
1 
 

Topic choice: Biomechanics, Anthropometry, Work Physiology 1 

Title: Effect of expertise on shoulder and upper limb kinematics, electromyography and 2 

estimated muscle forces during a lifting task. 3 

Running head: Expertise effect on shoulder biomechanics 4 

Manuscript type: Research article 5 

Authors: Etienne Goubaulta*, Romain Martineza, Najoua Assilaa,b, Élodie Monga-6 

Dubreuila, Jennifer Dowling-Medleya, Fabien Dal Masoa,c, Mickaël Begona,b 7 

aLaboratoire de Simulation et Modélisation du Mouvement, École de Kinésiologie et des 8 

sciences de l’activité physique, Université de Montréal, 1700 Rue Jacques-Tétreault, 9 

Laval, Québec, Canada (affiliation where the research was conducted) 10 

bSainte-Justine Hospital Research Center, Montreal, Québec, Canada 11 

cCentre Interdisciplinaire sur le Cerveau et l’Apprentissage, Montréal, Québec, Canada  12 

*Corresponding author: etienne.goubault.de.brugiere@umontreal.ca 13 

 14 

Word count: 5050 words. 15 

Acknowledgements: We would like to thank the volunteers for their participation in the 16 

study, the Institut de recherche Robert-Sauvé en santé et sécurité du travail (IRSST) (Grant 17 

number: #2014-0045) that provided funding for the study. 18 

  19 



2 
 

Abstract 20 

Objective: To highlight working strategy between expert and novice manual handlers, 21 

based on recordings of shoulder and upper limb kinematics, electromyography, and 22 

estimated muscle forces during a lifting task. 23 

Background: Novice workers involved in assembly, manual handling and personal 24 

assistance tasks are at higher risk of upper limb musculoskeletal disorders. However, few 25 

studies have investigated the effect of expertise on upper limb exposure during workplace 26 

tasks. 27 

Method: Sixteen experts in manual handling and sixteen novices were equipped with 28 

10 electromyographic electrodes to record shoulder muscle activity during a manual 29 

handling task consisting  of lifting a box (8 or 12 kg), instrumented with three six-axis force 30 

sensors, from hip to eye level. Three-dimensional trunk and upper limb kinematics, hand-31 

to-box contact forces and electromyography were recorded. Then, joint contributions, 32 

activation levels, and muscle forces were calculated and compared between groups. 33 

Results: Sternoclavicular-acromioclavicular joint contributions were higher in experts at 34 

the beginning of the movement, and in novices at the end, while the opposite was observed 35 

for the glenohumeral joint. EMG activation levels were 37% higher for novices but 36 

predicted muscle forces were higher in experts. 37 

Conclusion: This study highlights significant differences between experts and novices in 38 

shoulder kinematics, electromyography, and muscle forces, hence the importance of 39 

providing effective work guidelines to ensure the development of a safe handling strategy. 40 
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Application: Shoulder kinematics, electromyography, and muscle forces could be used as 41 

an ergonomic tool to identify inappropriate techniques that could increase the prevalence 42 

of shoulder injuries. 43 

 44 

Keywords: Biomechanics, Biomechanical models – shoulder, Forces and moments, 45 

Manual materials handling, Musculoskeletal system (musculoskeletal disorders, 46 

cumulative trauma disorder) 47 

 48 

Précis: Shoulder biomechanics were assessed in 16 experts in manual handling and 16 49 

novices to highlight musculoskeletal risk factors related to working expertise. Movement 50 

strategies of novices may result in increased injury risk, as confirmed by EMG analyses. 51 

This study highlighted injury risk factors that could be used for training purposes in 52 

industry. 53 

 54 

Abbreviations 55 

deltant  Anterior Deltoid 56 

deltlat  Lateral Deltoid 57 

deltpost Posterior Deltoid 58 

DoF  degree-of-freedom 59 

ECDF  Empirical cumulative distribution function 60 

EMG  Electromyography 61 

ES  Effect size 62 

isp  Infraspinatus 63 

MSDs  Musculoskeletal Disorders 64 
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MVC  Maximal voluntary contraction 65 

pect  Pectoralis Major 66 

ssp  Supraspinatus 67 

subs  Subscapularis 68 

uptrap  Upper Trapezius 69 

%trial  Percentage of the trial   70 
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Introduction 71 

Shoulder musculoskeletal disorders (MSDs) are a major health problem in industry, costing 72 

28 B$/year in Western countries (Panariello et al., 2019; Yasobant & Rajkumar, 2014), 73 

representing about 40% of all costs toward the treatment of work-related injuries. Risk 74 

factors for shoulder injuries include assembling or manual handling which requires 75 

repetitive work, elevated arm posture, constrained workplaces, and periods of sustained 76 

muscle activity (Côté, 2014; Hanvold et al., 2015; Mathiassen, 2006; Mayer et al., 2012). 77 

Novice workers are at an increased risk of injury (Hill, 2014), and more prone to develop 78 

shoulder MSDs than expert workers,  perhaps due to use of safer working strategy (Breslin 79 

& Smith, 2005; Häkkänen et al., 2001), and a larger motor variability than novices 80 

(Madeleine et al., 2008). 81 

Previous work on working strategy adaptions in expert workers have primarily focused on 82 

the lower back pain and MSDs, with little focus on the shoulder joint. Authier et al., (1996) 83 

observed that expert workers tilted boxes more than novices in various phases of handling 84 

when transferring boxes from a platform to a four-wheel cart. This strategy reduced the 85 

duration of the phase during which the load was fully supported by the participant, and the 86 

length of the path of the load. The experts’ working strategies also reduced the compression 87 

force at the L5/S1 level and the shoulder flexor moments by 20% and 16%, respectively 88 

(Gagnon, 1997). In addition, the distance from the load to the lumbar region (L5/S1) was 89 

reduced in experts, thus decreasing the net moments (Gagnon, 2003). Transfer time and 90 

load path were also reduced, potentially improving efficiency and safety. Furthermore, 91 

Plamondon et al., (2014) showed an effect of expertise on posture-related variables, 92 

particularly when the box was handled from the ground level. Unfortunately, none of these 93 
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studies focused on overhead tasks and it remains unknown if such working strategies may 94 

also prevent shoulder MSDs or, on the contrary, be detrimental. Previous studies have 95 

shown the importance of working strategy adaptations to perform and maximize the safety 96 

of physical tasks, leading to the development of strategies for reducing the risk of low back 97 

MSDs. Determining if working strategy differences exist for the shoulder, which could 98 

perhaps differentiate expert handlers from novices, would make it possible to characterize 99 

optimal postures and strategies on which to train novice handlers.  Such strategies might 100 

limit their exposure to the identified shoulder MSDs risk factors (Jeong et al., 2018). 101 

According to Garg and Kapellusch, (2009), the relationship between shoulder injuries and 102 

load or posture is complex and requires quantitative measures of musculoskeletal stress on 103 

the shoulder. In addition, investigations should consider the task as a dynamic one, 104 

especially those where the arms reach above the head level (Garg & Kapellusch, 2009). In 105 

repetitive work tasks, participants compensated for reduced shoulder physical capacity 106 

caused by muscle fatigue through strategy on their posture and muscle activity 107 

compensations that enabled them to maintain task performance (McDonald et al., 2019; 108 

Pritchard et al., 2019). The large number of degrees of freedom at the upper extremity 109 

makes it possible to employ a great variety of compensatory strategies during repetitive 110 

and fatiguing tasks (Mulla et al., 2018). In overhead lifting tasks, previous studies observed 111 

that prime movers during abduction and flexion are the most affected by overhead position 112 

(Grieve & Dickerson, 2008). Martinez et al., (2019) also showed a higher wrist, elbow, and 113 

glenohumeral joint contribution in women compared to men during an overhead lifting 114 

task, while Bouffard et al., (2019) found a sex differences in shoulder electromyographic 115 

(EMG) activations during the same task. Additionally, Martinez et al., (2020) recently 116 



7 
 

showed that women generate higher musculoskeletal loads than men when lifting a box 117 

above shoulder height. However, the effect of expertise was not considered in these studies. 118 

In addition, existing studies on the shoulder and upper limb during material handling rarely 119 

combine EMG and kinematic data to estimate joint and muscle dynamics, both of which 120 

may be important factors for MSDs risk. 121 

Therefore, the objective of this study was to highlight the biomechanics characteristics of 122 

the shoulder that differentiate experts from novices during a lifting task using recordings 123 

of shoulder kinematics and EMG, as well as estimated muscles activations and muscles 124 

forces both estimated using a musculoskeletal model. It was hypothesized that the 125 

differences in the joint contributions to the box elevation, as well as the general kinematic 126 

movement strategy (e.g. box closer to the body) would suggest that experts employ a lower-127 

risk lifting strategies than novices (Plamondon et al., 2010, 2012). It was also expected that 128 

there would be lower overall arm and shoulder EMG activation in experts. Similarly, the 129 

muscle activations estimated by the musculoskeletal model, as well as the estimated forces 130 

were expected to be lower in experts. The use of the musculoskeletal model to assess 131 

muscle activation is complementary to EMG measures and can improve the interpretation 132 

of results since it includes a larger set of muscles. 133 

Method 134 

Participants 135 

Two groups of participants were recruited. The first group consisted of 16 expert male 136 

manual labourers, familiar with the task investigated in the present study (≥ 5 years of 137 

experience with a low lifetime incidence of injuries, and no injury in the year preceding 138 
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the study; 36.4±7.9 years old; 176.1±6.4 cm; 84.0±13.6 kg). The second group consisted 139 

of 16 novice male manual labourers (between 3 and 6 months of experience with no 140 

incidence of injury in the year preceding the study; 25.5±2.4 years old; 178.3±8.1 cm; 141 

77.5±9.01 kg). There was neither significant height difference (t(30)=-0.82, p=0.42) nor 142 

weight difference (t(26.08)=1.50, p=0.15) between the two groups. The significant age 143 

difference (t(19.68)=5.72, p<0.001) should not affect the results of this study since no 144 

mechanical or kinematic differences were found in previous studies between groups aged 145 

between 22-28 (equivalent to our novice group) and 32-38 years (equivalent to our expert 146 

group) (Roldán-Jiménez & Cuesta-Vargas, 2016; Shojaei et al., 2016). In addition, we 147 

think that novice workers may be younger than expert workers in true occupational 148 

conditions and we believe that this difference is acceptable. Participants were free of MSDs 149 

or any significant disability related to their upper limb and back as assessed by the 150 

Disabilities of the Arm, Shoulder and Hand questionnaire (Hudak et al., 1996) and the 151 

Quebec Back Pain Disability Scale (Kopec et al., 1995). The Physical Activity Readiness 152 

Questionnaire was administered prior to the experiment (Thomas et al., 1992). After 153 

receiving instruction on the experimental protocol, participants read and signed a written 154 

informed consent. The protocol was approved by our institutional Ethics Committee (16-155 

014-CERES-D). 156 

 157 

Instrumentation 158 

An 18-camera motion system analysis (Vicon, Oxford, UK) was used to record (100 Hz) 159 

34 reflective markers positioned on the trunk and the dominant side of participants (as 160 

detailed in Martinez et al., (2019)) in line with the Jackson et al., (2012) shoulder model 161 
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(Figure 1A)). Participants were also equipped with surface EMG electrodes (Trigno EMG 162 

Wireless System, Delsys, USA) positioned according to the SENIAM recommendations 163 

(Hermens et al., 2000) after shaving and cleaning of the skin. Muscle activity of the deltoids 164 

(anterior, lateral, and posterior), biceps and triceps brachii, upper trapezius and pectoralis 165 

major of the dominant side were recorded at 2000 Hz. Since rotator cuff muscles are 166 

frequently affected by MSDs (Milgrom et al., 1995; Silverstein et al., 2002; Yamamoto et 167 

al., 2010), intramuscular EMG electrodes were also inserted into the infraspinatus, 168 

supraspinatus, and subscapularis muscles using sterile fine needles and following 169 

procedures of previous studies (Kadaba et al., 1992; Perotto, 2011) (Figure 1A). No 170 

participant complained of discomfort in their movements after a short period of 171 

familiarization. Electrode placements were validated through visual inspection of EMG 172 

signals during 10 submaximal voluntary contractions (Table 1 in Appendix).  173 

[Please insert Figure 1 here] 174 

Figure 1: (A) Position of EMG electrodes: anterior deltoid (1), lateral deltoid (2), posterior 175 

deltoid (3), biceps brachii (4), triceps brachii (5), upper trapezius (6), pectoralis major 176 

(7), supraspinatus (8), infraspinatus (9), subscapularis (10). (B) Three-dimensional view of 177 

the instrumented box with locations of three six-axis force sensors (S1, S2, S3). (C) Task 178 

setup: participants lifted boxes between the table and an adjustable shelf adjusted to eyes 179 

level.  180 

 181 

Experimental Procedures 182 

Participants performed 10 maximal voluntary contractions (MVC) in a random order for 183 

EMG normalization purposes in accordance with the recommendations of Dal Maso et al., 184 
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(2016), who identified the combination of isometric contractions most likely to reach a 185 

level of 90% of the participants’ absolute maximum (Table 1 in Appendix). For each 186 

contraction, two tests were performed back-to-back with a 1-minute rest period in between. 187 

After the two tests for a given contraction, a rest period of 90-seconds was given to 188 

participants before the contractions for the next muscle. The EMG activities were collected 189 

for 5-seconds for each test. A static trial was then collected, and based on previous 190 

recommendations (M. Begon et al., 2007; Michaud et al., 2016), functional movements 191 

were performed to locate joint centers and axes of rotation used to personalize the 192 

kinematic model developed by Jackson et al., (2012).  193 

After these prerequisite trials to locate of joint centers and rotational axes, participants 194 

performed the experimental task. The participants were asked to move an instrumented box 195 

(height×width×length: 20.5×37.7×30.5 cm) from a table (height: 73 cm) to a storage shelf 196 

adjusted at each participants’ eye level (height: 166.4±3.2 cm), without any instruction on 197 

the working technique required to perform the lifting task. The table and the shelf were 198 

facing each other and separated by 1 meter (Figure 1C). The box was placed at the middle 199 

of the table using a cross mark. The deposit position was also marked off in the middle of 200 

the shelf. Our instrumented box had no handles and was covered with cardboard to replicate 201 

boxes typically used in the workplace. The lateral and anterior faces of the box were 202 

instrumented with three six-axis force sensors to record hand-to-box contact forces as 203 

shown in Figure 1B (Sensix, Poitiers, France). The beginning and ending of the trials were 204 

automatically detected at the time point when participants applied a force greater than or 205 

equal to 5 N, and inferior to 5 N respectively on the instrumented box. The box mass was 206 

either 8 kg or 12 kg. Six trials with each mass were performed in a randomized order with 207 
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respect to the box mass, making for a total of 12 lifting trials. A 30-second rest period was 208 

given after each lift. The lifting movement was split into three phases: the pulling (1-20% 209 

of the trial duration), lifting (21-60%) and deposit (61-100%) phases (Martinez et al., 2019) 210 

(Figure 1C). 211 

 212 

Data Processing 213 

Kinematic data 214 

For each participant, a personalized 25 degree-of-freedom (DoF) kinematic model was 215 

defined (see Appendix). Generalized coordinates (q) that follow the International Society 216 

of Biomechanics recommendations (Wu et al., 2005) were estimated using an extended 217 

Kalman filter algorithm (Fohanno et al., 2014). The reference configuration (𝐪!"# = 𝟎) of 218 

the pelvis, thorax, sternoclavicular and acromioclavicular joints was defined from the static 219 

position trial. Glenohumeral, elbow, and wrist joint reference orientations were corrected 220 

so that the glenohumeral and elbow longitudinal local axes were aligned with those of the 221 

thorax, and the glenohumeral, elbow, wrist mediolateral local axes were oriented according 222 

to the scapular plane, as in Martinez et al., (2019). 223 

Individual joint contributions to the box elevation were calculated simultaneously on all 224 

the angles constituting an articulation. They were used to quantify lifting movements by 225 

consecutively resetting the joint angles to their reference position (Martinez et al., 2019) 226 

(Figure 2A-B). The reference position (joint angle=0 degrees) was defined during the 227 

participants’ static trial (standing in the anatomical position). As the heights of the shelf 228 

were adjusted according to participants’ anthropometry, the joint contribution to the box 229 
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centroid elevation was normalized to participants’ eye (100%) levels with 0% being the 230 

height of the table. The box elevation and the box-thorax distance were calculated over 231 

time and averaged for comparison purpose. The latter represents the distance between the 232 

centroid of the box and the centroid of the trunk markers in medio-lateral and antero-233 

posterior axes. The box-thorax distance was normalized to participants’ height. 234 

[Please insert Figure 2A here] 235 

calculate	height(𝐪) = 𝐻|$!/"&'()'*+/,+'-!/." (1)
reset	𝑞$!/"& = 𝑞$!/"&

!"#

calculate	height(𝐪) = 𝐻|()'*+/,+'-!/." (2)
𝐻|$!/"& = Eq(1) − Eq(2)
reset	𝑞() = 𝑞()!"#

calculate	height(𝐪) = 𝐻|*+/,+'-!/." (3)
𝐻|() = Eq(2) − Eq(3)

reset	𝑞*+/,+ = 𝑞*+/,+!"#

calculate	height(𝐪) = 𝐻|-!/." (4)
𝐻|*+/,+ = Eq(3) − Eq(4)

reset	𝑞-!/." = 𝑞-!/."!"#

calculate	height(𝐪) = 0 (5)
𝐻|-!/." = Eq(4) − Eq(5)

 236 

Figure 2: (A) Illustration of the various joints’ contribution at a given location. (B) The 237 

contribution of each joint (𝐻|i) to the box elevation was computed by successively resetting 238 

joint angles to their reference orientations (𝑞/!"#). Joint contribution refers to the amount 239 

of box elevation achieved by each group of joints, namely pelvo-thoracic (PE/TR), 240 

sternoclavicular-acromioclavicular (SC/AC), glenohumeral (GH), and wrist-elbow 241 

(WR/EL) joints. 242 
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EMG data 243 

All filters mentioned hereafter were second order zero-lag Butterworth filters. EMG data 244 

were filtered using a 20-425 Hz band-pass filter and a 60 Hz stop-band filter to remove 245 

electrical noise contamination. Data were then zero-aligned by subtracting the mean signal 246 

value, before being full-wave rectifying and low-pass filtering with a cut-off frequency of 247 

5 Hz to extract EMG envelopes. EMG envelopes were normalized to their corresponding 248 

muscle’s maximum voluntary activation obtained during MVC to obtain a percent 249 

activation value (Table 1, Appendix). EMG activations of participants were summed over 250 

time to represent the sum of activation. 251 

Musculoskeletal model 252 

The musculoskeletal analysis (i.e., scaling, inverse kinematics, inverse dynamics and static 253 

optimization) were performed using the OpenSim software API (Delp et al., 2007) and 254 

batch processed using Pyosim (https://github.com/pyomeca/pyosim) and Pyomeca 255 

(https://github.com/pyomeca/pyomeca), two custom-made open source Python libraries. 256 

The generalized coordinates were estimated by inverse kinematics from a custom upper 257 

extremity model that derived from the Wu et al., (2016) model (details in Appendix). Then, 258 

muscle activations and forces (expressed in percentage of MVC (%MVC) and Newton, 259 

respectively) were estimated using static optimization from the generalized coordinates and 260 

external forces measured by the instrumented box (Anderson & Pandy, 2001; Erdemir et 261 

al., 2007), by minimizing the sum of squared muscle activations and residual actuators 262 

(Appendix). Finally, the glenohumeral joint reaction forces were calculated and expressed 263 

in the local coordinate system of the glenoid. In the end, three groups of MSDs risk 264 
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indicators were extracted from the previously described data analysis and are presented in 265 

Table 1. The experiment was video-recorded and those recordings were qualitatively used 266 

when necessary to facilitate interpretation of results. 267 

Table 1: Groups of MSDs risk indicators and outcome measures related to the 268 

hypotheses attached to the objectives. 269 

Indicator type Outcome measures References 
Kinematic Joint contributions to box 

elevation 
Box elevation 
Box-thorax distance 

(Martinez et al., 2019; André 
Plamondon et al., 2012) 

Electromyography Sum of EMG activations 
EMG muscle activations 

(Bouffard et al., 2019) 

Musculoskeletal 
model 

Estimated muscle activations 
Estimated muscle forces 

(Anderson & Pandy, 2001; 
Erdemir et al., 2007) 

 270 

Statistical Analysis 271 

All variables were time normalized (1000 data points) for each subject to allow direct 272 

comparison. Each trial began and ended when participants first applied (5 N threshold), 273 

and first ceased to apply force on the box, respectively. All variables for the experts and 274 

novices were compared using statistical parametric mapping (Pataky, 2010). This method 275 

avoids information loss associated with standard methods which reduce time series into a 276 

single data point (e.g. mean or median), while controlling for type a-error due to multiple 277 

comparisons. A two-way ANOVA with expertise and box-mass as factors, with repeated 278 

measures on the box-mass factor were applied to each joint group (i.e., wrist-elbow, 279 

glenohumeral, sternoclavicular-acromioclavicular, and pelvis-thorax joints) contribution. 280 

The effect of mass on joint contributions for each level of expertise was also assessed with 281 

paired-sample t-tests. Bonferroni corrections were applied across the six post-hoc tests 282 
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(p=0.05/6=0.084). Each significant difference was reported with the cluster localisation in 283 

term of percentage of the trial (%trial), the mean difference, the p-value, and the Cohen’s 284 

d (1988) effect size (ES). ES was interpreted as large (ES≥0.8), medium (0.5≤ ES<0.8) or 285 

small (ES<0.5). Data distribution was analyzed using an empirical cumulative distribution 286 

function (ECDF), which gives the fraction of sample observations less than or equal to a 287 

particular value of x. This method allows exploring distribution objectively, without 288 

choosing any parameters as opposed to other techniques (e.g. number of binning classes 289 

for histograms or bandwidth for kernel density estimation). All data processing and 290 

statistical analysis were carried out with MatlabTM R2019a (The MathWorks Inc., Natick, 291 

MA, USA) and Python 3.7 (Python Software Foundation). 292 

 293 

Results 294 

Kinematics 295 

No mass-expertise interaction was found. In the following, all the ES values are 296 

interpretable as small except with other indication, and novices are compared to experts. 297 

The pelvo-thoracic contribution was 5% higher in novices between 0 and 22%trial (pulling 298 

and beginning of lifting phases) (ES=0.38; p<0.001), 2% higher between 48 and 58%trial 299 

(lifting phase) (ES=0.34; p=0.003) and between 71 and 87%trial (deposit phase) (ES=0.33; 300 

p=0.003). Sternoclavicular-acromioclavicular joint contribution was 8% lower in novices 301 

between 0 and 45%trial (pulling and lifting phases) (ES=0.57[medium]; p<0.001) and 302 

became 5% higher between 65 and 89%trial (deposit phase) (ES=0.43; p<0.001). The 303 

glenohumeral joint contribution was 9% higher in novices between 48 and 58%trial (lifting 304 
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phase) (ES=0.40; p=0.001), and 9% lower between 77 and 99%trial (deposit phase) 305 

(ES=0.50; p<0.001). Finally, the elbow-wrist joint contribution was 3% higher in novices 306 

between 0 and 6%trial (pulling phase) (ES=0.38; p=0.002) and 5% higher between 28 and 307 

45%trial (lifting phase) (ES=0.44; p<0.001). However, the elbow-wrist joint contribution 308 

became 6% lower in novices between 52 and 69%trial (end of lifting and beginning of 309 

deposit phases) (ES=0.49; p<0.001) (Figure 3A). 310 

A mass effect was only found for the pelvo-thoracic joint with a 4% higher contribution 311 

between 14 and 28%trial (pulling and lifting phases) with the 8 kg box (ES=0.36; p=0.001). 312 

However, the pelvo-thoracic joint contribution became 2% lower with the 8 kg box 313 

between 63 and 81%trial (deposit phase) (ES=0.37; p=0.001) (Figure 3B). 314 

[Please insert Figure 3 here] 315 

Figure 3: Mean (solid lines) and standard deviation (shaded areas) of joint contributions to 316 

the box elevation over time for the wrist and elbow (WR/EL), glenohumeral (GH), 317 

sternoclavicular and acromioclavicular (SC/AC), and pelvo-thoracic (TR/PE) joints, for 318 

(A) experts (blue) and novices (red), and for (B) the 8 kg box (blue) and the 12 kg box 319 

(orange). Gray areas represent time intervals during which there were significant main 320 

effects of (A) expertise and (B) box-mass. 321 

Novices lifted the box earlier and beld the box in a more elevated position longer as shown 322 

in Figure 4 (significant difference in box elevation between 28 and 79%trial (lifting and 323 

deposit phases) (ES=0.53[medium]; p<0.001)). Note that at the end of the deposit phase, 324 

novices held the box slightly lower than experts (significant difference in box elevation 325 

between 90 and 97%trial (ES=0.47; p=0.025)). 326 

[Please insert Figure 4 here] 327 
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Figure 4: Mean (solid lines) and standard deviation (shaded areas) of box elevation over 328 

time, for experts (blue) and novices (red). Gray areas represent time intervals during which 329 

there were significant main effects. 330 

Novices held the box 1% further from their body between 33 and 55%trial (lifting phase) 331 

(ES=0.53[medium], p=0.001) as shown in Figure 5. At the end of the deposit phase 332 

(between 86 and 99%trial), novices kept the box 5% closer to their body 333 

(ES=0.58[medium], p=0.001).  334 

[Please insert Figure 5 here] 335 

Figure 5: Mean (solid lines) and standard deviation (shaded areas) of box-thorax distance 336 

over time, for experts (blue) and novices (red). Gray areas represent time intervals during 337 

which there were significant main effects. 338 

 339 

Electromyography 340 

Overall, cumulative EMG muscle activation was 37% higher for novices from 45 to 341 

52%trial (lifting phase) (ES=0.51[medium], p=0.01) (Figure 6A). However, cumulative 342 

EMG muscle activation distributions were similar between groups (Figure 6B).  343 

[Please insert Figure 6 here] 344 

Figure 6: (A) Sum of EMG muscle activations, and (B) empirical cumulative distribution 345 

function (ECDF) of EMG muscle activations by expertise. The ECDF can be represented 346 

graphically as the percentile (x axis) associated with each value (y axis); e.g. 70% of EMG 347 

data are below an activation of 20% MVC. Solid lines represent participants’ mean, and 348 
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shaded areas represent standard deviations. Gray areas represent time intervals during 349 

which there were significant main effects. 350 

The muscle activation was higher for novices in the anterior deltoid between 43 and 351 

62%trial (lifting and beginning of deposit phase) (ES=0.73[medium], p<0.001), the lateral 352 

deltoid between 48 and 63%trial (lifting and beginning of deposit phase) 353 

(ES=0.67[medium], p<0.001), the upper trapezius between 47 and 62%trial (lifting and 354 

beginning of deposit phase) (ES=0.65[medium], p<0.001), and the supraspinatus between 355 

59 and 77%trial (end of lifting and deposit phase) (ES=0.75[medium], p<0.001) and 356 

between 79 and 91%trial (deposit phase) (ES=0.64[medium], p<0.001). The muscle 357 

activation was lower for novices in the biceps between 53 and 66%trial (lifting and deposit 358 

phases) (ES=0.83[large], p<0.001), the triceps between 95 and 100%trial (deposit phase) 359 

(ES=0.66[medium], p<0.001), and the pectoralis between 69 and 79%trial (deposit phase) 360 

(ES=0.70[medium], p<0.001) (Figure 7). 361 

[Please insert Figure 7 here] 362 

Figure 7: EMG muscle activations over time, for experts (blue) and novices (red). Solid 363 

lines represent participants’ mean, and shaded areas represent standard deviations. Gray 364 

areas represent time intervals during which there were significant main effects. Deltant: 365 

anterior deltoid; deltlat: lateral deltoid; deltpost: posterior deltoid; uptrap: upper trapezius; 366 

pect: pectoralis major; ssp: supraspinatus; isp: infraspinatus; subs: subscapularis. 367 

Musculoskeletal model 368 

The sum of estimated muscle activations and muscle forces, both obtained with the 369 

musculoskeletal model, were characterized by two peaks that did not clearly corresponded 370 
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to different lifting phases. Statistical analyses revealed that novices had a lower estimated 371 

muscle activations from 55 to 78%trial (lifting and deposit phases) (ES=0.58[medium], 372 

p<0.001) (Figure 8A), and a 354 N lower sum of muscle forces from 54 to 77%trial (lifting 373 

and deposit phases) (ES=0.58[medium], p<0.001) (Figure 8B). 374 

[Please insert Figure 8 here] 375 

Figure 8: Sum of estimated muscle activations (A), and muscle forces (B) estimated using 376 

static optimization, with expertise as a main effect. Experts are displayed in blue and 377 

novices in red. The solid line represents the mean, and the shaded area represents the 378 

standard deviation. Gray areas represent time intervals during which there were significant 379 

main effects. 380 

When comparing empirical cumulative distribution functions, estimated muscle activations 381 

(Figure 9A) distributed from the 69th to the 97th percentile were 6%MVC lower in novices 382 

(ES=0.32, p<0.001). Similarly, muscle forces (Figure 9B) distributed from the 68th to the 383 

99th percentile were 25 N lower in novices (ES=0.24, p<0.001). 384 

[Please insert Figure 9 here] 385 

Figure 9: Empirical cumulative distribution function (ECDF) of estimated muscle 386 

activations (A), and muscle forces (B) calculated from static optimization, with expertise 387 

as a main effect. Experts are displayed in blue and novices in red. The ECDF can be 388 

represented graphically as the percentile (x axis) associated with each value (y axis); e.g. 389 

in (A) 80% of estimated activation data are below an activation of 20% MVC for novices, 390 

in (B) 80% of estimated force data are below 90N for novices. The solid line represents the 391 
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mean of all muscles sorted ascending and the shaded area represents the standard deviation. 392 

Gray areas represent time intervals during which there were significant main effects. 393 

 394 

Discussion 395 

This study aimed to highlight the biomechanics characteristics of the shoulder that 396 

differentiate novices from experts during an ecological box-handling task (i.e. similar to 397 

occupational conditions) using a 3D analysis of upper body kinematics, electromyography, 398 

and biomechanical modelling. The main results was that in comparison to novices, experts 399 

solicited their lower limbs to a greater extent, limiting the contribution of the entire arm, 400 

while keeping the trunk in a more neutral position. This may represent a safer approach 401 

from the perspective of overuse injury prevention. Novices were also more prone to lifting 402 

the box earlier, and to holding the box in a higher position for a longer duration compared 403 

to experts. This strategy resulted in higher EMG muscle activations in novices, especially 404 

in anterior and lateral deltoids, upper trapezius, and the supraspinatus. 405 

 406 

Positioning in relation to expertise 407 

While the lower body kinematics were not directly measured during the experiment, results 408 

showed that the pelvo-thoracic joint contribution (including the pelvis vertical 409 

displacement controlled only by lower-limbs) in experts was lower than in novices during 410 

the pulling phase. These results suggests a slight knee/ankle flexion was performed to reach 411 

the box from the table, which confirm the visual observations made during the experiment. 412 

This also corresponds with the findings of Plamondon et al., (2010, 2012), who showed an 413 
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effect of expertise on posture while reaching for the box, and its impact on the back loading. 414 

Experts also demonstrated greater sternoclavicular and acromioclavicular joint 415 

contributions, which suggests that experts may have a better stabilization or coordination 416 

of the shoulder joint during the pulling and the lifting phases. The lower contribution of 417 

the elbow and the glenohumeral joints in experts compared to novices suggests that they 418 

held the box closer to their body during these phases (pulling and lifting), which was 419 

confirmed by the box-thorax distance measure. This result is in accordance with the results 420 

reported by Plamondon et al., (2014) indicating that experts held the box closer to their 421 

bodies than novices during a handling task. This technique reduces the moment created by 422 

the weight of the box on the shoulder joint, which could therefore reduce stress on the 423 

upper limb. This kinematic compensation could also influence the directions of muscle 424 

forces, allowing less activation for the same level of joint stability (Arwert et al., 1997). In 425 

addition to reducing loading on the spine (Marras et al., 2006), this technique could also 426 

be a key factor in reducing shoulder injuries as it limits muscle forces during the most 427 

extreme part of the joint range of motion (Kim et al., 2003). 428 

Between the lifting and deposit phases, both groups slightly extended the trunk and lower 429 

limbs to increase their reach. This technique would reduce shoulder stress by making 430 

greater use of the trunk and lower body during the deposit phase, when the box is held at 431 

its maximum elevation (Kim et al., 2003). The lower contribution of the elbow and the 432 

glenohumeral joints in experts compared to novices suggests that they held the box closer 433 

to their body during these phases, which was confirmed by the box-thorax distance 434 

measure, and the higher activation of the anterior and lateral deltoids in novices, as well as 435 

the higher biceps activation in experts. The two groups also used a similar technique where 436 
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shoulder flexion in the sagittal plane accounted for about 60% of the height reached by the 437 

box. This was the only phase where novices used the sternoclavicular and 438 

acromioclavicular joints more than experts. The higher solicitation of these joints, 439 

potentially placing the novices at a higher risk of injury, could be a compensatory strategy 440 

to ensure sufficient force to move the box and to allow the arms to potentially go further 441 

forward. Such kinematics would cause inadequate strengthening of the shoulder muscles 442 

in the long term, which could increase the risk of injury (Ludewig & Reynolds, 2009). This 443 

highlight the importance of early intervention for workers before they become accustomed 444 

to this problematic kinematic strategy. During the deposit phase, experts also had a greater 445 

activation of triceps and pectoralis than novices, while novices had a greater activation of 446 

supraspinatus to maintain shoulder stability, placing them potentially at a higher risk of 447 

injury. 448 

Our results also showed that novices lifted the box earlier and maintained the box higher 449 

than the experts during the half of the total movement duration. This strategy could involve 450 

a greater recruitment of the shoulder joint and muscles. Additionally, the lever arm created 451 

by the box position relative to the spine may increase the loading in the lumbar region, as 452 

shown by Plamondon et al., (2014; 2010). This strategy could also lead to higher loading 453 

on the shoulder joints and higher use of rotator cuff muscles (SSP) to maintain the stability, 454 

and potentially result in increased risk of injury for shoulder muscles of novices. Visual 455 

inspections of videos revealed that experts tend to perform the task in sequence (i.e. turning 456 

and then lifting the box) more than novices who combined the multifaceted task at the same 457 

time (i.e. lifting the box while turning). This displacement before lifting the box (used by 458 

experts) is in accordance with previous workplace health and safety recommendations, 459 
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such as staying close to the load, pivoting to face the dropping area, and segmenting the 460 

task instead of doing the transition as fast as possible (Denis et al., 2013; Graveling et al., 461 

2003). The higher box-thorax distance in experts near the end of the deposit phase could 462 

increase the loading on the experts’ shoulders. However, the recruited experts did not had 463 

a higher muscle activation than novices in the deposit phase and had a low lifetime 464 

incidence of injuries. Observations made during the experiment as well as video recording 465 

suggested a different strategy was used by the experts, wherein they dropped the box at the 466 

end of the deposit phase, presumably as they would do in an industry setting to improve 467 

their efficiency. Therefore, this result is probably not a risk factor of injury in experts. 468 

 469 

Muscle activations and forces in manual handling 470 

The sum of EMG muscle activations was found to have two peaks (at around 10%trial and 471 

at around 75%trial), with a higher local maxima for the second one. This difference in 472 

amplitude could be explained by the increase of box elevation, but also by increased muscle 473 

activity perhaps employed in an attempt to set the box down in a controlled manner that 474 

avoids excessive impact forces (Westerhoff et al., 2009). The greater sum of EMG muscle 475 

activation of novices during the lifting phase, and more particularly the higher EMG 476 

activation of anterior deltoid, lateral deltoid, upper trapezius, and supraspinatus are in 477 

accordance with kinematic findings showing that novices lifted the box earlier and 478 

maintained the box in high position longer compared to experts. This strategy could 479 

generate muscle fatigue earlier in novices, placing them in a higher risk of injury (Côté, 480 

2014; Hanvold et al., 2015). 481 
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Results related to estimated muscle activations and forces are influenced by the model and 482 

its limitations. The absence of distinct peaks on the sum of estimated muscle activations 483 

(compared to the measured EMG activation data) is probably due to the limitations of the 484 

static optimization algorithm used (Gottlieb, 2000). Muscle contraction provides the 485 

strength necessary to perform a specific movement, and to stabilize the shoulder joint. 486 

Minimizing the sum of activations during static optimization will estimate the dynamic 487 

contribution of muscles but will neglect the co-contraction component that is present for 488 

stabilization. This is also reflected in the difference between the activations estimated by 489 

the model (Figure 8) and those measured experimentally (Figure 6). 490 

The absence of co-activation in the model is also observed in the differences between the 491 

distribution of muscle activations estimated by the musculoskeletal model and 492 

experimental data. The distribution of estimated activations is somewhat polarized, 493 

whereas the measured EMG activations have a more balanced distribution throughout the 494 

spectrum. The contribution of synergistic muscles is under-estimated in the 495 

musculoskeletal analysis which could explain the limited activation of these muscles and 496 

higher activation in agonist muscles. 497 

 498 

Limitations 499 

Limitations come mainly from musculoskeletal modelling. First, muscles have been 500 

simplified as a set of lines of actions. Their respective trajectories have been validated 501 

using basic movements (Wu et al., 2016). These trajectories might however, not be 502 

physiological throughout the whole trial during manual handling tasks. Second, generic 503 
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muscle parameters were used. Since the model scaling was limited to a geometric one, the 504 

muscle properties did not express the individuality of each participant (n=32), nor the 505 

variability between the two groups in terms of muscle properties (e.g. isometric strength 506 

and optimal fibre length). The implementation of a calibration process (Appendix) after the 507 

anthropometric scaling using an EMG informed algorithm could be implemented to 508 

improve the personalization of the models (Lloyd & Besier, 2003; Wu et al., 2016). The 509 

use of an EMG informed algorithm has been found to predict activation patterns more 510 

accurately for the glenohumeral joint muscles during a lifting task as this algorithm 511 

accounts for co-contraction (Assila et al. 2020). However, this approach is sensitive to the 512 

calibration process, and seems to overestimate the glenohumeral joint reaction forces. 513 

Thus, further work is needed to improve the calibration process to improve this method 514 

results. Finally, the limited activation of various muscles could also be a result of the static 515 

optimization as it has been reported to underestimate the activation of antagonist muscles 516 

(Kian et al., 2019). 517 

The results of static optimization also depend on the force data collected by the 518 

instrumented box. The instrumented box was specially created for this study to measure 519 

forces at many points, while offering a multitude of gripping possibilities. Although it was 520 

designed to be similar to boxes a worker would encounter, the instrumented box had a less 521 

rigid frame. Three load cells were connected to an internal frame for a total mass of 8 kg, 522 

with weight added to the centroid to achieve 12 kg. Noise in the load cell data was apparent 523 

and could have resulted from internal connections that were not ideally rigid (especially at 524 

the impact of the deposit phase) and which could not be easily eliminated by filtering the 525 
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signals without risk of losing its important characteristics (e.g. peaks expected when the 526 

box is placed on the shelf). 527 

With regard to joint kinematics, soft tissue artefacts may influence shoulder kinematics. In 528 

accordance with previous findings (Begon et al., 2017; Michaud et al., 2017), a multibody 529 

kinematic optimization was used with the Jackson et al. (2012) model and a thorax-sized 530 

ellipsoid was added, to prevent penetration of the thorax by the scapula. As we were 531 

comparing two populations, we considered that a visual validation of the scapula 532 

kinematics is sufficient to discuss the differences in muscles activation tendencies, and thus 533 

draw conclusions as to the effect of expertise on injury risk. 534 

It is possible that the age played a role in differences in muscle activation patterns between 535 

groups. However, it is most likely that novice workers would be younger in age than their 536 

expert counterparts and so we believe that this difference is acceptable. 537 

 538 

Conclusion 539 

Differences in shoulder joint health according to expertise level must be considered as a 540 

complex multi-causal phenomenon. Work technique is one of the many factors that may 541 

contribute to differences in injuries related to expertise. Considering experts as reference, 542 

(as novice workers are often exposed to higher risks of injury), our results suggest that 543 

bending the knees to reach the box would be safer for the shoulder, as well as for the back. 544 

Bringing the box closer to the body during a handling task is also likely a safer strategy. In 545 

addition, when needed, performing the displacement with the load closer to the body is 546 
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likely safer than lifting the load while pivoting. This could decrease the contribution of the 547 

prime mover muscles as well as the stabilizer.  548 

 549 

Key points 550 

• Sternoclavicular-acromioclavicular joint contributions were higher in experts at the 551 

beginning of the movement, and in novices at the end.  552 

• The glenohumeral joint contribution was higher in novices at the beginning of the 553 

movement, and in experts at the end.  554 

• EMG activation levels were higher in novices, placing them in a higher risk of 555 

injury.  556 

• Estimated muscle activations and forces were higher in experts. 557 
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Appendix 795 

Submaximal contractions and MVC tests 796 

Table 1: Description of the submaximal contractions and MVC tests 797 

Target muscle Names Poses Instructions 

DeltA Shoulder flexion 90º Seated Arm flexed at 90º, palm of the 
hand facing down. Arm flexion 
with resistance at the elbow. 

DeltL Shoulder abduction 90º Seated Arm abducted at 90º, palm of the 
hand facing down. Arm abduction 
with resistance at the elbow. 

DeltP Prone extension 90º Prone Arm horizontally abducted at 90º, 
elbow flexed at 90º. Horizontal 
arm abduction with resistance at 
the elbow. 

Biceps Elbow flexion 90º Seated Arm at the side, elbow flexed at 
30° in supination. Elbow flexion 
with resistance at the wrist. 

Triceps Elbow extension Seated Arm at the side, elbow flexed at 
30° in supination. Elbow 
extension with resistance at the 
wrist. 

UpTrap Abduction 90º Seated Arm abducted at 90º, neck side-
bent to the same side, head 
rotated toward the opposite side, 
palm of the hand facing down. 
Arm abduction with resistance at 
the head and elbow. 

Pec Palm press Seated Arms flexed at 90º, elbows lightly 
flexed, palms of the hands 
together. Pressing hands together 
with no external resistance. 

SSP Abduction 0º Side-lying Arm at the side, palm of the hand 
facing down. Arm abduction with 
resistance at the wrist. 

ISP External rotation 0º Side-lying Arm at the side, elbow flexed at 
90º. Arm external rotation with 
resistance at the wrist. 

Subs Lift-off test Prone Back hand in contact with the 
upper lumbar spine. Arm internal 
rotation with resistance at the 
hand. 

To calculate MVC of each muscle, all MVC trials were used. Data were sorted in 798 
decreasing order and the MVC value was determined as the median of the first second in 799 
the resulting signal. This list accounts for each of the MVC listed in Table 2 in Dal Maso 800 
et al., (2016), for the muscles of interest in this study.  801 



37 
 

Data processing: Kinematic data 802 

Centres of rotation of the pelvis, trunk and wrist joints were located using SCoRE algorithm 803 

(Ehrig et al., 2006) and the sternoclavicular, acromioclavicular and glenohumeral joints 804 

were located according to bony landmarks (Michaud et al., 2016). The flexion and 805 

pronation-supination elbow axes of rotation were defined using the SARA algorithm (Ehrig 806 

et al., 2006). Then, a 25 degree-of-freedom (DoF) kinematic model was generated from the 807 

static acquisition and the located joint centres/axes (pelvis and thorax [6 DoF each], 808 

sternoclavicular and acromioclavicular joints [3 DoF each], glenohumeral joint [3 DoF], 809 

elbow and wrist joints [2 DoF each]). A thorax-sized ellipsoid fitting the area browsed by 810 

the scapula was added to the model to better estimate the scapular kinematics (Michaud et 811 

al. 2017).  812 

  813 
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Data processing: Custom Wu shoulder model 814 

Arm muscles 815 

Two lines of action for the biceps brachii, and the long head of the triceps brachii were 816 

added to the model to account for the contribution of the arm muscles to the glenohumeral 817 

joint. 818 

Wrapping objects 819 

We modified the wrapping objects to avoid sudden changes in muscle trajectories, lighten 820 

the model and duplicate objects to prevent using a single object for several muscles. 821 

Wrapping object dimensions were modified as needed while preserving the muscles 822 

lengths. The active quadrants of the wrapping objects have been identified to reduce 823 

singular points. Ellipsoidal objects have been reduced to a minimum, and replaced by 824 

cylindrical objects. This change should reduce the computation time, without influencing 825 

the trajectories for our range of motion. 826 

Muscle lengths 827 

We modified the normalized muscle lengths to maintain them within a physiological range 828 

[0.5;1.5]. We analysed muscle lengths during high amplitude trials for all participants to 829 

identify muscles with low (generation of minimal effort) or high (high passive force) 830 

lengths. The normalized lengths of these muscles have been modified by changing the 831 

optimal fiber lengths and/or changing the dimensions of the wrapping objects. The 832 

modifications were made, while respecting the initial values of the lever arms of each 833 

muscle with respect to each degree of freedom. The modified muscles are the anterior 834 

serratus anterior, the rhomboid and the pectoralis minor. 835 
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Muscles abbreviations 836 

BICB biceps brachii short head 
BICL biceps brachii long head 
CORB coracobrachialis 
DELT1 anterior deltoid 
DELT2 lateral deltoid 
DELT3 posterior deltoid 
INFSP infraspinatus 
LAT latissimus dorsi 
LVS levator scapulae 
PECM1 pectoralis major superior 
PECM2 pectoralis major medial 
PECM3 pectoralis major inferior 
PMN pectoralis minor 
RMJ1 rhomboid major superior 
RMJ2 rhomboid major inferior 
RMN rhomboid minor 
SBCL subclavius 
SRA1 serratus anterior superior 
SRA2 serratus anterior medial 
SRA3 serratus anterior inferior 
SUBSC subscapularis 
SUPSP supraspinatus 
TMAJ teres major 
TMIN teres minor 
TRIC triceps brachii 
TRP1 upper trapezius 
TRP2 middle trapezius superior 
TRP3 middle trapezius inferior 
TRP4 lower trapezius 
  837 
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Briefly, the alterations to the model were done in an iterative way, comparing the evolution 838 

of the muscle length and moment arms of each muscle to those of the original model for 839 

all participants. Modifications were made only when we could observe a non-physiological 840 

muscle trajectory in the original model (e.g., double wrapping, non-respect of the wrapping 841 

constraint). The Wu et al., (2016) shoulder model allows for unprescribed scapular motion. 842 

No scapulothoracic rhythm on the scapula was imposed. We used the same marker 843 

positions as in Jackson et al., (2012) and optimized the markers weighting for the inverse 844 

kinematics step. We based these choices on the results reported by Blache & Begon, 845 

(2018). 846 

Data processing: Static optimisation 847 

Residual actuators were added to the wrist, elbow, glenohumeral, acromioclavicular, 848 

sternoclavicular as well as at the base of the model (thorax) and the box. These actuator 849 

forces compensate for simplifications in the present model configuration (such as the 850 

absence of a lower body) that might prevent the solver from converging on muscle forces 851 

that correspond to the prescribed kinematics and external forces (Hicks et al., 2015). 852 

Data processing: Calibration process 853 

The calibration process aims to personalize parameters related to muscle contraction 854 

dynamics. While the scaling process insures anthropometrical scaling, it can not express 855 

differences between participants in the maximal isometric force of the muscle or the fiber 856 

optimal length. Consequently, the predicted forces using a generic scaled or a subject-857 

specific scaled models can be significantly different (Wu et al., 2016). These parameters 858 

needs to go through an additional tuning step. This step is a numerical optimization that 859 
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seeks to minimize the tracking error of the joint moments. Wu et al., (2016) used the 860 

maximal voluntary contraction test for this calibration, considering that the muscles that 861 

contribute positively to the joint moment are fully activated, whereas the others are not 862 

activated. Lloyd & Besier (2003) used the experimental EMG to actuate the model and 863 

tuned the muscle activation and contraction dynamics to generate the moment calculated 864 

with inverse dynamics. While both methods have particular limitations related to the 865 

hypotheses used, they remain relatively costly from a computational point of view, 866 

particularly for studies with large number of participants. 867 

Box speed 868 

[Please insert Figure 10 here] 869 

Figure 10: Box speed in the vertical direction as a function of box elevation. Novices 870 

moved the box faster than experts and with constant acceleration. 871 

Density of predicted activation 872 

The density of predicted activation of each muscle (Figure 11 left) shows that many 873 

muscles have low activation (100% of time < 20% MVIC), especially for SBCL, TRP4, 874 

RMJ1, PECM3, LAT, RMJ2, RMN, DELT3, TRP3, tric_long, SRA3, TMAJ, TMIN. The 875 

five muscles most activated were TRP1, SUBSC, PECM1, bic_l, INFSP, each with a large 876 

activation range. The density of muscle forces for each muscle (Figure 11, right panel) 877 

show similar results with many muscles lightly solicited (100% of time < 100 N) (SBCL, 878 

TRP4, RMJ1, PECM3, LAT, RMJ2, RMN, DELT3, TRP3, tric_long, SRA3, TMAJ), and 879 

a similar muscle group with high forces (TRP1, SUBSC, PECM1, bic_l, INFSP). 880 
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[Please insert Figure 11 here] 881 

Figure 11: Distribution of predicted muscle activations (left panel), and muscle forces 882 

(right panel) calculated from static optimization for each muscle. Muscles are sorted in 883 

decreasing order. The distribution is approximated using Kernel Density Estimation, and 884 

normalized so that the sum of each distribution is equal to one. 885 
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