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Résumé

Les formes, les surfaces, les événements et les objets (vivants et non vivants) constituent
le monde. L’intelligence des agents naturels, tels que les humains, va au-delà de la simple
reconnaissance de formes. Nous excellons à construire des représentations et à distiller
des connaissances pour comprendre et déduire la structure du monde. Spécifiquement,
le développement de telles capacités de raisonnement peut se produire même avec une
supervision limitée. D’autre part, malgré son développement phénoménal, les succès majeurs
de l’apprentissage automatique, en particulier des modèles d’apprentissage profond, se situent
principalement dans les tâches qui ont accès à de grands ensembles de données annotées.
Dans cette thèse, nous proposons de nouvelles solutions pour aider à combler cette lacune
en permettant aux modèles d’apprentissage automatique d’apprendre la structure et de
permettre un raisonnement e�cace en présence de tâches faiblement supervisés.

Le thème récurrent de la thèse tente de s’articuler autour de la question « Comment un
système perceptif peut-il apprendre à organiser des informations sensorielles en connaissances
utiles sous une supervision limitée ? » Et il aborde les thèmes de la géométrie, de la
composition et des associations dans quatre articles distincts avec des applications à la vision
par ordinateur (CV) et à l’apprentissage par renforcement (RL).

Notre première contribution —Pix2Shape—présente une approche basée sur l’analyse par
synthèse pour la perception. Pix2Shape exploite des modèles génératifs probabilistes pour
apprendre des représentations 3D à partir d’images 2D uniques. Le formalisme qui en résulte
nous o�re une nouvelle façon de distiller l’information d’une scène ainsi qu’une représentation
puissantes des images. Nous y parvenons en augmentant l’apprentissage profond non supervisé
avec des biais inductifs basés sur la physique pour décomposer la structure causale des images
en géométrie, orientation, pose, réflectance et éclairage.

Notre deuxième contribution —MILe— aborde les problèmes d’ambiguïté dans les en-
sembles de données à label unique tels que ImageNet. Il est souvent inapproprié de décrire
une image avec un seul label lorsqu’il est composé de plus d’un objet proéminent. Nous
montrons que l’intégration d’idées issues de la littérature linguistique cognitive et l’imposition
de biais inductifs appropriés aident à distiller de multiples descriptions possibles à l’aide
d’ensembles de données aussi faiblement étiquetés.
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Ensuite, nous passons au paradigme d’apprentissage par renforcement, et considérons
un agent interagissant avec son environnement sans signal de récompense. Notre troisième
contribution —HaC— est une approche non supervisée basée sur la curiosité pour apprendre
les associations entre les modalités visuelles et tactiles. Cela aide l’agent à explorer l’environ-
nement de manière autonome et à utiliser davantage ses connaissances pour s’adapter aux
tâches en aval. La supervision dense des récompenses n’est pas toujours disponible (ou n’est
pas facile à concevoir), dans de tels cas, une exploration e�cace est utile pour générer un
comportement significatif de manière auto-supervisée.

Pour notre contribution finale, nous abordons l’information limitée contenue dans les
représentations obtenues par des agents RL non supervisés. Ceci peut avoir un e�et néfaste
sur la performance des agents lorsque leur perception est basée sur des images de haute
dimension. Notre approche a base de modèles combine l’exploration et la planification sans
récompense pour a�ner e�cacement les modèles pré-formés non supervisés, obtenant des
résultats comparables à un agent entraîné spécifiquement sur ces tâches. Il s’agit d’une étape
vers la création d’agents capables de généraliser rapidement à plusieurs tâches en utilisant
uniquement des images comme perception.

Mots clés. Apprentissage des représentations, apprentissage non supervisé, modélisation
générative, perception de scènes 3D, contrôle intrinsèque, modèles du monde, données
faiblement supervisées.
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Abstract

Shapes, surfaces, events, and objects (living and non-living) constitute the world. The
intelligence of natural agents, such as humans is beyond pattern recognition. We excel at
building representations and distilling knowledge to understand and infer the structure of the
world. Critically, the development of such reasoning capabilities can occur even with limited
supervision. On the other hand, despite its phenomenal development, the major successes of
machine learning, in particular, deep learning models are primarily in tasks that have access
to large annotated datasets. In this dissertation, we propose novel solutions to help address
this gap by enabling machine learning models to learn the structure and enable e�ective
reasoning in the presence of weakly supervised settings.

The recurring theme of the thesis tries to revolve around the question of "How can a
perceptual system learn to organize sensory information into useful knowledge under limited
supervision?" And it discusses the themes of geometry, compositions, and associations in four
separate articles with applications to computer vision (CV) and reinforcement learning (RL).

Our first contribution —Pix2Shape—presents an analysis-by-synthesis based approach(also
referred to as inverse graphics) for perception. Pix2Shape leverages probabilistic generative
models to learn 3D-aware representations from single 2D images. The resulting formalism
allows us to perform a novel view synthesis of a scene and produce powerful representations of
images. We achieve this by augmenting unsupervised learning with physically based inductive
biases to decompose a scene structure into geometry, pose, reflectance and lighting.

Our Second contribution —MILe— addresses the ambiguity issues in single-labeled
datasets such as ImageNet. It is often inappropriate to describe an image with a single label
when it is composed of more than one prominent object. We show that integrating ideas from
Cognitive linguistic literature and imposing appropriate inductive biases helps in distilling
multiple possible descriptions using such weakly labeled datasets.

Next, moving into the RL setting, we consider an agent interacting with its environment
without a reward signal. Our third Contribution —HaC— is a curiosity based unsupervised
approach to learning associations between visual and tactile modalities. This aids the agent
to explore the environment in an analogous self-guided fashion and further use this knowledge
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to adapt to downstream tasks. In the absence of reward supervision, intrinsic movitivation is
useful to generate meaningful behavior in a self-supervised manner.

In our final contribution, we address the representation learning bottleneck in unsupervised
RL agents that has detrimental e�ect on the performance on high-dimensional pixel based
inputs. Our model-based approach combines reward-free exploration and planning to e�ciently
fine-tune unsupervised pre-trained models, achieving comparable results to task-specific
baselines. This is a step towards building agents that can generalize quickly on more than a
single task using image inputs alone.

Keywords. Representation learning, unsupervised learning, generative modeling, 3D
scene understanding, intrinsic control, world-models, weakly labeled data.
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exploration reward. (b) To stabilize training, an additional network is used to
predict the forward dynamics, and the di�erence between predicted next latent
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Chapter 1

Introduction

«Imagination is the living power and prime agent of all human perception.»
–Samuel Taylor Coleridge

Learning to make inferences and decisions using observations and e�ective computing
has been a long standing goal of artificial intelligence (AI). Over the last two decades, there
have been significant advances in the field due to the availability of large-scale datasets
and computational resources across various areas of study from engineering to fundamental
sciences [Hey et al., 2009, Reed and Dongarra, 2015]. Underlying this progress is the re-
emergence of neural networks that constitute the core of deep learning. Deep learning is
hailed as a truly task agnostic approach to computational modeling, relying on large volumes
of carefully curated data and gradient descent to distill arbitrarily complex information into
an artificial neural network. Despite advances in the field, there is still a fundamental gap in
the potential of current deep models and those necessary for complex reasoning in science
and engineering. Most success stories are restricted to deep learning applications where we
have access to large annotated datasets such as object recognition [Donahue et al., 2014]
or environment simulators with handcrafted goals [Silver et al., 2017, Hafner et al., 2021].
However, this reliance makes the learning approach largely impractical for many scientific
domains, where the collection of annotations can be prohibitively expensive. There could be
various costs associated with obtaining label information, such as privacy, labor costs, safety
issues, and the requirement of domain experts together making the approach restricted.

However, such limitation rarely exists in the learning mechanism of natural agents in the
real world. Real world sensory perception of natural agents primarily encompasses a wide range
of interacting modalities, including visual, auditory, and tactile stimuli. There are convincing
and conclusive arguments suggesting that humans do not depend on extensive amounts of
labeled supervision for probabilistic reasoning and discovering meaningful structure over such
high-dimensional sensory data [Barlow, 1989, Billman and Knutson, 1996, Connolly and
Harris, 1971]. For example, when displayed a video, rather than examining individual pixels



in each of the frames, one can learn to represent individual objects by grouping similarly
colored pixels in close proximity and reasoning about their underlying dynamics across
adjacent frames collectively. Similarly, when presented with some new gadget, we do not
need days of interaction and constant supervision before obtaining an intuitive grasp of how
it works. Since infancy, we employ unguided exploration to learn useful skills [Lindenberger
and Lövdén, 2019, Angulo-kinzler, 2001]. In the process, we learn to represent the world
in terms of entities centered around spatio-temporal principles of cohesion, continuity, and
contact [Fields, 2013]. These instances are unremarkable endeavors of human learning but
are surprisingly challenging for the current generation of artificial intelligence. A crucial
aspect natural agents demonstrate in both examples is to be able to learn coherent structure
while reasoning over such high-dimensional data. To be able to generalize in high dimensions,
given only restricted guidance, we need to augment the learning ecosystem of artificial agents
with similar perceptual abilities.

Deep learning-based methods have enabled significant progress in the field of vision
[Krizhevsky et al., 2012, Dosovitskiy et al., 2020] and control [Levine et al., 2016a, Haarnoja
et al., 2018]. However, the real world is much more complex than the curated datasets and
the controlled settings where these methods are studied. Thus, when we attempt to apply
current methods to more complex situations or tasks, these inevitably struggle [Tsipras et al.,
2020b, Yi et al., 2017, Dulac-Arnold et al., 2019, 2020b]. Conversely, the human vision and
control systems are robust across variations, occlusions, and noise, and thus they are able to
generalize or to adapt fast to changes and novelties in the environment [Geirhos et al., 2018,
Thoroughman and Taylor, 2005]. Consequently, the central question, we are interested in
is, “what are the key elements missing to achieve learning abilities of natural agents, such as
learning with limited supervision and no prior knowledge about structures of the world?”

In this thesis, we explore this question from a twofold perspective: (1) the perception
process, through which we identify and understand the structure in the environment, and
(2) the action selection process, through which we govern the agent’s behavior to achieve
specific accomplishments. As we show in this thesis, these processes are intertwined, in that
meaningful perception of the environment is essential for selecting actions, and intrinsically
motivated behaviors can encourage learning a better perception model of the world. In
terms of perception, we assess candidates such as geometry aware representation learning,
self-supervision from multi-modal signals, and compositional inductive biases to help address
the above question. Other potential missing elements could be self-supervision from temporal
signal, causal structure discovery and new inductive biases. In terms of action selection, we
study the problem of developing intrinsic desires for the agents that encourage learning better
models of the world. An improved cognitive model of the environment can then be used to
ease the learning of more directed behaviors, such as tasks specified by the user through goals
or rewards.

34



To motivate the learning paradigm, consider an image from the ImageNet dataset, an
extensive database of natural images [Deng et al., 2009]. What could have been the underlying
mechanism that created such an image in the first place? One can reason that there are
many factors involved during the process of image synthesis. Some of these factors deal
with the nuances of imaging technology, such as lighting options, camera type, and pose
etc; whereas others include extrinsic physical and biological phenomena, such as the shapes,
textures, objects, and other beings. Despite being characterized by many such factors
and compositions during its creation, an image in the ImageNet dataset ultimately comes
with limited information both with respect to its overall scene geometry and exogenous
compositions. Such weak supervision can restrict a learning system’s ability to reason and
make inferences about the environment. And more critically it can lead to systematic errors
in the learning signal of a downstream vision task [Beyer et al., 2020]. This thesis aims
to demonstrate that, by incorporating appropriate inductive biases and with the help of
probabilistic modeling and behavior learning, the potential of artificial agents can be further
stretched to acquire structural knowledge.

Besides the aforementioned learning paradigms, the focus of this dissertation will be on
using deep learning models for learning representations and behavior for a subset of supervision
constrained settings, such as unsupervised and weakly supervised learning. Towards this end,
we organize the dissertation around four key themes of contributions with applications to
vision and reinforcement learning, which we discuss next.
This thesis is arranged as follows: The next section provides a synthetic overview of the
research contributions that will be detailed in subsequent chapters. Readers less familiar with
deep learning, unsupervised learning, and open challenges in these areas will benefit from first
reading the background presented in Chapter 2. Since this thesis builds on the notions of
inverse graphics and unsupervised exploration, the background chapter also covers the topics
of di�erentiable rendering and reinforcement Learning. Each of the first three contributions
corresponds to a published research paper while the fourth is a published workshop paper
under review at a conference. Chapter 11 concludes the thesis, discussing future research
directions.

As this is a thesis by article, the review, and discussion of the literature most relevant to
each contribution is to be found, in its context, within that contribution’s chapter, as in the
corresponding article, rather than in a separate dedicated literature review chapter.
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1.1. Research Contributions
1.1.1. Unsupervised 3D Aware Representations form Single Images

Images are comprised of shapes, textures, lighting, etc. There is an inherent statistical
association between these structural components hidden behind the observant pixels. When
provided with an image of scenery, we can picture how it would look from a di�erent viewpoint.
We can do it because, unconsciously, we have learned an implicit model for the 3D structure
of the scene, which allows us to easily fit the current observation to our mental model and
hallucinate the scene from a novel viewpoint. In computer vision, novel view synthesis
given just a single view of a scene is an intrinsically ill-posed problem. Building structured
generative models, however, has made the following question approachable:

Given a single image, can we infer the underlying 3D structure of the scene without
leveraging any depth based annotations?

Generative models o�er the promise of understanding data in an unsupervised setting.
The formalism is directly useful for extrapolating missing information and making inferences
about the world’s structure. In «Pix2shape: Towards unsupervised learning of 3d scenes
from images using a view- based representation» [Rajeswar et al., 2020] (Chapter 4) we
present a neural network based analysis-by-synthesis approach, by combining ideas from
unsupervised deep learning, probabilistic generative modeling and computer graphics. The
proposed approach aims to learn 3D aware representations of images given single observations.

1.1.2. Multi-label Representations from Single-labelled Images

A 2D image is a projection of a 3D composition of di�erent objects. However, most
curated datasets ubiquitous in computer vision such as ImageNet [Deng et al., 2009] are
limited to assigning a single label to an image. This is an inappropriate description of the
content when images contain multiple, similarly prominent objects. Cognitively inspired
linguistic literature suggests that compositionality emerges through imitation from previous
generations in the presence of a learning bottleneck [Kirby, 2001]. Inspired from the same, in
«Multi-label iterated learning for image classification with label ambiguity» [Rajeswar et al.,
2022b] (Chapter 6) we try to address the following question:

Given a singly-labeled dataset, is it feasible to learn multi-label predictions of images
considering the underlying compositionality of the world?

The proposed method is an automatic and iterative process to compose multi-label
annotations from a weakly supervised dataset. It mimics the aforementioned imitation
procedure by transmitting labels through multiple generations of a perceptual model. A
bottleneck is introduced in the form of limited learning iterations between each generation.
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The approach has been e�ective in finding multiple objects in the images without explicit
supervision.

1.1.3. Touch based Pre-training in the Absence of Dense Supervision

We live in a 3D world where a majority of our learning occurs through observation
or trial and error in an unsupervised manner. On the other hand, most success cases of
Reinforcement Learning (RL) are realized through building specialist agents that are
competent at solving individual tasks using well-defined dense rewards (e.g. Atari games). In
Computer Vision (CV) and Natural Language Processing (NLP) one can leverage unsupervised
learning to build generalist adaptable models using large banks of available data. In RL,
however, the key is to generate structured behavior in a self-supervised manner using intrinsic
exploration. In «Haptics-based curiosity for sparse-reward tasks» [Rajeswar et al., 2021]
(Chapter 8) we ask a di�erent question:

Given an environment with more than a single modality, how do we develop a limited
supervision agent in a Reinforcement Learning setting?

In the proposed framework, we show that an agent can leverage tactile modality to explore
the environment in a self-guided fashion. This aids in training an RL agent when the rewards
are sparse. The acquired knowledge through exploration can in turn be used to adapt to
downstream manipulation based tasks. It is well known that self-supervised learning can be
used to extract useful structure from data that is unlabeled, similarly, we use self-guided
exploration to help agents attain a functional understanding of the environment for better
adaptation.

1.1.4. Unsupervised Model-based Pre-training for RL from Images

Here I present a model-based approach for perception in pursuance of Unsupervised RL.
Control from high-dimensional raw sensory input, such as image pixels, is an arduous task,
especially in a data-e�cient regime. Such limitation rarely exists in humans, as they learn a
repertoire of motor skills by interacting and observing the world with limited supervision.
To address this, unsupervised reinforcement learning proposes to collect data through self-
supervised pretraining to accelerate task-specific finetuning. In «Unsupervised Model-based
Pre-training for Data-e�cient Reinforcement Learning from Pixels» [Rajeswar et al., 2022a]
(Chapter 10), we ask this question:
Can unsupervised RL lead to improved generalization capabilities when the input observations

are high-dimensional?
We investigate this question against the backdrop of the Unsupervised Reinforcement

Learning Benchmark (URLB), a collection of tasks to be solved in a data-e�cient manner. In
our work, we advance the field by closing the performance gap in the URLB on image inputs.
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This is achieved by training a latent dynamics world model via unsupervised exploration
during pretraining. And adopting a hybrid planner to e�ciently find the actions in order to
solve the downstream task during finetuning.

1.2. List of Excluded Contributions
During my PhD, I have had the opportunity to work on a variety of projects. I produced

other contributions on topics aimed towards understanding how do we represent knowledge of
the world, that are not included in this thesis. Some of the relevant works are outlined below.

• Unsupervised Representation Learning:
(1) Ishmael Belghazi*, Sai Rajeswar*, Olivier Mastropietro, Negar Rostamzadeh,

Jovana Mitrovic, Aaron Courville. Hierarchical Adversarially Learned Infer-
ence. ICML 2018 Workshop on Theory and Applications of Deep Generative
Models. [Rajeswar et al., 2018]

(2) Amjad Almahairi, Sai Rajeswar, Alessandro Sordini and Aaron Courville.
Augmented CycleGAN: Learning Many-to-Many Mappings from Unpaired Data.
ICML 2018. [Almahairi et al., 2018]

(3) Sandeep Subramanian, Sai Rajeswar, Alessandro Sordini, Adam Trischler,
Christopher Pal, Aaron Courville. Towards Text Generation with Adversarially
Learned Neural Outlines. NeurIPS 2019. [Subramanian et al., 2018]

(4) Ishmael Belghazi, Aristided Baratin, Sai Rajeswar, Sherjil Ozair, Yoshua
Bengio, Aaron Courville, R Devon Hjelm. MINE: Mutual Information Neural
Estimation. ICML 2018. [Ishmael et al., 2018]
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Chapter 2

Background

Machine Learning is a study of computational systems that can learn and adapt from
underlying data without explicitly being programmed. Although the terminology remained
unchanged since the Samuel Checkers-playing [Samuel, 1959], the landscape of learning
has evolved in multi-folds. It involves designing learning algorithms to solve complex
tasks where explicitly articulated “recipes” are di�cult (or e�ectively impossible, a priori)
to construct. Some of these included detecting complex patterns, extracting information,
reasoning, decision-making, etc. As any agent considered intelligent ought to be able (and
should frequently find it useful) to adapt its behavior in light of observation and experience,
the study of machine learning is an essential element in the pursuit of artificial intelligence.

Designing algorithms to solve the aforementioned tasks is extremely di�cult using rule-
based systems where a set of rules are predefined by humans (via imperative or functional
programming). Machine learning algorithms leverage statistical regularities in the data to
learn from examples. An objective of such a learning procedure is generalization which
distinguishes them from template matching algorithms or look-up tables. It is desirable for
such learnt models to generalize to previously unseen situations and examples.

In this dissertation, we integrate this formalism of learning with ideas from other related
areas including computer vision, computer graphics, and reinforcement learning. We begin
by describing the kinds of learning found in machine learning, followed by detailing some
of the learning settings including Neural Networks, Deep Generative Models, Di�erentiable
Rendering and Deep Reinforcement Learning which forms the backbone of this thesis.

2.1. Machine learning Problem
In modern machine learning problems, the primary task is to leverage observed data

(the training set) to specify a function that estimates (predicts) values of interest over
unobserved data (the test set). Let the data D be a sample coming from an unknown
probability distribution P over X ◊ Y where X is the input space and Y is the target or



output space. Let D = {(x1,y1), ..., (xN , yN)} be an i.i.d. sample of N pairs of inputs xi

and their corresponding labels or targets yi drawn from P . A machine learning model is
(usually) a deterministic function:

f : X æ Y

that predicts outputs given inputs. The models that we consider in this document are all
parametric: the prediction of a parametric model f is not only a function of an input x œ X ,
but also of a parameter vector ◊ œ �, where � is the parameter space. We denote f◊ as
the predictive model corresponding to the parameter ◊.

We define a loss function l that measures a distance (in the loose sense of the term)
between the ground-truth label y and a prediction ŷ = f◊(x). We want to minimize this
distance, or equivalently, minimize the mistakes the model makes. Given a set of parameters
� and training data Dtrain, the goal of a learning algorithm is to find the most suitable
parameters ◊ œ �. The learning algorithm trains or fits the model to the data so that the
model has a low generalization error.

The simplest learning principle is Empirical Risk Minimization (ERM). It selects the
parameters that minimize the empirical risk or train loss, which is defined similarly to the
test loss:

Ltrain(◊) = 1
|Dtrain|

ÿ

(x,y)œDtrain

l(y, f◊(x)) (2.1.1)

To solve this optimization problem, we need optimization methods adapted to the loss function
and the class of models. This problem is tackled in the specific case of neural networks in
Section 2.3. Here, we simply assume that ERM is used with a perfect optimization procedure.

2.2. Degrees of supervision and Categorization
Machine learning can be studied and segregated over two di�erent dimensions. The first

factor is to be able to learn with or without a teacher, i.e. either train a model with some
kind of supervision, be it labels, rewards and other forms of annotations which is called
supervised learning or learning without any form of supervision which is often referred to
as unsupervised learning. The other distinguishing factor is the nature of underlying data
distributions to learn from (see Figure 2.1). A setting is considered active when the model
or agent is actively changing the data distributions. The active setting is typically where
most research in Reinforcement Learning (RL) falls. In a passive learning setting, there is a
fixed data distribution to learn from.

(1) Supervised Learning belongs to the category of passive learning with a teacher.
It deals with the discovery of input-output mappings for some task of interest given
correct or approximately correct examples of said mapping. The ERM problem setting
discussed in the previous section is commonly applicable to supervised learning.
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Supervised Learning Unsupervised Learning

Intrinsic MotivationRienforcement Learning

With Teacher Without Teacher

Passive

Active

Fig. 2.1. Categories of Machine Learning problems

(2) Unsupervised Learning comprises of passive learning without a teacher, and
generally refers to any procedure that operates on only the “input”. This constitutes
approaches that attempt to uncover some sort of structure in the distribution of
input signals. Input refers to any observed data point x œ Rd sampled from some
fixed data distribution pX . Here, d is the data dimensionality and typically in the
order of hundreds to thousands for the data modalities of interest, e.g., the number of
pixels in high-resolution images. pX is unknown analytically; there is only access to a
dataset Dtrain of training data points drawn independently from pX . The setting is
challenging compared to supervised learning due to the absence of an objective to
learn and the lack of annotations. Unsupervised learning is an umbrella term that
encompasses a variety of methods:

(a) Representation Learning is the problem of learning to produce useful repre-
sentations of the data. It is still debated what makes a good representation, but
one might desire sparse representations or low-dimensional representations for
example. Clustering is a particular case where we aim to associate each element
of the sample space with an element of a discrete set.

(b) Density Estimation consists of fitting a probability density function that
approximates the density of the unknown data distribution. This approximate
density can then be used for example to detect low-probability data points or
outliers, which can be interpreted as anomalies.

(c) Learning generative models: methods that could model the distribution
of interest, either explicitly or implicitly i,e. from which it is easy to generate
samples that look like they are drawn from the data distribution.

A common underlying learning principle for these methods often times is to search for
the parameters ◊ú that best minimize some notion of discrepancy (e.g., a probabilistic
divergence) between the data distribution pX and the model distribution p◊ where ◊

belongs to a set of real-valued parameters M. Since there is only access to samples

41



from pdata, in practice the discrepency is e�ectively minimized between p̂X and p◊

following the aforementioned principle of empirical risk minimization, where p̂X

denotes the empirical data distribution.
(3) Reinforcement Learning falls into the category of learning actively with a teacher.

It concerns systems that implement a policy mapping sequences of stimuli (i.e. the
state of the “world”, as experienced by an autonomous agent) to actions with an
objective to maximize the future expected rewards. For instance, an autonomous
car (the agent) could be trained to stay driving on the road until it reaches its
destination. Each time frame spent on the road is rewarded along with its proximity
to the destination, and crashes (and accidents) are penalized. The agent would learn a
policy mapping its state (e.g. linear speed, angular speed, linear acceleration, angular
acceleration) to actions (e.g. adjusting the steering and brakes) that allows it to safely
reach the destination. However, an examination of this paradigm lies beyond the
scope of this thesis.

(4) Intrinsic Motivation or reward-free exploration deals with learning without a teacher,
primarily in the active regime. In many real-world scenarios, rewards extrinsic to the
RL agent are extremely sparse or missing altogether, and it is often not possible to
construct a shaped reward function. Motivation/curiosity have been used to explain
the need to explore the environment and thereby discover novel states and structure
of the environment. More generally, this is a way of learning new information and
expertise which might be beneficial for pursuing rewards in the future.

In between supervised and unsupervised learning, there are other settings that vary the
type and the quantity of information that guides the learning process. On one hand there is
supervised learning i.e. learning from annotated data. On the other end of the spectrum,
unsupervised learning problems do not have supervision at all and the data is unlabeled.
In between, there exists weakly-supervised and semi-supervised learning approaches.
Semi-supervised learning techniques are employed when only a small amount of data is
labeled. Weakly-supervised learning is an umbrella term covering a variety of studies
that attempt to construct predictive models by learning with weak supervision. In this
thesis, weakly-supervised learning refers to problems focusing on learning with incomplete
and inaccurate supervision.

2.3. Deep Learning
Deep learning is concerned with learning multiple levels of representation of data and

coming up with higher levels of abstraction [LeCun et al., 2015, Schmidhuber, 2015]. This
formalism is inspired by the studies in the field of neuroscience suggesting that the human
brain processes signals in multiple stages [McCulloch and Pitts, 1943]. Furthermore, the
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computational model naturally fits the characteristics of the data itself. Most of the data
observed can be explained in a hierarchical form: in language, words make up sentences,
which make up the paragraphs of a document. In vision, pixels form edges, and edges form
basic shapes, which in turn form more complex shapes in a natural image.

While there are not many assumptions concerned with the learned representation, the
concept of distributed representations of data is often central to deep learning [Hinton et al.,
1986]. Di�erent from learning local representations, the main idea here is to distribute
information about data observations across several dimensions of the feature space. As a
simple example, we can think of the binary representation of a set of N integers as a distributed
representation (log2N space), while a one-hot vector representation is a local representation
(N space). This is particularly important in natural language processing. An intuitive example
is representing words in a vocabulary as vectors in Rd, also called word embeddings, where
each dimension contributes to the word meaning (distributed representation), as opposed to
a one-hot vector where dimensions are independent of each other (local representation).

2.3.1. Neural Networks

Feedforward Neural networks or multi-layer perceptrons [Rumelhart et al., 1988] are a very
popular type of learning function family that form the core of the deep learning formalism.
These models consist of one or more layers of arbitrary (usually, di�erentiable) functions. A
single layer is a linear transformation followed by a non-linear transformation. Let si œ N be
the dimension of the input of the layer and si+1 œ N the dimension of the output. The layer
i is defined by the function

fi : Rsi æ Rsi+1

x ‘æ g(Wix + bi)

where Wi œ Rsi+1◊si is the weight matrix, bi œ Rsi+1 is the bias and g is the non-
linearity or the activation function such as logistic function, hyperbolic tangent function
or rectified linear function ReLU(x) = max(0, x) . The predicted output of this layer for the
input x is fi(x).

A deep neural network (DNN) is a neural network composed of several such stacked
layers. The function f that computes the predicted output of the whole DNN is the
composition of the functions of the layers. In supervised learning, that is

f : X æ Y

x ‘æ fN ¶ fN≠1 ¶ ... ¶ f1(x)
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where N is the number of layers used in the computation, or the depth of the network.
All the layers except the first f1 and the last fN are called hidden layers. Assume that
the parameter set ◊ is a union of disjoint mutually exclusive parameter sets ◊1, ◊2, · · · , ◊N

such that ◊i is the set of parameters of the function fi, and the feedforward neural network
specified by f◊ is f◊N ¶f◊N≠1 ¶ · · ·¶f◊2 ¶f◊1 . The parameters ◊ tuned by the learning algorithm
are the bias vectors and the weight matrices: ◊ = {◊1, . . . , ◊N} = {W1,b1, . . . , WN , bN}.

The last layer of a neural network, called the output layer, usually di�ers from other
layers and its form depends on the type of problem we are trying to solve. If we are doing
regression, the output layer might look like:

y : WoutfN + bout

whereas for classification problems we would use

aout : WoutfN + bout

y : softmax(aout)

where the softmax function is a convenient way to output a normalized distribution over K
classes:

softmax(xi) = exi

q
K

k=1 exk

2.3.2. Backpropagation

Gradient-based optimization is used to minimize the empirical risk when training neural
networks. These iterative methods use the gradient of the objective with regard to the
parameters to guide the search. This is possible because neural networks use di�erentiable
building blocks: linear layers and nonlinear activation functions are di�erentiable, thus their
composition is also di�erentiable.

In order to compute the gradients e�ciently, modern deep learning libraries implement the
backpropagation algorithm. A graph of computation is defined, where nodes are results of
computations and a directed edge from node u to v denotes that v requires u to be computed.
For every edge (u,v), we say that u is a parent of v or u œ fi(v). Intermediate results of
computations can be expressed as functions of their parents only: ai = fi(afi(i)). Recall that
the predictive function f that is computed by a neural network is expressed as a composition of
functions f◊ = fN ¶...¶f1 where ◊ are the parameters of the network. Given a pair (x,y) of input
and target, the loss for the prediction f(x) is l(y,f◊(x)). The computation of l corresponds
to the final node of the computational graph. The empirical risk Ltrain is the average of the
loss l over examples from the training set Ltrain(◊) = 1

|Dtrain|
q

(x,y)œDtrain
l(y, f◊(x)) so that
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the gradient Ò◊Ltrain can be computed as

Ò◊Ltrain = 1
|Dtrain|

ÿ

(x,y)œDtrain

ˆl(y, f◊(x))
ˆ◊

(2.3.1)

Ltrain is then minimized by using the following gradient-descent update rule to gradually
update the parameters ◊ of the model f◊ (i.e., the neural network):

◊i+1 Ω ◊i ≠ ÷Ò◊Ltrain(f◊) (2.3.2)

So all we need is to be able to e�ciently compute, for each (input,target) pair (x,y), its
contribution to the gradient ˆl(y,f◊(x))

ˆ◊
or in short ˆl

ˆ◊
= { ˆl

ˆW1
, ˆl

ˆb1
, . . . , ˆl

ˆWN
, ˆl

ˆbN
} .

During the forward pass, the input is propagated, that is, the loss is computed and all the
intermediate results ai are stored. During the backward pass, the gradients are propagated in
the other direction, from the loss to the inputs. In other words, this first computes gradient
updates for the outermost parameter set ◊N , as ◊N Ω ◊N ≠ ÷ ˆLtrain(f◊)

ˆ◊N
. Subsequently, the

inner layers of parameters are gradually expanded, one layer at a time, until the chain rule
traces back to the parameter set ◊1. Concretely, the weights are updated along the way using
the chain rule as follows:

ˆl

ˆWi

=
ÿ

j:iœfi(j)

ˆl

ˆaj

ˆaj

ˆWi

and similarly for the bias terms bi. In practice, gradient computation for various numerical
operations can be automated, enabling easy implementation while also reducing the scope for
execution errors.

2.3.3. Convolutional Neural Networks

Convolutional neural networks (CNN) are an important class of algorithms that have been
shown to be e�ective on machine vision problems. Over the years CNNs have been treated and
used as the default mechanistic models of the visual system [Hubel and Wiesel, 1962]. Abiding
by the general principles of deep learning, CNNs learn a hierarchy of features, which extract
higher level of representations as one goes deeper in the hierarchy while also taking advantage
of the topological structure of input data. This allows the learning of powerful representations
of the visual information with e�cient (computationally and statistically) architectures.
While CNNs are especially popular for 2D image data, they have been extensively applied to
other types of data (e.g., text and video).
CNN Architecture. The architectural design of a CNN extends a fully-connected MLP while
bearing direct parallels to the architecture of the visual system. A typical CNN architecture
comprises of one or more instances of a convolutional layer followed by a pooling layer. The
convolutional layer can be characterized as follows: given a 2D input x œ RN◊M (e.g., an
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image with width N and height M), the convolutional layer uses a kernel or filter denoted by
W œ RK◊K , where typically K«N, M , and computes a feature map f œ R(N≠K+1)◊(M≠K+1)

as follows:
fi,j = „(W T xi,j) (2.3.3)

where xi,j is an input patch of size K ◊K centered at the location (i,j), fi,j is the result of the
dot product of the matrices at the location (i,j) of the feature map, and „ is a nonlinearity
or activation function. The feature map is computed by convolving the kernel on the entire
input. Typically a convolutional layer generally uses several kernels and is applied to inputs
with multiple channels. A spatial decimation operation is applied after a convolutional layer
to subsample the resulting feature map. This includes taking the average or maximum value
in a given local neighbourhood (average pooling or max pooling, respectively), though more
recently simple subsampling has become a popular alternative [Springenberg et al., 2015].
Pooling helps in achieving invariance of the resulting representation with respect to particular
changes in the input.
CNN Properties. Convolutional architecture benefits from the following properties which
makes them a preferable learning model of the visual system:

(1) It allows for parameter sharing across many spatial locations, which results in using
much fewer parameters and much sparser connectivity compared to a fully connected
layer.

(2) It produces outputs (representations) that are equivariant to input translations. This
is especially useful in image representation because it means that a specific input
feature (e.g., an edge) can be detected regardless of its location in the input.

(3) Stacking of convolution-nonlinearity-pooling creates receptive fields for individual
neurons that increase in size deeper in the network and the features of the image that
they respond to become more complex.

2.4. Maximum likelihood estimation
So far our discussion is tuned towards deterministic models, i.e. functions f : X æ Y . We

now turn to probabilistic models and outline how they are trained to fit the underlying data
distribution and how to compute an optimal prediction with regard to a loss function. Note
that we saw a similar treatment while discussing unsupervised learning in the previous section.
MLE is an innate learning formalism for unsupervised learning, especially for generative
modeling.
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2.4.1. MLE for Supervised Learning

This subsection assumes we are in the supervised learning setting, the unsupervised
learning setting is described in the following subsection. These sections are important with
respect to our later discussion on Generative modeling.

Neural networks are often used to define probability mass or density functions on the
conditional distribution PY|X . In statistics, such probabilistic models can be fit to the
data using di�erent methods such as the method of moments or (conditional) maximum
likelihood estimation (MLE). MLE is a fundamental learning objective in machine learning
and deep learning. It allows one to learn the parameters that maximize the probability of
the data:

◊̂ = argmax
◊œ�

Ÿ

(x,y)œDtrain

p◊(y|x)

= argmin
◊œ�

ÿ

(x,y)œDtrain

≠ log p◊(y|x)
(2.4.1)

Thus, MLE is equivalent to ERM with the log loss:

l(y, f◊(x)) = ≠ log p◊(y|x)

2.4.2. MLE for Unsupervised Learning

Recall from the earlier introduction to unsupervised learning that pX denotes the data
distribution, p̂X denotes the empirical data distribution which assigns uniform probability
mass to all points in Dtrain and zero outside, and p◊ is the model distribution.

The Maximum Likelihood Estimation (MLE) principle, in this case, is equivalent to
minimizing the Kullback-Leibler (KL) divergence between the data distribution and the
model distribution. Accordingly, MLE optimizes for the model parameters using the following
objective:

DKL(pX , p◊) = EpX [log pX (x)] ≠ EpX [log p◊(x)]

The first term on the right-hand side of the equation corresponds to the entropy of the
data distribution. Since the quantity does not depend on the model parameters and is
constant w.r.t. ◊, it can be ignored. Therefore the Maximum Likelihood Estimate objective
for the unsupervised learning amounts to minimizing the expected negative log-likelihood
assigned by the model to the training dataset:

min
◊œM

≠EpX [log p◊(x)] (2.4.2)
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Since pX is not accessible, in practice it is approximated using the empirical data distribution
p̂X similar to Equation 2.1.1.

2.5. Generative Models
Generative Modeling is one of the key components of unsupervised learning and plays

a major role in analyzing and understanding the data. There are two inference tasks
predominantly associated with a generative model:

(1) Density estimation: For any given data point, compute the probability assigned by
the model p◊(x).

(2) Sampling: To be able to generate samples from the learnt model distribution x ≥ p◊

Some model categories additionally include latent variables Z along with the observed
variables X . For this class of models, we will include an additional problem of inferring the
latent variables for a given data point x.

The classical generative models were initially confined to simple model families, namely
mixtures of Bernoulli and finite Gaussian distributions to model discreet and continuous data
respectively using the Expectation-Maximization (EM) principle. Such models do not scale
to high-dimensional data modalities such as images, videos, and audio due to the curse of
dimensionality. As the number of data dimensions increases, the target data distribution pX

can be highly complex (spanning a huge number of modes). This requires a very large number
of mixture components to fit underlying data distributions and consequently, optimization can
be largely challenging in this setting. Traditionally, dimensionality reduction approaches (also
known as manifold learning techniques) such as variants of Principal Component Analysis
(PCA) [F.R.S., 1901], Local Linear Embedding (LLE) [Roweis and Saul, 2000] among others
are used to deal with the curse of dimensionality issue.

Recently, afore-mentioned deep neural network based models have proven highly e�ective
for a variety of tasks and modalities involving high-dimensional data such as in image classifi-
cation [Donahue et al., 2014, Zeiler and Fergus, 2014] natural language processing [Vaswani
et al., 2017] and speech recognition [Hinton et al., 2012]. Their learning mechanism and
underlying optimization algorithm display inductive biases that can help generalize beyond
the training data. In this section, we study how these deep networks can be useful for
probabilistic generative modeling of high-dimensional data. For that, we briefly describe and
di�erentiate four major frameworks of generative modeling well-known today: energy-based
models, autoregressive models, variational autoencoders, and generative adversarial networks.
Normalizing Flows [Rezende and Mohamed, 2015] is another generative model paradigm that
has been recently successful, however, it is beyond the scope of this thesis.
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2.5.1. Energy Based Models

Inspired from statistical physics, an energy-based model can be seen as a parameterized
representation of the Boltzmann distribution [LeCun et al., 2006]. That is, the probability
density of any data point x œ Rd is given by the Boltzmann distribution:

p◊(x) Ã exp(≠E◊(x)), (2.5.1)

The real-valued function E◊(x) denotes the energy of a data point x with parameters ◊ and
is low for points with high probability under p◊. EBMs can include latent variables Z and
e�ciently learned by restricting the connectivity between the latent and observed variables in
a framework called Restricted Boltzmann Machines (RBM). Here, we outline the learning and
inference for the EBM setting in Equation 2.5.1. An extension of this formulation to more
general RBMs that are applicable to high-dimensional data can be found in Hinton [2012],
Courville et al. [2014]. Lately, the energy function for an EBM is parameterized by a deep
neural network and the learning objective for the model parameters is derived via Maximum
Likelihood Estimate (MLE). Substituting the Boltzmann distribution Equation 2.5.1 in
Equation 2.4.2, we get:

LEBM(◊) = EpX [log E◊(x)] ≠ log Z◊ (2.5.2)

where Z◊ =
s

exp(≠E◊(x))dx is the partition function and is intractable to compute for
high-dimensional spaces. The gradients of the loss function are given as:

Ò◊LEBM(◊) = EpX [Ò◊E◊(x)] ≠ Ep◊
[Ò◊E◊(x)] (2.5.3)

An intuitive way to think about Equation 2.5.3 is that the first gradient term minimizes
the energy at data points sampled from the training dataset (also called positive examples)
and the second term increases the energy at samples drawn from the model p◊ (negative
examples). Markov Chain Monte Carlo (MCMC) methods are used in order to draw samples
from the model to be able to estimate the expectation in the second term. These approaches
perform sampling by running a carefully constructed Markov chain.

2.5.2. Autoregressive Models

Nonetheless, one major drawbacks with aforementioned energy-based models is that the
sampling and density estimation using these models is intractable since they are unnormalized.
Here, we examine a family of self-normalized models called autoregressive models. In an
autoregressive model (ARM), the joint distribution over n random variables x = (x1, x2, ..., xn)
can be factorized using the chain rule as:

p◊(x) =
nŸ

i=1
p◊(xi|x1, x2, ..., xi≠1) =

nŸ

i=1
p◊(xi|x<i). (2.5.4)
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If the conditionals ◊(xi|x<i) are expressive enough to fit and represent any unidimensional
probability distribution, then the overall model p◊(x) can also constitute and represent any
arbitrary data distribution over x. The reasoning for the argument is straightforward from
the chain rule applied to the data distribution. Practically, this is realized by picking an
ordering for the indices (e.g., raster scan for images) and parameterizing the respective
conditionals using deep neural networks. The parameters of the resulting models are learned
by maximizing the log-likelihood over the training data. Substituting Equation 2.5.4 in
Equation 2.4.2, we get:

LARM(◊) =
dÿ

i=1
EpX [logp◊(xi|x<i)] (2.5.5)

Sampling from these models follows ancestral sampling where every dimension is sampled one
at a time in order. Autoregressive models are among the state-of-the-art generative models,
impressively successful in image, audio, text and video modalities [Van Den Oord et al., 2016,
Salimans et al., 2017, van den Oord et al., 2016]

2.5.3. Variational Auto Encoder

As hinted in Section 2.2, representation learning is one of the critical aspects of unsu-
pervised learning. Leveraging latent variable generative models is an e�ective approach
towards this goal. Formally, a latent variable generative model consists of a set of latent or
hidden random variables Z œ Rk in addition to the set of observed variables X œ Rd. Latent
variables increase the expressivity of the learned density model and can help model complex
distributions by uncovering hidden structure in the data. Mathematically, a latent variable
model expresses a joint probability distribution p◊ over the observed data X and the latent Z.
Such models can be appealing because the structure of a learned latent space can often be
statistical much simpler than that of observed space for further analysis. We focus on two key
realizations of this formalism: variational autoencoders and generative adversarial networks.

Note that the objective here is to maximize the log-likelihood of the observed data, as we
did earlier. However, since we additionally have latent variables as part of the model, we
need to marginalize out these latent variables in order to evaluate the loglikelihood. Now, let
us examine the marginal log-likelihood of a latent variable model for a point x:

logp◊(x) = log
⁄

p◊(x, z)dz (2.5.6)

The integral for one (x, z) exclusive configuration can be computed in a tractable manner
using the chain rule as long as we choose a reasonably simple prior p◊(z) and conditional
distribution p◊(x|z). However, evaluating the integral in the above equation is either slow or
often impossible ( especially if z is continuous or has many potential values). In such case we
need to resort to an approximate estimation. A variational approximation is a mathematical
tool for decomposing such log-sum structured likelihood into a tractable expectation over
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both x and z. It leverage a distribution that is easy to sample and evaluate to approximate
the posterior distribution p◊(z|x). We thereby obtain an evidence lower bound (ELBO) on
the marginal likelihood by considering the variational approximation as a parameterized
distribution q„(x|z) with parameters „:

logp◊(x) Ø Eq„(z|x)

C

logp◊(x, z)
q„(z|x)

D

= ELBO (2.5.7)

The proof is based on Jensen’s inequality (we omit the details of the proof here, see Kingma
and Welling [2014] for a detailed derivation). The estimation gap in the equation is geven
by the KL divergence between q„(z|x) and p◊(z|x) and the bound is tighter when the two
distributions match. Therefore, inorder to train a variational autoencoder (VAE) we need
to maximize the ELBO w.r.t. both the model parameters ◊ and the variational parameters
„ [Kingma and Welling, 2014, Rezende et al., 2014]. It is easy to see that this can be
implemented similar to an autoencoder [Bengio et al., 2013]. However, in a VAE, an encoding
that maps data points to a latent space corresponds to a mapping that parameterizes the
variational posterior distribution q„(z|x). While the decoding that reconstructs the data points
corresponds to the mapping that parameterizes the generative model p◊(x, z). Furthermore,
we can decompose the lower bound Equation 2.5.7 into two terms:

ELBO(◊, „) = Eq„(z|x) [logp◊(x|z)] ≠ DKL(q„(z|x), p◊(z)) (2.5.8)

The first term represents the performance of a VAE in reconstructing the input. The second
term minimizes the KL divergence between the approximate posterior and the prior, thereby
forcing the variational distribution towards the latent prior. And so has reasonably been the
focus of many attempts to alleviate posterior collapse. On a more practical note, Kingma and
Welling [2014] proposed the use of reparameterization to propagate the gradients from the
decoder network to the encoder network (by computing low-variance Monte Carlo gradient
estimators of the ELBO). Over the years, there have been many research extensions of VAE
that contributed to the empirical success of the latent variable model. Extensions include
improved optimization, expressive parameterizations, powerful objectives, etc.

2.5.4. Generative Adversarial networks

A generative adversarial network (GAN) is a latent variable model that is di�erent from
the likelihood maximization approaches discussed so far either exactly (autoregressive models)
or approximately (energy-based models, variational autoencoders). As noted earlier VAE is
a bit restricted in that they make simplifying assumptions on the generated and true data
distributions in order to make the computation tractable. Adversarial approach, on the other
hand, takes the form of estimating the density ratio between the generating distribution p◊

and the real data distribution pX . Modeling the di�erence between a generating distribution
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and the data distribution allows the model to be sensitive to any notable di�erence between
real samples and generated samples, which may be a much easier pretext objective than
determining the density of a distribution at a given point. On a practical note, such a
learning mechanism is equivalent to learning a classifier between the real data and the model’s
distribution. And as noted earlier, the methods for successfully training classifiers using deep
networks have been widely studied.

More formally, as outlined earlier in Section 2.4, Maximum Likelihood Estimation min-
imizes the KL divergence between the data and model distributions. A large family of
probabilistic divergences and distances can be conveniently expressed as a di�erence in
expectations w.r.t. pX and p◊ :

max
„œF

Ep◊
h„(x) ≠ EpX hÕ

„
(x) (2.5.9)

where F denotes a set of parameters, h„ and hÕ
„

are appropriate real-valued functions
parameterized by „. A Monte Carlo estimate of Equation 2.5.9 can be derived using only
samples from the model. Combining Equation 2.4.2 with Equation 2.5.9, we get:

min
◊œM

max
„œF

Ep◊
h„(x) ≠ EpX hÕ

„
(x) (2.5.10)

A GAN is a di�erentiable model that learns adversarially by optimizing minimax objectives
of the form given in Equation 2.5.10. The model is composed of two critical functions
parametrized by neural networks: (a) a generator function G◊ : Rk æ Rd that maps a latent
vector z œ Rk to an observed data point x œ Rd, and (b) a discriminator or critic function
D„ : Rd æ R that maps x to a scalar score. The discriminator is trained to classify between
samples from the real data and samples produced by the generator. To obtain a data sample
from the generator function, a latent vector is sampled in a tractable manner from a fixed
prior distribution z ≥ p(z) (e.g., isotropic Gaussian) and then perform a forward pass through
the generator function as x = G◊(z). Since the generator and discriminator are di�erentiable
functions, we can leverage Equation 2.5.9 to optimize an appropriate divergence metric. As
a special case, we obtain the original GAN objective proposed by Goodfellow et al. [2014a]
when the discriminator minimizes the binary cross-entropy loss:

min
◊œM

max
„œF

Ep◊
[log(1 ≠ D„(G◊(z)))] ≠ EpX [log(D„(x))] (2.5.11)

The generator and the discriminator parameters are learned via gradient updates in an
alternating fashion. In practice, GANs have been successful in generating photorealistic
samples of high-resolution image datasets [Karras et al., 2018]. However, with the above
formalism, they cannot be directly used to learn useful representations of the data, unlike VAEs.
In addition to representation learning, another limiting factor of adversarial models is their
evaluation mechanism. Family of models that maximize the likelihood have a straightforward,
if not completely well-motivated, way to quantitatively evaluate the performance. For
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Fig. 2.2. Model depicting Adversarially Learned Inference (ALI)

adversarial approaches, no such criteria is readily apparent. Although classifier induced
metrics are widely used in measuring the quality of adversarial models [Salimans et al., 2016,
Heusel et al., 2017] they still lack statistical consistency guarantees and/or are often correlated
to visual sample quality.

2.5.5. Adversarially Learned Inference

Adversarial Learned Inference(ALI) [Dumoulin et al., 2016] or BiGAN [Donahue et al.,
2016] has shown that the adversarial learning paradigm can be extended to incorporate the
learning of an inference network. Along with generator and discriminator networks like GAN,
ALI consist of additional encoder network similar to a VAE. However, unlike a variational
approach, ALI takes a pure adversarial approach to learn the encoding function.

While the encoder, maps training examples x to a latent space variable z, the decoder
plays the role of the standard GAN generator mapping from space of the latent variables
(that is typically sampled from some factorial distribution) into the data space. In ALI, the
critic is trained to distinguish between the encoder and the decoder, while the encoder and
decoder are trained to conspire together to fool the critic. In particular, The critic is then
trained to discriminate between the joint distribution of the data and latent causes coming
from the generator and inference network. The model is shown in the 2.2

Thus, the ALI objective encourages a matching of the two joint distributions, which
also results in all the marginals and conditional distributions being matched. This enables
inference on the latent variables. The adversarial game played between the discriminator and
the generator is formalized by the following value function:

LALI(G,D) := min
◊œM

max
„œF

Ep◊
[log(1 ≠ D„(G◊x(z),z))] + EpX [log(D„(x, G◊z(x)))] (2.5.12)

In addition to stabilize the training dynamics of the GAN, such constrained optimization
gives rise to useful representations of the data. These rich representations can further be
used for downstream tasks such as semi-supervised learning that outperform the features
learned by GAN [Salimans et al., 2016]. In addition to learnt representations, having an
encoding-decoding frameworks allows one to reconstruct back the input data points from the
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Fig. 2.3. Agent - Environment interaction in a Reinforcement Learning setup

feature space. Though the reconstructions are not perfect unlike VAEs(Note that ALI does
not have an explicit term in its objective to encourage pixel-wise reconstruction) they retain
salient features of the underlying data. This allows a mechanism to interpolate along the
input space smoothly with the intermediate data points exhibiting a closeness to the data
distribution in its characteristics.

ALI enjoys the benefit of both realistic generations and learning rich representations of
the data.

2.6. Reinforcement Learning
Reinforcement learning (RL) allows an agent model to learn to make better decisions

according to an ecosystem and a reward. The emphasis is on learning from experience without
having to worry about expert behavior or supervised data. Deep RL combines RL with the
expressiveness of neural networks to provide the agent with better representations so that it
can perceive and understand the world better.

2.6.1. Learning Problem

The principal objective of RL is to obtain an optimal behavior for an agent deployed in
an ecosystem or environment. The optimal behavior policy fiú is desired to maximize the
expected cumulative discounted reward (also known as value), as shown in Equation 2.6.1.

fiú = max
fi

E
C Œÿ

t=0
“tr(st, fi(st))

D

(2.6.1)

Before describing solutions to learn the optimal policy, it is crucial to understand each
component of Equation 2.6.1 and conceptualize the reinforcement learning setting. The RL
setting can be formalized as a Markov Decision Process (MDP), denoted with the tuple
{S, A, P, r, “}, where S is the set of states; mainly possible environmental states the agent
might encounter, A is the set of actions; possible interventions the agent can perform on the
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environment. P denotes the state transition dynamics; P (s,a,sÕ) is the transition function,
which maps state-action-successor-state tuples to the probability of that transition occurring.
It can sometimes be useful to think of the transition function as a mapping between state-
action pairs and successor states P (s,a) æ sÕ. For the case of a stochastic environment setting,
it denotes a sample from a distribution over successor states. r(s,a) is the reward function,
which maps state-action pairs to environmental rewards. Finally, “ is the discount factor
(often, a scalar constant), which exponentially discounts future rewards, thereby controlling
the relative importance of nearby versus distant rewards. “ is normally considered as known
or given just like the reward function. An overview of agent world interaction is shown in
Figure 2.3.

2.6.2. Q-Learning

Having laid the groundwork for the reinforcement learning problem, we now move on
to discussing possible solutions. Learning to maximize cumulative discounted rewards in
MDPs requires the understanding of value function formalism. A value function is denoted
by V (s) or Q(s,a) depending on whether or not it is a function of states or state-action pairs.
Value functions map states of the environment to their reward to go or expected cumulative
discounted reward (i.e. value). The recursive Bellman operator (shown in Equation 2.6.2)
updates an estimate of the value function according to the results of environmental interaction
and the previous value estimate. The idea is that the model minimizes the di�erence between
when it predicts in next state and the reward that it actually obtained from the environment,
to make sure those are accurate.

V (s) = max
a

ÿ

sÕ
P (sÕ|s, a)(r(s, a) + “V (sÕ)) (2.6.2)

It can be shown that repeated application of Bellman operator is guaranteed to converge to
the optimal value function in certain circumstances [Bellman, 1952]. Learning based on this
equation is known as temporal di�erence (TD) learning.

Looking closely, we can see that the weighting factor of the Bellman update (Eq 2.6.2) is
given by how probable the transitions are in the environment P (s,a,sÕ). Since the agent can
wander around in this environment, it is convenient to view it in terms of sampled transitions
instead of all possible pairs of transitions. Therefore we can replace the explicit usage of P

with an expectation over sampled transitions made in the environment. Taking this a step
further, we can also switch the values of states to the values of state-action pairs. This is
more convenient since the state values require access to the dynamics model to select actions
(‘choosing favorable next state), while the values of state-action pairs allow for choosing
actions without the information of their resulting state (‘choosing favorable action in the
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current state’). Merging these two changes we obtain the form shown in Equation 2.6.3.

Q(s, a) = E
5
r(s, a) + “ max

aÕ
Q(sÕ, aÕ)

6
(2.6.3)

Since we avoided the need to use the model transition function, the resultant second
equation can be computed without a dynamics model in a straightforward manner by taking
actions and observing their consequences. One can view this process as sampling from the
underlying state and reward transition functions. Note that we can interpret Equation 2.6.3
as associating an initial estimate of the value of a state-action pair (Q(s,a)) to a new estimate
taking into account the knowledge about the actual immediate reward sampled from the
environment. For the optimal value function, there should be no di�erence between the two
estimates in expectation. This is because the initial estimate should already have considered
how likely di�erent immediate rewards were and how valuable the next state would be. We
can thus view any di�erences between these two estimates as an error signal and use it to
rectify the initial estimate. This di�erence between estimates taken at two di�erent times, the
temporal di�erence (TD) error, can be used as a loss function for training a neural network
with gradient updates by minimizing the mean squared error shown in Equation 2.6.4

LT D(fi) = E
5
(Q(s, a) ≠ (r(s, a) + “ max

aÕ
Q(sÕ, aÕ)))2

6
(2.6.4)

In order to act greedily with respect to a value function, we need to learn the underlying
policy fi(s) = argmax

a
Q(s,a), a function mapping states to actions. This is trivial for small

discrete action spaces, as argmax
a

Q(s,a) can be determined by iterating over all possible
actions, but intractable for continuous action spaces as we cannot iterate over an infinite
set in finite time. Hence maximization in such setting is nontrivial. In continuous action
settings, one popular approach to predict the most rewarding actions is to combine a model
that learns to output the best action given a certain state, referred to as the actor model,
and a model that learns to estimate the expected value of the actor’s actions over time, given
a certain state, referred to as the critic model. This gives rise to the actor-critic framework,
which is primarily used in the later chapters of this thesis.

2.6.3. Deep Q-Networks

There are at least two reasons why optimizing temporal di�erence loss in Equation 2.6.4
could pose di�culties. Firstly, i.i.d sampling from an MDP is non-trivial, and secondly, there
is a dependency between the current estimated values and target values. Both problems
are addressed in Deep Q Network (DQN), an algorithm for solving reinforcement learning
problems involving arbitrary non-linearities in the value function [Mnih et al., 2015]. In order
to address i.i.d concerns, DQN uses random samples from a ‘replay bu�er’ of past transition
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samples s,a,r,sÕ. Furthermore, to break the dependence between estimated and target values
a slow changing ’target network’ is used.

DQN has become the standard baseline for the follow-up approaches. In some sense,
this represents the pinnacle of reinforcement learning as a field, with most of the follow-up
work focused on improving the network architecture and filling out appropriate optimization
procedures to solve more large-scale complex problems.

Similar to DQN, Actor-critic algorithms can be combined with the expressiveness of neural
network models to solve complex continuous control tasks [Haarnoja et al., 2018, Lillicrap
et al., 2016, Schulman et al., 2017]. However, both DQN and actor-critic approaches are data
hungry, as they require thousands of interactions with the environment before attaining the
optimal behavior. With this background, we breifly discuss the notion of model-based control,
which helps avoid enormous amounts of interactions necessary to attain optimal behavior via
learning an environment model.

2.6.4. Model-based Control

In Equation 2.6.2 we estimated the value function without explicitly knowing the state
transition dynamics function P . Instead, we could aim to increase the data-e�ciency by
learning the dynamics model. Having the knowledge about a model of the world would allow
one to interact with our model in addition to the real environment, improving the sample-
e�ciency. Furthermore, the additional model information turns the Bellman equation 2.6.2
into an update operator. The resulting value iteration procedure has been shown to converge
to a global optimum for su�ciently large number of iterations [Bellman, 1952]. However,
the update requires an explicit enumeration of all possible states in the environment, which
makes it di�cult to scale on non-tabular environments.

Model-based Reinforcement Learning (MBRL) is related to the optimal control and
planning literature, where most typical approaches resort to sampling action sequences. A
simplest version of this approach entails sampling candidate actions from a fixed distribution
(e.g. multivariate Gaussian), evaluating them under a model, and choosing the most-promising
action [Nagabandi et al., 2018]. Cross-Entropy Method (CEM [Rubinstein and Kroese, 2004])
iteratively adjusts the sampling distribution for better performance. In continuous control,
model-based RL combined with powerful search methods has led to impressive results on a
wide variety of tasks [Hafner et al., 2019a]. For a discrete setting, search methods such as
Monte Carlo Tree search [Coulom, 2006] and Sequential Monte Carlo planning [Piché et al.,
2018] are more popular. This thesis makes use of the Model-Predictive Control (MPC) in the
later chapters, which is based on CEM. These methods perform trajectory optimization by
fitting a multivariate Gaussian distribution to the imagined future actions allowing them to
search the space e�ciently.
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Critically, in MBRL, it is a non-trivial task to learn the model, especially on a high-
dimensional state space. Nonetheless, obtaining the model can simplify the policy learning
as noted earlier, allows model-based planning, and can lead to improved generalization.
Once the dynamics model has been learnt, it can be reused even if the underlying reward
structure changes in the environment. Furthermore, by being able to learn in the absence
of interaction with the environment, model-based learning can adapt more rapidly than
model-free methods. However, a model-free or a model-based learning paradigm that relies
on dense reward supervision and can only learn after thousands of mistakes isn’t generally a
scenario we are interested in. With these details, we progress to the notion of unsupervised
exploration and intrinsic motivation which is an important component of the thesis.

2.6.5. Intrinsic Motivation

Reward maximization is the fundamental learning objective in RL as shown earlier in
Equation 2.6.1. For the sake of convenience, in many RL problem settings, dense reward
supervision is given for the task at hand, such as a game score or inverse exertion for motor
control. However, the notion of a reward is sparse or could be missing completely in many
real-world tasks. The issue of sparse and delayed rewards is also related to the notion of
intrinsic motivation in AI and Psychology. Especially, in the context of how natural agents
learn, the notion of reward supervision is often fuzzy and ill-defined, being comprised of
signals accumulated over evolutionary, cultural, and developmental timescales. Research in
this area spans many fields, from computational accounts of useful intrinsic motivations [Barto
et al., 2004] to empirical evidence for certain intrinsic costs in humans [Kool et al., 2013].

In reinforcement learning, the notion of intrinsic motivation/rewards is useful and gains
prominence whenever extrinsic task rewards are sparse. Intrinsically motivated agents can
explore new behavior for their own sake with a desire to fill missing knowledge than to
directly solve problems. Such intrinsic behavior learning could aid an RL agent to e�ciently
adapt across tasks posed by the environment. Although it is unclear as to the exact nature
and origin of good intrinsic reward functions, there have been extensive studies recently that
streamlined the way one can categorize such approaches. Oudeyer and Kaplan [2008] classified
intrinsic motivation algorithms into three di�erent kinds: knowledge-based, competence-based
and data-based models. Knowledge-based models rely on a prediction-error signal to build
pseudo-rewards. They either maximize prediction error or uncertainty of some observable
variable. Schmidhuber [2010] provided a coherent formulation of knowledge-based intrinsic
motivation, which is measured by the performance of a predictive world model trained by the
learning algorithm. Competence models aim to maximize the mutual information between
the trajectory, observations and a goal state. Mohamed and Rezende [2015] have proposed
a notion of intrinsically motivated learning within the framework of mutual information
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maximization. Frank et al. [2014] demonstrated the e�ectiveness of artificial curiosity using
information gain maximization in a humanoid robot. Data-based methods try to increase the
diversity of the dataset, often times through explicit maximum entropy objectives or count
based objectives. Bellemare et al. [2016] proposed a count-based model for training deep RL
agents to facilitate deep exploration.

There have been advances in studying intrinsic rewards from an evolutionary perspec-
tive [Singh et al., 2010]. Intrinsic motivation in humans has been shown to exhibit close
resemblance to competence-based mechanisms. There is compelling evidence in the cognitive
science literature that human babies and children prefer to represent the visual world in terms
of coherent visual entities, centered around spatio-temporal principles of cohesion, continuity,
and contact [Spelke and Kinzler, 2007, Lake et al., 2017]. Probing various objects with their
hands and mouth, infants learn to di�erentiate relative sizes of objects, distances and higher
order structural knowledge such as the ratio of object sizes. In the course of curiosity-driven
exploration, infants use the acquired knowledge and inductive biases to generate self-acquired
goals such as stacking stable block structures.

Although the thesis specifically focuses on knowledge-based models in the later chapters,
the boundary across the categories is blurry. More generally, one can view knowledge-based
and competence based models as specific forms of data-based exploration that aims to increase
overall entropy of the action space to make progress.

2.7. Computer Graphics
A part of this thesis is aimed towards understanding scene structure from a single view of

the scene using advances in computer graphics topics such as di�erentiable rendering and
inverse graphics. This section provides a swift background on the same.

2.7.1. Image Rendering

Realistic image synthesis has long been a fundamental component of computer graphics
with applications ranging from entertainment (e.g. feature films, special e�ects, or video
games) to lighting design and architecture. Rendering process maps a 3D description of a
scene to its corresponding set of 2D images (see Figure 2.4). The 3D information includes
lighting (e.g., the location and geometry of light sources in the environment), textures, shapes,
material properties, poses, camera positions, and camera properties (collectively called the
"scene parameters"). Modern renderers, with su�ciently detailed scene information, can
produce photo-realistic images.

Traditionally, the rendering process follows a general formulation of the recursive shading
equation (Equation 2.7.1) [Kajiya, 1986]. The equation describes how light reflects o� objects
in a scene to produce color. It is based on the simulation of the inter-reflection of light in an
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Fig. 2.4. Overview of Image Rendering. It is a mapping that takes a 3D scene as an input
and outputs a 2D image.

environment in an e�ort to accurately describe the appearance of objects, while accounting for
all of the paths that light can take from light sources to objects in the scene. The “intensity”
of light traveling from one point x to another y is determined by

Lout = Le +
⁄

M
Li · f · cos(◊) · dÊ (2.7.1)

where:
- Lout is the reflected or outgoing radiance at a point.
- Le is the emitted radiance at this point.
- Li is incoming radiance to this point.
- f is the Bidirectional Reflectance Distribution Function (BRDF) of the scene surface, that
quantifies how light is reflected.
- ◊: angle between incoming direction and the normal to the surface.
The integral is over the area M of all scene surfaces and weighted by a purely geometric
factor involving cosines of the incident and outgoing angles. The camera model that is used
is a pinhole camera model [Sturm, 2014] which is defined by its origin and the image plane.

The equation can be further simplified depending on the di�erent assumptions one takes
into consideration for a given problem (e.g. surface reflectance properties). This formulation
as an integral, based on physical principles, converts the problem of rendering a scene into
the problem of evaluation. This provides a mechanism to apply novel analytical tools to
rendering.

2.7.2. Inverse Graphics

Inverse rendering aims at recovering the scene parameters that produced the images.
Unfortunately, the inverse rendering problem is ill-posed. This is because a set of images can
be potentially explained by many possible scenarios. For example, if an object appears small
in an image, it may be due to any of the following scene parameters: (a) pose: the object is
far away from the camera, (b) shape: the object is tiny, or (c) camera properties: the camera
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a) an Image b) a likely 3D explanation

c) objects are small d) objects are large, but far 
from the camera e) painter's explanation f) gaffer's explanation

Fig. 2.5. The image in (a) clearly corresponds to the scene configurration in (b), but it
could be that the objects all have a small size as in (c), or they are large but farther away
from the camera, or it could be a painting, or an arrangement of lights over objects with
uniform reflectance.

has a wide field of view. In fact, in the extreme setting, all images could theoretically be
generated by a scene wherein a large 2D canvas is placed directly in front of the camera and
painted with precisely the contents of the image as illustrated in Figure 2.5

2.7.3. Di�erentiable Rendering

Making rendering di�erentiable would allow one to leverage gradient based learning
algorithms such as deep learning for the problem solving. Once a renderer is di�erentiable,
it can be integrated into the optimization of the aforementioned neural network pipelines
that leverage gradient descent. These pipelines can then be used to solve inverse graphics
problems such as 3D reconstruction from a 2D image. Modern breakthroughs in computer
graphics with reasonable assumptions and simplifications to Equation 2.7.1 have enabled
di�erentiable rendering [Loper and Black, Liu et al., 2019b, Kato et al., 2018], which can be
used towards addressing the inverse rendering problem. A di�erentiable renderer converts
scene parameters into an image in an end-to-end di�erentiable way. Therefore, the inverse
rendering problem can be solved by fixing the images and learning the scene parameters
iteratively via gradient descent. However, optimizing these parameters naively results in
poor reconstructions because the optimization landscape is filled with local minima and, as
previously stated, the inverse rendering problem is ill-posed.

Some di�erential rendering techniques use voxel based representations to explain color,
some neural weight [Lombardi et al., 2019], or a function measuring the distance to the
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nearest surface [Jiang et al., 2020]. Unfortunately, voxels have limited resolution and are
memory intensive. Meshes do not su�er from these problems, however, di�erentiable mesh
rendering is a di�cult problem because of the non di�erentiability of visibility terms in
the rendering equation [Li et al., 2018]. In our work described in the later chapter 4 we
overcome some of these issues by using a novel surfel-based implicit representation which is
viewpoint-dependent and it adapts the available surfels depending on the camera position.
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Chapter 3

Prologue to Article 1

3.1. Article Details
Pix2Shape: Unsupervised Learning of 3D Scenes from Images using a View-

based Representation. Sai Rajeswar, Fahim Mannan, Florian golemo, David Vazquez,
Derek Nowrouzezahrai, Aaron Courville. Published at International Journal of Computer
Vision (IJCV), 2020.

Personal Contribution This work was led by the author. The project began with joint
discussion sessions involving the author, Aaron Courville and Derek Nowrouzezahrai about
trying to represent the structure of a scene using a latent variable model, where the learned
latent space captures the geometry of a scene. During the process the author was involved in
designing the generative model and writing the code, running the experiments, and writing
parts of the paper. Aaron Courville and Derek Nowrouzezahrai advised on the project and
were involved in discussing results, suggesting experiments to run, and writing parts of the
paper. Fahim Mannan was instrumental in making our di�erentiable rendering component
e�cient and compatible with the Generative model. All authors participated in weekly
discussions and helped with preparing the manuscript.

3.2. Context
The goal of this work was to infer the geometry of a scene from a 2D image using

probabilistic generative modeling. Given a single view of a scene, human perception has the
ability to imagine the scene from a di�erent view. We propose to learn interpretable 3D
representation of the scene(world) analogous to human mental imagination of the scene. The
learnt latent representation of an image can then be used to decode the scene from a novel
view. The subsequent chapter (Chapter 4) explores this method in detail.



3.3. Research Impact
The paper addresses the drawbacks of existing 3D aware synthesis and reasoning models

at the time. Prior methods either leveraged multiple views of the scene and/or were limited
to simple shapes. The proposed method alleviates both the issues by using novel view-based
3D surfel representations and probabilistic modeling. Ours is one of the preliminary works
that combine Adversarial learning and di�erentiable rendering, and subsequent works added
to the lines of work presented in this chapter [Nguyen-Phuoc et al., 2019, Chan et al.,
2021]. Purely depending on the imaginative capabilities of a generative model could lead
to inconsistencies in the underlying geometry [Nguyen-Phuoc et al., 2019]. While relying
solely on procedural rendering could constrain the scale of 3D modelling [Rezende et al.,
2016]. This work balances the trade-o� by leveraging the scaling strengths of GANs and
grounding the extracted geometry on physical principles. In addition, as part of the work, we
open-sourced the 3D-IQTT, which is one of the first prominent benchmarks that quantifies a
representation learning algorithm for a 3D spatial reasoning task.

Note: This paper is presented as-is, with minor cosmetic changes to adhere to the
Universite de Montreal thesis template
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Chapter 4

Pix2Shape – Towards Unsupervised Learning
of 3D Scenes from Images using a View-based

Representation

Abstract
We infer and generate three-dimensional (3D) scene information from a single input image

and without supervision. This problem is under-explored, with most prior work relying on
supervision from, e.g., 3D ground-truth, multiple images of a scene, image silhouettes or
key-points. We propose Pix2Shape, an approach to solve this problem with four component:
(i) an encoder that infers the latent 3D representation from an image, (ii) a decoder that
generates an explicit 2.5D surfel-based reconstruction of a scene – from the latent code – (iii)
a di�erentiable renderer that synthesizes a 2D image from the surfel representation, and (iv)
a critic network trained to discriminate between images generated by the decoder-renderer
and those from a training distribution. Pix2Shape can generate complex 3D scenes that
scale with the view-dependent on-screen resolution, unlike representations that capture world-
space resolution, i.e., voxels or meshes. We show that Pix2Shape learns a consistent scene
representation in its encoded latent space, and that the decoder can then be applied to this
latent representation in order to synthesize the scene from a novel viewpoint. We evaluate
Pix2Shape with experiments on the ShapeNet dataset as well as on a novel benchmark we
developed – called 3D-IQTT – to evaluate models based on their ability to enable 3d spatial
reasoning. Qualitative and quantitative evaluation demonstrate Pix2Shape’s ability to solve
scene reconstruction, generation and understanding tasks.

4.1. Introduction
Humans sense, plan and act in a 3D world despite only directly observing 2D projections

of their 3D environment. Automatic 3D understanding seeks to recover a realistic underlying



(a) Voxel (b) Mesh

(c) Surfels (distant camera) (d) Surfels (up close)

Fig. 4.1. Comparison of 3D representations. Voxels and meshes (4.1a and 4.1b)
are viewpoint-independent representations. These representations require storage space
proportional to the required level of detail. Our implicit representation captures the full scene
in a fixed-length latent vector, which, given a viewpoint, can be decoded into an explicit
viewpoint-dependent “surfels" representation with arbitrary level of detail (4.1c and 4.1d).

3D structure of a scene using only 2D image projection(s). This long-standing challenge
in computer vision has recently admitted learning-based solutions. Many such approaches
leverage 3D supervision, such as from images annotated with ground truth 3D shape infor-
mation [Girdhar et al., 2016, Wu et al., 2015, 2016b, Choy et al., 2016]. Recent approaches
rely on using other forms of 3D supervision, such as multiple views of the same object [Yan
et al., 2016, Tulsiani et al., 2017, Li et al., 2019c], 2.5D supervision [Wu et al., 2016a, 2017],
key-point [Kar et al., 2014, Novotn˝ et al., 2019] and silhouette annotations [Wiles and
Zisserman, 2017, Henderson and Ferrari, 2018, Chen et al., 2019]. Our work treats the
problem of unsupervised single image 3D scene understanding. This form of the problem is
challenging, as we aim to infer an encoding of 3D structure from only a single image, and
this too without any form of 3D ground truth supervision during training. We do not rely on
any 3D scene supervision, however we employ camera pose, scene reflectance profiles and
outgoing/observed radiance as weak supervision signals.

While the benefits of employing supervision can certainly be argued for in this context –
i.e., with the growing number of datasets with labelled 3D ground truth for objects [Chang
et al., 2015] and cityscapes [Caesar et al., 2019] – one benefit of approaching the problem from
an unsupervised perspective is that we are not limited to the types of 3D objects represented
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in these datasets. Indeed, however vast, existing datasets fall far from capturing all possible
artificial and natural 3D scenes and objects. Moreover, datasets with depth annotations often
contain incomplete or noisy depth maps due to limitations in depth capture hardware.

Unsupervised single image 3D understanding is a relatively under-explored area, with
only a few works treating this setting Rezende et al. [2016], Yan et al. [2016]. These methods
rely on deformable 3D mesh or voxel representations of the world, and have only been applied
to simple 3D primitives (e.g., cubes, spheres) or single objects over a clean background.

One approach to this problem is to leverage prior knowledge on how 2D images are formed
from the 3D world, including the e�ects of shading and occlusion. Building machine learning
architectures with an explicit knowledge of this forward rendering model could help better
disambiguate the 3D structure of geometry from 2D observations. In this spirit, we propose
the Pix2Shape architecture for unsupervised single image 3D understanding: a model that
learns abstract latent encodings of the geometry of an entire scene geometry, and all from a
single image. These implicit learnt scene representations can be decoded – when combined
with a targe viewing/camera position – into a view-dependent realization of 2.5D surfaces
(depth map and surface normals) visible only from that view. We can then readily re-render
these explicit view-dependent surface elements (surfels) at their corresponding 2D image
projections in order to synthesize an unseen view of the scene.

Our model builds atop Adversarially Learned Inference (ALI) [Dumoulin et al., 2016], an
extension of Generative Adversarial Networks (GANs) [Goodfellow et al., 2014b] that infers a
latent code from an image using an encoder network. In Pix2Shape, the encoder network
learns a latent representation that embeds the 3D information of an entire scene from an
image. We map the latent representation to view-dependent depth and normal maps using a
decoder before projecting these maps onto image space using a di�erentiable renderer. We
evaluate the resulting image using an adversarial critic. Our model remains unsupervised
as it does not require ground truth depth maps nor any other kind of 3D supervision, as in
previous works (e.g., observing the same object from multiple views, key-point registration or
image silhouettes). Note that, at any given instant, our model outputs the depth and surface
normals conditioned on a specific camera view; we never produce/synthesize the entirety of
the 3D world structure. That being said, the latent space we learn embeds the 3D geometry
of the entire underlying scene, which allows our decoder and renderer to smoothly extrapolate
and synthesize scene geometry from unseen camera views during inference. We refer to this
indirect process of embedding 3D information in the latent code as “implicit” inference.

An ambitious long-term goal is to infer the 3D structure of photographs of the real-world,
and our work takes a first step in this direction: We rely on physically based rendering in-order
to build a model of the world. However, in order to make the training tractable we experiment
exclusively with synthetically constructed scenes, adopting several simplifying assumptions.
Of note, we assume that the world is composed of piece-wise smooth 3D elements and that,
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Fig. 4.2. Sample questions from 3D-IQTT. For this “mental rotation" task, we present
a reference image and three possible answers. The test is a classification task where the goal
is to find the rotated view of the model from the reference image. To solve this task, the 3D
shape of the reference must be inferred from the 2D image and compared to the inferred 3D
shapes of the answers (see footnote for correct answers).

for each input image, the illumination, view and object materials are known. Since each pixel
in an image is a function of geometry, illumination, view and texture, our focus in this work
is to learn the underlying geometry of a scene keeping the other parameters fixed.

We evaluate our model’s ability to recover accurate and consistent depth from a single
image, for both seen and unseen viewpoints, using Hausdor� and Chamfer distance metrics
between generated and ground truth depth maps. In addition to reconstruction, we can
sample novel scenes (at novel views) using the generative nature of our adversarial network.
Finally, we propose a new 3D understanding benchmark – 3D IQ Test Task (3D-IQTT) – to
evaluate models’ understanding of the underlying 3D structure of an object: the test consists
of matching a rotated view of a reference object (Figure 4.2). To perform this task, we
develop a novel 3D-IQ dataset to train and test against. In this setting, we can additionally
estimate camera pose in our learnt latent 3D world embedding. Our contributions are as
follows:

• an approach for unsupervised single image 3D understanding that builds a latent
embedding of an entire 3D scene,

• a decoding scheme that leverages view-dependent, explicit surfel representations to
sample scene information more e�ciently than (world-space) voxels and meshes,

• a di�erentiable 3D renderer that we leverage, and that can be included as a layer in
any learning-based neural network architecture, and

• 3D-IQTT, a new 3D understanding benchmark.

4.2. Related Work
Several works in recent years have applied recent machine learning advances to SLAM or

have reformulated a subset of components of the full SLAM system in a di�erentiable manner.
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4.2.1. Single view 3D Reconstruction and Generation

3D generation and reconstruction has been studied extensively in the computer vision
and graphics communities [Saxena et al., 2009, Chaudhuri et al., 2011, Kalogerakis et al.,
2012, Chang et al., 2015, Rezende et al., 2016, Soltani et al., 2017, Kulkarni et al., 2015,
Tulsiani et al., 2016, Huang et al., 2019a, Jiang et al., 2019]. Most methods in the literature
focus on recovering the 3D structure from 2D images by using explicit 3D supervision. Choy
et al. [2016], Girdhar et al. [2016], Wu et al. [2016b, 2015], Zhu et al. [2018a] reconstruct
and/or generate 3D voxels from a latent representation by directly comparing with available
3D shapes. Wu et al. [2017], Zhang et al. [2018] use 2.5D supervision during training, i.e.,
depth maps. More recent methods tend to use weaker forms of supervision for single image
reconstruction. Wu et al. [2016a], Kato and Harada [2018], Henderson and Ferrari [2018],
Chen et al. [2019] use image based annotations like silhouettes, 2D keypoints or object masks.
Kanazawa et al. [2018] learn both texture and shape from 2D images leveraging multiple
learning signals such as keypoints and mean shape.

Rezende et al. [2016], Yan et al. [2016], Gadelha et al. [2016], Novotn˝ et al. [2017] learn
3D shapes by using multiple views and approximately di�erentiable rendering mechanisms.
However, one of Rezende et al. [2016]’s experiments show reconstruction 3D objects trained
using a single view. As far as we know, theirs is the only fully unsupervised method for
explicit 3D reconstruction from a single image. Their method is limited to reconstructing
relatively simple 3D primitives floating in space due to the strong priors required for the model
to work. Concurrent to our work, HoloGAN [Nguyen-Phuoc et al., 2019] can synthesize 2D
images of more realistic scenes (e.g., cars, bedrooms) under camera view rotation. However
their model can not recover the geometry from its implicit representation. Compared to
Rezende et al. [2016], our model can learn to represent more complex synthetic indoor scenes
composed of multiple ShapeNet[Chang et al., 2015] objects and, while we do not address real
image inputs (i.e., as HoloGAN), we can infer explicit geometry for visible surfaces from each
given view. As such, our model can also be applied to 3D reconstruction (like Rezende et al.
[2016] but only for visible parts of the scene) and novel viewpoint image generation (like
Nguyen-Phuoc et al. [2019]).

4.2.2. Di�erentiable Rendering

In order to facilitate deep neural network based models to infer 3D structures from their 2D
projections (images), it is required to compute and propagate the derivatives of image pixels
with respect to 3D geometry and other properties. Gradient estimation through rendering
process is a challenging task. In both rasterization and ray-tracing techniques the visibility
mapping step is often non-di�erentiable. Loper and Black is one of the well known methods
for di�erential rendering, but has limited applicability due to high computational and memory
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costs. Kato et al. [2017], Rezende et al. [2016] approximate the gradients of the rendering
process and are often limited to a rasterization based rendering scheme. OpenDR [Loper and
Black], as used by Henderson and Ferrari [2018], applies first order Taylor approximation to
compute gradients. Liu et al. [2019a] computes the gradients analytically by softly assigning
contribution of each triangle face to a pixel in mesh-based representations. Chen et al. [2019]
improved this soft assignment and allow the use of textures by interpolating local mesh
properties for foreground pixels. Insafutdinov and Dosovitskiy [2018] proposed a di�erentiable
re-projection mechanism for point clouds to infer 3D shapes. However learning methods built
on these approaches so-far require either more than one view per object or 2D silhouette
as supervision and can only reconstruct single objects. In our work we circumvent the
non-di�erentiablity challenge as follows: (1) Our network is trained to output only “visible"
surface elements (surfels) of the scene conditioned on the view, i.e. a 2.5D representation
and (2) We maintain one-to-one correspondence between the output surfels and the pixels.
In other words our model outputs exactly one surfel in object space per pixel in the output
image, and the final image is then formed by a di�erentiable shading operation. This makes
our model di�erentiable, easily adaptable across image resolutions and allows end-to-end
training.

4.3. Pix2Shape
Our method follows the ALI architecture [Dumoulin et al., 2016], where we have an

encoder branch that learns to convert images into latent representations, a decoder branch
that learns to generate images from randomly sampled latent representations, and a critic
that tries to predict if pairs of latent code and image are real or fake. The critic and encoder
pathways are implemented as convolutional neural networks but the decoder pathway contains
an additional di�erentiable renderer, usable like a layer of a neural network, that converts the
2.5D surfel representation into a 2D image by computing shading at each surfel. Additionally,
the decoder is conditioned on a camera pose. See Figure 4.3 for an overview. In the following
section, we drill down on the individual components of this architecture.

4.3.1. 3D Representation and Surfels

Representing 3D structure as voxels or meshes presents di�erent challenges for generative
models [Kobbelt and Botsch, 2004]. Representing entire objects using voxels scales poorly
given its O(n3) complexity. Additionally, the vast majority of the generated voxels are not
relevant to most viewpoints, such as the voxels that are entirely inside objects. A common
workaround is to use a surface representation such as meshes. However, these too come with
their own drawbacks, such as their graph-like structure. This makes mesh representation

1three2two
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Fig. 4.3. Model. Pix2Shape generates realistic 3D views of scenes by training on 2D single
images only. Its decoder generates the surfel depth map pz from a noise vector z conditioned
on the camera pose. The surfel normals are estimated from the predicted depth. The surfels
are rendered into a 2D image and, together with image samples from the target distribution,
are fed to the critic, which generates a gradient for both encoder and decoder paths.

di�cult to generate using neural networks. Current mesh based methods mainly rely on
deforming a pre-existing mesh and are thus limiting the object topology to have the same
genus as the template mesh.

Our approach represents the 3D scene implicitly in a high-dimensional latent variable.
In our framework, this latent variable (i.e., a vector) is decoded using a decoder network
conditioned on the camera pose into a viewpoint-dependent representation of surface elements
(i.e., surfels [Pfister et al., 2000], square-shaped planes that are scaled based on depth to roughly
fit the size of a pixel) that constitute the visible part of the scene. This representation is very
compact: given a renderer’s point of view, we can represent only the part of the 3D surface
needed by the renderer. As the camera moves closer to a part of the scene, surfels become
more compact and thereby increase the amount of visible detail. For descriptive purpose
we discuss surfels as squares, but in general they can have any shape. Figure 4.1 compares
surfels with di�erent representations. Surfels di�er from other explicit representations in that
they are view-dependent, i.e., this representation changes for di�erent camera poses (but the
implicit latent vector representation does not).

Formally, surfels are represented as a tuple (P, N, fl), where P = (px, py, pz) is its 3D
position, N = (nx, ny, nz) is the surface normal vector, and fl = (kr, kg, kb) is the albedo of
the surface material. Note that fl represents the material properties at the point P and could
take a di�erent size for a di�erent shading model. Since we are only interested in modelling
structural properties of the scenes, i.e. geometry and depth, we assume that objects in the
scene have uniform material properties and thus keep fl fixed. We also estimate the normals
from depth by assuming locally planar surfaces. We represent the surfels in the camera
coordinate system and generate one surfel for each pixel in the output image. This makes our
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representation very compact. Thus, the only necessary parameter for the decoder network to
generate is pz, i.e. a depth map.

4.3.2. Di�erentiable 3D Renderer

Since our architecture is GAN-like and uses 2D images as input to the critic network,
we need to project the generated 3D representations down to 2D space using a renderer.
In our setting, each stage of the rendering pipeline must be di�erentiable to allow us to
take advantage of gradient-based optimization and backpropagate the critic’s error signal
to the surfel representation. Our proposed rendering process is di�erentiable because: (1)
each output pixel depends exactly on one surfel, and (2) we employ a di�erentiable shading
operation to compute the color of each pixel. Our PyTorch implementation of the di�erentiable
renderer can render a 128 ◊ 128 surfel-based scene in under 1.4 ms on a mobile NVIDIA GTX
1060 GPU. Further details about the rendering implementation can be found in appendix
A.1.

4.3.3. Model

The adversarial training paradigm allows the generator network to capture the underlying
target distribution by competing with an adversarial critic network. Pix2Shape employs
bi-directional adversarial training [Dumoulin et al., 2016, Donahue et al., 2016] to model the
distribution of surfels from 2D images.

4.3.3.1. Bi-Directional Adversarial Training. ALI [Dumoulin et al., 2016] or Bi-GAN [Don-
ahue et al., 2016] extend the GAN [Goodfellow et al., 2014b] framework by including the
learning of an inference mechanism. Specifically, in addition to the decoder network Gx,
ALI provides an encoder Gz which maps data points x to latent representations z. In these
bi-directional models, the critic, D, discriminates in both the data space (x versus Gx(z)),
and latent space (z versus Gz(x)) jointly, maximizing the adversarial value function over two
joint distributions. The final min-max objective can be written as:

min
G

max
D

LALI(G,D)= Eq(x)[log(D(x,Gz(x)))]

+ Ep(z)[log(1 ≠ D(Gx(z),z))],

where q(x) and p(z) denote encoder and decoder marginal distributions.

4.3.3.2. Modelling Depth and Constrained Normal Estimation. The encoder network
captures the distribution over the latent space of the scene given an image data point x.
The decoder network maps a fixed scene latent distribution p(zscene) (a standard normal
distribution in our case) to the 2.5D surfel representation from a given viewpoint zview. The
surfel representation is rendered into a 2D image using our di�erentiable renderer. The
resulting image is given as input to the critic to distinguish it from the ground truth image

72



data. To emphasize on the notation, note that the output of the encoder is zscene and the
input to decoder is (zscene,zview)

A straightforward way to design the decoder network is to learn a conditional distribution
to produce the surfels’ depth (pz) and normal (N). However, this could lead to inconsistencies
between the local shape and the surface normal. For instance, the decoder can fake an RGB
image of a 3D shape simply by changing the normals while keeping the depth fixed. To avoid
this issue, we exploit the fact that real-world surfaces are locally planar, and that surfaces
visible to the camera have normals constrained to be in the half-space of visible normal
directions from the camera’s view point. Considering the camera to be looking along the ≠z

axis direction, the estimated normal has the constraint nz > 0. Therefore, the local surface
normal is estimated by solving the following problem for every surfel:

NT ÒP = 0 subject to ÎNÎ = 1 and nz > 0, (4.3.1)

where the spatial gradient ÒP is computed for each of the 8 neighbour points, and P is
the position of the surfels in the camera coordinate system obtained by back-projecting the
generated depth along rays.

This approach enforces consistency between the predicted depth field and the computed
normals and provides a gradient signal to the depth from the shading process. If the depth is
incorrect, the normal-estimator outputs an incorrect set of normals, resulting in an inconsistent
RGB image with the data distribution, which in turn would get penalized by the critic. The
decoder network is thus incentivized to produce realistic depths.

4.3.3.3. Unsupervised Training. The Wasserstein-GAN [Arjovsky et al., 2017] formulation
provides stable training dynamics using the first Wasserstein distance between the distributions.
We adopt the gradient penalty setup as proposed in Gulrajani et al. [2017] for more robust
training. However, we modify the formulation to take into account the bidirectional training.

The architectures of our networks, and training hyper-parameters are explained in detail in
the supplementary material section A.2. Briefly, we used Conditional Normalization [Dumoulin
et al., 2016, Perez et al., 2017] for conditioning the viewpoint (or camera pose) in the encoder,
decoder and the discriminator networks. The viewpoint is a three dimensional vector
representing positional coordinates of the camera. In our training, the a�ne parameters of the
batch-normalization layers [Io�e and Szegedy, 2015] are replaced by learned representations
based on the viewpoint. The final objective includes a bi-directional reconstruction loss:

Lrecon = Eq(x)[||x ≠ rend(Gx(Gz(x)))||2]+

Ep(z)[||z ≠ Gz(rend(Gx(z)))||2],
(4.3.2)

where the rend(·) function synthesizes images through view-dependent decoding and projec-
tion and z is (zscene,zview). This objective enforces the reconstructions from the model to
stay close to the corresponding inputs. This reconstruction loss is used for the encoder and
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Algorithm 1 Semisupervised classification
1: while iter < max_iter do
2: D Ω MiniBatch()
3: zx ≥ Enc(x); ’x œ {xref , xd1 , xd2 , xans} œ D
4: L Ω LALI + Lrecon + I�(zscene, zview)
5: if supervised-training-interval(iter) then
6: L Ω L + L◊

7: end if
8: optimize networks with L
9: end while

decoder networks as it has been empirically shown to improve reconstructions in ALI-type
models [Li et al., 2017a].

4.3.3.4. Semi-supervised Training for Classification. Our model can be also trained in a
semi-supervised setting (see Algorithm 1) for solving image classification tasks that require
3D understanding such as the 3D-IQTT (See Figure 4.2). The idea is to use labeled examples
to streamline the learned latent representations in order to solve the task. In this case, we
do not assume that we know the camera position for the unlabeled training samples. Ass
mentioned earlier, part of the latent vector z encodes the actual 3D object (denoted as zscene)
and the remainder estimates the camera-pose (denoted as zview). For the supervised samples,
two additional loss terms were used: (a) a loss that enforces the object component (zscene) to
be the same for both the reference object and the correct answer, (b) a loss that maximizes
the distance between the reference object and the distractors. This loss is expressed as:

L◊ = 1
2D◊(xref , xans) ≠ 1

2

2ÿ

i=1
D◊(xref , xdi) (4.3.3)

where xref is the reference image, xans is the correct answer, di denotes the distractors,
D◊(x1, x2) = (||zx1

scene
≠ zx2

scene
||2)2 and zx = Encoder◊(x).

During training, we also minimize the mutual information between zscene and zview to
explicitly disentangle both. This is implemented via MINE [Ishmael et al., 2018]. The strategy
of MINE is to parameterize a variational formulation of the mutual information in terms of a
neural network:

I�(zs,zv) = sup
◊œ�

EPzszv
[T◊] ≠ log

1
EPzs ¢Pzv

[eT◊ ]
2

. (4.3.4)

This objective is optimized in an adversarial paradigm where T , the statistics network,
plays the role of the critic and is fed with samples from the joint and marginal distribution.
We use this loss to minimize the mutual information estimate in both unsupervised and
supervised training iterations. Once the model is trained, we answer 3D-IQTT questions, by
inferring the latent 3D representation for each of the four images and we select the answer
closest to the reference image as measured by L2 distance on latent representations.
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(a) Top: Input images. Bottom: Reconstructed images

(b) Top: Ground-truth depth maps. Bottom: Reconstructed depth maps

(c) Top: Ground-truth normal maps. Bottom: Reconstructed normal maps

Fig. 4.4. Shape scenes reconstruction. Pix2Shape reconstruction of single objects in a
room (left) and multiple objects into a room (right). On both sides, the ground truths for
RGB, depth, and normals are in the upper row, the inferred image, depth and normals are in
the respective lower rows. Our model is able to correctly recover the depth and normal of
the scenes from a single 2D image.

4.4. Experimental Setup
We evaluate Pix2Shape on three di�erent tasks: scene reconstruction, scene generation,

and 3D-IQTT.

4.4.1. Scene Reconstruction

The goal of this task is to produce a 2.5D representation (depth and normals) from a
given input image. Moreover, we also evaluate if the model can extrapolate to unobserved
views of the scene.

For this task we have created two datasets of scene images composed of a room containing
one or more objects placed at random positions and orientations. Shape scenes dataset is
created with rendered images of multiple basic 3D shapes (i.e., box, sphere, cone, torus,
teapot etc)placed inside a room. ShapeNet scenes dataset is constructed from renderings of
multiple objects of di�erent categories from the ShapeNet dataset [Chang et al., 2015] (i.e.,
bowls, bottles, mugs, lamps, bags, etc).

Each 3D scene is rendered into a single 128 ◊ 128 ◊ 3 image taken from a camera in a
random position sampled uniformly on the positive octant of a sphere containing the room.
The probability of seeing the same configuration of a scene from two di�erent views is near
zero.
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We evaluate the performance of scene reconstruction using three di�erent metrics: (1)
Chamfer distance, (2) Hausdor� distance [Hausdor�, 1949] (on surfels’ position), and (3)
Mean Squared Error (MSE).

Chamfer distance (CD) gives the average distance from each point in a set to closest point
in the other set. For any two point sets A, B µ R3 Chamfer distance is measured using:

CD(A, B) = 1
|A|

ÿ

xœA

min
yœB

Îx ≠ yÎ2 + 1
|B|

ÿ

xœB

min
yœA

Îx ≠ yÎ2

Hausdor� distance (HD) measures the correspondence of the model’s 3D reconstruction
with the input for a given camera pose. Given two point sets, A and B, the Hausdor� distance
is,

max
Ó
max D+

H
(A, B), max D+

H
(B, A)

Ô
,

where D+
H

is an asymmetric Hausdor� distance between two point sets. E.g., max D+
H

(A, B) =
max D(a, B), for all a œ A, or the largest Euclidean distance D(·), from a set of points in A

to B, and a similar definition for the reverse case max D+
H

(B, A). In both the evaluations,
we mesaure compare our reconstructed view-centric surfels (3D positions and normals) to the
groundtruth surfels.

4.4.2. Scene Generation

In the second task we showcase the generative ability of our model by using our generator
to sample class conditioned shapes from ShapeNet dataset. We evaluate the 3D scene
generation task qualitatively.

4.4.3. 3D-IQTT

In the final task we evaluate the 3D understanding capability of the model on 3D-IQTT:
a spatial reasoning-based semi-supervised classification task. The goal of the 3D-IQTT is

Ours PTN
Shape
scenes

ShapeNet
scenes

Shape
scenes

ShapeNet
scenes

Chamfer distance (CD) 0.103 0.133 0.145 0.181
Hausdor� (HD) 0.191 0.215 0.229 0.254
MSE-depth 0.038 0.053 0.056 0.103

Table 4.1. Scene reconstruction results. Evaluation of Pix2Shape on scene reconstruc-
tion with Chamfer distance and Hausdor� metric on 2.5D surfels and MSE on the depth
maps. Table also compares with view-centric reconstruction of PTN Yan et al. [2016],
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(a) Input images

(b) Reconstructed images, depths and normals

Fig. 4.5. ShapeNet scenes reconstruction. Implicit 3D reconstruction of scenes com-
posed by multiple ShapeNet objects.

to quantify the ability of our model to perform a 3D spatial reasoning test by using large
amounts of the unlabeled training data and a small set of labeled examples.

For this 3D-IQTT task, we generated a dataset where each IQ question consists of a
reference image of a Tetris-like shape, as well as three other images, one of which is a randomly
rotated version of the reference (see Figure 4.2 for an example). The training set consists of
100k questions where only a few are labeled with the information about the correct answer
(i.e. either 1% (1k) or 0.2% (200) of the total training data). The validation and test sets
each contain 100K labeled questions. Earlier literature related to 3D-IQTT is elaborated in
supplementary material section A.8. We evaluate the 3D-IQTT task with the percentage of
questions answered correctly.

More details on experimental setup and evaluation can be found in supplementary material
sections A.4 and A.6.

4.5. Experiments and results
4.5.1. Scene Reconstruction

Figure 4.4 shows the input shape scenes data and its corresponding shading reconstructions,
along with its recovered depth and normal maps. The depth map is encoded in such a way
that the darkest points are closer to the camera. The normal map colors correspond to
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(a) Input images

(b) Reconstructed images, depths and normals

Fig. 4.6. ShapeNet 256 ◊ 256 scenes reconstruction. Implicit 3D reconstruction of
scenes composed by multiple ShapeNet objects.

the cardinal directions (red/green/blue for x/y/z axis respectively). Table 4.1 shows a
quantitative evaluation of the Chamfer and Hausdor� distances on Shape scene and shapenet
scene datasets from a given observed view. The table also depicts mean squared error (MSE)
of the generated depth map with respect to the input depth map. The shading reconstructions
are almost perfect in this simple dataset. Our model successfully learns the depth of the
scenes and thereby the relative positions of the surfels. It also estimates the normal maps
from the depth consistently. However the absolute distance is not always recovered perfectly.

Figure 4.5 shows the reconstructions from the model on challenging ShapeNet scenes
where the number of objects as well as their shape varies. Note how our model is able
to handle geometry of varying complexity. Figure 4.6 shows reconstructions on 256 ◊ 256
resolution scenes(on the right) constructed out of more di�cult thin-edged chairs and tables
from ShapeNet dataset in random configurations.

To showcase that our model can reconstruct unobserved views, we first infer the latent
code zscene of an image x and then decode and render di�erent views while rotating the
camera around the scene. Table 4.2 shows the Chamfer and Hausdor� distances and MSE loss
of reconstructing a scene from di�erent unobserved view angles. As the view angle increases
from 0¶(original) to 80¶ for shape scenes the reconstruction error and MSE tend to increase.
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Fig. 4.7. Viewpoint reconstruction. Given a scene (first column), we rotate the camera
around it to visualize the unseen parts of the scene. The model correctly infers the unobserved
geometry of the objects, demonstrating true 3D understanding of the scene. Videos of these
reconstructions can be seen at https://bit.ly/2zADuqG.

However, for the ShapeNet scenes the trend is not as clear because of the complexity of the
scene and inter-object occlusions. We compare our method with the PTN baseline Yan et al.
[2016]. Note that PTN reconstructs the 3D object in voxels explicitly, where as we output a
2.5D representation. Therefore, for a fair comparison we rotate and render per pixel depth
map from a desired view and obtain the Chamfer distance with respect to ground truth
projection for that view. Figure 4.7 qualitatively shows how Pix2Shape correctly infers the
scene parts not in view demonstrating true 3D understanding.

In all our datasets and further experiments we use di�use materials with uniform reflectance.
The reflectance values are chosen arbitrarily and we use the same material properties for both
the input and the generator side. However, our di�erentiable rendering setup also supports
Phong illumination model. As an instance Figure 4.8 shows the input shape scenes data with
specular reflection and its corresponding shading reconstructions, along with its recovered
depth.

4.5.2. Scene Generation

We trained Pix2Shape on scenes composed of a single ShapeNet object in a room. The
model was trained conditionally by giving the class label of the ShapeNet object present
in the scene to the decoder and critic networks [Mirza and Osindero, 2014]. Figure 4.10
shows the results of conditioning the decoder on di�erent target classes. Our model was
able to generate accurate 3D models for the target class. We can also train the model in an
unconditional fashion without giving any object category information (see supplementary
material A.5 for more details and results).

In order to explore the manifold of the learned representations, we selected two images
x1 and x2 from the held out data. We then linearly interpolated between their encodings
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(a) Input images

(b) Reconstructed images and depths

Fig. 4.8. Shape scenes reconstruction with specular reflectance. Pix2Shape recon-
struction of multiple objects into a room. The input RGB images are in the upper row, the
inferred image and depth are in the respective lower rows.

Shape scenes Multiple-shape scenes

5¶ 35¶ 55¶ 80¶ 5¶ 35¶ 55¶ 80¶

HD 0.156 0.191 0.189 0.202 0.308 0.355 0.329 0.316
Ours CD 0.098 0.112 0.110 0.126 0.141 0.148 0.134 0.108

MSE 0.012 0.021 0.022 0.027 0.070 0.091 0.088 0.083
CD 0.143 0.189 0.219 0.202 0.174 0.293 0.334 0.387

PTN MSE 0.066 0.112 0.142 0.157 0.083 0.1969 0.1982 0.190

Table 4.2. View point reconstruction. Quantitative evaluation of scene reconstruction
for unseen views by extrapolating the view angle from 0¶(original) to 80¶. We observe that
our method does better when compare to view-centric reconstruction of PTN Yan et al.
[2016] Note that PTN model is tuned to perform better for silhouette based single object
reconstruction with just plane background. HD is the Hausdorf distance, CD denotes Chamfer
Distance and MSE is mean-squared error

Labeled
Samples CNN Siamese

CNN
Human

Evaluation
Persp. Transf. Nets

Yan et al. [2016]
Rezende et al.

Rezende et al. [2016]
Pix2Shape

(Ours)
0 0.3385 0.3698 0.7329 ± 0.148 0.5344 0.5202 0.5519 ± 0.013
200 0.3350 0.3610 - 0.6011 0.6155 0.6312 ± 0.031
1,000 0.3392 0.3701 - 0.6645 0.7001 0.7012 ± 0.021

Table 4.3. 3D-IQTT results. Evaluation on the 3D-IQTT task of our model, two CNN-
based baselines, Perspective Transformer Nets and [Rezende et al., 2016]. This table also
includes comparison with human performance. Although Pix2Shape performs well compared
to other baselines, it is still lagging behind the human level by a good margin.

z1scene and z2scene and decoded the intermediary points into their corresponding images using
a fixed camera pose. Figure 4.9 shows this for two di�erent settings.
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4.5.3. 3D-IQ Test Task

We trained our model using the aforementioned semi-supervised training described in
Section 4.3.3.4 on the 3D-IQTT task. We compared our model to di�erent baselines listed
below and with human performance.
Human. We created an online test where 40 random graduate students from our lab answered
20 randomly selected questions from the test set (similar to Figure 4.2). No student had seen
these images before. More details can be found in Appendix A.9.
CNN.. The first baseline is composed of four ResNet-50 modules [He et al., 2016] with shared
weights followed by three fully-connected layers and a softmax output for the class label
(answer 1 to 3). We trained this CNN only on the labeled samples. The architecture is
depicted in the appendix, Figure A.3.2.
Siamese Network. Our second baseline is a Siamese CNN with a similar architecture as the
previous one but with the fully-connected layers removed. Instead of the supervised loss
provided in the form of correct answers, it was trained with contrastive loss [Koch et al.,
2015]. This loss reduces the feature distance between the reference and correct answer and
maximizes the feature distance between the reference and incorrect answers.
Perspective Transformer Nets. As our third baseline, we used the open source implementation
of the Perspective Transformer Nets [Yan et al., 2016] to solve the IQTT task using the learnt
latent code.
Rezende et al. [2016]: Since there is no open source code available for this work, we imple-
mented our own interpretation of this work. We were able to reproduce the results from their
paper (see appendix A.10 before attempting to use it as baseline for our model.

A more detailed description of the networks and contrastive loss function can be found in
the supplementary material A.3.

Table 4.3 shows 3D-IQTT results for our method and baselines. The CNN-based baselines
were not able to infer the underlying 3D structure of the data and their results are only
slightly better than random guess. The poor performance of the Siamese CNN might be
in part because the contrastive loss rewards similarities in pixel space and has no notion
of 3D similarity. However, Pix2Shape achieved significantly better accuracy by leveraging
the learned 3D knowledge of objects. Our method also outperformed the other 2 baseline
approaches, but with a smaller margin.

4.5.4. Analyzing the Loss Functions

In this section, we do an ablation study of the di�erent loss functions used to train our
model. Our final objective is a combination of bi-directional adversarial loss LALI and a
reconstruction loss Lrecon. For the 3D-IQTT task we augmented the above losses with a
mutual information based objective I�(zs,zv) to make sure that di�erent parts of the latent
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Fig. 4.9. Manifold exploration. Exploration of the learned manifold of 3D representations.
Generated interpolations (middle columns) between two images x1 and x2 (first and last
columns).

Fig. 4.10. Conditional scene generation. Class-conditionally generated samples for
ShapeNet dataset. These images are not part of the training data.

code encode distinctive pieces of information present in a scene. This allows us to disentangle
view point and geometry. Table 4.4 shows our results for both the reconstruction task on
the ShapeNet scenes dataset and the 3D-IQTT task when considering, i) only adversarial
loss (LALI); ii) only reconstruction loss(Lrecon); iii) adversarial and reconstruction but not
mutual info (LALI); and (Lrecon) (note that this does not e�ect reconstruction task); and, iv)
all three (LALI , Lrecon and I�(zs,zv)).
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Adversarial
Loss LALI

Reconstruction
Loss LALI

Mutual Info
Loss

Reconstruction on ShapeNet
scenes (Chamfer dist)

3D-IQTT
No Labels

3D-IQTT
1000 labels

0¶ 35¶ 55¶ 80¶

X 1.927 2.341 2.350 2.281 0.4024 0.4454
X 0.1066 0.1935 0.201 0.1925 0.3321 0.3789

X X 0.1120 0.1522 0.1483 0.1433 0.4224 0.4921
X X - - - - 0.4943 0.6272

X X X - - - - 0.5526 0.7020

Table 4.4. Loss analysis. Ablation study of the di�erent losses used to train our model on
both reconstruction task and 3D-IQTT task. We evaluate the contribution of each of the
objectives in the table. Having the adversarial loss alone negatively a�ects the reconstructions
considerably because, although output images look realistic, they do not match input images
very well. Although the reconstruction loss alone does better for reconstruction without
view-extrapolation, the performance degrades as we extrapolate to novel views. Note that the
reconstruction loss only fixes the indivisibility issues in ALI based models, but considerably
a�ects its generalization ability [Li et al., 2017a]

.

We observe each loss term improves the performance of the model on both the tasks.
Using adversarial loss alone is not enough to faithfully reconstruct the surfels. On the
other hand we observe that having the reconstruction loss alone a�ects the performance of
the model while extrapolating the shape from unseen views (e.g., view angle 35¶ to 80¶).
However, this scenario yields better performance when reconstructing from the given input
view point, i.e., 0¶. We also notice that having a reconstruction loss alone a�ects the quality
of the samples generated. We observe that the adversarial loss (LALI) plays a major role
in obtaining detailed and high quality samples. For the 3D-IQTT task, the role of (LALI)
is more evident. (LALI) encourages the latent code to learn meaningful representations by
constraining the model to match the joint distributions. Results also indicate clearly that
skipping mutual information loss degrades the performance of the model on 3D-IQTT task.
This is expected because of the mix-up of view information with geometrical information in
the latent representation.

4.6. Conclusion
In this paper we propose a generative approach to learn 3D structural properties from

single-view images in an unsupervised and implicit fashion. Our model receives an image of
a scene with uniform material as input, estimates the depth of the scene points and then
reconstructs the input image through a di�erentiable renderer. We also provide quantitative
evidence that support our argument by introducing a novel IQ Test Task in a semi-supervised
setup. We hope that this evaluation metric will be used as a standard benchmark to measure
the 3D understanding capability of models across di�erent 3D representations. The main

83



drawback of our current model is that it requires the knowledge of lighting and material
properties. Future work will focus on tackling the more ambitious setting of learning complex
materials and texture along with modelling the lighting properties of the scene.
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Chapter 5

Prologue to Article 2

5.1. Article Details
Multi-label Iterated Learning for Image Classification with Label Ambiguity.

Sai Rajeswar*, Pau Rodriguez*, Soumye Singhal, David Vazquez, Aaron Courville. Published
and presented at International Conference on Computer Vision and Pattern Recognition
(CVPR) 2022. (First two authors contributed equally)

Personal Contribution The idea was conceived after a joint brainstorming session involving
the author and Aaron Courville. While the author focused on implementing the iterated
learning pipeline and label-ambiguity studies, Pau Rodriguez focused on self-supervised
learning and OOD generalization components. Critical aspects of trying suitable multi-label
objectives and making ImageNet experiments scale e�ciently with the compute were pair
programmed by the author and Pau Rodriguez. Aaron Courville advised on the project
discussing results, suggesting experiments to run, and writing parts of the paper. All authors
participated in weekly discussions and helped with preparing the manuscript.

5.2. Context
The project highlights and discusses the weakly labeled nature of curated datasets like

ImageNet. It is known that the generalization performance of deep models is a�ected by
the combination of objects that are not present in the datasets. The project took shape by
initially noting that the existing datasets are themselves biased toward certain combinations
of objects that are more “organically natural” (e.g. an image with a "cow" sitting on a "beach"
is a rare occurrence compared to sitting on a "grass"y landscape). We agreed that these
spurious correlations can be addressed if we take into account the compositional aspect of
natural scenes in these datasets while training the models.



5.3. Research Impact
The work remains one of the best performing weakly-supervised classification methods

on datasets with label-ambiguity [Li et al., 2017b]. To the best of our knowledge, this is
the first application of the iterated learning framework in the visual domain. This can
be potentially extended to other perceptual problems where it is crucial to expand on the
knowledge of privileged information with only weak supervision. Similar to our line of
work, Iscen et al. [2022] presents an alternate way to deal with learning from noisy labels
that leverage similarities between training examples in feature space.

Note: This paper is presented as-is, with minor cosmetic changes to adhere to the
Universite de Montreal thesis template.
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Chapter 6

Article 2: Multi-label Iterated Learning for
Image Classification with Label Ambiguity

Abstract
Transfer learning from large-scale pre-trained models has become essential for many

computer vision tasks. Recent studies have shown that datasets like ImageNet are weakly
labeled since images with multiple object classes present are assigned a single label. This
ambiguity biases models towards a single prediction, which could result in the suppression
of classes that tend to co-occur in the data. Inspired by language emergence literature, we
propose multi-label iterated learning (MILe) to incorporate the inductive biases of multi-
label learning from single labels using the framework of iterated learning. MILe is a simple
yet e�ective procedure that builds a multi-label description of the image by propagating
binary predictions through successive generations of teacher and student networks with a
learning bottleneck. Experiments show that our approach exhibits systematic benefits on
ImageNet accuracy as well as ReaL F1 score, which indicates that MILe deals better with label
ambiguity than the standard training procedure, even when fine-tuning from self-supervised
weights. We also show that MILe is e�ective reducing label noise, achieving state-of-the-art
performance on real-world large-scale noisy data such as WebVision. Furthermore, MILe
improves performance in class incremental settings such as IIRC and it is robust to distribution
shifts.

6.1. Introduction
Large-scale datasets with human-annotated labels have been central to the development

of modern state-of-the-art neural network-based artificial perception systems [Krizhevsky
et al., 2012, He et al., 2016, 2017]. Improved performance on ImageNet [Deng et al., 2009] has
led to remarkable progress in tasks and domains that leverage ImageNet pretraining [Carreira
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Fig. 6.1. Multi-label Iterated Learning (MILe) builds a multi-label representation of
the images from singly-labeled ground-truth. In this example, a model produces multi-label
binary predictions for the next generation, obtaining Car and House for an image weakly
labeled with House.

and Zisserman, 2017, Long et al., 2015, Zhao et al., 2017]. However, these weakly-annotated
datasets and models tend to project a rich, multi-label reality into a paradigm that envisions
one and only one label per image. This form of simplification often hinders model performance
by asking models to predict a single label, when trained on real-world images that contain
multiple objects.

Given the importance of the problem, there is growing recognition of single-labeled datasets
as a form of weak supervision and an increasing interest in evaluating the limits of these
singly-labeled benchmarks. A series of recent studies [Stock and Cisse, 2018, Tsipras et al.,
2020b, Shankar et al., 2020, Beyer et al., 2020, Yun et al., 2021] highlight the problem of label
ambiguity in ImageNet. In order to obtain a better estimate of model performance, Beyer
et al. [2020] and Shankar et al. [2020] introduced multi-label evaluation sets. They identified
softmax cross-entropy training as one of the main reasons for low multi-label performance
since it promotes label exclusiveness. They also showed that replacing the softmax with
sigmoid activations and casting the output as a set of binary classifiers results in better
multi-label validation performance. Several other studies have explored ways to overcome
the shortcomings in existing validation procedures by improving the pipelines for gathering
labels Barbu et al. [2019], Tsipras et al. [2020a], Recht et al. [2019a].

In order to obtain a more complete description of images from weakly-supervised or
semi-supervised data, a number of methods leverage a noisy signal such as pseudo-labels [Yun
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et al., 2021] or textual descriptions crawled from the web [Radford et al., 2021]. In this
work, we observe that the process of building a rich representation of data from a noisy
source shares some properties with the process of language emergence studied in the cognitive
science literature. In particular, Kirby [2001] proposed that structured language emerged
from an inter-generational iterated learning process [Kirby, 2001, 2002, Kirby et al., 2014].
According to the theory, a compositional syntax emerges when agents learn by imitation from
previous generations in the presence of a learning bottleneck. This bottleneck forces noisy
fragments of the language to be forgotten when transmitted to new generations. Conversely,
those fragments that can be reused and composed to enrich the language tend to be passed
to subsequent generations. We show that the same procedure can be applied to settings that
leverage a weak or noisy supervisory signal such as [Yun et al., 2021, Radford et al., 2021] to
build a richer description of images while reducing the noise.

In this work, we propose multi-label iterated learning (MILe) to learn to predict rich
multi-label representations from weakly supervised (single-labeled) training data. We do so
by introducing two di�erent learning bottlenecks. First, we replace the standard convolutional
neural network output softmax with a hard multi-label binary prediction. Second, we
transmit these binary predictions through successive model generations, with a limited
training iterations between each generation.

In our experiments, we demonstrate that MILe alleviates the label ambiguity problem by
improving the F1 score of supervised and self-supervised models on the ImageNet ReaL [Beyer
et al., 2020] multi-label validation set. In addition, experiments on WebVision [Li et al.,
2017b] show that iterated learning increases robustness to label noise and spurious correla-
tions. Finally, we show that our approach can help in continual learning scenarios such as
IIRC Abdelsalam et al. [2021] where newly introduced labels co-occur with known labels.
Our contributions are:

• We propose MILe, a multi-label iterated learning algorithm for image classification
that builds a rich multi-label representation of data from weak single labels.

• We show that models trained with MILe are more robust to noise and perform better
on ImageNet, ImageNet-ReaL, WebVision, and multiple setups such as supervised
learning (Section 6.3.1), self-supervised fine-tuning and semi-supervised learning
(Section 6.3.2), continual learning (Supplementary 2), and domain generalization
(Supplementary 5).

• We provide insights on the predictions made by models trained with iterated learning
(Section 6.3.3).

89



6.2. MILe: Multi-Label Iterated Learning
We propose MILe to counter the problem of label ambiguity in singly-labeled datasets.

We delineate the details of our approach to perForm multi-label classification from weak
singly-labeled ground truth.

6.2.1. EnForcing Multi-label Prediction.

Singly-labeled datasets such as ImageNet usually represent their labels as one-hot vectors
(all dimensions are zero except one). Training on these one-hot vectors Forces models to
predict a single class, even in the presence of other classes. Forcing models to predict a
single class exposes them to biases in the image labeling process such as the preference
For centered objects. Besides, constraining the model to output a single label per image
limits the capability of perceptual models to capture all the content of the image accurately.
In order to solve this problem, we propose to relax the model’s output predictions from
singly-labeled softmax prediction to multi-label binary prediction with sigmoids. Thus, we
treat the singly-labeled classification problem as a set of independent binary classification
problems. Since the ground-truth labels are still represented as one-hot vectors and training
on them would still result in singly-labeled predictions, we propose an iterated learning
procedure to bootstrap a multi-label pseudo ground truth.
Multi-label Iterated Learning. Our learning procedure is composed of two phases. In the
first phase, a teacher model interacts with the single-labeled data to improve its predictions.
The interaction is limited to a few iterations to prevent the binary classification model from
overfitting to one-hot vectors. In the second phase, we leverage the acquired knowledge
to train a di�erent model, the student, on the multi-label predictions of the teacher. This
yields a better initialization of the model For further iterations as we repeat this two-phased
learning multiple times (see Alg. 2).

Specifically, we consider two parametric models, the teacher f(.; ◊T

·
) and the student

f(.; ◊S

·
). Parameters of the teacher ◊T

·
are initialized using the student parameters ◊S

·
at

iteration · . First, we train the teacher For kt learning steps on the labeled images from the
dataset, obtaining f(.; ◊T

·+1). This constitutes the interaction phase of an iteration. We then
move to the imitation phase, where we train the student to fit the teacher model For ks steps,
obtaining f(.; ◊S

·+1). This is done by training the student on the pseudo labels generated by
the teacher on the data. Finally, we instantiate a new teacher by duplicating the parameters
of this new student and iterate the process until convergence. In addition to yielding a
smooth transition during the imitation phase, this procedure ensures that each iteration
yields an improvement over the previous one (unless it is already optimal). Note that in
the supervised learning regime we do not pseudo label any unlabeled data. In Sec. 6.3.2
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we provide additional experiments showing that MILe can leverage unlabeled data in the
semi-supervised learning regime.

Both the teacher and the student are trained on the same dataset D composed of input-label
pairs {X , Y} œ D. We train the teacher to maximize the likelihood p(ŷ = y|x, ◊) = ‡(f(x, ◊)),
where ŷ is the label predicted by the model, y œ Y is the true label, and ‡ is a normalization
function such as the sigmoid. In order to alleviate the problem of label ambiguity, we consider
Y a multi-label binary vector in ZC

2 where C is the number of classes and optimize the binary
cross-entropy loss:

LBCE = ≠ 1
B

Bÿ

i=1

1
C

Cÿ

j=1
yi,j · log(ŷi,j) + (1 ≠ yi,j) · log(1 ≠ ŷi,j), (6.2.1)

where B is the number of samples in a batch when using batched stochastic gradient descent.
We show in our experiments that iterated learning along with multi-label objective provides
a strong inductive bias For modeling the e�ects of label ambiguity. Note that optimizing
the binary cross-entropy on one-hot labels would not solve the label ambiguity problem.
Thus, during each cycle, we train the teacher For a few iterations in order to prevent it from
overfitting the one-hot ground truth. During student training, we threshold the teacher’s
output sigmoid activations to obtain multi-label pseudo ground-truth vectors ỹ = f(x,◊T ) > fl.
The threshold fl is 0.25 unless otherwise Stated.

6.2.2. The MILe Learning Bottleneck.

EnForcing the imitation phase with some Form of a learning budget is an essential
component of the iterated learning framework [Kirby, 2001]. This bottleneck regularizes the
student model not to be amenable to the specific irregularities in the data. Kirby [2001]
argue that such a bottleneck enForces innate constraints on language acquisition. We believe
that incorporating such a mechanism into the prediction models could prevent them from
overfitting label noise [Liu et al., 2020], improving the quality of pseudo labels. There are
two common ways to impose a learning bottleneck. One way is to allow a newly initialized
student to only obtain the knowledge from a limited number of data instances generated
by the teacher [Kirby, 2001, Liu et al., 2021]. Another is by limiting the number of student
learning updates while imitating the teacher [Lu et al., 2020a]. In our setting, we find it
helpful to enForce the bottleneck via the number of learning updates.

As illustrated in Fig. 6.1 and Alg. 2, we iteratively refine a teacher network that is trained
with the original labels and a student network that is trained with labels produced by the
teacher. In order to prevent the student from overfitting the teacher, we restrict the amount
of training updates [Lu et al., 2020a] For each of the modules. Formally, let N be the size
of the dataset, kt be the number of training iterations of the teacher, and ks the number of
student iterations. In general, we set kt << N to prevent the teacher from overfitting one-hot
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Algorithm 2 MILe
Require: Initialize Student network ◊S

· , · = 0. Û Prepare Iterated Learning
1: repeat

2: Copy ◊S
· to ◊T

·+1 Û Initialize Teacher
3: for i = 1 to kt do

4: Sample a batch (xi, yi) œ Dtrain

5: ŷi = f◊T (xi)
6: ◊T

·+1 Ω ◊T
·+1 + –ÒLBCE(◊T

·+1; yi, ŷi) Û Update ◊T to minimize L
7: end for Û Finish Interactive Learning
8: for i = 1 to ks do

9: Sample a batch (xi, yi) œ Dtrain

10: ŷi = ‡(f◊T
·+1

(xi)) > fl Û Generate Pseudo Labels
11: ỹi = f◊S (xi)
12: ◊S

· Ω ◊S
· + –ÒLBCE(◊S

· ; ỹi, ŷi) Û Update ◊S to minimize L
13: end for Û Finish Imitation
14: Copy ◊S

· to ◊S
·+1

15: · Ω · + 1
16: until Convergence or maximum · reached

labels and ks <= kt to prevent the student from overfitting the teacher. In other words, each
of our iterations is composed of two finite loops of (a) model improvement (teacher learning)
and (b) model imitation (student learning).
Computational Cost. We train MILe For the same total number of epochs as standard
supervised classification models. Thus, the total number of backward passes through the
model (counting both the teacher and the student) is the same as the standard supervised
training. Thus, the only additional computational cost comes from producing pseudo-labels
with the teacher model. Moreover, the pseudo-labeling only happens once per teacher-student
cycle and the network is in inference mode. Assuming ks + kt = 10K (see Figure 6.3) and
a batch size of 256, this inference pass only happens every 2.1 epochs For the ImageNet.
Thus, the computational impact of MILe only constitutes a small fraction of the overall
computational cost of training a neural network on the ImageNet. This computational cost
could be easily compensated by skipping validation on alternate epochs or by validating in a
di�erent parallel process.

6.3. Experiments
We provide experiments showing the e�ects of iterated learning in multiple setups. In

Sec. 6.3.1, we study the robustness to label ambiguity and noise on ImageNet Real and
WebVision. In Sec. B.5, we explore the benefits of iterated learning for domain generalization.
In Sec. 6.3.2, we study the e�ect of MILe on models pre-trained with self-supervised objectives.
Finally, in Sec. 6.3.3, we provide ablation experiments on the di�erent hyperparameters as well
as a more challenging synthetic setup with greater label ambiguity. Additional experiments
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ReaL: polecat, ferret 
Sigmoid: ferret
MILe: weasel, polecat, ferret

ReaL: uniform, riffle 
Sigmoid: pickelhaube, riffle
MILe: uniform, pickelhaube, riffle

ReaL: cleaver, laptop
Sigmoid: laptop
MILe: cleaver, laptop, notebook

ReaL: chihuahua, bathtub 
Sigmoid: tub
MILe: chihuahua, bathtub, tub

ReaL: schooner, yawl, sandbar, shore 
Sigmoid: sandbar
MILe: yawl, sandbar

ReaL: plate, meatloaf
Sigmoid: plate, mashed potato, meat
MILe: plate, mashed potato, meat

ReaL: laptop, notebook 
Sigmoid: laptop, desktop computer
MILe: laptop, notebook

ReaL: tabby, keyboard, desk, laptop, monitor, 
notebook
Sigmoid: keyboard, laptop, notebook
MILe: keyboard, desk, laptop, tabby, notebook 

Fig. 6.2. Qualitative results. ReaL: original labels. Sigmoid: ResNet-50 with sigmoid
output activations. MILe: multi-label iterated learning (ours).

in the Supplementary Material include a comparison with noisy student, multi-label learning
on CelebA, and continual learning on IIRC.

6.3.1. Label Ambiguity and Noise

Datasets: We train our models on the standard ImageNet image classification bench-
mark [Russakovsky et al., 2015], which is known to contain ambiguous labels [Beyer et al.,
2020]. Therefore, in addition to the validation set performance, we also report the performance
on ReaL [Beyer et al., 2020], an additional set of multi-labels for the ImageNet validation set
gathered using a crowd-sourcing platform. ReaL contains a total of 57,553 labels for 46,837
images. We report results when using fractions of the total amount of training examples
(i.e., 1%, 5%, 10%, 100%). To test the robustness of our method to label noise, we provide
results on WebVision [Li et al., 2017b], which contains more than 2.4 million images crawled
from the Flickr website and Google Images search. The same 1,000 concepts as the ImageNet
ILSVRC 2012 dataset are used for querying images. It is worth noting that many ImageNet
(ReaL) samples contain a single object and a single label. In Sec. 6.3.3, we explore the limits
of MILe on a synthetic dataset. In addition, we provide results on CelebA [Liu et al., 2015]
in the supplementary material.
Baselines: We train a ResNet-18 and a ResNet-50 [He et al., 2016] model. Note that we
favored vanilla ResNets over more advanced architectures and training procedures in order to
focus on the advantages of MILe, rather than showing state-of-the-art results. We compare
three di�erent methods. (i) Softmax : standard softmax cross-entropy loss used to train the
original ResNet backbone [He et al., 2016]. (ii) Sigmoid: we substitute the cross-entropy
loss for a binary cross-entropy (BCE) loss. (iii) MILe: the proposed method as described
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ImageNet fraction: 1% 5% 10% 100% 1% 5% 10% 100%

Metric Method ResNet-50 ResNet-18

Accuracy

Softmax 6.32 36.71 53.50 76.33 6.61 31.5 48.82 70.41
ELR [Liu et al., 2020] 7.91 38.88 56.15 76.75 6.93 32.95 49.95 70.83

Sigmoid 6.70 36.9 55.01 76.35 6.88 31.10 49.14 70.46
MILe (ours) 9.10 42.52 57.29 77.12 8.20 36.20 51.31 71.12

ReaL-Acc

Softmax 7.19 42.55 60.21 82.76 8.80 35.88 55.11 77.77
ELR [Liu et al., 2020] 8.78 44.24 63.13 83.07 8.92 38.08 56.13 78.85

Sigmoid 8.38 46.04 62.96 83.22 9.04 37.66 57.52 81.01
MILe (ours) 11.50 48.36 65.42 83.75 9.18 41.65 58.57 81.52

ReaL-F1

Softmax 6.77 40.51 57.33 78.5 8.28 34.20 52.51 73.83
ELR [Liu et al., 2020] 7.83 42.45 58.52 78.5 8.41 35.52 53.22 73.41

Sigmoid 7.17 41.11 58.46 78.61 8.39 33.56 52.12 73.85
MILe (ours) 10.76 45.02 62.11 79.89 8.55 38.49 53.80 74.48

Label Coverage

Softmax 1.00 1.0 1.0 1.0 1.0 1.0 1.0 1.0
ELR [Liu et al., 2020] 1.00 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Sigmoid 1.09 1.11 1.10 1.11 1.07 1.10 1.15 1.15
MILe (ours) 1.05 1.08 1.09 1.16 1.06 1.07 1.12 1.17

Table 6.1. ImageNet results. The first row displays the fraction of the ImageNet data
used to train the models. Softmax: Vanilla ResNet with softmax loss. Sigmoid: Vanilla
ResNet trained for multi-label binary classification with single labels. ELR: early-learning
regularization [Liu et al., 2020]. MILe: multi-label iterated learning. Label coverage refers to
the fraction of additional labels predicted by each model. All the models are trained for 100
epochs.

in Sec. 4.3. For WebVision experiments, we also train an additional ResNet-50-D [He et al.,
2019b] backbone following more recent methodologies [Yang et al., 2020].
Metrics: We report accuracy on the original [Russakovsky et al., 2015] and the ReaL [Beyer
et al., 2020] ImageNet validation set. ReaL is a multi-label dataset, so we calculate the
accuracy as described by Beyer et al. [2020]. Namely, we consider a top-1 prediction correct if
it coincides with any of the ground-truth labels, i.e. ReaL-Acc = 1

N

q
N

i=1 |ŷi fl Yi| > 0, where
ŷi is the predicted label for the ith sample, Yi is the set of ReaL labels, and |.| counts the
the number of elements in a set. Additionally, we report the F1-score, which represents the
proportion of correct predicted labels to the total number of actual and predicted labels,
averaged across all examples: ReaL-F1 = 1

N

q
N

i=1
2·T Pi

2·T Pi+F Pi+F Ni
, where TP is the number of

true positives, FP is the number of false positives, and FN is the number of false negatives.
Finally, we report the label coverage, which indicates the total fraction of labels per sample
predicted by the multi-label classifier. A number 1.15 indicates an additional 15% of labels
was predicted.
ImageNet results. We report the results in Table 6.1. MILe surpasses baseline methods
on all metrics and all fractions of training data. With Sigmoid, we observe a substantial
improvement on ReaL-Acc of ≥ 2% and ≥ 4% for ResNet-18 and ResNet-50 respectively.
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Method Architecture WebVision ImageNet
Top-1 Top-5 Top-1 Top-5

CrossEntropy [Tu et al., 2020] ResNet-50 66.4 83.4 57.7 78.4
MentorNet [Jiang et al., 2018] InceptionRes-V2 70.8 88.0 62.5 83.0
CurriculumNet [Guo et al., 2018] Inception-V2 72.1 89.1 64.8 84.9
CleanNet [Lee et al., 2018] ResNet-50 70.3 87.8 63.4 84.6
CurriculumNet [Guo et al., 2018, Tu et al., 2020] ResNet-50 70.7 88.6 62.7 83.4
SOM [Tu et al., 2020] ResNet-50 72.2 89.5 65.0 85.1
Distill [Zhang et al., 2020] ResNet-50 - - 65.8 85.8

MoPro (dec.) [Li et al., 2021] ResNet-50 72.4 89.0 65.7 85.1
Multimodal [Shah et al., 2019] Inception-V3 73.15 89.73 - -
Sigmoid ResNet-50 72.1 89.5 65.4 85.0
MILe (ours) ResNet-50 75.2 90.3 67.1 85.6

Initial Vanilla Model ResNet-50-D 75.08 89.22 67.23 84.09
SCC [Yang et al., 2020] ResNet-50-D 75.36 89.38 67.93 84.77
SCC+GBA [Yang et al., 2020] ResNet-50-D 75.69 89.42 68.35 85.24
MILe (ours) ResNet-50-D 76.5 90.9 68.7 86.4

Table 6.2. WebVision results. Methods are trained on Webvision-1000 and validated
both on WebVision and ImageNet. MoPro (decoupled) is pre-trained on the same set as our
method. CleanNet [Lee et al., 2018] and Distill [Zhang et al., 2020] require data with clean
annotations. dec: refers to "decoupled".

This is in agreement with the results reported by Beyer et al. [2020]. Incorporating iterative
learning results in an extra ≥ 1% performance improvement when using all the training data
and up to 5% of ReaL-F1 when using a smaller fraction of the data. Interestingly, we find
that using smaller fractions of data reduces the label coverage. We hypothesize that using a
smaller fraction of the data leads to memorization and overfitting for the Softmax method
and Sigmoid, which results in more confident predictions on a single class. Additional results
focused on ReaL label recovery can be found in the supplementary material.

We report qualitative results in Fig. 6.2. As it can be seen, MILe produces more complete
descriptions of the image, sometimes capturing labels that were not included in the ReaL
ground truth. For instance, our method was able to detect a pickelhaube (pointy hat) that
was not labeled in the ground truth.
WebVision results. We report results in Table 6.2 and put them in context with other state
of the art. We adopt the same class rebalancing strategy as [Li et al., 2021]. For all setups,
we observe that MILe attains the best performance, up to 2 points better than methods
using better architectures such as Inception-V3 [Shah et al., 2019]. We also validate the
WebVision-trained model on the ImageNet validation set, outperforming the previous state
of the art and keeping results consistent with the WebVision validation set. These results
suggest that the iterated learning bottleneck acts as a regularizer that prevents the model
from learning noisy labels which are more di�cult to fit. This hypothesis is in agreement with
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Method ImageNet Validation ImageNet ReaL-F1
1% 10% 100% 1% 10% 100%

SimCLR [Chen et al., 2020b] 48.3 65.6 76.25 51.54 69.16 76.91
BYOL [Grill et al., 2020] 53.2 68.8 77.2 54.32 70.81 78.85
SwAV [Caron et al., 2020] 53.9 70.2 77.74 55.79 71.22 79.18

MoCo-v2 [Chen et al., 2020d] 51.72 66.5 77.12 53.34 70.75 79.04
MILe (Ours) + [Chen et al., 2020d] 52.62 67.4 77.38 56.08 71.48 80.03

SimCLR-v2-sk0 [Chen et al., 2020c] 58.18 68.9 76.3 57.25 70.11 78.83
MILe (Ours) + [Chen et al., 2020c] (sk0) 61.85 70.5 77.29 60.49 72.76 79.38

SimCLR-v2-sk1 [Chen et al., 2020c] 64.7 72.4 78.7 62.77 74.21 79.43
MILe (Ours) + [Chen et al., 2020c] (sk1) 69.4 74.7 79.5 65.04 76.40 81.53

Table 6.3. Self-supervised finetuning. The second row displays the fraction of ImageNet
training data used for fine-tuning. Accuracy of top-1 predictions are used for reporting the
numbers.

Method Teacher Label fraction
1% 10%

Distilled [Chen et al., 2020c] R50 (2◊+SK) 69.0 75.1
Self-distilled [Chen et al., 2020c] R50 (1x+SK) 70.15 74.43

MILe (ours) R50 (1x+SK) 73.08 75.3

Table 6.4. Self- semi-supervised learning. ImageNet top-1 accuracy for ResNet-50 (R50)
distilled from a SimCLR [Chen et al., 2020b] model. 2◊: teacher has 2◊ parameters than
the student.

Arpit et al. [2017], Zhang et al. [2021], Liu et al. [2020], who showed that noise memorization
happens later in the training procedure.

6.3.2. Self-supervised Fine-tuning

ImageNet’s label ambiguity [Stock and Cisse, 2018, Tsipras et al., 2020b, Shankar et al.,
2020, Beyer et al., 2020, Yun et al., 2021] might be problematic for fully-supervised methods
but it is possible that self-supervised pre-training procedures such as MoCo [He et al., 2019a]
or SimCLR [Chen et al., 2020b] are immune to it. We explore whether iterated learning
improves the performance of self-supervised models in the fully- and semi-supervised fine-
tuning regimes. We perform experiments on the ImageNet dataset and report validation
accuracy and ReaL-F1 as described in Sec. 6.3.1.
Baselines. We report results with ResNet-50 pre-trained with SimCLR [Chen et al., 2020b],
SimCLR-v2 [Chen et al., 2020c], BYOL [Grill et al., 2020], MoCo-v2 [Chen et al., 2020d], and
SwAV [Goyal et al., 2021]. Results are reported after fine-tuning weights with 1%, 10%, and
100% of the ImageNet training set. We use the same data subsets as Chen et al. [2020c]. We

96



(a) Iterations (b) Threshold

Fig. 6.3. Ablation study. Comparison between di�erent iteration schedules. (a) Sweep
over length of teacher training kt and length of student training ks. We report the ReaL-F1
score. (b) ReaL F-1 and accuracy scores for a threshold value sweep (fl).

incorporate the proposed iterative learning procedure in the fine-tuning process of MoCo-v2
and SimCLR-v2. For SimCLR-v2, we also tested the "sk1" variant which was improved
with selective kernels [Li et al., 2019a, Chen et al., 2020c], while "sk0" is the vanilla version.
For the semi-supervised learning experiments, we compare with SimCLR-v2’s distillation
experiments, where a teacher predicts pseudo-labels on unlabeled data. We compare with
ResNet-50 (2◊+SK), where the teacher has 2◊ capacity than the student, and ResNet-50
(1◊+SK) where the teacher and the student are the same models.
Results. We report fine-tuning results in Table 6.3. Iterated learning improves the perfor-
mance of MoCo-v2, SimCLR, and SimCLR-v2 for all fine-tuning data fractions. Interestingly,
the improvement gap grows when using better self-supervised initializations. For example,
the ReaL improvement from the best performing SimCLR-v2-sk1 with 100% of the validation
data is 4.6% while it is around 3% for MoCo-v2 and SimCLR-v2-sk0. We hypothesize that
more accurate models lead to better teachers, improving the overall performance of the
iterated learning procedure.

We report semi-supervised learning results in Table 6.4. Iterated learning performs 2.9%
better with 1% of the training labels and 0.9% with 10% of the training labels when compared
with the self-distillation procedure presented in SimCLR-v2 Chen et al. [2020c]. Interestingly,
we find that iterated learning attains better performance than distilling from a teacher twice
the size of the student.
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F1@0.25 F1@0.5
Softmax 28.69 28.69
Sigmoid 29.10 28.67
MILe (ours) 41.35 34.32

Table 6.5. Results on multi-label MNIST. The first column displays the F1 score when
the threshold for positive labels is set to 0.25 and the second column shows the F1 score for
a threshold of 0.5.

6.3.3. Analysis

In this section we explore the behavior of MILe under di�erent hyperparameter settings
as well as more challenging setups with synthetic data.
Number of Iterations. We investigate the e�ect of the number of teacher iterations (kt)
and student iterations (ks) per cycle on the final performance (Fig. 6.3a). We report the
ReaL-F1 for di�erent kt values (rows) and ks values (columns). In general, we find that
good performance can be achieved with a wide range of kt and ks combinations. The best
performance is achieved with smaller values of kt and ks. Extreme values of kt and ks lead to
lower performance, with the model being most sensitive to large values of ks (dark regions).
This is expected since a small kt would let the imitation phase constantly disrupt supervised
learning via interaction with the data, while a large kt does not reap the benefits of distillation.
For a given kt we find that the optimal ks lies in the mid-range and the other way around.
Regarding the influence of the dataset size, we observe that it mostly influences the optimal
number of teacher iterations (kt). We hypothesize that it takes few iterations for the teacher
to overfit small datasets, which leads to one-hot predictions and prevents the model from
learning a multi-label hierarchy.
Pseudo-label Threshold Ablation Study. In this section, we conduct an ablation study on
the threshold value (fl) used by MILe to produce multi-pseudo-labels from sigmoid output
activations (see Section 4.3 and Algorithm 2). Fig. 6.3b shows the validation accuracies and
ReaL-F1 scores for di�erent threshold values. Lower thresholds bias the student towards
producing multi-label outputs, even for low-confidence classes. Larger threshold values make
the student tend towards singly-labeled prediction, only predicting labels for which the
confidence is high. In the extreme, a high threshold constrains the teacher to predict empty
label vectors. Interestingly, we find that lower threshold values result in higher ReaL-F1 score
and better accuracy. In fact, the Real-F1 score benefits from lower fl than the accuracy. This
is due to the fact that lower thresholds increase the number of predicted labels per image,
which improves the recall in multi-label evaluations.
Multi-label MNIST. Many images in the real world datasets like WebVision or ImageNet
contain a single object, which biases MILe towards predicting a small number of objects per
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Fig. 6.4. Multi-MNIST. The center digit has a probability of 0.6 to be chosen as the label
for the whole grid.

image. In order to explore the limits of MILe, we begin by designing a controlled experiment
on a synthetic dataset where most samples contain multiple classes. Each sample consists of
a 3 ◊ 3 grid of randomly sampled MNIST digits [LeCun and Cortes, 2005]. For each grid, its
single label corresponds to the center digit with probability 0.6 while the 8 remaining digits
are sampled with probability 0.05 each (see Fig. 6.4). Note that, similar to the ImageNet,
digits of the same class can repeat in the grid. However, the probability of having a 3 ◊ 3
grid with the same digit repeated in each position is 10≠9.

Results are shown in Table 6.5. We observe that MILe attains up to 12% better F1
score than the Softmax and Sigmoid baselines. It is worth noting that the improvement is
most significant when thresholding the sigmoid output predictions to 0.25. Interestingly,
for this experiment, we found the best threshold to produce multi-pseudo-labels from the
teacher output to be (fl = 0.1). Having a low threshold biases the student towards producing
multi-label outputs. We find these results encouraging and we believe that better performance
could be attained by improving the pseudo-multi-label generation strategy. We plan to explore
these new strategies in future work.
Contribution of Self-Distillation and Iterated Learning. Here, we study of the e�ect of the
multi-label distillation algorithm on the iterative procedure. We compare soft distillation
(softmax + KL loss) with hard distillation (argmax + CE), and MILe (sigmoid + threshold
+ BCE) with and without iterated learning in Fig. 6.5. We compare the e�ect on two and
many iterations. Hard labels outperform soft labels when training with many iterations.
We provide an ablation of iterated learning with nosiy-student [Xie et al., 2020] distillation
procedure depicted in Fig. B.7.3 of the supplementary material.

6.4. Related work
It is known that weakly-labeled datasets such as ImageNet contain label ambiguity [Stock

and Cisse, 2018, Tsipras et al., 2020b, Shankar et al., 2020, Beyer et al., 2020, Yun et al.,
2021, Barbu et al., 2019] and label noise [Van Horn et al., 2015, Recht et al., 2019b]. Label
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Fig. 6.5. Comparison between di�erent distillation schedules and MILe. We report the
Accuracy and ReaL-F1 score.

ambiguity refers to the cases where only one of the multiple possible labels was assigned to
the image. In order to evaluate how label ambiguity a�ects ImageNet classifiers, Beyer et al.
[2020] proposed ReaL, a curated version of the ImageNet validation set with multiple labels
per image. They found that ImageNet classifiers tend to perform better on ReaL since it
contains less label noise but they did not address the problem of inaccurate supervision during
training where more than one correct class is present in the image. To deal with unfavorable
training dynamics due to the mismatch between the multiplicity of object classes and the
majority-aggregated single labels, Yun et al. [2021] proposed to relabel the ImageNet training
set. They obtained pixel-wise labels by finetuning an ensemble of large models pretrained
on a large external dataset Sun et al. [2017]. Although useful, undertaking such relabeling
procedure for each dataset of interest is both laborious and unrealistic. In addition, it is
not clear if the same relabeling approach could be used in larger, noisier databases such as
WebVision [Li et al., 2017b], which contains 2.4M images downloaded from the internet and
labels consisting of the queries used to download those images. In this work, we investigate
the use of iterated learning on weak singly-labeled datasets as an alternative to relabeling
in order to produce a multi-label output space. Di�erent from existing methods, MILe uses
neither external data nor additional relabeling procedures.
Knowledge Distillation. Knowledge distillation is a technique commonly used in model
compression [Buciluǎ et al., 2006, Hinton et al., 2015, Ba and Caruana, 2013]. In the vanilla
setting, a large deep neural network is used as a teacher to train a smaller student network
from its logits. In addition to model compression, knowledge distillation has been used to
improve the generalization of student networks reusing distilled students as teachers Furlanello
et al. [2018] or distilling ensembles into a single model [Allen-Zhu and Li, 2020]. Gains have
been observed even when the teacher and the student model are the same network, a regime
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commonly known as self-distillation [Mobahi et al., 2020, Zhang et al., 2019, Allen-Zhu and
Li, 2020]. Mobahi et al. [2020] further showed that iterative self-distillation induces a strong
regularization e�ect, with e�ects that are di�erent from early stopping. Self-distillation has
also been used to improve the generalization and robustness of semi-supervised models. Xie
et al. [2020] introduced noisy student for labeling unlabeled data during semi-supervised
learning. While MILe also leverages teacher and student networks, it is fundamentally
di�erent from knowledge distillation approaches. The goal of knowledge distillation is to
transmit all the knowledge of a teacher network to a student network. On the other hand,
MILe trains a succession of short-lived teacher and student generations, thus creating an
iterated learning bottleneck [Kirby, 2001], to construct a new multi-label representation of
the images from single labels. This goal is also di�erent from the goal of noisy student, which
is to label unlabeled data, and which is trained three times until convergence.
Iterated Learning. The iterated learning hypothesis was first proposed by Kirby [2001, 2002]
to explain language evolution via cultural transmission in humans. Languages need to be
expressive and compressible to be e�ectively transmitted through generations. This learning
bottleneck favors languages that are compositional as they can be easily and quickly learned
by the o�springs and support generalization. Kirby et al. [2014] conducted human experiments
and mathematical modeling, which showed that iterated transmission of unstructured language
results in convergence to a compositional language. Since then, it has seen many successful
applications, especially in the emergent communication literature [Guo et al., 2019, Ren et al.,
2020, Cogswell et al., 2019, Dagan et al., 2020]. In these settings, the learning bottleneck is
induced by limiting the data or learning time of the student, which helps it to converge to a
compositional language that is easier to learn [Li and Bowling, 2019]. The approach starts by
training a teacher network with a small number of updates on the training set. A student
network is then trained to imitate the teacher based on pseudo-multi-labels inferred from the
input samples. The student then replaces the teacher and the cycle repeats with a frequency
modulated by a learning budget. Iterated learning has also been used in the preservation
of linguistic structure in addition to its emergence by Lu et al. [2020a,b]. Furthermore,
Vani et al. [2021] successfully applied it for emergent systematicity in VQA. To the best of
our knowledge, this is the first application of the iterated learning framework in the visual
domain.

6.5. Conclusion
We introduce multi-label iterated learning (MILe) to address the problem of label ambiguity

and label noise in popular classification datasets such as ImageNet. MILe leverages iterated
learning to build a rich supervisory signal from weak supervision. It relaxes the singly-labeled
classification problem to multi-label binary classification and alternates the training of a
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teacher and a student network to build a multi-label description of an image from single
labels. The teacher and the student are trained for few iterations in order to prevent them
from overfitting the singly-labeled noisy predictions. MILe improves the performance of
image classifiers for the singly-labeled and multi-label problems, domain generalization, semi-
supervised learning, and continual learning on IIRC. A possible limitation, which is inherent
to iterated learning [Lu et al., 2020a], is choosing the correct length of teacher (kt) and student
iterations (ks). However, our ablation experiments suggest that the proposed procedure is
beneficial for a wide range of kt and ks values (Sec. 6.3.3). MILe also depends on the threshold
value fl, which we use to produce pseudo-labels from the teacher’s outputs. However, we
found encouraging that low values of fl improve the performance of the classifiers, indicating
that predicting multiple labels is beneficial. With respect to the computational cost, we found
that the impact of MILe is lower than the validation phase of the models (see Sec. 6.2.2).
Overall, we found that iterated learning improves the performance of models trained with
weakly labeled data, helping them to overcome problems related to label ambiguity and noise.
Broader impact and future work. Our approach is built on the hypothesis that the world
is structured along objects and the fact that images result from the composition of those
objects. We believe that our work could be applied to other tasks that build on the same
assumptions such as object detection, segmentation, and multiple-instance learning. In these
cases we hope approaches like MILe could open the door to leverage large amounts of webly
supervised data to improve on these tasks.
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Chapter 7

Prologue to Article 3

7.1. Article Details
Haptics based Curiosity from Sparse Reward Tasks. Sai Rajeswar*, Cyril Ibrahim*,

Nitin Surya, Florain Golemo, David Vazquez, Aaron Courville, Pedro Pinheiro. Published
and presented at International Conference on Robot Learning (CoRL), 2021.

Personal Contribution The idea of the project were primarily conceived by the author, and
refined over discussions with Pedro Pinheiro and Aaron Courville. The author is responsible
for running the experiments, writing parts of the paper, and coming up with an appropriate
version of the dynamics prediction model used in the work. The author and Cyril Ibrahim
were involved in writing all of the code. Pedro and Aaron Corville advised on the project
and writing parts of the paper. Pedro was also involved in discussing results, suggesting
experiments to run, and making the paper strong.

7.2. Context
The goal of this work was to study and help address the shortcomings of Reinforcement

learning manipulation based control tasks where reward signal is mostly sparse and often
non-existing. In contrast to RL agents, humans can learn behaviors without any external
rewards, due to the intrinsic motivation that naturally drives them to be active and explore
the environment [LAR, 2011, Legault, 2016]. The design of similar mechanisms for RL agents
opens up possibilities for training and evaluating agents without external rewards, fostering
more self-supervised strategies of learning.

7.3. Research Impact
The paper presents a cross-modal curiosity based self-supervised objective to encourage

e�cient exploration. This in turn helps in generating structured data that helps adapt to
downstream tasks in a sample e�cient manner. Ours is the one of the first attempts to



leverage tactile sensing to learn e�cient exploration strategies in conjunction with decision
making. We are beginning to see other recent work building on HaC that leverages tactile
modality for unsupervised RL problems [Xu et al., 2022]. While being competitive compared
to existing intrinsic exploration approaches, we show that formulating such dense intrinsic
rewards could help towards solving challenging control tasks that were previously unsolved.

Note: What follows is a slightly abridged version of the CoRL publication, with additional
qualitative results that were not included in the published version due to space limitations.
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Chapter 8

Article 3: Haptics based Curiosity from Sparse
Reward Tasks

Abstract
Robots in many real-world settings have access to force/torque sensors in their gripper

and tactile sensing is often necessary for tasks that involve contact-rich motion. In this
work, we leverage surprise from mismatches in haptics feedback to guide exploration in hard
sparse-reward reinforcement learning tasks. Our approach, Haptics-based Curiosity (HaC),
learns what visible objects interactions are supposed to “feel" like. We encourage exploration
by rewarding interactions where the expectation and the experience do not match. We test
our approach on a range of haptics-intensive robot arm tasks (e.g. pushing objects, opening
doors), which we also release as part of this work. Across multiple experiments in a simulated
setting, we demonstrate that our method is able to learn these di�cult tasks through sparse
reward and curiosity alone. We compare our cross-modal approach to single-modality (haptics-
or vision-only) approaches as well as other curiosity-based methods and find that our method
performs better and is more sample-e�cient.

8.1. Introduction
Most successes in reinforcement learning (RL) come from games [Mnih et al., 2013, Silver

et al., 2016] or scenarios where the reward is strongly shaped [Zhu et al., 2018b, Forestier
et al., 2017]. In the former, the environment is often fully observable, and the reward is dense
and well-defined. In the latter, a large amount of work is required to design useful reward
functions. While it may be possible to hand-craft dense reward signals for many real-world
tasks, we believe that it is a worthwhile endeavor to investigate learning methods that do not
require dense rewards.



Fig. 8.1. Touch-based Curiosity (HaC) Overview Top: An agent perceives a scene
visually and anticipates the force/torque (FT) sensation of interacting with an object. Bottom:
The object interaction leads to an unexpected FT sensation, which gives a positive reward to
the policy, leading to an exploration policy that is seeking interactions that are haptically
surprising. The agent’s experiences gained in this way are later relabeled to become task-
specific.

Closely related to the sparse rewards problem is the issue of exploration. One reason
that traditional RL agents struggle with sparse-reward problems is a lack of exploration.
An agent may not obtain useful rewards without an intuitive exploration strategy when
rewards are sparse. Exploration based on intrinsic curiosity comes naturally to many animals
and infants (who start crawling and exploring the environment at around 9 months [Vernon
et al., 2011] and oftentimes even before they can crawl by using their hands and mouth to
touch and probe objects). Touch is a local experience and encodes accurate geometrical
information while handling objects. Experimental studies in infants has suggested that tactile
and visual sensory modalities play a central role in systematic learning of tasks related to
object understanding, interaction and manipulation [E and CH, 2010;15(3, Connolly and
Harris, 1971].

Ideally, we would like our RL agents to explore the environment in an analogous self-
guided fashion to learn the dynamics and object properties, and use this knowledge to
solve downstream tasks. Just as how humans utilize di�erent sensory modalities to explore
and understand the world around them, exploration in robots should be more embodied
and related to a combination of vision and touch and potentially other sensor modalities.
We believe that building autonomous agents that are self-driven and seek to explore via
multi-modal interaction are crucial to address key issues in developmental robotics.

Recent works in RL have focused on a curiosity-driven exploration through prediction-
based surprise [Burda et al., 2019a, Pathak et al., 2017a, Raileanu and Rocktäschel, 2020].
In this formulation, a forward dynamics model predicts the future, and if its prediction is
incorrect when compared to the real future, the agent is surprised and is thus rewarded.
This encourages the agent to look for novel states while improving its visual forward model
in return. However, this formulation can be practically challenging to optimize since there
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are many states that are visually dissimilar but practically irrelevant (e.g. for a pushing
task, moving a robotic end-e�ector without touching the object creates visual novelty but
contributes little to task-related knowledge). One way to constrain this search space over
curious behaviors is by involving another modality like haptics.

In this work, we demonstrate that a self-guided cross-modal exploration policy can help
solve sparse-reward downstream tasks that existing methods without this curiosity struggle to
solve. Our method uses cross-modal consistency (mismatch between visual and haptic signal)
to guide this exploration. To use self-play knowledge in downstream tasks, we relabel past
experiences, providing a dense reward signal that allows modern o�-policy RL methods to
solve the tasks. While there are many existing methods that use artificial curiosity/intrinsic
motivation, the majority of these methods either rely on strong domain knowledge (e.g.
labels of state dimensions in Forestier et al. [2017], a goal-picking strategy in Andrychowicz
et al. [2017]) or are prone to get stuck in local optima when a single meaningless stimulus
creates enough surprise to capture the attention of the agent (e.g. noisy-TV experiment
from Burda et al. [2019b]). Other approaches depend on unrealistic assumptions and goal
conditioning [Andrychowicz et al., 2017]. Our method presents a novel approach in the family
of prediction-based models [Burda et al., 2019a, Huang et al., 2019b, Pathak et al., 2017a] and
yields better performance on a wide range of robotic manipulation tasks than purely vision-
based and haptics-based approaches [Burda et al., 2019a, Pathak et al., 2017a]. The tasks
are chosen with careful consideration—they comprise of preliminary robotic manipulations
such as grasping, pushing, and pulling. In this work, we present the following contributions:

• A new curiosity method to help solve sparse-reward tasks that use cross-modal consis-
tency (predicting one modality from another) to guide exploration. We implement it
in this work as vision and touch modalities, but the formulation of our method does
not require any knowledge about the underlying modalities and can thus be applied
to other settings.

• We create and maintain a manipulation benchmark of simulated tasks, MiniTouch,
inspired by Chen et al. [2020a], Andrychowicz et al. [2017], where the robotic arm is
equipped with a force/torque sensor. This allows evaluation of models’ performance
on di�erent manipulation tasks that can leverage cross-modal learning.

• We validate the performance of our method on MiniTouch environment comprising of
four downstream tasks. We compare purely vision-based curiosity approaches and
standard o�-policy RL algorithms. Our method improves both performance and
sample e�ciency.

Project website: https://fgolemo.github.io/haptics-based-curiosity/
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8.2. Related work
Intrinsic Motivation. Intrinsic motivation is an inherent spontaneous tendency to be curious
or to seek something novel in order to further enhance one’s skill and knowledge White [1959],
Barto et al. [2004], Di Domenico and Ryan [2017]. This principle is shown to work well even in
the absence of a well-defined goal or objective. In reinforcement learning, intrinsic motivation
has been a well-researched topic [Schmidhuber, 1991, Oudeyer et al., 2007, Oudeyer and
Kaplan, 2009, Lair et al., 2019, Marino et al., 2019, Savinov et al., 2018]. An intuitive way to
perform intrinsic motivation is through the use of “novelty discovery”. For example, incentivize
the RL agent to visit unusual states or states with substantial information gain [Houthooft
et al., 2016]. In its simplest form, this can be achieved with up-weighting mechanisms
such as state visitation counts [Strehl and Littman, 2008]. Count-based methods have also
been extended to high-dimensional state spaces [Bellemare et al., 2016, Ostrovski et al.,
2017a]. Alternative forms of intrinsic motivation include disagreement [Sekar et al., 2020],
empowerment [Klyubin et al., 2005, Gregor et al., 2016].

Exploratory intrinsic motivation can also be achieved through “curiosity” [Schmidhuber,
1991, Dubey and Gri�ths, 2020]. In this setting, an agent is encouraged to visit states with
high predictive errors [Raileanu and Rocktäschel, 2020, Burda et al., 2019a, Pathak et al.,
2017a] by training a forward dynamics model that predicts the future state given the current
state and action. Instead of making predictions in the raw visual space, Pathak et al. [2017a]
mapped images to a feature space where relevant information is represented via an inverse
dynamics model. Burda et al. [2019a] demonstrate that random features are su�cient for
many popular RL game benchmarks. This approach may work well with tasks that require
navigation to find a reward because each unseen position of the agent in the world leads to
high intrinsic reward when unseen. However, in the case of manipulative tasks, we are less
interested in the robot visiting all the possible states and more interested in states where
the robot interacts with other objects. In this work, we leverage multimodal inputs that
encourage the agent to find novel combinations of visual and force/torque modalities.
Self-Supervised Learning via Cross-modality. Exploiting multimodality to learn unsupervised
representations dates back to at least 1993 [de Sa, 1993]. Multimodal signals are naturally
suitable for self-supervised learning, as information from one modality can be used to
supervise learning for another modality [Gao et al., 2018, Owens and Efros, 2018]. Di�erent
modalities typically carry di�erent information, e.g., visual and touch sensory modalities
emerge concurrently and often in an interrelated manner during contact-rich manipulation
tasks [Blake et al., 2004]. Specifically, force/torque motor signal has always been a major
component in the literature of perception and control [Kalakrishnan et al., 2011, Levine et al.,
2016a, Liu et al., 2017].
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(a) Haptics Control module
(b) Forward module

Fig. 8.2. Haptics-based Curiosity Model. (a) The input image xt at time t is transformed
into a 256-dimensional feature vector zt = enc(xt) using a CNN encoder. The haptics decoder
network predicts corresponding force/torque vector ĥt = dec(zt). The L2 norm between
predicted haptics ĥt and observed haptics ht is used as exploration reward. (b) To stabilize
training, an additional network is used to predict the forward dynamics, and the di�erence
between predicted next latent state ẑt+1 and actual next latent state zt+1 is used as weighted
additional term in the reward.

The most common ways to leverage multimodal signals to learn representations are
through vision and language [Srivastava and Salakhutdinov, 2012, Gan et al., 2020]. Gao
et al. [2016], Li et al. [2019b] demonstrated a unified approach to learning representations
for prediction tasks using visual and touch data. Chen et al. [2021] learn world-models from
multimodal data via a shared latent space. In robotics and interactive settings, the use
of modalities such as tactile sensing [van Hoof et al., 2016, Calandra et al., 2018, Murali
et al., 2018] is increasingly popular for grasping, manipulation and other externally-specified
tasks [Pape et al., 2012, Lee et al., 2019a]. Lee et al. [2019b] showed the e�ectiveness of
self-supervised training of tactile and visual representations by demonstrating its use on a
peg insertion task.

While the mentioned approaches have used multiple sensory modalities for learning better
representations, in this work we demonstrate its utility for allowing agents to explore. Similar
to ours, Dean et al. [2020] use multimodal sensory association (i.e. audio and visual) to
compute the intrinsic reward. Their curiosity-based formulation allows an agent to e�ciently
explore the environment in settings where audio and visual signals are governed by the
same physical processes. In addition to the di�erent nature of sensory signals, they use a
discriminator that determines whether an observed multimodal pair is novel. This might not
work in our case as touch is a more sparse signal and using a discriminator could lead to
ambiguous outcomes.

8.3. Background
The goal of our method, Haptics-Based Curiosity (HaC), is to encourage the agent to

interact with objects. HaC provides a reward signal for an RL agent to explore the state
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space of a task that involves interacting with objects. The exploration phase is independent
of the downstream task, i.e., relying solely on visual and force/torque signals, without a
reward signal from the downstream task.

Similar to how people spend more time exploring stimuli that are more incongruous [Con-
nolly and Harris, 1971], HaC guides the agent to focus its experience on di�erent novel
cross-modal associations. We augment this intrinsic objective with a future visual state
prediction objective similar to the one in Pathak et al. [2017a] to avoid getting stuck in
undesired inactive configurations. Note that we sometimes refer to the future state prediction
objective in the text as forward dynamics objective. In this work, we focus on the cross-
modality between vision and touch, but the same idea could be applied to other pairs of
sensory domains, such as vision and sound, or touch and acoustics.

8.3.1. Problem Formulation

The learning problem is formalized as a Markov decision process (MDP) defined by a tuple
{S, A, T , R, fl, “} of states, actions, transition probability, reward, initial state distribution,
and discount factor. The goal is to find the optimal policy that maximizes the discounted sum
of rewards, fiú = Efi[qŒ

t
“tr(st, at)]. In our case, each state st in the trajectory is composed

of both visual and corresponding touch features as detailed in the following section. We use
soft actor-critic policy gradients (SAC) [Haarnoja et al., 2018] to train our policies, but in
principle, our proposed approach is algorithm-agnostic. The policy fi is evaluated with an
estimation of the soft Q-value:

Q(st, at) , r(st, at) + “Est+1≥p[V (st+1)] , (8.3.1)

where V (st) = Eat≥fi[Q(st, at) ≠ log fi(at|st)] is the soft value function.

8.4. Curiosity based on Touch Prediction
Our core prediction framework consists of two modules: (i) a haptics control module,

which learns to predict expected haptic signal from the visual input, and (ii) a forward
dynamics model, which predicts the next latent state from the current latent state and the
current action (see Figure 8.2). Let the state of the environment st = (zt, ht) at time t be
composed of a visual feature zt (the encoded visual input) and a haptic signal ht. The touch
prediction model consists of a convolutional encoder zt = enc(xt) that transforms the image
xt into a latent representation zt and a fully-connected decoder ĥt = dec(zt) that transforms
the latent into a predicted haptic signal ĥt. The encoder-decoder is trained with an L2
reconstruction loss, i.e. for every image xt and force/torque sensor ht:

Lhaptics =
...ĥt ≠ ht

...
2

. (8.4.1)
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A high prediction error on a given image indicates that the agent has had few interactions
like this. Therefore, to harness this “surprise" to guide exploration, we define the intrinsic
reward at time t during exploration to be proportional to this reconstruction loss. This
essentially allows the agent policy to visit under-explored configurations of the state space by
encouraging interactions where the system does not know what the target object “feels” like.
In addition to e�cient exploration, being aware of such incongruity via touch prediction aids
learning local regularities in the visual input. This in turn could assist better generalization
to unseen states. An overall pipeline of the framework is shown in Figure 8.2a.

8.4.1. Regularization Through Forward Dynamics Model

We found empirically (and we demonstrate in the experiments section below) that the
surprise stemming from haptic novelty was not enough to cause object-centric interaction. We
postulate that by incorporating visual surprise (i.e. the mismatch between predicted forward
dynamics and observed dynamics) [Pathak et al., 2017a], we can create an agent that seeks out
visual novelty as well as haptic one and thus leads to better state space coverage. To this end,
our model is augmented with a forward dynamics model (see Figure-8.2b) ẑt+1 = fdm(zt,at)
that learns to map the latent state zt (obtained from the visual encoder enc) and action at at
time t to the predicted latent state ẑt+1 at the next timestep. This model is also trained with
L2 loss:

Lfdm = Îẑt+1 ≠ zt+1Î2 = Îfdm(enc(xt),at) ≠ enc(xt+1)Î2 . (8.4.2)

The intrinsic reward is defined as the convex combination of the cross-modal prediction
loss (Eq. 8.4.1) and the forward dynamics model loss (Eq. 8.4.2):

rt = (1 ≠ ⁄) · Lhaptics + ⁄ · Lfdm , (8.4.3)

where ⁄ œ [0,1] is a balancing factor. The e�ect of the factor ⁄ on overall performance is
studied in the ablation experiments described in Section 8.8.1.

8.4.2. Training

Learning is divided into two stages: (i) an exploratory step, where the agent performs free
exploration following HaC, and (ii) an adaptation step, where the agent is tasked to solve a
downstream problem, given a sparse reward.

During the exploratory step, each trajectory consists of pairs of image and force/torque
features, (z1, h1), (z2, h2),..., (zn, hn). These trajectories are used for two purposes: (i)
updating the parameters of the prediction model to help shape the representations and (ii)
updating the exploration policy based on the intrinsic reward rt. Note that we use the touch
features only to craft the intrinsic rewards and the input to RL agent consists of visual
features alone to be comparable to the baselines. For vision-based curiosity models, Burda
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Fig. 8.3. ‘MiniTouch’ benchmark tasks include opening a door, pushing an object to a
target, grasping and lifting an object and a toy task in which object interactions are counted.

et al. [2019a] observed that encoding visual features via a random network constitute a simple
and e�ective strategy compared to learned features. In Section 8.8.1, we investigate the
performance of our model in both scenarios, i.e., when the features are learned vs random.
The overall optimization problem at this step consists of the policy learning (driven by
intrinsic reward), the touch reconstruction loss (Eq. 8.4.1), and the forward dynamics loss
(Eq. 8.4.2). During the downstream adaptation step, the parameters of the policy network,
the Q network and the replay bu�er are retained from the exploratory phase. The objective
of the down-stream task is computed as:

min
◊

Ë
≠Efi

Ëq
t re

t

ÈÈ
, (8.4.4)

where re

t
in this phase is task-specific external sparse reward. In both steps, the objectives

are optimized with Adam [Kingma and Ba, 2015].

8.5. MiniTouch Benchmark
Implementation Details: The encoder is a four-layered strided CNN followed by a fully

connected network. We use LeakyReLU [Xu et al., 2015] as non-linear activation in all the
layers. The decoder network is a two-layered MLP that maps 256-dimensional visual features
to touch vectors. For a more detailed description of the networks (SAC policy network
and HaC networks, including the forward model) and hyper-parameters, please refer to the
supplementary material Section C.2.

112



8.6. Experimental Setting
Our experiments focus on a tabletop robot manipulation from raw image observations and

raw force/torque sensory values, which we refer to as “touch vector”. For our experiments,
we use a 7-DoF Franka Emika Panda arm with a two-finger parallel gripper. Each of the
fingers is equipped with a simulated force/torque sensor that measures the joint reaction
force applied to it. We utilize PyBullet [Coumans and Bai, 2016–2019] to simulate the robot
arm and haptic sensor.

8.6.1. MiniTouch Benchmark

Our proposed benchmark, MiniTouch, consists of four manipulation tasks: Playing,
Pushing, Opening, Pick-up. Each of the tasks along with corresponding actions, observations,
and rewards is described in detail in the Supplementary Material Section C.1 and further
illustrated in Figure 8.3. MiniTouch is an active repository and we expect to update the
benchmark with new tasks and datasets. The tasks are inspired by Yu et al. [2019] but are
not based on a proprietary simulator, feature an arm that we have access to for real-world
experimentation (in follow-up work), and where the arm is equipped with a haptic sensor.

8.7. Experiments and Results
8.7.1. Baseline Comparisons and Metrics

For the task evaluation, we study two versions of our model: (i) HaC-Pure considering the
touch vector reconstruction intrinsic reward alone, and (ii) HaC, considering the full intrinsic
reward (Eq. 8.4.3). We compare with several well-known intrinsic exploration baselines based
on visual features:

• SAC: The unmodified Soft Actor-Critic algorithm from Haarnoja et al. [2018].
• ICM: SAC augmented with the state-of-the-art visual curiosity approach Intrinsic

Curiosity Module (ICM) [Pathak et al., 2017b], which uses a visual prediction model
to guide exploration.

• Disagreement: It uses model disagreement as objective for exploration [Pathak
et al., 2019a, Sekar et al., 2020]. It leverages variance in the prediction of an ensemble
of latent dynamics models as the reward.

• RND: Random Network Distillation [Burda et al., 2019b] utilizes a randomly initial-
ized neural network to specify an intrinsic reward for visiting unexplored states in
hard exploration problems.

Based on code from the o�cial Franka Emika repo https://github.com/frankaemika/libfranka
https://github.com/ElementAI/MiniTouch
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(a) (b)

(c)

Fig. 8.4. Object Interaction To quantitatively evaluate an agent’s object interaction, we
consider both haptics interaction and object displacement. (a) shows the object movement
evaluation (avg displacement in mm from the starting point) of our method compared with the
baseline methods over training steps; (b) depicts the number of touch interactions, evaluated
on the “playing" task. (c) Heat maps showing the object location at the beginning (left)
and end (right) of the HaC training. The object locations are spread-out towards the end
indicating interactive movement.

We built a Pytorch [Paszke et al., 2017] version of these baselines based on their open
source code (details in supplementary material). We use the following metrics to evaluate
our method and the baseline models:

Exploration success: measures the percentage of times that the agent attained the goal
state in the exploratory phase, i.e. with no external reward. Higher is better.
Success: denotes the percentage of times that the agent attained the goal state during the
down-stream task phase.
Episode steps: The number of steps required for each episode to succeed. This metric is an
indicator of sample e�ciency. The lesser the number of steps, the faster the agent’s ability to
succeed.
Touch-interaction: Amount of interaction the agent’s fingers have with the underlying
object. We measure this by computing the variance of force/torque sensory signal across the
whole episode.
Object movement: The agent can resort to constantly engaging with the object unnecessarily
to satisfy the objective. We, therefore, monitor the variance of door angle (for the Opening
task) and the variance of object position (for the remaining tasks) over the course of training.
A higher movement indicates diverse state space in addition to physical interaction.

8.8. Results and Discussion
HaC and baselines were trained on a Panda robot agent [Coumans and Bai, 2016–2019]

for one million steps. In the exploratory phase of the training, we pre-train our method only
with the curiosity-based intrinsic reward. We then progress to the adaptation phase. Also,
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Fig. 8.5. MiniTouch Evaluations. Each row in the figure outlines the performance of the
HaC variants and the baselines on a MiniTouch task. Each column marks performance on the
four specified evaluation metrics over a number of training steps on the x-axis expressed in
1e5. The results are averaged across 5 random seeds and shaded areas represent mean ± one
standard deviation while darker line represents the mean. In the majority of the tasks, HaC
agents attain success in the exploratory phase with no external reward (see text). Note: We
exclude the single object playing task as success in this task is equivalent to object interaction
as depicted in Figure. 8.4.

note that across all tasks, HaC-Pure is based purely on cross-modal prediction, while HaC
includes visual forward prediction reward in addition.

Figure 8.4a and 8.4b shows results on the basic task of playing with a single object. Since
single object interaction does not have explicit goal states to evaluate, we instead measure the
agent’s ability to constantly engage and play with the underlying object. HaC-Pure displays
four times better interaction with the underlying object when compared to SAC (see Figure
8.4b). Note from the plots that there is a trade-o� when using HaC and HaC-Pure between
constant interaction (i.e. touch interaction performance) and object movement dynamics.
Collecting a variety of such interesting data during the exploratory phase helps the agent in
terms of sample e�ciency while solving the downstream tasks. Figure C.3.1 shows similar
comparison for Open-door task. In the following section, we examine the role of the forward
objective term on touch interaction and possible ways to encode agent’s observation in our
ablation studies.

We compare HaC and HaC-Pure with SAC and state-of-the-art vision-based curiosity
baselines on the remaining downstream tasks in MiniTouch. From Figure 8.5 it is evident
that HaC and HaC-Pure perform better than SAC in all the tasks and better than the
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(a) (b)

Fig. 8.6. Forward Prediction weight. Touch and Object movement evaluated on the
(a) playing task and (b) Open-door task for di�erent forward prediction weightings sampled
≥ [1, 0]. Large weight (darker plot) favors object-movement towards the end of training,
where as smaller weight improves touch-interaction. Middle value in the sweep range (e.g.
0.5) balances the trade-o�. Note that movement is measured as distance(mm) for the Playing
and angular distance for Open-door.

vision-based curiosity models in the majority of the tasks. Using SAC alone hinders the
performance and is often unable to solve any of the three tasks. This is not surprising since
the model is not motivated enough to collect diverse and useful data through interaction. We
hypothesize that HaC-Pure without the visual prediction objective Lfdm could potentially
bias the solutions towards more physical interaction, which is not necessary for every task.
For instance, constant interaction in the pushing task could be seen as a hindrance as it
does not let the object slide easily towards the target. Observe that ICM performs better
than HaC-Pure in the pushing task, however, HaC dominates in performance by about 15%.
Recall that the goal is not just to succeed but to help attain success in a sample e�cient
manner in fewer steps. The results support our hypothesis that cross-modal curiosity enables
an RL agent to succeed at an early stage in training and often without any external reward.
Similarly, our model outperforms on the opening task without external reward. However, HaC
initially has lower success compared to RND but surpasses RND towards the end. Although
HaC and HaC-Pure attain similar success in the pick-up task towards the end of the training,
it is compelling to note that HaC-Pure attains faster convergence. This is because the picking
task requires constant touch interaction (where HaC-Pure has an advantage), as opposed to
diverse object movement.

8.8.1. Ablations

Forward objective and tuning Lambda Visual forward prediction Lfdm plays an
important role when it is used in the right proportion. Our intrinsic reward is a weighted
combination of cross-modal prediction and forward prediction as defined in Eq.8.4.3. Figure
8.6 illustrates the model behavior with di�erent levels of emphasis on the forward loss term,
with ⁄ uniformly sampled between 0 and 1. Higher weights indicate that the future prediction
dominates force/torque prediction. This leads to more object movement but lesser robot’s
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Metric Pushing Open Door Pick-up Playing

HaC ICM+haptics ICM HaC ICM+haptics ICM HaC ICM+haptics ICM HaC ICM+haptics ICM

Exploration ø 0.403 0.291 0.187 0.669 0.355 0.083 0.063 0.051 0.013 - - -
Success ø 0.733 0.678 0.597 0.983 0.571 0.114 0.891 0.825 0.780 - - -

Episode steps ¿. 57.84 87.61 95.24 23.34 97.10 199.3 30.54 33.77 42.19 - - -
Touch-interaction ø 247.79 210.11 202.66 600.1 287.97 43.56 980.7 984.2 952.3 388.15 267.021 63.31

Table 8.1. Haptics-based future prediction Table compares the mean evaluations for
HaC and ICM+haptics on all the four tasks emphasizing the importance of cross-modal
association(see text).

.

Fig. 8.7. Comparing di�erent latent space performance on pushing and grasping tasks.
Features learned via haptics prediction perform better than those learned using IDF or
Random.

constant touch-interaction with the underlying objects. This is useful in tasks such as Pushing.
A smaller ⁄ value leads to better inactive behavior which is handy in tasks such as grasping.
In our experiments we choose an intermediate value (e.g. 0.5) that works best for all of our
tasks.

Haptics in future prediction. The goal of this experiment is to strengthen the
argument of cross-modal association. While conducting experiments, it is important to
deduce information of one modality from another modality in a related manner than simply
adding another modality on top of visual information. We created an additional baseline,
ICM+haptics, where in addition to the visual prediction model we include the haptics-based
future prediction model. We hypothesize ICM+haptics to perform better than ICM as it has
additional information (haptics). The haptics-based future prediction model takes a touch
vector as input and predicts the touch vector for the next time step. Table 8.1 compares HaC
and ICM+haptics on MiniTouch tasks and we observe that ICM+haptics is better than ICM
but compares below HaC. Table C.4.3 in the supplementary compares RND based baseline.

Latent features for forward dynamics. Choosing ideal embedding space for decoding
the touch vector (Figure 8.2a) and for predicting future state (Figure. 8.2b) is important.
Existing approaches rely on a pretext inverse dynamics (ID) task of predicting the agent’s
action given its current and next states [Pathak et al., 2017a]. Another simple yet strong

117



Domain Task A3C DDPG PPO SAC MPO [Abdolmaleki et al., 2018]
Manipulator Bring ball 0.4 ± 0.0 0.6 ± 0.1 2.3 ± 0.1 1.5 ± 0.3 400 ± 5.0

Table 8.2. Performance on bring ball task of Manipulator domain using state space. scores
outside the [800, 1000] range can be considered to be sub-optimal.

method is to use features from a random but fixed initialization of the encoder [Burda et al.,
2019a]. In our work, we learn the features by leveraging the self-supervised pretext task
of predicting one modality from the other. Figure 8.7 compares (1) encoder, i.e. learned
through cross-modal prediction(HaC) (2) random feature encoder(HaC-RF) (3) encoder
learned through ID task (HaC-IDF). In each case, the decoder network is optimized through
touch prediction. We observe that the random features variant is stable and e�ective on both
HaC and ICM models.

8.9. Dense Distance notion as Intrinsic Rewards
Manipulation domain in the DeepMind Control suite [Tassa et al., 2018] has been a

challenging test bed of continuous control tasks. Most sophisticated RL agents that are
trained in a fully supervised manner struggle to perform well on the contol tasks [Abdolmaleki
et al., 2018]. A predominant hurdle causing the sub-optimal performance is crucially related
to the sparse nature of the task reward function. Before delving more into the details, the
following subsection outlines di�erent tasks present in the manipulator domain.

8.9.1. Manipulator Domain and Tasks

A Planar Manipulator domain is rewarded for bringing an object to a target location. It
is composed following control tasks

• Bring ball: pick and bring the ball to a target location
• Bring peg: pick and bring the peg to the target peg in a relative alignment
• Insert ball:pick and place the ball inside the basket
• insert peg: pick and insert the peg into a slot

The above tasks are arranged in the incrasing order of di�culty. As one can imagine,
these set of tasks are relatively harder exploration problems. For instance, solving the bring
ball task requires the agent to first find and grasp the object at one part of the state space,
and then bring it to a target slot in another part of the state space. E�cient exploration is
the key to make progrss in such a setting. The performance of various agents on the easier
bring ball task is shown in Table. 8.2. Clearly, most algorithms yeild sub-optimal performance
on learning the task. A careful visualization of the sparse reward function for the bring ball
task is shown in Figure. 8.8a. We hypothesize that a dense reward metric could help provide
stronger gradient signal to make progress.
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(a) (b)

Fig. 8.8. (a)Figure depicting the sparse reward function for the manipulator task as a heat
map over the x ≠ y co-ordinates of a 2D grid. (b) Shows the dense intrinsic reward.

To begin, we evaluate our method on the bring ball task. Although HaC exhibited
reasonable success on the Minitouch benchmark tasks, it does not achieve optimal performance
on the Manipulator domain of DeepMind control suite benchmark. We find that the approach
do not always provide the same benefits for the task generalization in bring ball task for
instance. This indicates that transfer remains a challenge and may require di�erent approach
in addition to curiosity based formulation for more challenging exploration setting. Towards
this, we find that augmenting curiosity based exploration with a dense distance notion
between the object and target location helps boost the performance. Figure. 8.8b shows a
smoother version of the reward function compared to Figure. 8.8a. The behaviour policy
essentially maximizes this intrinsic reward instead of the sparse extrinsic reward. Figure 8.9
depicts the improved performance when using dense intrinsic reward alongside HaC

While the qualitative performance on all the three tasks are provided in Figure 8.10, the
quantitative results are show in the Figure 8.11 plots. As anticipated, the bring ball task
is relatively easier to solve compared to the insert ball and bring peg tasks. The results
are show for the state based inputs. For the case of pixel inputs, the tasks is even more
challenging. Since our intrinsic reward computes a dense distance notion between the object
and target, we therefore need to extract the object features from pixels. In this setting, we
need to identify the object location form pixels to calculate the intrinsic dense reward. There
have been many vision based self-supervised models that aim to obtain object key-points
from pixels, e.g. from the videos of people moving etc. Transporter model [Kulkarni et al.,
2019] infers persistent key-points more geometric state spaces rather than just pixels. Their
formulation leverages a prediction problem, i.e. given two frames x an x’ ( where x’ di�ers
from x by objects that moved over the frame gap), the model is asked to reconstruct x’
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Fig. 8.9. Performance with and without the dense intrinsic reward on bring-ball task.

(a) Bring ball

(b) Insert ball

(c) Bring peg

Fig. 8.10. Qualitative Evaluations. Each row corresponds to the three manipulator tasks
and each columns depicts few steps in to the episode of an agent trained using the intrinsic
reward.

through the inductive bias of learning the dynamic key-points. In our work, we train the
transporter model on a random policy, and use the trained model to infer the object location
to compute our intrinsic distance reward. The resulting appraoch was able to solve the task
albeit high sample complexity as shown in Figure 8.12.

120



(a) Bring ball
(b) Bring Peg (c) Insert Ball

Fig. 8.11. Quantitative evaluations on the three manipulatpr tasks using state based input.
Note that the bring-peg and insert-ball tasks are order of the magnitude challenging than the
bring-ball task.

Fig. 8.12. Qualitative Evaluations. Model leverages object centric representation model
to learn the object keypoint. The inferred object location is used to compute the intrinsic
reward inorder to solve the bring ball task.

8.10. Concluding remarks
We formulated Haptics-based Curiosity (HaC) aimed at encouraging exploration via

haptic interaction with the environment. We demonstrated in this work, that by involving
additional modalities, the performance of curiosity-based systems on downstream tasks can
be increased. We observed increased interaction with target objects, and presented evidence
that HaC learns to solve the MiniTouch benchmark tasks in an e�cient manner while vanilla
RL algorithms and vision-based curiosity formulations struggled. Force/torque sensing is
widespread in the lab and industrial robots but while there are plenty of robotic benchmarks,
we believe that tactile feedback is an under-explored modality and by releasing our benchmark,
we hope to enable future research in this exciting area.
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Chapter 9

Prologue to Article 4

9.1. Article Details
Unsupervised Model-based Pre-training for Data-e�cient Reinforcement

Learning from Pixels. Sai Rajeswar*, Pietro Mazzaglia*, Tim Verbelen, Alexandre
Piché,Bart Dhoedt, Aaron Courville, Alexandre Lacoste. This work will be presented at
Decision Awareness in Reinforcement Learning workshop, ICML 2022. Also, it is submitted
to International Conference on Robot Learning (CoRL), 2022. (First two authors contributed
equally)

Contribution This project is a follow-up to the previous article aimed at building generalist
RL agents. The e�orts took shape from the observations highlighted in the unsupervised
RL benchmark. It suggests that none of the tested unsupervised RL algorithms completely
solve the benchmark and that a large gap in performance was found between using state-
based inputs versus high-dimensional pixel-based inputs. The core idea of the model-based
approach is conceived by the author of the dissertation. This was refined over regular meetings
with Alexandre Lacoste and Pietro Mazzaglia. The author and Pietro jointly prepared the
manuscript.

9.2. Context
Inspired from how natural agents acquire skills without supervision and e�ciently apply

to a variety of tasks, unsupervised reinforcement learning proposes to collect data through self-
supervised interaction to accelerate task-specific adaptation. However, it is debatable if the
current unsupervised approaches can adapt and generalize fast when the input observations
are high-dimensional Images. In the previous chapter, for example, we observed that the
DM Control suite tasks takes hundreds of millions of frames to reach optimal performance.
In this project, we advance the field by closing the performance gap in the Unsupervised



Reinforcement Learning Benchmark, a collection of control tasks to be solved in a data-e�cient
manner, after interacting with the environment in a self-supervised way.

9.3. Research Impact
Intrinsic control and world models has been envisioned by LeCun [2022] as a crucial

combination for building Autonomous machine intelligence. In our approach, we intrinsically
explore and plan via an actor-critic framework and a world model (with a GRU) learnt using
the perception from a posterior encoder. Many recent works demonstrated the use of model
learning for autonomous visual control [Wu et al., 2022, Seo et al., 2022]. We, on the other
hand, aim at building generalist agents that can adapt to tasks in a fast data-e�cient manner.
The work gives rise to an approach that solves the unsupervised RL benchmark [Laskin
et al., 2021] by achieving 98.5±3.7% of a supervised RL agent’s overall performance. We
empirically show that algorithms that learn a world model through self-supervised exploration
can significantly improve their performance, compared to model-free approaches. Furthermore,
we propose novel evaluation strategies to be adopted by the community that assess the quality
of unsupervised model-based exploration approaches for the first time.

Note: This paper is presented as-is, with minor cosmetic changes to adhere to the
Universite de Montreal thesis template. A modified version of the pre-print is currently under
review at International Conference on Robot Learning (CoRL), 2022.
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Chapter 10

Article 4: Unsupervised Model-based
Pre-training for Data-e�cient Reinforcement

Learning from Pixels

Abstract
Controlling robots from raw sensory data is an arduous task, especially using vision as the

main sensory input. Reinforcement learning (RL) algorithms can learn complex behaviors but
require large amounts of interactions between the agent and the environment. To alleviate
this, unsupervised RL proposes to employ self-supervised interaction and learning, to adapt
faster to future tasks. Yet whether current unsupervised strategies improve generalization
capabilities is still unclear, more so when the input observations are high-dimensional. In
this work, we present an unsupervised model-based strategy that enables data-e�cient
adaptation in visual control environments. Our approach shows improved performance on
the Unsupervised RL Benchmark, where it matches the results of supervised methods by
using 20x less task-specific data. Moreover, it shows significant improvement, when tested
on the Real-Word RL benchmark, showing that the method is robust and its advantages
are likely to translate to real robotic setups. We extensively evaluate our work, comparing
several exploration methods and improving fine-tuning by studying the interaction between
the model components. We further investigate the limits of the learned model and of the
unsupervised methods, to gain insights into how these influence the decision process, shedding
light on new research directions.

10.1. Introduction
Modern successes of Reinforcement Learning (RL) have shown promising results for

robotics applications Levine et al. [2016b], OpenAI et al. [2019], Kalashnikov et al. [2018],
Lu et al. [2021], Lee et al. [2021]. However, training an agent for each task individually



Fig. 10.1. Progress on the URL benchmark from pixels. Comparison of the overall
best performing approach from the URLB paper, i.e. Disagreement [Pathak et al., 2019b]
(39.0±5.4%), with our best performing approach (98.5±3.7%), fine-tuning for 100k steps
pre-trained models that have been trained in an unsupervised way for 2M steps. Returns are
normalized using the scores of supervised RL agents (details in Appendix).

requires a large amount of task-specific environment interactions, incurring huge redundancy
and prolonged human supervision. On the other hand, training agents that can generalize
quickly on more than a single task is desirable towards building intelligent autonomous
systems. Developing algorithms that can e�ciently adapt and generalize to new tasks has
hence become an active area of research in the RL community.

In computer vision and natural language processing, unsupervised learning strategies have
enabled learning models without supervision to reduce sample complexity on downstream
tasks [Chen et al., 2020b, Radford et al., 2019]. In a similar fashion, unsupervised RL (URL)
aims to learn about the environment using self-supervised exploration without the need for
a reward function [Pathak et al., 2017b, Burda et al., 2019a, Bellemare et al., 2016]. The
learned modules are then adapted to downstream tasks with the aim of reducing the amount
of interactions required with the environment by orders of magnitude. This paradigm opens
opportunities in robotics [Chebotar et al., 2021, Sharma et al., 2020], as one can consider
pre-training in simulation or using a distributed collection of robots. Next, assuming a
successful URL algorithm, the robot can learn new tasks with limited supervision or even in
a zero-shot fashion, if the reward function is properly communicated to the agent.

Recently, the Unsupervised RL Benchmark (URLB) [Laskin et al., 2021] established a
common protocol to compare self-supervised algorithms across several robotics tasks from
the DM Control Suite [Tassa et al., 2018]. In the benchmark, an agent is allowed a task-
agnostic pre-training stage, where it can interact with the environment in an unsupervised
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manner, followed by a fine-tuning stage where, given a limited budget of interactions with
the environment, the agent should quickly adapt for a specific task. However, the results
obtained by Laskin et al. [2021] suggest that no unsupervised RL algorithm was close to
solve the benchmark, as agents pre-trained with unsupervised RL did not perform far better
than randomly initializated agents. The limitations of the approaches emerged further when
using high-dimensional camera inputs instead of low-dimensional sensor inputs, making it
hard to believe that current approaches could scale to more realistic environments, where the
use of vision is essential to provide the robots awareness about the workspace and/or their
surroundings.

In this work, we present an unsupervised model-based RL approach that significantly
improves data-e�ciency when fine-tuned in a low-data regime, by planning and adapting
task-specific policies on the synthetic data generated by the unsupervised pre-trained model.
Our approach performs significantly better than previous approaches on the URL benchmark
from pixels (Figure 10.1), nearly achieving the asymptotic performance of supervised RL
agents, trained with 20x more task-specific data, and bridging the gap with low-dimensional
sensor inputs [Laskin et al., 2021]. To test robustness to the challenging intricacies of
realistic setups, we test our approach on vision-based variants of tasks from the Real-World
RL benchmark [Dulac-Arnold et al., 2020a, 2019]. We show that leveraging unsupervised
model-based pre-training significantly improves performance during the adaptation phase,
even when the target environment where the agent is deployed presents model perturbations,
noise and delays in the system.

Our e�orts are aimed at improving and scaling unsupervised RL algorithms to operate
e�ciently in visual robotic control settings. Our contributions can be summarized as: (i) the
design of a class of unsupervised model-based RL approaches, which enable fast adaptation
after an unsupervised pre-training stage, (ii) a study of the interplays between the pre-
trained modules that allow to improve sample e�ciency during the fine-tuning stage, (iii) an
empirical investigation on whether the improvements brought by our method would translate
to more realistic robotics setups, (iv) an analysis of the models learned through unsupervised
interaction with the environment, aimed at understanding what aspects could be improved
to facilitate fast adaptation.

We demonstrate through experimentation that, following our approach, it is possible
to bridge the performance gap between state-based and pixel-based inputs, and to achieve
the asymptotic performance of supervised RL agents (Figure 10.1). An extensive empirical
evaluation, supported by more than 2k experiments, among main results, analysis and
ablations, was used to refine the components of our method. We hope that our large-scale
evaluation will inform future research towards developing and deploying pre-trained agents
that can be adapted with considerably less data to real-world robotics tasks, as it has happened
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with vision Parisi et al. [2022] and language [Ahn et al., 2022] unsupervised pre-trained
models.

10.2. Preliminaries
The RL setting can be formalized as a Markov Decision Process (MDP), denoted with

the tuple {S, A, T, R, “}, where S is the set of states, A is the set of actions, T is the state
transition dynamics, R is the reward function, and “ is a discount factor. The objective of an
RL agent is to maximize the expected discounted sum of rewards over time for a given task,
also called return, and indicated as Gt = q

T

k=t+1 “(k≠t≠1)rk. In continuous action settings,
one popular approach to predict the most rewarding actions is to combine a model that
learns to output the best action given a certain state, referred to as the actor model, and
a model that learns to estimate the expected value of the actor’s actions over time, given
a certain state, referred to as the critic model. Actor-critic algorithms can be combined
with the expressiveness of neural network models to solve complex continuous control tasks
[Haarnoja et al., 2018, Lillicrap et al., 2016, Schulman et al., 2017].

In this work, we investigate the problem of fast adaptation for a downstream task, after a
phase of unsupervised training and interaction with the environment. We adopt the URL
benchmark, which consists of three control domains, Walker, Quadruped and Jaco, and twelve
tasks, four per each domain. Consistently with URLB [Laskin et al., 2021], our experimental
procedure is made of two phases: a pre-training (PT) phase, where the agent can interact
with a task-agnostic version of the environment for up to 2M steps, and a fine-tuning phase
(FT), where the agent interacts with the same environment, being provided a task to solve
and a limited budget of 100k steps. During the PT phase, rewards are removed from the
environment. Sensible information about the environment can be obtained by exploring the
domain-dependent dynamics, which will remain unchanged in the downstream tasks. During
FT, the agent receives task-specific rewards when interacting with the environment. As the
agent has no prior knowledge of the task, it should both understand the task and solve it
e�ciently, in the limited budget.

Crucially, we focus on the pixel-based setup of URLB, where the environment is perceived
by the agent only through images. In this setting, the performance of several exploration
strategies, combined with a state-of-the-art model-free approach [Yarats et al., 2022], were
shown to lack behind the asymptotic performance of an RL agent trained on the downstream
task, as reported in [Laskin et al., 2021] and Figure 10.1. We believe one of the causes of this
is that model-free RL algorithms cannot successfully leverage the information observed about
the environment dynamics during PT, as they rely uniquely on actor and critic’s predictions.
To overcome this limitation, we ground our work on a model-based RL agent, whose learned
model should allow preserving important information about the environment.
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Fig. 10.2. Approach Overview. The unsupervised benchmark consists of pre-training
(PT) and fine-tuning (FT) stages. During pre-training, the agent interacts with the environ-
ment through an unsupervised RL strategy, maximizing an intrinsic reward function, and
concurrently training a world model on the data collected. During fine-tuning, the agent
exploits the world-model learned to e�ciently plan and adapt for di�erent downstream tasks,
where it receives rewards from the environment to maximize.

10.3. Approach
In order to perform well on the URL benchmark, it is important that an agent: (i) mean-

ingfully interacts with the environment during the PT phase, to discover useful transitions;
(ii) successfully reuses the modules learned during PT for fast adaptation; and (iii) e�ciently
employs the FT phase to understand and master the downstream task. In this section, we
expand on how we addressed these challenges, giving rise to an approach that nearly solves
the benchmark by achieving 98.5±4.7% of a supervised RL agent’s overall performance
(Figure 10.1). An overview of the end-to-end approach is illustrated in Figure 10.2 and a
detailed algorithm is presented in Appendix D.3 for reference.

10.3.1. Model-based Agent

We build our model-based agent upon DreamerV2 [Hafner et al., 2021], whose agent
attempts to learn a world model [Ha and Schmidhuber, 2018, Hafner et al., 2019b, 2021]
that allows predicting the outcomes of future actions in the environment. The environment
dynamics is captured into a latent space Z, which allows a compact representation of the
high-dimensional inputs of the agent. The world model consists of the following components:

Encoder:

Dynamics:

Posterior:

Image Decoder:

Reward Predictor:

et = f„(st),

p„(zt|zt≠1, at≠1),

q„(zt|zt≠1, at≠1, et),

p„(st|zt),

p„(rt|zt).
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Fig. 10.3. Model-based URLB. We combined multiple unsupervised RL approaches with
the model-based Dreamer agent and present the performance across the di�erent domains of
URLB, after 100k steps of fine-tuning. Each plot presents result for snapshots taken after a
certain number of pre-training, 100k, 500k, 1M and 2M steps, from left to right.

The model states zt have both a deterministic component, modeled using the recurrent state of
a GRU [Chung et al., 2014], and a (discrete) stochastic component. The encoder and decoder
are convolutional neural networks (CNNs) and the remaining components are multi-layer
perceptrons (MLPs). The world model is trained end-to-end by optimizing an evidence lower
bound (ELBO) on the log-likelihood of the data collected in the environment [Hafner et al.,
2019b,a].

In order to plan actions, the agent learns latent actor and critic networks:

Actor: fi◊(at|zt), Critic: vÂ(zt).

The actor is used to generate actions, given the model state, while the critic estimates
the expected return for a certain model state, when following the actor’s actions. Both
components are trained online within the world model, by imagining the model state outcomes
of the actions produced by the actor, using the model dynamics. Rewards for imagined
trajectories are provided by the reward predictor and combined with the critic predictions to
produce a GAE-⁄ estimate of the returns [Schulman et al., 2016]. The actor maximizes such
an estimate of the returns, backpropagating its gradients through the model dynamics.

For the encoder and the decoder networks, we used the same architecture as in Hafner
et al. [2021]. The hyperparameters for the agent, which we keep fixed across all domains and
tasks, can be found in Appendix D.4.

10.3.2. Unsupervised Pre-training

In the PT stage, di�erent unsupervised RL strategies can be used to explore the envi-
ronment and train the components of the agent. The resulting networks are then used to
initialize respective components in the agent deployed for the downstream task, aiming to
reduce sample complexity during FT.
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As we employ a model-based agent, we use the experience collected to train the agent’s
world model, along with the actor and the critic networks. We note that, during PT, the
reward predictor of the world model is either unused or used to predict intrinsic rewards,
according to the unsupervised approach employed, as reward information should not be
available to the agent. During FT, the reward predictor is trained to predict the downstream
task rewards.

Unsupervised RL methods can be grouped in three categories: knowledge-based, data-
based and competence-based [Schmidhuber, 2010, Laskin et al., 2021]. We study multiple
approaches, focusing primarily on knowledge-based methods as these combine well with the
model-based nature of our agent, and implement LBS [Mazzaglia et al., 2021], ICM [Pathak
et al., 2017b], RND [Burda et al., 2019b], and Plan2Explore [Sekar et al., 2020]. As a
data-based approach, we choose APT [Liu and Abbeel, 2021b], and as a competence-based
approach, we use DIAYN [Eysenbach et al., 2019]. Finally, we add a Random action baseline,
as a maximum entropy approach [Haarnoja et al., 2018]. Details on these methods and how
we combined them with our model-based agent are discussed in Appendix D.2.

10.3.3. Fine-tuning for Downstream Tasks

During the unsupervised PT phase, the agent collects experience from the environment
that is used to train several components: a task-agnostic world model (without the reward
predictor), an actor and a critic network. Moving to the FT phase, the pre-trained weights of
these components can be copied into a new instance of the model, aiming to leverage previous
experience for faster adaptation.

Since the domain dynamics stays the same between the PT and FT phases, initializing
the world model with the pre-trained one should facilitate adaptation. However, the reward is
changing from pseudo-reward to task reward when changing from the PT phase to FT phase.
Hence, it is not clear if pre-training of the actor and critic can help for the downstream task.
To shed light on this question, we conduct experiments in Section 10.4 to determine if it
useful to transfer the actor and the critic. Unless specified, for our Default FT model, which
we refer to as (w/ model, w/ actor, w/o critic), we copy the weights of the pre-trained world
model and actor but initialize the critic from scratch.

10.3.4. Model-based Planning

As we train a latent world model, we can exploit model-based planning to adapt with
limited additional environment interaction. When an accurate model of the environment
is available, traditional model-based control approaches, such as Model Predictive Control
(MPC) [Williams et al., 2015, Chua et al., 2018, Richards, 2005], can be used to plan the
agent’s action. Nonetheless, using an actor and a critic has several advantages, such as
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amortizing the cost of planning by caching previously computed (sub)optimal actions and
amortizing the cost of computing long-term returns from a certain state, without the need to
imagine outcomes that are far in the future. We found it useful to adopt a hybrid planning
strategy, which exploits the actor and critic’s predictions as well as an evolutionary sampling
strategy based on the Cross-Entropy Method (CEM; Rubinstein and Kroese [2004]).

10.4. Experiments and Analysis
In all the experiments, the results show average normalized returns with error bars showing

the standard deviation. To normalize results in a comparable way for all tasks, we train a
fully-supervised agent with 2M steps per each task. We use the mean performance of this
agent, which we refer to as "oracle", as the reference scores to normalize results in the plots
(details in Appendix D.1). For all experiments, results are presented with at least three
random seeds.

10.4.1. Model-based URLB.

The results of the di�erent exploration approaches are shown in Figure 10.3. Results are
presented by taking snapshots of the agent at di�erent times during training, i.e. 100k, 500k,
1M and 2M steps, and fine-tuning the pre-trained policies and models for 100k steps. As
opposed to the model-free experiments in URLB, where they fine-tuned the actor and the
critic, we found that leveraging a pre-trained world model during fine-tuning dramatically
improves the performance. Simply using random actions for unsupervised exploration already
increases performance compared to a supervised agent trained from scratch for 100k steps
(Dreamer@100k). This is in contrast to the results in [Laskin et al., 2021], where the
improvements when exploiting pre-training were less significant.

Unsupervised exploration strategies generally lead to higher performance in complex tasks,
with performance that increases over time in the Walker and Quadruped tasks. We note that
the performance in the Jaco domain is less consistent over time and tends to have higher
variance. We hypothesize that this is due to a greater discrepancy between pseudo-reward
and task-reward for this environment. DIAYN underperforms compared to the other methods,
providing some support to the observation in [Laskin et al., 2021], claiming that current
competence-based approaches tend to perform worse than the rest.
Exploiting Pre-Trained Modules. The results of the ablation studies on fine-tuning
di�erent sets of pre-trained modules are presented in Figure 10.4, averaging across all
unsupervised RL methods. Overall, the default configuration, which reuses the weights of the
world model and the actor performs best. Initializing the agent with the pre-trained actor
is particularly useful in the Walker and Quadruped domains, but it is harmful in the Jaco
tasks. A possible explanation for this could be that the exploration actor that is transferred
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from pre-training might have a precise explorative goal when brought to the fine-tuning stage,
which may be particularly far from the target state of the task. In the Walker and Quadruped
tasks, where the rewards are denser, exploring multiple states, even far from the downstream
task behavior, provides useful reward information to exploit for the task. On the other hand,
for the Jaco sparser tasks, if the exploration is initialized to reach a point that is too far from
the reaching target, it might become arduous to encounter useful rewarding states within
the reduced budget of FT. This hypothesis is supported by the fact that the random action
methods and the DIAYN approach, which are believed to explore less than the others (thus,
staying closer to the initial agent’s position), perform well, and in some cases even better,
than the other approaches (Figure 10.3).

Initializing the critic with the pre-trained one has little impact in Walker and Quadruped
but has been problematic in the Jaco domain, likely because of the more sparse rewards of
the Jaco tasks, which are very di�erent from the dense pseudo-rewards used to pre-train the
critic. For this reason, we default to not reusing the critic’s weights. Finally, the world model
is confirmed to be the most valuable component to initialize, as, independently from the other
components, initializing the world model brings a significant improvement in performance.
Detailed results per each method are available in Appendix D.5.
Leveraging Planning. In order to better exploit the pre-trained model during FT, while
also leveraging the advantages of using an RL-like learning mechanism, we employ the recently
proposed TD-MPC approach [Hansen et al., 2022], a hybrid planning strategy that combines
MPC and temporal di�erence actor-critic learning. TD-MPC claims improved performance,
thanks to the combination of short-term planning using MPC and long-term predictions,

Fig. 10.4. Exploiting Pre-Trained Modules. Comparison of the results when fine-tuning
di�erent pre-trained components of the agent. Results are averaged across all unsupervised
RL methods (2M steps pre-training).
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Fig. 10.5. Leveraging Planning. Improved results on the benchmark, obtained by
combining actor-critic and MPC-like planning. Results are averaged across all unsupervised
RL methods (2M steps pre-training).

using the actor-critic architecture. We implement TD-MPC on top of our models and compare
the performance with the standard Dreamer actor-critic learning in Figure 10.5. We observe
that TD-MPC slightly improves the performance in all domains. Combining the improved
planning strategy with the previous insight of not initializing the weights of the actor in the
Jaco domain, we obtain our overall best performance (TD-MPC (Jaco w/o PT actor)), with
the LBS-based model being the overall best performing method (98.5±3.7%; Figure 10.1).
Detailed results for each method are available in Appendix.

10.4.2. Real-World Reinforcement Learning Benchmark
Algorithms developed in simulation struggle to transfer to real-world systems due to a

series of implicit assumptions that are rarely satisfied in real environments. The RWRL
benchmark [Dulac-Arnold et al., 2020a] considers several challenges that are common in
real-world systems and implements them on top of DM Control Suite tasks. Approaches that
address the challenges proposed in the benchmark are more likely ready to be deployed for
real world problems, such as robotics settings.

We employ vision-based variants of the Walker Walk and Quadruped Walk tasks from the
RWRL benchmark. Compared to the URLB setting, these tasks introduce system delays,
stochasticity, and perturbations of the robot’s model and sensors, which are applied with
three degrees of intensity to the original environment, i.e. ‘easy’, ‘medium’ and ‘hard’ settings
(details in Appendix D.6). We employ the RWRL benchmark to answer the questions: (i)
is unsupervised PT beneficial when transferring to a more realistic target environment for
downstream tasks? (ii) does unsupervised exploration brings and advantage compared to
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Fig. 10.6. Results on RWRL. We compare our method to random exploration and training
from scratch on the tasks from the RWRL benchmark. Models are pre-trained on the vanilla
version of the environment for 2M steps and fine-tuned for 100k steps on the perturbated
tasks from RWRL. Normalization scores are provided in Appendix.

random data PT? (iii) can hybrid planning be employed to improve performance, when the
environment is stochastic/non-stationary?

We present results of our method, with and without the hybrid planner, and compare to
random exploration and training from scratch (Dreamer@100k), in Figure 10.6. Crucially,
the PT models are trained in the standard task-agnostic version of the environments from
the DM Control Suite, so that the results highlight the extent to which models trained in
ideal conditions generalize to real-world settings, when fine-tuned in a low-data regime.

Overall, we found that PT o�ers an advantage over training from scratch, despite all the
variations in the environment, although the advantage decreases with increasing intensity of
the perturbations. Our approach, pre-trained using LBS during unsupervised PT, strongly
outperforms the random exploration baseline in the ‘easy’ and ‘medium’ settings, showing
that learning a better model yields better FT performance, even when the dynamics of the
downstream task is a�ected by misspecifications and noisy factors. Finally, in contrast with
the finding on URLB, using a typical RL actor-critic works better than an hybrid planner.
We believe this is because the model’s predictions are less certain and precise in this setting
and thus cannot inform the short-term MPC planner accurately.

10.5. Extended Analysis
First, we showed how we managed to bridge the performance gap in the URL benchmark

by leveraging model-based unsupervised RL, improving the exploitation of the di�erent agent’s
components during FT, and leveraging planning to improve data e�ciency. Now, we focus on
providing an analysis of the world model learned during the unsupervised pre-training stage,
aiming to gain insights on which aspects improve decision awareness in the URLB setting, i.e.
how can we best exploit the two stages of training to improve the agent’s decision making.
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To shed light on this, we analyze discrepancies in the model’s dynamics and in the reward
prediction process that is leveraged during the fine-tuning planning.

10.5.1. Zero-shot Performance.

How useful is the model learned during the unsupervised pre-training stage? To gain
insights into this matter, we perform some additional tests where we provide the FT agent with
a pre-trained reward predictor, that we train on the data collected during PT, separately from
the agent. Given such a reward predictor, it should be possible to achieve high performance
on the downstream tasks by simply planning within the model, e.g. performing MPC in
a zero-shot setting. This assumes that the model correctly learned the dynamics of the
environment and explored rewarding transitions that are relevant to the downstream task.
In Figure 10.7, we compare the results of performing MPC in a zero-shot setting with the
performance of an MPC agent that is allowed the typical 100k steps for fine-tuning. As for
the MPC method, we employ Model Predictive Path Integral control (MPPI) [Williams et al.,
2015]. Because MPC is particularly expensive to test, we just perform this experiment on top
of the models trained with the Plan2Explore URL approach. We also plot the performance
of a non-pre-trained model and of using an actor-critic planning strategy (also provided with
the reward predictor since the beginning of fine-tuning), for comparison.

We observe that the performance of MPC (zero-shot) is generally weak. While it overall
performs better than the non-pre-trained model, simply applying MPC leveraging only the

Fig. 10.7. Model Predictive Control. Exploiting a pre-trained reward predictor to
test whether is there a gap between zero-shot (ZS) and fine-tuned (FT) MPC performance.
Results refer to the Plan2Explore pre-trained agent (2M steps pre-training).
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Fig. 10.8. Model-based agent reward predictor ablation. Evaluating performance
when providing a task-specific reward predictor trained on the transitions collected during the
unsupervised pre-training stage. Results are averaged across all unsupervised RL methods
(2M steps pre-training).

pre-trained modules and the reward predictor trained on the PT stage data is not su�cient to
guarantee satisfactory performance. The fact that exploiting the fine-tuning stage using the
same MPC approach generally boosts performance demonstrates that the model has a major
benefit from the fine-tuning stage. Still, the performance of MPC generally lacks behind
the actor-critic performance, suggesting that, especially in a higher-dimensional action space
such as the Quadruped one, amortizing the cost of planning with actor-critic seems crucial to
achieve higher performance.

10.5.2. Learning the Reward Predictor.

Given that the agent strongly benefits from the 100k fine-tuning steps, we are interested
in quantifying how much of this improvement is related to the necessity of learning a good
reward function for the downstream task. In Figure 10.8, we measure the gap in performance
between pre-trained agents that have no knowledge of the reward function at the beginning of
fine-tuning and agents whose reward predictor is initialized from a reward predictor learned
on top of the unsupervised pre-training data. Interestingly, the performance gap is overall
small and irrelevant in the Quadruped and Walker domains. In the Jaco tasks, which have
sparser reward functions, an a priori knowledge of the downstream task at the beginning of
FT strongly improves performance.

According to our results, it is important that during the 100k steps of fine-tuning the
actor is able to quickly obtain information about the downstream task. This might be easier
for dense reward tasks, such as the Walker and Quadruped ones, but trickier in sparse settings
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Fig. 10.9. Correlation between latent dynamics discrepancy and performance.
Results refer to the Plan2Explore pre-trained agent. Most di�cult tasks are highlighted.

like Jaco. As the initialization of the actor-critic modules also showed to be a compelling
issue in our ablation study on the pre-trained modules exploitation (Figure 10.4), finding
more e�cient ways to pre-train/fine-tune the actor-critic modules could be an impactful
research direction that will facilitate the adoption of unsupervised pre-training for RL.

10.5.3. Latent Dynamics Discrepancy.

A useful measure to assess the uncertainty or inaccuracy of a given model’s dynamics
is the model’s misspecification, generally measured as the di�erence between the dynamics
predictions and the real environment dynamics. When this metric is available, it is also
possible to build robust RL strategies, that take the dynamics uncertainty into account while
searching for the optimal behavior [Talvitie, 2018]. Dealing with pixel-based inputs, we
observe the dynamics of the environment through high-dimensional images, which hinders
the possibility to evaluate such a metric, as distances in pixel space can be misleading.

In our approach, we use a model-based RL agent that learns a model of the environment
in a compact latent space Z. In order to quantify the “misspecification" of the learned latent
dynamics, we propose a new metric, which we call Latent Dynamics Discrepancy, that suits
the setup of URLB. We aim to quantify the distance between the predictions of the pre-trained
model and the same model after fine-tuning on a downstream task. However, as the decoder
of the world model gets updated during fine-tuning, the latent space mapping between model
states z and environment states s might drift. For this reason, we ran fine-tuning experiments
where the agent’s decoder weights are frozen, so that the decoder cannot be updated and
the model can only improve the posterior and the dynamics. This ensures that the mapping
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Pre-training for 2M environment steps
ICM LBS P2E RND

Pearson Correlation -0.54 -0.60 -0.34 -0.03
p-value 0.07 0.04 0.28 0.91

Table 10.1. Correlation between performance and intrinsic rewards. Each column
shows the Pearson correlation index and the p-value between fine-tuned performance across
the URLB tasks and the intrinsic rewards computed on some oracle episodes.

Z ≠æ S remains unchanged and allows to compare the dynamics model after fine-tuning with
the one before fine-tuning. In order to measure the distance between the distribution output
by the dynamics network, we chose the symmetrical Jensen-Shannon divergence:

E(zt,at)
Ë
DJS[pFT(zt+1|zt, at)ÎpPT(zt+1|zt, at)]

È
, (10.5.1)

where the expectation is taken over the previous model states zt sampled from the fine-tuned
posterior qFT(zt), actions at≠1 sampled from an oracle actor fiú(at|zt), so that we evaluate
the metric on optimal trajectories, whose environment’s state distribution corresponds to the
stationary distribution induced by the actor st ≥ dfi

ú(st). We used 30 trajectories per task in
our evaluation.

In Figure 10.9, we plot the correlation between our metric and the performance ratio
between a zero-shot model and a fine-tuned model, where Plan2Explore was used for the 2M
steps pre-training phase. We observed a strong negative Pearson correlation (≠0.62), with a
p-value of 0.03 < 0.05, asserting that we must reject the null hypothesis, i.e. there exists a
correlation between the two factors. This means that major updates in the model dynamics
during fine-tuning played an important role in improving the agent’s performance, compared
to the pre-trained model and zero-shot performance. Future research may attempt to reduce
such link, by either improving the model’s learning process, so that the pre-trained dynamics
could have greater accuracy, or the data collection process, proposing URL methods that
directly aid to reduce such uncertainty.

10.5.4. Unsupervised Rewards and Performance.

How well can the unsupervised RL approaches we employed help improving adaptation
further? To answer this question, we analyze the correlation between the normalized perfor-
mance of the di�erent agents and the intrinsic rewards they provide for optimal trajectories
obtained by an oracle agent. A strong negative correlation between the two factors would
indicate that the agent will be more interested in seeing the optimal trajectories when its
performance is low on the task. We summarize the results of our analysis in Table 10.1.

We observe that there is negative correlation between Plan2Explore (P2E), ICM, LBS’s
performance and their intrinsic rewards, while we found ≥0 correlation for RND. In particular,
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the correlation for LBS, which overall performed best in the benchmark, has a statistical
significance, as its p-value is < 0.05. Given such correlation, we believe the intrinsic rewards
of LBS might be one of the causes of its outstanding performance. As LBS searches for
transitions of the environment that are di�cult to predict for its dynamics, the model likely
learns those transitions more accurately, facilitating planning during the fine-tuning stage
and eventually leading to higher performance (particularly in the most di�cult domain,
Quadruped). It is important that future work would consider learning a less ambiguous
dynamics during the unsupervised RL phase, which can be e�ciently leveraged by the agent
for fine-tuning.

10.6. Related work
Our work lies at the intersection of unsupervised RL, model-based RL, and representation

learning for RL. We discuss below the relevant literature in these three fields.

10.6.1. Model Based RL

In continuous control, model-based RL combined with powerful search methods has led
to impressive results on a wide variety of tasks such as Atari [Schrittwieser et al., 2020] and
continuous control [Hafner et al., 2019a]. In this work, we used the MPC approach MPPI,
which is based on the Cross-Entropy Method (CEM Rubinstein and Kroese [2004]). These
methods perform trajectory optimization by fitting a multivariate Gaussian distribution
to the imagined future actions allowing them to search the space e�ciently. Alternative
search methods such as Monte Carlo Tree search [Coulom, 2006] and Sequential Monte Carlo
planning [Piché et al., 2018] could also have been used without much change to the algorithm.
Given that we do not have the reward information during pre-training, we base our model on
the Dreamer architecture which reconstructs the future frames (and rewards, when available)
to learn a transition model. This has the advantage of being simple and not requiring the
task specification a priori. Task and reward awareness is necessary to learn a model to be
self-consistent in latent space [Schrittwieser et al., 2020, Grimm et al., 2020].

10.6.2. Unsupervised RL

Research in unsupervised RL spans many fields, from computational accounts of useful
intrinsic motivations [Barto et al., 2004] to empirical evidence for certain intrinsic costs
in humans [Kool et al., 2013]. Such intrinsic behavior learning could aid an RL agent to
adapt across tasks posed by the environment in a sample-e�cient manner. Although it is
unclear as to the exact nature and origin of good intrinsic reward functions, there have been
extensive studies recently that streamlined the way one can conveniently categorize such
approaches. Oudeyer and Kaplan [2008] classified intrinsic motivation algorithms into three
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di�erent kinds - knowledge-based, competence-based and data-based models. Knowledge-
based models rely on an prediction-error signal to build pseudo-rewards [Pathak et al.,
2017b, 2019b, Burda et al., 2019a, Mazzaglia et al., 2021, Burda et al., 2019b, Rajeswar
et al., 2021]. Competence models aim at learning a set of diverse and repeatable policies
through information-theoretic objectives [Mohamed and Rezende, 2015]. This is achieved
by maximizing the mutual information between the trajectory or states and latent skill
variables [Eysenbach et al., 2019, Gregor et al., 2016, Liu and Abbeel, 2021a, Frank et al.,
2014]. Data-based methods try to increase the diversity of the dataset, often times through
explicit maximum entropy objectives or count-based objectives. Bellemare et al. [2016],
Ostrovski et al. [2017b], Liu and Abbeel [2021b], Yarats et al. [2019]. An unsupervised RL
approach that is closely related to our method is Plan2Explore Sekar et al. [2020], which
combines Disagreement [Pathak et al., 2019b], a knowledge-based exploration approach,
with the first iteration of the Dreamer agent [Hafner et al., 2019a]. In their work, they also
presented few-shot adaptation experiments. We improve upon their method in several ways:
combining various unsupervised RL strategies with the DreamerV2 agent [Hafner et al., 2021],
exploiting the pre-trained components of the agent for fast adaptation, and employing a
hybrid planning strategy to improve data-e�ciency.

10.6.3. Representation Learning

When inputs are high-dimensional images, it is beneficial to learn compact state rep-
resentations of the inputs. Much progress in unsupervised representation learning for RL
has been influenced by developments in vision-based unsupervised learning [Chen et al.,
2020b, Kingma and Welling, 2013]. More recently, a number of works have investigated
representation learning for RL [Srinivas et al., 2020, Laskin et al., Yarats et al., 2021]. In our
work, we focus on representation learning with autoencoders [Hafner et al., 2019b, Yarats
et al., 2019]. Specifically, we leverage DreamerV2 [Hafner et al., 2021] for e�cient exploration
and fast adaptation. Predicting ahead in learned latent space facilitates both long-term
predictions and allows to e�ciently predict thousands of compact state sequences in parallel.

10.7. Conclusion
In order to accelerate development and deployment of learning agents for real-world

robotics tasks, it is crucial that the employed algorithms can adapt in a data-e�cient way for
multiple tasks. Our unsupervised model-based RL approach represents a step forward for
training agents that can adapt faster, as shown by the near-optimal performance obtained in
URLB and by the robustness showed in the more realistic tasks from the RWRL benchmark.
We also highlighted several limitations of the method, mostly concerned about the quality of
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the learned pre-trained model, which we aim to address in the future, as we move towards
applying our method in a real robotics setup.

Given that our model-based framework relies on the predictions of a learned reward
function and, in turn, from the value predictions of the critic, we aim to find faster ways to
adapt those functions, given the pre-trained experience. One idea would be to leverage the
flexibility of successor representations and features [Barreto, 2018], which allow learning a
task-agnostic estimate of the features expected under the actions of a certain actor. These
predictions could then be exploited for transfer and adaptation. If we could learn useful
successor features during pre-training, we might use them to solve downstream tasks faster
during fine-tuning.

10.8. Limitations
Leveraging unsupervised interaction with the environment to pre-train the agent com-

ponents has the potential to speed-up adaptation. However, the unsupervised behavior of
a robot could cause harm to the environment and itself. Safety constraints or safety-aware
algorithms should be introduced in our system in order to let self-supervised agents learn
autonomously in real world.

We aimed at improving the action selection process during fine-tuning, by employing a
hybrid planner that adopts both a classical MPC-based planner and an actor-critic architecture.
However, our strategy overlooks the uncertainty of the model. In order to account for this,
Bayes-adaptive RL strategies could be attempted [Mehta et al., 2022].
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Chapter 11

Conclusion

11.1. Summary of Contributions
Perceptual structure can arise as a natural consequence of statistical regularities in the

world. The motivating theme for this dissertation was to highlight the key elements missing in
the current machine learning models to achieve the ability of natural agents in understanding
the underlying structure of the world. We identified supervision as the critical bottleneck
in developing ML systems that can draw inferences and make decisions in high dimensions.
And we showed that, by using self-supervision, the performance of an ML model can be
increased in several tasks, such as vision, object modeling, and robotics control. To o�set
the rich dense supervision requirements of current learning systems, we discussed the use of
Probabilistic generative models and Iterated Learning for problems in the computer vision
domain and Intrinsic control for Reinforcement Learning problems.

We now summarize the contributions within each of the four articles, while also examining
their current limitations.

• Unsupervised 3D Aware Representations from a Single Image. Com-
prehending the image rendering pipeline as a di�erentiable function allowed us to
learn generative models of 3D structures and recover these structures from vastly
available 2D images via probabilistic inference. This is a valuable research direction as
obtaining ground-truth 3D data supervision is expensive and often times impossible.
Pix2Shape blends decades of advances in graphics rendering and the capabilities
of deep generative models. One existing limitation with the approach is in scaling
to the real-world images and scenes. This is due to an additional emphasis on the
geometric consistencies imposed through physically based rendering. We believe that
such stress could cripple the potential of underlying structured generative modeling.
In the Future work section, we elaborate on scaling such models to arbitrary scenes
in the wild.

• Compositional Reasoning in a Weakly Supervised Setting. Natural images
possessing a single object is not a realistic assumption even in the case of curated



datasets like ImageNet. MILe attempts to tackle the problem by proposing a mecha-
nism that gives us a multi-label descriptions of images. The approach presented two
ways of aggregating compositions from single labeled data. Firstly, it uses a sigmoid to
classify the images. Next, it leverages iterated learning framework to provide multiple
labels as targerts to the sigmoid objective. A possible limitation, which is inherent
to iterated learning is choosing an appropriate length of the teacher and imitator
iterations, however, our proposed procedure is robust for a wide range of iterations.

• Intrinsic Exploration to Overcome the need for Dense Supervision. Sparse
reward supervision complicates the temporal credit assignment problem significantly
and negatively impacts the overall reinforcement learning process. Learning useful
skills without supervision may help address challenges in exploration in such environ-
ments. The proposed approach leverages a multi-modal knowledge prediction pretext
task to help attain meaningful behaviors. Such reward-free exploratory skills can aid
the agent to adapt to various downstream tasks in a sample e�cient manner. However,
it is currently limited to a domain of tasks and not extended for other variety of tasks,
which could be explored in the future work. Another limitation lies in assuming the
availability of touch sensors or related sensory information in the agents.

• Data-E�cient Unsupervised Reinforcement Learning. Structured exploration
has been promising at training generalist fast adapting agents. However, the existing
approaches have only yielded sub-optimal results on a standardized setup, especially on
high-dimensional pixel inputs. The proposed approach uses model-based exploration,
during pre-training, to learn a knowledgeable world model, and adopts a hybrid
planner to fine-tune e�ciently, achieving comparable results to task-specific baselines,
while using 20x less data. In addition, the model analysis sheds light on di�erent
aspects of the learned model that were key to improving the performance. An existing
limitation is that if the environment introduces too intense perturbations, our model-
based agent struggles, to the extent that using a planner even decreases performance.
Developing more resilient models that can be trained in an unsupervised fashion and
used for data-e�cient planning will be the focus of future studies.

11.2. Discussion and Future Research
At the outset, we highlighted the learning abilities of natural agents and questioned key

elements missing in current artificial agents. Although the thesis focuses on learning structure
and structured behaviour from supervision constrained scenarios, human ability to reason,
explore and adapt is far beyond any of these. We have the capability to perceive hierarchies,
continua, and causal relations, among others. We believe that the other potential missing
elements could include self-supervision from a temporal signal, causal structure discovery, and
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new inductive biases to help bridge the learning gap. We highlight some of these potential
ideas in this section. I conclude by laying out some relevant problems to further enable
scientific discovery through advancements in supervision-constrained machine learning.

11.2.1. Unsupervised Reinforcement Learning

Existing Reinforcement learning (RL) algorithms are competent but are mostly specialized
(e.g. DQN, PPO, MuZero, etc). For any conceivable task, we have individual agents that are
specifically trained for a particular task and each such agent typically requires millions of
reward interactions to train. However, what is desired is to move towards generalist or adaptive
agents, that when pretrained in an unsupervised manner can adapt to di�erent but related
downstream tasks. Natural agents, such as humans, often develop intrinsic desires and learn
dynamic models of the world by simply interacting with the environment. Such unsupervised
task-agnostic learning can scale down the reliance on unreasonable supervision [Jaderberg
et al., 2017, Laskin et al., 2021]. We discussed such intrinsic control based approaches in
Chapter 8 and Chapter 10. Currently, there is much needed progress to be made on fast
adaptation for a downstream task, after a phase of unsupervised training and interaction with
the environment. A careful analysis, as in Chapter 8 and Chapter 10 along with a theoretical
investigation on the synergies of unsupervised RL approaches on high-dimensional inputs
could be attempted in the future.

Di�erent approaches to learning could also be studied for this particular training setting,
where the agent experiences training through two di�erent stages: pre-training and fine-tuning.
Meta-learning, or learning to learn strategies for RL could help design a new approach to
tackle the problem end-to-end [Finn et al., 2017, Gupta et al., 2018]. This approach can be
further extended to address another challenge of existing unsupervised RL algorithms, which
is building useful representations for learning incremental skills for a changing world. Current
objectives for unsupervised RL make a major assumption about the environment stationarity.
We aim to study this by expanding on the recently introduced URL benchmark [Laskin et al.,
2021] with challenging exploration domains and realistic variations [Hansen et al., 2021].

11.2.2. Unsupervised 3D Aware Representations for Perception

Perceptual models that can understand and model geometrical or structural aspects
associated with the 3D world are central to building and e�ectively training autonomous AI
agents. Probabilistic generative models o�er a promising approach to automate the reasoning
and understanding of underlying data distribution. One active area of research we discussed
in Chapter 4 leverages such generative models for structure learning tasks e.g. 3D from
2D. There has been growing interest in integrating neural rendering approaches to learning
unsupervised 3D aware representations for novel view synthesis. However, these methods
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either lack 3D consistency [Ramirez et al., 2021] or are restricted to a single category of
dataset [Cai et al., 2022]. We believe that tighter integration of structured generative scheme
from Chapter 4 with recent volume rendering techniques (e.g. NeRF [Mildenhall et al., 2020])
could help e�ectively reason about any object category without being constrained to synthetic
benchmarks or well-crafted and annotation-intensive datasets.

11.2.3. Iterated Learning and Multi-modal Transfer

Self-training has been a successful tool in obtaining improved generalization performance
across a wide range of tasks [Araslanov and Roth, 2021, Xie et al., 2020]. Although predomi-
nantly useful in learning e�cient compact models, the framework has enormous potential for
extracting useful knowledge. Self-training with bottleneck learning (such as the procedure
described in Chapter 6) can be generally applicable where there exists hidden information
beyond available ground truth labels, and can significantly improve the generalization ability
of the model (e.g. in a weakly supervised setting). I end by attempting to highlight one such
avenue. Recently, large-scale multi-modal pre-training (VLP) models have shown promising
results on various downstream multimodal alignment tasks, e.g., image-text retrieval and
image classification [Radford et al., 2021, Jia et al., 2021]. Despite their remarkable abilities,
the embedded knowledge has been restrictive and has not been exploited in generative
multi-modal tasks (such as image captioning or VQA) or other semantically meaningful tasks
such as object detection and segmentation. A desirable endeavor could be to distill useful
knowledge while leveraging compositional inductive biases to be applicable to generative
modeling schemes and spatial reasoning tasks.

11.3. Broader Impact
Artificial agents that can autonomously develop cognition and intentions are at the center

of this thesis. We expect this research topic to be widely investigated in the future, as we
aim to build agents that require little or no human intervention. Applications of this research
could impact numerous fields, such as robotics, where robots could learn to sense and act by
themselves, and AI-driven service systems, where the system could learn to better interact
with its users. However, as we start employing unsupervised learning mechanisms several
questions arise about their safety and ethical issues.

One major limitation of unsupervised learning strategies is that we have little knowledge
and control of the model that is learned. This limits the explainability of the agent and
of its intentions, making these models di�cult to trust in real-life contexts. Unsupervised
interaction with the environment could also represent a threat. For instance, the actions that
a robot could try in its environment, in order to enrich its experience could cause damage to
things and people around it. For these reasons, we believe future applications of unsupervised
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learning and reinforcement learning should be supported by means to make such applications
safer for their users, in order to make the impact of this research even broader.

147





References

Chapter 5 - intrinsic motivation and positive development. In R. M. Lerner, J. V. Lerner,
and J. B. Benson, editors, Positive Youth Development, Advances in Child Development
and Behavior. JAI, 2011. 103

M. Abdelsalam, M. Faramarzi, S. Sodhani, and S. Chandar. Iirc: Incremental implicitly-refined
classification. CVPR, 2021. 89, 181, 182

A. Abdolmaleki, J. T. Springenberg, Y. Tassa, R. Munos, N. Heess, and M. A. Riedmiller.
Maximum a posteriori policy optimisation. CoRR, abs/1806.06920, 2018. 118

M. Ahn, A. Brohan, N. Brown, Y. Chebotar, O. Cortes, B. David, C. Finn, K. Gopalakrishnan,
K. Hausman, A. Herzog, D. Ho, J. Hsu, J. Ibarz, B. Ichter, A. Irpan, E. Jang, R. J. Ruano,
K. Je�rey, S. Jesmonth, N. Joshi, R. Julian, D. Kalashnikov, Y. Kuang, K.-H. Lee, S. Levine,
Y. Lu, L. Luu, C. Parada, P. Pastor, J. Quiambao, K. Rao, J. Rettinghouse, D. Reyes,
P. Sermanet, N. Sievers, C. Tan, A. Toshev, V. Vanhoucke, F. Xia, T. Xiao, P. Xu, S. Xu,
and M. Yan. Do as i can and not as i say: Grounding language in robotic a�ordances. In
arXiv preprint arXiv:2204.01691, 2022. 128

Z. Allen-Zhu and Y. Li. Towards understanding ensemble, knowledge distillation and self-
distillation in deep learning. arXiv preprint arXiv:2012.09816, 2020. 100, 101

A. Almahairi, S. Rajeswar, and A. Courville. Augmented cyclegan: Learning many-to-many
mappings from unpaired data. International Conference on Machine Learning (ICML),
2018. 38

M. Andrychowicz, F. Wolski, A. Ray, J. Schneider, R. Fong, P. Welinder, B. McGrew, J. Tobin,
O. Pieter Abbeel, and W. Zaremba. Hindsight experience replay. In NeurIPS, 2017. 107

R. M. Angulo-kinzler. Exploration and selection of intralimb coordination patterns in
3-month-old infants. Journal of Motor Behavior, 33(4):363–376, 2001. 34

N. Araslanov and S. Roth. Self-supervised augmentation consistency for adapting semantic
segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), June 2021. 146

M. Arjovsky, S. Chintala, and L. Bottou. Wasserstein generative adversarial networks.
International Conference on Machine Learning (ICML), 2017. 73



M. Arjovsky, L. Bottou, I. Gulrajani, and D. Lopez-Paz. Invariant risk minimization. arXiv
preprint arXiv:1907.02893, 2019. 19, 184, 185

D. Arpit, S. JastrzÍbski, N. Ballas, D. Krueger, E. Bengio, M. S. Kanwal, T. Maharaj,
A. Fischer, A. Courville, Y. Bengio, et al. A closer look at memorization in deep networks.
In Proceedings of the 34th International Conference on Machine Learning-Volume 70, pages
233–242. JMLR. org, 2017. 96

L. J. Ba and R. Caruana. Do deep nets really need to be deep? arXiv preprint arXiv:1312.6184,
2013. 100

A. Barbu, D. Mayo, J. Alverio, W. Luo, C. Wang, D. Gutfreund, J. B. Tenenbaum, and
B. Katz. Objectnet: A large-scale bias-controlled dataset for pushing the limits of object
recognition models. In NeurIPS, 2019. 88, 99

H. Barlow. Unsupervised Learning. Neural Computation, 1(3):295–311, 1989. 33
A. Barreto. Transfer in reinforcement learning with successor features and generalised policy

improvement. In ICML, 2018. 142
A. G. Barto, S. Singh, and N. Chentanez. Intrinsically motivated learning of hierarchical

collections of skills. In International Conference on Development and Learning(ICDL),
2004. 58, 108, 140

S. Beery, G. Van Horn, and P. Perona. Recognition in terra incognita. In Proceedings of the
European Conference on Computer Vision (ECCV), pages 456–473, 2018. 184

E. Bekele and W. Lawson. The deeper, the better: Analysis of person attributes recognition.
In International Conference on Automatic Face Gesture Recognition, 2019. 186

M. Bellemare, S. Srinivasan, G. Ostrovski, T. Schaul, D. Saxton, and R. Munos. Unifying
count-based exploration and intrinsic motivation. In Advances in Neural Information
Processing Systems, volume 29, 2016. 59, 108, 126, 141

R. Bellman. On the theory of dynamic programming. Proceedings of the National Academy
of Sciences, 38(8):716–719, 1952. 55, 57

Y. Bengio, A. Courville, and P. Vincent. Representation learning: a review and new
perspectives. IEEE transactions on pattern analysis and machine intelligence, 35(8),
August 2013. doi: 10.1109/tpami.2013.50. 51

L. Beyer, O. J. Héna�, A. Kolesnikov, X. Zhai, and A. v. d. Oord. Are we done with imagenet?
arXiv preprint arXiv:2006.07159, 2020. 35, 88, 89, 93, 94, 95, 96, 99, 100, 184

D. Billman and J. Knutson. Unsupervised concept learning and value systematicitiy: A
complex whole aids learning the parts. Journal of Experimental Psychology: Learning,
Memory, and Cognition, 2(22):458–475, 1996. 33

R. Blake, K. V. Sobel, and T. W. James. Neural synergy between kinetic vision and touch.
Psychological Science, 15:397–402, 2004. 108

C. Buciluǎ, R. Caruana, and A. Niculescu-Mizil. Model compression. In Proceedings of the
12th ACM SIGKDD, pages 535–541, 2006. 100

150



Y. Burda, H. Edwards, D. Pathak, A. Storkey, T. Darrell, and A. A. Efros. Largescale study
of curiosity-driven learning. ICLR, 2019a. 106, 107, 108, 111, 118, 126, 141

Y. Burda, H. Edwards, A. J. Storkey, and O. Klimov. Exploration by random network
distillation. ICLR, 2019b. 107, 113, 131, 141, 199

H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu, A. Krishnan, Y. Pan,
G. Baldan, and O. Beijbom. nuscenes: A multimodal dataset for autonomous driving.
arXiv preprint arXiv:1903.11027, 2019. 66

S. Cai, A. Obukhov, D. Dai, and L. V. Gool. Pix2nerf: Unsupervised conditional fi-gan for
single image to neural radiance fields translation. In arXiv, 2022. 146

R. Calandra, A. Owens, D. Jayaraman, J. Lin, W. Yuan, J. Malik, E. H. Adelson, and
S. Levine. More than a feeling: Learning to grasp and regrasp using vision and touch.
IEEE Robotics and Automation Letters, 2018. 109

M. Caron, I. Misra, J. Mairal, P. Goyal, P. Bojanowski, and A. Joulin. Unsupervised learning
of visual features by contrasting cluster assignments. arXiv preprint arXiv:2006.09882,
2020. 96

J. Carreira and A. Zisserman. Quo vadis, action recognition? a new model and the kinetics
dataset. CVPR, 2017. 87

E. R. Chan, M. Monteiro, P. Kellnhofer, J. Wu, and G. Wetzstein. Pi-gan: Periodic
implicit generative adversarial networks for 3d-aware image synthesis. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages
5799–5809, June 2021. 64

A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan, Q. Huang, Z. Li, S. Savarese, M. Savva,
S. Song, H. Su, J. Xiao, L. Yi, and F. Yu. Shapenet: An information-rich 3d model
repository. arXiv, 2015. 66, 69, 75

S. Chaudhuri, E. Kalogerakis, L. Guibas, and V. Koltun. Probabilistic reasoning for assembly-
based 3d modeling. In ACM SIGGRAPH, 2011. 69

Y. Chebotar, K. Hausman, Y. Lu, T. Xiao, D. Kalashnikov, J. Varley, A. Irpan, B. Eysenbach,
R. Julian, C. Finn, et al. Actionable models: Unsupervised o�ine reinforcement learning
of robotic skills. arXiv preprint arXiv:2104.07749, 2021. 126

A. S. Chen, H. Nam, S. Nair, and C. Finn. Batch exploration with examples for scalable
robotic reinforcement learning. arXiv, 2020a. 107

K. Chen, Y. Lee, and H. Soh. Multi-modal mutual information (mummi) training for robust
self-supervised deep reinforcement learning. ICRA, 2021. 109

T. Chen, S. Kornblith, M. Norouzi, and G. Hinton. A simple framework for contrastive
learning of visual representations. In ICML, pages 1597–1607, 2020b. 18, 96, 126, 141

T. Chen, S. Kornblith, K. Swersky, M. Norouzi, and G. Hinton. Big self-supervised models
are strong semi-supervised learners. arXiv preprint:2006.10029, 2020c. 96, 97, 182

151



W. Chen, J. Gao, H. Ling, E. J. Smith, J. Lehtinen, A. Jacobson, and S. Fidler. Learn-
ing to predict 3d objects with an interpolation-based di�erentiable renderer. CoRR,
abs/1908.01210, 2019. 66, 69, 70

X. Chen, H. Fan, R. Girshick, and K. He. Improved baselines with momentum contrastive
learning. arXiv preprint arXiv:2003.04297, 2020d. 96

C. Choy, D. Xu, J. Gwak, K. Chen, and S. Savarese. 3d-r2n2: A unified approach for single
and multi-view 3d object reconstruction. ArXiv, 2016. 66, 69

K. Chua, R. Calandra, R. McAllister, and S. Levine. Deep reinforcement learning in a handful
of trials using probabilistic dynamics models. In S. Bengio, H. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural Information
Processing Systems, 2018. 131

J. Chung, C. Gulcehre, K. Cho, and Y. Bengio. Empirical evaluation of gated recurrent
neural networks on sequence modeling. In NIPS Workshop on Deep Learning, 2014, 2014.
130

M. Cogswell, J. Lu, S. Lee, D. Parikh, and D. Batra. Emergence of compositional language
with deep generational transmission. arXiv preprint arXiv:1904.09067, 2019. 101

M. R. Connolly and L. Harris. E�ects of stimulus incongruity on children’s curiosity as
measured by looking time and expression change. Psychonomic Science, 1971. 33, 106, 110

R. Coulom. E�cient selectivity and backup operators in monte-carlo tree search. In
International conference on computers and games, pages 72–83. Springer, 2006. 57, 140

E. Coumans and Y. Bai. Pybullet, a python module for physics simulation for games, robotics
and machine learning, 2016–2019. 113, 114, 189, 190

A. Courville, G. Desjardins, J. Bergstra, and Y. Bengio. The spike-and-slab rbm and extensions
to discrete and sparse data distributions. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 36(9), 2014. 49

G. Dagan, D. Hupkes, and E. Bruni. Co-evolution of language and agents in referential games.
arXiv preprint arXiv:2001.03361, 2020. 101

P. de Haan, D. Jayaraman, and S. Levine. Causal confusion in imitation learning. In Advances
in Neural Information Processing Systems, volume 32, 2019.

V. R. de Sa. Learning classification with unlabeled data. In NeurIPS, 1993. 108
V. Dean, S. Tulsiani, and A. Gupta. See, hear, explore: Curiosity via audio-visual association.

In NeurIPS, 2020. 109
J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale

hierarchical image database. In 2009 IEEE conference on computer vision and pattern
recognition, pages 248–255. Ieee, 2009. 35, 36, 87

S. I. Di Domenico and R. M. Ryan. The emerging neuroscience of intrinsic motivation: A
new frontier in self-determination research. Frontiers in Human Neuroscience, 2017. 108

152



J. Donahue, Y. Jia, O. Vinyals, J. Ho�man, N. Zhang, E. Tzeng, and T. Darrell. Decaf:
A deep convolutional activation feature for generic visual recognition. In Proceedings of
the 31st International Conference on Machine Learning, Proceedings of Machine Learning
Research, pages 647–655, 2014. 33, 48

J. Donahue, P. Krähenbühl, and T. Darrell. Adversarial feature learning. arXiv preprint
arXiv:1605.09782, 2016. 53, 72

A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. De-
hghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby. An image is
worth 16x16 words: Transformers for image recognition at scale, 2020. 34

R. Dubey and T. L. Gri�ths. Understanding exploration in humans and machines by
formalizing the function of curiosity. Current Opinion in Behavioral Sciences, 2020. 108

G. Dulac-Arnold, D. Mankowitz, and T. Hester. Challenges of real-world reinforcement
learning, 2019. 34, 127

G. Dulac-Arnold, N. Levine, D. J. Mankowitz, J. Li, C. Paduraru, S. Gowal, and T. Hester.
An empirical investigation of the challenges of real-world reinforcement learning, 2020a.
127, 134, 203

G. Dulac-Arnold, N. Levine, D. J. Mankowitz, J. Li, C. Paduraru, S. Gowal, and T. Hester.
An empirical investigation of the challenges of real-world reinforcement learning, 2020b. 34

V. Dumoulin, I. Belghazi, B. Poole, A. Lamb, M. Arjovsky, O. Mastropietro, and A. Courville.
Adversarially learned inference. arXiv preprint arXiv:1606.00704, 2016. 53, 67, 70, 72, 73

A. E and R. CH. The importance of touch in development. Paediatr Child Health, 2010;15(3).
106

B. Eysenbach, A. Gupta, J. Ibarz, and S. Levine. Diversity is all you need: Learning skills
without a reward function. In International Conference on Learning Representations, 2019.
131, 141, 200

C. A. Fields. The principle of persistence, leibniz’s law, and the computational task of object
re-identification. Human Development, 56, 2013. 34

C. Finn, P. Abbeel, and S. Levine. Model-agnostic meta-learning for fast adaptation of deep
networks, 2017. 145

S. Forestier, Y. Mollard, and P. Oudeyer. Intrinsically motivated goal exploration processes
with automatic curriculum learning. CoRR, 2017. 105, 107

M. Frank, J. Leitner, M. Stollenga, A. Förster, and J. Schmidhuber. Curiosity driven
reinforcement learning for motion planning on humanoids. Frontiers in Neurorobotics, 7,
2014. 59, 141

K. P. F.R.S. Liii. on lines and planes of closest fit to systems of points in space. The London,
Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 2(11):559–572, 1901.
48

153



T. Furlanello, Z. Lipton, M. Tschannen, L. Itti, and A. Anandkumar. Born again neural
networks. In ICML, 2018. 100

M. Gadelha, S. Maji, and R. Wang. 3d shape induction from 2d views of multiple objects.
CoRR, abs/1612.05872, 2016. 69

Z. Gan, Y.-C. Chen, L. Li, C. Zhu, Y. Cheng, and J. J. Liu. Large-scale adversarial training
for vision-and-language representation learning. In NeurIPS, 2020. 109

R. Gao, R. Feris, and K. Grauman. Learning to separate object sounds by watching unlabeled
video. ECCV, 2018. 108

Y. Gao, L. A. Hendricks, K. J. Kuchenbecker, and T. Darrell. Deep learning for tactile
understanding from visual and haptic data. In ICRA, 2016. 109

M. Gasse, D. GRASSET, G. Gaudron, and P.-Y. Oudeyer. Causal reinforcement learning
using observational and interventional data, 2022.

R. Geirhos, C. R. M. Temme, J. Rauber, H. H. Schütt, M. Bethge, and F. A. Wichmann.
Generalisation in humans and deep neural networks, 2018. 34

R. Girdhar, D. Fouhey, M. Rodriguez, and A. Gupta. Learning a predictable and generative
vector representation for objects. European Conference of Computer Vision (ECCV), 2016.
66, 69

I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville,
and Y. Bengio. Generative adversarial nets. In Advances in Neural Information Processing
Systems 27, pages 2672–2680. Curran Associates, Inc., 2014a. 52

I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville,
and Y. Bengio. Generative adversarial nets. Advances in Neural Information Processing
Systems (NIPS), 2014b. 67, 72

P. Goyal, M. Caron, B. Lefaudeux, M. Xu, P. Wang, V. Pai, M. Singh, V. Liptchinsky,
I. Misra, A. Joulin, et al. Self-supervised pretraining of visual features in the wild. arXiv
preprint arXiv:2103.01988, 2021. 96

K. Gregor, D. J. Rezende, and D. Wierstra. Variational intrinsic control. CoRR, 2016. 108,
141

J.-B. Grill, F. Strub, F. Altché, C. Tallec, P. H. Richemond, E. Buchatskaya, C. Doersch,
B. A. Pires, Z. D. Guo, M. G. Azar, et al. Bootstrap your own latent: A new approach to
self-supervised learning. arXiv preprint arXiv:2006.07733, 2020. 96

C. Grimm, A. Barreto, S. Singh, and D. Silver. The value equivalence principle for model-
based reinforcement learning. Advances in Neural Information Processing Systems, 33:
5541–5552, 2020. 140

I. Gulrajani and D. Lopez-Paz. In search of lost domain generalization. NeurIPS, 2020. 185
I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville. Improved training

of wasserstein gans. Advances in Neural Information Processing Systems (NIPS), 2017. 73

154



S. Guo, W. Huang, H. Zhang, C. Zhuang, D. Dong, M. Scott, and D. Huang. Curriculumnet:
Weakly supervised learning from large-scale web images. In ECCV, 2018. 95

S. Guo, Y. Ren, S. Havrylov, S. Frank, I. Titov, and K. Smith. The emergence of compositional
languages for numeric concepts through iterated learning in neural agents, 2019. 101

A. Gupta, B. Eysenbach, C. Finn, and S. Levine. Unsupervised meta-learning for reinforcement
learning. CoRR, 2018. 145

D. Ha and J. Schmidhuber. Recurrent world models facilitate policy evolution. In S. Bengio,
H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances
in Neural Information Processing Systems. Curran Associates, Inc., 2018. 129

T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. Soft actor-critic: O�-policy maximum entropy
deep reinforcement learning with a stochastic actor. arXiv preprint arXiv:1801.01290, 2018.
34, 57, 110, 113, 128, 131, 191

R. Hadsell, S. Chopra, and Y. LeCun. Dimensionality reduction by learning an invariant
mapping. In null, 2006. 173

D. Hafner, T. Lillicrap, J. Ba, and M. Norouzi. Dream to control: Learning behaviors by
latent imagination. In International Conference on Learning Representations, 2019a. 57,
130, 140, 141

D. Hafner, T. Lillicrap, I. Fischer, R. Villegas, D. Ha, H. Lee, and J. Davidson. Learning
latent dynamics for planning from pixels. In International Conference on Machine Learning,
pages 2555–2565, 2019b. 129, 130, 141

D. Hafner, T. P. Lillicrap, M. Norouzi, and J. Ba. Mastering atari with discrete world models.
In International Conference on Learning Representations, 2021. 33, 129, 130, 141, 202

N. Hansen, H. Su, and X. Wang. Stabilizing deep q-learning with convnets and vision
transformers under data augmentation. In Conference on Neural Information Processing
Systems, 2021. 145

N. Hansen, X. Wang, and H. Su. Temporal di�erence learning for model predictive control.
2022. 133, 198

F. Hausdor�. Grundzüge der Mengenlehre. Chelsea Pub. Co, New York, 1949. ISBN
9780828400619. 76

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages
770–778, 2016. 81, 87, 93

K. He, G. Gkioxari, P. Dollár, and R. B. Girshick. Mask r-cnn. ICCV, 2017. 87
K. He, H. Fan, Y. Wu, S. Xie, and R. Girshick. Momentum contrast for unsupervised visual

representation learning. arXiv preprint arXiv:1911.05722, 2019a. 96
T. He, Z. Zhang, H. Zhang, Z. Zhang, J. Xie, and M. Li. Bag of tricks for image classification

with convolutional neural networks. In CVPR, pages 558–567, 2019b. 94

155



P. Henderson and V. Ferrari. Learning to generate and reconstruct 3d meshes with only 2d
supervision. CoRR, abs/1807.09259, 2018. 66, 69, 70

M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter. Gans trained by a
two time-scale update rule converge to a local nash equilibrium. In Advances in Neural
Information Processing Systems, 2017. 53

T. Hey, S. Tansley, and K. Tolle. The Fourth Paradigm: Data-Intensive Scientific Discovery.
Microsoft Research, 2009. 33

G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-r. Mohamed, N. Jaitly, A. Senior, V. Vanhoucke,
P. Nguyen, T. N. Sainath, and B. Kingsbury. Deep neural networks for acoustic modeling
in speech recognition: The shared views of four research groups. IEEE Signal Processing
Magazine, 29(6):82–97, 2012. doi: 10.1109/MSP.2012.2205597. 48

G. Hinton, O. Vinyals, and J. Dean. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2015. 100

G. E. Hinton. A Practical Guide to Training Restricted Boltzmann Machines. 2012. 49
G. E. Hinton, J. L. McClelland, and D. E. Rumelhart. Distributed Representations, page

77–109. 1986. 43
R. Houthooft, X. Chen, Y. Duan, J. Schulman, F. D. Turck, and P. Abbeel. Curiosity-driven

exploration in deep reinforcement learning via bayesian neural networks. CoRR, 2016. 108
J. Huang, Y. Zhou, T. A. Funkhouser, and L. J. Guibas. Framenet: Learning local canonical

frames of 3d surfaces from a single RGB image. CoRR, abs/1903.12305, 2019a. 69
S. H. Huang, M. Zambelli, J. Kay, M. F. Martins, Y. Tassa, P. M. Pilarski, and R. Hadsell.

Learning gentle object manipulation with curiosity-driven deep reinforcement learning.
CoRR, 2019b. 107

D. Hubel and T. Wiesel. Receptive fields, binocular interaction, and functional architecture
in the cat’s visual cortex. Journal of Physiology, 160:106–154, 1962. 45

E. Insafutdinov and A. Dosovitskiy. Unsupervised learning of shape and pose with di�eren-
tiable point clouds. CoRR, abs/1810.09381, 2018. 70

S. Io�e and C. Szegedy. Batch normalization: Accelerating deep network training by reducing
internal covariate shift. In International conference on machine learning (ICML), 2015. 73,
172

A. Iscen, J. Valmadre, A. Arnab, and C. Schmid. Learning with neighbor consistency for
noisy labels. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2022. 86

M. Ishmael, A. Baratin, S. Rajeswar, S. Ozair, Y. Bengio, and A. Courville. Mutual
information neural estimation. International Conference on Machine Learning (ICML),
2018. 38, 74, 173

M. Jaderberg, V. Mnih, W. M. Czarnecki, T. Schaul, J. Z. Leibo, D. Silver, and
K. Kavukcuoglu. Reinforcement learning with unsupervised auxiliary tasks. In 5th

156



International Conference on Learning Representations, ICLR, 2017. 145
C. Jia, Y. Yang, Y. Xia, Y.-T. Chen, Z. Parekh, H. Pham, Q. V. Le, Y. Sung, Z. Li, and

T. Duerig. Scaling up visual and vision-language representation learning with noisy text
supervision. 2021. 146

C. M. Jiang, D. Wang, J. Huang, P. Marcus, and M. Nießner. Convolutional neural net-
works on non-uniform geometrical signals using euclidean spectral transformation. CoRR,
abs/1901.02070, 2019. 69

L. Jiang, Z. Zhou, T. Leung, L.-J. Li, and L. Fei-Fei. Mentornet: Learning data-driven
curriculum for very deep neural networks on corrupted labels. In ICML, 2018. 95

Y. Jiang, D. Ji, Z. Han, and M. Zwicker. Sdfdi�: Di�erentiable rendering of signed distance
fields for 3d shape optimization. In The IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), June 2020. 62

J. T. Kajiya. The rendering equation. In Annual Conference on Computer Graphics and
Interactive Techniques (SIGGRAPH), 1986. 59, 171

M. Kalakrishnan, L. Righetti, P. Pastor, and S. Schaal. Learning force control policies for
compliant manipulation. In IROS, 2011. 108

D. Kalashnikov, A. Irpan, P. Pastor, J. Ibarz, A. Herzog, E. Jang, D. Quillen, E. Holly,
M. Kalakrishnan, V. Vanhoucke, and S. Levine. Qt-opt: Scalable deep reinforcement
learning for vision-based robotic manipulation. ArXiv, abs/1806.10293, 2018. 125

E. Kalogerakis, S. Chaudhuri, D. Koller, and V. Koltun. A probabilistic model for component-
based shape synthesis. ACM Transactions in Graphics, 31(4):55:1–55:11, 2012. 69

A. Kanazawa, S. Tulsiani, A. A. Efros, and J. Malik. Learning category-specific mesh
reconstruction from image collections. In European Conference on computer Vision (ECCV),
2018. 69

A. Kar, S. Tulsiani, J. Carreira, and J. Malik. Category-specific object reconstruction from a
single image. CoRR, abs/1411.6069, 2014. 66

T. Karras, S. Laine, and T. Aila. A style-based generator architecture for generative adversarial
networks. CoRR, abs/1812.04948, 2018. 52

H. Kato and T. Harada. Learning view priors for single-view 3d reconstruction. CoRR,
abs/1811.10719, 2018. 69

H. Kato, Y. Ushiku, and T. Harada. Neural 3d mesh renderer. CoRR, abs/1711.07566, 2017.
70

H. Kato, Y. Ushiku, and T. Harada. Neural 3d mesh renderer. In The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2018. 61

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In Y. Bengio and
Y. LeCun, editors, ICLR, 2015. 112

D. P. Kingma and M. Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013. 141

157



D. P. Kingma and M. Welling. Stochastic Gradient VB and the Variational Auto-Encoder.
2nd International Conference on Learning Representationsm (ICLR), pages 1–14, 2014. 51

S. Kirby. Spontaneous evolution of linguistic structure-an iterated learning model of the
emergence of regularity and irregularity. IEEE Transactions on Evolutionary Computation,
5(2):102–110, 2001. 36, 89, 91, 101

S. Kirby. Natural language from artificial life. Artificial life, 8(2): 185–215, 2002. 89, 101
S. Kirby, T. Gri�ths, and K. Smith. Iterated learning and the evolution of language. Current

opinion in neurobiology, 28:108–114, 2014. 89, 101
A. S. Klyubin, D. Polani, and D. L. Nehaniv. Empowerment: A universal agent-centric

measure of control. In 2005 IEEE Congress on Evolutionary Computation, 2005. 108
L. Kobbelt and M. Botsch. A survey of point-based techniques in computer graphics.

Computers & Graphics, 28(6):801–814, 2004. 70
M. Kocaoglu, C. Snyder, A. G. Dimakis, and S. Vishwanath. Causalgan: Learning causal

implicit generative models with adversarial training. CoRR, abs/1709.02023, 2017.
G. Koch, R. Zemel, and R. Salakhutdinov. Siamese neural networks for one-shot image

recognition. In ICML Deep Learning Workshop, 2015. 81
W. Kool, J. McGuire, G. Wang, and M. Botvinick. Neural and behavioral evidence for an

intrinsic cost of self-control. PloS one, 8, 2013. 58, 140
A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional

neural networks. In NeurIPS, 2012. 34, 87
D. Krueger, E. Caballero, J. Jacobsen, A. Zhang, J. Binas, R. L. Priol, and A. C. Courville.

Out-of-distribution generalization via risk extrapolation (rex). CoRR, 2020. 184, 185
T. D. Kulkarni, W. Whitney, P. Kohli, and J. B. Tenenbaum. Deep convolutional inverse

graphics network. In Advances in Neural Information Processing Systems (NIPS), 2015. 69
T. D. Kulkarni, A. Gupta, C. Ionescu, S. Borgeaud, M. Reynolds, A. Zisserman, and

V. Mnih. Unsupervised learning of object keypoints for perception and control. CoRR,
abs/1906.11883, 2019. 119

N. Lair, C. Colas, R. P. J.-M. Dussoux, P. F. Dominey, and P.-Y. Oudeyer. Language
grounding through social interactions and curiosity-driven multi-goal learni. arXiv, 2019.
108

B. M. Lake, T. D. Ullman, J. B. Tenenbaum, and S. J. Gershman. Building machines
that learn and think like people. Behavioral and Brain Sciences, 40:e253, 2017. doi:
10.1017/S0140525X16001837. 59

M. Laskin, K. Lee, A. Stooke, L. Pinto, P. Abbeel, and A. Srinivas. Reinforcement learming
with augmented data. arXiv:2004.14990. 141

M. Laskin, D. Yarats, H. Liu, K. Lee, A. Zhan, K. Lu, C. Cang, L. Pinto, and P. Abbeel.
URLB: Unsupervised reinforcement learning benchmark. In Thirty-fifth Conference on
Neural Information Processing Systems Datasets and Benchmarks Track (Round 2), 2021.

158



19, 27, 124, 126, 127, 128, 131, 132, 145, 197, 198
Y. LeCun. A path towards autonomous machine intelligence. In OpenReview, 2022. 124
Y. LeCun and C. Cortes. The mnist database of handwritten digits. 2005. 99
Y. LeCun, S. Chopra, R. Hadsell, F. J. Huang, and et al. A tutorial on energy-based learning.

In PREDICTING STRUCTURED DATA. MIT Press, 2006. 49
Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature, 521:436–44, 05 2015. 42
A. X. Lee, C. Devin, Y. Zhou, T. Lampe, K. Bousmalis, J. T. Springenberg, A. Byravan,

A. Abdolmaleki, N. Gileadi, D. Khosid, C. Fantacci, J. E. Chen, A. S. Raju, R. Jeong,
M. Neunert, A. Laurens, S. Saliceti, F. Casarini, M. A. Riedmiller, R. Hadsell, and F. Nori.
Beyond pick-and-place: Tackling robotic stacking of diverse shapes. ArXiv, abs/2110.06192,
2021. 125

J.-T. Lee, D. Bollegala, and S. Luo. “touching to see” and “seeing to feel”: Robotic cross-modal
sensory data generation for visual-tactile perception. ICRA, 2019a. 109

K.-H. Lee, X. He, L. Zhang, and L. Yang. Cleannet: Transfer learning for scalable image
classifier training with label noise. In CVPR, 2018. 18, 95

M. A. Lee, Y. Zhu, K. Srinivasan, P. Shah, S. Savarese, L. Fei-Fei, A. Garg, and J. Bohg.
Making sense of vision and touch: Self-supervised learning of multimodal representations
for contact-rich tasks. ICRA, 2019b. 109

L. Legault. Intrinsic and Extrinsic Motivation. Springer International Publishing, 2016. 103
S. Levine, C. Finn, T. Darrell, and P. Abbeel. End-to-end training of deep visuomotor policies.

JMLR, 2016a. 34, 108
S. Levine, C. Finn, T. Darrell, and P. Abbeel. End-to-end training of deep visuomotor policies.

J. Mach. Learn. Res., 2016b. 125
C. Li, H. Liu, C. Chen, Y. Pu, L. Chen, R. Henao, and L. Carin. Alice: Towards understanding

adversarial learning for joint distribution matching. In Advances in Neural Information
Processing Systems (NIPS), 2017a. 17, 74, 83

F. Li and M. Bowling. Ease-of-teaching and language structure from emergent communication.
In NeurIPS, 2019. 101

J. Li, C. Xiong, and S. C. Hoi. Mopro: Webly supervised learning with momentum prototypes.
ICLR, 2021. 95

T.-M. Li, M. Aittala, F. Durand, and J. Lehtinen. Di�erentiable monte carlo ray tracing
through edge sampling. ACM Trans. Graph. (Proc. SIGGRAPH Asia), 37(6), 2018. 62

W. Li, L. Wang, W. Li, E. Agustsson, and L. Gool. Webvision database: Visual learning and
understanding from web data. ArXiv, 2017b. 86, 89, 93, 100

X. Li, W. Wang, X. Hu, and J. Yang. Selective kernel networks. In CVPR, pages 510–519,
2019a. 97

Y. Li, J.-Y. Zhu, R. Tedrake, and A. Torralba. Connecting touch and vision via cross-modal
prediction. In CVPR, 2019b. 109

159



Z. Li, T. Dekel, F. Cole, R. Tucker, N. Snavely, C. Liu, and W. T. Freeman. Learning the
depths of moving people by watching frozen people. CoRR, abs/1904.11111, 2019c. 66

T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra.
Continuous control with deep reinforcement learning. In Y. Bengio and Y. LeCun, editors,
4th International Conference on Learning Representations, ICLR, 2016. 57, 128

U. Lindenberger and M. Lövdén. Brain plasticity in human lifespan development: The
exploration–selection–refinement model. Annual Review of Developmental Psychology, 1:
197–222, 2019. 34

P. Lippe, S. Magliacane, S. Löwe, Y. M. Asano, T. Cohen, and E. Gavves. CITRIS: Causal
Identifiability from Temporal Intervened Sequences. In Proceedings of the 39th International
Conference on Machine Learning, ICML 2022, 2022. URL https://arxiv.org/abs/2202.
03169.

G.-H. Liu, A. Siravuru, S. Prabhakar, M. Veloso, and G. Kantor. Learning end-to-end
multimodal sensor policies for autonomous navigation. In CoRL, 2017. 108

H. Liu and P. Abbeel. Aps: Active pretraining with successor features. In Proceedings of the
38th International Conference on Machine Learning, pages 6736–6747, 2021a. 141

H. Liu and P. Abbeel. Unsupervised active pre-training for reinforcement learning. ICLR,
2021b. 131, 141, 200

S. Liu, W. Chen, T. Li, and H. Li. Soft rasterizer: Di�erentiable rendering for unsupervised
single-view mesh reconstruction. CoRR, abs/1901.05567, 2019a. 70

S. Liu, T. Li, W. Chen, and H. Li. Soft rasterizer: A di�erentiable renderer for image-based
3d reasoning. The IEEE International Conference on Computer Vision (ICCV), 2019b. 61

S. Liu, J. Niles-Weed, N. Razavian, and C. Fernandez-Granda. Early-learning regularization
prevents memorization of noisy labels. NeurIPS, 2020. 17, 91, 94, 96

W. Liu, Z. Liu, H. Wang, L. Paull, B. Schölkopf, and A. Weller. Iterative teaching by label
synthesis, 2021. 91

Z. Liu, P. Luo, X. Wang, and X. Tang. Deep learning face attributes in the wild. In ICCV,
2015. 93, 185, 186

S. Lombardi, T. Simon, J. Saragih, G. Schwartz, A. Lehrmann, and Y. Sheikh. Neural
volumes: Learning dynamic renderable volumes from images. ACM Trans. Graph., 38(4),
July 2019. 61

J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for semantic segmentation.
In CVPR, 2015. 88

M. M. Loper and M. J. Black. OpenDR: An approximate di�erentiable renderer. In ECCV
2014, volume 8695, pages 154–169. 61, 69, 70

Y. Lu, S. Singhal, F. Strub, A. Courville, and O. Pietquin. Countering language drift with
seeded iterated learning. In ICML, 2020a. 91, 101, 102, 185

160



Y. Lu, S. Singhal, F. Strub, O. Pietquin, and A. Courville. Supervised seeded iterated
learning for interactive language learning. In EMNLP, 2020b. 101

Y. Lu, K. Hausman, Y. Chebotar, M. Yan, E. Jang, A. Herzog, T. Xiao, A. Irpan, M. Khansari,
D. Kalashnikov, and S. Levine. AW-opt: Learning robotic skills with imitation andrein-
forcement at scale. In 5th Annual Conference on Robot Learning (CoRL), 2021. 125

K. Marino, A. Gupta, R. Fergus, and A. Szlam. Hierarchical rl using an ensemble of
proprioceptive periodic policies. ICLR, 2019. 108

M. Masana, X. Liu, B. Twardowski, M. Menta, A. D. Bagdanov, and J. van de Weijer. Class-
incremental learning: survey and performance evaluation. arXiv preprint arXiv:2010.15277,
2020. 181

P. Mazzaglia, O. Çatal, T. Verbelen, and B. Dhoedt. Curiosity-driven exploration via latent
bayesian surprise. ArXiv, abs/2104.07495, 2021. 131, 141, 200

W. McCulloch and W. Pitts. A logical calculus of the ideas immanent in nervous activity.
Bulletin of Mathematical Biophysics 5, 115–133, 1943. 42

V. Mehta, B. Paria, J. Schneider, W. Neiswanger, and S. Ermon. An experimental design
perspective on model-based reinforcement learning. In International Conference on Learning
Representations, 2022. 142

T. Mikolov, A. Deoras, S. Kombrink, L. Burget, and J. Cernockỳ. Empirical evaluation and
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Appendix A

Appendix for Chapter 4

A.1. Rendering Details
The color of a surfel depends on the material reflectance, its position and orientation, as

well as the ambient and point light source colors (See Figure A.1.1b). Given a surface point
Pi, the color of its corresponding pixel Irc is given by the shading equation:

Irc = fli(La +
ÿ

j

1
klÎdijÎ + kqÎdijÎ2 Lj

max
1
0, NT

i
dij/ÎdijÎ

2
),

(A.1.1)

where fli is the surface reflectance, La is the ambient light’s color, Lj is the jth positional
light source’s color, with dij = Lpos

j
≠ Pi, or the direction vector from the scene point to the

point light source, and kl, kq being the linear and quadratic attenuation terms respectively.
Equation A.1.1 is an approximation of rendering equation proposed in Kajiya [1986].

(a) Projection model (b) Shading model

Fig. A.1.1. Di�erentiable 3D renderer. (a) A surfel is defined by its position P , normal
N , and reflectance fl. Each surfel maps to an image pixel Pim. (b) The surfel’s color depends
on its reflectance fl and the angle ◊ between each light I and the surfel’s normal N .



A.2. Architecture
Pix2Shape is composed of an encoder network (See Table A.2.1), a decoder network (See

Table A.2.2), and a critic network (See Table A.2.3). Specifically, the decoder architecture
is similar to the generator in DCGAN [Radford et al., 2015] but with LeakyReLU [Mikolov
et al., 2011] as activation function and batch-normalization [Io�e and Szegedy, 2015]. Also,
we adjusted its depth and width to accommodate the high resolution images accordingly. In
order to condition the camera position on the z variable, we use conditional normalization in
the alternate layers of the decoder. We train our model for 60K iterations with a batch size
of 6 with images of resolution 128 ◊ 128 ◊ 3.

Layer Output size Kernel Str. BNorm Activation
In [x, c] 128 ◊ 128 ◊ 3
Conv. 64 ◊ 64 ◊ 85 4 ◊ 4 2 Yes LReLU
Conv. 32 ◊ 32 ◊ 170 4 ◊ 4 2 Yes LReLU
Conv. 16 ◊ 16 ◊ 340 4 ◊ 4 2 Yes LReLU
Conv. 8 ◊ 8 ◊ 680 4 ◊ 4 2 Yes LReLU
Conv. 4 ◊ 4 ◊ 1360 4 ◊ 4 2 No LReLU
Conv. 1 ◊ 1 ◊ 1 4 ◊ 4 1 No

Table A.2.1. Pix2Shape encoder architecture

Layer Output size Kernel Str. BNorm Activation
In [x, c] 131 ◊ 1
Conv. 4 ◊ 4 ◊ 1344 4 ◊ 4 1 Yes LReLU
Conv. 8 ◊ 8 ◊ 627 4 ◊ 4 2 Yes LReLU
Conv. 16 ◊ 16 ◊ 336 4 ◊ 4 2 Yes LReLU
Conv. 32 ◊ 32 ◊ 168 4 ◊ 4 2 Yes LReLU
Conv. 64 ◊ 64 ◊ 84 4 ◊ 4 2 Yes LReLU
Conv. 128 ◊ 128 ◊ nCh 4 ◊ 4 2 Yes

Table A.2.2. Pix2Shape decoder architecture.

Layer Output size Kernel Str. BNorm Activation
Input [x, c] 128 ◊ 128 ◊ 6
Conv. 64 ◊ 64 ◊ 85 4 ◊ 4 2 No LReLU
Conv. 32 ◊ 32 ◊ 170 4 ◊ 4 2 No LReLU
Conv. 16 ◊ 16 ◊ 340 4 ◊ 4 2 No LReLU
Conv. 8 ◊ 8 ◊ 680 4 ◊ 4 2 No LReLU
Conv. + [z] 4 ◊ 4 ◊ 1360 4 ◊ 4 2 No LReLU
Convolution 1 ◊ 1 ◊ 1 4 ◊ 4 1 No

Table A.2.3. Pix2Shape critic architecture. Conditional version takes image, latent
code z and camera position c.
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A.3. Architecture for Semi-supervised experiments
Pixel2Surfels architecture remains similar to the previous one but with higher capacity

on the decoder and critic. The most important di�erence is that for those experiments we do
not condition the networks with the camera pose to be fair with the baselines. In addition
to the three networks we have a statistics network (see Table A.3.4) that estimates and
minimizes the mutual information between the two set of dimensions in the latent code using
MINE [Ishmael et al., 2018]. Out of 128 dimensions for z we use first 118 dimensions for
represent scene-based information and rest to encode view based info.

Layer Output size Kernel Str. BNorm Act.
In [z[: 118], z[118 :]] 1 ◊ 1 ◊ 128
Conv. 1 ◊ 1 ◊ 256 1 ◊ 1 1 No ELU
Conv. 1 ◊ 1 ◊ 512 1 ◊ 1 1 No ELU
Conv. 1 ◊ 1 ◊ 1 1 ◊ 1 2 No None

Table A.3.4. Pix2Shape statistics network architecture.

The architecture of the baseline networks is shown in Figure A.3.2. During training we
use the contrastive loss [Hadsell et al., 2006]:

L◊(x1, x2, y) = (1 ≠ y)1
2(D◊(x1, x2))2

+ (y)1
2(max(0,m ≠ D◊(x1, x2)))2

D◊(x1, x2) = ||G◊(x1) ≠ G◊(x2)||2,

(A.3.1)

where x1 and x2 are the input images, y is either 0 (if the inputs are supposed to be the same)
or 1 (if the images are supposed to be di�erent), G◊ is each ResNet block, parameterized
by ◊, and m is the margin, which we set to 2.0. We apply the contrastive loss to the 2048
features that are generated by each ResNet block.

Fig. A.3.2. 3D-IQTT baseline architecture. The four ResNet-50 share the same weights
and were slightly modified to support our image size. “FC" stands for fully-connected layer
and the hidden node sizes are 2048, 512, and 256 respectively. The output of the network is
encoded as one-hot vector.
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A.4. Material, Lights, and Camera Properties
Material. In our experiments, we use di�use materials with uniform reflectance. The re-
flectance values are chosen arbitrarily and we use the same material properties for both the
input and the generator side. Figure A.4.3 shows that it is possible to learn reflectance along
side learning the 3D structure of the scenes by requiring the model to predict the material
coe�cients along with the depth of the surfels. The color of the objects depend on both
the lighting and the material properties. We do not delve into more details on this, as our
objective is to model the structural/geometrical properties of the world with the model. This
will be explored further in a later study.

(a) Color input images (b) Reconstructed images

(c) Ground-truth depth (d) Reconstructed depth

Fig. A.4.3. Learning material along with structure. The model learns the foreground
and background colors separately.

Camera. The camera is specified by its position, viewing direction and vector indicating the
orientation of the camera. The camera positions were uniform randomly sampled on a sphere
for the 3D-IQTT task and on a spherical patch contained in the positive octant, for the rest
of the experiments. The viewing direction was updated based on the camera position and
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Fig. A.4.4. Unconditional scene generation. Generated samples from Pix2Shape model
trained on ShapeNet scenes. Left: shaded images; Right: depth maps

the center of mass of the objects, so that the camera was always looking at a fixed point in
the scene as its position changed. The focal length ranged between [18 mm and 25mm] in all
the experiments and the field-of-view was fixed to 24mm. The camera properties were also
shared between the input and the generator side. However, in the 3D-IQTT task we relaxed
the assumption that we know the camera pose and instead estimate the view as a part of the
learnt latent representation.
Lights. For the light sources, we experimented with single and multiple point-light sources,
with the light colors chosen randomly. The light positions are uniformly sampled on a sphere
for the 3D IQTT tasks, and uniformly on a spherical patch covering the positive octant for
the other scenes. The same light colors and positions are used both for rendering the input
and the generated images. The lights acted as a physical spot lights with the radiant energy
attenuating quadratically with distance. As an ablation study we relaxed this assumption of
having perfect knowledge of lights by using random position and random color lights. Those
experiments show that the light information is not needed by our model to learn the 3D
structure of the data. However, as we use random lights on the generator side, the shading of
the reconstructions is in di�erent color than in the input as shown in Figure A.4.5.

A.5. Unconditional ShapeNet Generation
We trained Pix2Shape on scenes composed of ShapeNet objects from six categories

(i.e., bowls, bottles, mugs, cans, caps and bags). Figure A.4.4 shows qualitative results on
unconditional generation. Since no class information is provided to the model, the latent
variable captures both the object category and its configuration.

(a) Input images (b) Reconstructions (c) Recovered depth

Fig. A.4.5. Random lights configuration.
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(a) Reproduction of original
results.

(b) Qualitative results on iso-
lated and centered cube-like
shape without background.

(c) Degenerative results on on
full scene.

Fig. A.5.6. Reproduction of Rezende et al. [2016] and qualitative results. Top
row: Samples of input images; bottom row: corresponding reconstructed images. We found
that with a single centered object, the method was able to correctly reproduce the shape
and orientation. However, when the object was not centered, too complex, or there was a
background present, the method failed to estimate the shape.

A.6. Evaluation of 3D Reconstructions
For evaluating 3D reconstructions, we use the Hausdor� distance [Taha and Hanbury,

2015] as a measure of similarity between two shapes as in Niu et al. [2018]. Given two point
sets, A and B, the Hausdor� distance is,

max
Ó
max D+

H
(A, B), max D+

H
(B, A)

Ô
,

where D+
H

is an asymmetric Hausdor� distance between two point sets. E.g., max D+
H

(A, B) =
max D(a, B), for all a œ A, or the largest Euclidean distance D(·), from a set of points in A

to B, and a similar definition for the reverse case max D+
H

(B, A).

A.7. Ablation study on depth supervision
As an ablation study, we repeated the experiment that demonstrates the view extrapolation

capabilities of our model with depth superrvision. Table A.7.5 depicts the quantitative
evaluations on reconstruction if the scenes from unobserved angles.

Shape scenes Multiple-shape scenes
5¶ 35¶ 55¶ 80¶ 5¶ 35¶ 55¶ 80¶

Hausdor�-F 0.093 0.088 0.085 0.096 0.173 0.218 0.194 0.201
Hausdor�-R 0.081 0.100 0.108 0.112 0.221 0.243 0.238 0.254
MSE-depth 0.004 0.004 0.005 0.007 0.009 0.008 0.008 0.009

Table A.7.5. View point reconstruction. Quantitative evaluation of implicit 3D re-
construction for unseen views by extrapolating the view angle from 0¶(original) to 80¶ with
depth supervision.
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A.8. 3D Intelligence Quotient Task.
In their landmark work, Shepard and Metzler [1971] introduced the mental rotation task

into the toolkit of cognitive assessment. The authors presented human subjects with reference
images and answer images. The subjects had to quickly decide if the answer was either a
3D-rotated version or a mirrored version of the reference. The speed and accuracy with
which people can solve this mental rotation task has since become a staple of IQ tests like
the Woodcock-Johnson tests [Woodcock et al., 2001]. We took this as inspiration to design a
quantitative evaluation metric (number of questions answered correctly) as opposed to the
default qualitative analyses of generative models. We use the same kind of 3D objects but
instead of confronting our model with pairs of images and only two possible answers, we
include several distractor answers and the subject (human or computer) has to to pick which
one out of the three possible answers is the 3D-rotated version of the reference object (See
Figure 4.2).

A.9. Details on Human Evaluations for 3D IQTT
We posted the questionnaire to our lab-wide mailing list, where 41 participants followed

the call. The questionnaire had one calibration question where, if answered incorrectly, we
pointed out the correct answer. For all successive answers, we did not give any participant
the correct answers and each participant had to answer all 20 questions to complete the quiz.

We also asked participants for their age range, gender, education, and for comments.
While many commented that the questions were hard, nobody gave us a clear reason to
discard their response. All participants were at least high school graduates currently pursuing
a Bachelor’s degree. The majority of submissions (78%) were male, whereas the others were
female or unspecified. Most of our participants (73.2%) were between 18 and 29 years old,
the others between 30 and 39. The resulting test scores are normally distributed according to
the Shapiro-Wilk test (p < 0.05) and significantly di�erent from random choice according to
1-sample Student’s t test (p < 0.01).

A.10. Implementation of Rezende et al.
With the publication of Rezende et al. [2016], the authors did not publicly release any

code and upon request did not o�er any either. When implementing our own version, we
attempted to reproduce their results first, which is depicted in Figure A.5.6a. Further, we
attempted to use the method for the same qualitative reconstruction of the primitive-in-box
dataset as shown in Figure 4.4. We found that this worked only with one main object and
when there was no background (see Figure A.5.6b). When including the background, applying
the same method lead to degenerate solutions (see Figure A.5.6c).
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Fig. A.11.7. Study of e�ect of mutual-information objective on 3D-IQTT per-
formance. Our model performance is correlated positively to the the weight on Mutual
information term increases

A.11. Ablation study of the weighted Mutual-Info loss
on 3D-IQTT

Consider the semi-supervised objective used in algorithm 1. In this section we do an
ablation study on 3D-IQTT performance with the modified form of the equation where
Mutual-information loss I�(zscene, zview) is weighted by a co-e�cient ⁄. Plot in Figure A.11.7
indicates the importance of the MI term. Having a good estimate of the view point and
disentangling the view information from geometry is indeed crucial to the performance of the
IQ task.

L Ω LALI + Lrecon + I�(zscene, zview)

A.12. More Scene Reconstructions
Figure A.12.8 shows 3D reconstructions of scenes formed by boxes in a room. In Fig-

ure A.12.9 our model is asked to reconstruct the scenes of the first column and then render
di�erent views of the same scene. In this case we show the normal maps of those views.
Figure A.12.10 shows the recovered shading, depth and normal images from reconstructions
of complex scenes such as bedrooms and bunny.
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(a) Input images (b) Reconstructed images (c) Reconstructed depth maps

Fig. A.12.8. Scene reconstruction. (a) Input images of rotated cubes into a room. (b)
Pix2Shape reconstructions with its (c) associated depth maps.

Fig. A.12.9. Normal views reconstruction. For each row, the first column is the input
image and other columns are the extrapolated normal maps of that image from di�erent
views.

(a) Input images (b) Reconstructed depth (c) Reconstructed normal

Fig. A.12.10. Reconstruction of complex scenes. Reconstruction of bedroom scenes
and bunny.
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Appendix B

Appendix for Chapter 6

B.1. Introduction
In Section B.2, we provide continual learning results on the IRCC benchmark [Abdelsalam

et al., 2021]. In Section B.4 we investigate to which extent MILe is able to recover labels
that were not present in the original dataset. In Section B.4 we provide additional details
on the domain generalization experiment. In Section B.6, we provide additional results for
multi-label classification on CelebA. In Section B.7, we test additional iterated learning
schedules such as that of noisy student.

B.2. IIRC benchmark
We explore whether MILe can incrementally learn an increasingly complex class hierarchy

by teaching previously seen tasks to new generations. We experiment with Incremental
Implicitly-Refined Classification (IIRC) [Abdelsalam et al., 2021], an extension to the class
incremental learning setup [Masana et al., 2020] where the incoming batches of classes have
two granularity levels, e.g. a coarse and a fine label. Labels are seen one at a time, and fine
labels for a given coarse class are introduced after that coarser class is visited. The goal is to
incorporate new finer-grained information into existing knowledge in a similar way as humans
learn di�erent breeds of dogs after learning the concept of dog.

B.2.1. Metrics

As it can be seen in Fig. B.2.1, the two reported metrics are the precision-weighted
Jaccard similarity and the mean precision-weighted Jaccard similarity.
Precision-weighted Jaccard Similarity. The Jaccard similarity (JS) refers to the intersection
over union between model predictions Ŷi and ground truth Yi for the ith sample:

JS = 1
n

nÿ

i=1

|Yi fl Ŷi|
|Yi fi Ŷi|

, (B.2.1)



The precision-weighted JS for task k is the product between the JS and the precision for the
samples belonging to that task:

Rjk = 1
nk

nkÿ

i=1

|Yik fl Ŷik|
|Yik fi Ŷik|

◊ |Yik fl Ŷik|
Ŷik

where (j Ø k), Ŷik is the set of (model) predictions for the ith sample in the kth task,
Yik are the ground truth labels, and nk is number of samples in the task. Rjk can be used
as a proxy for the model’s performance on the kth task as it trains on more tasks (i.e. as j
increases).
Mean precision-weighted Jaccard similarity. We evaluate the overall performance of the model
after training until the task j, as the average precision-weighted Jaccard similarity over all
the classes that the model has encountered so far. Note that during this evaluation, the
model has to predict all the correct labels for a given sample, even if the labels were seen
across di�erent tasks.

B.2.2. Results.

Following the procedure described by Abdelsalam et al. [2021], we train a ResNet-50 on
ImageNet and a reduced ResNet-32 on CIFAR100. Also following Abdelsalam et al. [2021],
we compare with an experience replay (ER) baseline and a finetune lower-bound. We report
the model’s overall performance after training until task i as the precision-weighted Jaccard
similarity between the model predictions and the ground-truth multi-labels over all classes
encountered so far. We report IIRC-ImageNet-lite evaluation scores in Fig. B.2.1a and CIFAR
in Fig. B.2.1b. In all cases, we find that iterative learning increases the performance with
respect to the ER baseline by a constant factor. This suggests that MILe helps prevent
forgetting previously seen labels by propagating them through the iterated learning procedure.

B.3. Self-supervised implementation details
We obtained the performance of R50-2x+SK from Table 2 in the SimCLRv2 paper [Chen

et al., 2020c]. As for MILe, we use our best model based on R50-1x+SK from Table 4, using
the teacher to predict pseudo-labels on the same unlabeled set designed in the SimCLRv2
o�cial codebase. The results for self-distilled SimCLRv2 with R50-1x+SK are obtained
with the original ImageNet validation code and pre-trained model provided in the o�cial
SimCLRv2 repository.

B.4. ReaL label recovery
The goal of MILe is to alleviate the problem of label ambiguity by recovering all the

alternative labels for a given sample. We define alternative labels as those that were not
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(a) IIRC-ImageNet

(b) IIRC-CIFAR10

Fig. B.2.1. IIRC evaluation. (a) Average performance on IIRC-ImageNet-lite. (b) Average
performance on IIRC-CIFAR10. We run experiments on five di�erent task configurations
and report the mean and standard deviation. Left: average performance when the tasks are
equally weighted irrespective of how many samples exist per task. Right: average performance
over the number of samples. In this case, the first task has more weight since it is larger in
the number of samples.

originally present in the ground truth. In this section, we evaluate how much of those
alternative labels are recovered with MILe.

Method ResNet-50 ResNet-18
10% data 100% data 10% data 100% data

Softmax 0.2171 0.2679 0.1983 0.2648
Sigmoid 0.2310 0.2845 0.2047 0.2836
MILe (ours) 0.3042 0.3248 0.2187 0.2880

Table B.4.1. Secondary label recovery. Mean average precision over labels that appear in
ReaL but not in the original ImageNet validation set.
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Fig. B.4.2. ColoredMNIST+. During training, the model is asked to classifier either
digits or colors. Digits are highly correlated with their color, e.g. 0-4 tend to be green while
5-9 tend to be red. At test time, digits are less correlated with color.

Method CMNIST CMNIST+
ERM 51.6± 0.1 51.1 ± 0.1
IRM [Arjovsky et al., 2019] 51.8± 0.1 51.2 ± 0.2
REx [Krueger et al., 2020] 51.6± 0.1 51.2 ± 0.2
MILe (ours) 51.8± 0.1 53.5 ± 0.6

Table B.4.2. OOD generalization on ColoredMNIST [Arjovsky et al., 2019] (CMNIST),
which consists of predicting digits and ColoredMNIST+, which consists of color or digit
prediction.

Table B.4.1 displays the mean average precision on the alternative labels present in
ReaL [Beyer et al., 2020]. As it can be seen, MILe is able to recover up to 7% more labels
than replacing softmax by sigmoid and binary cross entropy during training.

B.5. Domain Generalization Experiments
A common problem of machine-learning models is that they tend to fail when presented

with out-of-distribution data [Beery et al., 2018]. Arjovsky et al. [2019] claimed that this
happens due to models relying on spurious correlations rather than the causal factors of
the data. Thus, we investigate whether iterative learning can reduce the e�ect of spurious
correlations by allowing the model to produce independent predictions of the two correlated
factors. Following Arjovsky et al. [2019], we perform experiments on ColoredMNIST [Arjovsky
et al., 2019], a version of MNIST where the color of the digits is spuriously correlated with
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their value. The spurious correlation is removed at test time, i.e. colors are assigned randomly,
to reveal whether models are a�ected by color. During training, data is sampled from two
di�erent image-label distributions or environments. In the first one, the correlation between
digit and color is 90% and in the second is 80%. The correlation between the digit and color
is 10% at test time. Since we want to explore the e�ect on generalization when the model is
able to predict the digit and the color independently, we add a 33% chance of showing a blank
image with no digit and only background color, where the background color is the label. This
would be equivalent to a "beach" class in ImageNet. Note that this change does not remove
the spurious correlations between the existing digits and their color. We call this benchmark
ColoredMNIST+, see Fig. B.4.2. During training, iterated learning builds a multi-label
representation of the digits, often including their color, leading to better disentanglement of
the concepts "digits" and "color".
Results. We compare with invariant risk minimization (IRM) [Arjovsky et al., 2019] and risk
extrapolation (REx) [Krueger et al., 2020] based on the DomainBed implementation [Gul-
rajani and Lopez-Paz, 2020]. These two approaches leverage di�erences between multiple
environments, with di�erent levels of correlation between digit and color, to become invariant
to spurious attributes.We report results in Table B.4.2. MILe surpasses REx by 2 points.
Interestingly, even though ERM and IRM are also required to solve the color classification
task, only iterated learning is able to use it to improve performance. Although the color and
digit prediction tasks are mutually exclusive, during iterated learning the teacher produces
labels for both tasks simultaneously and thus the student learns to predict the color even for
images that contain a digit. This helps the model to learn that these are two independent
attributes, boosting its performance. In order to investigate how models perform outside
of their original training distribution, Arjovsky et al. [2019] introduced ColoredMNIST, a
dataset of digits presented in di�erent colors. In order to create spurious correlations, the
color of the digits is highly correlated with the value itself.

B.6. Multi-label classification on CelebA
We provide results on CelebA [Liu et al., 2015], a multi-label dataset. CelebA is a

large-scale dataset of facial attributes with more than 200K celebrity images, each with 40
attribute annotations that are known to be noisy [Speth and Hand, 2019]. We report results
in Table B.6.3. Interestingly, despite the fact that CelebA is a multi-label dataset, we observe
a ≥ 1% improvement in F1 score when using the proposed iterative learning procedure. This
along with per-class balanced accuracy in Table B.6.4 is in line with our hypothesis that the
iterated learning bottleneck has a regularization e�ect that prevents the model from learning
noisy labels [Lu et al., 2020a]. It is worth noting that MILe shows improved scores for the
attributes that are di�cult to classify such as big-lips, arched-eyebrows and moustache.
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Method F1-score
CE-Sigmoid 80.14
ResNet-18(FPR) [Bekele and Lawson, 2019] 77.55
ResNet-34 (FPR) [Bekele and Lawson, 2019] 79.96
MILe (ours) 81.40

Table B.6.3. Comparison on CelebA multi-attribute classification. Just as in ReaL ImageNet
validation, we use F1-score (based on the intersection over union) measure to evaluate the methods.
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Triplet-kNN Schro� et al. [2015] 91 92 57 47 82 61 63 61 60 64 71 92 63 77 69 84 91 50 73 75
PANDA Zhang et al. [2014] 99 93 63 51 87 66 69 67 67 68 81 98 66 78 77 90 97 51 85 78
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MILe 99 95 74 77 94 64 75 69 77 74 87 94 74 83 84 94 93 56 77 81

Table B.6.4. Mean per-class balanced accuracy in percentage points for each of the 40 face
attributes on CelebA.

B.7. Comparisons with Noisy Student Scheduling
Xie et al. [2020] introduced noisy student for labeling unlabeled data during semi-supervised

learning. This is di�erent from the goal of MILe, which is to construct a new multi-label
representation of the images from single labels. Di�erent from MILe, which trains a succession
of short-lived teacher and student models, noisy student trains the model three times until
convergence. This raises the question of how would MILe perform if it followed noisy student’s
iteration schedule instead of the one introduced in the main text.

In Fig. B.7.3 we compare the performance of the best MILe iteration schedule with the
NS schedule. We found that MILe achieves the best performance in terms of the ReaL-F1
score.
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Fig. B.7.3. Ablation study. Comparison between di�erent iteration schedules. (a)
Comparison with noisy student (NS). (b)(c) Sweep over length of interactive learning phase
kt and length of imitation phase ks. We report the ReaL-F1 score for 10% (b) and 100% (c)
data fraction.
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Appendix C

Appendix for Chapter 8

In this Supplementary Material section, we provide additional details concerning various
elements which could not be elaborated on in the main paper. We begin with a detailed
description of the proposed MiniTouch benchmark. We outline the action space, state space,
and reward structure for each of the tasks. This is followed by a closer look into the various
aspects of the haptics-control module including architectures, experimental procedures, hyper-
parameters, and additional results. We include an ablation experiment at the end that
investigates the usefulness larger exploration phase while solving each of the tasks.

C.1. MiniTouch Tasks
This section describes the cross-modal benchmark of simulated manipulation tasks, which

we make use of and release as part of the paper. Unlike these prior simulation benchmarks,
we particularly focus on providing a platform where one can use cross-modal information to
solve diverse manipulation tasks. Existing benchmarks Yu et al. [2019] do not include touch
modality. An overview of the tasks in MiniTouch is outlined in Figure 8.3. These tasks are
built o� Pybullet Coumans and Bai [2016–2019] physics engine and contain di�erent scene
setups for each of the four tasks. The details of each of these tasks are further expanded. All
the four tasks are compiled together as a “MiniTouch" benchmark suitable for evaluating
interaction-based algorithms.

Playing: This environment is intended as a toy task to evaluate interaction frequency
and does not feature any reward beyond interaction count. A cube is placed in a random
position on a table at each episode. The agent needs to localize and interact with the cube.

Pushing: In this task, the agent needs to push an object placed randomly on a table
to a target (visually indicated as a gray cube). The object position is sampled uniformly
in polar coordinates around the target object (i.e. angle 0 to 360 degrees, distance 10 to
20 centimeters). The end e�ector’s start position is sampled in the same way as the target
position. In addition, the orientation of the gripper is fixed to be perpendicular to the ground



all the time. The robot agent succeeds and receives a reward of +25 if the distance between
the cube and the target object is less than 7 centimeters. A new episode starts if the agent
succeeds. The environment also restarts if the cube is placed or pushed beyond a predefined
bounding box comprising of acceptable positions on the table (i.e. positions that can be
reached by the robot hand).

Opening: A cabinet with a door is randomly placed in reach of the agent. The goal
is to find the door handle and open the door. The gripper orientation is fixed to point its
fingers towards the door, parallel to the ground. For this task, the fingers are discretized to
be open or closed. In addition, a fifth element is added to the action vector to control the yaw
(relative rotation of the end-e�ector) to be able to approach the door. The robot succeeds
and receives a reward of +25 when the angle of the door opening reaches thirty degrees or
higher. Similar to the pushing task, a new episode starts if the agent reaches the goal.

Pick-up: In this environment, the agent needs to grasp and lift a randomly placed object.
The agent’s goal is to lift the object 5cm above the table. The agent receives a reward of +25
upon success. The object is placed uniformly randomly on a table. Similar to the Opening
task, the end e�ector opening/closing is discretized, meaning when its internal continuous
variable is below a threshold, the gripper closes, otherwise it remains open.

All of the tasks are implemented in the Pybullet physics engine Coumans and Bai
[2016–2019], which is a free and open-source library that enables fast simulation.

C.1.1. MiniTouch Library:

The task environment used in the experiments is packaged and released as a python
library that can be easily plugged into the training code. Setup instructions, code, and other
details can be found in the README file included in the repository.

C.1.2. HaC and baselines:

We used the following open-source implementations for the baselines. We were able to
reproduce the results from their papers before attempting to use them as baselines for our
model:

ICM
https://github.com/openai/large-scale-curiosity

Disagreement:
https://github.com/danijar/dreamerv2
https://github.com/pathak22/exploration-by-disagreement

RND:
https://github.com/openai/random-network-distillation

https://github.com/ElementAI/MiniTouch
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C.2. Experimental Details
State space: The input states are a combination of visual and touch vector input. The

visual input is a grayscale rendering of the scene with dimension 84◊84, pre-processed similarly
to Mnih et al. [2016]. Image observations are captured from a static camera overlooking
each scene. The touch vector input is composed of the 3-dimensional end-e�ector position,
2-dimensional finger position, ranging from 0 to 1, each denoting how far apart each finger
is, and the 6-dimensional force/torque values. In total, the touch vector is 11-dimensional,
S œ R11.
Action space: Actions are expressed as 4-dimensional continuous vectors. The first three
elements describe the desired o�set for the end e�ector at the next timestep based on its
current position. The last dimension controls the relative desired distance between the two
fingers at the next timestep.
Training. We use SAC Haarnoja et al. [2018] as the optimizer for our agent. Our training is
composed of two phases as described in the main paper. (i)Exploration phase, (ii)Downstream
task phase. In the exploratory phase (curiosity part) agent is trained using our intrinsic
reward alone. In the task phase, network weights are seeded from the ones in the exploratory
phase. We also retain the replay bu�er from the exploratory phase in the downstream task
phase. Duration of the exploration phase can be adjusted in the code using a hyper-parameter
stop-curiosity. We have two hyper-parameters that change between the two phases, (i) –

and (ii) the learning rate of the SAC algorithm. Details of hyper-parameters used for our
experiments are outlined in Table C.2.1 and Table C.2.2.

SAC pretraining and training hyperparameters
Parameter type Value

optimizer Adam
Visual network Table C.2.2
learning rate 3.10≠5

number of samples per minibatch 128
reward scale 100
replay bu�er size 106

number of hidden units per layer 128
number of hidden layers (all networks) 2
activation LeakyReLU
discount factor 0.99

Table C.2.1. SAC parameters during pretraining and training.
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(a) (b)

Fig. C.3.1. Object Interaction for Opening task. (a) shows the average variance in
door angle across the entire episode (note that the absolute variance is low but corresponds
to successful door openings towards the end of training for HaC) and in (b), we count the
number of touch interactions in the same task.

Encoder network
Layer Number of outputs Kernel size Stride Activation function

Input x 84 ú 84 ú 1
Convolution 20*20*32 8 ú 8 4 LeakyReLU
Convolution 8*8*64 4 ú 4 2 LeakyReLU
Convolution 4*4*124 3 ú 3 1 LeakyReLU
Convolution 2*2*256 2 ú 2 1 LeakyReLU
Fully-connected 256 1 LeakyReLU

Table C.2.2. Visual network.

C.3. Object Interaction
As touched up in the experiments section of the main paper, Figure C.3.1 depicts the

touch interaction and door movement metrics for the Opening task. We make a similar
observation to the result showed in Figure 8.4 for the Playing task. A higher touch-interaction
need not indicate better object-movement. Agent can resort to constantly engaging with the
object in a passive manner. HaC collects rich interaction data during the exploratory phase
and helps the agent in terms of sample e�ciency while solving the downstream tasks.

C.4. Additional Ablations
Does longer exploration help? We observe that having a longer exploratory phase

of training with intrinsic reward alone usually benefits the overall performance. We can
observe from Figure 8.5 that HaC attains decent success in the exploratory phase without any
external reward on most of the tasks. This is because it encourages better associations and
a larger collection of interesting configurations in the replay. The e�ect of the exploratory
step is further studied and the results on all of the downstream tasks with di�erent duration
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Metric Pushing Open Door Pick-up Playing

HaC RND+touch RND HaC RND+touch RND HaC HaC-RND RND HaC RND+touch RND

Exploration ø 0.403 0.181 0.077 0.669 0.564 0.380 0.063 0.013 0.005 - - -
Success ø 0.733 0.710 0.582 0.983 0.921 0.875 0.891 0.593 0.450 - - -

Episode steps ¿. 57.84 55.20 97.51 23.34 23.54 37.92 30.54 52.29 89.88 - - -
Touch-interaction ø 247.79 227.75 206.02 600.1 411.43 194.22 980.7 894.5 725.1 388.15 312.0 124.5

Table C.4.3. Random Network Distillation (RND) with touch This table compares
the mean evaluations for HaC and RND+touch on all the four tasks emphasizing the
importance of the cross-modal association(see text). We omit measuring success and episode
steps for playing task since success there is equivalent to object-interaction and has no explicit
goal.

.

of exploration are compiled in Figure C.4.2. We depict the episode convergence steps and
success rate to visualize the trend as expected.

Touch in Random Network Distillation We created an additional baseline
RND+touch similar to touch in future prediction (ICM+touch) baseline. In this setting, the
input to the random target network and predictor network (that predicts the outcome of
target network) consists of both touch and visual feature vector concatenated. The baseline
beats the vision only version by a margin for both Pushing and picking tasks as shown in
the Table. C.4.3, however for the Open-door tasks the improvement is not that significant.
Although RND+touch is comparable with HaC for the Pushing task on the success rate,
HaC has better sample e�ciency as measured by episode steps. We believe this is because
object movement is crucial for the pushing task compared to interaction, and prediction
based techniques such as RND could be helpful in such settings.

Comparisons with Generalization to Novel shapes: It is desirable for an agent
to be able to handle diverse shapes in order to be robust across arbitrary manipulation
settings. We study this using an environment in which an object is sampled from a thousand
procedurally generated objects. The objects are dissimilar with respect to shape and mass
but are sampled from the same generative distribution. Out of 1000 di�erent objects, 800
of them are used in the training phase, and we evaluate the agent’s e�ectiveness on the
remaining 200 unseen object shapes.

Although generalization to novel shapes is not the problem setting our method focuses
on. We perform this proof of concept ablations to investigate that HaC parameters in
the exploratory phase are not just reusable across di�erent tasks with similar shapes (Eg:
Playing, Pushing, and Picking), but also can help generalize when applied to distinctive
shapes sampled from a similar distribution. Figure C.4.3 shows touch interaction and object
movement evaluations for a single object exploration task. We compare HaC with ICM and
Disagreement baselines. . The results validate that our model generalizes to unseen object
configurations.
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Fig. C.4.2. Longer exploratory phase helps Success and episode steps evaluations on
di�erent tasks for di�erent lengths of exploratory phase. Darker shading indicates longer
exploration.

C.5. Real world use cases:
It is possible to define safety boundaries for a robot arm (e.g. don’t hit the table,

don’t move outside the arena boundaries) and have a robot arm autonomously and task-
independently collect data for phase 1 of our method. In addition to this, we would like to
point out that (a) in the pushing and pick-up tasks, only 5-10k steps are required for decent
performance on the downstream task and (b) what we call a “step” is however long it takes
the inverse kinematic solver to move the arm to the new end e�ector pose (that was generated
by the policy). If many of the generated poses cluster together, that dramatically reduces
runtime of the curiosity phase making it more suitable to real-world applicability. While no
real robot data have been used in the experiments, our method is data agnostic. We note
that the physics engine can be replaced by real-world data as there is no bias introduced in
process. The networks used for the curiosity prediction task can be easily adapted, if needed,
to accommodate inputs from a real robotic platform. As a next step and when restrictions are
eased, we plan to implement this method on a physical system and replicate our experiments.
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(a) HaC (b) ICM (c) Disagreement (d) SAC

Fig. C.4.3. Generalization to novel shapes baseline comparisons. Each column
outlines Success and Episode steps for HaC, ICM, Disagreement and SAC baselines respectively.
Disagreement has better generalization and reduced variance compared to ICM on the unseen
categories. HaC is comparable to Disagreement on generalization performance while displaying
better success and Episode steps rates.
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Appendix D

Appendix for Chapter 10

D.1. Reference scores
We report the performance of the Dreamer@2M oracle agent, trained with environment

rewards on the twelve tasks of the URL benchmark. In Figure D.1.1, We show normalized
performance to compare to the DrQ-v2’s scores from Laskin et al. [2021], which can be found
at: https://github.com/rll-research/url_benchmark/issues/1.

Fig. D.1.1. Dreamer oracle normalized scores. Dreamer scores on the URLB tasks
normalized by the scores of DrQ-v2 [Laskin et al., 2021].



In Table D.1, we report the mean scores for DrQ-v2, used as reference scores in the
URLB paper, and for Dreamer@2M, which we use to normalize returns in our work. We
additionally report mean and standard deviations for the best performing baseline from
URLB. which is Disagreement [Pathak et al., 2019b], and our best performing method, which
is LBS+TD-MPC (with no actor initialization for Jaco). We notice that the LBS+TD-MPC
scores approach the Dreamer@2M’s scores in several tasks, eventually outperforming them in
a few tasks (e.g. Walker Flip, Quadruped Jump). We believe this merit of LBS+TD-MPC is
due both to the exploration pre-training, which may have found more rewarding trajectories
than greedy supervised RL optimization, and of the improved planning strategy [Hansen
et al., 2022].

Pre-trainining for 2M environment steps
Domain Task URLB Expert URLB Disagreement Dreamer@2M LBS+TD-MPC

Walker

Flip 799 346 ± 13 778 938 ± 12
Run 796 208 ± 15 724 596 ± 38

Stand 984 746 ± 34 909 973 ± 14
Walk 971 549 ± 37 965 959 ± 1

Quadruped

Jump 888 389 ± 62 753 822 ± 33
Run 888 337 ± 30 904 642 ± 99

Stand 920 512 ± 89 945 927 ± 28
Walk 866 293 ± 37 947 816 ± 61

Jaco

Reach bottom left 193 124 ± 7 222 225 ± 6
Reach bottom right 203 115 ± 10 225 221 ± 10

Reach top left 191 106 ± 12 213 226 ± 5
Reach top right 223 139 ± 7 224 227 ± 2

Table D.1.1. Performance of expert baseline and the best method on pixel-based URLB
from Laskin et al. [2021] and performance of our oracle baseline (Dreamer@2M) and best
approach (LBS+TD-MPC), after pre-training for 2M steps and fine-tuning for 100k steps.

In Section 10.4.2, we presented results in the RWRL benchmark using the normalization
scores of the vanilla environments, as in Table D.1.1. However, the scores of the oracle may
be lower on the more di�cult RWRL tasks. In Figure D.1.2, we present the same results
re-normalized by the performance of Dreamer@2M trained on each of the 8 tasks (2 vanilla +
6 RWRL tasks on di�erent intensity settings). Other than better highlighting the findings
presented in Section 10.4.2, the results show that on the Walker Easy and on the Quadruped
Easy and Medium settings our method recovers > 80% of the supervised baseline performance,
while using 20x less task-specific data. This strengthens the hypothesis that our method can
be used to transfer e�ciently to more realistic settings.
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D.2. Unsupervised Reinforcement Learning Strategies
We summarize the unsupervised RL approaches adopted in our work. For all approaches,

rewards have been normalized during training using an exponential moving average with
momentum 0.95.
ICM.. The Intrinsic Curiosity Module (ICM; Pathak et al. [2017b]) defines intrinsic rewards
as the error between states projected in a feature space and a feature dynamics model’s
predictions. We use the Dreamer agent encoder et = f„(st) to obtain features and train a
forward dynamics model g(et|et≠1, at≠1) to compute rewards as:

rt
ICM Ã Îg(et|et≠1, at≠1) ≠ etÎ2.

As ICM requires environment states to compute rewards, we train a reward predictor to allow
estimating rewards in imagination.
Plan2Explore. The Plan2Explore algorithm [Sekar et al., 2020] is an adaptation of the
Disagreement algorithm [Pathak et al., 2019b] for latent dynamics models. An ensemble of
forward dynamics models is trained to predict the features embedding et = f„(st), given the
previous latent state and actions, i.e. g(et|zt≠1, at≠1, wk), where wk are the parameters of the
k-th predictor. Intrinsic rewards are defined as the variance of the ensemble predictions:

rt
P2E Ã Var({g(et|zt≠1, at≠1, wk)|k œ [1, ..., K]}).

Plan2Explore requires only latent states and actions, thus it can be computed directly in
imagination. We used an ensemble of 5 models.
RND.. Random Network Distillation (RND; Burda et al. [2019b]) learns to predict the
output of a randomly initialized network n(st) that projects the states into a more compact
random feature space. As the random network is not updated during training, the prediction

Fig. D.1.2. Results on RWRL re-normalized. Results on RWRL normalized by the
scores of Dreamer@2M trained on each of the RWRL tasks. Models are pre-trained on
the vanilla version of the environment for 2M steps and fine-tuned for 100k steps on the
perturbated tasks from RWRL.
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error should diminish for already visited states. Intrinsic reward here is defined as:

rt
RND Ã Îg(st) ≠ n(st)Î2

As RND requires environment states to compute rewards, we train a reward predictor to
allow estimating rewards in imagination.
LBS.. In Latent Bayesian Surprise (LBS; Mazzaglia et al. [2021]), they use the KL divergence
between the posterior and the prior of a latent dynamics model as a proxy for the information
gained with respect to the latent state variable, by observing new states. Rewards are
computed as:

rt
LBS Ã DKL[q(zt|zt≠1, at≠1, et)Îp(zt|zt≠1, at≠1)]

As LBS requires environment states to compute rewards, we train a reward predictor to allow
estimating rewards in imagination.
APT.. Active Pre-training (APT; Liu and Abbeel [2021b]) uses a particle-based estimator
based on the K nearest-neighbors algorithm Singh et al. [2003] to estimate entropy for a
given state. We implement APT on top of the deterministic component of the latent states
z̄t, providing rewards as:

rt
APT Ã

kÿ

i

log Îz̄t ≠ z̄i

t
Î2,

where k are the nearest-neighbors states in latent space. As APT requires only latent states,
it can be computed directly in imagination. We used k = 12 nearest neighbors.
DIAYN.. Diversity is All you need (DIAYN; Eysenbach et al. [2019]) maximizes the mutual
information between the states and latent skills w. We implement DIAYN on top of the
latent space of Dreamer, writing the mutual information as I(wt, zt) = H(wt) ≠ H(wt|zt).
The entropy H(wt) is kept maximal by sampling wt ≥ p(wt) from a discrete uniform prior
distribution, while H(wt|zt) is estimated learning a discriminator q(wt|zt). Additionally,
DIAYN maximizes the entropy of the actor, so we compute intrinsic rewards as:

rt
DIAYN Ã log q(wt|zt) ≠ log fi(at|zt)

As DIAYN requires environment states and sampled skills to compute rewards, we train a
reward predictor to allow estimating rewards in imagination.
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D.3. Algorithm

Algorithm 3 Model-based Unsupervised RL
Require: Actor ◊, Critic Â, World Model „
Require: Intrinsic reward rint, extrinsic reward rext

Require: Environment, M , downstream tasks Tk, k œ [1, . . . ,M ]
Require: Pre-train steps NPT, fine-tune steps NFT, environment steps/update ·
Require: Initial model state z0, hybrid planner Plan, replay bu�ers DPT, DFT

1: for t = 0, . . . ,NPT do
2: Draw action from the actor, at ≥ fi◊(at|zt)
3: Apply action to the environment, st+1 ≥ P (·|st, at)
4: Add transition to replay bu�er, DPT Ω DPT fi (st, at, st+1)
5: Infer model state, zt+1 ≥ q(zt+1|zt, at, f„(st+1))
6: if t mod · = 0 then
7: Update world model parameters „ on the data from the replay bu�er DPT
8: Update actor-critic parameters {◊,Â} in imagination, maximizing rint

9: end if
10: end for
11: Output pre-trained parameters {ÂPT, ◊PT,„PT}
12: for Tk œ [T1, . . . , TM ] do
13: Initialize fine-tuning world-model with „PT
14: (Optional) Initialize fine-tuning actor with ◊PT
15: for t = 0, . . . ,NFT do
16: Use the planner for selecting action, at ≥ Plan(zt)
17: Apply action to the environment, st+1, rext

t
≥ P (·|st, at)

18: Add transition to replay bu�er, DFT Ω DFT fi (st, at, rext
t

, st+1)
19: Infer model state, zt+1 ≥ q(zt+1|zt, at, f„(st+1))
20: if t mod · = 0 then
21: Update world model parameters „ on the data from the replay bu�er DFT
22: Update actor-critic parameters {◊,Â} in imagination, maximizing rext

23: end if
24: end for
25: Evaluate performance on Tk

26: end for
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D.4. Hyperparameters
Most of the hyperparameters we used for world-model training are the same as in the

original DreamerV2 work [Hafner et al., 2021]. Specific details are as outline here:

Name Value
World Model
Batch size 50
Sequence length 50
Discrete latent state dimension 32
Discrete latent classes 32
GRU cell dimension 200
KL free nats 1
KL balancing 0.8
Adam learning rate 3 · 10≠4

Slow critic update interval 100
Actor-Critic
Imagination horizon 15
“ parameter 0.99
⁄ parameter 0.95
Adam learning rate 8 · 10≠5

Actor entropy loss scale 1 · 10≠4

TD-MPC
Iterations 12
Number of samples 512
Number of elite actions 64
Mixture coe�cient (Actor/CEM) 0.05
Min std (fixed) 0.1
Temperature 0.5
Momentum 0.1
Horizon 5
Common
Environment steps/update 5
MLP number of layers 4
MLP number of units 400
Hidden layers dimension 400
Adam epsilon 1 · 10≠5

Weight decay 1 · 10≠6

Gradient clipping 100

Table D.4.2. World model, actor-critic, planner (TD-MPC) and common hyperparameters.
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For the pure MPC-based experiments, we increased the number of MPPI samples from
512 to 1000, the number of elite actions from 64 to 100, and the horizon from 5 to 15.

D.5. Additional Results
We present complete results, for each unsupervised RL method, for the experiments in

Section 10.4, when using only the actor-critic algorithm, in Figure D.6.3, and when also
employing the hybrid planner, in Figure D.6.4.

D.6. RWRL settings
We take the Quadruped and Walker tasks from the RWRL benchmark and replace

the low-dimensional sensor inputs with RGB camera inputs. While this removes some of
the perturbations planned in the benchmark [Dulac-Arnold et al., 2020a], such as noise in
observation space, it introduces the di�culty of a di�erent dynamics in pixel space (due to
the other perturbations), compared to the one observed during pre-training in the vanilla
simulation environment.

Setting Easy Medium Hard

System Delays Time Steps Time Steps Time Steps
Action 3 6 9
Rewards 10 20 40
Action Repetition 1 2 3
Gaussian Noise Std. Deviation Std. Deviation Std. Deviation
Action 0.1 0.3 1.0
Perturbation [Min,Max] Std. [Min,Max] Std. [Min,Max] Std.
Quadruped

(shin length) [0.25, 0.3] 0.005 [0.25, 0.8] 0.05 [0.25, 1.4] 0.1
Perturbation [Min,Max] Std. [Min,Max] Std. [Min,Max] Std.
Walker

(thigh length) [0.225, 0.25] 0.002 [0.225, 0.4] 0.015 [0.15, 0.55]] 0.04

Table D.6.3. Perturbations setting for each challenge of our adapted tasks from the RWRL
benchmark, in increasing levels of intensity.
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(a) Default (b) w/ PT Critic

(c) w/o PT Actor

Fig. D.6.3. Results for all unsupervised approaches, when using actor-critic for action
selection.

(a) Default + Plan (b) Jaco w/o PT Actor + Plan

Fig. D.6.4. Results for all unsupervised approaches, when using the hybrid planner.
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