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Abstract

Hafalir, Kojima and Yenmez (2022) introduce a model of interdistrict school choice:

each district consists of a set of schools and the district’s admission rule places appli-

cants to the schools in the district. We show that any district’s admission rule satisfying

their assumptions is uniquely rationalized by a collection of schools’ choice functions

satisfying substitutability and acceptance. We then establish that all students weakly

prefer the outcome of the cumulative offer process (COP) under the school-based ad-

missions to the outcome under the district-based admissions. This has the implication

that if students prefer the interdistrict outcome for the district-based admissions to the

intradistrict outcome, then all students are weakly better off under the school-based

admissions compared to either of these outcomes. Therefore, for student-optimal in-

terdistrict school choice the introduction of district admission rules hurts students and

it suffices to endow schools with usual choice priorities (if students’ welfare is more im-

portant than districts’ policy goals) and to (de)centralize district admissions by letting

schools choose.
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1 Introduction

Until the 1990s children were assigned to public schools in the district where their parents

live in. Rich families could choose the district where their children will go to school by

moving to that district. Poor families did not have this choice. Since “better” public schools

are often located in richer neighborhoods, children from poor families did not have access to

those schools. This inequality of opportunity between rich and poor families triggered U.S.

cities to establish centralized interdistrict school choice programs. Such a program offers

students (or children) the possibility to be admitted at schools which are not located in the

district in which they live.

Abdulkadiroğlu and Sönmez (2003) introduce the model of (public) school choice as-

signing students to schools on the basis of schools’ priorities and students’ (or parents’)

preferences. Only recently Hafalir, Kojima and Yenmez (2022) have provided a precise for-

mulation of interdistrict school choice: each district consists of a set of (district) schools and

a set of (home district) students. Students have strict preferences over schools and districts

have admission rules to admit students from their district and outside the district.

The modelling of intradistrict school choice uses matching with contracts (Hatfield and

Milgrom, 2005). Any contract consists of a student, a district and a school in this district.

Students have strict preferences over contracts and schools have choice functions over sets of

contracts. Any school’s choice function is feasible in the sense that each student is associated

with at most one chosen contract, the chosen set of students does not exceed its capacity,

and only contracts associated with the school are chosen. The law of aggregate demand

(LAD) says that from a bigger set of contracts weakly more contracts are chosen compared

to the smaller set. Substitutability means that any chosen contract remains chosen when

other contracts are removed. LAD and substitutability have proven to be essential for

the cumulative offer process (COP) to be stable (in the sense that the outcome is not

blocked by a student and a school) and strategy-proof in the sense that no student gains

from misrepresenting his preferences. In addition, under these conditions COP is outcome

equivalent to the student-proposing deferred-acceptance algorithm (SPDA) (first defined by

Gale and Shapley (1962)).

In a recent contribution Hatfield and Kominers (2014) weakened substitutability to the

requirement that any school’s choice function has a completion which is LAD and substi-

tutable. Here a completion of a choice function is another choice function which chooses

either the same set as the original choice function or several contracts associated with the

same student. Hafalir, Kojima and Yenmez (2022) endow each district with an admission

rule which is feasible for the schools in the district, acceptant and has a completion satis-
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fying LAD and substitutability. We show that then it is possible to deduce for each school

its choice function satisfying acceptance and substitutability. In other words, any admission

rule satisfying their assumptions can be rationalized via a choice function profile of the dis-

trict’s schools. The union of these choice functions is an expansion of any completion (which

satisfies LAD and substitutability) of the district’s admission rule. This in turn implies that

all students are weakly better off under the deduced school admission priorities compared

to the district admission priorities. For policy implications, this means for the district not

to impose any admission rules if students’ welfare is more important than districts’ welfare,

i.e. to decentralize admissions by letting schools choose their students. For the student-

optimal interdistrict COP it suffices to endow schools with usual choice priorities satisfying

acceptance and substitutability. Furthermore, this rationalization is canonical in the sense

that two district admission rules with the same rationalization yield the same outcomes

for the student-optimal interdistrict COP (when fixing the other districts’ admission rules).

Endowed with these results, we show that several policy goals for stable and strategy-proof

mechanisms need to be imposed (implicitly) at the school level.

Any policy goal of the district is incorporated in its admission rule. Four main policy

goals are formulated for the student-proposing deferred-acceptance mechanism (SPDA) by

Hafalir, Kojima and Yenmez (2022): (i) individual rationality meaning that any student

prefers his assigned school to his initial (walk-zone) school, (ii) balanced exchange meaning

that any district sends outside and receives the same numbers of students, (iii) all students

prefer the interdistrict outcome to the intradistrict outcome and (iv) diversity meaning that

student bodies respect certain desegregation policies. All these policy goals are formulated

in terms of the districts’ admission rules. We show that when the policy goals (i), (iii) and

(iv) hold for the districts’ admission rules, then they also hold for the deduced schools’ choice

functions. Therefore, those policy goals are easier to achieve at the school level than at the

district level.

The paper is organized as follows. Section 2 introduces the model and states our main

results. Section 3 applies those results for district-based and school-based admissions for

intradistrict and interdistrict school choice. Section 4 discusses further district-level policy

goals and whether those have to be imposed (implicitly) at the school level or not. The

Appendix contains all proofs omitted from the main text.

2 The Model

We follow Hafalir, Kojima and Yenmez (2022). There exist finite sets of students S, districts

D and schools C. Each student s and school c has a home district denoted by d(s) and
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d(c), respectively. For later purposes, let Cd denote set of all schools located in district d.

We assume that D contains at least two districts (as otherwise there is only intradistrict

school choice), |Cd| ≥ 2 for at least one district d (as otherwise each district contains only

one school) and any district contains at least one student.

Each school c has a capacity of qc. For each district d, let kd denote the number of students

whose home district is d. Each district d has sufficiently large capacity to accommodate all

students in its district, i.e. kd ≤
∑

c∈Cd qc, and each district’s number of home students

exceeds the capacity of any of its district schools, i.e. kd ≥ qc for all c ∈ Cd.
A contract x = (s, d, c) specifies a student, a district and a school c in this district, i.e.

d(c) = d. For any contract x, let s(x), d(x) and c(x) denote the student, district and school

associated with x. Let X = {(s, d, c)|d(c) = d} denote the set of all contracts. For any X ⊆
X , let Xs denote the set of all contracts in X associated with s, i.e. Xs = {x ∈ X|s(x) = s},
and XS = ∪s∈SXs. Similarly, we define Xd and Xc for any district d and for any school c.

2.1 Admission Rules

Each district d has an admissions rule that is represented by a choice function Chd choosing

from any set of contracts a subset of contracts associated with itself: given X ⊆ X , we have

Chd(X) = Chd(Xd) ⊆ Xd.

A matching is a set of contracts. A matching X is feasible for students if |Xs| ≤ 1 for all

s ∈ S. A matching X is feasible if it is feasible for students and |Xc| ≤ qc for all c ∈ C.
The following properties are important for admission rules:

(i) Chd is feasible if it always chooses a feasible matching;

(ii) Chd is acceptant if for any matching X that is feasible for students, x ∈ Xd\Chd(X)

implies |{y ∈ Chd(X)|c(y) = c(x)}| = qc(x) or |Chd(X)| ≥ kd;

(iii) Chd is substitutable if for all x ∈ X ⊆ Y ⊆ X , x ∈ Chd(Y ) implies x ∈ Chd(X);

(iv) Chd is LAD (law of aggregate demand) if for all X ⊆ Y ⊆ X , |Chd(X)| ≤ |Chd(Y )|;

(v) Chd has a completion if there exists another admissions rule Ch′d such that for every

matching X either Ch′d(X) = Chd(X) or Ch′d(X) is not feasible for students;1

(vi) Ch′d is an expansion of Chd if for every matching X we have Ch′d(X) ⊇ Chd(X); and

1This concept has been introduced by Hatfield and Kominers (2014) for many-to-one matching. Yenmez
(2018) proposed a more general approach for many-to-many matching.
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(vii) Chd is strongly acceptant if for any matching X that is feasible for students, x ∈
Xd\Chd(X) implies |{y ∈ Chd(X)|c(y) = c(x)}| = qc(x).

Note that strong acceptance implies acceptance.

Analogously, a choice function Chc for school c chooses from any set of contracts a subset

of contracts associated with itself: given X ⊆ X , we have Chc(X) = Chc(Xc) ⊆ Xc. The

choice function Chc is qc-acceptant if for any X ⊆ X we have |Chc(X)| = min{qc, |Xc|}, i.e.

Chc only rejects contracts associated with it if the capacity of school c is exhausted. We call

Chc acceptant if Chc is qc-acceptant.

Hafalir, Kojima and Yenmez (2022) assume that Chd is feasible and acceptant and has

a completion satisfying substitutability and LAD. Our first main result determines for each

admission rule a rationalization of it by schools’ choice functions such that its completion is

a subcorrespondence of the union of the schools’ choice functions.

Proposition 1. Let Chd be feasible and acceptant and have a completion satisfying substi-

tutability and LAD. For any c ∈ Cd and any X ⊆ X , we set

Chd(Xc) ≡ Chc(Xc) = Chc(X). (1)

Then the following holds:

(i) Chd induces in (1) a unique choice function profile (Chc)c∈Cd such that each Chc sat-

isfies substitutability and qc-acceptance.

(ii) ∪c∈CdChc is the unique strongly acceptant, substitutable and LAD expansion of any

completion of Chd satisfying substitutability and LAD.

(iii) If kd =
∑

c∈Cd qc, then ∪c∈CdChc is a completion of Chd satisfying substitutability and

LAD.

Proof. (i): Let Chd be feasible and acceptant, and let Ch′d be a completion of Chd satisfying

substitutability and LAD. Let c ∈ Cd. For any X ⊆ X , we have

Ch′d(Xc) = Chd(Xc) = Chc(Xc) = Chc(X) (2)

where the first equality follows from the fact that Chd(Xc) and Ch′d(Xc) are feasible for

students and Ch′d is a completion of Chd and the remaining equalities from (1). Since Ch′d
is substitutable and LAD, Chc is substitutable and LAD. As qc ≤ kd the constructed Chc is

qc-acceptant: as Chd is acceptant we have |Chd(Xc)| = min{qc, |Xc|} for any Xc ⊆ Xc and

the claim follows from (2). Furthermore, by (2), Chc is uniquely defined by Chd.

5



(ii): We show Ch′d ⊆ ∪c∈CdChc. Let X ⊆ X . Then Ch′d(X) = Ch′d(Xd). Note that

Xd = ∪c∈CdXc. By substitutability of Ch′d,

Ch′d(Xd) ∩Xc ⊆ Ch′d(Xc) = Chc(Xc) = Chc(X)

where the last two equalities follows from (2). Thus, Ch′d(X) ⊆ ∪c∈CdChc(X).

For any c ∈ Cd, we have qc ≤ kd. Now by (2) and acceptance of Chd, we obtain that

for all X ⊆ X , x ∈ Xc\Chc(X) implies |Chc(X)| = qc. Hence, ∪c∈CdChc is a feasible and

strongly acceptant expansion of Ch′d. Furthermore, by (i), ∪c∈CdChc is substitutable and

LAD.

For uniqueness, let Ch′′d be a strongly acceptant expansion of Ch′d satisfying substitutabil-

ity and LAD. Then by strong acceptance of Ch′′d, we have for any Xc ⊆ Xc, Ch′′d(Xc) = Xc (if

|Xc| ≤ qc) or |Ch′′d(Xc)| = qc. Note that the same holds for Chc by strong acceptance. Hence,

by (2) and the fact that Ch′′d is an expansion of Ch′d, we have for any X ⊆ X and any c ∈ Cd,
Ch′′d(Xc) = Chc(Xc). Because both Ch′′d and ∪c∈CdChc are strongly acceptant, we have for

any X ⊆ X , Ch′′d(X)∩Xc = Xc = Chc(Xc) (if |Xc| ≤ qc) or |Ch′′d(X)∩Xc| = qc = |Chc(Xc)|
(if |Xc| > qc). By (2), we have in both cases Ch′′d(X) ∩Xc = Chc(Xc). By substitutability

and LAD of Ch′′d, we obtain

Ch′′d(X) = ∪c∈Cd(Ch′′d(X) ∩Xc) = ∪c∈CdChc(Xc) = ∪c∈CdChc(X),

which implies Ch′′d = ∪c∈CdChc, the desired conclusion.

(iii): Let kd =
∑

c∈Cd qc. Let X ⊆ X be a matching. If Ch′d(X) is not feasible for students,

then by Ch′d(X) ⊆ ∪c∈CdChc(X), ∪c∈CdChc(X) is not feasible for students. If Ch′d(X) is

feasible for students, then as Ch′d is a completion of Chd, Chd(Xd) = Chd(X) = Ch′d(X) =

Ch′d(Xd). As Chd is feasible, Chd(Xd) is a feasible matching and |Ch′d(Xd) ∩ Xc| ≤ qc for

all c ∈ Cd. We distinguish two cases for any c ∈ Cd.
If |Ch′d(Xd) ∩Xc| = qc, then

Ch′d(Xd) ∩Xc = Ch′d(Xc) = Chc(Xc) = Chc(X),

where the first equality follows from substitutability and LAD of Ch′d and the fact that

|Ch′d(Xc)| ≤ qc (as Ch′d(Xc) is necessarily feasible for students, Ch′d(Xc) = Chd(Xc) from

Ch′d being a completion of Chd and |Chd(Xc)| ≤ qc from feasibility of Chd) and
∑

c∈Cd qc =

kd, and the last two equalities follow from the definition of Chc.
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If |Ch′d(Xd) ∩Xc| < qc, then

Ch′d(Xd) ∩Xc = Ch′d(Xc) = Chc(Xc) = Chc(X),

where the first equality follows from substitutability and LAD of Ch′d and the fact that

|Ch′d(Xc)| < qc (as Ch′d(Xc) is necessarily feasible for students and Ch′d(Xc) = Chd(Xc)

from Ch′d being a completion of Chd and Chd(Xc) = Xc by acceptance of Chd and kd ≥ qc),

and the last two equalities follow from the definition of Chc.

Thus,

Chd(X) = Ch′d(X) = ∪c∈Cd(Ch′d(Xd) ∩Xc) = ∪c∈CdChc(X),

which is the desired conclusion. �

Proposition 1 (Part (ii)) implies that ∪c∈CdChc is the “largest strongly acceptant choice

function containing all completions satisfying substitutability and LAD” of any district ad-

mission rule (inducing the same schools’ choice functions). From now on we will call the

choice function profile (Chc)c∈Cd the rationalization of Chd. Note that any Chd, which

has a completion satisfying substitutability and LAD, has a unique rationalization, and the

set of all rationalizations induces a partition of the set of district admission rules which have

a completion satisfying substitutability and LAD.

The following is immediate from Proposition 1.

Corollary 1. Let Chd be feasible and strongly acceptant. Then Chd has a completion satis-

fying substitutability and LAD if and only if there exists a choice function profile (Chc)c∈Cd
such that each Chc satisfies substitutability and acceptance and ∪c∈CdChc is a completion of

Chd.

In other words, Chd has then a unique completion satisfying substitutability and LAD.

The following shows that in Proposition 1 (Part (iii)) the assumption kd =
∑

c∈Cd qc is

necessary.2

Example 1. There are four students, s1, s2, s3, and s4. Let district d have two schools, c

and c′, with sufficiently large capacity, say qc = qc′ = 4. Let kd = 2. The district’s admission

rule Chd is defined as follows: according to the order (s1, d, c), (s2, d, c), (s3, d, c), (s4, d, c),

(s1, d, c
′), (s2, d, c

′), (s3, d, c
′), and (s4, d, c

′) let Chd accept up to two contracts (while not

choosing more than one contract with the same student).

Then Chd has the following completion Ch′d which satisfies both substitutability and LAD:

according to the order (s1, d, c), (s2, d, c), (s3, d, c), (s4, d, c), (s1, d, c
′), (s2, d, c

′), (s3, d, c
′),

2I thank Fuhito Kojima for providing this example.
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(s4, d, c
′) let Ch′d accept up to two contracts (while choosing possibly two contracts with the

same student).

Then

Chc({(s1, d, c), (s2, d, c)}) = Chd({(s1, d, c), (s2, d, c)}) = {(s1, d, c), (s2, d, c)}

and

Chc′({(s3, d, c
′), (s4, d, c

′)}) = Chd({(s3, d, c
′), (s4, d, c

′)}) = {(s3, d, c
′), (s4, d, c

′)},

but

Chd({(s1, d, c), (s2, d, c)} ∪ {(s3, d, c
′), (s4, d, c

′)}) = Chd({(s1, d, c), (s2, d, c)}),

which is different from

Chc({(s1, d, c), (s2, d, c)})∪Chc′({(s3, d, c
′), (s4, d, c

′)}) = {(s1, d, c), (s2, d, c), (s3, d, c
′), (s4, d, c

′)}.

Note that {(s1, d, c), (s2, d, c), (s3, d, c
′), (s4, d, c

′)} is a feasible matching.

2.2 Cumulative Offer Process

We consider a district admissions rule profile (Chd)d∈D satisfying the assumptions in Proposi-

tion 1 and denote its rationalization by the choice function profile ((Chc)c∈Cd)d∈D ≡ (Chc)c∈C.

We say that (Chd)d∈D is feasible and acceptant if each Chd is feasible and acceptant. Simi-

larly, we say (Chc)c∈C is a rationalization (satisfying substitutability and LAD) of (Chd)d∈D

if for each d ∈ D, (Chc)c∈Cd is a rationalization (satisfying substitutability and LAD) of Chd.

Each student s has a strict preference relation Ps over Xs ∪ {∅} such that for all x ∈ Xs,
xPs∅. In other words, being unmatched is always the worst option (in public school choice).

The corresponding weak preference relation is denoted by Rs, i.e. xRsy implies xPsy or

x = y. Let P = (Ps)s∈S denote the student preference profile. Since everything except

students’ preferences remains fixed, a problem is simply a profile P . Below we fix the profile

P .

A matching X is stable if it is feasible, and for all d ∈ D, Chd(Xd) = Xd (individual

rationality), and there exists no x = (s, d, c) /∈ X such that xPsXs and x ∈ Chd(X ∪ {x})
(no blocking contract).3 Furthermore, a matching X is individually rational for schools if

3Usually the second requirement is referred as “no blocking pair” but given our context we refer to it as
“no blocking contract”.
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for all d ∈ D and all c ∈ Cd, Chd(Xc) = Xc.

A mechanism φ chooses for any P a feasible matching, which we denote by φ(P ). Then

φ is stable if φ(P ) is stable (under P ). The mechanism φ is strategy-proof if for any P , any

s and P ′s, we have φs(P )Rsφs(P
′
s, P−s).

The following mechanism plays the important role for stability and strategy-proofness.

Cumulative Offer Process (COP) based on (Chd)d∈D.

Step 1: For all i ∈ S, let x1
i denote i’s most preferred acceptable available contract. For all

d ∈ D, let X1
d = ∪i∈S{x1

i } ∩ Xd denote the set of contracts proposed to d. For all d ∈ D, let

M1
d = Chd(X

1
d) denote the set of tentatively accepted contracts by d, and M1 = ∪d∈DM1

d .

Step k: For all i ∈ S\Mk−1
S , let xki denote i’s most preferred acceptable available con-

tract among the available ones i did not propose yet. For all d ∈ D, let Xk
d = Xk−1

d ∪
(∪i∈S\Mk−1

S
{xki } ∩ Xd) denote the set of contracts proposed to d until Step k. For all d ∈ D,

let Mk
d = Chd(X

k
d ) denote the set of tentatively accepted contracts by d, and Mk = ∪d∈DMk

d .

Stop: If for some Step k, S\Mk−1
S = ∅, then f(P ) ≡ Mk−1 is the matching chosen by COP

f for the problem P .

When districts’ admission rules have completions satisfying substitutability and LAD,

then by Hatfield and Kominers (2014) the COP based on (Chd)d∈D is stable and strategy-

proof. Furthermore, COP yields identical outcomes when applied either to the rationalization

(Chc)c∈C or to the district admissions rule profile (∪c∈CdChc)d∈D.

Below we show that the COP based on the rationalization in Proposition 1 produces a

feasible and acceptant matching which does not contain any blocking contract with respect to

the district admission rules. Furthermore, all students are weakly better off when comparing

the outcome of the COP based on the rationalization with the outcome of the COP based

on the district admission rules. This rationalization is canonical for the outcome of COP

in the following sense: obviously, if district admission rules have the same rationalization,

then the outcomes of COP (based on the rationalization) coincide. In other words, to

distinguish district admission rules in terms of their outcomes of the COP (based on the

rationalization), it is sufficient to know their rationalizations. Furthermore, in our context,

the student-proposing deferred acceptance mechanism (SPDA) used by Hafalir, Kojima and

Yenmez (2022) is outcome equivalent to COP (as SPDA is stable and strategy-proof).

Proposition 2. Let (Chd)d∈D be feasible and acceptant and have completions satisfying

substitutability and LAD. Let (Chc)c∈C denote its rationalization satisfying substitutability

and acceptance. Then the following holds:
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(i) Given profile P , let X denote the outcome of COP based on (Chd)d∈D and Y denote

the outcome of COP based on (Chc)c∈C. Then

(i.i) Y is a feasible and individually rational for schools matching, and Y contains no

blocking contract with respect to (Chd)d∈D.

(i.ii) Y is student-optimal in the following sense: YsRsXs for all s ∈ S.

(ii) COP based on (Chc)c∈C is the unique student-optimal (with respect to (i.ii) for district

admission rules with rationalization (Chc)c∈C) and strategy-proof mechanism.

Proof. For each d ∈ D, let Chd be feasible and acceptant, and let Ch′d be a completion of

Chd satisfying substitutability and LAD.

(i.i): It is straightforward that Y is feasible. Furthermore, Y is individually rational for

schools as for all d ∈ D and c ∈ Cd, we have Yc = Chc(Yc) = Chd(Yc) (where the last equality

follows from (1)). Suppose that Y contains a blocking contract x̄ = (s̄, d̄, c̄) with respect to

(Chd)d∈D. Then x̄Ps̄Ys̄ and x̄ ∈ Chd̄(Yd̄ ∪ {x̄}).
If Ch′

d̄
(Yd̄ ∪{x̄}) = Chd̄(Yd̄ ∪{x̄}), then by Ch′

d̄
(Yd̄ ∪{x̄}) ⊆ ∪c∈Cd̄Chc(Yd̄ ∪{x̄}) we have

x̄ ∈ Chc̄(Yd̄ ∪ {x̄}) and Y contains a blocking contract under (Chc)c∈C, a contradiction.

If Ch′
d̄
(Yd̄ ∪ {x̄}) 6= Chd̄(Yd̄ ∪ {x̄}), then Ch′

d̄
(Yd̄ ∪ {x̄}) is not feasible for students. If

x̄ /∈ Ch′
d̄
(Yd̄ ∪ {x̄}), then

Ch′d̄(Yd̄ ∪ {x̄}) = Ch′d̄(Yd̄) = Chd̄(Yd̄)

where the first equality follows from x̄ /∈ Ch′
d̄
(Yd̄ ∪ {x̄}) together with substitutability and

LAD of Ch′
d̄
, and the second one from the fact that Yd̄ is feasible for students and Ch′

d̄
is

a completion of Chd̄. But now Ch′
d̄
(Yd̄ ∪ {x̄}) is feasible for students and we must have

Ch′
d̄
(Yd̄ ∪ {x̄}) = Chd̄(Yd̄ ∪ {x̄}) as Ch′

d̄
is a completion of Chd̄, which is a contradiction.

Thus, x̄ ∈ Ch′
d̄
(Yd̄ ∪ {x̄}), and as above it follows x̄ ∈ Chc̄(Yd̄ ∪ {x̄}) and Y is contains a

blocking contract under (Chc)c∈C, a contradiction.

(i.ii): We show (i.ii) in the Appendix using arguments from Chambers and Yenmez (2013).

(ii): As any Chc satisfies substitutability and acceptance, the outcome of COP is the

student-optimal stable matching for the profile (Chc)c∈C. By Corollary 1, if Chd is strongly

acceptant for any d ∈ D, then ∪c∈CdChc is the unique completion of Chd satisfying substi-

tutability and LAD. Thus, if Chd is strongly acceptant, then the COP based on (Chc)c∈C

yields the unique student-optimal stable matching (as any Chc satisfies substitutuability

and acceptance) by Hatfield and Milgrom (2005). Hence, the COP based on (Chc)c∈C is the

unique student-optimal mechanism with respect to (i.ii). Strategy-proofness of the COP
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based on (Chc)c∈C follows also from Hatfield and Milgrom (2005). �

Note that (i) and (ii) imply that all students weakly prefer the outcome of COP under

(Chc)c∈C to any matching which is stable for some district admissions rule profile with ra-

tionalization (Chc)c∈C. Given Proposition 2 and the rationalization of the district admission

rule, we call the COP based on the rationalization the student-optimal COP.

Hafalir, Kojima and Yenmez (2022, Section 2.2.1) provide an example of a district’s

admission rule by letting schools in the district choose according to a serial dictatorship

from any set of contracts (where any school is endowed with a choice function satisfying

substitutability and LAD). Formally, if Cd = {c1, . . . , cn}, then for X ⊆ X the district

admissions rule according to the serial dictatorship c1 − · · · − cn chooses

Chd(X) = Chc1(X) ∪ Chc2(X\Y1) ∪ · · · ∪ Chcn(X\Yn−1)

where Yi for i = 1, . . . , n − 1 is the set of all contracts in X associated with students who

have been chosen in Chc1(X)∪Chc2(X\Y1)∪· · ·∪Chci(X\Yi−1). The rationalization of Chd

is (Chc)c∈Cd , which is independent of the order of schools. Now Corollary 1 implies that the

outcome of the student-optimal COP is invariant to the order according to which schools

choose from any set of contracts (as their individual choice functions form a rationalization

of the district’s admission rule).

Endowed with Proposition 1 and 2, we show that for the main results of Hafalir, Kojima

and Yenmez (2022) the admission goals at the district level must be imposed (implicitly) at

the school level. Throughout we fix the admissions rule profile (Chd)d∈D and its correspond-

ing rationalization (Chc)c∈C.

3 District-Based versus School-Based Admissions

Without district admission rules, the original approach was to endow each of the district

schools with a choice function satisfying substitutability and LAD, and then use them for

the COP mechanism to accept and reject students. This is equivalent to the use of the union

of the schools’ choice functions as district admission rule. Conversely, any district admission

rule as in Proposition 1 induces a profile of school choice functions satisfying substitutability

and LAD such that any completion of the district admission rule is a subcorrespondence of

the union of the schools’ choice functions. Now the largest expansion is the union which

gives the student-optimal district admission rule.

In order for interdistrict school choice to be implemented via COP, all students shall be
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weakly better off under interdistrict COP when compared to intradistrict COP. The following

condition turns out to be necessary and sufficient at both the district level and the school

level.

Definition 1. The choice function Chc (and, respectively, Chd) favors own students if

for any matching X that is feasible for students, Chc(X) ⊇ Chc({x ∈ X|d(s(x)) = d(c)})
(and, respectively, Chd(X) ⊇ Chd({x ∈ X|d(s(x)) = d})).

Below we consider a district admissions rule profile (Chd)d∈D and denote its rationaliza-

tion by the choice function profile ((Chc)c∈Cd)d∈D ≡ (Chc)c∈C.

Theorem 1. [Hafalir, Kojima and Yenmez, 2022, Theorem 2] The following are equivalent.

(i) Every student weakly prefers the student-optimal COP outcome under interdistrict

school choice to the COP outcome under intradistrict school choice for all preferences.

(ii) Chc favors own students for each c ∈ C.

Furthermore, if the COP based on (Chd)d∈D favors own students, then the student-optimal

COP favors own students.

Proof. From the proof of Hafalir, Kojima and Yenmez (2022, Theorem 2) it follows (i)⇔(ii)

by setting kd =
∑

c∈Cd qc for all d ∈ D.

Let X be a matching which is feasible for students and d ∈ D. Then for all c ∈ Cd,
Chc(Xc) = Chc(X) is feasible for students and ∪c∈CdChc(X) is feasible for students. Because

∪c∈CdChc is an expansion of Ch′d and Ch′d is a completion of Chd, it follows

∪c∈CdChc(Xc) = ∪c∈CdChc(X) ⊇ Ch′d(X) = Chd(X) = ∪c∈Cd(Chd(X) ∩Xc).

Now if Chd favors own students, then

∪c∈CdChc({x ∈ Xc|d(s(x)) = d(c)}) = ∪c∈CdChd({x ∈ Xc|d(s(x)) = d(c)}) ⊆ ∪c∈CdChd(Xc) = ∪c∈CdChc(Xc)

where the first equality follows from (1) together with the fact that {x ∈ Xc|d(s(x)) = d(c)}
is feasible for students (as X is feasible for students), the inclusion relation from Chd

favoring own students (when applied to Xc), and the last equality follows again from (1).

Hence, for each c ∈ Cd, Chc favors own students. �

Note that if the student-optimal COP favors own students, then this does not necessarily

imply the COP based on (Chd)d∈D to favor own students. Hence, favoring own students of

the student-optimal COP is “easier to achieve” than for the COP based on (Chd)d∈D.

12



This allows us to obtain the main policy application for interdistrict admissions: if the

district admissions rules favor own students, then all students weakly prefer the outcome

of the student-optimal COP to the outcome of interdistrict COP (which in turn is weakly

preferred to the outcome of intradictrict COP). In addition, any school’s choice function is

simply derived from the district admission rule.

Corollary 2. Let (Chd)d∈D favor own students. Given profile P , let X denote the outcome

of COP under (Chd)d∈D, Y denote the outcome of COP under (Chc)c∈C, and Z denote the

outcome of interdistrict COP under (Chd)d∈D
4. Then we have for all s ∈ S,

YsRsXsRsZs.

Note that Corollary 2 follows from (ii) of Proposition 2 together with Hafalir, Kojima

and Yenmez (2022, Theorem 2).

4 Further Applications

4.1 Individual Rationality

Suppose that there exists a feasible initial matching X̃ such that every student has exactly

one contract. Then for any student s, X̃s = {(s, d, c)} for some district d and school c,

meaning c is the initial school of s and d is the home district of s.

Individual rationality of COP requires each student to be matched to a school which is

weakly preferred to his initial school. The following condition is necessary and sufficient for

COP to satisfy individual rationality. This requirement can be either imposed at the district

level or at the school level.

Definition 2. The choice function Chc (and, respectively, Chd) respects the initial

matching if for any matching X that is feasible for students, (s, d, c) ∈ X̃ ∩X ⇒ (s, d, c) ∈
Chc(X) (and, respectively, (s, d, c) ∈ Chd(X)).

Theorem 2. [Hafalir, Kojima and Yenmez, 2022, Theorem 1] The following are equivalent.

(i) The student-optimal COP satisfies individual rationality.

(ii) Chc respects the initial matching for each c ∈ C.

Furthermore, if the COP based on (Chd)d∈D satisfies individual rationality, then the student-

optimal COP satisfies individual rationality.

4This means all students are applying only to schools located in their home district.
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Proof. From the proof of Hafalir, Kojima and Yenmez (2022, Theorem 1) and Corollary 1

it follows (i)⇔(ii) under the assumption that kd =
∑

c∈Cd qc for all d ∈ D.

Let X be a matching which is feasible for students and d ∈ D. Then for all c ∈ Cd,
Chc(Xc) = Chc(X) is feasible for students and ∪c∈CdChc(X) is feasible for students.

Because ∪c∈CdChc is an expansion of Ch′d and Ch′d is a completion of Chd, it follows

∪c∈CdChc(X) ⊇ Ch′d(X) = Chd(X) = ∪c∈Cd(Chd(X) ∩ Xc). Thus, for all c ∈ Cd,
Chc(X) ⊇ Chd(X) ∩ Xc. Hence, if Chd respects the initial matching, then for all c ∈ Cd,
Chc respects the initial matching. �

Note that individual rationality of the student-optimal COP does not imply individual

rationality of the COP based on (Chd)d∈D. Hence, individual rationality of the student-

optimal COP is “easier to achieve” than individual rationality of the COP based on (Chd)d∈D.

4.2 Balanced Exchange

The balanced-exchange policy means that in the outcome of COP the district receives the

same number of students outside the district as the number of students who are sent elsewhere

by the district.

Definition 3. The choice function Chd is rationed if for any matching X that is feasible

for students, |Chd(X)| ≤ kd.

We show that the student-optimal COP satisfies the balanced-exchange policy if and only

if the total number of seats in a district is equal to the number of students who live in the

district. This means that the balanced-exchange policy is implicitly given by the numbers

of seats available at the district’s schools.

Theorem 3. [Hafalir, Kojima and Yenmez, 2022, Theorem 3] The following are equivalent.

(i) The student-optimal COP satisfies the balanced-exchange policy.

(ii) kd =
∑

c∈Cd qc for each d ∈ D.

Proof. Note that for all d ∈ D and all c ∈ Cd, qc ≤ kd, which implies that Chc is qc-acceptant

(by Remark 1). Now from the proof of Hafalir, Kojima and Yenmez (2022, Theorem 2) it

follows that (ii)⇒(i). It remains to show (i)⇒(ii). Let d ∈ D. By assumption we have

kd ≤
∑

c∈Cd qc.

Suppose that any student s ranks contracts from Xd ∩ Xs above (X\Xd) ∩ Xs. Let Y be

the outcome of the student-optimal COP.
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Suppose that kd <
∑

c∈Cd qc. Then the schools in Cd are assigned more than kd students

(as there is at least one other district containing one or more students), i.e. |Yd| > kd and

Yd = ∪c∈CcChc(Yc) = ∪c∈CcChc(Y ). Now ∪c∈CdChc is not rationed, a contradiction. �

4.3 Diversity

Let T denote the set of types. Each student s has a type τ(s) ∈ T . Given type t, let St
denote the set of type-t students and kt = |St|. Given X ⊆ X , let Xt = {x ∈ X|τ(s(x)) = t}
denote the set of contracts associated with type-t students.

Definition 4. The choice function Chc (and, respectively, Chd) has a school-level type-

specific ceiling of qtc at school c for type-t students if for any matching X that is feasible

for students, |Chc(X) ∩Xt| ≤ qtc (and, respectively, |Chd(X) ∩Xc ∩Xt| ≤ qtc).

Now the following lemma uses similar arguments as the proof of Proposition 1.

Lemma 1. The admissions rule Chd has a school-level type-specific ceiling of qtc at school

c for type-t students if and only if the choice function Chc (from its rationalization) has a

school-level type-specific ceiling of qtc at school c for type-t students.

Proof. First, let Chd have a school-level type-specific ceiling of qtc at school c for type-t

students. Then for any matching X that is feasible for students we have |Chd(X)∩Xc∩Xt| ≤
qtc. As X is feasible for students and Ch′d is a completion of Chd, we have Ch′d(X) = Chd(X)

and |Ch′d(X)∩Xc ∩Xt| ≤ qtc. By substitutability of Ch′d, we have Ch′d(X)∩Xc ⊆ Ch′d(Xc).

As Xc is feasible for students, again Ch′d(Xc) = Chd(Xc). As Chd has a school-level type-

specific ceiling of qtc at school c for type-t students, we have |Ch′d(Xc) ∩Xt| ≤ qtc. By (1) in

Proposition 1, we have Chc(X) = Ch′d(Xc) and Chc has a school-level type-specific ceiling

of qtc at school c for type-t students.

Second, let Chc have a school-level type-specific ceiling of qtc at school c for type-t

students. As X is feasible for students and Ch′d is a completion of Chd, we have

Chd(X) = Ch′d(X). By (ii) of Proposition 1 we have Chd(X) ∩Xc ⊆ Chc(X), and Chd has

a school-level type-specific ceiling of qtc at school c for type-t students. �

Once school-level type specific ceilings are imposed admission rules often violate accep-

tance. The following weaker version of acceptance incorporates type-specific ceilings:

Chd is weakly acceptant if for any matching X that is feasible for students, x ∈ Xd\Chd(X)

implies |{y ∈ Chd(X)|c(y) = c(x)}| = qc(x) or |Chd(X)| ≥ kd or |{y ∈ Chd(X)|c(y) =

c(x)&τ(s(y)) = τ(s(x))}| = q
τ(s(x))
c(x) .
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Now note that the proof of Proposition 1 remains unchanged for weakly acceptant ad-

mission rules having a completion which is substitutable and LAD, and thus the induced

rationalization is substitutable and LAD.

Definition 5. The choice function profile (Chc)c∈C (and, respectively, (Chd)d∈D) accomo-

dates unmatched students if for any feasible matching X in which student s is un-

matched, there exists x = (s, d, c) ∈ X such that x ∈ Chc(X ∪ {x}) (and, respectively,

x ∈ Chd(X ∪ {x})).

The following lemma follows from similar arguments as above using (ii) of Proposition 1.

Lemma 2. (i) If Chd is weakly acceptant, then for all c ∈ Cd, Chc is weakly acceptant.

(ii) If the admissions rule profile (Chd)d∈D accomodates unmatched students, then its ra-

tionalization (Chc)c∈C accomodates unmatched students.

Proof. In showing (i), let X be a matching which is feasible for students. Then

Ch′d(X) = Chd(X) (as Ch′d is a completion of Chd) and by (ii) of Proposition 1 we have

Chd(X) ⊆ ∪c∈CdChc(X). Thus, Xd\Chd(X) ⊇ Xd\(∪c∈CdChc(X)). Now for any c ∈ Cd,
x ∈ Xc\Chc(X) implies x ∈ Xd\Chd(X) and Chc is weakly acceptant.

In showing (ii), let X be a matching which is feasible for students in which student s is

unmatched. Then there exists x = (s, d, c′) such that x ∈ Chd(X ∪{x}). Note that X ∪{x}
is a matching which is feasible for students. Then Ch′d(X∪{x}) = Chd(X∪{x}) (as Ch′d is a

completion of Chd) and by (ii) of Proposition 1 we have Chd(X∪{x}) ⊆ ∪c∈CdChc(X∪{x}).
Thus, x ∈ Chc′(X ∪ {x}), the desired conclusion. �

Now note that our results imply the following: if the admission rule profile (Chd)d∈D has

school-level type-specific ceilings, is weakly acceptant, and accomodates unmatched students,

then the choice function profile (Chc)c∈C has school-level type-specific ceilings, is weakly ac-

ceptant, and accomodates unmatched students. Thus, those assumptions in Hafalir, Kojima

and Yenmez (2022, Theorem 3) on the admissions rule profile imply the corresponding ones

on the choice function profile.

A matching X is legitimate if it satisfies the following conditions: (i) |Xd| = kd for all

d ∈ D, (ii) |Xt| = kt for all t ∈ T , (iii) |Xc| ≤ qc for all c ∈ C and (iv) |Xc ∩Xt| ≤ qtc for all

t ∈ T and all c ∈ C.
The following result has important policy implications for school-level type specific ceiling

constraints.
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Theorem 4. Suppose that for any d ∈ D, ∪c∈CdChc respects the initial matching, favors own

students, is rationed, has school-level type-specific ceiling qtc, and for any c and t, suppose

qtc ≥ |X̃c ∩ X̃t|, i.e. X̃ is feasible. Then

(i) The outcome of the student-optimal COP is legitimate.

(ii) Every student weakly prefers the student-optimal COP outcome under interdistrict

school choice to the student-optimal COP outcome under intradistrict school choice

for all preferences.

Proof. For (i), note that if Chc respects the initial matching for all c ∈ C, then (Chc)c∈C

accommodates unmatched students. Thus, under the outcome of the student-optimal COP,

say Y , all students are matched. Since (Chc)c∈C is rationed, by Theorem 3 we have kd =∑
c∈Cd qc for all d ∈ D. As own students are favored, we have |Yd| = kd =

∑
c∈Cd qc for

all d ∈ D. As Chc has the school-level type-specific ceiling qtc and X̃ is feasible, we have

|Yc ∩ Yt| ≤ qtc.

For (ii), the proof of (i.ii) of Proposition 2 remains unchanged as it is valid for any

rationalization of Chd (with d ∈ D) and the completion satisfies substitutability and LAD,

respects the initial matching, favors own students and is rationed. �

Here (ii) is somewhat surprising given the contributions of Kojima (2013) and Hafalir,

Yenmez and Yildirim (2013): they showed that relaxing school-level type-specific constraints

does not necessarily benefit student for stable mechanisms. Here Theorem 4 can be seen as

a special case of relaxing school-level type-specific constraints from |X̃c ∩ X̃t| to qtc.

Note also that in Theorem 4 we could have equivalently stated the conditions on the

districts’ admissions rules (by the above results).

In another application, Kamada and Kojima (2018) consider regional contrains for

hospital-residents matching in Japan. It would be useful to know whether our approach

is extendable to their model by allowing several layers of completions/ rationalizations for

the COP mechanism.

APPENDIX: Comparative Statics

Below we follow Chambers and Yenmez (2013).5 Let Ch′d be a completion of Chd sat-

isfying LAD and substitutability. Then by Aizerman and Malishevski (1981) there exists a

finite set of orders {�e}e∈Ed
such that each �e is complete, transitive and antisymmetric on

5The contents of this paper were subsequently published in Chambers and Yenmez (2017, 2018a, 2018b).
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X ∪ ∅ and for each X ⊆ X we have

Ch′d(X) = ∪e∈Ed
{max
X∪∅
�e}.

We will use the convention and call each e ∈ Ed a Ch′d-position.

The following uses arguments of Chambers and Yenmez (2013, Theorem 2) with an

important modification to apply COP to district d̂ and the students who would like to sign

a contract with d̂.

Proposition 3. Let Ch′ = (Ch′d)d∈D be LAD and substitutable. Let d̂ ∈ D and Ch′′
d̂

be

an expansion of Ch′
d̂

satisfying LAD and substitutability, and Ch′′ = (Ch′′
d̂
, Ch′−d̂). If µ is

Ch′-stable, then there exists a Ch′′-stable ν such that νiRiµi for all i ∈ S.

Proof. As µ is Ch′-stable, we have for all d ∈ D, Ch′d(µd) = µd. As Ch′′
d̂

is an expansion of

Ch′
d̂

we have µd̂ = Ch′
d̂
(µd̂) ⊆ Ch′′

d̂
(µd̂) ⊆ µd̂. Thus, Ch′′

d̂
(µd̂) = µd̂ and µ is Ch′′-individually

rational. If µ is Ch′′-stable, then we are done.

Otherwise, µ contains a blocking contract x = (s, d, c). Obviously, we must have d = d̂.

Let X̂ = {x ∈ Xd̂|xRs(x)µs(x)} denote the set of contracts with d̂ which students would like

to sign with district d̂. Note that X̂ ⊇ µd̂ as µ is individually rational for students.

Now apply the COP to Ch′′
d̂

and X̂S where we restrict Ri to Ri|X̂i for i ∈ X̂S . Let µ0
d̂

be its outcome and Ŷ denote the proposals made. Note that Ŷ ⊆ X̂ and Ch′′
d̂
(Ŷ ) = µ0

d̂
. We

claim that any student who is matched to d̂ under µ does not become unmatched under µ0
d̂
.

Suppose to the contrary for i ∈ (µd̂)S , then X̂i ⊆ Ŷi and i /∈ (µ0
d̂
)S . As Ch′

d̂
(X̂) = µd̂, we

obtain by substitutability of Ch′
d̂
, µi ∈ Ch′d̂(Ŷ ). On the other hand, as Ch′′

d̂
is an expansion

of Ch′
d̂
, we have Ch′

d̂
(Ŷ ) ⊆ Ch′′

d̂
(Ŷ ), which is now a contradiction.

Define µ0 as follows: for all x ∈ µ0
d̂
, µ0

s(x) = x, and for all i ∈ S\{s(x)|x ∈ µ0
d̂
}, µ0

i = µi.

Note that µ0 is well defined as all students matched to d̂ under µ remain matched to d̂

under µ0. Thus, µ0 is feasible for students. Furthermore, note that there exists no blocking

contract x = (s, d, c) with d 6= d̂ such that for the Ch′d-position e we have x �e maxµ �e as

otherwise µ would not have been Ch′-stable (by xPsµs).

Now as in Chambers and Yenmez (2013), starting from µ0 we can use the district-

proposing algorithm to find a stable matching:

Step 0. If there is no rejected position, then the algorithm stops with µ0.

Step k. Each rejected position applies to the next best acceptable contract (if there is any

left), otherwise the position remains unmatched. Any student who receives a new proposal

chooses the best acceptable contract from the proposed one and the one she is tentatively

holding. And so on. If there are no rejections, then Stop. Let µ′ be the final outcome

matching,
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Note that matched students never become unmatched, and any student always becomes

better off. Also at some point all contracts are proposed and we must arrive at a stable

matching: individual rationality is obvious, and there is no blocking contract as students

are always weakly better off and there was none at µ. �

Given profile P , let X denote the outcome of COP based on (Chd)d∈D and Y denote

the outcome of COP based on (Chc)c∈C. Note that X is also the outcome of COP based on

(Ch′d)d∈D and Y is also the outcome of COP based on (∪c∈CdChc)d∈D. Then X is (Ch′d)d∈D-

stable. As for all d ∈ D, ∪c∈CdChc is an expansion of Ch′d satisfying LAD and substitutability,

and Y is the student-optimal stable matching under P and (Chc)c∈C, repetitive applications

of Proposition 3 (whereby we replace one-by-one Ch′d by ∪c∈CdChc in the profile (Ch′d)d∈D)

yield YsRsXs for all s ∈ S. Hence, (i.ii) of Proposition 2 is true.
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