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Résumé 

Des recherches récentes suggèrent que le trametinib (inhibiteur de MEK) peut traiter les 

neurofibrome plexiforme (NP) provoquées par la neurofibromatose de type 1 (NF1). Les NP 

peuvent apparaître n'importe où dans le corps près des nerfs. Ces tumeurs se distinguent par leur 

forme inhabituelle et leur morphologie irrégulière qui les rendent difficile à mesurer. 

Pour évaluer l'efficacité du trametinib dans le traitement des NP, nous suggérons une analyse 

volumétrique (mesure 3D) plutôt que des mesures 1D et 2D (habituelles) basées sur l'imagerie 

par résonance magnétique (IRM). Pour cette étude, des examens IRM ont été réalisés à des 

intervalles d'environ trois mois pour trente-quatre patients atteints de NP. 

J’ai développé une méthode semi-automatique pour segmenter les PN sur les images IRM. J’ai 

testé et validé notre nouvelle approche et soumis un manuscrit incluant la description de la 

nouvelle méthodologie et les résultats de segmentation pour publication dans l'American Journal 

of Neuroradiology (AJNR). J’ai mis en place un outil pratique pour estimer avec précision le 

volume tumoral en utilisant cette méthode de segmentation. En conséquence, le suivi des 

changements tout au long du traitement devient possible et fiable. 

L'analyse volumétrique réalisée chez 34 participants recrutés durant l’essai clinique révèle que le 

trametinib a entrainer une diminution du volume médian de la lésion initiale d'environ 20 % pour 

la période de 18 mois de traitement. 

 

Mots-clés: Imagerie par résonance magnétique (IRM), Neurofibrome plexiforme (PN), 

Segmentation tissulaire, Analyse volumétrique, Traitement d'images. 
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Abstract 

Recent research suggests that the medication trametinib can treat plexiform neurofibroma (PN) 

lesions associated with neurofibromatosis type 1 (NF1) disease. PNs can appear anywhere in the 

body near nerves. These tumors are distinct by their unusual shape and irregular morphology, 

which is difficult to assess.  

For evaluating trametinib's effectiveness in treating PN, we suggest a volumetric analysis (3D 

measurement) rather than 1D and 2D measures (typical) based on magnetic resonance imaging 

(MRI). For this study, MRI scans were performed at about three-month intervals for thirty-four 

patients with PN. 

I developed a semi-automatic method to segment PNs on MRI images. I tested and validated our 

new approach and submitted a manuscript with the description of the novel methodology and 

findings for publication in the American Journal of Neuroradiology (AJNR). I implemented a 

practical tool for accurately estimating tumor volume using this segmentation method. As a 

result, tracking lesion changes throughout the course of therapy becomes available. 

The volumetric analysis performed on 34 patients enrolled in the clinical trial reveals that 

trametinib decreased the initial median lesion volume by around 20% for the period of 18 months 

of treatment. 

 

Keywords: Magnetic resonance imaging (MRI), Plexiform neurofibroma (PN), Tissue 

segmentation, Volumetric analysis, Image processing. 
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Introduction 

Neurofibromatosis type 1 (NF1) is a prevalent genetic disease linked to a high rate of malignancies 

in the central and peripheral nervous systems. Plexiform Neurofibroma (PN) are nerve sheath 

tumors involving multiple fascicles. Clinical trials are ongoing to find an effective treatment for 

PN [1]. 

Magnetic resonance imaging (MRI) technology is a medical imaging technique to analyze intricate 

internal structures of the body. PNs are diagnosed and assessed using MRI images using a variety 

of methods. As the standard, radiologists take a 1D measurement using a ruler directly from the 

image to estimate the size of PNs. This measurement limitation for PNs is important as these 

tumors have complex and irregular shapes. Continuation or discontinuation of treatment often 

depends on this measurement. 

Volumetric methods to assess changes in tumors from MRI data are emerging and have been 

implemented on commercial platforms. These approaches necessitate high computation times 

related to the segmentation process and sometimes manual corrections when the segmentation 

process fails. A fast, reproducible, and accurate technique to assess complex and asymmetric 

tumor evolution is critical for clinical decision-making in clinical trials involving therapeutical 

assessment. 

Objectives and research hypothesis 

In this thesis, I propose to develop a new volumetric method to quantify PN lesions in 3D. I 

hypothesize that my volumetric method will allow accurate lesion quantification compared to the 

gold standard (manual tracing) with faster computation times. I also hypothesize that the 

thresholding approach used by my method is more accurate than the one from a previously 

published tool. To address these hypotheses, I propose the following specific aims: 

Aim 1. Develop a semi-automatic segmentation technique based on mean image intensity 

thresholding (defined as SSTMean). 
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Aim 2. Compare the performance of SSTMean with a semi-automatic segmentation technique 

based on minimum image intensity thresholding (defined as SSTMini) that is similar to a previous 

approach. Also, compare the performances of the two techniques with manual tracing. 

Additionally, I include preliminary data of the ongoing trial (TRAM-01) using trametinib for PN. I 

completed the quantification of lesion progression in 34 patients (out of 45). These preliminary 

data are available in Chapter 6, where I present the general discussion. 

Thesis plan 

This document is divided into six chapters. The first chapter introduces background and clinical 

information on the NF1 related to PN lesions. The second chapter covers the specifications of MRI 

images. These two chapters explain the theory of the research and the logic behind data 

gathering. The third chapter covers elements critical to the study and data processing. In 

particular, there is a detailed description of the algorithms and the approaches previously used 

to segment MRI images. The fourth chapter initiates a short foreword to facilitate reading the 

article in Chapter 5. The fifth chapter contains a manuscript submitted to the American Journal 

of Neuroradiology (AJNR, impact factor 4.966 in 2021, ranked 14 among top publications in 

Radiology and Medical Imaging). This manuscript details the proposed semi-automatic MRI 

segmentation steps that I developed for the volumetric analysis of PNs. The sixth chapter offers 

a general discussion, describes some limitations and suggests future technical improvements in 

the current processing algorithm. Also, a short showcase of preliminary results is gathered in this 

chapter. In the end, we conclude the thesis and list the cited references. 
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Chapter 1 – Description of the pathology 

1.1 Neurofibromatosis 

This section describes the specific lesions pertinent to this thesis and provides information about 

the genetic disease that causes those tumors. 

1.1.1 Neurofibromatosis disease 

Neurofibromatosis type 1 (NF1) is an autosomal dominant tumor predisposition syndrome 

affecting 1:3000 people. NF1 is a gene found on chromosome 17. The product of the NF1 gene 

(NF1 or Neurofibromin) acts as a GTPase-activating protein (GAP) for Ras. Loss of NF1 leads to an 

increase in the active form of RAS. Patients with NF1 have susceptibility to the development of a 

tumor, including plexiform neurofibroma (PN) and pilocytic astrocytoma. 

1.1.2 Symptoms 

Patients with NF1 typically show signs and symptoms during infancy and can include [2]: 

(1) hyper pigmentated brown skin  (cafe au lait macules): These benign lesions are typical of NF1. 

More than six café au lait macules suggest NF1. They frequently manifest at birth or in the first 

few years of life.  

(2) Freckling (smaller than café au lait spots)in the groin or armpit region: Freckling often begins 

between the ages of 3 and 5. 

(3) Hamartoma (Lisch nodules) on the iris of the eye. These benign nodules are lesions that do 

not affect eyesight. 

(4) Neurofibromas are soft, pea-sized lumps that typically form in or beneath the skin.  

5) Plexiform neurofibromas NF1’s pathognomonic neurofibromas are slowly progressing tumors 

affecting peripheral nerves and spinal roots. These PNs, which affect 25 to 50% of NF1 patients, 

cause severe morbidity depending on their size and location [2]. 

(6) Bone anomalies: Bone abnormalities like scoliosis or a bow-legged lower leg can result from 

abnormal bone growth and a lack of bone mineral density. 
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(7) An optic nerve tumor (optic glioma): These tumors are almost uncommon in adults, and they 

typically start developing by age 3. 

(8) Learning disabilities: Children with NF1 frequently experience minor cognitive impairment. 

There is often a particular learning deficiency, such as difficulty with reading or learning 

mathematics. Both speech delay and attention-deficit/hyperactivity disorder (ADHD) are 

widespread conditions. 

1.2 Plexiform neurofibroma (PN) 

Neurofibromas are heterogeneous tumors composed of Schwann cells, fibroblasts, perineural 

cells, vascular cells, and invading hematopoietic cells, which are predominantly degranulating 

mast cells [3]. 

PNs usually progress relentlessly during childhood, adolescence, and adulthood, causing lifelong 

disfigurement, disability, and mortality [4]. Often PNs compress cranial nerves and/or peripheral 

nerve roots at the vertebral column and create an array of morbidities, including paresthesia, 

paralysis, blindness, difficulty swallowing, drooling, sleeplessness, respiratory and 

gastrointestinal distress, and loss of bowel and bladder control. A PN can also transform into a 

malignant peripheral nerve sheath tumor (MPNST), a highly morbid, metastatic cancer that 

afflicts up to 10% of NF1 patients in their lifetime [3]. 

1.2.1 Surgical treatment 

Historically, surgical resection was the only treatment approach to address PN. However, they are 

typically challenging to remove due to PNs’ infiltrative nature and location. Furthermore, despite 

resection, most PN will continue to progress. In a single Center study [5], 74 of the 168 surgically 

removed PN tumors continued to grow. Younger age at diagnosis, subtotal tumor excision, and 

the location were related to a greater risk of progression after surgery. 

1.3 MEK inhibitors  

MEK inhibitors were initially designed and developed to treat tumors and melanoma (skin 

cancer). The effects of these drugs on the cancers connected to NF1 are still being investigated. 

In current studies, most patients who use MEK inhibitors have shown tumors to diminish (but not 
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disappear). Changes in the tumor frequently do not begin in NF1 patients on MEK inhibitors until 

the patient has taken the drug for several months. MEK inhibitors used in a clinical trial include 

[6]: Binimetinib, Cobimetinib, Mirdametinib, Selumetinib, and Trametinib; which Trametinib was 

used in the present study. 

MEK inhibition has been investigated in treating individuals with widespread PN with NF1 

following RAS pathway-targeted therapeutic studies. Selumetinib was utilized in phase 1 and 

phase 2 clinical studies in this group to treat young patients with otherwise incurable PN. Seventy 

percent of the patients had PN shrinkage. Additionally, several patients reported reduced pain 

and improved function [7]. 

Selumetinib's Phase 1 and Phase 2 clinical data in refractory PLGG show a sustained partial 

response in up to 40% of children with these tumors, which is promising [8].  

Trametinib is a highly selective, reversible inhibitor of MEK1/2 activation and kinase activity. 

Phase 1 and pre-clinical studies show encouraging outcomes in a limited subset of kids with optic 

pathways or PN gliomas [9] Trametinib has also been demonstrated to be effective and tolerable 

in a small number of kids with LGG and melanoma without NF1 [10]. As a result, trametinib has 

gained popularity as a treatment option for kids with symptomatic PN and resistant progressive 

PLGG [11], [12]. A phase 2 Canadian clinical research assesses trametinib in kids with PN and LGG 

[13], [14].  

1.4 Imaging of PN  

Medical imaging is a technique and process that offers visual representations of a body's interior 

for use in clinical analysis and medical intervention. It demonstrates the function of certain organs 

or tissues [15]. Medical imaging tries to diagnose and treat diseases by exposing internal 

structures hidden by the skin and bones. The three primary medical image modalities are 

computed tomography (CT), magnetic resonance imaging (MRI), and positron emission 

tomography (PET) [16]. 

. Plexiform Neurofibromas (PNs) can be monitored with MRI to assess treatment response, find 

aggressive tumors before they become malignant, and analyze tumor changes with (MRI). PN is 
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characterized by asymmetric development and complex morphology, making it challenging to 

accurately evaluate tumor growth using one or bi-dimensional methods [17]. 

Typically, the response of solid tumors is assessed using the RECIST 1.1 criteria The Response 

Evaluation Criteria in Solid Tumors (RECIST) was created in 2000, They were created by the 

European Organization for Research and Treatment of Cancer (EORTC) to increase the 

accessibility of evaluation and decrease inflated response rates [16]. These criteria streamline 

earlier methods for evaluating responses that were founded on the notion that one-dimensional 

data (such as the biggest diameter) are equally valid as bi-dimensional data [18]. 

Clinical studies for cancer currently make the most significant use of the RECIST criteria. These 

methods lack reproducibility and ignore the three-dimensional information that more recent 

imaging techniques offer. Additionally, certain lesions have asymmetric growth patterns, making 

them unsuitable for several assessment techniques. Because of the large or atypically shaped 

tumor that develops along numerous branches of peripheral nerves, standard linear 

measurements are inappropriate. 

The next chapter contains a short description of the theoretical concepts of MRI. These basics are 

necessary for a better understanding of the article presented in Chapter 5. 
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Chapter 2 – Magnetic resonance imaging (MRI) 

2.1 MRI basics 

MRI technology is a medical imaging tool used in radiology to examine detailed interior 

structures. MRI uses the property of nuclear magnetic resonance (NMR) to view the nuclei of 

atoms inside the body. It is used to scan every region of the body. Still, it is beneficial for tissues 

like the brain, muscle, connective tissue, and most cancers with a lot of hydrogen nuclei and 

minimal density contrast [15]. 

MRI devices employ a strong magnetic field to align the magnetization of hydrogen nuclei in the 

body and radio waves at a particular frequency to change that alignment over time. The spins of 

the nuclei realign with the static magnetic field when the radio wave transmission is shut off. This 

relaxation produces a radio frequency signal, which receiver coils detect. Varying tissue types 

have different relaxation times, which is a specific characteristic. The recorded data creates a 

three-dimensional gray-scale image of the scanned body part. 

Compared to other medical imaging techniques like CT or X-rays, MRI provides a strong contrast 

between the different soft tissues of the body, making it especially effective in viewing the brain, 

muscles, the heart, and tumors. MRI does not utilize ionizing radiation, unlike CT scans or regular 

X-rays, and is typically a safe imaging modality. It is the preferred approach for non-invasive tumor 

evaluation. It is crucial in classifying and grading patients and preoperative evaluation, follow-up, 

and therapeutic management. 

While CT has a robust spatial resolution, and the capacity to identify two different structures apart 

at an arbitrarily small distance, MRI has comparable resolution but significantly superior contrast 

resolution, the ability to distinguish the difference between two arbitrarily similar but not 

identical tissues. 

2.1.1 The physics of MRI 

Magnetic resonance (MR) is defined as the signal from the nuclei of hydrogen atoms ( 𝐻1 ) excited 

by magnetism which then is used for image generation. A Hydrogen atom comprises a nucleus 
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with a single proton and an electron circling it. So, Hydrogen is known as the proton, and in the 

MR context, only the proton is the contrast. 

The proton has a positive charge and spins around itself. The spin is a fundamental characteristic 

of elementary particles, which always have the same magnitude and cannot be accelerated or 

decelerated. Two crucial characteristics of a spinning proton are: 

(1) Mass (𝑚): The proton, being a revolving mass about an axis, stays upstanding in this axis 

direction because of the conservation of angular momentum. This behavior is similar to the 

physics of a spinning cone mounted on a surface (see Figure 1). The orientation of the axis is not 

affected by the tilting of the mounting surface, so the rotation provides stability to the cone 

(defined as a gyroscope device). 

 

Figure 1. Proton spin characteristics as a mass 

(2) Electrical charge (Positive charge): As a rotating electrical charge, the proton generates a small 

magnetic field (dipole), 𝐵. Simply put, it is a small magnet. So, in the presence of an external 

magnetic field (𝐵0), this magnet aligns with that field. Also, 𝐵0 make the proton to orbit (wobble) 

while spinning. Like an electrical generator, this wobble creates a quantitatively detectable 

voltage in a receiver coil (see Figure 2). 

 

Figure 2. Proton spin characteristics as a positive electrical charge 
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A spinning cone starts wobbling when its energy is decayed by an external force (e.g., friction). 

Precession is the term when that force makes the spin axis of that mass orbit. Similarly, the spin 

axis of a proton, which determines 𝐵 direction, can wobble and be put into a precessional orbit 

(see Figure 3). Presenting B0 near a proton is a decaying process since it creates the alignment of 

the spins (small magnets) parallel to that magnetic field. So, this energy dissipation makes protons 

start wobbling. The rate at which protons precess when put in an electromagnetic field is known 

as the Larmor frequency. 

 

Figure 3. An external magnetic field can change spin direction. 

The Larmor frequency refers to the typical speed of the nuclei's precession, which is proportional 

to the intensity of the applied magnetic field. The Larmor frequency is central in MRI basics and 

how scanners are built. 

The human body mostly consists of water (H2O), which contains hydrogen atoms. Powerful 

electromagnets of the MRI scanner excite hydrogen atoms of a particular slice of the body. This 

excitation has the returning signal from protons analyzed by a computer to make a user-readable 

image. 

After the applied magnetic field along a patient’s body (Z-direction) is removed, the spinning 

Hydrogen atom in the body relaxes and enters the previous stable state because the proton spin 

is a fundamental state always present and cannot become faster or slower. During relaxation, 
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longitudinal magnetization (in the Z-direction, denoted by 𝑀𝑍) increases because the magnetic 

vectors corresponding to the individual magnetic moments add up. However, the resultant 𝑀𝑍 is 

very weak. For this reason, an MRI scanner’s magnetic field 𝐵0 has to be sufficiently stronger than 

the earth’s magnetic field to measure a recognizable signal. In addition, this signal is collected 

with sensitive receivers and amplified. 

2.1.2 T1 and T2 relaxation 

The protons, which are typically randomly oriented inside the water nuclei of the tissue being 

investigated, are brought into alignment using a strong, uniform, external magnetic field B0. The 

subsequent perturbation or disruption of this alignment (or magnetization) is caused by the 

addition of an external Radio Frequency (RF) energy. Through a variety of relaxation mechanisms, 

the nuclei return to their resting alignment and release RF energy in the process. The emitted 

signals are monitored after a certain amount of time has passed from the first RF. The signal from 

each place in the imaging plane is converted using the Fourier transform into the relevant 

intensity levels, which are then represented as shades of grey in a matrix of pixels. 

Different kinds of images can be produced by altering the order in which RF pulses are delivered 

and collected. The interval between succeeding pulse sequences delivered to the same slice is 

known as the repetition time (TR). The period of time between the RF pulse being delivered and 

the echo signal received is known as the echo time (TE). 

T1 and T2 are two separate relaxation durations that can be used to describe tissue. The time 

constant T1 (longitudinal relaxation time) controls how quickly excited protons return to 

equilibrium. It is an indicator of how long it takes for spinning protons to reorient themselves with 

the surrounding magnetic field. The time constant T2 (transverse relaxation time) controls how 

quickly excited protons attain equilibrium or shift out of phase with one another. It is a 

measurement of how long it takes for the nuclei spinning perpendicular to the main field to lose 

phase coherence among the spinning protons. 
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2.1.3 MRI planes 

MR imaging generates cross-sectional images of the human body as a tomographic method. As a 

result, rather than applying the excitation pulse to the entire body, we only apply it to the slice 

we want to scan.  

Anatomical coordinates are the standard model coordinate system for medical imaging. It is also 

called the patient coordinate system demonstrated in the following. While viewing MRI images 

in this coordinate system, the body's left side is displayed on the right. Simply put, the top-bottom 

and front-back locales are kept the same, but the sides are flipped. 

2.1.3.1 Sagittal view 

The sagittal plane (see Figure 4), also known as the median plane, is a y-z plane that divides left 

from right and is perpendicular to the ground. The unique sagittal plane that is precisely in the 

middle of the body is known as the mid-sagittal plane. 

 

Figure 4. A sample MRI [19] slice in the sagittal axis 

2.1.3.2 Coronal view 

In humans, the anterior and posterior, front and back, and ventral and dorsal are separated by 

the coronal plane (see Figure 5), sometimes referred to as the frontal plane, which is an x-z plane 

perpendicular to the ground. 
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Figure 5. A sample MRI [19] slice in the coronal axis 

2.1.3.3 Axial view 

The transverse plane, often referred to as an axial plane (see Figure 6) or a horizontal plane, is an 

X, Y, and Z plane that is parallel to the ground and divides the superior from the inferior, or 

alternatively, the head from the feet, in humans.  

 

Figure 6. A sample MRI [19] slice on the axial axis 
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Chapter 3 – MRI segmentation of tumors 

3.1 MRI images used for segmentation 

Here say that the following segmentation methods were mostly developed for STIR imaging. By 

suppressing the signals from fat and the combined effects of T1 and T2 processes on tissue 

brightening, the STIR approach employs an alternate MRI sequence. STIR imaging is a sensitive 

method for identifying tumors, edema, and infection in bone marrow [30]. 

3.2 Image segmentation 

The spatial division of an image into its constituent pieces to isolate certain objects in an image is 

known as segmentation. Many segmentation approaches have been adopted to address a specific 

therapeutic requirement. Thresholding, clustering, region growth, edge-based approaches, 

deformable models, graph partitioning, and prior knowledge are among the methods discussed 

here. State-of-the-art segmentation algorithms [20] typically employ all these fundamental 

approaches as building elements. 

3.2.1 Thresholding 

This feature may be utilized to separate pixels that belong to an object and those that are not 

when a structure in the image is uniquely described by its intensity values. A gray-scale image is 

commonly used as the input to this approach. A single parameter known as the intensity 

threshold is set in basic implementations. The intensity threshold is applied to each pixel in the 

image. The result is a binary picture with ones where pixels meet the threshold criteria and zeroes 

where they don't. Manually or automatically, the threshold may be set based on picture statistics. 

For example, a local minimum in the image's intensity histogram might be used to differentiate 

between a bright object and its darker background. 

Advanced techniques divide the picture into subsections, with each portion having a different 

threshold. This local thresholding aids in overcoming intensity shifts caused by magnetic field 

inhomogeneity in MRI scans or lighting variances in natural pictures. Thresholding's main benefit 

is its speed since it takes no iterations and simply a single pass through the image. The resultant 

binary image may have single "on" pixels surrounded by "off" pixels or vice versa, which is a 
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disadvantage of this approach. This occurs because the method only analyses the intensity of a 

pixel, not its surroundings. Usually, morphological procedures or connected components removal 

is required to complete the binary image. 

3.2.2 Clustering 

These algorithms divide pixels into groups (clusters) depending on one or more features in the 

image, such as color, intensity, texture, or image position. The clusters are not planned; instead, 

they depend on the image's data. Machine learning methods, such as K-means or Expectation 

Maximization (EM), divide the data into clusters. These iterative processes assign each pixel to 

the cluster with the most comparable attributes. Following the labeling of all pixels, the 

representative characteristics of each cluster are changed depending on the previous assignment. 

This step is continued until the labeling of none of the pixels changes. This approach benefits 

segmenting images into more than two areas in about the same amount of time. 

Another benefit is that the properties of each cluster are learned and altered by the algorithm 

during the segmentation process rather than being predefined. A negative aspect is that the 

generated clusters aren't always continuous (as with thresholding). Furthermore, the approach 

might produce poor results if the number of clusters is incorrect. Zhang [21] developed and 

implemented a variation of the EM method for segmenting tissue types in MR human brain 

images. 

3.2.3 Region growing 

This class of algorithms is based on the notion of iteratively expanding one or more preset 

sections of the picture called seeds. Neighboring pixels are allocated to an area based on a 

homogeneity criterion. Their grey level is less than a threshold distance from the mean intensity 

of all pixels in the region. The homogeneity criterion and seed starts are the key differences 

between region growth algorithms. Changes in the initial seed position significantly impact the 

convergence time and result of these approaches [21]. The benefit of these approaches is that 

they link all pixels that belong to the same group. The runtime unpredictability and sensitivity to 

beginning circumstances are also disadvantages. 
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3.2.4 Edge-based methods 

An edge is a line that separates two sections with different grey levels. Due to the strong 

relationship between region borders and boundaries, edge detection methods may be utilized as 

a foundation for segmentation. Most edge detection algorithms use a local derivative operator 

to identify sudden intensity changes. For filtering out weak edges and noise, the derivative picture 

is thresholded. Typically, this results in boundary pieces that must be traced and linked to a closed 

object contour. Edge-based algorithms can detect the outline of several objects, but they require 

a high level of contrast between the items and the backdrop. Filtering the gradient image for 

noise reduction also makes it challenging to recognize little things. Solomon et al. [22] applied 

edge detection within a user-defined area of interest for PN tumor segmentation. 

3.2.5 Deformable models 

Deformable models work by iteratively deforming an initial curve until it tracks the boundary of 

an item. The image is regarded as a potential energy field with minima at borders between objects 

in Kass et al. [23] method, called the Snakes technique. The starting curve is developed towards 

the lowest potential of a cost function with two components: the first is the internal forces 

specified by the model limitations that maintain the curve continuous and smooth. 

The external pressures determined by the placement of the curve on the image (the energy 

potential, which is dependent on intensity, gradients, and edges) are the second component of 

the energy cost function. For this strategy to provide satisfactory results, the beginning curve 

must be positioned quite near to the item of interest in most circumstances. Another drawback 

of this approach is that it is challenging to trace concavities, making it inappropriate to segment 

tumors with complicated forms [21]. The developing contour (or surface) is represented using a 

signed function (the speed function) whose zero level should match the real shape in the Level 

Set approach. The speed of each point on the curve causes it to move inwards or outwards. 

Cai et al. [24] utilized the level set approach to segment 3D plexiform neurofibroma tumors. After 

the algorithm has converged, the resultant curve continuously tracks the object's contour, even 

when portions of the image's boundaries are hazy or noisy, which is a significant benefit of these 

approaches. 
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3.2.6 Graph partitioning 

The image is modeled as a weighted, undirected graph in these methods. Each pixel is 

represented as a node connected to its neighbors by edges. Edge weights represent the similarity 

between neighboring pixels. A graph cut divides nodes into two distinct sets, and the cut's weight 

is equal to the total of the weights of all edges connecting nodes from both groups. Finding the 

minor amount is a well-known computational issue with simple solutions. By forcing a group of 

pixels known to be within the item to be one side of the cut and another group known to be in 

the background to be the other, an object of interest may be segmented. 

The minimum cut is made between pixels with the slightest similarity, frequently around the 

object of interest's boundary [25]. The real benefit of graph cut-based approaches is that they 

consider the entire picture while cutting results in globally optimum segmentation. However, the 

approach favors convex forms because more minor cuts are less expensive. Shape information 

may be incorporated into the edge weights to solve this problem. For example, Freiman et al. [26] 

used information about tubular forms in the weight function to segment blood arteries using 

graph cuts. 

3.2.7 Prior knowledge 

Most of the segmentation methods outlined above can utilize prior information about the 

structures of interest to decrease runtime and enhance outcomes. Prior knowledge covers 

intensity range, shape, size, and closeness. Prior knowledge of the tumor intensity range, for 

example, can help in the automatic selection of a threshold that differentiates lesions from their 

background, or a kidney-shaped starting model can speed kidney segmentation using deformable 

models. The main method for medical segmentation is prior information in an atlas (a statistical 

anatomical model generated from samples of healthy or ill people). Prastawa et al. [27] employed 

a probabilistic spatial atlas for brain tumor segmentation that combines prior expert information 

about brain structures and subject-specific priors. 

3.3 MRI segmentation methods for PNs 

The task of segmenting PN tumors is quite difficult. The lesions might be significant or minor, and 

their shapes can be complicated and irregular. They also arise in many places of the body, 
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infiltrating surrounding tissue and displacing organs in some cases. All previous studies rely on 

STIR sequence MR images because detecting lesions is much easier since they look brighter in this 

kind of image. But the critical point of our method is to recognize PN lesions in all MRI sequences, 

including STIR, T1, and T2 weighted images. The performance of my technique in the submitted 

manuscript (Chapter 5). 

So far, only a few published studies (e.g., [22], [28]–[30]) have proposed segmentation algorithms 

specific to this type of tumor. Most of these procedures are semi-automated, with the first tumor 

localization requiring user intervention. Other recent studies (e.g., [4], [31]) mainly employed 

these four key methods. These methods are discussed in the following sub-sections. 

3.3.1 Method 1: Solomon et al. (2004) 

Solomon et al. [22] presented an automated detection and volume measurement of PN using MRI 

in 2004. The following steps describe their segmentation algorithm: 

1. Trace the lesion and include hypointense normal tissue in the ROI, omitting associated 

iso-intense normal tissue (this step is performed manually). 

2. Use a Gaussian kernel to smooth the image. 

3. Analyze pixel histograms to calculate a threshold value. 

4. Remove all normal tissue from the ROI. 

5. Create an image gradient to allow edge recognition. 

6. Apply the thresholding value to the gradient image. 

7. Remove connected components that are smaller than a predefined size. 

8. Use automatic edge detection to construct the image contour. 

Note that the above procedures are performed for each slice of the sequence when the ROI 

includes lesion tissue. 

The histogram analysis from step 3 is the key novelty of the algorithm. In this step, a threshold 

value is selected to differentiate pixels, including normal tissues or lesions. Two histogram points 
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are determined automatically: Normal tissue is represented by the peak in the histogram, while 

the PN lesion is represented by the local maximum exceeding a predefined percentage of normal 

tissue peak and located to the right of this maxima (toward lower image intensities). The 

threshold value that separates the two tissue types is the minimum value between these peaks 

in the histogram. When using this type of operation, the user must include normal tissue in the 

initial ROI. 

Although this technique removes small lesions of a predefined size (step 7), the original ROI can 

comprise more than one lesion. This procedure is necessary to remove noise before connecting 

edge components, but it comes at a cost: the inability to identify small lesions. According to the 

article, this is not a significant disadvantage because small lesions have a modest volume and 

contribute little to the overall tumor burden estimate. 

In the manuscript presented in Chapter 5, I compare the method I developed with a similar 

version of Solomon et al. [22]. I was not able to replicate this method since important details were 

not fully described (i.e., predefined size for small lesion removal and predefined percentage of 

normal tissue for lesion peak identification). 

3.3.2 Method 2: Cai et al. (2009) 

In 2009, Cai et al. [24] presented a method to identify tumors from whole-body MRI images. They 

studied tumor burden in patients with Neurofibromatosis types 1 and 2 and Schwannomatosis. 

For 3D nerve sheath tumor segmentation in MR images, a technique termed the Dynamic 

Threshold (DT) level set method was described. A seed area is manually initialized within the 

tumor as a first step. A propagating shell consisting of an inner shell, outer shell, and medial axis 

expands in 3D inside the slice and into subsequent slices. The volume inside the segmentation is 

referred to as the inner shell. The outer shell is the equal volume region that surrounds the inner 

shell. The medial axis divides the inner and outer shells, defining the outer shell boundaries. 

A propagating shell medial axis is dynamic. Its movement is regulated by the DT speed function, 

which is determined for each point on the medial axis by the histogram of all voxels (pixels in 3D) 

in the propagating shell. When this function is positive, it pushes the points on the medial axis 

outward; when it is negative, it pushes them inward. The speed function is used to create the 
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difference between a dynamic threshold value produced from the histogram for that iteration 

and the intensity of a point on the medial axis. The shell is pushed closer to the tumor edge until 

it has an equal amount of background and tumor voxels. In the histogram, the propagating shell 

tumor-to-background voxel ratio is calculated by looking at a separation intensity threshold, a 

minimum intensity between two peaks dividing two tissue types. The threshold satisfying this 

condition is utilized to assess if the number of voxels reflecting the lesion and normal tissue is 

balanced. When the number of tumor and background voxels is balanced, or when volume 

changes become insignificant, the process stops. 

3.3.3 Method 3: Weizman et al. (2012) 

Weizman et al. [29] published a method and preliminary performance evaluation of an interactive 

segmentation of plexiform neurofibroma tissue in 2012. Their algorithm has two phases: a 

learning phase and an interaction phase. The training set is studied and learned to construct the 

model histogram pool during the first phase, which is performed offline and only once. A 

radiologist conducts the interactive phase and is blind to segment PN lesions from an MRI image 

reviewed for the first time. A designated region on top of an MRI slice serves as the interactive 

phase input. The most comparable histogram from the model histogram pool developed during 

the learning phase is matched to the histogram of the indicated region. The matched histogram 

threshold value is transformed into an actual intensity value for the current slice. 

Tumors are defined as brighter pixels with intensity above the threshold and belonging to a linked 

component that interacts with the user input. The interactive step is repeated until the user is 

confident that all tumor voxels have been tagged. 

The step of their algorithm is as follow: 

- Offline learning phase: 

1. Preprocessing of the training set 

2. Histogram set creation 

- Interactive phase of model-user driven 
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1. Annotation by the user 

2. Histograms matching 

3. The selection of the threshold 

4. Removal of irrelevant connected components 

The disadvantage of this method is similar to a previous tool [22] and is related to the manual 

adjustment step, which removes small lesions. The final calculated volume of the lesion is not 

very accurate since tiny lesions were removed at that step. 

3.3.4 Method 4: Weizman et al. (2014) 

In 2014, Weizman et al. developed another method named PNist, described as an interactive 

volumetric measurement of plexiform neurofibromas in MRI scans. Their approach consists of 

training and interaction phases as in their previous study [29]. The training phase input is a set of 

STIR images. These scans generate models of predicted intensity distributions, which are then 

saved in a histogram database. The interactive part of the method uses information from the 

database and the user interaction to identify PNs in the new STIR scans. The user must draw a 

scribble across the tumor location to give seed for the segmentation procedure during the 

interactive phase. Every tumor component in each image slice is fitted with two axis-aligned 

frames: a larger frame as the tumor region's bounding box and a tiny frame with sides half the 

size of the large frame situated in its center. The small frame contains most tumor pixels, whereas 

the big frame contains both tumor and normal surrounding tissue samples. The gray-level 

intensities of tumor and normal areas are modeled using these frames. The user must draw a 

scribble over the tumor location to give seed for the segmentation process during the interactive 

segmentation phase. They employ large and small frames during training to imitate two typical 

scribble sketching conditions. The tiny frame histogram represents situations where the user's 

scribble is within the tumor region and contains no healthy tissues. The big frame histogram is 

used to mimic instances in which the user's scrawl incorporates healthy areas in addition to 

cancerous pixels. These two histogram patterns are adequate to cover most scribble sketching 
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cases. Add advantages and cons of the method: computation time, accuracy, performance with 

respect to their previous method, and performance with complex disconnected lesions. 

3.4 Summary 

All four approaches for PN segmentation were used with MRI STIR images that perform the tumor 

and lesions better than other image sequences like T1 and T2. All described methods above, 

except Cai et al., are time-consuming and laborious for the user since including two manual steps 

in their algorithm. The first is the ROI selection on each slice, and the second is the manual 

adjustment to remove the connected parts to the lesion, which affects the volume calculation of 

the lesion. Furthermore, Cai et al.'s method needs less effort: planting a seed into each tumor. It 

then works in three dimensions to segment the whole tumor across all slices. The problem 

emerges when a bright, healthy tissue is attached to the tumor, causing it to be labeled a tumor. 

This approach is much more computationally expensive than 2D segmentation; segmenting a 

single tumor might take several minutes, depending on its size and seed location. Finally, this 

technique necessitates more user input when many discontinuous tumor masses are involved. 

Because of this, they decided not to consider small lesions smaller than 5cm3. 

Our objective was to develop a fast and accurate method that reduces the manual steps and can 

be used with fewer limitations, such as dependency on image sequences. Unlike the earlier 

methods discussed above, the structural MRI input sequence does not affect our technique. It 

enables precise volumetric evaluation for short TI inversion recovery (STIR), T2-weighted, and T1-

weighted imaging data (with or without gadolinium). Our method is unaffected by the direction 

(sagittal, axial, or coronal) of the original region of interest (ROI). 
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Chapter 4 – Introduction to the methodology 

This chapter presents a short introduction of the algorithm that I implemented and described in 

the following chapter. 

Since PNs have complex shapes, tracing lesion changes during medical treatment is challenging 

but essential to adjust therapy over time. The current practice to monitor changes in lesions is 

described in the RECIST guidelines, which consider only 1D or 2D measurements (see illustrations 

in Figure 7) by measuring the longest lengths of the tumor with a ruler [18]. This methodology is 

limited as PNs have complex and irregular shapes. Previous studies using RECIST criteria showed 

poor reproducibility in measuring response for similar tumors [24], [32]. 

 

Figure 7. Comparison of three measurement approaches estimating a tumor size [19]. A, 1D 
measurement. B, 2D measurement. C, Volumetric analysis (3D measurement). 

Previous studies have proposed volumetric analysis of PN tumors [22], [24], [28]–[30]. These 

studies were developed for STIR images only and limited to axial and/or coronal views. One of the 

essential advantages of the method developed in this study is that it can be used for different 

MRI sequences (STIR, T1- and T2-weighted imaging) and performs for all three orientations. Our 

method was compared to manual tracing, which is considered the current gold standard. 

The complete methodology is provided in the submitted manuscript and replicated in the next 

Chapter. 
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4.1 Implementation 

Figure 8 shows a schematic of the tool I developed for this project implemented in MATLAB (2020, 

version 9.9.0, Natick, MA) environment based on this study. Before employing this tool, I first 

require converting DICOM files (raw data from an MRI device, including the image and extensive 

information on the accusation) to PNG images (only gray-scale images as a 2D matrix). A short 

description of steps for using this tool is as follows (for reference, see Figure 8): 

(1) Using the Open button, input slices as PNG images. They are shown in the List of images section 

at the left. 

(2) Click on the Draw ROI button. Draw a blue circle over a sub-lesion as ROI. Note that: 

- For a hollow lesion containing a hole, uncheck the No hole in ROI and then click on 

Draw ROI. In this case, the hole inside will be omitted from the lesion. 

- Avoid very extensive circles with respect to the lesion size also; otherwise, the result is 

not logical. Our method is sensitive to the histogram analysis, so when a too big circle is 

selected, it often contains a less lesion area, which is bright, and a dominant dark area 

that can alter the histogram analysis pattern drastically. 

(3) Automatically, the biggest identified lesion in ROI is shaded with green, and the Histogram 

chart and selected Threshold are shown in the bottom-right corner. You can redo the circling at 

this stage by clicking on Draw ROI as many as you want. It is possible to manually change the 

threshold by scrolling the threshold gauge (at the bottom-left) between zero and one, although 

it is unnecessary. 

(5) If the green mask matches your intention as the sub-lesion, click on the Mask Out button. 

Here, a binary mask of that lesion is created and presented in the up-right corner (Current Mask). 

The ROI turns magenta (for future reference), and the green area is wiped. In case of multiple 

lesions, you must segment each at a time. New binary masks will merge with the previous. 

(5) When segmentation is finished for the current slice, click the Save Mask & Move Image button. 

This saves the Current Mask in the up-right corner and moves the original segmented PNG to 
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another directory. Select another image from the List of images and start segmenting the next 

slice. 

For volumetric analysis, another program is required to interpolate all the masks (processed) in 

one orientation, providing you with the volume of the lesions and the 3D representation of the 

segmented tumor. 

 

Figure 8. A scheme of the developed tool that we used for this study.  
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Chapter 5 – Development of a semi-automatic segmentation 

technique based on mean magnetic resonance imaging intensity 

thresholding for volumetric quantification of plexiform 

neurofibromas 

This chapter consists of a replica of the manuscript that was submitted to the American Journal 

of Neuroradiology on August 18th, 2022. The manuscript details the method developed for the 

volumetric analysis of patients with PNs treated with trametinib. For this article, I contributed to 

the development of the method, data analysis, data interpretation, manuscript redaction, 

revision, and approval. 
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5.1 Structured Abstract 

BACKGROUND AND PURPOSE: Plexiform neurofibromas (PNs) are peripheral nerve tumors that 

occur in 25-50% of patients with neurofibromatosis type 1. Because PNs may have complex, 

diffused, and irregular shapes, current clinical unidimensional measurement using magnetic 

resonance imaging (MRI) is limited, and volumetric assessment may prove more accurate.  

MATERIALS AND METHODS: A semi-automatic segmentation technique based on mean image 

intensity thresholding (SSTMean) was developed and compared to a semi-automatic 

segmentation technique based on minimum image intensity thresholding (SSTMini). The 

performance (volume and computation time) of the two techniques was compared to manual 

tracings of 10 tumors of different locations, shapes, and sizes. Performance was also assessed 

using different MRI sequences. 

RESULTS: When compared to manual tracing, volume quantification performed with SSTMean 

was not significantly different (mean difference of 2.2%), while volumes computed by SSTMini 

were significantly different (p <.001, mean difference of 8.2%). Volumes quantified by SSTMean 

were also significantly different than the ones assessed by SSTMini (p <.001). Using SSTMean, 

volumes quantified with short TI inversion recovery (STIR), T1-, and T2-weighted imaging were 

not significantly different. Computation times used by SSTMean and SSTMini were significantly 

different than for manual segmentation (p <.001).  

CONCLUSION: Our method showed accuracy compared to a current gold standard (manual 

tracing). The versatility and fast computation times of our method will be useful to monitor better 

volumetric changes in lesions of patients enrolled in clinical trials assessing the response to 

therapy. 

5.2 Introduction 

Neurofibromatosis type 1 (NF1) is an autosomal-dominant disease that affects 1 in 3000 to 4000 

individuals worldwide [33], [34]. NF1 is associated with a wide variety of physical, psychological, 

and cognitive manifestations. Among physical manifestations of NF1, plexiform neurofibromas 

(PNs) are peripheral nerve tumors that occur in 25-50% of patients [35], [36]. 
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Plexiform neurofibromas are particularly pathognomonic for NF1 with diffuse involvement along 

a nerve segment and its branches. PNs affect several areas of the body (e.g., head, neck, and 

trunk) and can cause deformity, limit function, and may lead to significant compression of vital 

organs depending on the size and location of the tumor [17], [29], [37], [38]. 

Due to the various comorbidities associated with these slowly progressing lesions, several clinical 

trials have been initiated over the last decade. Recent studies focused on evaluating the response 

to treatment with targeted therapy, including MEK inhibitors [8], [16], [39].  

Response assessment of PNs is typically evaluated with magnetic resonance imaging (MRI) [29]. 

Tumor measurements follow uniform guidelines that allow the assessment of changes in the 

tumor at specific time points. Currently, the RECIST criteria are used to assess solid tumor 

response in most clinical trials [40], [41]. The RECIST assessment is based on the characterization 

of anatomical changes in tumors in one dimension. This is an important limitation for PNs as these 

tumors have complex and irregular shapes. Previous studies using RECIST criteria showed poor 

reproducibility in measuring response for similar tumors [24], [32]. 

Volumetric methods to assess changes in tumors from MRI data are emerging [22], [24], [29] and 

have been implemented in commercial platforms [4]. When compared to unidimensional 

assessment, volumetric approaches allow the detection of early changes in tumors and the 

possibility of evaluating asymmetric growth [32]. These techniques are semi-automatic and 

require user interaction to initially localize the tumor in the body. For several tumors, these 

approaches necessitated high computation times related to the segmentation process and 

sometimes manual corrections when the semi-automatic segmentation failed [29], [30]. A fast, 

reproducible, and accurate technique to assess complex and asymmetric tumor evolution is 

critical for clinical decision-making in clinical trials involving therapeutical assessment. 

In this study, we described a semi-automatic segmentation technique based on mean image 

intensity thresholding (defined as SSTMean) that requires minimal user interaction initially to 

define the tumor region and that further automatically segments PN lesions. We compared 

SSTMean with a semi-automatic segmentation technique based on minimum image intensity 

thresholding (defined as SSTMini) that is similar to a previous approach [29]. We also compared 
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the performance of the two techniques with manual tracings of 10 tumors of different locations, 

shapes, and sizes. In contrast to previous algorithms [4], [22], [24], [29]–[31], our method is 

independent of the structural MRI input sequence and provides accurate volumetric assessment 

for short TI inversion recovery (STIR), T2-weighted, and T1-weighted (with or without gadolinium) 

imaging data. Our technique is also independent of the orientation (sagittal, axial, or coronal) in 

which the initial region-of-interest (ROI) is traced.  

5.3 Material and Methods 

5.3.1 Patients 

Ten (N=10) patients diagnosed with PNs were selected to assess the performance of the SSTMean 

and SSTMini methods. These patients were enrolled as part of an ongoing clinical trial with 

trametinib (NCT03363217).[42] For this study, patients were selected based on the shape, 

location, and size of their tumors to represent a heterogeneous set of lesions. Supplementary 

Fig 1 shows each tumor in the three orientations using either T1, T2, and/or STIR images (except 

for Patient 6, who had no MRI images in the sagittal plane). 

5.3.2 Data Acquisition 

Based on the clinical MRI protocol, images of PNs were acquired with STIR, T1- and T2-weighted 

imaging sequences. Imaging parameters depended on the location, shape, and size of the tumor 

and were not identical for all patients (ranges are provided). Imaging parameters for STIR were 

repetition time (TR, ms) = [2681-5716], echo time (TE, ms) = [23-65], and inversion time (TI, ms) 

= [120-170], and slice number = [18-59]. For T1-weighted imaging, TR = [5-3000] ms, and TE = [1-

107] ms, and [20-63] slices. For T2-weighted imaging, TR = [1328-5880] ms, TE = [60-221] ms, and 

[34-67] slices. Depending on the location of the tumor and the sequence, images were prescribed 

in either the sagittal, coronal, and/or axial orientation. 

5.3.3 Segmentation Technique 

The SSTMean method consisted of 4 main steps: (1) selection of the ROI, (2) smoothing of the 

lesion boundaries, (3) automatic calculation of the intensity threshold, and (4) generation of the 

lesion mask. 
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(1) Selection of the ROI: This process is initiated by loading MRI image files (in PNG format) and 

selecting the sequence of interest (STIR, T1- or T2-weighted) and the orientation (axial, coronal, 

or sagittal). In some cases, images acquired are not available in all orientations (e.g., Patient 6 

from Supplementary Fig 1). For each slice, a circle was drawn by the operator using a drawing tool 

to trace a circular ROI around the lesion (see an example in Supplementary Fig 2). This tracing 

allowed the algorithm to exclude healthy tissue surrounding the tumor. For images with no 

tumoral tissue, the operator did not have to draw an ROI and was guided to the next slice. The 

tool also allowed the operator to trace multiple ROIs when tumors appeared in multiple locations 

on the same slice. 

(2) Smoothing of the lesion boundaries: In the ROI, a filtering method was applied to detect the 

edges (boundaries) of the lesion. A Gaussian smoothing filter with standard deviation σ =.5 was 

used and applied in both the horizontal and vertical directions to reduce the noise level of the 

image and allow edge detection [43]. 

(3) Automatic calculation of the intensity threshold: A histogram of the ROI signal intensity was 

performed to delineate pixels corresponding to the tumor and pixels associated with other tissues 

(see an example in Supplementary Fig 2). On STIR, T1- and T2-weighted images, pixels 

corresponding to the tumor are hyperintense while healthy tissues are hypointense. The 

algorithm performed the following steps to determine the image intensity threshold that 

differentiated healthy and tumoral tissues: 1) plot the ROI signal intensity histogram using 256 

intensity bins, 2) calculate the mean of the overall distribution, 3) divide the mean by two, 4) 

ensure that this value is located between the two local maxima of the image (associated with 

healthy and tumoral tissues, respectively), and 5) assign this value as the image intensity 

threshold for this slice and ROI (e.g., see the red threshold in Supplementary Fig 2A and its 

corresponding segmentation in Supplementary Fig 2B). 

(4) Generation of the lesion mask: A binary mask was generated with pixels corresponding to 

values above the threshold. This step also allowed the generation of a mask that included multiple 

tumors. For granular tumors, the mask may include healthy tissues distributed and diffused 

between the tumoral aggregate. To be included in the mask, the operator traced an individual 
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ROI for each tumoral element. For multiple ROIs, individual masks were subsequently merged to 

yield a global binary mask. 

To segment the tumors with the SSTMini method, we modified the image intensity threshold 

defined in step 3 by the local minimum located between the two maxima of the image (see 

magenta threshold in Supplementary Fig 2A and corresponding segmentation in Supplementary 

Fig 2D). This thresholding method was similar to a previous approach [22], [29]. The other steps 

were identical to SSTMean. 

5.3.4 Volumetric Quantification 

To determine the tumor volume, the boundaries of two consecutive slices were linearly 

interpolated, and the tumor was reconstructed in a 3D shape. This reconstruction was based on 

the slice spacing, slice thickness, and spatial resolution in the slice plane. Total volume 

corresponded to the sum of all merged slices. 

5.3.5 Manual Tumor Tracing 

There is no gold standard for the volumetric quantification of PNs. Tumor volumes generated by 

SSTMean and SSTMini methods were then compared with the manual tracing of the tumors (e.g., 

Supplementary Fig 2E). 

5.3.6 Statistical Analysis 

Wilcoxon signed-rank tests were used to compare the volumetric quantification of the tumors 

performed by the three techniques: SSTMean, SSTMini, and manual tracing. Differences between 

techniques were expressed in percentage in comparison to manual tracing. Computations times 

were also compared between the three techniques using Wilcoxon signed-rank tests.  

5.4 Results 

Figure 9 shows 4 examples (Patient 4, 5, 6, and 10) of lesion segmentation performed by SSTMean 

(red) and SSTMini (magenta) in comparison with manual tracing (yellow). MRI STIR images were 

used for these examples. 
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Table 1 reports tumor volumes quantified by SSTMean, SSTMini, and manual tracing for all 

patients, as well as computation times. Volume percentage differences between SSTMean and 

SSTMini with manual tracing are also provided. For each patient, volume quantification was 

performed using the three sequences (STIR, T1- and T2-weighted images). When compared to 

manual tracing, volume quantification performed with SSTMean was not significantly different 

(p=.38), while volumes computed by SSTMini were significantly different (p <.001). Volumes 

quantified by SSTMean were also significantly different than the ones assessed by SSTMini (p 

<.001). Using SSTMean, volumes quantified with the STIR, T1- and T2-weighted imaging 

sequences were not significantly different. Differences between MRI orientations were not 

assessed since orientations were prescribed based on the location of the tumor. Computation 

times used by SSTMean and SSTMini were significantly different from computation times used by 

manual tracing (p <.001). 
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Figure 9. Examples (Patient 4, 5, 6, and 10) of lesion segmentation performed by SSTMean (red), 
SSTMini (magenta), and manual tracing (yellow) for a single 2D STIR image. 

5.5 Discussion 

The goal of this study was to develop a fast, reproducible, and accurate method to quantify the 

volume of PNs in the setting of a clinical trial. The proposed segmentation method required only 



45 

one minimal user interaction for each MRI slice, which resulted in faster computation time (4-10 

min) compared to manual tracing (23-59 min) of the total lesion. Lesion volumes quantified by 

the SSTMean method were not statistically different from that of manual segmentation (gold 

standard), which shows its accuracy. The performance of our method was accurate for a wide 

range of lesion sizes, from small (~3 cm3) to large (~375 cm3) lesions. Our method was also 

versatile and reproducible, providing accurate volumes regardless of the MRI sequence (STIR, T1- 

or T2-weighted imaging) and view (axial, coronal, or sagittal). 

The technique developed in this study was compared to another algorithm (SSTMini) that we 

implemented, similar to a previous approach [22]. Compared to the SSTMini method, our 

algorithm provided more accurate volumes with respect to manual quantification (mean 

difference of 2.2% compared to 8.2%). The thresholding aspect of our method may be useful to 

monitor better volumetric changes in lesion progression of patients enrolled in clinical trials 

assessing the response of therapy. 

The comparison between our proposed method with SSTMini was relevant as the two techniques 

have in common several methodological aspects. However, it was not possible to replicate this 

exact published method as important details were not fully described in the original article [22]. 

While the two methods are based on a similar thresholding technique, the identification of the 

PN lesion peak in the published method was based on a predefined percentage of normal tissue 

that was not available. The published method also performs a connected component analysis to 

remove lesions that were considered too small. There is no detail on this predetermined size. 

Another study used a similar approach and did not consider lesions of less than 5 cm3 [24]. Our 

approach was different and considered all lesions of all sizes. This strategy, coupled with a finer 

thresholding technique, may explain why our method was more accurate than SSTMini when 

compared to manual tumor quantification. The assessment of all lesions of any size may help 

global surveillance of a patient during treatment. 

Other segmentation approaches were previously developed for solid tumors, such as PNs [22], 

[24], [29], [30]. Some of these algorithms were implemented on commercial visualization and 

analysis software such as MEDx [4], [22], [24], [28], [31], Vitrea2 workstation [31], and 3DQI 
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software [28], or separately programmed as PNist [29], [30]. We implemented our algorithm 

using the MATLAB (2020, version 9.9.0, Natick, MA) environment. 

Above mentioned algorithms and ours were semi-automatic and required user involvement 

initially to locate the tumor in the image. However, their segmentation procedure differed. In the 

method described by Cai et al. [24], the thresholding approach is dynamic and based on a 3D level 

set method. After an initial user interaction to identify the tumor location, tumors larger than 5 

cm3 in diameter were automatically segmented in 3D. The method described by Weizman et al. 

[30] is interactive and based on histogram tumor models from a training set. In their process, 

which differs from ours and previous approaches [22], [24], the user is required to draw a scribble 

over the tumor region that provides seed for segmentation. A previous study [29] from the same 

group showed that their interactive approach was simpler and more reliable, particularly for 

complex, disconnected tumors, even if, for some tumors, a manual correction was inevitable. 

Their approach was accurate (6.8%) and fast (7 min) when compared to manual tracing [30]. This 

comparison with previous state-of-the-art tools shows that our method is slightly more accurate 

and consumes similar computational resources. 

Two advantages of our method are that it (1) can be applied to different MRI sequences (STIR, 

T1-, and T2-weighted imaging; with or without gadolinium) and (2) performs for all three 

orientations (axial, coronal, and sagittal). Previous studies implemented algorithms that were 

used only for STIR images and were limited to axial and/or coronal views [22], [29], [30]. The 

versatility of our approach may prove useful in the clinical setting where MRI sequences and 

prescribed orientations may be limited due to imaging time constraints which can be critical, 

especially in children. In addition, this possibility may help to optimize imaging data based on 

tumor location, shape, and size. Using the multiple orientations and sequences may also help to 

validate volume assessment for complex tumors with irregular shapes. 

Our algorithm has limitations. As in previous approaches, the need for user interaction initially to 

define the tumor ROI in every single slice slows volume quantification. This limitation is amplified 

for tumors with multiple disconnected lesions. Novel approaches such as using large datasets to 

train data and mathematical models to predict volume changes are promising and may allow 
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avoiding any user interaction [29], [30]. The accuracy of our method is also limited by artifacts 

and low MRI image quality, which can affect the ROI selection and subsequent thresholding 

calculation based on mean image intensity. Because there is no current gold standard for tumor 

volume quantification, the use of manual segmentation to compare our approach is intrinsically 

a limitation. To the best of our knowledge, manual tracing remains the most accurate standard 

for comparison. 

The simplicity and accuracy of our method may allow its implementation in clinics to evaluate 

response rates in future trials. The algorithm could be integrated into the imaging platforms such 

as picture archiving and communication systems (PACS). This integration would avoid the need 

to extract, transfer, and anonymize MRI data. Volume outputs from the algorithm could be 

included in radiological reports in real-time and shared with the patient at the time of MRI. This 

algorithm has the potential to be used for various peripheral solid tumors as well as for central 

nervous systems tumors. Due to fast computation, volumetric analysis of response to therapy or 

tumor progression could be analyzed and reported at the time of patient’s follow-up visits. 

5.6 Conclusion 

Volumetric analysis and MRI image segmentation are essential for analyzing PNs and following 

their progression. To quantify tumor volume, we proposed a semi-automatic segmentation 

technique based on mean image intensity thresholding and compared it with the current gold 

standard (manual tracing). Our method showed high accuracy and versatility as it did not depend 

on MRI sequences or orientation planes. Our method was used to quantify lesions from 3 to 

375 cm3. As in previous algorithms, our technique was fast and necessitated only one manual step 

associated with the ROI selection, which is promising for further clinical integration and use in 

clinical trials assessing the response of therapy. 
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Table 1: Volumetric quantification of tumors performed by SSTMean, SSTMini, and manual 
tracing with corresponding computation times. 

Patients 

SSTMean SSTMini Manual tracing 

Volume 
(cm3) 

Comp. 
time 
(Min) 

Difference* 
(%) 

Volume 
(cm3) 

Comp. 
time 
(Min) 

Difference† 
(%) 

Volume 
(cm3) 

Comp. 
time 
(Min) 

Patient 
1 

Sag 
STIR 

377.1 7 0.6 411.3 7 9.7 374.8 53 

Ax 
T1 

375.6 6 -0.5 416.2 6 10.3 377.4 50 

Cor 
T2 

376.4 7 0.4 412.5 7 10.1 374.8 55 

Patient 
2 

Ax 
STIR 

8.9 7 -2.2 9.7 7 6.6 9.1 59 

Cor 
T1 

8.8 8 -3.3 9.8 8 7.7 9.1 56 

Sag 
T2 

8.7 5 -6.5 10.1 5 8.6 9.3 53 

Patient 
3 

Ax 
STIR 

37.5 6 3.0 39.2 6 7.7 36.4 43 

Sag 
T1 

38.1 7 1.6 39.9 7 6.4 37.5 50 

Cor 
T2 

37.3 6 3.3 38.8 6 7.5 36.1 48 

Patient 
4 

Ax 
STIR 

46.7 5 1.7 48.1 5 4.8 45.9 46 

Sag 
T1 

45.8 7 2.0 46.3 7 3.1 44.9 50 

Cor 
T2 

47.2 6 1.9 49.2 6 6.3 46.3 45 

Patient 
5 

Ax 
STIR 

442 8 1.1 461.8 8 5.7 437 56 

Sag 
T1 

444 8 1.4 463.2 8 5.8 438 58 

Cor 
T2 

437 7 1.2 458 7 6.0 432 55 

Patient 
6 

Cor 
STIR 

3.1 5 -8.8 4.2 5 23.5 3.4 31 

Cor 
T1 

3 7 -3.2 4.1 7 32.3 3.1 38 

Ax 
T2 

3.2 6 -3.0 4.6 6 39.4 3.3 36 

Patient 
7 

Cor 
STIR 

23.7 4 -0.4 24.1 4 1.3 23.8 28 

Sag 
T1 

23.6 6 -0.4 24 6 1.3 23.7 31 
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Ax 
T2 

23.8 5 -5.2 24.5 5 -2.4 25.1 30 

Patient 
8 

Ax 
STIR 

37.7 4 2.7 39.4 4 7.4 36.7 25 

Sag 
T1 

37.6 6 -1.1 39.1 6 2.9 38 32 

Cor 
T2 

37.3 5 -2.1 39.2 5 2.9 38.1 30 

Patient 
9 

Ax 
STIR 

8.5 4 -1.2 8.8 4 2.3 8.6 23 

Cor 
T1 

8.2 6 -2.4 9.2 6 9.5 8.4 28 

Sag 
T2 

8.3 5 -2.4 9.1 5 7.1 8.5 25 

Patient 
10 

Ax 
STIR 

99.4 9 -0.8 103.2 9 3.0 100.2 57 

Sag 
T1 

99 10 -0.4 100.6 10 1.2 99.4 59 

Cor 
T2 

99.3 10 -0.5 101.7 10 1.9 99.8 58 

Mean 
(SD)‡ 

NA NA 
6.4 

(1.6) 
2.2 

(1.9) 
NA 

6.4 
(1.6) 

8.2 
(8.7) 

NA 
43.6 

(12.4) 

Comp.: Computation; STIR: Short TI Inversion recovery MRI (magnetic resonance imaging) 

sequence; T1: T1-weighted MRI sequence; T2: T2-weighted MRI sequence; Ax: in axial view MRI 

sequence; Cor: in coronal view MRI sequence; Sag: in sagittal view MRI sequence; Difference*: 

Volumetric percentage differences between SSTMean and manual tracing (gold standard); 

Difference†: Volumetric percentage differences between SSTMini and manual tracing; Mean 

(SD)‡: Mean and standard deviation of absolute percentage differences and computation times; 

NA: Not applicable. 

 

 



50 

Chapter 6 – General discussion, Preliminary data, and 

Prospective studies 

6.1 Impacts of project 

As stated in Chapter 1, a good measurement of PNs is essential to follow up on the effectiveness 

of the treatment. The efficiency and precision of the measures are now being improved through 

computer-aided techniques. Based on the performance of the method described in the 

manuscript, I showed the possibility of performing volumetric quantification for three different 

MRI sequences (i.e., T1-, T2-weighted, and STIR) and all three orientations (i.e., Axial, Coronal, 

and sagittal views). 

I proposed a semi-automatic (partly manual and partly with the help of a computer) volumetric 

analysis approach. This method enables faster segmentation than manual tracing employing the 

computer for reliable 3D measurements rather than standard 1D or 2D methods (see Figure 7). 

Not only that, but this method was faster compared to some similar approaches and shows that 

our method has less difference (with respect to the gold standard) than a similar previous 

method. 

The proposed method has the potential to become a stand-alone tool for the volume 

quantification analysis used for clinical purposes and join common platforms like PACS [19] to 

help physicians with their needs. 

6.2 Preliminary data 

Prior to this thesis, so far, there were 34 patients analyzed in this study out of 45 enrolled 

participants. MRI data was gathered from centers including CHU Sainte-Justine (CHUSJ), Montreal 

Children's Hospital (MCH), CHU de Québec-Université Laval (CHUQ), The Hospital for Sick Children 

(SickKids), IWK Health Centre (IWK), Alberta Children's Hospital (ACH), and British Columbia 

Children's Hospital (CWHC). Patients are between [1 month – 25 years] old.  
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The first date of MRI imaging was at the start of the treatment (defined as the Baseline) and then 

every three months (based on the scheduled MRI exam dates) until the end of the treatment, 

which is the 18th month. 

 

Figure 10. Combined demonstration of volume changes during the treatment cycle for all 34 
patients analyzed in this study. Screening for all patients starts from the Baseline and is present 
in different colored lines. The straight, bold lines are during the treatment cycle, and the dashed 

lines are the follow-up dates. Two horizontal black dashed lines limit the progression and 
response at 20% and -20% of baseline volume, respectively. 

Figure 10 represents the evolution of volumetric PN through treatment with trametinib in the 

study. Twenty-one patients achieved a decrease in the lesion’s volumes during the treatment 

cycle (18 Months) by at least 20%, which means a response to the treatment. 

Figure 11 shows the median variation of PN volumes over time in the treatment cycle for 34 

patients and presents the -20% reduction in volumes and the effectiveness of the treatment. 
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These preliminary results show that our method is helpful for clinical trials since it can calculate 

even minor volume changes and help physicians track the volume changes during the treatment 

cycle. 

 

Figure 11. Median variation (with intervals-lowest and highest) of PN volumes over time (of 34 
patients results in Figure 10). The median baseline volume reduces about 20% less at the end of 

treatments. 

6.3 Limitations and potential future improvements 

In the developed method, I linearly interpolate between slices to quantify the tumor volume from 

stacked slices. This simplification is something that should be improved, and it can be done by 3D 

reconstruction employing an orthogonal orientation mask, for example, using Axial and Sagittal 

results to create one final 3D object. 

Only one user intervention for the whole process in each slice existed in the suggested method. I 

demonstrated that the proposed segmentation required a group of circular areas (one-by-one) 

centered on sub-lesions that merge, resulting in a final ROI. Instead, a previous approach [22] 

traced the edge of the PN lesions cluster, namely a rough region over the PN. The developed 

method analyses sub-lesions one at a time, eliminating the manual adjustment step at the end 

(the final step in [22]). Our strategy increases repetition while decreasing manual tracing (More 
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circles and repetitive computation). These modifications 1) improve accuracy by focusing the 

histogram analysis on every sub-lesion, and 2) the time for making an ROI is less labor intensive 

and more straightforward. Consequently, I anticipate that our approach will reduce total 

segmentation time in reality. Unfortunately, there is no acceptable benchmark to compare with 

the study's computing time [22]. 

As stated in Chapter 3, many other advancements exist in MRI segmentation in general. Some are 

useful, and some are problematic to employ for segmenting PNs. For example, a dynamic 

threshold recognizing normal and tumor tissue instead of SSTMean is valuable since PNs can 

locate everywhere in the body, and the quality of images may vary from time to time. 

Also, probabilistic methods help track the lesion across slices. Thus, they can optimize the human 

intervention to only a few selected slices rather than all sets of MRI images. 

Machine learning-assisted algorithms can help to validate real-time segmentation based on a set 

of pre-segmented lesions and reduce labor-intensive parts. However, this field is relatively new, 

and the research is ongoing.  

In our proposed method, there is a lack of inter-observers analyses to show the reliability of the 

technique and steps that can affect from person to person. 
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Conclusion 

For assessing PNs and tracking their evolution, volumetric analysis and MRI image segmentation 

are essential. We developed a semi-automatic segmentation approach based on mean image 

intensity thresholding to estimate tumor volume and showed its accuracy compared to the 

available gold standard (manual tracing). Since our technique was independent of MRI sequences 

or orientations, it demonstrated remarkable versatility and reproducibility. We measured lesions 

of a wide range of sizes (3 cm3 to 375 cm3). Our method, promising for future clinical integration 

and application in clinical trials measuring the benefits of treatment, was fast and required just 

one manual step related to the ROI selection for each slice. 

The simplicity and accuracy of our method may allow its implementation in clinics to evaluate 

response rates in future studies. The algorithm could be integrated into current imaging 

platforms, such as picture archiving and communication systems (PACS). This integration would 

avoid the need to extract, transfer, and anonymize MRI data. Volume outputs from the algorithm 

could be included in radiological reports in real-time and shared with the patient during follow-

up visits. This algorithm may be used for other types of tumors, including central nervous systems 

tumors.  

Our algorithm has some limitations. Volume quantification is slowed down by the requirement 

for user interaction to determine the initial tumor ROI. This restriction is much more obvious in 

tumors with several unconnected lesions. Innovative methods, such as predicting volume changes 

by training data and mathematical models on massive datasets, are promising and may eliminate 

the need for human interaction [29], [30]. Artifacts and poor MRI image quality can impact the 

ROI selection and subsequent thresholding calculation based on mean image intensity, which 

further limits the accuracy of our technique. Using manual segmentation to compare our 

technique is inherently a drawback as there is currently no other gold standard for tumor volume 

measurement. To generate a 3D volume, we employ linear interpolation between slices. In a 

future investigation, we plan to analyze a whole-body scan in all available orientations using the 

segmentation approach adopted in this work. It is preferable to do manual tracing with a variety 

of experts (inter-observers analysis) to improve the accuracy of the gold standard. 
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Overall, the developed method presented in this study exhibited the ability to use for volumetric 

quantification of PNs. The introduced MRI segmentation method was relatively faster than 

manual tracing (the gold standard), reducing processing time from 44 MIN to 6 MIN on average 

while keeping a fair similarity to the gold standard result. The described method showed fewer 

variations from the gold standard volumes (2.2±1.9 %) in comparison to at least one previous 

method (8.2±8.7 %). The technique has the potential, and preliminary is proven to become a 

helpful tool for clinical purposes and help physicians to quantify PN lesions in 3D (Volume) instead 

of 1D and 2D measurements. 
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Appendix A – Supplementary figures of the article 

 

Supplementary Figure 1. MRI data of patients prescribed with either T1-, T2-, and/or STIR 
images in the three dimensions (except for Patient 6). Arrows indicate the location of the 

lesions. NA: Not available. 
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Supplementary Figure 2. A, Histogram analysis of the circular ROI drawn in B, the original MRI 
image. Segmentation of the lesion area using: C, SSTMean, D, SSTMini, and E, Manual tracing. 

 

 

 

 

 


