2 1− 3θ1

5 4 0

 , (1.8)

132

and thus,

∇v(θ∗
1, θ

∗
2, ϕ

∗) =

−1 0 −1
0 2 −2
5 4 0

 . (1.9)

We can verify that the eigenvalues of this matrix have a positive real part with any
solver (the eigenvalues of a 3× 3 always have a closed form) . For completeness we
provide a proof without using the closed form of the eigenvalues. The eigenvalues
∇v(θ∗

1, θ
∗
2, ϕ

∗) are given by the roots of its characteristic polynomial,

χ(X) :=

∣

∣

∣

∣

∣

∣

∣

X + 1 0 1
0 X − 2 2
−5 −4 0

∣

∣

∣

∣

∣

∣

∣

= X3 −X2 + 11X − 2 . (1.10)

This polynomial has a real root in (0, 1) because χ(0) = −2 < 0 < 9 = χ(1). Thus
we know that, there exists α ∈ (0, 1) such that,

X3 −X2 + 11X − 2 = (X − α)(X − λ1)(X − λ2) . (1.11)

Then we have the equalities,

αλ1λ2 = 2 (1.12)

α+ λ1 + λ2 = 1 . (1.13)

Thus, since 0 < α < 1, we have that,

• If λ1 and λ2 are real, they have the same sign λ1λ2 = 2/α > 0) and thus are
positive (λ1 + λ2 = 1− α > 0).

• If λ1 is complex then λ2 = λ̄1 and thus, 2ℜ(λ1) = λ1 + λ2 = 1− α > 0.

Example 1 showed that LSSP did not imply DNE. Let us construct an example
where a game have a DNE which is not locally stable.

Example 2. Consider the non-zero-sum game with the following respective losses
for each player,

L1(θ, φ) = 4θ2 + (1
2
φ2 − 1) · θ and L2(θ, φ) = (4θ − 1)φ+ 1

6
θ3 (1.14)

This game has two stationary points for θ = 0 and φ = ±1. The Jacobian of the
dynamics at these two points are

∇v(0, 1) =

(

1 1/2
2 1/2

)

and ∇v(0,−1) =

(

1 −1/2
2 −1/2

)

(1.15)

Thus,

133

• The stationary point (0, 1) is a DNE but Sp(∇v(0, 1)) = {3±
√

17
4
} contains an

eigenvalue with negative real part and so is not a LSSP.

• The statioanry point (0,−1) is not a DNE but Sp(∇v(0, 1)) = {1±i
√

7
4
}

contains only eigenvalue with positive real part and so is a LSSP.

2 Computation of the top-k Eigenvalues of the

Jacobian

Neural networks usually have a large number of parameters, this usually makes
the storing of the full Jacobian matrix impossible. However the Jacobian vector
product can be efficiently computed by using the trick from [Pearlmutter, 1994].
Indeed it’s easy to show that ∇v(ω)u = ∇(v(ω)Tu).

To compute the eigenvalues of the Jacobian of the Game, we first compute the
gradient v(ω) over a subset of the dataset. We then define a function that com-
putes the Jacobian vector product using automatic differentiation. We can then
use this function to compute the top-k eigenvalues of the Jacobian using the
sparse.linalg.eigs functions of the Scipy library.

3 Experimental Details

3.1 Mixture of Gaussian Experiment

Dataset. The Mixture of Gaussian dataset is composed of 10,000 points sampled
independently from the following distribution pD(x) = 1

2
N (2, 0.5) + 1

2
N (−2, 1)

where N (µ, σ2) is the probability density function of a 1D-Gaussian distribution
with mean µ and variance σ2. The latent variables z ∈ Rd are sampled from a
standard Normal distribution N (0, Id). Because we want to use full-batch methods,
we sample 10,000 points that we re-use for each iteration during training.

Neural Networks Architecture. Both the generator and discriminator are one
hidden layer neural networks with 100 hidden units and ReLU activations.

WGAN Clipping. Because of the clipping of the discriminator parameters some
components of the gradient of the discriminator’s gradient should no be taken into

134

account. In order to compute the relevant path angle we apply the following filter
to the gradient:

1 {(|ϕ| = c) and (sign∇ϕLD(ω) = −signϕ)} (3.1)

where ϕ is clipped between −c and c. If this condition holds for a coordinate of the
gradient then it mean that after a gradient step followed by a clipping the value of
the coordinate will not change.

Hyperparameters for WGAN-GP on MoG

Batch size = 10, 000 (Full-Batch)
Number of iterations = 30, 000
Learning rate for generator = 1× 10−2

Learning rate for discriminator = 1× 10−1

Gradient Penalty coefficient = 1× 10−3

Hyperparameters for NSGAN on MoG

Batch size = 10, 000 (Full-Batch)
Number of iterations = 30, 000
Learning rate for generator = 1× 10−1

Learning rate for discriminator = 1× 10−1

3.2 MNIST Experiment

Dataset We use the training part of MNIST dataset LeCun et al. [2010] (50K
examples) for training our models, and scale each image to the range [−1, 1].

Architecture We use the DCGAN architecture Radford et al. [2016] for our
generator and discriminator, with both the NSGAN and WGAN-GP objectives.
The only change we make is that we replace the Batch-norm layer in the discriminator
with a Spectral-norm layer Miyato et al. [2018], which we find to stabilize training.

Training Details

Hyperparameters for NSGAN with Adam

Batch size = 100
Number of iterations = 100, 000
Learning rate for generator = 2× 10−4

Learning rate for discriminator = 5× 10−5

β1 = 0.5

135

Hyperparameters for NSGAN with ExtraAdam

Batch size = 100
Number of iterations = 100, 000
Learning rate for generator = 2× 10−4

Learning rate for discriminator = 5× 10−5

β1 = 0.9

Hyperparameters for WGAN-GP with Adam

Batch size = 100
Number of iterations = 200, 000
Learning rate for generator = 8.6× 10−5

Learning rate for discriminator = 8.6× 10−5

β1 = 0.5
Gradient penalty λ = 10
Critic per Gen. iterations λ = 5

Hyperparameters for WGAN-GP with ExtraAdam

Batch size = 100
Number of iterations = 200, 000
Learning rate for generator = 8.6× 10−5

Learning rate for discriminator = 8.6× 10−5

β1 = 0.9
Gradient penalty λ = 10
Critic per Gen. iterations λ = 5

Computing Inception Score on MNIST. We compute the inception score
(IS) for our models using a LeNet classifier pretrained on MNIST. The average IS
score of real MNIST data is 9.9.

3.3 Path-Angle Plot

We use the path-angle plot to illustrate the dynamics close to a LSSP. To compute
this plot, we need to choose an initial point ω and an end point ω′. We choose the ω

to be the parameters at initialization, but ω′ can more subtle to choose. In practice,
when we use stochastic gradient methods we typically reach a neighborhood of a
LSSP where the norm of the gradient is small. However, due to the stochastic

136

C Adversarial Example Games

1 Proofs for Section 4 (Theoretical results)

Proof. Let us recall that the payoff ϕ is defined as

max
g∈Gǫ

min
f∈F

E(x,y)∼pdata,z∼pz [ℓ(f(g(x, y, z)), y)] =: ϕ(f, g) (1.1)

Let us consider the case where X is finite as a warm-up. In practice, this can be
the case if we consider that for instance one only allows a finite number of values
for the pixels, e.g. (integers between 0 and 255 for CIFAR-10). In that case, we
have that

Padv(x, y) =
∑

x′∈X
Pdata(x′, y)Pg(x|x′, y) where d(x, x′) > ǫ⇒ Pg(x|x′, y) = 0 .

(1.2)
Assuming that one can achieve any Pg(·|x′, y) respecting the proximity constraint,
the set {Padv} is convex and compact. It is compact because closed and bounded in
finite dimension and convex because of the linear dependence in Pg in (1.2) (and
the fact that if Pg1

and Pg2
respect the constraints then λPg1

+ (1− λ)Pg2
does it

too).

For the non finite input case, we can consider that the generator is a random
variable defined on the probability space (X × Y × Z,B,P(x,y) × Pz := P) where
B is the Borel σ-algebra, P(x,y) the probability on the space of data and Pz the
probability on the latent space. Then the adversarial distributions pg we consider is
the pushforward distributions P ◦G−1 with G such that,

G(x, y, z) = (g(x, y, z), y) and d(g(x, y, z), x) ≤ ǫ , ∀x, y, z ∈ X ×Y ×Z . (1.3)

It implies that ∆ǫ := {pg : g ∈ Gǫ} = {P ◦ G−1 |G measurable satisfying (1.3)}.
By definition of the payoff ϕ and (3.1), we have that

ϕ(fc, g) := E(x,y)∼D,z∼pz [ℓ(fc(g(x, y, z)), y)] = E(x′,y)∼pg [ℓ(fc(x
′), y)] =: ϕ(fc, pg)

and thus it lead to the equivalence,

min
fc∈F

max
pg∈∆ǫ

ϕλ(fc, pg) = max
pg∈∆ǫ

min
fc∈F

ϕλ(fc, pg)⇐⇒ min
fc∈F

max
g∈Gǫ

ϕλ(fc, g) = max
g∈Gǫ

min
fc∈F

ϕλ(fc, g)

139

Recall that we assumed that one has access to any measurable g that satisfies (1.3),
the minimax problem (4.1). Let us show that under this assumption the set ∆ǫ is
convex and compact.

∆ǫ is convex: let us consider P ◦G−1
1 and P ◦G−1

2 we have that

λP ◦G−1
1 + (1− λ)P ◦G−1

2 = P ◦G−1
3 (1.4)

where g3(x, y, z) = δ(z)g1(x, y, z)+(1−δ(z))g2(x, y, z) and where δ ∼ Ber(λ). Note
that g3 satisfies (1.3) by convexity of x 7→ d(x, x′).

∆ǫ is compact: By using Skorokhod’s representation theorem [Billingsley, 1999] we
can show that this set is closed and thus compact (as closed subsets of compact
sets are compact) using the weak convergence of measures as topology.

Thus ∆ǫ is a convex compact Haussdorf space and in both cases (X finite and
infinite) and we can apply Fan’s Theorem.

Theorem 2. [Fan, 1953, Theorem 2] Let U be a compact and convex Hausdorff
space and V an arbitrary convex set. Let ϕ be a real valued function on U × V such
that for every v ∈ V the function ϕ(·, v) is lower semi-continuous on U . If ϕ is
convex-concave then,

min
u∈U

sup
v∈V

ϕ(u, v) = sup
v∈V

min
u∈U

ϕ(u, v) (1.5)

Note that we do not prove this result for neural networks.

Proof. We prove the result here for any given norm ‖ · ‖. Let us consider the loss
for a given pair (x, y)

log(1 + ey(w⊤g(x,y)+b)) (1.6)

then by the fact that x 7→ log(1 + ex) is increasing, maximizing this term for
‖g(x, y)− x‖∞ ≤ ǫ, boils down to solving the following maximization step,

max
δ , ‖δ‖≤ǫ

y(w⊤δ) = ‖w‖∗ (1.7)

Particularly, for the ℓ∞ norm we get

arg max
δ , ‖δ‖∞≤ǫ

y(w⊤δ) = ǫy sign(w) . (1.8)

and

max
g

E(x,y)∼pdata
[log(1 + ey(w⊤g(x,y)+b))] = E(x,y)∼pdata

[log(1 + ey(w⊤x+b)+ǫ‖w‖1)] (1.9)

140

To show that (f ∗, g∗) is a Nash equilibrium of the game (4.2), we first notice that
by construction

ϕ(f ∗, g∗) = min
f∈F

max
g
ϕ(f, g) (1.10)

where F is the class of classifier with linear logits. We then just need to notice that
for all f ∈ F we have,

ϕ(f, g∗) = E(x,y)∼pdata
[log(1 + e−y(w⊤x+b)+ǫw⊤ sign(w∗))] (1.11)

That is a convex problem in (w, b). Thus by assuming that w∗ is full support and
since w∗ minimize (4.3) we have that

∇wϕ(w∗, b∗, g∗) = ∇wE(x,y)∼pdata
[log(1 + e−y(w⊤x+b)+ǫ‖w‖1)] = 0 (1.12)

Finally, by convexity of the problem (1.11) we can conclude that w∗ is a minimizer
of ϕ(·, g∗). To sum-up we have that

ϕ(f ∗, g) ≤ ϕ(f ∗, g∗) ≤ ϕ(f, g∗) (1.13)

meaning that (f ∗, g∗) is a Nash equilibrium of (4.2).

Proof. In the case where f ∗(x) := p(y|x) ∈ F , since f ∗ a minimizer of the expected
cross entropy loss over the class of any function, we have that

Hy(p) := min
f∈X Y

E(x,y)∼p[ℓ(f(x), y)] = Ex[H(p(·|x))] (1.14)

Lemma 9. Given a data distribution (x, y) ∼ padv a minimizer of the cross entropy
loss is

padv(y|·) ∈ arg min
f

E(x,y)∼padv
[ℓ(f(x), y)] . (1.15)

Proof. Let us start by noticing that,

min
f

E(x,y)∼p[ℓ(f(x), y)] = Ex∼px min
q=f(x)

Ey∼p(·|x)[ℓ(q, y)] (1.16)

Using the fact that ℓ is the cross-entropy loss we get

Ey∼p(·|x)[ℓ(q, y)] = Ey∼p(·|x)[−
K
∑

i=1

yi ln(qi)] = −
K
∑

i=1

pi ln(qi) (1.17)

where we noted pi = p(y = i|x). Noticing that since qi is a probability distribution
we have

∑K
i=1 qi = 1, we have,

Ey∼p(·|x)[ℓ(q, y)] = −
K−1
∑

i=1

pi ln(qi)− pK ln(1−
K−1
∑

i=1

qi) (1.18)

141

we can then differentiate this loss with respect to qi ≥ 0 and get,

∂Ey∼p(·|x)[ℓ(q, y)]

∂qi

(q) = −pi

qi

+
pK

qK

(1.19)

We can finally notice that qi = pi is a feasible solution.

2 Experimental Details

The experiments are subject to different sources of variations, in all our experiments
we try to take into account those sources of variations when reporting the results.
We detail the different sources of variations for each experiment and how we report
them in the next section.

2.1 Source of variations

NoBox attacks on a known architecture class. we created a random split
of the MNIST and CIFAR10 dataset and trained a classifier on each splits. To
evaluate each method we then use one of the classifiers as the source classifier and
all the other classifiers as the targets we want to attack. We then compute the
mean and standard deviation of the attack success rates across all target classifiers.
To take into account the variability in the results that comes from using a specific
classifier as the source model, we also repeat the evaluation by changing the source
model. We report the average and 95% interval (assuming the results follow a
normal distribution) in Table 8.1 by doing macro-averaging overall evaluations.

NoBox attacks across distinct architectures. For each architecture, we
trained 10 different models. When evaluated against a specific architecture we
evaluate against all models of this architecture. In Table 2, we report the mean and
standard deviation of the error rates across all models.

NoBox Attacks against robust classifiers. For this experiment, we could
only train a single robust target model per architecture because of our computational
budget. The only source of variations is thus due to the inherent stochasticity
of each method. Evaluating this source of randomness would require to run each
method several times, unfortunately, this is quite expensive and our computational

142

budget didn’t allow for it. In Table 3, we thus only report a single number per
architecture.

3 Additional results

3.1 Quantitative Results

We now provide additional results in the form of whitebox and blackbox query
attacks adapted to the NoBox evaluation protocol for Known-Architecture attacks
which is the experimental setting in Q1. For whitebox attacks we evaluate APGD-
CE and APGD-DLR [Croce and Hein, 2020] which are improvements over the
powerful PGD attack [Madry et al., 2018]. When ensembled with another powerful
perturbation minimizing whitebox attack FAB [Croce and Hein, 2019] and the query
efficient blackbox Square attacks [Andriushchenko et al., 2020] yields the current
SOTA attack strategy called AutoAttack [Croce and Hein, 2020]. Additionally,
we compare with two parametric blackbox query approaches that both utilize a
latent space in AutoZoom [Tu et al., 2019] and NAttack [Li et al., 2019]. To
test transferability of whitebox and blackbox query attacks in the NoBox known
architecture setting we give generous iteration and query budgets (10x the reported
settings in the original papers) when attacking the source models, but only a single
query for each target model. It is interesting to note that APGD variant whitebox
attacks are significantly more effective than query based blackbox attacks but lack
the same effectiveness of NoBox baselines. We hypothesize that the transferability
of whitebox attacks may be due to the fact that different functions learn similar
decision boundaries but different enough such that minimum distortion whitebox
attacks such as FAB are ineffective.

3.2 Qualitative Results

As a sanity check we also provide some qualitative results about the generated
adversarial attacks. In Figure C.1 we show the 256 attacked samples generated by
our method on MNIST. In Figure C.2 we show on the left the 256 CIFAR samples
to attack, and on the right the perturbations generated by our method amplified by
a factor 10.

143

MNIST CIFAR-10

Whitebox

AutoAttack* 84.4± 5.1 91.0± 1.9
APGD-CE 95.8± 1.9 97.5± 0.7

APGD-DLR 83.9± 5.4 90.7± 2.1
FAB 5.4± 2.2 10.4± 1.7

Blackbox-query
Square 60.9± 10.3 21.9± 2.8
N -Attack 9.5± 3.2 56.7± 8.9

Non-Interactive
Blackbox

MI-Attack 93.7± 1.1 99.9 ±0.1
DI-Attack 95.9± 1.6 99.9 ± 0.1

TID-Attack 92.8± 2.7 19.7± 1.5
SGM-Attack N/A 99.8 ±0.3
AEG (Ours) 98.9 ± 1.4 98.5± 0.6

Table C.1: Test error rates for average blackbox transfer over architectures at ǫ = 0.3 for
MNIST and ǫ = 0.03125 for CIFAR-10 (higher is better)

Source Attack VGG-16 RN-18 WR DN-121 Inc-V3

Clean 11.2± 0.9 13.1± 2.0 6.8± 0.7 11.2± 1.4 9.9± 1.3

WR

MI-Attack 67.8± 3.01 86.0± 1.7 99.9 ± 0.1 89.0± 2.6 88.2± 1.4
DI-Attack 68.3± 2.4 88.5 ± 2.1 99.9 ± 0.1 91.2 ± 1.6 91.5 ± 1.8

TID-Attack 23.1± 1.8 25.9± 1.3 20.6± 1.0 23.6± 1.2 21.9± 1.7
SGM-Attack 69.1± 2.1 88.6 ± 2.0 99.6 ± 0.4 90.7 ± 1.9 86.8± 2.2
AEG (Ours) 40.8± 3.22 70.6± 4.9 98.5± 0.6 88.2 ± 4.6 89.6 ± 1.8

AEG (New) 86.2 ± 1.8 94.1 ± 1.5 81.1 ± 1.1 93.1 ± 1.7 89.2 ± 1.8

Table C.2: Error rates on D for average NoBox architecture transfer attacks with
ǫ = 0.03125 with Wide-ResNet architecture

4 Implementation Details

We now provide additional details on training the representative classifiers and
generators used in the AEG framework as outlined in 8.2. We solve the game using
the ExtraAdam optimizer [Gidel et al., 2019a] with a learning rate of 10−3. We
allow the generator to update its parameters several times on the same batch of
examples before updating the critic. In particular we update the generator until
it is able to fool the critic or it reaches some fixed number of iterations. We set
this max number of iterations to 20 in all our experiments. We also find that
biasing the critic update various forms of adversarial training consistently leads to
the most effective attack. We reconcile this phenomenon by noting that through
adversarial training the critic itself becomes a robust model which provides a richer

144

Figure C.1: Attacks generated on MNIST by our method.

learning signal to the generator. Furthermore, the elegance of the AEG frameworks
allows the practitioner to further bias the optimization process of the critic —and
consequently the generator— through picking and choosing effective robustness
techniques such as training with PGD adversarial examples generated at a prior
timestep.

4.1 Generator Architecture

The architecture we used for the encoder and the decoder is described in Table C.4
and C.5. For MNIST we used a standard convolutional architecture and for CIFAR-
10 we used a ResNet architecture.

145

d-ResBlock

Input:x
Forward for computing F (x):

Reflection pad (1)
conv. (ker: 3×3, d→ d; stride: 1; pad: 1)

Batch Normalization
ReLU

Reflection pad (1)
conv. (ker: 3×3, d→ d; stride: 1; pad: 1)

Batch Normalization
Output:x+ F (x)

Table C.3: ResNet blocks used for the ResNet architectures (see Table C.4) for the
Generator. Each ResNet block contains skip connection (bypass), and a sequence of
convolutional layers, normalization, and the ReLU non–linearity.

Encoder

Input: x ∈ R3×32×32

Reflection Padding (3)
conv. (ker: 7×7, 32→ 63; stride: 1; pad: 0)

Batch Normalization
ReLU

conv. (ker: 3×3, 63→ 127; stride: 2; pad: 0)
Batch Normalization

ReLU
conv. (ker: 3×3, 127→ 255; stride: 2; pad: 0)

Batch Normalization
ReLU

255-ResBlock
255-ResBlock
255-ResBlock

Decoder

Input: (ψ(x), z, y) ∈ R256×8×8

256-ResBlock
256-ResBlock
256-ResBlock

Transp. conv. (ker: 3×3, 256→ 128; stride: 2; pad: 0)
Batch Normalization

ReLU
Transp. conv. (ker: 3×3, 128→ 64; stride: 2; pad: 0)

Batch Normalization
ReLU

ReflectionPadding(3)
conv. (ker: 7×7, 64→ 32; stride: 1; pad: 0)

Tanh

Table C.4: Encoder and Decoder for the convolutional generator used for the MNIST
dataset.

146

Figure C.2: Left: CIFAR examples to attack. Right: Pertubations generated by our
method amplified by a factor 10. An interesting observation is that the generator learns
not to attack the pixel where the background is white.

4.2 Baseline Implementation Details

The principal baselines used in the main paper include the Momentum-Iterative
Attack (MI-Attack) [Dong et al., 2018], the Input Diversity (DI-Attack) [Xie et al.,
2019], the Translation-Invariant (TID-Attack) [Dong et al., 2019] and the Skip
Gradient Method (SGM-Attack) [Wu et al., 2020]. As Input Diversity and Transla-
tion invariant are approaches that generally can be combined with existing attack
strategies we choose to use the powerful Momentum-Iterative attack as our base
attack. Thus the DI-Attack consists of random input transformations when using
an MI-Attack adversary while the TID-attack further adds a convolutional kernel
ontop of the DI-Attack. We base our implementions using the AdverTorch [Ding
et al., 2019] library and adapt all baselines to this framework using original imple-
mentations where available. In particular, when possible we reused open source
code in the Pytorch library [Paszke et al., 2019] otherwise we re-implement existing
algorithms. We also inherit most hyperparameters settings when reporting baseline
results except for number steps used in iterated attacks. We find that most iterated
attacks benefit from additional optimization steps when attacking MNIST and
CIFAR-10 classifiers. Specifically, we allot a 100 step budget for all iterated attacks
which is often a five to ten fold increase than the reported setting in all baselines.

147

Encoder

Input: x ∈ R28×28

conv. (ker: 3×3, 1→ 64; stride: 3; pad: 1)
LeakyReLU(0.2)

Max Pooling (stride: 2)
conv. (ker: 3×3, 64→ 32; stride: 2; pad: 1)

LeakyReLU(0.2)
Max Pooling (stride: 2)

Decoder

Input: (ψ(x), z, y) ∈ R64×2×2

Transp. conv. (ker: 3×3, 64→ 32; stride: 2; pad: 1)
LeakyReLU(0.2)

Max Pooling stride 2
Reflection Padding (3)

Transp. conv. (ker: 5×5, 32→ 16; stride: 3; pad: 1)
LeakyReLU(0.2)

Max Pooling stride 2
Transp. conv. (ker: 2×2, 16→ 1; stride: 2; pad: 1)

Tanh

Table C.5: Encoder and Decoder for the ResNet generator used for the MNIST dataset.

4.3 Ensemble Adversarial Training Architectures

We ensemble adversarially train our models in accordance with the training protocol
outlined in Tramèr et al. [2018]. For MNIST models we train a standard model
for 6 epochs, and an ensemble adversarial model using adversarial examples from
the remaining three architectures for 12 epochs. The specific architectures for
Models A-D are provided in Table. 8. Similarly, for CIFAR-10 we train both the
standard model and ensemble adversarial models for 50 epochs. For computationally
efficiency we randomly sample two out of three held out architectures when ensemble
adversarially training the source model.

A B C D

Conv(64, 5, 5) + Relu Dropout(0.2) Conv(128, 3, 3) + Tanh FC(300) + Relu
Dropout(0.5)Conv(64, 5, 5) + Relu Conv(64, 8, 8) + Relu MaxPool(2,2)

Dropout(0.25) Conv(128, 6, 6) + Relu Conv(64, 3, 3) + Tanh FC(300) + Relu
Dropout(0.5)FC(128) + Relu Conv(128, 6, 6) + Relu MaxPool(2,2)

Dropout(0.5) Dropout(0.5) FC(128) + Relu FC(300) + Relu
Dropout(0.5)FC + Softmax FC + Softmax FC + Softmax

FC(300) + Relu
Dropout(0.5)

FC + Softmax

Table C.6: MNIST Ensemble Adversarial Training Architectures)

148

5 Further Related Work

Adversarial attacks can be classified under different threat models, which impose
different access and resource restrictions on the attacker Akhtar and Mian [2018].
The whitebox setting, where the attacker has full access to the model parameters
and outputs, thus allowing the attacker to utilize gradients based methods to solve
a constrained optimization procedure. This setting is more permissive than the
semi-whitebox and the blackbox setting, the latter of which the attacker has only
access to the prediction [Papernot et al., 2016a, 2017] or sometimes the predicted
confidence [Guo et al., 2019]. In this paper, we focus on a challenging variant of
the conventional blackbox threat model which we call the NoBox setting which
further restricts the attacker by not allowing any query from the target model.
While there exists a vast literature of adversarial attacks, we focus on ones that
are most related to our setting and direct the interested reader to comprehensive
surveys for adversarial attacks and blackbox adversarial attacks [Bhambri et al.,
2019, Chakraborty et al., 2018].

Whitebox Attacks. The most common threat model for whitebox adversarial
examples are lp-norm attacks, where p ∈ {2,∞} is the choice of norm ball used to
define the attack budget. One of the earliest gradient based attacks is the Fast
Gradient Sign Method (FGSM) [Goodfellow et al., 2015a], which computes bounded
perturbations in a single step by computing the signed gradient of the loss function
with respect to a clean input. More powerful adversaries can be computed using
multi-step attacks such as DeepFool [Moosavi-Dezfooli et al., 2016] which iteratively
finds the minimum distance over perturbation direction needed to cross a decision
boundary. For constrained optimization problems the Carlini-Wagner (CW) attack
[Carlini and Wagner, 2017b] is a powerful iterative optimization scheme which
introduces an attack objective designed to maximize the distance between the target
class and the most likely adversarial class. Similarly, projected gradient descent
based attacks has been shown to be the strongest class of adversaries for l2 and l∞
norm attacks [Madry et al., 2018] and even provides a natural way of robustifying
models through adversarial training. Extensions of PGD that fix failures due to
suboptimal step size and problems of the objective function include AutoPGD-CE
(APGD-CE) and AutoPGD-DLR (APGD-DLR) and leads to the state of the art
whitebox attack in AutoAttack [Croce and Hein, 2020] which ensembles two other
strong diverse and parameter free attacks.

Blackbox Attacks. Like whitebox attacks the adversarial goal for a blackbox
attacker remains the same with the most common threat model also being lp norm
attacks. Unlike, whitebox attacks the adversarial capabilities of the attacker is
severely restricted rendering exact gradient computation impossible. In lieu of exact
gradients, early blackbox attacks generated adversarial examples on surrogate models

149

in combination with queries to the target model [Papernot et al., 2016a]. When
given a query budget gradient estimation is an attractive approach with notable
approaches utilizing black box optimization schemes such as Finite Differences [Chen
et al., 2017], Natural Evolutionary Strategies [Ilyas et al., 2018, Jiang et al., 2019],
learned priors in a bandit optimization framework [Ilyas et al., 2019], meta-learning
attack patterns [Du et al., 2020], and query efficient.

Defenses. In order to protect against the security risk posed by adversarial
examples there have been many proposed defense strategies. Here we provide a
non-exhaustive list of such methods. Broadly speaking, most defense approaches
can be categorized into either robust optimization techniques, gradient obfuscation
methods, or adversarial example detection algorithms [Xu et al., 2019]. Robust
optimization techniques aim to improve the robustness of a classifier by learning
model parameters by incorporating adversarial examples from a given attack into
the training process [Madry et al., 2018, Tramèr et al., 2018, Ding et al., 2020]. On
the other hand obfuscation methods rely on masking the input gradient needed by
an attacker to construct adversarial examples [Song et al., 2018, Buckman et al.,
2018, Guo et al., 2018, Dhillon et al., 2018].

In adversarial example detection schemes the defender seeks to sanitize the inputs to
the target model by rejecting any it deems adversarial. Often this involves training
auxiliary classifiers or differences in statistics between adversarial examples and
clean data [Grosse et al., 2017, Metzen et al., 2017, Gong et al., 2017].

150

