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Résumé

Le besoin grandissant pour une planification urbaine plus durable et pour des interven-
tions publiques visant à l’amélioration du bien-être collectif, ont grandement contribué à
un engouement pour les espaces verts. Les parcs sont reconnus pour leur impact positif
en zone urbaine dense, et nous sommes intéressés par l’application des concepts théoriques
du domaine de la recherche opérationnelle pour assister les décideurs publics afin d’amé-
liorer l’accessibilité, la distribution et la conception des parcs. Étant donné le contexte,
nous sommes particulièrement motivés par le concept d’équité, et étudions le comportement
des usagers des parcs à l’aide d’un modèle d’interaction spatiale, tel qu’appliqué dans les
problèmes d’emplacement d’installations dans un marché compétitif. Dans cette recherche,
nous présentons un modèle d’emplacement d’installations à deux étapes pouvant être adapté
pour assister les décideurs publics à l’échelle de la ville. Nous étudions spécifiquement l’ap-
plication aux espaces verts urbains, mais soulignons que des extensions du modèle peuvent
permettre d’aborder d’autres problèmes d’emplacements d’installations sujets à des enjeux
d’équité. La première étape de notre problème d’optimisation a pour but d’évaluer l’allo-
cation la plus équitable du budget de la ville aux arrondissements, basé sur une somme du
budget pondérée par des facteurs d’équité. Dans la deuxième étape du modèle, nous cher-
chons l’emplacement et la conception optimale des parcs, et l’objectif consiste à maximiser
la probabilité totale que les individus visitent les parcs. Étant donné la non-linéarité de
la fonction objective, nous appliquons une méthode de linéarisation et obtenons un modèle
de programmation linéaire mixte en nombres entiers, pouvant être résolu avec des solveurs
standards. Nous introduisons aussi une méthode de regroupement pour réduire la taille du
problème, et ainsi trouver des solutions quasi optimales dans un délai raisonnable. Le modèle
est testé à l’aide de l’étude de cas de la ville de Montréal, Canada, et nous présentons une
analyse comparative des résultats afin de justifier la performance de notre modèle.

Mots Clés : Emplacement des installations; programmation en nombres entiers; modèles
d’interaction spatiale; espaces verts urbains; prise de décision de la ville; équité.
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Abstract

The recent promotion of sustainable urban planning combined with a growing need for public
interventions to improve well-being and health in dense urban areas have led to an increased
collective interest for green spaces. Parks have proven a wide range of benefits in urban areas,
and we are interested in the application of theoretical concepts from the field of Operations
Research to assist decision-makers to improve parks’ accessibility, distribution and design.
Given the context of public decision-making, we are particularly concerned with the concept
of fairness, and are focused on an advanced assessment of users’ behavior using a spatial
interaction model (SIM) as in competitive facility locations’ frameworks. In this research,
we present a two-stage fair facility location and design (2SFFLD) model, which serves as a
template model to assist public decision-makers at the city-level for the urban green spaces
(UGSs) planning. We study the application of the 2SFFLD model to UGSs, but emphasize
the potential extension to other applications to location problems concerned with fairness and
equity. The first-stage of the optimization problem is about the optimal budget allocation
based on a total fair-weighted budget formula. The second-stage seeks the optimal location
and design of parks, and the objective consists of maximizing the total expected probability
of individuals visiting parks. Given the non-linearity of the objective function, we apply a
“Method-based Linearization” and obtain a mixed-integer linear program that can be solved
with standard solvers. We further introduce a clustering method to reduce the size of the
problem and determine a close to optimal solution within reasonable time constraints. The
model is tested using the case study of the city of Montreal, Canada, and comparative results
are discussed in detail to justify the performance of the model.

Keywords : Facility location problem; mixed-integer programming; spacial interaction
models; urban green spaces; city decision-making; fairness.
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Introduction

Context
The need to improve green spaces coverage and their accessibility in urban areas has been

extensively acknowledged in different fields of studies, whether it is to respond to environ-
mental or health challenges. In the 2017 WHO1 report “Urban Green Space Interventions
and Health: A review of impacts and effectiveness” [WHO, 2017], it was made evident that
increased attention should be given by policymakers towards urban greening investments.
In this detailed paper, we are provided with recommended methods for implementing green
space interventions in urban settings. These recommendations are built with the intent of
improving equity and health, in all of its forms. This is defended by suggesting, for example,
to make use of existing collected datasets about green spaces usage and deprivation levels,
or to gain a better understanding of the local demographics and parks’ users. Although few
studies have measured with precision the magnitude of the impact of green space installa-
tions on health, well-being, social equity or pollution, the authors also emphasize that few
other public infrastructures can also address these targeted benefits with as much potential
effect as green spaces. In respond to this report, it appears that a collaboration between re-
searchers and practitioners in the field of health and urban planning would lead to interesting
solutions and initiatives.

In addition, the current context of the Covid-19 pandemic brings to light the perceived
value of society towards parks and green spaces. Indeed, a surprising stream of studies
emerged with the intent to assess the distribution inequalities and the increase of perceived
importance of urban green spaces in times of crisis. Studies and surveys conducted in Belgium
[da Schio et al., 2021], Berlin [Collins et al., 2022], China [Zhang et al., 2022], Madrid [Maury-
Mora et al., 2022], Mexico City [Mayen Huerta and Utomo, 2021], New-York City [Lopez
et al., 2021] and Poland [Noszczyk et al., 2022] unanimously suggest that policymakers invest
in improved accessibility to green spaces.

We should also mention that such interventions are considered as sustainable urban devel-
opment initiatives, which is of particular interest when intense urban densification is observed

1World Health Organization



[Haaland and van den Bosch, 2015]. Furthermore, the increasing collective enthusiasm of
the last years towards the field of data science provoked a surge of research using large scale
data to improve predictions and better model real-world problems.

In this context, we are faced with the question of how can the field of Operations Research
and computer science contribute to the concrete implementation of urban greening actions,
and prove how the collaboration between practitioners and researchers can lead to realistic
solutions for social good. For this purpose, we are interested in a model formulation which
encompasses common urban planning considerations, while making use of reliable data as an
input to recommend a method for improving the distribution and accessibility of parks. As
suggested in WHO [2017], interventions include either the installation of new urban green
spaces, or improvement of existing ones, with design options deemed with an important role
in this decision process. In the following sections, we give a brief introduction of our work
that was motived by this context. We start by stating the research problem that we attempt
to answer with our work, followed by our contribution to the field, and conclude with the
outline of this thesis.

Problem Statement
The question we are interested in is: how can we leverage existent data and promote

fairness in city-decisions to improve the accessibility and distribution of urban green spaces?
Based on this premise and on our expertise, we want to build an optimization model with
sufficient flexibility to serve as a template, which can be modified to account for the attributes
that are specific to the green spaces of a city. We are also concerned in proving that such
optimization problem can be solved in a reasonable time or good quality solutions can be
found efficiently. The model should further account for realistic considerations from the
policymakers and the decision-making structure in practice while using accurate datasets.
In this manner, resulting decisions with respect to the model’s solution should have reduced
bias, potential for discrimination and subjective motivations. We also focus on the definition
of green spaces as parks, excluding public open spaces. The distinction can be found in
WHO [2017]. Following this research question, we present a model, formulated as a two-
stage decision process. In the first-stage, the city allocates a budget among the boroughs
while seeking fairness. In the second-stage, independently, each borough optimizes the usage
of urban green spaces by deciding both about their location and design, while restricted by
the budget assigned by the city.

Contributions
Our contributions can be divided in four different axes: (i) modeling, (ii) a practical

case-study, (iii) methodological, and (iv) experimental.

14



Our first contribution is the modeling of the two-stage decision-making process in cities
for the planning of urban green spaces. To start, we identify the baseline procedure through
which cities distribute budgets among neighborhoods (or boroughs). Then, we propose a
redistribution of the budgets driven by fairness. Afterward, we model the problem faced by
each neighborhood. The latter is an application of a special case of the commonly known
Operations Research’ facility location problem, with the use of a spatial interaction model
to account for individuals’ usage patterns of green spaces. More precisely, we modify the
standard competitive facility location problem formulation to our context of public facil-
ities provision, and argue how this can improve results compared to traditional distance
minimization objectives.

Our two-stage model finds its strength in its flexibility to adapt to different contexts with
different model parametrizations, and can easily be extended to other types of applications
than urban green spaces, should minor changes to the model formulation be made. In this
line, our contributions are twofold. First, we concretely define the first-stage problem for
the city of Montreal, namely, we propose the fair budget allocation to be driven in terms of
known statistical indexes for inequalities. Second, we generate second-stage instances based
on existing datasets for the city of Montreal. This enables us to test our model on instances
reflecting real-world problem topologies.

On one hand, the accuracy of our second-stage problem is highly related to the modeling
of the demand (i.e., usage of a park by a category of users). On the other hand, a gran-
ular modeling of the demand results into large second-stage optimization problems. Thus,
our methodological contribution comes in the form of aggregating similar demand points,
resulting in smaller problems. Concretely, we propose a clustering technique for the demand
points, allowing us to reduce the time to solve otherwise large instances, at the cost of a
slight reduction of accuracy. We provide empirical evidence for the value of our approach to
reduce the size of the second-stage problems.

Finally, we solve our two-stage model for the city of Montreal. This allows to discuss the
effects of budget allocation, the performance of our second-stage size reduction approach, as
well as the importance of properly estimating the model parameters for practical use.

To the best of our knowledge, this is the first work that uses a competitive facility location
problem in a context of public planning, and that explicitly accounts for fairness through
a two-stage optimization process. Some challenges of this application include the lack of
available data for modeling the green space users accurately using statistical techniques.
However, we expect our contributions to be valuable in assisting public decision-makers.

15



Outline
Here, we provide a clear outline of the thesis structure. We start with the literature

review in Chapter 1, and introduce key researches that have motivated and inspired our
current work. We first outline the different methods used for assessing accessibility to urban
green spaces and the resulting discussion regarding inequalities using multiple case studies.
Then, we detail how varying applications of the facility location problem compare to our
specific problem, with a special consideration for the use of choice modeling. In Chapter 2,
a formal background is given on facility location problems and choice modeling, with the
corresponding notation that is used in the work that follows. Chapter 3 provides the detailed
problem formulation of the two-stage fair facility location and design model. Moreover, it
details the linearization methodology used to obtain a mixed-integer linear program for the
second-stage problems. We then detail the case study of the city of Montreal in Chapter 4,
and give a background about the data source and data manipulations to use it as an input
in our model. Then, we provide an extensive discussion of the results in the computational
experiments of Chapter 5 along with the methodology to reduce the size of the second-
stage problems. We conclude in Chapter 6 with a brief review of our work, including our
contributions and the shortcomings, and provide a discussion on the potential future work
extensions.
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Chapter 1

Literature Review

In this work, we are interested in the problem of optimal location and (re)design of existing
and new urban green spaces (UGSs), and more specifically, of parks. We model this problem
as a particular case of the discrete competitive facility location problem (CFLP) with design
options and a spatial interaction model (SIM) to encompass the users’ preferences. Given
that the purpose is to assist public decision-making, we are taking the stance of policymak-
ers, for whom the objective is to cover as much of the population’s demand as possible with
attractive and accessible UGSs. In other words, the objective is to maximize the probability
of citizens visiting parks. In this way, the benefits of UGSs are expected to spread through-
out the population, promoting benefits such as physical activity, mental health and social
interaction. This underscores that policymakers must also be concerned with equity, or more
broadly, fairness. Fairness is defined in terms of an equitable accessibility to the benefits of
green spaces, an issue also explored in our work.

We remark that the term “competitive” is used in a broad sense, as in Aros-Vera et al.
[2013], because there is no actual market competition in the context of public facilities’
location problem. Instead, policymakers, also referred to as decision-makers, compete against
the no-choice alternative (Bechler et al. [2021]) of not choosing any park due to insufficient
attractiveness or accessibility of the available choices. We also define a choice model to
input the parks’ users behavior in the same way CFLPs account for customers preferences
to increase their market share.

In this chapter, we provide a literature review motivating the studied problem as well as
the positioning of our contributions within the existent work. In Section 1.1, we introduce
studies that have used advanced techniques to assess UGSs accessibility and inequity, with
methods to improve it. Then, in Section 1.2, we present papers on the subject of facility
location problem (FLP) with similar characteristics to our model formulation, including
choice models, competitive and non-competitive variants, design options and consideration
of fairness.



1.1. Urban Green Spaces
Our research project finds its motivation from the numerous studies underlining the im-

portance of better distribution of UGSs. In Section 1.1.1, we present several works from the
fields of geography and urban planning which study accessibility to UGSs and the resulting
inequity from the current spatial distribution using different approaches. To address acces-
sibility issues underlined in previous studies, in Section 1.1.2, we review spatial optimization
models that were developed with the aim to assist policymakers in the decision-making
process, specifically for UGSs.

1.1.1. Accessibility and Inequity

One of the most popular approaches in assessing UGSs accessibility is to use Geographic
Information Systems (GISs). In Oh and Jeong [2007], the distribution of parks in the city of
Seoul is addressed due to inefficient accessibility. The authors debate that standard statisti-
cal indices on the parks’ serviceability do not accurately convey whether a park location is in
a central or outer area, neither how citizens benefit from them. For instance, previous studies
about urban parks accessibility use the linear distance to parks, instead of accounting for
the population real path choices and travel time, and thus, failing to quantify the population
patronizing each park. In addressing this issue, the authors demonstrate the importance of
considering such factors as land use and population density around a park. In Comber et al.
[2008], Kabisch and Haase [2014] and Hoffimann et al. [2017], GISs were also used to assess
inequalities of green space accessibility among diverse socioeconomic groups in Leicester,
England, in Porto, Portugal, and in Berlin, Germany, respectively. In Coombes et al. [2010],
using a GIS database of neighborhood and green spaces characteristics in Bristol, England,
the authors investigate the relationship between accessibility to green spaces, physical ac-
tivity and overweight. In Chang and Liao [2011], the authors are interested in an equitable
public facility distribution in urban development using GIS and spatial analysis models in
the city of Tainan, Taiwan. In all of these studies, proximity is deemed necessary when
planning the location of UGSs. It should be underlined that in Hoffimann et al. [2017], the
authors suggest that conclusions made in a specific location are geographically biased and
should not be generalized to other cities.

Alternative methods were suggested to assess accessibility to UGSs. For example, in
Ngom et al. [2016], the authors are interested in individuals’ access to UGSs and suggest
refining distance metrics with the use of travel costs and SIMs. An ANOVA regression
model is developed to explain the distance to green spaces and their total coverage area
using significant explanatory variables. Two case studies are used for this purpose, including
databases from the cities of Quebec and Montreal, Canada. The results of the regression
model show that Montreal displays less favorable access to green spaces in poorer areas,
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while wealthier areas have increased access to green spaces. Boone et al. [2009] recommend
a novel approach based on Thiessen polygons to define each park and on an asymmetric
reapportioning of census data, allowing to measure the crowding of a park. They apply the
methodology in Baltimore, Maryland, and conclude unfair park access for African Americans.
In Dai [2011], we are introduced to a Gaussian-based two-step floating catchment area model
to assess spatial accessibility, and to an ordinary least squares model to assess socioeconomic
disparities in the UGSs of Atlanta, Georgia. Using geospatial analysis and equity mapping
exercises, Wolch et al. [2013] show inequalities between sociodemographic groups in Los
Angeles, United States. Ibes [2015] uses a multistep statistical analysis to classify urban
parks according to their specific physical and geographic dimensions, as well as their features.
This is then mapped to a base layer of social variables in the city of Shanghai, China. In
Ye et al. [2018], the two-step floating catchment area method is used to display changes of
UGSs access between 2010 and 2015 in the city of Macau, China.

1.1.2. Spatial Optimization

Spatial optimization is known as a reliable approach in the field of geography and urban
planning to help urban planners make decisions about the location of public facilities. For
a detailed review of spatial optimization concepts, we refer the reader to Ligmann-Zielinska
[2016]. Neema and Ohgai [2010] consider the siting of urban parks and open spaces through
the case study of the city of Dhaka, Bangladesh. In this paper, the authors formulate a
multi-objective model to account for the population’s density, the air and noise pollution,
and the areas with lack of accessibility to urban parks and open spaces. A genetic algorithm
with dynamic weighting is used to solve the optimization problem, successfully generating
Pareto optimal solutions. The results suggest that air pollution has the greatest impact on
the locations. In Vallejo et al. [2017], two heuristics are proposed to optimize the allocation
of green spaces over time. The authors explore an “offline” and an “online” approach using
an evolutionary algorithm in a sequential decision-making problem. In Yoon et al. [2019],
the authors study the optimal location and type of green spaces in a planning model given
their greening benefits. The problem defines a multi-objective formulation, maximizing cool-
ing and connectivity, and minimizing costs. The problem is solved using a non-dominated
sorting genetic algorithm. Yu et al. [2020] formulate a multi-objective function to maximize
simultaneously the economic, ecological and social value of green spaces and solve the prob-
lem using a genetic algorithm. In this paper, the social value acts as the input to model
the users’ demand for UGSs. More recently, Li and Ma [2022] aim to support the decision-
making process of UGSs planning using an optimization method that minimizes the land
conversion cost of newly added UGS parcels. This solution aims to lower construction costs
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and improve utility of UGSs. The authors highlight that previous spatial optimization solu-
tions can hardly be used in real-life context, failing to meet the actual constraints of equity
and costs.

1.2. Facility Location Problem
The problem of location and design of UGSs inherits from concepts of multiple variants

of the well-known FLP. As mentioned in Section 1.1.1, estimating the number of individuals
who patronize each UGS (facility) is extremely relevant to a proper assessment of their
accessibility. Therefore, this metric is essential to anticipate the added value of a new UGS
or an enhanced UGS. Thus, we focus our literature review on FLPs that make use of choice
models to estimate users’ demand for each facility within a competitive framework. An
extensive stream of studies has made use of the random utility model (RUM), first introduced
by McFadden et al. [1973], which we review in Section 1.2.1. Then, in Section 1.2.2, we
introduce a stream of literature which makes use of a proportional (probabilistic) choice
rule with deterministic utilities, also known as gravity models or SIMs. The complexity
of the CFLP with both types of choice models resides in the non-linearity of the objective
function, with scholars recommending appropriate algorithmic solutions depending on the
specified problem and context. In Section 1.2.3, we conclude with studies that introduce a
fairness component into their problem formulation, a key consideration when locating public
facilities.

1.2.1. Random Utility Model

Many FLPs studies have made use of the RUM, and authors have provided numerous
solutions to overcome the non-linearity of the objective function and computational perfor-
mance challenges. We note the work of Aros-Vera et al. [2013], in which a mixed linear
programming formulation is proposed to model the problem of optimizing the location of
park and ride facilities to maximize commuters usage, given a demand that follows a logit
model in a non-competitive framework. The authors suggest a linearization method to solve
small instances, and a modification of the heuristic concentration integer procedure to tackle
large instances. Motivated by the problem of school network planing, Haase and Müller
[2013] propose a method for solving a non-competitive discrete location model with endoge-
nous demand, in which students’ preferences are modeled with a RUM. The target objective
is defined as the maximization of the total expected utility over all students, weighted by the
number of students at each location and selected school. Utilities are then simulated given
that choice probabilities based on the mixed-multinomial logit model do not display a closed-
form formula, and the authors prove that this model is a better and more realistic alternative
to the traditional multinomial logit model. In Haase and Müller [2014], a firm’s objective
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is to maximize the frequency of visits, or alternatively, the probability that customers will
choose their facility over their competitor’s. The objective function is formulated as a mixed-
integer non-linear program (MINLP). Then, the authors describe three linear reformulations
from the literature with a unified notation. They further compare each formulation’s per-
formance using artificial data. Limitations relating to the constant substitution assumption
make these formulations unrealistic and difficult to apply to real-life problems. In Müller and
Haase [2014], the same authors stretch the importance of customers segmentation to create
homogeneous subgroups with shared characteristics at each demand point. The reasoning
behind this suggestion is to reduce the bias from the unrealistic assumption of independence
of irrelevant alternatives in the multinomial logit model. Ljubić and Moreno [2018] propose
the first branch-and-cut algorithm for the maximum capture FLP when customers demand
is modeled through an multinomial logit model, and show its computational effectiveness.
Mai and Lodi [2020] address the same problem and recommend a modified version of the
multi-cut outer-approximation algorithm that uses a cutting plane approach as opposed to
the state-of-art branch-and-cut method by Ljubić and Moreno [2018]. Their method is shown
to be more robust and more efficient, especially on large scale instances.

1.2.2. Spatial Interaction Model

The main alternative to RUMs in choice modeling within the framework of CFLPs is
based on Luce’s choice axiom (refer to Luce [1959] for more details), in which the choice
probability is defined as a constant ratio of deterministic utilities. Luce’s axiom leads to the
proportional choice rule, in which customers’ probability of choosing a facility is proportional
to deterministic utilities [Lin and Tian, 2021]. The proportional choice rule we are interested
in is the SIM, also referred to as the gravity model or Huff-model (refer to Chapter 2 for
more details). As underlined in Berman and Krass [1998], the proportional choice rule is
deemed more appropriate for real-life application than the alternative deterministic rule, also
referred to as the binary-rule, the all-or-nothing approach or the full capture model [Aboolian
et al., 2007b]. For this reason, we focus on SIMs. Moreover, we should mention that CFLPs
with customers demand modeled using SIMs have many applications. Concrete examples
include health-care facility location [Ammari et al., 2000] and electric vehicle charging sta-
tions placement [Anjos et al., 2020], to name a few. Below, we review key articles and their
corresponding methodologies to tackle the objective that is being optimized.

A stream of studies using CFLPs focus on the maximization of market share generated
from newly installed facilities. In Aboolian et al. [2007b], the authors introduce the compet-
itive facility location and design problem (CFLDP), where each facility has specific design
options in a competitive framework. Here, the goal is to simultaneously optimize a facility’s
location and its design components. The customer’s utility is defined as proportional to
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the facility’s attractiveness and to the inverse of the distance. The problem is formulated
as an integer program with non-linear objective function and constraints, and focuses on
a specific CFLDP where only a specific number of design options are available to ensure
solvability. Two distinct algorithmic approaches are discussed for solving medium and large
size instances, showing accurate results with reasonable computation time for both methods.
In Aboolian et al. [2021], the same authors introduce the generalized facility location and
design problem, a generalized version of the previously introduced CFLDP. This model en-
ables accounting for two distinct types of demand allocation, including the gravity type and
all-or nothing models. In addition, it captures demand expansion, as well as the cannibal-
ization effect. Due to the non-linearity, integrality constraints and high dimensionality, the
problem is deemed very hard to solve. It is further simplified using dimensionality reduction
and linearization to obtain a solvable mixed-integer programming (MIP) model. In Drezner
et al. [2018], the authors extend the gravity model by assuming that facilities’ attractiveness
is random, which is argued as a more realistic approach. The authors suggest two solutions,
one concerns discretization of the attraction levels, the second uses the concept of effective
attraction.

A more extensive line of studies approached the CFLP with the objective to maximize
profit, defined as the total expected sum of revenues minus costs and expenses. We mention
Kucukaydin et al. [2011], in which a firm’s objective is to locate new facilities and define
their attractiveness level to maximize their profit. The authors use a MINLP formulation
to model the problem and propose three solutions. Gila Arrondo et al. [2014] consider a
competitive framework in which the demand depends on the market conditions. Although
more realistic, this problem is deemed much more complex to solve and makes use of global
optimization techniques, an evolutionary algorithm and a parallel version of it to improve
solvability. Redondo et al. [2015] formulate a bi-objective function for both the franchisor
and the franchisee to maximize profit, which in this specific case is equivalent to maximizing
the market share. An evolutionary algorithm is suggested for obtaining the corresponding
Pareto-front. In Fernández et al. [2017a], the authors introduce the multi-deterministic
choice rule, in which customers patronize only one facility for each firm, and distribute
their demand proportionally to each facility’s attractiveness. Here, the continuous location
problem is studied. More recently, Lin and Tian [2021] introduced a generalized version of
the CFLP and proposed a branch-and-cut algorithm based on Benders decomposition, which
is proven to outperform the state-of-art exact approaches.

We end this section with additional references for the interested reader. A survey on
models estimating demand based on SIMs is provided in Eiselt and Laporte [1989]. The
tutorial by Berman et al. [2009] and the recent book chapter by Drezner [2019] survey and
detail various aspects and approaches to CFLPs using SIMs.
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1.2.3. Fairness

Little attention has been given to the question of including fairness as a component of the
FLP’s objective function, or as an alternative objective to the classic distance minimization.
Marsh and Schilling [1994] made the first detailed literature review of the use of fairness
and equity in FLPs, and introduced a unified notation for all seven measures recognized at
the time. They include the center (as used in the p-center problem), the variance, the mean
absolute deviation, the sum of absolute deviations, the Gini coefficient, the range, and mod-
ified versions of the sum of absolute deviations. More recent studies in location problems
attempted to introduce a fairness component in the problem formulation. Below, we intro-
duce two papers that consider fairness in the objective function. In both papers, the concept
of demand is not used in the same way as in the literature covering competitive frameworks.
Indeed, these work are not interested in market share or revenue maximization, but rather
on the promotion of equitable solutions where customers receive a similarly “satisfactory”
service by the facility that they patronize.

In Jung et al. [2019], the authors underline the limitations of minimizing traditional
measures such as k-center, k-means and k-medians to achieve a fair solution to the classical
FLP. Here, the demand is not factored in the problem. An alternative fair k-center measure
is introduced, which accounts for the population density through the neighborhood radius.
The α-fairness measure is further defined as the maximum ratio of the distance to the nearest
facility over the neighborhood radius. Upper and lower bounds on the α-fairness value are
derived, and the authors prove that the fair k-center measure performs best in achieving
minimal α-fairness when compared with traditional measures.

In Filippi et al. [2021], the authors study the fair single-source capacitated facility location
problem, a modified version of the classic SSCFL problem which presumes that customers
will access the provided facilities at an incurred cost. The first objective function is defined
as the minimization of the costs for both the planner (installation cost) and the customers
(assignment cost). The second objective component of the bi-objective formulation includes
the fairness element, with the minimization of the β%-worst assignment costs. The concept
of demand in this paper is referred to as the amount of demand that is to be satisfied by
the assigned facility. Small instances are solved using a weighted sum method, while larger
instances are solved using Benders decomposition. Some authors have also studied fairness
through the measure of envy [Filippi et al., 2021].

23



Chapter 2

Background

As introduced in the previous sections, we are interested in the problem of discrete FLP
applied to the case of UGSs, and more specifically of neighborhood parks. The terms UGSs
and parks will be used interchangeably in this thesis. Given that the set of existing or
potentially new UGSs are usually assigned to predefined geographic coordinates, our work
only refers to discrete versions of the problem, unless specified otherwise. Our goal is to
suggest a flexible model to assist decision-makers in the process of locating and selecting the
design of existing and new UGSs. Therefore, this research is focused on the applicability of
such a model, and a consideration of computation complexity and model formulation should
reflect this intent. The literature has taught us that few researches have studied the location
of public facilities using a competitive framework with users’ behavior modeling. Indeed,
on one hand, as underlined in Gorji [2015], the existing models for the problem of locating
public facilities rather use a simplistic choice rule such as patronizing the closest facility,
which is far from the observed behavior (refer to Section 1.1 for a detailed justification).
On the other hand, most CFLPs are applied in a context of market competition, with the
intention to either maximize a firm’s market share or revenues. In this work, we extend the
concept of market share maximization as a proxy for maximizing the probability of visiting
UGSs. Furthermore, advanced methods to model customers’ behavior (or demand) have
been developed for CFLPs, and can be extended to UGSs users to improve the assessment
of the distribution and design of parks, and therefore increase their usage.

We start the background review in Section 2.1 with a preliminary formulation of a generic
discrete FLP. We then introduce the CFLP in Section 2.2, and present its main variations,
while justifying how they relate to our application case. Then, Section 2.3 details the chrono-
logical background of choice models used in location models, considered as one of the most
important and complex modeling elements in a CFLP.



2.1. Preliminaries
In this section, we define a unified notation for discrete FLPs, which will be extended

later to the specific case of CFLPs. Let I be the set of demand points in the location problem,
which are generally defined as a geographic zone (e.g., neighborhood, forward sortation area
(FSA) or postal codes). In discrete planning, a geographical location is often given as the
centroid of the associated zone. We also define J as the set of candidate locations for facilities
installation. The decision variable to optimize is xj, which is equal to 1 if a facility is installed
in location j, and 0 otherwise. Below is a generic formulation of the discrete FLP:

max
x

∑
j∈J

xj

(∑
i∈I

fij(x)
)

(2.1.1a)

s.t. x ∈ X (2.1.1b)

xj ∈ {0,1}, ∀ j ∈ J, (2.1.1c)

where each real-valued function fij(x) in the Objective (2.1.1a) relates the demand point i ∈ I

with the facility j ∈ J and the decision x. These functions model the element to be optimized
according to the context. For example, fij(x) can correspond to the negative of the average
distance between i and j, to the market share of demand point i captured by the facility
j, or to the expected revenue obtained from i visiting j. In Problem (2.1.1), X is a set of
constraints related with the installment of the facilities (e.g., budget, coverage). Following
this formulation, discrete FLPs have broadly been defined as the problem of selecting a
subset of locations from a candidate set J , given the demand of users in the set of demand
points I [Laporte et al., 2015]. Traditional FLPs have focused on optimization problems
like the minimization of the demand-weighted average distance in the p-Median problem,
the minimization of the maximum distance in the p-Center problem, or the maximization of
coverage given a budget constraint. Studies have extended the classic FLP concept to more
complex models, often to address realistic applications. For a detailed overview of location
problems and their application, the reader is referred to Laporte et al. [2015].

2.2. Competitive Facility Location Problem
As emphasized earlier, the CFLP is the version of the discrete FLP that best serves the

purpose of our research project. This is because it enables the consideration of a “compet-
itive” alternative for the UGS users, which will be designated by the no-choice alternative
and denoted by 0. This makes the set of available choices for I to J ∪ {0}. Of course, in
general competitive settings, the alternative choice set is not necessarily a singleton.

The first paper that was recognized for introducing the competitive framework into lo-
cation problems is Hotelling [1929]. Here, two facilities are competing on a one-dimensional
straight line, and identical customers patronize the facility providing the lowest incurred cost.
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Several extensions of the CFLP have inherited from the concepts introduced in Hotelling
[1929], either in continuous or discrete solution spaces. Variations of the original model have
considered the number of facilities to locate, the type of competition, the type of demand,
the inclusion of design options and the choice rule [Gorji, 2015], which are reviewed in this
section. We also introduce less common characteristics of the CFLP related to previous
work, which are particularly useful in the UGSs location and design problem.

Number of facilities. In earlier studies, Drezner [1994a] and Drezner [1994b] tackled the
location of a single facility in a continuous plane. Most subsequent studies have focused on
the location of multiple facilities for more realistic applications like Berman and Krass [1998]
and Drezner [1998]. In the case of location of UGSs, it seems evident that our problem
considers multiple facilities.

Type of competition. Another characteristic of CFLP that is worth mentioning, is the
type of competition that is being modeled. Indeed, all papers mentioned in Chapter 1 use a
static competitive framework. However, there exists a stream of studies relating to dynamic
(sequential) competitive location decisions. First introduced in Hay [1976] and Prescott
and Visscher [1977], this model is also referred to as the Stackelberg game in Game Theory,
or the leader-follower problem in location science [Laporte et al., 2015]. In this type of
problem, we consider a bi-level optimization formulation in which a leader first locates one
or multiple facilities, and then, a follower reacts to this location decision and defines the
location of its facilities accordingly. Given that we are concerned with the maximization of
UGSs usage by minimizing the alternative of not visiting any park, the bi-level modeling
scheme seems inappropriate. We refer the reader to Fernández et al. [2017b] for a detailed
review of the leader-follower model formulations. In this manner, we will presume a static
competitive framework for the rest of this thesis.

Demand. Recent studies have also focused on the integration of various types of demand
in a competitive framework. A type of demand is defined here as either elastic or inelastic.
Inelastic demand is considered appropriate for essential goods, while elastic demand is
generally associated to non-essential goods [Gorji, 2015]. Elastic demand is expected to
expand as the diversification of the services and the resulting total utility is increased in a
competitive market [Aboolian et al., 2007b]. This effect is known as the “market expansion”
or the “cannibalization effect” [Aboolian et al., 2007a]. First introduced in Berman and
Krass [2002], and later used in Aboolian et al. [2007a], most works have not accounted
for demand elasticity given the consequent increased complexity of the objective function.
In our context, demand is presumed as inelastic, given that UGSs are deemed as public
facilities, and are often defended as an essential service. Although it could be argued

26



that demand might vary according to the amount of UGSs available, we presume that the
demand elasticity is negligible for our purpose.

We now mention additional CFLP characteristics that are specific to our problem for-
mulation and to the field of application. First, as suggested in Haase and Müller [2014],
the definition of the set of demand points can be refined by segmenting each location in
subgroups to create more homogeneous categories of individuals with shared characteristics,
such as sociodemographic attributes. Indeed, in the context of UGSs location, we make
the assumption that age has a significant impact on the frequency of usage, sensitivity to
distance and preferred design options. For this reason, we introduce the set of segments S.
Each pair (i,s) ∈ I × S corresponds to the UGS users from the demand point i in the age
segment s.

Design options. Our location problem is further refined by allowing the model to define
the design option of existing and new UGSs. We distinguish the concept of design options
from the one defined in Aboolian et al. [2007b], in which they are a set of variables acting
as attributes of facilities that need to be optimized for market share maximization. The
reason for not modeling attributes as a decision variable is that the design of UGSs is
usually undertaken by specialists that are given a predefined budget, and therefore, we are
not interested in the specific design attributes. Instead, we refer to Section 4 of Aboolian
et al. [2007b] which presents discrete design scenarios and which have the same definition as
the design options we refer to in our problem formulation. In this section, the conventional
location decision variable xj is redefined as xjr and equals 1 if the facility with design
scenario r is selected, and 0 otherwise. In the next chapter (Chapter 3), we will use the same
convention introduced in the discrete design scenarios formulation for the design option and
associate a cost cjr to each design option.

Choice rule. Another distinction in our model is the consideration of the no-choice option
as an alternative in our “competitive” framework. This was mentioned in Bechler et al.
[2021], who emphasized that the total utility resulting from a market should account for the
no-choice alternative. Therefore, our set of competitors in the UGSs context is an empty
set, but the total set of choices includes the choice of not visiting a park, as well as visiting
parks that are not subject to optimization (this is discussed in detail in Chapter 3).

2.3. Choice Modeling
In this section, we detail the different choice rules used in CFLPs through a chronological

background with relevant literature references. We first introduce the traditional determin-
istic rules, then follow with the more realistic probabilistic approaches and how they relate
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to our problem. We conclude this section by discussing the solution methods for location
problems using the surveyed choice rules.

Classic deterministic rules. The simplistic choice rule by Hotelling [1929] introduced
in Section 2.1 presumes an all-or-nothing approach, also known as the full-capture, the
binary or the deterministic approach. Other influential papers have used this proposition,
such as Revelle [1986], Hakimi [1983] and Drezner [1994a]. They presume that customers
patronize only one facility to satisfy their demand, either according to distance minimization
or attractiveness (utility) maximization. Gorji [2015] reinforced that such a framework would
be appropriate in some cases, such as in central planning (e.g., polling location).

Probabilistic (deterministic) rules. Other choice rules have gained attention to respond
to the criticisms and evident shortcomings of the all-or-nothing approach in competitive lo-
cation models. The gravity-based approach, also known as the SIM, is widely used given its
reliability in estimating market share and the simplicity of its formulation. The first intro-
duction of the gravity model in location models was made in Reilly [1931], where customers
account for facility’s attractiveness and not only distances for making their choice. Following
this important work, Huff [1964] then introduced the well-known Huff-model. It defines the
probability of selecting a facility as a ratio of its total space area to the power of the distance,
as below

pij =
Aj/dβ

ij∑
k∈J Ak/dβ

ik

, (2.3.1)

where i is a demand point in the set I, j is a facility location point in the set J , Aj corresponds
to the space area of the facility j (the letter A refers to the attraction), dij is the distance
between demand point i and facility location j, and β is the distance sensitivity for the
type of facility considered in the problem. The reasoning is that a customer patronizes a
facility according to its attractiveness, exemplified in Huff’s model by the space area, and it
is negatively impacted by its distance. His work also inherited of Luce’s choice axiom in Luce
[1959], which stipulates a probabilistic choice rule with deterministic utilities as the ratio
of a choice’s utility divided by the sum of all available alternatives’ corresponding utilities.
The ratio can also be seen as an estimation of a facility’s market share MSij, such that

pij = MSij = uij∑
k∈J uik

, (2.3.2)

where uij is the utility perceived by the user i for the choice j. Luce’s axiom also defines
the assumption of independence of irrelevant alternatives resulting from the probabilistic
choice rule. This assumption stipulates that two options will display constant ratio of choice
probabilities, and is independent of the other alternatives in the choice set [Haase and Müller,
2013]. Nakanishi and Cooper [1974] extended Huff’s model and proposed the multiplicative
competitive interaction (MCI) model by generalizing the space area with the multiplication
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of a facility’s attribute’s attractiveness:

pij =
∏

l∈Q xβl
lij∑

k∈J

∏
l∈Q xβl

lij

, (2.3.3)

where Q is the set of attributes, xlij is the l-th attribute of location j for the user i, and βl

is the sensitivity to this l-th attribute. Parameters estimation based on statistical methods
were developed in the same paper. Other variations of the Huff model surged and redefined
the attraction function or the distance decay function, such as in Aboolian et al. [2007b]
which extended the concept of the MCI model. In this paper, the design components of
a facility are considered, and the authors define the choice rule using Luce’s axiom for the
market share formula, while utility is defined as

uij = Aj

(1 + dij)β
, (2.3.4)

where uij is the deterministic utility of facility j from the perspective of customer i, Aj

is the general attractiveness of facility j, and 1/(1 + dij)β is the distance decay function.
Justification for the use of this function over Huff’s version 1/dβ

ij is given in Aboolian et al.
[2007a] who recommend its use, particularly, given very small distances dij. In such cases,
facilities’ attractiveness should be the defining component for a customer’s choice. The
attractiveness definition further inherits from Nakanishi and Cooper [1974]’s model, such
that

Aj = xjαj

∏
l∈Q

(1 + xlj)βl (2.3.5)

where xj keeps its meaning as a binary variable equal to 1 if the facility j is chosen and
0 otherwise, and αj is the base attractiveness of location j. Parameter βl has the same
definition as in the original MCI model, while variable (1 + xlj) is the replacement for the
original variable xlij. In the context of optimization and CFLPs, we remind the reader
that the gravity-based rule is a probabilistic choice rule, with deterministic utilities. As
noted in Huff [2021], rigorous parameter estimation in the Huff-model is often neglected and
lacks statistical methods. Indeed, given that the choice rule must be linearized in order to
apply statistical regression models to estimate the sensitivity parameters β, many authors
have ignored the details related to parameters estimation. In this thesis, we will also focus
on the formulation of the choice rule and the location problem without developing on the
parameters’ estimation due to the lack of data. We refer the interested reader to Nakanishi
and Cooper [1974] and Huff and McCallum [2008] for recommended model calibrations.

Random utilities. An alternative probabilistic rule was introduced in McFadden et al.
[1973], assuming random (stochastic) utilities. This model is referred to as the RUM, or
alternatively, discrete choice models (DCMs). In this context, the customer will choose the
facility that maximizes its utility. The utility is therefore defined as the sum of a deterministic
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component vij and a random component ϵij, such that

uij = vij + ϵij . (2.3.6)

The distribution of ϵij is what defines the type of RUM, either the multinomial logit model,
the mixed-multinomial logit model, the generalized extreme value models or probits. Other
models are available, and the reader is referred to Train [2009] for a detailed review of DCMs.
Drezner et al. [2011] suggested another approach to the classic deterministic (proximity or
attraction approach) or probabilistic (SIM and RUM) choice rules introduced previously,
namely the cover-based approach. In this model formulation, each facility displays a sphere
of “influence” defined by a radius, and customers will patronize their demand equally across
all the facility spheres they are in. Nevertheless, we must remark that most studies have
focused on the application of SIMs more importantly, and RUMs.

Solution approaches to optimization problems. The main challenge with the use of
choice model within CFLPs is the resulting non-linearity of the objective function. For
example, fij(x) in the Objective (2.1.1a) could be equal to pij in Equation (2.3.1), i.e.,

fij(x) = uij∑
k∈J uik · xk

,

clearly making the objective function non-linear. Thus, linearization methods are required
in order to obtain a mixed-integer linear problem (MILP) that can be solved with standard
optimization software (solvers). Linearization methods have been documented in Haase and
Müller [2013] and Bechler et al. [2021], and were applied in many subsequent studies. Unfor-
tunately, the final problem is known to be NP-hard (Benati [1999] and Bechler et al. [2021]),
and the additional variables introduced with the linearization yield very large problems, often
leading to long-running times or even out-of-memory issues. For this reason, authors have
studied alternative algorithmic approaches to achieve optimal solutions, such as in Ljubić
and Moreno [2018] and Mai and Lodi [2020] for RUMs, and Aboolian et al. [2021] for SIMs.
Both probabilistic choice rules have been extensively studied, providing variant advantages
depending on the field of application. Given the recognized applicability of the SIM and
the absence of market competition with UGSs, we develop a simple choice rule based on the
SIM. In Chapter 6, we discuss potential model extensions to consider RUM as a choice rule.
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Chapter 3

Problem Formulation

In this chapter, we formally present the notation and the model for locating and (re)designing
UGSs as a two-stage fair facility location and design (2SFFLD) model. See Figure 3.1 for
an overview of our model.

To emphasize on the context of public decision-making, we consider the concept of fairness
in the first stage of the optimization problem. In this step, the budget allocation of a city
is distributed among neighborhoods (typically, city administrative subdivisions) such that
inequalities of accessibility to UGSs are accounted for. This step is presented in detail in
Section 3.1. Later, in Chapter 4, we will describe the actual budget allocation for our case
study, the city of Montreal and, in Chapter 5, we will compare it to the one we propose here.

The second-stage problem is about the location and (re)design of UGSs for each neigh-
borhood, given its predefined budget derived in the first-stage process. Here, we do not
incorporate fairness in the usual sense of the term, i.e., we do not directly penalize planning
solutions that favor a majority of the population. Thus, we also provide a discussion on
the problematic use of standard fairness concepts, motivating the objective function of our
model. This second step of decision-making is described in Section 3.2.

To our knowledge, this is the first research project simultaneously (i) considering a city
decision-making process in sequence, intrinsic to their administrative subdivision structure,
(ii) including the concept of fairness through the city’s budget-allocation to neighborhoods
(subdivisions), and (iii) modeling the population access to facilities administrated by each
neighborhood using SIMs. As this enumeration of model characteristics highlights, although
we are particularly focused on the application of our model to UGSs to assist public decision-
makers, we will present a formulation that can be easily extended to other fields of applica-
tion.
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3.1. First-Stage: Fair Budget Allocation Model
The first-stage fair budget allocation step requires distributing a total city budget BT

fairly among neighborhoods for UGS planning. Defining concretely, fairness depends heavily
on the decision-maker’s preferred outcome, which varies from one application to another.
There is an extensive literature investigating the axiomatic definition of fair resource alloca-
tions, such as proportional fairness and max-min fairness; see Bertsimas et al. [2011] for a
general overview of the most well-known and fundamental fairness concepts. One particular
area of research in fair allocations is fair division. The latter focuses on allocations satisfying
properties such us envy-freeness and Pareto-efficiency, to name a few; see the survey by Bou-
veret et al. [2016]. In our practical context, the allocation of budget to neighborhoods by
cities can be strongly restricted due to maintenance costs, previous allocation record, etc.
Thus, due to the imminent limited freedom to deviate from a pre-determined budget alloca-
tion, we will present a simple division of the budget guided by measures of each neighborhood
disadvantages.

We denote the set of neighborhoods by N . For each neighborhood n ∈ N , the allocated
budget is given by the decision variable bn. We further define a fixed baseline budget b̄n

for each neighborhood n ∈ N . In our context, this is the budget that follows estimation of
budget per capita for UGSs investment based on city recommendation, without consideration
of other fairness elements. The total city-budget BT is therefore formulated as

BT =
∑

n

b̄n . (3.1.1)

The minimum budget per neighborhood n ∈ N required to cover the maintenance cost is
given by bn.

The optimization problem consists of maximizing the fair-weighted city budget (3.1.2):

max
b∈RN

≥0

∑
n∈N

bnρn (3.1.2a)

s. t.
∑
n∈N

bn ≤ BT (3.1.2b)

|bn − b̄n

b̄n

| ≤ δ% ∀n ∈ N (3.1.2c)

bn ≥ bn ∀n ∈ N . (3.1.2d)

The objective function (3.1.2a) is guided by the weighting parameters ρn ∀ n ∈ N , which
act as multiplicative factors, favoring disadvantaged neighborhoods according to predefined
attributes. Given the context of UGSs, these fairness attributes include population size,
social and material deprivation index, and pollution. These attributes, as well as all the re-
maining parameters presented here, will be computed for our case study in Chapter 4. Con-
straint (3.1.2b) ensures that the total budget of the city is not exceeded. Constraints (3.1.2c)
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enforce the percentage threshold δ on the maximum neighborhood budget deviation from the
baseline budget b̄n. In this way, we prevent an excessive deviation from the baseline budget.
Constraints (3.1.2d) guarantee that maintenance costs are at the very least covered.

We remark that model (3.1.2) could also be applied for a provincial, territorial or state
level budget to fairly allocate it to its municipalities, regions or counties. Although, we
presume a city-decision making process with fair budget distribution to its neighborhoods,
a direct application to other types of regional division is straightforward.

3.2. Second-Stage: Green Space Location and Design
Model

In the second-stage of the decision process, we take the (independent) perspective of each
neighborhood n ∈ N . The goal of the neighborhood is to maximize the overall expected
proportion of the neighborhood population visiting its parks. To this end, the neighborhood
seeks the optimal (re)design options of existing parks and the optimal location and design
of new parks. In the following notation description, for the sake of simplicity, we omit the
reference to a neighborhood n and presume that the optimization occurs at the neighborhood
level.

Next, we adapt the general notation of Section 2.2 to the current context. We define I

as the set of demand points whose location corresponds to the centroid of the geographic
region defining the demand zone. The demand zone of i ∈ I can correspond to a postal
code, FSA, neighborhood, etc. The set of segments S allows creating homogeneous clusters
of individuals with similar usage behavior according to sociodemographic characteristics.
This methodology follows the work of Haase and Müller [2013]. In our application, S will
define age group segments. For each pair (i,s) ∈ I × S, we define the weight wis representing
the population size percentage located in the demand zone i and in segment s such that∑

i∈I

∑
s∈S wis = 1.

The set of locations J contains the existing and potential new park locations, which are
respectively referred to as J̄ and J̃ . As for the demand points, facility locations are associated
to the centroid of the geographic region defined by an UGS. The distance from demand point
i ∈ I to park j ∈ J , dij, reflects the Euclidean distance between centroid coordinates, and is
adjusted to account for approximate walking distance; this will be detailed in Chapter 4. For
each location j ∈ J , the set of design options R(j) is specific to it, meaning that the model
encompasses a varying number of design options (referred to as “scenarios” in Aboolian et al.
[2007b]) for existing and new parks. Existing parks’ baseline design relates to the scenario
in which no improvement is made, and maintenance is the only expense to consider. For
simplicity, the set of design options equals an ordered sequence of integers, for example
R(j) = [1, 2, 3] signifies that three design options are available at location j, where option 1
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is the baseline, option 2 is an improved and more costly option than the baseline, and option
3 is the most expensive option with the most improvement. Park improvement examples (for
our case study) include the addition of park installations, sports fields or children playground,
and tree planting [Ville de Montréal, 2021c]. For an existing park j ∈ J̄ , the associated cost
of improving the park with design option r ∈ R(j) is denoted by cjr. On the other hand,
for new locations j ∈ J̃ , the notation cjr represents the associated cost of installing a park
in the location j with design option r ∈ R(j). The optimization problem is constrained to a
total budget B set by the first stage allocation.

As discussed in Chapter 2, we will follow the framework of the SIM of Huff [1964] and
Nakanishi and Cooper [1974] to model the demand of parks’ users. We use a slightly modified
version of the general formulation of the utility function introduced in Aboolian et al. [2007b],
such that

uisjr = f(Asjr)
h(dij)

. (3.2.1)

The difference with Aboolian et al. [2007b] is that we use parameter Asjr instead of Aj,
to illustrate the specific preference of the segment s ∈ S of the population for the facility
j with design option r. Consideration of the demand points’ specificities in the attraction
parameter is also accounted for in Nakanishi and Cooper [1974], but not in Huff [1964]
which only considers a firm’s facility total space. In our specific case, it seems appropriate
to account for age groups, given their varying behavior towards UGSs. Indeed, in Åsa Ode
Sang et al. [2016], the authors suggest that children, women and elderlies value more the
importance of park given that they spend more time in environments near their home. We
now introduce the exact utility function that will be used in our model formulation:

uisjr = Asjr

(1 + dij)βs
, (3.2.2)

Asjr = αj · (1 + θsjr) , (3.2.3)

where αj > 0 is a fix parameter of the baseline attractiveness of facility location j (e.g.
walking score), and θsjr can be understood as a percentage increase in the attractiveness
of demand point’s segment s for the design option r. The distance decay function 1

(1+dij)βs

inherits from the framework introduced by Aboolian et al. [2007b] as justified in Chapter 2,
where βs is the distance sensitivity parameter for age group s. We also introduce the param-
eter u0

is, the utility of demand point i in segment s for the no-choice option. In the context
of UGSs, we define de following function for quantifying this value:

u0
is =

1
|J |
∑

j∈J αj

(1 + dlarge)βs
, (3.2.4)

where 1
|J |
∑

j∈J αj is the average baseline attractiveness of all park locations, and dlarge is a
minimum distance threshold value that is deemed too large for someone to want to visit a park
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(e.g., 1 km). In this way, for parks with low utility, the no-choice option is more attractive.
This motivates the optimal UGS planning to install parks and improve parks’ design in
order to capture more demand that otherwise chooses the no-choice. It is this modeling
aspect that justified the consideration of a competitive facility location formulation. Here,
the competition is with the no-choice option. If we do not consider it, then 100% of the
demand is covered by any feasible planning, which would be unrealistic.

We now present the model formulation using the notation and parameters introduced
above:

max
∑
i∈I

∑
s∈S

wis ·

∑
j∈J

∑
r∈R(j)

pisjr

 (3.2.5a)

s. t.
∑
j∈J

∑
r∈R(j)

xjr · cjr ≤ B (3.2.5b)

∑
r∈R(j)

xjr ≤ 1 ∀ j ∈ J (3.2.5c)

∑
r∈R(j)

xjr = 1 ∀ j ∈ J̄ (3.2.5d)

xjr ∈ {0,1} ∀ j ∈ J, ∀ r ∈ R(j), (3.2.5e)

where
pisjr = uisjr · xjr

u0
is +

∑
k∈J

∑
t∈R(k)

uisktxkt

,

and xjr is the location and design decision variable which equals to 1 if design option r is
selected for park location j, and 0 otherwise. The objective function (3.2.5a) corresponds
to the total park visits’ frequency or, equivalently, to the total market share of the parks
controlled by the neighborhood. Constraint (3.2.5b) enforces the budget restriction. Con-
straints (3.2.5c) imply that at most one design option is associated to a park j, while Con-
straints (3.2.5d) guarantee that exactly one design option is selected for an existent park
j ∈ J̄ .

Problem (3.2.5) is an MINLP. Given that the objective (3.2.5a) is non-linear, linearization
is required to ensure solvability with existent (powerful) mixed-integer solvers. Using the
“Method-Based Linearization” technique reviewed in Bechler et al. [2021], we introduce the
following non-negative auxiliary variables

vis = 1
u0

is +∑
j∈J

∑
r∈R(j) uisjrxjr

∀i ∈ I, ∀s ∈ S ,

with vis taking values in the interval[
1

u0
is +∑

j∈J

∑
r∈R(j) uisjr

,
1

u0
is

]
.
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The objective function becomes

∑
i∈I

∑
s∈S

wis

∑
j∈J

∑
r∈R(j)

uisjrxjvis

 , (3.2.6)

and we add the constraint
p0

is +
∑
j∈J

∑
r∈R(j)

xjrpisjr = 1 (3.2.7)

⇐⇒ u0
isvis +

∑
j∈J

∑
r∈R(j)

uisjrxjrvis = 1 ,

where
p0

is = u0
is

u0
is +∑

k∈J

∑
t∈R(k) uisktxkt

.

In this formulation, we still remain with variable multiplication (bilinear terms) xjr · vis.
Proceeding with the following re-expression of variable multiplications,

zisjr = xjr · vis ∀i ∈ I, ∀s ∈ S, ∀j ∈ J, ∀r ∈ R(j) ,

we obtain the resulting MILP problem:

max
∑
i∈I

∑
s∈S

wis

∑
j∈J

∑
r∈R(j)

uisjrzisjr

 (3.2.8a)

s. t. (3.2.5b) − (3.2.5e)

u0
isvis +

∑
j∈J

uisjrzisjr = 1 ∀j ∈ J (3.2.8b)

zisjr ≥ 0 ∀i ∈ I, ∀s ∈ S, ∀j ∈ J, ∀r ∈ R(j) (3.2.8c)

zisjr ≤ vis ∀i ∈ I, ∀s ∈ S, ∀j ∈ J, ∀r ∈ R(j) (3.2.8d)

zisjr ≤ Kisjr(1)xjr ∀i ∈ I, ∀s ∈ S, ∀j ∈ J, ∀r ∈ R(j) (3.2.8e)

zisjr ≥ vis + Kisjr(2)(xjr − 1) ∀i ∈ I, ∀s ∈ S, ∀j ∈ J, ∀r ∈ R(j) , (3.2.8f)

where Kisjr(1) and Kisjr(2) are sufficiently large numbers. In this case, we will set it to the
maximum upper bound of zisjr = xjr · vis ≤ vis ≤ 1

u0
is

= Kisjr(1) = Kisjr(2).
We conclude this section with a brief discussion of the objective function of the second

stage of the decision-making process. Given the consideration of fairness within the first
stage of the problem, one could also ask about its incorporation in the second stage. Indeed,
in the beginning of this research problem, we had considered two fairness schemes.

• The L1-fairness. For the sake of simplicity, we explain this concept assuming that
each demand point patronizes exactly one location or the no-choice. The goal of the
L1-fairness objective is to find an UGS plan that minimizes the sum of the absolute
difference between the average traveled distance to a park (of all demand points) and
the park patronized by each pair (i,s) ∈ I × S. Alternatively, one could adapt the
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concept to use utilities instead of distances. We did not proceed with this objective
because we observed in our preliminary tests that the model could provide a bad
UGS plan: if the average is a large value and the distance to the park patronized
by each pair (i,s) is also large, then the L1-fairness can be close to zero. A possible
solution could be to use the L2-fairness where instead of the absolute difference to
the average, we consider the L2-norm. However, this would add more non-linearity
to the model. Thus, in our experimental results, we will simply analyze the L2-norm
metric to evaluate our solutions in terms of the L2-fairness.

• The min-max fairness1. As above, for simplification, we describe this concept con-
sidering that each demand point patronizes exactly one location or the no-choice.
Here, the aim is to find an UGS plan that minimizes the traveled distance to visit the
patronized park by the demand point (or pair) traveling the greatest distance to the
selected park. Analogously, this concept could be defined in terms of the utilities. In
this case, the UGS plan may have to significantly sacrifice all demand points at the
expense of optimizing the least favored one. Moreover, since the proportions wis, for
(i,s) ∈ I × S, can present a significant variation and that they are not considered
in the min-max metric, one may question its fairness. Therefore, we do not present
results optimizing this metric, but we use it to evaluate the obtained solutions in the
experimental part of this work.

1The max-min fairness term is the standard designation. This term is defined according to the demand point
benefits. Therefore, when the context analyzes instead non-benefits, such as distance, one should keep in
mind that we are in fact considering a min-max.
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Chapter 4

Case Study

Given the research scope to assist decision-makers in UGSs planning, we show how to apply
the model formulation given in Chapter 3 with a concrete case study of the city of Mon-
treal, Canada. To motivate this choice, we refer to Ngom et al. [2016], where the authors
discuss how Montreal and Quebec City, Canada, compare with respect to UGSs accessibility
using statistical learning. They conclude that Montreal displays more disparity between
socioeconomic groups and argue for an improved decision process. With easy access to
the city’s database relating to green spaces and sociodemographic census, combined with
growing discussions on how to improve sustainable public installations and public health,
Montreal appears as an ideal location to test the suggested model. As underlined in “The
2021 Canadian city parks report” [Stark et al., 2021], the Covid-19 pandemic is another
reason for putting forward discussions relating to parks’ accessibility, and Montreal is es-
pecially concerned with important investments for its green spaces. Data preparation for
the needs of this research was completed by the SPHERElab 1 team from the “Centre de
Recherche en Santé Publique”, a research team which specializes in projects that aim to
improve populations’ health with the use of urban environment interventions.

In Section 4.1, we list the original data sources, and provide an overview of data manip-
ulations and the resulting data analysis. In Section 4.2, we detail the process of instance
generation with the use of the datasets and using assumptions about UGSs usage in the city
of Montreal to test the applicability of our model.

4.1. Data
We start this section with a data description including a list of the datasets provided by

the SPHERElab team, followed by an overview of the data manipulation needed to obtain a
final dataset with the required format and fields in Section 4.1.1. The extensive list of fields

1https://www.spherelab.org/

https://www.spherelab.org/


of each dataset can be found in the Appendix A. We then provide a brief data analysis in
Section 4.1.2 to help the reader understand the scope and the scale of the datasets.

4.1.1. Data Description

Our case study focuses on the application of the 2SFFLD model to the planning of UGSs
in Montreal. We specify here that we will exclude in the following work all the independent
suburbs of the city of Montreal that have distinct budget planning, and will only consider
its 19 boroughs listed in Ville de Montréal [2022a], as well as the parks managed by its
boroughs. Therefore, the large parks of Montreal managed at the city-level are excluded
of the optimization problem. The list of large parks can be found in Ville de Montréal
[2022b]. We justify this choice by underlining that large parks and neighborhood parks have
different objectives, and different usage patterns. Indeed, neighborhood parks are meant to
be accessible at a short distance and for daily usage, while large parks can sometimes be
accessed with cars and require longer travel time. Next, we list (i) the datasets that allow
us to locate the demand points, either the set of postal codes, the FSA or a cluster of postal
codes, and (ii) the parks, acting as the set of facilities in our location problem. Additional
datasets resulting from data manipulations are presented for the needs of our model.

Neighborhood dataset. This dataset consists of the list of all neighborhoods in Montreal,
including the suburbs. It was retrieved from the Open Data page of Montreal City’s website
and can be accessed in Ville de Montréal [2020]. It contains the list of IDs and name of
each neighborhood with their corresponding geographic coordinates and centroid points in
GEOjson format, the full land area in square meters (m2), the 2016 population, and the
population density. It has a total of 33 rows, including the 19 boroughs and the additional
14 independent suburbs.

FSA dataset. Equivalent to the neighborhood dataset, the FSA dataset contains each cor-
responding geographic coordinates and centroid points in GEOjson format, the zone area
in m2, the 2016 population, and the population density. Given that the FSA is one of the
options to define the set of demand points in our problem formulation, we requested the
age group distribution based on Statistic Canada’s 2016 census. The reader is referred to
Statistics Canada [2016] for the full dataset. This distribution allows us to create the de-
mand point’s segments and evaluate its corresponding weight (see Section 3.2 of Chapter 3
for details). With the intention to gather information regarding fairness, we add the Que-
bec’s Material and Social Index at the FSA level, also referred to as Pampalon’s deprivation
index. Details relating to this measure can be found in INSPQ [2019]. This measure easily
illustrates social and economic inequalities. Finally, the smoke pollution measure is added
and equals the PM2.5 metric under the Canadian Optimized Statistical Smoke Model, and
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was aggregated at the FSA level by the SPHERElab team using ArcGIS tools. PM2.5 met-
rics, indexed to DMTI Spatial Inc postal codes, were provided by CANUE2. This measure is
intended to approximate the pollution level of an area according to the measured concentra-
tion of fine particle in the air, and is used to establish the weighting parameters in the fair
budget allocation step (see Section 3.1 of Chapter 3 for details). The full dataset consists
of a total of 97 rows for all of Montreal’s FSAs. The final version of the FSA dataset was
achieved by adding the corresponding neighborhood for each FSA. For the specific FSAs
which belong to more than one neighborhood, we select the neighborhood that covers the
largest area of the FSA for simplicity.

Montreal postal code dataset. Given our intention to test multiple aggregation level for
the set of demand points, we gathered equivalent information of the FSA dataset, but at
the postal code level. It simply consists of a list of Montreal’s 44,117 postal codes and the
centroid geographic coordinates, and is queried from Service Objects’ public “ZIP and Postal
Code Database with GeoCoordinates for US and Canada” in ServiceObjects [2020]. As a
step of validation, we replace any outlier value from this database using Python’s “gmaps”
package. In the final version of the postal code database, we add for each postal code the
FSA age group distribution and assume that the distribution is equivalent for the FSA as
for the postal code aggregation level.

Parks dataset. The data is queried from the list of the 1,368 large parks, neighborhood
parks and public spaces dataset from the city of Montreal found in Ville de Montréal [2022d].
It consists of the list of park IDs and names, GEOjson format geographic coordinates and
centroid points, the green spaces’ area in m2, the type of park (e.g. neighborhood park, green
island, public space, pass, urban park) and the management level, such as neighborhood,
private, municipal and provincial, to name a few. Additional fields are added to the parks’
dataset, including the number and type of installations in each park from Montreal’s
list of recreational, sports and cultural outdoor installations, found in Ville de Montréal
[2022c]. For the scope of our project, we also requested the Landsat Normalized Difference
Vegetation Index (NDVI) and the Canadian Active Living Environment (Can-ALE) score.
The NDVI is a spectral index that quantifies the level of greenness of a geographic zone
according to measures retrieved through satellite images. For more details on how this
index is calculated, the reader is referred to the Landsat handbook [Landsat Missions,
2022]. The Can-ALE is equivalent to the commonly known walking score, and is computed
using GIS information collected through Canada. Canadian Active Living Environments
Index (Can-ALE), indexed to DMTI Spatial Inc postal codes, were provided by CANUE.
Both the Landsat NDVI and Can-ALE measures are added with the intention to better
understand the attractiveness of the existing parks. Figure 4.1 displays a map of the city
2Canadian Urban Environmental Health Research Consortium
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Figure 4.1. Montreal’s boroughs and green spaces

of Montreal with its 19 boroughs, and the borough parks are illustrated with the green zones.

Clusters dataset. The clusters dataset is generated to reduce the excessive computation
time resulting from using the postal codes as the aggregation level for the set of demand
points. Recall the second-stage problem from Section 3.2: the size of its mathematical
programming formulation depends on |I|; moreover, the linearization process, i.e., the in-
troduction of the zisjr variables, increases the model size, and it depends also on |I|. This
dataset consists of a set of postal codes for each neighborhood with a predefined size re-
sulting from the k-means clustering method using the latitude and longitude coordinates.
This algorithm allows creating clusters of postal codes using an iterative process where each
postal code is associated to the cluster with the nearest average geographic coordinates. For
each neighborhood, the number of predefined clusters is given in Appendix B.

Parks & FSA dataset. This dataset consists of a merge between all possible combinations
of parks and FSAs within a neighborhood. The goal of this step is to compute the Euclidean
distance between parks and FSA centroids to estimate the travel time to reach a park when
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the FSA is used as a basis for the set of demand points. All combinations result in a dataset
of 6,183 rows.

Parks & Postal Code dataset. As for the Parks & FSA dataset, the goal here is to list
all the combinations of parks and postal codes within a neighborhood, and compute the
Euclidean distance for each row. This yields an extremely large dataset of 2,752,628 rows.

4.1.2. Data Analysis

In this section, we present a brief data analysis for the reader to gain a better under-
standing of the case study of Montreal city and the scale of the dataset.

Table 4.1 lists the 19 neighborhoods of the city of Montreal that are subject to the
distribution of the city budget and the optimization problem described in Section 3.2. For
each neighborhood, we list the corresponding total land area in square kilometers, the pop-
ulation from Statistic Canada’s 2016 census, the population’s density per square kilometers,
and the average income per household. These measures show how urban neighborhoods can
vary from each other, and should be considered with the objective of making fair public
decision-making.

Table 4.2 shows how the park’s distribution varies according to the neighborhoods. The
first column consists of the percentage of the neighborhoods’ coverage with neighborhood
parks, while the second column consists of the ratio of park area (m2) per capita. One aspect
to bear in mind here is that only neighborhood parks are considered, and not large parks
or any other urban green spaces not managed at the neighborhood level. For this reason,
some special considerations should be made in areas where very large natural parks exist,
such as L’Île-Bizard-Sainte-Geneviève, Pierrefonds-Roxboro and Rivière-des-Prairies-Pointe-
aux-Trembles. Such considerations will be made a posteriori when analyzing the empirical
results.

We now analyze how different index and measures introduced in Section 4.1.1 vary in the
city of Montreal. Figure 4.2 displays an analysis of the distribution of the smoke pollution
measure, on the left side with a histogram of FSAs’ index, and on the right side, a heatmap
of the normalized values of the index per FSA, where darker values indicate a higher con-
centration of polluting particles. The histogram suggests a range of values between 6.60 and
6.95, with a peak at 6.85. The heatmap indicates that the denser and more industrial areas of
Montreal have a higher risk of pollution exposure. Figures 4.3 and 4.4 illustrate the distribu-
tion of the Social and Material deprivation index at the FSA level, where higher deprivation
is related to darker colors. The heatmap shows that the west side of Montreal displays more
favorable values with lower deprivation indexes, while zones with high population density
have a higher risk of social deprivation like in subareas of Le Plateau-Mont-Royal neighbor-
hood. The material deprivation heatmap in its case confirms that neighborhoods with higher
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Neighborhood Area Population Density Average
Income

Ahuntsic-Cartierville 24.3 135,000 5,600 70,000
Anjou 13.9 42,810 3,000 69,000
Côte-des-Neiges-Notre-Dame-de-Grâce 21.5 166,000 7,700 68,000
L’Île-Bizard-Sainte-Geneviève 23.7 18,000 800 115,000
Lachine 17.9 44,600 2,500 70,000
LaSalle 16.4 77,000 4,700 64,000
Le Plateau-Mont-Royal 8.1 104,000 12,800 67,000
Le Sud-Ouest 15.8 79,000 5,000 66,000
Mercier-Hochelaga-Maisonneuve 25.5 136,000 5,300 60,000
Montréal-Nord 11.0 83,000 7,600 52,000
Outremont 3.8 24,000 6,300 175,000
Pierrefonds-Roxboro 27.2 69,000 2,500 87,000
Rivière-des-Prairies-Pointe-aux-Trembles 42.5 108,000 2,500 75,000
Rosemont-La Petite-Patrie 15.9 140,000 8,800 64,000
Saint-Laurent 43.1 98,000 2,200 81,000
Saint-Léonard 13.6 79,000 5,800 64,000
Verdun 9.7 69,000 7,100 85,000
Ville-Marie 16.0 88,000 5,500 73,000
Villeray-Saint-Michel-Parc-Extension 16.5 143,000 8,700 54,000

Table 4.1. Neighborhood data analysis: Area (km2), population, population density per
area (km2), and average income per household ($).

(a) Histogram (b) Heatmap

Figure 4.2. Distribution of FSA’s Smoke Index

rates of poverty result in higher material deprivation, notably in the sub-neighborhoods of
Parc-Extension and Saint-Michel. Finally, Figure 4.5 indicates how the NDVI measure varies
through FSAs and neighborhoods. The heatmap shows that the west side of Montreal has
very large green spaces coverage, while the east side suffers from it. The urban central areas
are more subject to varying level of coverage due to uneven distribution of large parks.
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Neighborhood Percentage of
park area

Ratio of park
area per capita

Ahuntsic-Cartierville 8.5 15.3
Anjou 3.7 11.9
Côte-des-Neiges-Notre-Dame-de-Grâce 3.7 4.8
L’Île-Bizard-Sainte-Geneviève 1.7 22.5
Lachine 4.6 18.4
LaSalle 6.5 14.0
Le Plateau-Mont-Royal 8.6 6.7
Le Sud-Ouest 12.4 24.7
Mercier-Hochelaga-Maisonneuve 7.3 13.7
Montréal-Nord 3.3 4.4
Outremont 4.5 7.2
Pierrefonds-Roxboro 5.0 19.5
Rivière-des-Prairies-Pointe-aux-Trembles 4.8 19.1
Rosemont-La Petite-Patrie 6.1 6.9
Saint-Laurent 3.1 13.4
Saint-Léonard 6.2 10.6
Verdun 23.0 32.3
Ville-Marie 3.7 6.7
Villeray-Saint-Michel-Parc-Extension 5.4 6.2

Table 4.2. Neighborhood parks statistics: Percentage of park area in neighborhood and
ratio of park area (m2) per capita.

(a) Histogram (b) Heatmap

Figure 4.3. Distribution of FSA’s Social Deprivation Index

4.2. Instance Generation
In this section, we detail the instance generation process by introducing the procedure

for setting the model’s parameters of Chapter 3. As reflected in what follows, not all pa-
rameters of our model (2SFFLD) can be rigorously determined for our case study due to the
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(a) Histogram (b) Heatmap

Figure 4.4. Distribution of FSA’s Material Deprivation Index

(a) Histogram (b) Heatmap

Figure 4.5. Distribution of FSA’s NDVI

lack of data. Namely, the utilities discussed in Section 3.2 should be determined through
robust statistical techniques. Nevertheless, by taking advantage of the interpretation of the
SIM model for the utilities, we discuss the aspects supporting the values considered in our
instances. This allows us to generate instances mimicking the real-world problem topologies.
In this way, the primary objective of this research, which is to suggest a model formulation to
optimize the UGSs location and design, while guaranteeing solvability, can be demonstrated.
On the other hand, the results from the model using the following instances, although real-
istic, cannot be used as a direct recommendation for urban planning in the city of Montreal.
To ensure applicability of the 2SFFLD model, we suggest robust statistical methods and
surveys that justify the choice of parameters.

This section is segmented such that we list how each component of our model formulation
is defined. This includes in Section 4.2.1 the weighting fairness parameters of the first-stage
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fair budget allocation, as well as the baseline budget. It follows in Section 4.2.2 with the
demand points aggregation methods, their corresponding weight, the park facilities location,
the baseline budget, the maintenance costs, the design options, the utility function, and the
distance of the second-stage location and design model.

4.2.1. First-Stage Parameters

Weighting fairness parameters. The weighting factors ρn of neighborhoods n ∈ N are a
result of multiplicative factors for different fairness considerations. The first fairness attribute
ρn1 is the population density. Indeed, in very dense areas, the city should plan on installing
more green spaces, given the lack of private gardens. We compare each neighborhood’s
density to Montreal’s average population density, and use this ratio as the multiplicative
adjustment, with a maximum adjustment of ±10% to prevent unbalanced budget allocation.
The second attribute is the material deprivation factor ρn2 and the social deprivation factor
ρn3. In the same manner as for the population density, we compare each neighborhood’s level
of material and deprivation index to Montreal’s average, and use this ratio as a multiplicative
factor with a maximum adjustment of ±5%. We process in the same manner for the third
fairness component, namely the smoke pollution factor ρn4. The resulting multiplicative
factor ρn is set as

ρn = ρn1 × ρn2 × ρn4 .

A table, with the full details of the fairness weighting multiplicative factors, is available in
Appendix C.

Baseline budget. The baseline budget of the first-stage fair budget allocation model is de-
rived from a predefined budget per capita. Therefore, the total yearly baseline budget b̄n of a
neighborhood n varies with respect to the population, and ensures at the very least fairness of
budget between individuals. The most recent published budgets of six central neighborhoods
are used to estimate the average amount invested in parks per capita for the city of Montreal:
Villeray-Saint-Michel-Parc-Extension [Ville de Montréal, 2021d], Rosemont-La Petite-Patrie
[Ville de Montréal, 2021b], Montréal-Nord [Ville de Montréal, 2019] and Mercier-Hochelaga-
Maisonneuve [Ville de Montréal, 2018]. We justify this choice given their large size and
central location, and also the availability of recent information about the investment made
specifically in parks. We use the total park budget, divided by the estimated population of
the corresponding neighborhood, as an estimation of the ratio of budget per capita. In this
manner, we achieve a final amount of $42 per capita. Furthermore, since parks’ management
has a planning horizon over many years, we presume a budget period of five years. Although
this model does not yield a solution for each year, it suggests an UGS planning that can be
achieved over a period of five years, which is more realistic than a one-year horizon. Hence,
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for each n ∈ N , b̄n is determined by multiplying 42$ × 5 by the population size available in
Table 4.1. Using this definition of the fixed baseline budget b̄n, the total available budget BT

is defined as the sum of the b̄n in Equation 3.1.1 of Section 3.1 from Chapter 3. 3 Finally,
the threshold δn, defined as the maximal budget percentage deviation from the fixed baseline
budget, is set equal to ±30%. This threshold value is arbitrary, and is set with the intention
to avoid an unbalanced budget allocation between neighborhoods.

4.2.2. Second-Stage Parameters

Demand points aggregation. We start by introducing three different demand points I

aggregation levels, and the final recommended choice is made according to the results of the
model and the computation time presented in Chapter 5.

After careful analysis of the sociodemographic and geographic attributes of the neighbor-
hoods and their corresponding parks’ distribution and accessibility, the baseline neighbor-
hood is set to Rosemont-La Petite-Patrie), and is used to test the different aggregation levels
of the set of demand points. This borough is one of the largest of the central boroughs, hav-
ing the second-largest population density in the city of Montreal, and displaying a reasonably
low ratio of park area per capita. Using a baseline neighborhood of such large size, with a
potential for large number of demand points, allows us to establish if the second-stage model
can perform well with larger instances. In particular, it serves our purpose of identifying the
right balance between demand granularity and model solvability.

The three aggregation levels considered are the postal codes, clusters of postal codes, and
FSAs. Our baseline neighborhood has a total of 2,331 postal codes, but only a total of five
FSAs. Given the significant increase of the number of variables with the linearization method
presented in Section 3.2 of Chapter 3, the computation time resulting from the postal codes’
method is expected to be unreasonably large. Therefore, we suggest the clusters’ method to
address the over-simplified FSA basis and the over-complex method using the postal codes.
Using the cluster methodology described in Section 4.1.1, we obtain 200 clusters in the
neighborhood of Rosemont, each grouping the postal codes with the geographic coordinates
that are the nearest to the average coordinates of the cluster. Each cluster is presumed to be
located at its centroid, namely the mean latitude and longitude of the postal codes belonging
to the cluster. The number of clusters is chosen such that a significant reduction in clustering
runtime is reached for a specific number of clusters. Detailed experimental results validating
our cluster methodology, namely in terms of the optimal objective value sensitivity to the
demand aggregation level and the computation times, are presented in Chapter 5.

3In the next section, a potential adjustment of the b̄n value is discussed so that maintenance costs are
guaranteed to be covered.
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Weight of the demand points. Once the aggregation level of the demand points I is
set, each demand point i is segmented in the following age groups S: 0-14 years (children),
15-64 years (teenagers and adults) and 65 years or more (elderly). We create these three
age classes given an increased sensitivity to distance to parks for younger children and for
the elderly. The weight wis associated to each demand point i and its segment s is based
on the population of each FSA from the Statistics Canada 2016 census [Statistics Canada,
2016], and we use the age distribution to estimate the population of each age group. When
using the postal code aggregation level, we make the simplistic assumption that the FSA
population is distributed uniformly among its corresponding postal codes.

Park (facility) location. The set of existing parks J̄ is simply equal to the set of neigh-
borhood parks, excluding the large parks managed by the city or other entities than the
borough. The set of new parks J̃ is simplified by assuming a potential new location at each
FSA centroid. In real-life application, the decision-maker has knowledge about locations
that can be converted in UGSs, and their exact location. Our approximation allows us to
cover a neighborhood almost uniformly, with a reasonable number of locations.

Maintenance costs. Regarding the approximation of the costs of park management, includ-
ing planning and maintenance, we use the report on Montreal’s 2020 performance indicators.
In this publication, the total amount related to planning, managing and maintaining parks
is established at $80 per capita, or $31,000 per hectare. For full access to the report, the
reader is referred to Ville de Montréal [2021a]. For simplicity, we use the estimated cost per
hectare and convert it to the equivalent cost of $3.10 per m2 of park land. For new parks,
we approximate the acquisition and installation cost to a total of $15 per m2. This gross es-
timation deserves refinement, given that acquisition prices are very sensitive to location and
size. For this reason, our model presumes a hypothetical price, but it can be replaced with
an appropriate amount depending on the locations of potential new UGSs. As a side note,
the neighborhood baseline total budget is adjusted in exceptional cases where the budget per
capita is insufficient to cover the minimal maintenance costs. This scenario happens when
the neighborhood has a large park coverage. To address this, we set the baseline neighbor-
hood budget as the maximum of the budget per capita formula, and the minimal budget
required for maintenance adjusted with a 1.05 factor. The decision of adding a 5% budget
increase to the minimal maintenance budget is to ensure that areas in the neighborhood with
lower green spaces accessibility have the opportunity for new installations.

Design options. The number of design options for each location j ∈ J is fixed to a number
of three alternatives, whether it is an existing park or a new park location. In real-life
applications, urban planning involves a varying number of design options according to each
location, with an estimated budget according to each scenario. Here, we suggest a more
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simplistic approach. The associated cost cjr for each design option is defined as follows:

cjr = cmaintenance × areaj × (1 + 0.8 · (r − 1)),

where cmaintenance is the maintenance cost of $3.10 per m2, areaj is the size of the park in m2,
and (1 + 0.8 · (r − 1)) is a multiplicative factor that increases the total cost of each design
option with an additive percentage of 80%. For new parks located at the FSA centroid, we
presume a land area of 50,000 m2, which is equivalent to a large neighborhood park. As a
reminder, the first design option for an existing park is the basic maintenance scenario where
no improvement is made, while for new parks, the first scenario corresponds to the smallest
investment option. If no new park is to be located at the location j ∈ J̃ , then the variable
xjr would be equal to 0. For existing parks, constraints of the model formulation ensure that
at least one design option is selected.

Utility function. Now, we define the parameters of the model specific to the SIM. We
remind the reader of the following utility function for each i ∈ I, s ∈ S, j ∈ J, r ∈ R(j):

uisjr = Asjr

(1 + dij)βs
,

where
Asjr = αj · (1 + θsjr) .

The basic attraction level αj is set equal to the ALE score (see Section 4.1.1 for the definition)
of location j ∈ J̄ for already installed parks, and to the ALE score of FSA j for a new park
j ∈ J̃ . The attraction increase θsjr for existing parks j ∈ J̄ is set equal to a percentage
increase in line with the suggested design options:

θsjr = 0 for r = 1, θsjr = 0.5 for r = 2, θsjr = 1 for r = 3.

As noted above, the attraction increase for design options r ∈ R(j) is fixed for all age
segments s ∈ S and facility points j ∈ J , but the model allows for more realistic parameters.
Indeed, different age segments should have different perception of different design options
and type of parks. Given our lack of real-life data, we suggest this simple attraction increase
assumption. Furthermore, we reiterate that θsj1 is set equal to 0 because it is associated to
the maintenance option r = 1. The attraction increase for a new park j is set equal to:

θsjr = 0.75 for r = 1, θsjr = 1.5 for r = 2, θsjr = 3 for r = 3.

As noted, we presume a large attraction increase for newer parks, given individuals’ prefer-
ence for new installations. This assumption can be refined to account for long term decrease
of attraction.

The distance sensitivity parameter βs is set according to different age groups. This
parameter should be estimated using robust statistical methods introduced in Huff [2021],
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but are roughly approximated in our research, given the unavailability of data on park usage
by the population. For the children and elderly age groups, we set βs to 1.5, and to 1.0
for teenagers and adults. Indeed, as suggested earlier, children have a higher sensitivity to
distance given that park visits are usually supervised by parents, while elderly require closer
facilities given reduced mobility.

Finally, since our optimization model presumes non-negative utilities, to prevent errors
in the solving step, we shift all utilities uisjr to positives values. Indeed, negative utility
values can exist due to negative Can-ALE scores. Thus, to maintain the scale of utilities, we
simply shift them instead of normalizing them. Furthermore, we define the no-choice utility
u0

is as defined in Section 3.2 of Chapter 3, and use αj and βs’s definition above.

Distance. The distance dij from demand point i ∈ I to existing parks j ∈ J̄ is calculated
using the Euclidean distance formula, adjusted with a multiplicative factor of 1.3 to approx-
imate the actual travel distance. This adjustment factor is derived using an average of the
Google Distance Matrix distances divided by the corresponding Euclidean distances for a set
of points. For new parks, the distance from the demand point belonging to the same FSA
as the park is assumed equal to 500 meters, and 1000 meters for demand points outside the
FSA where the park is located. In real-life application context, one needs to compute the
actual travel distance for the selected demand point to the exact new park location. Given
that the location of new park is set at the centroid of the FSAs for simplicity, we opt for this
assumption. Next, given the context of the UGSs planning, we define a maximum distance
threshold. Indeed, according to the literature, neighborhood parks should be located close
enough to residential areas so that individuals have a minimum incentive to visit them. A
discussion about this subject can be found in City Parks [2017]. For this reason, we set the
maximum distance to parks for children at 500 meters. For all other age groups, maximum
distance for parks less than 50,000 m2 is set to 500 meters, and to 800 meters for larger
parks. Indeed, people have more incentive to walk longer for larger UGSs. In the model, we
set the utility uisjr to 0 for distances above these predefined thresholds.
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Chapter 5

Computational Experiments

We now present the computational results from the implementation of the 2SFFLD model
described in Chapter 3 using the case study of the city of Montreal detailed in Chapter 4.
Note that the instances used for the implementation of the model were set using the limited
data available as described in Chapter 4; however, these should be derived using statistical
methods and adapted according to the context for which the model is being used. Here, we
do not prescribe an UGSs planning for the city of Montreal, but rather present a flexible
two-stage optimization model and prove its applicability and performance using a large real-
life based instance. For this reason, we use the resulting objective function value and the
computing time to compare different demand point aggregation methods and the budget
allocation methods, but make no claims about the reliability of the actual results to the
city of Montreal. However, we expect our framework to be useful for practitioners and to
promote the discussion on the use of optimization tools for city decision-making. We further
discuss the potential future and practical impact of our work in the last chapter of the thesis.

We start this chapter with a layout of the experimental setup, describing the implementa-
tion details of our framework in Section 5.1. Section 5.2 shows how the different aggregation
methods compare in the selected baseline neighborhood, and we recommend a clustering
methodology to improve performance and accuracy of the results. We finalize with Sec-
tion 5.3 and discuss how the city-level UGS distribution compares under the baseline and
the fair budget allocation methods.

5.1. Experimental Setup
In this section, we review the experimental setup to compute the results presented in

the following sections. To start, we note that our methodologies are implemented in Python
3.9.7. Optimization models are solved with Gurobi 9.5.0 using 6 cores. The experiments run
on a Dual-Socket Intel(R) Xeon(R) Gold 6226 clocked at 2.70GHz (12 Cores per Socket, 24
Cores total) and is equipped with 376 GB RAM. Below, we describe the predefined model’s



parameters, and how to interpret the different model’s attributes. The details below are
specific to the second-stage optimization, given that the first-stage consists of a fairly simple
linear program, and it does not require additional model parametrization.

First, we introduce the different model’s parameters as defined in Gurobi 1: the pre-
solve level, the degenerate simplex moves limit, and the time limit. For the clusters and
the postal codes’ methodologies, namely the larger instances, the pre-solve level is set to the
option 2, the maximum value available, which implies a much longer and complex pre-solving
step but whose preliminary results indicated to compensate due to tighter final optimality
gaps. The degenerate simplex moves limitation parameter is set to 0, as recommended in
Gurobi for problems resulting in an important number of Total elapsed time messages in
the log. These choices were made to speed up the computing time and follow Gurobi’s
guidelines in this context. We also set the time limit for solving the UGS planning in each
neighborhood to 3,600 seconds (one hour) for both the FSA and the clusters’ methodology,
and to 18,000 seconds (five hours) for the postal codes’ method. The reason for these time
limits is to ensure that the application of our solution can easily be used in a context of city-
decision making and that multiple tests can be done in reasonable time. The comparison of
these methods is addressed in the next section. These different time limits according to the
demand aggregation level is simply to adapt the computing time depending on the problem
size, although it is known that the time to solve an NP-hard problem is expected to increase
exponentially with its instance size. In Section 5.3, we use the clusters’ methodology for the
aggregation of the demand; the number of clusters used in each neighborhood (i.e., instance)
is available in Appendix B.

In the next sections, Gurobi’s key model’s attributes2 are discussed to compare method-
ologies: the runtime, the model status, the GAP, and the objective value. While the first-
stage model is a simple linear program, the second-stage program solved for each neighbor-
hood is a mixed-integer linear program, which can be slow to solve. Regarding runtime and
model status, for smaller neighborhoods, Gurobi’s solver is able to reach an optimal solution
with a small runtime, but larger instances usually reach the predefined time limit. In the
latter case, we simply retrieve the best solution found by the solver within the time limit.
The resulting model status encountered in our experiments are presented in Table 5.1 and
are referred to in the results’ discussion. The GAP is defined as the absolute value of the gap
percentage between the objective value reached by the best feasible objective value found
so far and the tightest bound computed, and serves as a good indicator of the improvement
of the solution at each iteration over the branch-and-bound process. Therefore, when the
solver reaches optimality, the final GAP is 0, while in the opposite case, it is strictly greater
than 0; the latter will occur for runs where the time limit is reached. Finally, the discussed

1https://www.gurobi.com/documentation/9.5/refman/parameter_descriptions.html
2https://www.gurobi.com/documentation/9.5/refman/attributes.html
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Status code Value Description
OPTIMAL 2 Model was solved to optimality (subject to tolerances),

and an optimal solution is available.
TIME_LIMIT 9 Optimization terminated because the time expended ex-

ceeded the value specified in the TimeLimit parameter.

Table 5.1. Gurobi model status code definition

objective values relating to Objective (3.2.5a) and discussed in the following sections should
be interpreted as the percentage of the population that is using parks. Therefore, the aim is
to be close to 100%.

In what follows, we present tables of results. The meaning of the columns in these tables
are as follows: “Status” provides Gurobi status, “GAP (%)” provides the optimality gap as
a percentage, “RunTime (s)” provides the time in seconds to solve an optimization problem,
“ObjVal (%)” provides the value of the best objective computed by the solver.

5.2. Enhancing the accuracy and scaling of the second-
stage optimization

Here, we detail the different aggregation level methods of the demand points to show
how it impacts the model’s implementation performance in the neighborhood of Rosemont,
and recommend an effective clustering method to improve the performance and the total
runtime. The different aggregation methods are tested using the baseline budget described in
Section 4.2.1 at the neighborhood level, while the fair budget allocation method is discussed
in Section 5.3 at the city-level. Given that we impose a maximum deviation of the fair
budget per neighborhood in relation to the baseline, the conclusions on the computational
performance presented here are not expected to differ if we use the fair budget. As underlined
in Section 4.2.2, the selected neighborhood of Rosemont is chosen for the comparative analysis
given its central location, its very large residential area and a significantly low park ratio per
capita.

The first demand aggregation we used is the FSA level, given its use by Statistics Canada
for the population’s census. As mentioned in previous sections, the FSA consists of the first
3 characters of the postal code, which consists of six characters. The first character refers to
the province, territory or region of residence, and corresponds to “H” for the Metropolitan
region of Montreal. The second character indicates whether the region is urban or rural, and
any number different from 0 is associated to an urban region. The third character identifies,
with the first 2 characters, the unique subarea of the metropolitan region of Montreal. In the
neighborhood of Rosemont, there are only five FSA and a total of 55 neighborhood parks.
This suggests that the computed traveling distance from the centroid of the FSA to the
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Method Status GAP (%) RunTime (s) ObjVal (%)
FSA 2 0.0 4.00 84.0
Postal Code 9 14.8 18,000.00 75.7
Postal Code with FSA solution 75.2
Postal Code with cluster solution 82.9
Clusters 9 2.4 3,600.00 83.4
Clusters with FSA solution 75.1

Table 5.2. Model results for Rosemont-La Petite-Patrie with baseline budget

parks and the assumed preference of the demand points are extremely approximate, should
this aggregation level be used. Indeed, this method mistakenly attributes more preference
to the parks near the centroid of each FSA and neglects parks closer to the FSA’s zonal
delimitations. Therefore, postal codes further from the center of the FSA are disadvantaged.
Nevertheless, this method is a decent starting scenario and is helpful to compare more
granular methods discussed below. Table 5.2 displays the performance of the solver at the
FSA level. The solver reaches an objective value of 84% with a 0% GAP.

With the aim to obtain more accurate results, we originally tested the postal code
methodology, which consists of the smallest and most granular aggregation level available
to us. Figure 5.1 illustrates the comparison of the number of demand points for the FSA
and the postal code method in Rosemont. Our first attempt at running the model using
the postal code methodology generated a very long runtime. The attempt was to obtain
preliminary results according to this methodology to eventually select an appropriate aggre-
gation method for the final model suggestion. For this reason, we have set the time limit to
five hours, which resulted in an objective value of 75.7%, with a GAP value of 14.8%. To
compare this result to the FSA methodology described above, we test how the FSA solution
performs under the postal code aggregation level objective. The result is shown in Table 5.2,
with an objective value of 75.2%. This suggests a potential overestimation done by the FSA
aggregation level objective, and that the postal code method increases the percentage of
population’s park visits by 0.5% compared to the FSA solution, which should be improved
with a larger runtime limit or with an improvement of our methodology as follows.

To address the unreasonable runtime resulting from the postal code method, and to ensure
that the suggested model in this work can be applied to realistic problems while obtaining a
good-quality estimate of the expected probability of individuals visiting parks, we recommend
a clustering method of the demand points. Indeed, aggregating the postal codes to clusters
using the k-means method on the geographic coordinates can help to reduce the problem
size significantly, such that conclusive results are reached under a reasonable runtime. This
method iteratively computes the centroid for each of the k clusters, and assigns each point,
in this case each postal code, to the nearest centroid based on the geographic coordinates.
The centroid of each cluster is defined as the mean of the coordinates of all points assigned
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to the cluster, which is why it is called the k-means method. The algorithm ends when
optimality is reached, meaning when all points are in the cluster with the nearest average.
As a reminder, we assign a number of 200 clusters to the neighborhood of Rosemont, given
its total of 2,331 postal codes. Figure 5.2 illustrates how the cluster methodology compares
to the postal code method, which suggests that this demand aggregation still displays a
fair precision in a context of urban planning. After testing this method, we achieve a high
expected probability of individuals visiting parks within one hour.

Although several papers mentioned in the literature review of the FLPs in Section 1.2
address the NP-hard component using heuristic algorithms, we instead suggest a slight re-
duction of the model’s accuracy of demand points’ location with the postal code model by
using clusters, which remains a very precise aggregation method such that it covers uni-
formly the neighborhood, as shown in Figure 5.2. To justify this conclusion, Table 5.2 shows
the clustering method results. This method yields an objective value of 83.4% in one hour,
while the postal code methodology reaches an objective value of 82.9% using the clusters’
solution.

Therefore, we manage to increase the postal code’s result from 75.7% to 82.9% using a
methodology that requires one hour instead of five hours. As a validation step, the cluster
aggregation level objective yields a value of 75.1% using the FSA solution, which emphasizes
the lack of accuracy of the FSA method. Therefore, our final model recommendation not
only finds its strength in its performance, which is a direct consequence of the demand
points aggregation methodology, but also in its application to a realistic instance size. The
next section compares how the objective value varies for each neighborhood for the baseline
budget and the fair budget allocation method under this clustering framework.

5.3. Implementing the first-stage optimization to im-
prove fairness at the city-level

We now discuss how the fair budget allocation, determined in Section 3.1, compares
with the baseline budget allocation. Namely, (i) we analyze how the available budget per
neighborhood affects the optimal value of the second-stage objective, (ii) we discuss the
performance of our approach, (iii) we demonstrate that the adoption of a SIM goes beyond
the use of distance as an element to guide UGS planning through L1-norm metric, and (iv)
we discuss the importance of properly estimating the no-choice utility. As a reminder, the
baseline budget method is based on a fixed budget for green spaces per capita ratio, with a
minimum neighborhood budget set to cover maintenance expenses with an addition of 5%
budget for flexibility. For more details, the reader is referred to Section 4.2. The fair budget
allocation aims to improve the UGSs distribution at the city-level by accounting for the
varying population’s density, the social and material deprivation index and the pollution
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Figure 5.1. Rosemont-La Petite-Patrie FSA versus Postal Code aggregation

level. Indeed, fairness does not necessarily yield equal results, such that neighborhood
requiring more investments are heavily advantaged by such a method while neighborhoods
with sufficient green coverage should at least be able to cover for the maintenance expenses
of their parks. Tables 5.3 and 5.4 show how the baseline budget method performance
compares with the fair budget allocation methodology.

Objective value. First, the neighborhoods that benefit the most from a budget increase
with the fair budget allocation method include Côte-des-Neiges-Notre-Dame-de-Grâce and
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Figure 5.2. Rosemont-La Petite-Patrie Cluster versus Postal Code aggregation

Villeray-Saint-Michel-Parc-Extension, with an objective increase of 2.1% and 1.2% respec-
tively. These boroughs are deemed very large residential areas, and differ from other neigh-
borhoods mostly due to higher population density. We underline one of the model’s short-
comings here, in that we ignore the large parks of the city of Montreal in our problem.
Indeed, although these neighborhoods do display a lack of borough’s parks when compared
to wealthier neighborhoods such as Outremont or more remote and greener neighborhoods
such as Pierrefonds-Roxboro or L’Île-Bizard-Sainte-Geneviève, they do have access to large
parks including Frédéric-Back Park, Jarry Park and Mont-Royal Park to name a few. In Fig-
ure 5.3, we display the large parks that are managed at the city-level and that are excluded
of the optimization problem.
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Neighborhood Budget (M$) Status GAP (%) RunTime (s) ObjVal (%)
Ahuntsic-Cartierville 33.3 9 0.7 3,600.00 99.0
Anjou 9.5 2 0.0 29.00 93.8
Côte-des-Neiges-Notre-Dame-de-Grâce 27.3 9 2.5 3,600.00 82.1
L’Île-Bizard-Sainte-Geneviève 6.4 2 0.0 12.00 95.9
Lachine 10.4 2 0.0 1,880.00 97.5
LaSalle 17.2 9 1.2 3,600.00 97.3
Le Plateau-Mont-Royal 18.6 9 1.2 3,600.00 94.4
Le Sud-Ouest 17.7 9 0.1 3,600.00 99.0
Mercier-Hochelaga-Maisonneuve 28.9 9 0.7 3,600.00 99.0
Montréal-Nord 17.8 2 0.0 1,313.00 66.7
Outremont 6.6 2 0.0 28.00 84.3
Pierrefonds-Roxboro 19.1 9 0.5 3,600.00 98.5
Rivière-des-Prairies-Pointe-aux-
Trembles

33.1 9 0.0 3,600.00 99.4

Rosemont-La Petite-Patrie 29.0 9 2.4 3,600.00 83.4
Saint-Laurent 22.4 9 0.3 3,600.00 98.4
Saint-Léonard 15.7 2 0.0 3,068.00 63.0
Verdun 36.2 2 0.0 2,457.00 70.9
Ville-Marie 18.8 9 3.7 3,600.00 92.7
Villeray-Saint-Michel-Parc-Extension 30.4 9 3.0 3,600.00 83.1
Average 89.2

Table 5.3. Model results using the clusters method and baseline budget

Neighborhood Budget (M$) Status GAP (%) RunTime (s) ObjVal (%)
Ahuntsic-Cartierville 33.3 9 0.7 3,600.00 99.0
Anjou 8.3 2 0.0 90.00 93.5
Côte-des-Neiges-Notre-Dame-de-
Grâcece

35.5 9 1.7 3,600.00 84.2

L’Île-Bizard-Sainte-Geneviève 6.4 2 0.0 12.00 95.9
Lachine 10.4 2 0.0 1,877.00 97.5
LaSalle 12.1 9 0.8 3,600.00 97.2
Le Plateau-Mont-Royal 24.2 9 0.8 3,600.00 94.9
Le Sud-Ouest 16.2 9 0.6 3,600.00 99.0
Mercier-Hochelaga-Maisonneuve 26.3 9 0.7 3,600.00 99.0
Montréal-Nord 12.4 2 0.0 1,285.00 63.8
Outremont 4.6 2 0.0 32.00 80.7
Pierrefonds-Roxboro 19.1 9 0.5 3,600.00 98.5
Rivière-des-Prairies-Pointe-aux-
Trembles

33.1 9 0.0 3,600.00 99.4

Rosemont-La Petite-Patrie 33.3 9 4.1 3,600.00 83.2
Saint-Laurent 21.4 9 0.7 3,600.00 98.4
Saint-Léonard 13.0 2 0.0 625.00 56.9
Verdun 36.2 2 0.0 2,164.00 70.9
Ville-Marie 13.1 9 1.9 3,600.00 91.6
Villeray-Saint-Michel-Parc-Extension 39.5 9 1.6 3,600.00 84.3
Average 89.0

Table 5.4. Model results using the clusters method and fair budget

As a result, the suggested model is deemed sufficiently flexible to include these consider-
ations should it be done. Again, the purpose of this work is not to make an UGS planning
recommendation, but to prove the applicability and the performance of our methodology.
Alternatively, the neighborhoods displaying the largest sacrifice under the fair budget
allocation are Montréal-Nord, Outremont and Saint-Léonard, with a respective objective
value decrease of 2.8%, 3.7% and 6.1%. These neighborhoods have the largest budget
decrease, and suffer from a budget cut at the cost of multiple neighborhoods which are
already at the minimum tolerable budget to cover the maintenance cost, even though they

59



Figure 5.3. Large parks managed by the city of Montreal

should be penalized with a fair budget allocation.

We further question the model as to how does the fair allocation method impacts
the total probability of individuals visiting parks. Tables 5.3 and 5.4 display the average
objective value weighted with the population of each neighborhood. The average totals to
89.2% for the baseline budget, and to 89.0% for the fair budget, which suggests a slight
decrease of the overall objective under the fair allocation method. This should be expected
given that the budget is re-allocated to neighborhoods to advantage the areas with higher
deprivation, which can be addressed with an improved green spaces coverage. Therefore,
this can have the impact of reducing the objective value of greener neighborhoods at the
cost of the most deprived neighborhoods.

Performance. Regarding performance, around 40% of the second-stage optimizations are
solved to optimality within the time limit, and the highest optimality gap is 4.1%. The
most demanding neighborhoods with respect to total runtime are Ahuntsic-Cartierville,
Mercier-Hochelaga-Maisonneuve and Ville-Marie, which have the largest number of postal
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codes, and thus, of clusters. We also observe no monotonic relation between the budget
and the optimal GAP (a proxy of the problem difficulty). For instance, the budget increase
of Rosemont-La Petite-Patrie results in a larger GAP but the budget increase of Le
Plateau-Mont-Royal results in a lower GAP. This is logic since the size of our mathematical
programming model is not affected by the budget and thus, an increase in the budget does
not necessarily increase the time to solve the problem. Indeed, very low budgets result in
small sets of feasible solutions and high budgets result in very large feasible sets; these two
extremes are likely to result in easier to find solutions while “medium” budgets complexify
the search for the optimal solution.

L1-Norm. We now analyze how the fair allocation affects the average distance from the
demand points to the park locations from the final solution. To this end, we use the
L1-Norm on the expected distance from individuals’ to the surrounding parks using the
probabilities pisjr defined in Section 3.2. The values of this metric per neighborhood under
the baseline and the fair budget allocation method are available in Appendix F. Lower values
of the L1-Norm would suggest an increase of fairness, with lower deviation from the average
distance to parks. These results actually show that for some neighborhoods with an increase
of budget when using the fair allocation, such as Côte-des-Neiges-Notre-Dame-de-Grâce,
Le Plateau-Mont-Royal and Villeray-Saint-Michel-Parc-Extension, we observe an increase
of the L1-Norm. This counterintuitive observation shows that the use of utilities instead
of distances to model the preferences of the population significantly changes the nature of
the problem. As an example, Outremont is found with a significant decrease of budget
with the fair allocation, but also results in a lower L1-Norm measure. This stretches the
importance of the definition of the neighborhoods’ objective in the decision process and the
(unsurprising) sensitivity of the solution according to the modeling of park visits.

No-choice option. We complete this discussion by reminding the impact of the quantifi-
cation of the no-choice utility parameter u0

is on the scale of the objective value. Indeed, the
model’s results show multiple neighborhoods with significantly high probability values near
100%, including in Ahunstic-Cartierville, Le Sud-Ouest, Mercier-Hochelaga-Maisonneuve
and Rivière-des-Prairies-Pointe-aux-Trembles. Although these residential areas can evi-
dently display a higher propensity for park visits, this could also be a consequence of the
underestimation of the no-choice utility and this, reflects the importance of parametrizing
a model with proper data estimation. To support this idea, Table 5.5 exemplifies how the
objective value varies with respect to different no-choice utility in the neighborhood of
Outremont (with the baseline budget). We chose this neighborhood (instance) since we
can compute optimal second-stage solutions to it within the time limit and, thus, properly
evaluate the sensitivity to the no-choice utility. The sensitivity analysis is made by applying
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a multiplicative factor to the no-choice utility parameter, u0
is, ∀ i,s ∈ I,S as indicated in

Table 5.5.

Multiplicative factor ObjVal (%)
110% 83.4
100% 84.3
90% 85.3
80% 86.4
70% 87.5

Table 5.5. No-choice utility sensitivity in the neighborhood of Outremont

Final remarks. For a sample solution, Appendix D and Appendix E, respectively, display
the design options selected for the existing and new parks, under the baseline and the budget
allocation method in the neighborhood of Rosemont. As noted in these results, new parks
hypothetically located at the centroid of the FSAs are also subject to change of design options
when subject to a change of neighborhood budget. Based on the previous results, we can
safely suggest that the model yields reasonably realistic results, even though the parameters’
are based on assumptions from existent statistical indexes. Refining such assumptions, and
thus, parameters estimation, should improve the credibility of urban planning recommenda-
tions based on the model’s results.
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Chapter 6

Conclusions and Future Work

In this work, we proposed a two-stage fair facility location and design model to assist public
decision-makers concerned with urban green spaces planning. The two-stage formulation al-
lows us to encompass fairness considerations in the first-stage through the budget allocation
among neighborhoods, based on fairness measures and a maximal baseline budget devia-
tion. The second-stage of the problem is a special case of the facility location problem, and
illustrates realistic considerations of urban planning by including a choice model for users’
behaviors and using justified assumptions to define the underlying parameters. In particular,
through the use of choice models, the second-stage objective mimics the likelihood of visits
to parks, representing a significant improvement over the traditional distance minimization
objective. We have further proved that a competitive facility location problem can be ex-
tended to non-competitive frameworks by re-defining the no-choice option as the element to
compete against. We used linearization techniques to obtain a second-stage mixed-integer
linear program that can be solved with standard solvers, while increasing the complexity of
traditional competitive location problems with the inclusion of design options.

Next, we generated instances of our two-stage fair facility location problem based on
data available about the city of Montreal, allowing us to apply our model. Due to the large
second-stage problems for the boroughs of Montreal, we devised a clustering method with the
intent to reduce the size of the second-stage mixed-integer linear programs, while ensuring
the performance and applicability of the resulting solution. Indeed, this methodology proves
sufficient accuracy in a context of urban green spaces design and location problem.

Through the case-study of the city of Montreal, we show the applicability of our model,
discussing the effects of budget allocation and parks coverage. This work is a first step
towards the development of decision-aid tools for the planning of UGSs by cities.

One of the main shortcomings in our case-study comes from the lack of use of statistical
techniques for estimating the parameters of the choice model. For this reason, we recommend
a model calibration using GIS methodologies as suggested in Huff [2021] to improve the



accuracy of the model’s solution. Nevertheless, we were able to prove the performance of our
model under reasonable time constraints, and obtained results that are intuitive given then
underlying parameters’ assumptions. Refining such parameters should therefore only improve
the solution’s accuracy. Another shortcoming of the model comes from the consideration of
long-term planning. Indeed, we considered a static model using a total budget estimated
for a period of five years, but we recommend an extension of this model to yield a budget
planning per year, and potentially account for a dynamic response at each period, i.e., a
change on demographics and also on the utilities of the SIM.

Regarding future works, we recommend a thorough theoretical characterization of the
clustering methodology. Improving the process for defining the exact number of clusters re-
quired to achieve optimal results under an acceptable time limit and gain knowledge on the
trade-offs between the exact method and the clusters’ method should significantly improve
the reliability of the results. We also suggest a comparison of the different decision-making
structures. Indeed, in the City of Montreal, decisions are taken in a two-stage fashion. It
would be interesting to compare this methodology to the alternative where the city also
takes the second-stage decisions; in this way, we could see the advantages and limitations of
a coordinated second-stage. This method should increase substantially the number of vari-
ables of the model, which could be addressed with heuristics or a more aggregate clustering
approach than the aggregation level used in this thesis.

An interesting direction for this work could also be to integrate green paths in the model.
These paths are intended to connect parks to each other and display a sufficient amount
of trees and vegetation to be considered as a “green” path. Another addition is to account
for blue spaces, defined as the space allocated to water bodies or watercourses. In the 2021
WHO report “Green and blue spaces and mental health: new evidence and perspectives for
action”, green spaces are considered simultaneously with blue spaces as a mean to address
more recent concerns about climate change and mental health [Braubach et al., 2021].

We are hopeful that this work can prove its application in the city of Montreal, and that
it can contribute to the stream of literature that puts forward methodologies for applying
theoretical concepts to the benefit of public health and environmental initiatives. We further
underline the great importance of encouraging multidisciplinary work to achieve solutions
in response to public challenges, while maximizing the use of the substantial amount of
available data, and consequently aim to improve the collective quality of life.
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Appendix A

Dataset Columns

Neighborhood dataset

• neighborhood_id
• name
• type (neighborhood or independent suburb)
• coordinates: well-known text (WKT) description of neighborhood geometry (polygon

and multi-polygon)
• centroid: WKT representation of neighborhood centroid
• area_m2: area of neighborhood in m2

• n_ct: number of census tracts intersecting this neighborhood
• pop2016: total 2016 population within neighborhood
• pop_density_km2: Neighborhood population density
• age_0_14: % of population aged 0-14 years
• age_15_64: % of population aged 15-64 years
• age_65more: % of population aged 65 years or more
• household: total 2016 number of households within neighborhood
• avg_income: average household income ($)
• n_parks: number of parks within neighborhood
• list_parks_id: list of parks within neighborhood



FSA dataset
• fsa: FSA id
• coordinates: well-known text (WKT) description of FSA geometry (polygon and

multi-polygon)
• centroid: WKT representation of FSA centroid
• area_m2: area of FSA in m2

• n_ct: number of census tracts intersecting this FSA
• pop2016: total 2016 population within FSA
• pop_density_km2: FSA population density
• age_0_14: % of population aged 0-14 years
• age_15_64: % of population aged 15-64 years
• age_65more: % of population aged 65 years or more
• household: total 2016 number of households within FSA
• avg_income: average household income ($)
• scoresoc: weighted social deprivation score
• scoremat: weigthed material deprivation score
• ndvi_ncells: number of NDVI raster cells within FSA
• ndvi_mean: mean NDVI
• ndvi_min: min NDVI
• ndvi_max: max NDVI
• ale_ncells: number of ALE raster cells within FSA
• ale_mean: mean ALE
• ale_min: min ALE
• ale_max: max ALE
• uheat_ncells: number of Unusual heat score raster cells within FSA
• uheat_mean: mean Unusual heat score
• uheat_min: min Unusual heat score
• uheat_max: max Unusual heat score
• smoke_ncells: number of smoke pollution score raster cells within FSA
• smoke_mean: mean smoke pollution score
• smoke_min: min smoke pollution score
• smoke_max: max smoke pollution score
• n_parks: number of parks within FSA (valid only if neighborhood completely falls

within Ville de Montréal boundaries)
• list_parks_id: list of parks within neighborhood
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Park dataset
• park_id: Park id
• coordinates: well-known text (WKT) description of park geometry (polygon and

multi-polygon)
• centroid: WKT representation of park centroid
• area_m2: area of park in m2

• park_type_1: Park main category
• park_type_2: Park subcategory
• fsa_ids: FSA intersection park
• n_install: Number of installations within park
• install_types: Types of installation withing park
• ndvi_ncells: number of NDVI raster cells within park
• ndvi_mean: mean NDVI
• ndvi_min: min NDVI
• ndvi_max: max NDVI
• ale_ncells: number of ALE raster cells within park
• ale_mean: mean ALE
• ale_min: min ALE
• ale_max: max ALE
• uheat_ncells: number of Unusual heat score raster cells within park
• uheat_mean: mean Unusual heat score
• uheat_min: min Unusual heat score
• uheat_max: max Unusual heat score
• smoke_ncells: number of smoke pollution score raster cells within park
• smoke_mean: mean smoke pollution score
• smoke_min: min smoke pollution score
• smoke_max: max smoke pollution score
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Appendix B

Number of Clusters

Neighborhood Number of clusters
Ahuntsic-Cartierville 250
Anjou 100
Côte-des-Neiges-Notre-Dame-de-Grâce 150
L’Île-Bizard-Sainte-Geneviève 50
Lachine 100
LaSalle 150
Le Plateau-Mont-Royal 150
Le Sud-Ouest 200
Mercier-Hochelaga-Maisonneuve 250
Montréal-Nord 150
Outremont 50
Pierrefonds-Roxboro 150
Rivière-des-Prairies-Pointe-aux-Trembles 200
Rosemont-La Petite-Patrie 200
Saint-Laurent 200
Saint-Léonard 100
Verdun 100
Ville-Marie 250
Villeray-Saint-Michel-Parc-Extension 200



Appendix C

Weighting Fairness Parameters

The factors below are used to derive the final weighting fairness parameter ρn for the neigh-
borhood n ∈ N :

ρn = ρn1 × ρn2 × ρn3 × ρn4 .

Neighborhood n Density ρn1 Social ρn2 Material ρn3 Smoke ρn4 Total ρn

Ahuntsic-Cartierville 0.90 0.95 1.05 1.00 0.90
Anjou 1.03 0.95 1.05 1.00 1.02

Côte-des-Neiges-Notre-Dame-de-
Grâce 1.10 1.05 0.95 1.01 1.11

L’Île-Bizard-Sainte-Geneviève 0.90 0.95 0.95 0.96 0.78
Lachine 0.90 1.05 1.05 0.99 0.98
LaSalle 0.90 0.95 1.05 1.01 0.90

Le Plateau-Mont-Royal 1.10 1.05 0.95 1.00 1.10
Le Sud-Ouest 0.90 1.05 0.95 1.01 0.90

Mercier-Hochelaga-Maisonneuve 0.90 1.05 1.05 0.99 0.99
Montréal-Nord 1.10 0.95 1.05 1.00 1.09

Outremont 1.10 0.95 0.95 1.01 1.00
Pierrefonds-Roxboro 0.90 0.95 1.05 0.97 0.87

Rivière-des-Prairies-Pointe-aux-
Trembles 0.90 0.95 1.05 0.99 0.89

Rosemont-La Petite-Patrie 1.10 1.05 0.95 1.00 1.10
Saint-Léonard 1.10 0.95 1.05 1.00 1.10
Saint-Laurent 0.92 0.95 1.05 1.01 0.92

Verdun 0.90 1.05 0.95 1.02 0.91
Ville-Marie 1.10 1.05 0.95 1.00 1.10

Villeray-Saint-Michel-Parc-
Extension 1.10 1.03 1.05 1.01 1.19



Appendix D

Design Option Solution of Existing Parks

Park ID Baseline budget Fair budget
0082-000 1 1
0082-001 2 2
0126-000 1 1
0127-000 3 1
0187-000 1 1
0190-000 3 3
0196-000 2 1
0197-000 1 1
0200-000 3 2
0202-000 1 1
0204-000 3 3
0205-000 3 3
0206-000 1 1
0207-000 1 1
0209-000 1 1
0210-000 1 1
0211-000 1 1
0212-000 1 1
0216-000 3 3
0217-000 3 3
0218-000 3 2
0219-000 1 1
0220-000 1 1
0221-000 2 1
0241-000 1 1
0243-000 3 3
0244-000 3 1
0291-000 3 2

Park ID Baseline budget Fair budget
0292-000 3 1
0300-000 1 3
0303-000 1 1
0589-000 3 3
0590-000 1 1
0785-000 1 1
0878-000 1 1
0879-000 2 1
1017-000 3 3
1037-000 1 1
1038-000 1 1
1064-000 1 1
1133-000 1 1
1166-000 1 1
1167-000 1 1
1168-000 1 1
1169-000 1 1
1170-000 1 1
1171-000 2 1
1172-000 2 2
1173-000 1 1
1174-000 3 1
1186-000 3 1
1209-000 3 3
1272-000 3 3
1273-000 3 1
7000-000 1 1



Appendix E

Design Option Solution of New Parks

Park ID Baseline budget Fair budget
H1T 3 3
H1X 3 0
H1Y 1 3
H2G 1 3
H2S 1 1



Appendix F

L1-Norm of the distance per neighborhood
under the baseline and the fair budget

The L1-Norm for a set of demand points I and segments S is defined as follows:

L1 =
∑
i∈I

∑
s∈S

wis · |d̄is − d̄|,

where
d̄is =

∑
j∈J

∑
r∈R(j)

pisjrdij

and
d̄ =

∑
i∈I

∑
s∈S wisd̄is∑

i∈I

∑
s∈S wis

.

Neighborhood L1 norm with baseline budget L1 norm with fair budget
Ahuntsic-Cartierville 1,164,820 1,164,820
Anjou 189,600 196,100
Côte-des-Neiges-Notre-Dame-de-Grâce 31,602 33,325
L’Île-Bizard-Sainte-Genevièveve 249,174 249,174
Lachine 243,233 243,177
LaSalle 269,140 274,292
Le Plateau-Mont-Royal 34,906 35,506
Le Sud-Ouest 368,463 369,811
Mercier-Hochelaga-Maisonneuve 447,265 447,360
Montréal-Nord 28,229 27,052
Outremont 32,268 28,502
Pierrefonds-Roxboro 504,732 504,732
Rivière-des-Prairies-Pointe-aux-
Trembles

634,183 634,183

Rosemont-La Petite-Patrie 34,258 34,084
Saint-Laurent 328,378 330,393
Saint-Léonard 23,032 19,023
Verdun 21,577 21,577
Ville-Marie 30,888 30,124
Villeray-Saint-Michel-Parc-Extension 31,135 31,656
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