
Université de Montréal

Stability-Aware Simplification of Curve Networks

par

William Neveu

Département d’informatique et de recherche opérationnelle

Faculté des arts et des sciences

Mémoire présenté en vue de l’obtention du grade de

Maître ès sciences (M.Sc.)
en informatique

juillet 2022

© William Neveu, 2022

Université de Montréal
Faculté des arts et des sciences

Ce mémoire intitulé

Stability-Aware Simplification of Curve Networks

présenté par

William Neveu

a été évalué par un jury composé des personnes suivantes :

Margarida Carvalho
(présidente-rapporteuse)

Mikhail Bessmeltsev
(directeur de recherche)

Pierre Poulin
(membre du jury)

Résumé

La conception de réseaux de courbes nécessite la considération de plusieurs facteurs: la sta-

bilité de la structure, l’efficience matérielle, et l’aspect esthétique — des objectifs complexes

et interdépendants rendant la conception manuelle difficile.

Nous présentons une nouvelle méthode permettant de simplifier des réseaux de courbes

destinés à la fabrication. Pour un ensemble de courbes 3D donné, notre algorithme en

sélectionne un sous-ensemble stable. Bien que la stabilité soit traditionnellement mesurée

par l’ordre de grandeur des déformations entraînées par des charges prédéfinies, une telle

approche peut s’avérer limitante. Elle ne tient ni compte des effets de vibration pour les

structures de grandes tailles, ni des multiples possibilités de forces appliquées pour les struc-

tures et objets de plus petite taille. Ainsi, nous optimisons directement pour une déformation

minimale avec la charge dans le pire des cas (de l’anglais worst-case).

Notre contribution technique est une nouvelle formulation de la simplification de réseaux

de courbes pour la stabilité dans le pire des cas. Celle-ci mène à un problème d’optimisation

semi-définie positive en nombres entiers (MI-SDP). Malgré que résoudre ce problème

MI-SDP directement est irréaliste dans la plupart des cas, une intuition physique nous mène

à un algorithme vorace efficace. Enfin, nous démontrons le potentiel de notre approache à

l’aide plusieurs réseaux de courbes et validons l’efficacité de notre méthode en la comparant

de façon quantitative à des approaches plus simples.

Mots clés: réseaux de courbes, stabilité, design pour fabrication

5

Abstract

Designing curve networks for fabrication requires simultaneous consideration of structural

stability, cost effectiveness, and visual appeal — complex, interrelated objectives that make

manual design a difficult and tedious task. We present a novel method for fabrication-aware

simplification of curve networks, algorithmically selecting a stable subset of given 3D curves.

While traditionally, stability is measured as the magnitude of deformation induced by a set

of predefined loads, predicting applied forces for common day objects can be challenging.

Instead, we directly optimize for minimal deformation under the worst-case load.

Our technical contribution is a novel formulation of 3D curve network simplification

for worst-case stability, leading to a mixed-integer semi-definite programming problem

(MI-SDP). We show that while solving MI-SDP directly is impractical, a physical insight

suggests an efficient greedy heuristic algorithm. We demonstrate the potential of our

approach on a variety of curve network designs and validate its effectiveness compared to

simpler alternatives using numerical experiments.

Keywords: curve networks, stability, fabrication-aware design

7

Contents

Résumé . 5

Abstract . 7

List of Tables. 13

List of Figures. 15

List of Acronyms and Abbreviations . 17

Acknowledgements . 19

Chapter 1. Introduction. 21

Architecture and Engineering . 21

Free-form Architecture . 22

Curve Networks . 24

Chapter 2. Related Work . 27

2.1. Fabrication-Aware Surface Design . 27

2.2. Stability Optimization . 28

2.3. Eigenvalue Optimization . 29

2.4. Computational Design of Curve Networks . 31

2.5. Truss Topology Optimization for Structural Design. 32

9

Chapter 3. Methodology . 35

3.1. Curves . 35

3.2. Intersections . 37

3.3. Elastic Energy . 37

3.4. Optimization . 38

3.5. Validation . 39

Chapter 4. Stability-Aware Simplifaction of Curve Networks 41

Contributions . 44

4.1. Introduction . 45

4.2. Related Work . 47

4.2.1. Fabrication-Aware Surface Design . 47

4.2.2. Stability Optimization . 48

4.2.3. Eigenvalue Optimization . 48

4.2.4. Computational Design of Curve Networks . 49

4.2.5. Truss Topology Optimization For Structural Design . 49

4.3. Curve Network Simplification . 51

4.3.1. Computational Model of a Curve Network . 51

4.3.2. Simplification Framework . 53

4.3.3. Mixed-Integer Semi-definite Programming (MISDP) Formulation 56

4.4. Solver Mechanism. 58

4.5. Results, Validation, and Discussion. 59

Chapter 5. Conclusion . 65

10

References . 67

11

List of Tables

3.1 Curve tracing approaches per example. 36

4.1 Algorithm statistics for different curve networks. 62

13

List of Figures

1.1 Classical examples of architectural curved surfaces . 22

1.2 Contemporary examples of architectural free-form surfaces . 23

1.3 Close-up of the panels at the Walt Disney Concert Hall . 23

1.4 Deployement of the Toledo gridshell 2.0 . 25

1.5 Examples of the irregular curve network aesthetic . 26

2.1 Compression vs tension . 28

2.2 Gravitational vs worst-case load . 28

3.1 Generating a geodesic curve. 36

3.2 Representation of fixed intersections . 37

3.3 Sampled surfaces for comparison . 39

4.1 Example of input and output curve networks. 45

4.2 Examples of curve networks . 47

4.3 Truss topology optimization VS curve network optimization . 50

4.4 Curve representation. 52

4.5 Influence of parameter αi . 54

4.6 Nullspace of a curve segments . 54

4.7 Iterative results . 56

4.8 Relaxation of the binary constraint . 56

15

4.9 Solving for equilibrium. 60

4.10 Comparing our algorithm to a brute force approach . 60

4.11 Comparing results: random algorithm and our algorithm . 61

4.12 A gallery of additional results. 62

16

List of Acronyms and Abbreviations

3D Three-dimensional

MI Mixed integer

SDP Semi-definite programming

PSD Positive semi-definite

TTO Truss topology optimization

17

Acknowledgements

I would like to thank my family and friends for their presence and support.

A special thank to Ivan, for welcoming me to the lab and co-authoring two papers with me.

To Ulric for his help demystifying too many compilation errors.

To Robin for letting me use his printer.

And to Misha for his guidance and patience.

19

Chapter 1

Introduction

Architecture and Engineering

Architecture is part art form, part engineering. While the overall goal — to create a

building or another structure is the same, each part has its own challenge. As an art, archi-

tecture focuses on the visual appearance as well as intrinsic aspect of a project: circulation,

lighting, space use, etc. Staying true to the architect’s vision is paramount. From the engi-

neering standpoint, the focus is structural stability, i.e., constructing buildings that do not

break down at the first gust of wind. Stability concerns will always trump design intents

when making final decisions, so a designer needs to be aware of stability constraints early

in the design process. Failure to do so often shows up as ad-hoc extra structural elements

(think of columns in the middle of a hallway), or can lead to drastic changes in the design,

steering the project away from the architect’s original intent. For many architects, designing

while taking stability factors into account is challenging, since they are not trained engi-

neers. Even for architects with some engineering training, thinking about those aspects may

distract from the creative process. In our work we aim to help architects in their design

process by creating intuitive tools that take stability constraints into account.

Fig. 1.1. Classical examples of architectural curved surfaces. (a) The rib vault ceiling of the
Saint-Séverin church in France. (b) Arches at the Sweetheart Abbey in Scotland. (c) Painting
of the Pantheon’s dome in Italy. Images by Roman Bonnefoy, designingbuildings.co.uk,
Giovanni Paolo Panini respectively.

Free-form Architecture

If traditional architecture can be described as straight lines, planes, and right angles,

free-form architecture is all about smooth curved surfaces. Curved surfaces have been used

at least since antiquity, often as vaults or domes (Fig. 1.1). Modern free-form architecture,

however, leverages the power of computers and 3D modeling software to create complex and

often irregular curved surfaces. The past few decades of the digital age have introduced such

complex creations as the works of Zaha Hadid (Fig. 1.2a) and Frank Gehry (Fig. 1.2b).

Despite its visual appeal, free-form architecture remains rare. One reason might be that

the process of capturing an architect’s vision in a digital surface ready for fabrication is

difficult. This process is a complex interplay of three components: 3D surface modeling,

rationalization, and physical simulation. First, during 3D modeling, the architect digitally

renders their vision of the surface 3D shape with the help of modeling tools. Second, the

digital surface has to be approximated via smaller individual parts that will form it when

assembled, a process called rationalization. For Figure 1.3, this involves designing each panel,

22

Fig. 1.2. Contemporary examples of architectural free-form surfaces. (a) Heydar Aliyev
Centre in Baku, Azerbaijan, designed by Zaha Hadid Architects. (b) Walt Disney Concert
Hall in Los Angeles, USA, designed by Frank Gehry. (c) The Great Court in London,
England, designed by Foster + Partners. (d) Yas Hotel in Abu Dhabi, UAE, designed by
ARUP. Images by Andrea Pistolesi, Sharad Raval, Nigel Young, ARUP respectively.

Fig. 1.3. Close-up of the rectangular panels at the Walt Disney Concert Hall. Image by
spacecadet-01 on reddit.com.

23

with some of them potentially being unique in dimension or curvature. Third, a digital

structure undergoes a physical simulation and analysis to evaluate its stability. The stability

issues discovered during simulation are addressed in the next design iteration. Hopefully,

after a few iterations, the structure is ready for fabrication.

As discussed previously, the issues discovered during the simulation and analysis stage

often may lead to undesired changes that go against the designer’s intent. While this is

also true for traditional architecture, the problem is exacerbated for free-form architecture.

Having more freedom makes it hard to find references, i.e., similar realized projects, to

learn from. Without references on structural stability, a large part of the structure’s design

becomes guess work. In this thesis, we develop an intuitive design tool that takes into account

rationalization methods and structural stability.

Curve Networks

One interesting rationalization of free-form structures is the curve network (Figs. 1.4, 1.5).

A curve network is built from multiple rods bent into the shape of a target surface. A popular

class of curve networks is the gridshell (Fig. 1.4). They use long flexible rods intersecting

each other regularly in a gridlike fashion. They are attractive for industrial applications,

because the rods can all be assembled on the ground (Fig. 1.4a) and subsequently deployed

by placing their ends in predetermined positions resulting in a curved surface (Fig. 1.4b).

However, gridshells come with a downside: they are limited to regular grid patterns. Irregular

curve networks, as their name implies, allow for less “tidy” patterns (Fig. 1.5). These pattern

can be attractive, but they remain rare because there are no software tools allowing for easy

design.

We set out to develop a tool to help design irregular curve networks. We would like a user

to be able to provide curves they believe are meaningful to their design — for their aesthetic,

density, placement, etc. — but not necessarily stable. Our tool should automatically add

and remove curves to maximize the structure’s stability, while staying true to the designer’s

intents.

24

Fig. 1.4. Deployement of the Toledo gridshell 2.0. The gridshell is first assembled on a flat
surface (a), before being deployed (b,c). The fully deployed gridshell (d) stands on its own
(scaffolding was later removed). This figure is taken directly from [D’Amico et al., 2015].

This brings us to the following problem statement.

Problem statement: Given a set of curves that intersect each other on a surface, select

a subset that maximizes the structure’s worst-case stability, while respecting a provided

material budget.

As this is a master’s thesis by article, we will first explore how our problem fits in related

work. Then, we briefly talk about methodology and explain specifics of the problem we will

be solving in the article. After that, we present the article forming the core of this thesis,

with no modification except for formatting. We end this thesis with a short discussion on

possible improvements and future work.

25

Fig. 1.5. Irregular curve networks used in architecture. This unique aesthetic is rarely
seen at such scales. (a) Beijing National Stadium in Beijing, China, designed by Herzog &
de Meuron, ARUP, and China Architecture Design & Research Group. (b) Hans Wilsdorf
bridge in Geneva, Switzerland, by Brodbeck-Roulet SA. (c) Serpentine Gallery Pavilion 2002
in London, England, by Toyo Ito and Cecil Balmond. Images by www.china.org.cn, Cimolai,
Sylvain Deleu respectively.

26

Chapter 2

Related Work

Here, while trying to situate our work into a body of publications, we will try to ease you

into the problem, its setup and some of our decisions. This chapter is mostly the same

as the Related Work section of the article presented in this thesis (Sec. 4.3). However,

you will find some additional explanations and publications related to our own. We will

present related work in fabrication-aware surface design, stability optimiztion, eigenvalue

optimization, computational design of curve networks, and truss topology optimization for

structural design.

2.1. Fabrication-Aware Surface Design

As explained in the introduction chapter (Chap. 1), building a surface from an assembly

of curves is an example of what we call rationalization. Generally, the fabrication of large

surfaces requires rationalization, as building them as one big piece is impractical or impos-

sible. Other fabrication-aware rationalization approaches include self-supporting surfaces

[Liu et al., 2013; Panozzo et al., 2013; Vouga et al., 2012; de Goes et al., 2013], auxetics

[Konaković-Luković et al., 2018], zippables [Schüller et al., 2018], and others. As their name

indicates, self-supporting surfaces work to mitigate their own weight. For example, Panozzo

et al. [2013] rationalize the surface with bricks. Bricks below carry the weight of bricks above.

This is called a compression-only structure (Fig. 2.1). Every element, in this case a brick, is

compressed but never tensioned. In contrast, we consider both compression and tension.

Fig. 2.1. We consider an element, in this case a brick, under compression when outside
forces (red) are aimed towards its interior (a). When the outside forces are aimed away from
its interior, the brick is under tension (b). In either case, the element will cancel out outside
forces (green), if it is within its capabilities.

Fig. 2.2. A majority of loads of a fixed norm (a) result in small deformations (b). However,
one can find a load of the same norm (c), which maximizes the deformation of the bar (d).
Note that there is a second worst-case load in this situation: the horizontal reflection of the
load in (c).

2.2. Stability Optimization

Our main focus when adding or removing curves from a network is that it remains stable.

Detecting and reducing structural weaknesses in objects designed for 3D printing is a problem

that has received considerable attention from the graphics community. One line of research

aims at identifying regions of high stresses using simulation with user-defined or heuristically

28

determined loads [Stava et al., 2012; Lu et al., 2014]. Instead of depending on pre-defined

applied forces, Langlois et al. [2016] use stochastic optimization to estimate worst-case loads.

Cui et al. [2020] expand on this approach with a linear-time algorithm for probability gradient

computation. Rather than relying on purely stochastic forces, Schumacher et al. [2018]

account for uncertainties in load locations and directions by parameterizing the space of

expected deviations. While they optimize for worst-case loads within a low-dimensional

subspace, we use an eigenvalue optimization method that considers all possible load directions

simultaneously. The idea of using eigenanalysis to discover structural weaknesses has been

explored before, including work by de Gournay et al. [2008], Zhou et al. [2013], Zehnder

et al. [2016]. These approaches use eigenanalysis to detect weak regions, but resort to other

means for improving strength. In contrast, our method directly maximizes its worst-case

stability criterion, i.e., the minimum eigenvalue of the system’s stiffness matrix. As shown

in Figure 2.2, worst-case leads to larger deformations than widely used gravitational loads.

It is important to note that whether the worst-case load appears natural or not is irrelevant.

This is due to the fact that the worst-case load is related to the worst vibration mode of the

structur. It is our prerogative that we should always consider such vibration modes if we are

to guarantee stability.

2.3. Eigenvalue Optimization

Our worst-case stability criterion gives rise to a constrained optimization problem with

bounds on the minimum eigenvalue of a matrix. First, let us review the physical intuition

that allows us to use eigenanalysis to measure stability. Given a single spring – elastic

system where Hooke’s law applies: −→
F = k−→x , with force vector −→

F , stiffness coefficient k, and

displacement vector −→x . This also stands in the case of a system of multiple springs, but

k will be replaced by a symmetric positive semi-definite stiffness matrix H. Therefore, we

have:
−→
F = H−→x ,

29

which models the relationship between force and displacement in the system. Next, we define

the worst-case load as the force of fixed norm that induces the displacement of greatest

magnitude, or inversely, as the force of smallest norm that induces a displacement of fixed

norm. For a given structure, we can find the worst-case load and displacement pair by

solving the following optimization model:

min−→x
||H−→x ||

s.t. ||−→x || = 1.

In turn, since H is a symmetric PSD matrix, the previous model is equivalent to this second

optimization model:

min−→x

1
2

−→x T H−→x

s.t. ||−→x ||2 = 1.

Now, this model can easily be expressed through a Lagrangian polynomial:

L = 1
2

−→x T H−→x − λ(−→x T −→x − 1).

By solving

∇L = H−→x − λ−→x = 0,

we can finally get −→x . However, we also see from the last equation that this problem is the

eigensystem H−→x = λ−→x . This indicates that the worst-case load will be an eigenvector of

H. By rearranging H−→x = −→
F = λ−→x , we get:

λ = |
−→
F |

|−→x |
.

From this, we can clearly see that the smaller the norm of the force vector −→
F needs to be

to generate a displacement vector −→x of a given norm. This means that the worst-case load

will in fact be the eigenvector of λ1, the smallest eigenvalue of H. Consequently, we define

the stability of the structure as λ1, and will try to maximize this value.

30

Eigenvalue optimization problems occur naturally in many applications of engineering

design, e.g., when tuning the frequency response of a structure [Torigaki et al., 1994] or

optimizing a continuous elastic structure to minimize its worst-case compliance [Cherkaev

and Cherkaev, 2004]. In the graphics community, eigenvalue optimization problems have

been investigated, e.g., in geometry processing as a means of enforcing bounds on deformation

[Kovalsky et al., 2014]. Our approach likewise gives rise to a semi-definite programming

problem, but whereas those works optimize over a set of continuous parameters, our decision

variables are binary.

Eigenvalue optimization problems have also been investigated in the context of compu-

tational design using both gradient-free [Bharaj et al., 2015] and gradient-based methods

[Musialski et al., 2016; Panetta et al., 2017]. Rather than optimizing for target eigenvalues,

Chen et al. [2017] aim at preserving the smallest eigenvalue during mesh coarsening for elas-

todynamics applications. A generalization of this idea to spectrum-preserving coarsening of

geometric linear operators was proposed by Liu et al. [2019]. While all of these methods

work on continuous variables, we address the discrete problem of selecting an optimal subset

from a large set of predefined candidate curves.

2.4. Computational Design of Curve Networks

A number of work consider the design of curve networks on surfaces. One line of research

focuses on biaxial or triaxial weaving to create regular ribbon structures [Vekhter et al., 2019;

Campen and Kobbelt, 2014; Akleman et al., 2009; Takezawa et al., 2016; Tao et al., 2016,

2017; Ren et al., 2021]. Other physical curve networks that have been explored include wire

meshes [Garg et al., 2014], structures made from planar pre-bent rods [Miguel et al., 2016]

and circular arcs [Bo et al., 2011], 3D-printed curve networks [Pérez et al., 2015; Pérez et al.,

2017], and regular gridshells [Pillwein and Musialski, 2021; Panetta et al., 2019; Lienhard

and Knippers, 2015; Schling et al., 2018]. While the above methods focus on highly regular

networks and/or fixed topology, we target curve networks that are not necessarily regular

with a priori unknown combinatorics.

31

We are inspired by the work of Zehnder et al. [2016] where they tile a surface with a

repeated curve pattern, optimizing for connectedness and low deformation of the network.

However, they only identify weak areas in their network. Instead, we directly optimize the

topology of our curve network for maximal stability. Following previous work on curve

network design, our method relies on discrete elastic rods [Bergou et al., 2008, 2010] and its

extension to network connections [Pérez et al., 2015; Panetta et al., 2019] as an underlying

simulation model.

2.5. Truss Topology Optimization for Structural Design

Our optimization method (Sec. 4.3) is inspired by progress in truss topology optimization

(TTO) for structural systems, where a network of straight bars connected at a predefined

set of nodes is optimized to sustain a fixed load or satisfy a vibration constraint (Fig. 4.3).

We outline only the most relevant work, see [Stolpe, 2016] for an in-depth overview.

Many TTO approaches, starting from the classical work of Dorn et al. [1964], find thick-

nesses of the straight bars, assuming a predefined set of nodes where the loads are applied.

For instance, [Ben-Tal and Nemirovski, 1997] optimize straight bar widths with respect to a

set of load cases. Achtziger and Kočvara [2007] introduce TTO formulations using the min-

imum eigenvalues to analyze the free vibrations of the structures. More recently, Kočvara

[2015] considers a variant of TTO, where widths can take only integer values, including 0,

leading to an integer linear SDP problem. These work rely on knowing beforehand the set

of nodes where the bars connect, necessary to define loads or vibration modes. In our case,

however, nodes, i.e., curve intersections, are not fixed and may appear or disappear during

optimization, leading to a strictly harder problem.

A small number of work address this problem by including the set of nodes as binary

variables in the overall optimization, focusing on constraining feasible topologies [Cerveira

et al., 2010] or preventing buckling [Mela, 2014].

32

In a recent work, Arora et al. [2019] find a regular, structurally sound truss configuration

given a load, using mesh parameterization and quad meshing methods, where parameteri-

zation directions are aligned with principal stresses. Jiang et al. [2019] optimize structure

weight and compliance, given a load case, via a combination of geometrical and topological

optimization.

33

Chapter 3

Methodology

In order to solve our problem, we need to make choices as to which approaches we use to

address every facet of the problem. In this chapter, we will flesh out our objective and

provide explanations on our choice of approaches.

3.1. Curves

As indicated in the problem statement (Chap. 1), a curve network needs to be generated

prior to solving the problem. There are multiple ways to create a curve network. The

first solution is to trace the curves manually, drawing them in a 3D modeling software. In

our case, we do so with Rhinoceros 3D [McNeel et al., 2010]. The curves then need to be

imported by the algorithm. The second solution is to algorithmically trace the curves. Most

often we do so by drawing geodesics on the surface (Fig. 3.1). Otherwise, we trace the curves

by guiding them with a frame field — an assignment of two directions per point, defined

over the surface. We noticed that input curve networks geared toward equal density over

the target surface generally result in prettier results. As this is more easily achieved with

manually drawn curves, we did not limit ourselves to only using algorithmically generated

curves (Table 3.1).

Curves themselves are modeled as polylines. This representation provides multiple ad-

vantages:

• Allows curves to be traced over meshes.

Fig. 3.1. The process used to generate the curves we describe as geodesics. (a) Choose
a point on the surface, preferably on a boundary. (b) Choose a shooting direction for the
curve. (c,d) Trace a polyline along the mesh and stop once a boundary of the surface is hit.

Surface Fig. # curves generated by
Geodesics Frame field Manually drawn

hill 4.1 70 0 3
kagome 4.7a 0 0 114

roof 4.7b 0 0 75
stadium 4.11a 100 0 0
tower 4.11d 0 0 33
shell 4.12a 0 63 0

bunny 4.12b 75 0 0
tent 4.12c 76 0 36

arched shell 4.12d 0 63 7

Table 3.1. Curve tracing approaches per example.

• Easy to read and manipulate.

• Shares many similarities to trusses (Fig. 4.3).

• Can be used in conjunction with discrete elastic energies [Bergou et al., 2008, 2010].

We simulate every curve to be a bent straight rod with isotropic bending response. This

greatly simplifies our equations and implementation. However, the discrete elastic rods’

model of Bergou et al. [2008, 2010] also covers elastic energies for pre-bent rods and

anisotropic bending response. The radius and stiffness of the rods can be specified by the

user. Nonetheless, for practicality, every example in the article used the same rod properties.

The final user input to the algorithm is the material budget. It gives us an upper bound

for the total length of the curves in the output of the algorithm. During optimization, this

upper bound will be used to constrain the system. In practice, this parameter controls the

density of the resulting curve network.

36

Fig. 3.2. When two curves intersect, they do so at a certain point (yellow) along their
length (red and green). As long as these two curves are present in a curve network, their
intersection will always happen at curve parameters t1 = 0.3 and t2 = 0.5, prohibiting them
to slide along each other. The intersection can still move in 3D space.

3.2. Intersections

By the nature of our problem, curves must intersect so that they work together to become

more stable. As curves are all traced over a common surface, they naturally cross each

other. In practice, we model intersections as shared vertices between the intersecting curves.

We allow intersections to move in space, but not to move along their intersecting curves

(Fig. 3.2). Lastly, our elastic energy (Sec. 4.3) allows us to simply sum up per-curve energy

at an intersection vertex to obtain the energy of that vertex.

3.3. Elastic Energy

The energy of an elastic rod should normally be defined as the sum of its bending,

stretching and twisting energies [Bergou et al., 2008, 2010]. We deliberately chose to not

37

rely on twist as a load-bearing mechanism. Following common practice in truss design, we

do not enforce relative orientations between curves at intersections since this would lead to

large moments at the joints. Furthermore, we neither constrain cross-sectional orientations

of curves at intersections, nor at their ends. Since all curves are initially straight and their

cross-sectional orientations are not constrained, the lowest energy configuration will always

be twist-free, regardless of how bent curves are [Bergou et al., 2008]. Consequently, cross-

sectional orientations and twist are not needed in our model.

3.4. Optimization

We optimize the curve networks under the worst-case load instead of user prescribed,

and possibly more intuitive load cases. Knowing which loads to brace against is a central

challenge in structural engineering. Even If the probability distribution of uncertain loads

is known, one must brace for the worst-case if critical failure is a risk. We argue that,

unless worst-case loads can safely be excluded, ignoring them for architectural design would

be misguided. The worst-case loads we consider have a clear physical interpretation: the

eigenvector corresponding to the minimum Hessian eigenvalue is directly connected to the

lowest-frequency vibration mode of the structure.

Since we are selecting a subset of curves, it is evident that our problem is a binary

assignment one: from an initial set, we must select a subset minimizing some energy. Either

the curves from the initial set are kept or they are removed. An alternative approach would

have been to make our variables associated with the presence of each curve continuous, for

example, controlling each curve’s radius. But, such an approach makes fabrication harder.

To fabricate such a network, one must have access to rods of multiple and possibly unique

diameters. We opt for a simpler fabrication process by assuming that every curve in the

network has the same properties.

38

Fig. 3.3. The surfaces used to trace the random curve networks used in Figure 4.10.

3.5. Validation

As we solve a novel problem, there is no pre-existing algorithms for us to compare to.

However, we devised two simple approaches to compare our work to. First, a brute-force

algorithm that computes the stability of every feasible subset for a given set of curves. The

complexity of this algorithm is O(2n). Therefore, we only use it for small initial curve

networks. In practice, computing the brute-force solution for a single network of 20 curves

takes multiple hours. We compare smallest eigenvalues, as well as the percentile of our

solution among all feasible combinations. Second, a random search algorithm: we time our

own algorithm, then use this as a time limit for an algorithm that evaluates the stability of

random feasible subsets. This approach serves as a baseline, which we aim to outperform.

The curve networks used to gather data for Figure 4.10 are random geodesics traced over

four simple surfaces (Fig. 3.3).

39

Chapter 4

Stability-Aware Simplifaction
of Curve Networks

William Neveu

This article was published in ACM Transactions on Graphics

(SIGGRAPH 2022)

Stability-Aware Simplifaction of Curve Networks

by

William Neveu1, Ivan Puhachov1, Bernhard Thomaszewski2, and Mikhail Bessmeltsev1

(1) Université de Montréal

(2) ETH Zürich

This article was published in ACM Transactions on Graphics (SIGGRAPH 2022).

43

Contributions

As first author, my contributions are various. I have participated in the elaboration of

both algorithms, implemented them, and produced the data for all figures. Furthermore, I

wrote the first draft of the article and was actively involved in further modifications leading

to the final manuscript.

Ivan Puhachov is a fellow student under the supervision of Mikhail Bessmeltsev. Prior to

this publication, we had worked together on his SIGGRAPH article on 2-dimensional sketch

vectorization [Puhachov et al., 2021]. For the article that follows, he produced Figures 4.1,

4.4, 4.5, 4.7, 4.9, 4.11, and 4.12. He also implemented an algorithm that traces frame field–

guided curves on meshes. Due to time constraints, only Figures 4.12a and 4.12d used curves

generated by this tool.

With the most experience in the field of digital fabrication and physics-based simulation,

Prof. Bernhard Thomaszewski gave us unique insights that we would otherwise have been

missing. As for the writing, he participated to the abstract, the introduction, and the related

work sections. Lastly, his help was instrumental when writing a rebuttal to the SIGGRAPH

reviewers, which ultimately got this paper accepted for publication.

As my supervisor, Prof. Mikhail Bessmeltsev helped shape and guide the article to its

final state. From suggestions on experimentation to crucial ideas such as the use of SDP

constraints, this article would not exist without his help. He made sure that I did my fair

share of thinking and lifting, always making our discussions back-and-forths where my ideas

were welcome.

44

Abstract. This abstract is identical to the one presented on page 7.

Designing curve networks for fabrication requires simultaneous consideration of structural

stability, cost effectiveness, and visual appeal — complex, interrelated objectives that make

manual design a difficult and tedious task. We present a novel method for fabrication-aware

simplification of curve networks, algorithmically selecting a stable subset of given 3D curves.

While traditionally, stability is measured as the magnitude of deformation induced by a set

of predefined loads, predicting applied forces for common day objects can be challenging.

Instead, we directly optimize for minimal deformation under the worst-case load.

Our technical contribution is a novel formulation of 3D curve network simplification

for worst-case stability, leading to a mixed-integer semi-definite programming problem (MI-

SDP). We show that while solving MI-SDP directly is impractical, a physical insight suggests

an efficient greedy heuristic algorithm. We demonstrate the potential of our approach on a

variety of curve network designs and validate its effectiveness compared to simpler alterna-

tives using numerical experiments.

Keywords: curve networks, stability, fabrication-aware design

Fig. 4.1. We automatically simplify a user-provided curve network on a surface (a) to fit
a given material budget with nearly optimal stability (b). Since the directions of applied
loads are hard to predict, we optimize for worst-case stability and minimize the maximum
deformation induced by a worst-case external force of unit norm in total (c), implying smaller
deformations for all other unit-norm forces, in particular, for the standard gravitational load
(d).

4.1. Introduction

From birds’ nests to modern stadiums, from weaved baskets to environmental sculpture,

from spiderwebs to rooftops, curve networks are found commonly in nature, used in art and

crafts, architecture and engineering (Fig. 4.2). Made out of wicker, wire, bent wooden or

45

metallic beams, these curves are an aesthetically pleasing and functional means to convey

complex 3D surfaces. However, designing such curve networks for fabrication is challenging.

Artists have to manage requirements of very different, often contradicting, nature: create

appealing designs, use little material, and make sure the structure is stable. This often forces

artists to follow a cumbersome process where they iteratively adjust their design and test its

stability via simulation or prototyping.

In traditional drawing, artists often ideate via a freeform rough sketch, which they then

clean up, taking engineering requirements into account [Eissen and Steur, 2007]. Similarly,

one natural workflow to create a 3D curve network is to first draft a complex curve network on

the target surface, guided only by aesthetics, then simplify it, taking into account engineering

and budget constraints.

Inspired by this metaphor, we present a new method for fabrication-aware simplification

of a given curve network. More specifically, our method selects a subset of given curves

on a 3D surface to maximize the curve network’s worst-case stability. The initial set of

curves may be created by sketching interfaces [Arora and Singh, 2020], traditional modeling

software [Autodesk, 2022], or various curve tracing algorithms. We demonstrate that our

method produces complex yet stable simplified curve networks (Fig. 4.1).

Traditionally, stability of a structure is expressed as the amount of deformation induced

by a particular set of loads. Yet, loads for common-day objects, small-scale architecture, or

sculptures are hard to predict. Therefore, we focus on an alternative definition of stability,

measuring the deformation of the structure under the worst-case load, i.e., an external force

vector of fixed magnitude but a priori of unknown direction. Thus, our problem is selecting

a subset of the given curves, within a fixed material budget, maximizing the structure’s

worst-case stability.

Our technical innovation is a novel formulation of this problem, where the notion of

worst-case stability, related to eigenanalysis of the network’s stiffness matrix, leads us to a

mixed-integer semi-definite programming (MI-SDP) instance. MI-SDP problems are known

to be NP-hard and we show that optimization via modern solvers is infeasible. Instead,

46

Fig. 4.2. Examples of curve networks in architecture, visual art, and design. (a) The roof
of the National Maritime Museum in Amsterdam. (b) A sculpture by Patrick Dougherty at
Smithsonian American Art Museum. (c) Beijing National Stadium. Images by BristolIcarus,
Eb0178a (cropped), Peter23 respectively, licensed under CC BY-SA.

we leverage intuition from the physical world that suggests an elegant and simple greedy

approximation approach, which we demonstrate to be efficient and accurate.

We validate our method numerically by analyzing its approximation properties, compar-

ing it to a random subset selection scheme, and demonstrating its applications on a gallery

of curve networks.

4.2. Related Work

Our work is inspired by the progress in two areas: computational design of curve networks

and truss topology optimization. We focus only on the most relevant work.

4.2.1. Fabrication-Aware Surface Design

The graphics community has seen a significant progress in fabrication-aware design of

surfaces, including self-supporting surfaces [Liu et al., 2013; Panozzo et al., 2013; Vouga et al.,

2012; de Goes et al., 2013], auxetic [Konaković-Luković et al., 2018], zippables [Schüller et al.,

2018], and others. These work often focus on either surface approximation only [Schüller

et al., 2018] or surface-specific aspects such as paneling and mold reuse [Eigensatz et al.,

2010; Fu et al., 2010; Pellis et al., 2021] or face regularity [Vaxman et al., 2017]. In contrast,

we focus on simplification of curve networks, whose faces may not be regular or even closed

(Fig. 4.1).

47

4.2.2. Stability Optimization

Detecting and improving structural weaknesses in objects designed for 3D printing is a

problem that has received considerable attention from the graphics community. One line

of research aims at identifying regions of high stresses using simulation with user-defined

or heuristically determined loads [Stava et al., 2012; Lu et al., 2014]. Instead of depending

on predefined applied forces, Langlois et al. [2016] use stochastic optimization to estimate

worst-case loads. Cui et al. [2020] expand on this approach with a linear-time algorithm

for probability gradient computation. Rather than relying on purely stochastic forces, Schu-

macher et al. [2018] account for uncertainties in load locations and directions by parame-

terizing the space of expected deviations. While they optimize for worst-case loads within

a low-dimensional subspace, our eigenvalue optimization method considers all possible load

directions simultaneously. The idea of using eigenanalysis to discover structural weaknesses

has been explored before, including work by de Gournay et al. [2008], Zhou et al. [2013],

Zehnder et al. [2016]. These approaches use eigenanalysis to detect weak regions, but re-

sort to other means for improving strength. In contrast, our method directly maximizes its

worst-case stability measure, i.e., the minimum eigenvalue of the system’s stiffness matrix.

4.2.3. Eigenvalue Optimization

Our worst-case stability criterion gives rise to a constrained optimization problem with

bounds on the minimum eigenvalue of the stiffness matrix. Eigenvalue optimization problems

occur naturally in many applications of engineering design, e.g., when tuning the frequency

response of a structure [Torigaki et al., 1994] or optimizing a continuous elastic structure to

minimize its worst-case compliance [Cherkaev and Cherkaev, 2004]. In the graphics commu-

nity, eigenvalue optimization problems have been investigated, e.g., in geometry processing

as a means of enforcing bounds on deformations [Kovalsky et al., 2014]. Our approach like-

wise gives rise to a semi-definite programming problem, but whereas those work optimize

over a set of continuous parameters, our decision variables are binary. Eigenvalue opti-

mization problems have also been investigated in the context of computational design using

48

both gradient-free [Bharaj et al., 2015] and gradient-based methods [Musialski et al., 2016;

Panetta et al., 2017]. Rather than optimizing for target eigenvalues, Chen et al. [2017] aim at

preserving the smallest eigenvalue during mesh coarsening for elastodynamics applications.

A generalization of this idea to spectrum-preserving coarsening of geometric linear operators

was proposed by Liu et al. [2019]. While all of these methods work on continuous variables,

we address the discrete problem of selecting an optimal subset from a large set of predefined

candidate curves.

4.2.4. Computational Design of Curve Networks

A number of work consider the design of curve networks on surfaces. One line of research

focuses on biaxial or triaxial weaving to create regular ribbon structures [Vekhter et al., 2019;

Campen and Kobbelt, 2014; Akleman et al., 2009; Takezawa et al., 2016; Tao et al., 2016,

2017; Ren et al., 2021]. Other physical curve networks that have been explored include wire

meshes [Garg et al., 2014], structures made from planar pre-bent rods [Miguel et al., 2016]

and circular arcs [Bo et al., 2011], 3D-printed curve networks [Pérez et al., 2015; Pérez et al.,

2017], and regular gridshells [Pillwein and Musialski, 2021; Panetta et al., 2019; Lienhard

and Knippers, 2015; Schling et al., 2018]. While the above methods focus on highly regular

networks and/or fixed topology, we target curve networks that are not necessarily regular

with a priori unknown combinatorics.

Following previous work on curve network design, our method relies on discrete elastic

rods [Bergou et al., 2008, 2010] and its extension to network connections [Pérez et al., 2015;

Panetta et al., 2019] as an underlying simulation model.

4.2.5. Truss Topology Optimization For Structural Design

Our optimization method (Sec. 4.3) is inspired by progress in truss topology optimization

(TTO) for structural systems, where a network of straight bars connected at a predefined

set of nodes is optimized to sustain a fixed load or satisfy a vibration constraint (Fig. 4.3).

We outline only the most relevant work; see [Stolpe, 2016] for an in-depth overview.

49

Fig. 4.3. Typical truss topology optimization approaches (a) optimize a 2D/3D network
of straight bars (black) connected at predefined nodes (red), either optimizing the compli-
ance for a set of loads or satisfying vibration constraints. In contrast, we simplify a curve
network on a given surface where the set of nodes, i.e., curve intersections, is not known
beforehand (b).

Many TTO approaches, starting from the classical work of Dorn et al. [1964], find thick-

nesses of the straight bars, assuming a predefined set of nodes where the loads are applied.

For instance, Ben-Tal and Nemirovski [1997] optimize straight bar widths with respect to

a set of load cases. Achtziger and Kočvara [2007] introduce TTO formulations using the

minimum eigenvalues to analyze the free vibrations of the structure. More recently, Kočvara

[2015] considers a variant of TTO, where widths can take only integer values, including zero,

leading to an integer linear SDP problem. These work rely on knowing beforehand the set

of nodes where the bars connect, necessary to define loads or vibration modes. In our case,

however, nodes, i.e., curve intersections, are not fixed and may appear or disappear during

optimization, leading to a strictly harder problem.

A small number of work address this problem by including the set of nodes as binary

variables in the overall optimization, focusing on constraining feasible topologies [Cerveira

et al., 2010] or preventing buckling [Mela, 2014].

50

In a recent work, Arora et al. [2019] find a regular, structurally sound truss configuration

given a load, using mesh parameterization and quad meshing methods, where parameteri-

zation directions are aligned with principal stresses. Jiang et al. [2019] optimize structure

weight and compliance, given a load case, via a combination of geometrical and topological

optimizations.

Trusses, however, support the load only via compression of straight rods. In our setup,

however, both compression and bending of curvilinear rods are important load-bearing mech-

anisms, requiring a different formulation.

4.3. Curve Network Simplification

At the foundation of our method lies the mathematical model to simulate the deformation

of a network of bent rods. We first focus on the physical model for the simulation of a curve

network with known geometry and connectivity (Sec. 4.3.1), then describe our algorithm to

simplify a curve network (Sec. 4.3.2).

4.3.1. Computational Model of a Curve Network

We model each curve, a polyline initially lying on the target mesh, as a discrete elastic

rod [Bergou et al., 2008, 2010]. Curves are connected to each other at the intersection points

and their endpoints are fixed at the boundary of the given surface (Fig. 4.4).

For simplicity of exposition, we assume each rod is straight when manufactured and

then bent during assembly. Initial curvature can be incorporated into the model with no

changes to our algorithm. We do not enforce relative curve orientations at intersections

since this would lead to large moments at the joints. Furthermore, we neither constrain

cross sectional orientations of curves at intersections, nor at their endpoints. The lowest

energy configuration thus will always be twist-free, regardless of how bent curves are. We

therefore omit the twisting energy from Bergou et al. [2008].

Therefore, the elastic energy of each curve i of m + 1 vertices with vertex coordinates

xi
j ∈ R3, j = 0, . . . ,m is a sum of stretching and bending terms

51

Fig. 4.4. Curves are represented as polylines on the input mesh. Intersecting curves share
their common vertices. Each curve is modeled as a discrete elastic rod.

Ei
stretch =

m∑
j=1

Ei,j
stretch =

m∑
j=1

ks

(
|ej|
|ēj|

− 1
)2

|ēj| (4.3.1)

Ei
bend =

m−1∑
j=1

Ei,j
bend =

m−1∑
j=1

kb

ℓj

∥κj∥2
2 , (4.3.2)

with the binormal curvature

κj = 2ej−1 × ej

||ēj−1|| · ||ēj|| + ej−1 · ej

,

where kb and ks are the rods’ bending and stretching stiffness coefficients respectively, ēj

is an edge of the original polyline that becomes ej = xi
j − xi

j−1 after the deformation, and

ℓj = 0.5(||ēj|| + ||ēj−1||). Here we omit some superscripts i for brevity. Note that the

stretching energy is discretized per edge, while bending energy depends on an angle between

edges and hence is discretized per vertex.

Each pair of intersecting curves i,i′ is coupled via a shared vertex, i.e., xi
j ≡ xi′

j′ . Physi-

cally, this is equivalent to a rotational joint at the intersection allowing curve rotations but

not translations. The first and the last vertices of each curve are fixed via a soft penalty

52

constraint with w = 80:

Ei
endpoints = w(||xi

0 − x̄i
0||2 + ||xi

m − x̄i
m||2). (4.3.3)

The total energy of the curve network with n curves is then a sum of their the stretching,

bending, and endpoint energies:

E =
n∑

i=1
Ei

stretch + Ei
bend + Ei

endpoints. (4.3.4)

4.3.2. Simplification Framework

Using this basic model, we now formulate our simplification problem. This stage chooses

a subset of the curve network within a given budget, maximizing the worst-case stability of

the structure. Here we define material budget as an upper bound on the total length of the

curves in the simplified network.

For each curve i = 1, . . . ,n, we need to decide whether to keep it or reject it, encoded as

αi = 1 or αi = 0, respectively. In the following algorithm, we perform a relaxation αi ∈ [0,1],

so we treat αi as a factor controlling stiffnesses ks, kb of two edges around each intersection of

that curve with the other curves (Fig. 4.5a). Thus, αi can be seen as a factor of cross-section

area of those edges for the stretching energy and of the squared area for the bending energy.

To define this formally, let V be the set of the vertices shared between curve i and the

curves intersecting it. Then we can rewrite energies Eqs. 4.3.1 and 4.3.2 as functions of αi

(Fig. 4.5):

Ei
stretch(αi) =

∑
j and j+1/∈V

Ei,j
stretch + αi

∑
j orj+1∈V

Ei,j
stretch (4.3.5)

Ei
bend(αi) =

∑
j /∈V

Ei,j
bend + αi

∑
j∈V

Ei,j
bend. (4.3.6)

Then, grouping the terms with and without αi and denoting the corresponding partial sums

as Ei and Ei
0 respectively, the total energy in Eq. 4.3.4 can then be expressed as:

53

Fig. 4.5. For each curve, the parameter αi controls the stiffness of the two edges next to the
intersections (dashed lines) with other curves (a). We interpret the extreme case of αi = 0,
which effectively splits the curve into disconnected pieces, as removing the curve from the
network.

Fig. 4.6. Once a curve is disconnected from the rest of the network, some segments can be
easily translated and rotated (a) and some can be rotated around the fixed endpoint (b).

E(α1, . . . , αn) =
n∑

i=1
Ei

stretch + Ei
bend + Ei

endpoints =
n∑

i=1
Ei

0 + αiE
i. (4.3.7)

Structural Stability. Our goal is to find a set of αi ∈ {0,1}, i = 1, . . . ,n, within the

given budget, such that we maximize the stability of the structure. We define the structural

stability of a set of curves via studying its worst-case load, a set of external forces, of unit

norm in total, applied to the vertices of the structure, that causes the largest displacements x.

Such structural stability is known to be equivalent to computing the smallest eigenvalue of the

Hessian H = H(α1, ..., αn) of the elastic energy [Achtziger and Kočvara, 2007], a symmetric

semi-positive definite matrix:

Hx = λx. (4.3.8)

Naively defining the smallest eigenvalue λ1(H) as the stability of a structure, however,

would fail in our setup, since if αi = 0, the Hessian H(α1, ..., αn) may become singular,

54

yielding λ1(H) = 0. Intuitively, if a curve i has at least two other curves intersecting it, as

soon as αi = 0, the curve segment between those intersections becomes disconnected from

the rest of the structure and can be moved freely (Fig. 4.6a). Similarly, the segments next to

the boundary become free to rotate around a fixed endpoint (Fig. 4.6b). Furthermore, when

two intersecting curves i,j have both αi = αj = 0, their shared vertex becomes disconnected

from the overall structure and can be translated in any direction without resistance, again

making the Hessian singular.

Instead, following Achtziger and Kočvara [2007], we define the structural stability of our

structure for given α1, . . . , αn as the smallest non-zero eigenvalue value, which we denote

as λ̃1(H). We first give a formulation of our problem using λ̃1, then give an equivalent for-

mulation using the standard minimum eigenvalue λ1 via Hessian regularization (Sec. 4.3.3).

We first represent the Hessian H of the total elastic energy as a function of αi. Elastic

energy is a linear function with respect to αi, so the Hessian is also a linear function of the

corresponding Hessians:

H(α1, ..., αn) =
n∑

i=1
Hi

0 +
n∑

i=1
αiHi, (4.3.9)

where Hi and Hi
0 are Hessians of Ei and Ei

0 in Eq. 4.3.7 respectively.

Finally, our curve network simplification can then be formulated as follows:

max λ̃1

(
n∑

i=1
Hi

0 +
n∑

i=1
αiHi

)

s.t. α1, ..., αn ∈ {0,1}
n∑

i=1
αiLi ≤ V

(4.3.10)

where Li is the initial length of the ith curve and V is the user-defined material budget.

The curves with αi = 0 are considered to be removed from the system, hence we compute

the cost of the curve network as ∑n
i=1 αiLi for the budget constraint.

55

Fig. 4.7. The user-provided budget constraint can be used to control the final number of
curves. Since we store all intermediate results, we allow a user to instantaneously revert to
any larger number of curves, if desired.

Fig. 4.8. Left: Without Hessian regularization, the relaxation of the binary constraint is
discontinuous. Right: Our regularization results in a continuous and concave relaxation with
exact λ for binary values of αi.

4.3.3. Mixed-Integer Semi-definite Programming (MISDP) Formu-

lation

Unfortunately, λ̃1(H(α1, . . . ,αn)) is discontinuous as a function of αi, and thus cannot be

directly used in a gradient-based optimization (Fig. 4.8 left). Intuitively, as αi is approach-

ing 0, λ̃1 is also decreasing, until it becomes equal to a different eigenvalue when αi = 0 —

56

hence the discontinuity. To alleviate this problem, we propose to use Hessian regularization.

Namely, we can express the minimum non-zero eigenvalue λ̃1 of the original Hessian as the

ordinary minimum eigenvalue λ1 of the regularized Hessian (Fig. 4.8 right):

λ̃1 = λ1

 n∑
i=1

Hi
0 +

n∑
i=1

[
αiHi + (1 − αi)Qi

]
+
∑
i,j

βi,jQi,j

 ,

where βi,j are auxiliary variables. Here Qi and Qi,j are diagonal Tikhonov regularization

matrices. We define Qi as 1 on the diagonal for all the vertices of curve i except for shared

intersections, and Qi,j as 1 for all the shared intersection vertices between curves i and j,

and 0 otherwise. Note that since the non-zero column-vectors of our regularizer form a basis

of the Hessian null space for αi = 0, such regularization preserves the non-zero minimum

eigenvalue, i.e., the values of λ̃1 for αi ∈ {0, 1} are the same with and without regularization,

as illustrated by the two dashed horizontal lines in Figure 4.8.

We need to regularize the shared vertices at the intersections of curves i,j only when

both curves are removed, adding βi,jQi,j, where βi,j ∈ {0,1} and βi,j = 1 when αi = αj = 0.

A naive implementation of this requirement on βi,j would lead to a quadratic constraint

and therefore a nonlinear SDP formulation, notoriously hard to solve efficiently. Instead, we

observe that for α ∈ {0,1} this constraint is equivalent to βi,j ≤ min(1 − αi, 1 − αj), or two

linear inequalities.

Finally, finding λ1(A) is equivalent to a maximization problem max λ with a semi-definite

constraint A ⪰ λI [Vandenberghe and Boyd, 1999]. Using the regularization of the Hessian,

57

we come to our final formulation of curve network simplification as an instance of mixed-

integer semi-definite programming (MI-SDP):

max
α

λ

s.t.
n∑

i=1
Hi

0 +
n∑

i=1

[
αiHi + (1 − αi)Qi

]
+
∑
i,j

βi,jQi,j ⪰ λI

αi, βi,j ∈ {0, 1}

βi,j ≤ 1 − αi; βi,j ≤ 1 − αj

n∑
i=1

αiLi ≤ V.

(4.3.11)

To eliminate the trivial solution α1 = . . . = αn = 0, when there are no curves left and the

minimum eigenvalue λ is driven by the regularization, we add a constraint ∑n
i=1 αi ≥ 1.

4.4. Solver Mechanism

A natural approach to solving formulation in Eq. 4.3.11 is via its relaxation into an

instance of semi-definite programming (SDP) by replacing the integer constraints αi ∈ {0, 1}

with a continuous constraint 0 ≤ αi ≤ 1. This relaxation gives an upper bound to the mixed-

integer problem. This can be easily seen from Figure 4.8, right: the function is concave and

has maximum inside the interval, not on the endpoints that would correspond to the integer

solution αi = 0 or αi = 1. The relaxed solution αSDP can be either used directly as an

approximation via rounding each element to the nearest integer, or as a conservative upper

bound for mixed-integer optimization algorithms such as branch-and-bound [Gally et al.,

2018].

We tried a standard MI-SDP solver YALMIP [Löfberg, 2004] and implemented a custom

branch-and-bound method using MOSEK [ApS, 2020] as the SDP solver. Our experiments

showed that SDP relaxation significantly reduces the space of branch-and-bound as compared

to an exhaustive search (cutting out 50% to 70% of the search space). Unfortunately, for

small to medium numbers of curves, the overhead of solving SDP makes branch-and-bound

58

significantly slower than the exhaustive search. For instance, for 9 initial curves, branch-

and-bound takes several hours, while the exhaustive search is nearly instantaneous. While

theoretically for larger numbers exhaustive search should become more expensive, for those

numbers of curves both approaches are practically infeasible.

Instead, we propose an efficient and straightforward approximation algorithm. We ob-

serve that intuitively, removing any curve from a set can only decrease the stability of the

structure. This suggests a process where, starting with the original curve network, we itera-

tively remove the curve that is the least important for the overall stability, until the budget

constraint is satisfied. At each iteration, we compute the equilibrium configuration via the

Newton method. We denote the initial set of curves S, and λ̃1(A) as the minimum non-zero

eigenvalue of the Hessian for the structure made of curves in A ⊆ S. Using Eq. 4.3.9, we set

λ̃1(A) = λ̃1(H(α1, . . . ,αn)), where αi = 1 for all i ∈ A, and 0 otherwise. Finally, denoting

V ol(A) = ∑
i∈A Li, we get Algorithm 1. Here the maximization is performed by simply

trying to remove each curve from the current set.

Algorithm 1 Greedy Approximation Algorithm
Set A = S;
while V ol(A) > V do

Find c′ = arg maxc∈A λ̃1(A \ {c});
Set A = A \ {c′};

end while

Note that while formally λ̃1(A\{c}) can be larger than λ̃1(A), e.g., when a rare especially

weak curve, for instance long with high curvature, exhibits localized buckling, this does not

change or impede the algorithm; no special treatment is needed for such cases.

As we discuss in the following section, we find that this simple algorithm approximates the

optimal solution with a high ratio, is efficient, is parallelizable per iteration, and outperforms

naive approaches.

4.5. Results, Validation, and Discussion

Using our method, we have simplified a number of curve networks, depicted in Figures

4.1, 4.7, 4.11, and 4.12. The input surfaces include positive (e.g., tower in Fig. 4.11d) and

59

Fig. 4.9. Many of our initial networks are nearly at their equilibrium state (e.g., (a), blue:
initial curves, pink: the curves at equilibrium). The equilibrium configuration for a simplified
curve network might deviate from the target surface (b). For this example, however, adding a
single, manually selected, rigid pre-bent curve (c, yellow) is enough to alleviate the deviation.

Fig. 4.10. (a) The approximation ratio of our algorithm, λours/λoptimum > 80% for a suf-
ficient number of curves. (b) Percentile of our solutions among all combinations, typically
within the 90 to 99% percentile. (c) The ratio λours/λrandom search; average in blue, median in
orange. Our solutions are more stable than random, sometimes by 40%.

negative Gaussian curvature (e.g., tent, Fig. 4.12b), surfaces with one or two boundaries

(stadium in Fig. 4.12d).

Initial Curve Networks. The curves on a surface can be modeled via conventional [Au-

todesk, 2022] or modern interfaces [Arora and Singh, 2020]. To demonstrate our method, we

automatically generate random geodesic curves for the bunny (Fig. 4.12b), the hill (Fig. 4.1),

the stadium (Fig. 4.11a), and the tent examples (Fig. 4.12c), or trace two- and three-direction

frame fields [Panozzo et al., 2014] for the arched and regular shells (Figs. 4.12a,d respectively)

60

Fig. 4.11. Compared to the results of the random search algorithm (b,e), our results (c,f)
are significantly more stable (186% for (c), 116% for (f)). For a highly irregular input curve
network (a), worst-case stability may not be an intuitive notion (cf. (b, c)). For a regular
curve network (d), stability may be related to irregularities and thus is easier to see (cf. (e,
f)).

and the kagome pattern example respectively (Fig. 4.7a). We modeled the initial curve net-

work on the tower example (Fig. 4.11d) in a modeling software.

61

Fig. 4.12. A gallery of additional results.

Table 4.1. Algorithm statistics for different curve networks.

Surface Fig. initial #
of curves

initial #
of vertices

final #
of curves

time
(min.)

hill 4.1 73 6319 9 17.7
kagome 4.7a 114 10224 23 53.9

roof 4.7b 75 2813 7 4.6
stadium 4.11a 100 6646 25 16.9
tower 4.11d 33 5699 9 2.5
shell 4.12a 63 5504 5 7.1

bunny 4.12b 75 25442 7 266.0
tent 4.12c 112 6107 42 24.7

arched shell 4.12d 67 3514 21 2.6

To generate a frame field, we use the representation and the optimization of PolyVector

fields [Diamanti et al., 2014]. We use PolyVector polynomials of degree 4 or 6, to capture

two or three directions per triangle respectively. We then sample the surface boundaries and

trace the curves using the classical Euler integration method [Polthier and Schmies, 2006].

To trace the frame fields, we use principal matching, removing any traced curve that hits

a frame field singularity. We follow the standard definition of a singularity as either a zero

of one of the directions of a field, or an inconsistency of matching directions around a given

vertex.

Equilibrium Configurations. We explicitly compute the equilibrium configuration for

all the curve networks via Newton’s method. Most of the initial configurations are close to

the equilibrium (Fig. 4.9 and Supplementary). The final curve networks at their equilibrium

62

might deviate from the target surface (e.g., Fig. 4.9b). If undesired, this effect can be reduced

for fabrication by adding pre-bent stiff curves to the initial curve network (yellow curve in

Fig. 4.9c).

Quantitative Evaluation. We numerically compare our algorithm against two baseline

algorithms: exhaustive and random searches.

The exhaustive search simply tries all subsets of the given curves and selects the most

stable combination within a budget. Clearly, the algorithm has exponential complexity, yet

produces the true optimum. We plotted the approximation ratio of our algorithm compared

to this true optimum, i.e., the ratio of λours, the stability of our result, and λoptimum in

Fig. 4.10a. We tested 200 random curves on each of four simple test surfaces and averaged

the ratios. We were able to run the exhaustive search in a reasonable time for 17 curves

maximum. As seen from the plot, our approximation ratio is increasing with the number

of curves and reaches roughly 85%. For comparison, for 19 curves, our algorithm takes less

than 1 second, while exhaustive search takes around 45 minutes.

We furthermore display the percentile of our solution among all the combinations

(Fig. 4.10b). Our solution is always in the top 90 − 99% percentile for a sufficient num-

ber of curves.

Finally, we compare our algorithm to a random search algorithm, which generates uni-

formly distributed random combinations within the budget and chooses the most stable one

using the definition in Eq. 4.3.10. For a fair comparison, we run the random search for

the same time as our algorithm. The ratio of λours divided by the best λ of the random

search is presented in Fig. 4.10c. We run this experiment 400 times, each time generating a

fixed number of random geodesics on a given surface, and display average (blue) and median

values (orange). As indicated by the plot, our algorithmic solution is roughly 20% to 40%

more stable than the solution obtained by the random search, and this ratio increases as the

space of possible combinations grows.

Performance. The performance of our algorithm depends on the number of the initial

curves, the material budget, and the vertex sampling density of the polylines. On a desktop

63

computer, our computation time typically varies from 2 minutes for the tower (Fig. 4.11f)

to 1 hour for the kagome pattern example (Fig. 4.7a). The only exception is the bunny

(Fig. 4.12b) that took 4.5 hours. See Table 4.1 for the full statistics.

Limitations and Future Work. A natural extension of our work is to optimize the

shapes of the selected curves to further improve the network’s stability while preserving the

artist intent; we only focus on selecting a subset of curves with fixed geometry. Another ex-

citing direction is to perform a simultaneous simplification and stylization of curve networks,

akin to sketch stylization.

64

Chapter 5

Conclusion

In this master’s thesis, we explored the rationalization of free-form surfaces through curve

networks. Our goal was to give designers more freedom, as automatic tools were mostly

limited to gridshells. Therefore, our aspiration was to facilitate the design of irregular curve

networks. It’s in this optic that we presented a novel formulation and an efficient method

for simplification of 3D curve networks focusing on their worst-case stability. Our method

is compatible with standard interfaces for creating 3D curves and thus has immediate ap-

plications in fabrication-aware modeling. We hope that it will form the core of a future

fabrication-aware design system allowing users to interactively create, edit, and simplify

curve networks. An implementation of this algorithm is available as an open-source software

(https://github.com/wwwnev/Stability-Aware-Simplification-of-Curve-Networks).

Following the work presented in this master’s thesis, many research directions remain

open. First, the project could be directly expanded. For example, it could easily be adapted

to include the general formulation for discrete elastic rods model from Bergou et al. [2008,

2010], allowing for anisotropic rods. Although this model does not hold that far, rods could

also be replaced by strips of materials such as paper or metal. Furthermore, the energy used

in the greedy algorithm (Alg. 1) could be enhanced, for example taking into account the

distance between the curve network at equilibrium and the free-form surface [Panozzo et al.,

2013; Vouga et al., 2012].

https://github.com/wwwnev/Stability-Aware-Simplification-of-Curve-Networks

Another avenue would be to salvage the MI-SDP optimization model presented in Sec-

tion 4.3. This would be an important improvement over our work. While we have been un-

successful in approximating satisfactory integer solutions by relaxing the integer constraint,

future work in MI optimization approximation might prove useful to this end.

While we limited ourselves to topology optimization, geometric optimization could be

a very promising avenue of research. By allowing its curves to move or slither across the

free-form surface, the stability of a curve network could undoubtedly be further improved.

The original idea for this master’s thesis, and associated article, was to solve the problem of

stable curve networks using the two approaches, topological and geometrical optimization,

in a single heuristic. In the end, aspirations had to be scaled back and the focus was put

on topology only. However, part of the presented framework, namely the curve network

representation and energy formulation, could also be used in geometrical optimization.

66

References

Wolfgang Achtziger and Michal Kočvara. 2007. Structural topology optimization with eigen-

values. SIAM Journal on Optimization 18, 4 (2007), 1129–1164. https://doi.org/10.

1137/060651446

Ergun Akleman, Jianer Chen, Qing Xing, and Jonathan L. Gross. 2009. Cyclic Plain-Weaving

on Polygonal Mesh Surfaces with Graph Rotation Systems. ACM Trans. Graph. 28, 3,

Article 78 (jul 2009), 8 pages. https://doi.org/10.1145/1531326.1531384

MOSEK ApS. 2020. The MOSEK Fusion API for C++ manual. Version 8.1. https:

//docs.mosek.com/8.1/cxxfusion/index.html

Rahul Arora, Alec Jacobson, Timothy R. Langlois, Yijiang Huang, Caitlin Mueller, Wojciech

Matusik, Ariel Shamir, Karan Singh, and David I.W. Levin. 2019. Volumetric michell

trusses for parametric design & fabrication. Proceedings: SCF 2019 - ACM Symposium

on Computational Fabrication (2019). https://doi.org/10.1145/3328939.3328999

Rahul Arora and Karan Singh. 2020. Mid-Air Drawing of Curves on 3D Surfaces in AR/VR.

CoRR abs/2009.09029 (2020). arXiv:2009.09029 https://arxiv.org/abs/2009.09029

Autodesk. 2022. Maya 2022. https://autodesk.com/maya

A. Ben-Tal and A. Nemirovski. 1997. Robust truss topology design via semidefinite pro-

gramming. SIAM Journal on Optimization 7, 4 (1997), 991–1016. https://doi.org/

10.1137/S1052623495291951

Miklós Bergou, Basile Audoly, Etienne Vouga, Max Wardetzky, and Eitan Grinspun. 2010.

Discrete Viscous Threads. ACM Trans. Graph. 29, 4, Article 116 (jul 2010), 10 pages.

https://doi.org/10.1145/1778765.1778853

https://doi.org/10.1137/060651446
https://doi.org/10.1137/060651446
https://doi.org/10.1145/1531326.1531384
https://docs.mosek.com/8.1/cxxfusion/index.html
https://docs.mosek.com/8.1/cxxfusion/index.html
https://doi.org/10.1145/3328939.3328999
https://arxiv.org/abs/2009.09029
https://autodesk.com/maya
https://doi.org/10.1137/S1052623495291951
https://doi.org/10.1137/S1052623495291951
https://doi.org/10.1145/1778765.1778853

Miklós Bergou, Max Wardetzky, Stephen Robinson, Basile Audoly, and Eitan Grinspun.

2008. Discrete Elastic Rods. ACM Transactions on Graphics (SIGGRAPH) 27, 3 (aug

2008), 63:1–63:12.

Gaurav Bharaj, David I. W. Levin, James Tompkin, Yun Fei, Hanspeter Pfister, Woj-

ciech Matusik, and Changxi Zheng. 2015. Computational Design of Metallophone Con-

tact Sounds. ACM Trans. Graph. 34, 6, Article 223 (oct 2015), 13 pages. https:

//doi.org/10.1145/2816795.2818108

Pengbo Bo, Helmut Pottmann, Martin Kilian, Wenping Wang, and Johannes Wallner. 2011.

Circular arc structures. ACM Transactions on Graphics 30, 4 (2011), 1–12. https:

//doi.org/10.1145/1964921.1964996

Marcel Campen and Leif Kobbelt. 2014. Dual Strip Weaving: Interactive Design of Quad

Layouts Using Elastica Strips. ACM Trans. Graph. 33, 6, Article 183 (nov 2014), 10 pages.

https://doi.org/10.1145/2661229.2661236

Adelaide Cerveira, Agostinho Agra, Fernando Bastos, and Joaquim A. S. Gromicho. 2010.

New branch and bound approaches for truss topology design with discrete areas.

Desai Chen, David I. W. Levin, Wojciech Matusik, and Danny M. Kaufman. 2017. Dynamics-

Aware Numerical Coarsening for Fabrication Design. ACM Trans. Graph. 36, 4, Article

84 (jul 2017), 15 pages. https://doi.org/10.1145/3072959.3073669

Elena Cherkaev and Andrej Cherkaev. 2004. Principal Compliance and Robust Opti-

mal Design. Springer Netherlands, Dordrecht, 169–196. https://doi.org/10.1007/

1-4020-2308-1_14

Qiaodong Cui, Timothy Langlois, Pradeep Sen, and Theodore Kim. 2020.

Fast and Robust Stochastic Structural Optimization. Computer Graph-

ics Forum 39, 2 (2020), 385–397. https://doi.org/10.1111/cgf.13938

arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.13938

Bernardino D’Amico, A. Kermani, Hexin Zhang, Alberto Pugnale, Sofia Colabella, and

Sergio Pone. 2015. Timber gridshells: Numerical simulation, design and construction of a

full scale structure. Structures 3 (06 2015). https://doi.org/10.1016/j.istruc.2015.

68

https://doi.org/10.1145/2816795.2818108
https://doi.org/10.1145/2816795.2818108
https://doi.org/10.1145/1964921.1964996
https://doi.org/10.1145/1964921.1964996
https://doi.org/10.1145/2661229.2661236
https://doi.org/10.1145/3072959.3073669
https://doi.org/10.1007/1-4020-2308-1_14
https://doi.org/10.1007/1-4020-2308-1_14
https://doi.org/10.1111/cgf.13938
https://doi.org/10.1016/j.istruc.2015.05.002
https://doi.org/10.1016/j.istruc.2015.05.002

05.002

Fernando de Goes, Pierre Alliez, Houman Owhadi, and Mathieu Desbrun. 2013. On the

Equilibrium of Simplicial Masonry Structures. ACM Trans. Graph. 32, 4, Article 93 (jul

2013), 10 pages. https://doi.org/10.1145/2461912.2461932

Frederic de Gournay, Grégoire Allaire, and François Jouve. 2008. Shape and topology opti-

mization of the robust compliance via the level set method. ESAIM: COCV 14, 1 (2008),

43–70. https://doi.org/10.1051/cocv:2007048

Olga Diamanti, Daniele Panozzo, and Olga Sorkine-hornung. 2014. Designing N-PolyVector

Fields with Complex Polynomials. Eurographics Symposium on Geometry Processing 33,

5 (2014).

William S. Dorn, Ralph E. Gomory, and Harvey J. Greenberg. 1964. Automatic design of

optimal structures.

Michael Eigensatz, Martin Kilian, Alexander Schiftner, Niloy J. Mitra, Helmut Pottmann,

and Mark Pauly. 2010. Paneling architectural freeform surfaces. ACM SIGGRAPH 2010

1, 212 (2010), 1–10. https://doi.org/10.1145/1778765.1778782

Koos Eissen and Roselien Steur. 2007. Sketching : drawing techniques for product designers

(paperback ed.). BIS Publishers, Amsterdam, Netherlands.

Chi Wing Fu, Chi Fu Lai, Ying He, and Daniel Cohen-Or. 2010. K-set tilable surfaces.

ACM Transactions on Graphics 29, 4 (2010), 1–6. https://doi.org/10.1145/1778765.

1778781

Tristan Gally, Marc E. Pfetsch, and Stefan Ulbrich. 2018. A framework for solv-

ing mixed-integer semidefinite programs. Optimization Methods and Software

33, 3 (2018), 594–632. https://doi.org/10.1080/10556788.2017.1322081

arXiv:https://doi.org/10.1080/10556788.2017.1322081

Akash Garg, Andrew O. Sageman-Furnas, Bailin Deng, Yonghao Yue, Eitan Grinspun, Mark

Pauly, and Max Wardetzky. 2014. Wire Mesh Design. ACM Trans. Graph. 33, 4 (2014),

66:1–66:12. https://doi.org/10.1145/2601097.2601106

69

https://doi.org/10.1016/j.istruc.2015.05.002
https://doi.org/10.1016/j.istruc.2015.05.002
https://doi.org/10.1145/2461912.2461932
https://doi.org/10.1051/cocv:2007048
https://doi.org/10.1145/1778765.1778782
https://doi.org/10.1145/1778765.1778781
https://doi.org/10.1145/1778765.1778781
https://doi.org/10.1080/10556788.2017.1322081
https://doi.org/10.1145/2601097.2601106

Caigui Jiang, Chengcheng Tang, Hans Peter Seidel, Renjie Chen, and Peter Wonka. 2019.

Computational design of lightweight trusses. arXiv (2019). arXiv:1901.05637

Mina Konaković-Luković, Julian Panetta, Keenan Crane, and Mark Pauly. 2018. Rapid

deployment of curved surfaces via programmable auxetics. ACM Transactions on Graphics

37, 4 (2018), 1–13. https://doi.org/10.1145/3197517.3201373

Shahar Z. Kovalsky, Noam Aigerman, Ronen Basri, and Yaron Lipman. 2014. Controlling

Singular Values with Semidefinite Programming. ACM Trans. Graph. 33, 4, Article 68

(jul 2014), 13 pages. https://doi.org/10.1145/2601097.2601142

Michal Kočvara. 2015. Truss topology design with integer variables made easy. January

2010 (2015). http://www.optimization-online.org/DB_FILE/2010/05/2614.pdf

Timothy Langlois, Ariel Shamir, Daniel Dror, Wojciech Matusik, and David I. W. Levin.

2016. Stochastic Structural Analysis for Context-Aware Design and Fabrication. ACM

Trans. Graph. 35, 6, Article 226 (nov 2016), 13 pages. https://doi.org/10.1145/

2980179.2982436

Julian Lienhard and Jan Knippers. 2015. Bending-active structures. Bautechnik 92, 6 (2015),

394–402. https://doi.org/10.1002/bate.201500007

Hsueh-Ti Derek Liu, Alec Jacobson, and Maks Ovsjanikov. 2019. Spectral Coarsening of

Geometric Operators. ACM Trans. Graph. 38, 4, Article 105 (jul 2019), 13 pages. https:

//doi.org/10.1145/3306346.3322953

Yang Liu, Hao Pan, John Snyder, Wenping Wang, and Baining Guo. 2013. Computing self-

supporting surfaces by regular triangulation. ACM Transactions on Graphics 32, 4 (2013).

https://doi.org/10.1145/2461912.2461927

J. Löfberg. 2004. YALMIP : A Toolbox for Modeling and Optimization in MATLAB. In In

Proceedings of the CACSD Conference. Taipei, Taiwan.

Lin Lu, Andrei Sharf, Haisen Zhao, Yuan Wei, Qingnan Fan, Xuelin Chen, Yann Savoye,

Changhe Tu, Daniel Cohen-Or, and Baoquan Chen. 2014. Build-to-Last: Strength to

Weight 3D Printed Objects. ACM Trans. Graph. 33, 4, Article 97 (jul 2014), 10 pages.

https://doi.org/10.1145/2601097.2601168

70

https://doi.org/10.1145/3197517.3201373
https://doi.org/10.1145/2601097.2601142
http://www.optimization-online.org/DB_FILE/2010/05/2614.pdf
https://doi.org/10.1145/2980179.2982436
https://doi.org/10.1145/2980179.2982436
https://doi.org/10.1002/bate.201500007
https://doi.org/10.1145/3306346.3322953
https://doi.org/10.1145/3306346.3322953
https://doi.org/10.1145/2461912.2461927
https://doi.org/10.1145/2601097.2601168

Robert McNeel et al. 2010. Rhinoceros 3D, Version 6.0. Robert McNeel & Associates, Seattle,

WA (2010).

Kristo Mela. 2014. Resolving Issues with Member Buckling in Truss Topology Optimization

Using a Mixed Variable Approach. Struct. Multidiscip. Optim. 50, 6 (dec 2014), 1037–1049.

https://doi.org/10.1007/s00158-014-1095-x

Eder Miguel, Mathias Lepoutre, and Bernd Bickel. 2016. Computational Design of Stable

Planar-Rod Structures. ACM Transactions on Graphics (SIGGRAPH 2016) 35, 4 (2016).

Przemyslaw Musialski, Christian Hafner, Florian Rist, Michael Birsak, Michael Wimmer, and

Leif Kobbelt. 2016. Non-Linear Shape Optimization Using Local Subspace Projections.

ACM Transactions on Graphics 35, 4 (2016), 87:1–87:13. https://doi.org/10.1145/

2897824.2925886

Julian Panetta, Mina Konaković-Luković, Florin Isvoranu, Etienne Bouleau, and Mark Pauly.

2019. X-Shells: A new class of deployable beam structures. ACM Transactions on Graphics

38, 4 (2019). https://doi.org/10.1145/3306346.3323040

Julian Panetta, Abtin Rahimian, and Denis Zorin. 2017. Worst-Case Stress Relief for Mi-

crostructures. ACM Trans. Graph. 36, 4, Article 122 (jul 2017), 16 pages. https:

//doi.org/10.1145/3072959.3073649

Daniele Panozzo, Philippe Block, and Olga Sorkine-Hornung. 2013. Designing unreinforced

masonry models. ACM Transactions on Graphics 32, 4 (2013). https://doi.org/10.

1145/2461912.2461958

D Panozzo, E Puppo, M Tarini, and O Sorkine-Hornung. 2014. Frame Fields: Anisotropic

and Non-Orthogonal Cross Fields. Acm Transactions on Graphics 33, 4 (2014), 11.

https://doi.org/10.1145/2601097.2601179

Davide Pellis, Martin Kilian, Helmut Pottmann, and Mark Pauly. 2021. Computational

design of weingarten surfaces. ACM Transactions on Graphics 40, 4 (2021). https:

//doi.org/10.1145/3450626.3459939

Jesús Pérez, Miguel A. Otaduy, and Bernhard Thomaszewski. 2017. Computational Design

and Automated Fabrication of Kirchhoff-Plateau Surfaces. ACM Trans. Graph. 36, 4,

71

https://doi.org/10.1007/s00158-014-1095-x
https://doi.org/10.1145/2897824.2925886
https://doi.org/10.1145/2897824.2925886
https://doi.org/10.1145/3306346.3323040
https://doi.org/10.1145/3072959.3073649
https://doi.org/10.1145/3072959.3073649
https://doi.org/10.1145/2461912.2461958
https://doi.org/10.1145/2461912.2461958
https://doi.org/10.1145/2601097.2601179
https://doi.org/10.1145/3450626.3459939
https://doi.org/10.1145/3450626.3459939

Article 62 (jul 2017), 12 pages. https://doi.org/10.1145/3072959.3073695

Stefan Pillwein and Przemyslaw Musialski. 2021. Generalized Deployable Elastic Geodesic

Grids. ACM Transactions on Graphics (Proc. SIGGRAPH Asia 2021) 40, 6 (2021), in

press. https://doi.org/10.1145/3478513.3480516 arXiv:arXiv:2111.08883v1

Konrad Polthier and Markus Schmies. 2006. Straightest Geodesics on Polyhedral Surfaces. In

ACM SIGGRAPH 2006 Courses (Boston, Massachusetts) (SIGGRAPH ’06). Association

for Computing Machinery, New York, NY, USA, 30–38. https://doi.org/10.1145/

1185657.1185664

Ivan Puhachov, William Neveu, Edward Chien, and Mikhail Bessmeltsev. 2021. Keypoint-

Driven Line Drawing Vectorization via PolyVector Flow. ACM Transactions on Graph-

ics (Proceedings of SIGGRAPH Asia) 40, 6 (Dec. 2021). https://doi.org/10.1145/

3478513.3480529

Jesus Pérez, Bernhard Thomaszewski, Stelian Coros, Bernd Bickel, José A. Canabal, Robert

Sumner, and Miguel A. Otaduy. 2015. Design and Fabrication of Flexible Rod Meshes.

ACM Trans. on Graphics (Proc. of ACM SIGGRAPH) 34, 4 (2015). http://www.gmrv.

es/Publications/2015/PTCBCSO15

Yingying Ren, Switzerland Julian Panetta, Uc Davis, Usa Tian Chen, Switzerland Florin

Isvoranu, Switzerland Samuel Poincloux, Switzerland Christopher Brandt, Switzerland

Alison Martin, Independent Researcher, Italy Mark Pauly, Julian Panetta, Tian Chen,

Florin Isvoranu, Samuel Poincloux, Christopher Brandt, Alison Martin, and Mark Pauly.

2021. 3D Weaving with Curved Ribbons. ACM Transactions on Graphics 40, 4 (2021),

1–15. https://doi.org/10.1145/3450626.3459788

Eike Schling, Wang Hui, Jonas Schikore, and Helmut Pottmann. 2018. Design and Construc-

tion of Curved Support Structures with Repetitive Parameters.

Christian Schumacher, Jonas Zehnder, and Moritz Bächer. 2018. Set-in-Stone: Worst-Case

Optimization of Structures Weak in Tension. ACM Trans. Graph. 37, 6, Article 252 (dec

2018), 13 pages. https://doi.org/10.1145/3272127.3275085

72

https://doi.org/10.1145/3072959.3073695
https://doi.org/10.1145/3478513.3480516
https://doi.org/10.1145/1185657.1185664
https://doi.org/10.1145/1185657.1185664
https://doi.org/10.1145/3478513.3480529
https://doi.org/10.1145/3478513.3480529
http://www.gmrv.es/Publications/2015/PTCBCSO15
http://www.gmrv.es/Publications/2015/PTCBCSO15
https://doi.org/10.1145/3450626.3459788
https://doi.org/10.1145/3272127.3275085

Christian Schüller, Roi Poranne, and Olga Sorkine-Hornung. 2018. Shape representation by

zippables. ACM Transactions on Graphics 37, 4 (2018). https://doi.org/10.1145/

3197517.3201347

Ondrej Stava, Juraj Vanek, Bedrich Benes, Nathan Carr, and Radomír Měch. 2012. Stress

Relief: Improving Structural Strength of 3D Printable Objects. ACM Trans. Graph. 31,

4, Article 48 (jul 2012), 11 pages. https://doi.org/10.1145/2185520.2185544

Mathias Stolpe. 2016. Truss optimization with discrete design variables: a critical review.

Structural and Multidisciplinary Optimization 53, 2 (2016), 349–374. https://doi.org/

10.1007/s00158-015-1333-x

Masahito Takezawa, Takuma Imai, Kentaro Shida, and Takashi Maekawa. 2016. Fabrication

of Freeform Objects by Principal Strips. ACM Trans. Graph. 35, 6, Article 225 (nov 2016),

12 pages. https://doi.org/10.1145/2980179.2982406

Ye Tao, Nannan Lu, Caowei Zhang, Guanyun Wang, Cheng Yao, and Fangtian Ying. 2016.

CompuWoven: A Computer-Aided Fabrication Approach to Hand-Woven Craft. In Pro-

ceedings of the 2016 CHI Conference Extended Abstracts on Human Factors in Computing

Systems (San Jose, California, USA) (CHI EA ’16). Association for Computing Machinery,

New York, NY, USA, 2328–2333. https://doi.org/10.1145/2851581.2892293

Ye Tao, Guanyun Wang, Caowei Zhang, Nannan Lu, Xiaolian Zhang, Cheng Yao, and

Fangtian Ying. 2017. WeaveMesh: A Low-Fidelity and Low-Cost Prototyping Approach

for 3D Models Created by Flexible Assembly. Association for Computing Machinery, New

York, NY, USA, 509–518. https://doi.org/10.1145/3025453.3025699

Toshikazu Torigaki, Ichiro Hagiwara, Yuichi Kitagawa, Maki Ueda, Zheng-Dong Ma, and

Noboru Kikuchi. 1994. Development and Application of a Shape-Topology Optimiza-

tion System Using a Homogenization Method. SAE Transactions 103 (1994), 1217–1223.

http://www.jstor.org/stable/44611836

Lieven Vandenberghe and Stephen Boyd. 1999. Applications of semidefinite programming.

Applied Numerical Mathematics 29, 3 (1999), 283–299.

73

https://doi.org/10.1145/3197517.3201347
https://doi.org/10.1145/3197517.3201347
https://doi.org/10.1145/2185520.2185544
https://doi.org/10.1007/s00158-015-1333-x
https://doi.org/10.1007/s00158-015-1333-x
https://doi.org/10.1145/2980179.2982406
https://doi.org/10.1145/2851581.2892293
https://doi.org/10.1145/3025453.3025699
http://www.jstor.org/stable/44611836

Amir Vaxman, Christian Müller, and Ofir Weber. 2017. Regular meshes from polygonal

paterns. ACM Transactions on Graphics 36, 4 (2017). https://doi.org/10.1145/

3072959.3073593

Josh Vekhter, Jiacheng Zhuo, Luisa F.Gil Fandino, Qixing Huang, and Etienne Vouga. 2019.

Weaving geodesic foliations. ACM Transactions on Graphics 38, 4 (2019). https://doi.

org/10.1145/3306346.3323043

Etienne Vouga, Mathias Höbinger, Johannes Wallner, and Helmut Pottmann. 2012. Design

of Self-Supporting Surfaces. ACM Trans. Graph. 31, 4, Article 87 (jul 2012), 11 pages.

https://doi.org/10.1145/2185520.2185583

Jonas Zehnder, Stelian Coros, and Bernhard Thomaszewski. 2016. Designing structurally-

sound ornamental curve networks. ACM Transactions on Graphics 35, 4 (2016). https:

//doi.org/10.1145/2897824.2925888

Qingnan Zhou, Julian Panetta, and Denis Zorin. 2013. Worst-Case Structural Analysis.

ACM Trans. Graph. 32, 4, Article 137 (jul 2013), 12 pages. https://doi.org/10.1145/

2461912.2461967

74

https://doi.org/10.1145/3072959.3073593
https://doi.org/10.1145/3072959.3073593
https://doi.org/10.1145/3306346.3323043
https://doi.org/10.1145/3306346.3323043
https://doi.org/10.1145/2185520.2185583
https://doi.org/10.1145/2897824.2925888
https://doi.org/10.1145/2897824.2925888
https://doi.org/10.1145/2461912.2461967
https://doi.org/10.1145/2461912.2461967

	Résumé
	Abstract
	Contents
	List of Tables
	List of Figures
	List of Acronyms and Abbreviations
	Acknowledgements
	Chapter 1. Introduction
	Architecture and Engineering
	Free-form Architecture
	Curve Networks

	Chapter 2. Related Work
	2.1. Fabrication-Aware Surface Design
	2.2. Stability Optimization
	2.3. Eigenvalue Optimization
	2.4. Computational Design of Curve Networks
	2.5. Truss Topology Optimization for Structural Design

	Chapter 3. Methodology
	3.1. Curves
	3.2. Intersections
	3.3. Elastic Energy
	3.4. Optimization
	3.5. Validation

	Chapter 4. Stability-Aware Simplifaction of Curve Networks
	Contributions
	4.1. Introduction
	4.2. Related Work
	4.2.1. Fabrication-Aware Surface Design
	4.2.2. Stability Optimization
	4.2.3. Eigenvalue Optimization
	4.2.4. Computational Design of Curve Networks
	4.2.5. Truss Topology Optimization For Structural Design

	4.3. Curve Network Simplification
	4.3.1. Computational Model of a Curve Network
	4.3.2. Simplification Framework
	4.3.3. Mixed-Integer Semi-definite Programming (MISDP) Formulation

	4.4. Solver Mechanism
	4.5. Results, Validation, and Discussion

	Chapter 5. Conclusion
	References

