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Time-varying confounding is a common challenge for causal inference in observational studies with
time-varying treatments, long follow-up periods, and participant dropout. Confounder adjustment
using traditional approaches can also be limited by data sparsity, weight instability and compu-
tational issues. The Nicotine Dependence in Teens (NDIT) study is a prospective cohort study
involving 24 data collection cycles to date, among 1,294 students recruited from 10 high schools in
Montreal, Canada, including follow-up into adulthood. Our aim is to estimate associations between
the timing of alcohol initiation and the cumulative duration of alcohol use on depression symptoms
in adulthood. Based on the target trials framework, we define intention-to-treat and as-treated
parameters in a marginal structural model with sex as a potential effect-modifier. We then use the
observational data to emulate the trials. For estimation, we use pooled longitudinal target maxi-
mum likelihood estimation (LTMLE), a plug-in estimator with double robust and local efficiency
properties. We describe strategies for dealing with high-dimensional potential drinking patterns and
practical positivity violations due to a long follow-up time, including modifying the effect of interest
by removing sparsely observed drinking patterns from the loss function and applying longitudinal
modified treatment policies to represent the effect of discouraging drinking.
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Estimation of the effect of time-varying exposures in observational studies becomes methodologically

challenging in the presence of time-dependent confounding, requiring statistical methods beyond the

standard approaches (1, 2). Robins (3) proposed marginal structural models (MSMs) which model

the potential outcome under an assigned treatment history (or “pattern”). Hernán and Robins (4)

proposed the target trials framework to define causal effects, in particular MSM parameters, by

means of a mapping of the observational analysis onto an analysis of a hypothetical randomized
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controlled trial. The parameters of an MSM can be estimated with inverse probability of treatment

weighting (IPTW) (2), G-computation (5, 6), augmented-IPTW estimators (7, 8) and more recently

estimators based on the targeted maximum likelihood framework (9), in particular using longitudinal

targeted maximum likelihood estimation (LTMLE) (10, 11). LTMLE estimates the effects of time-

varying exposures on outcomes with the advantage of double-robustness, meaning that the estimator

is consistent if either the models for treatments or outcome are correctly specified. LTMLE is efficient

in a semiparametric statistical model if all models are estimated consistently. In addition, LTMLE

can readily incorporate machine learning in the process of generating the initial estimates while

providing valid statistical inference (11), thus avoiding bias due to model misspecification.

Though LTMLE has been successfully applied in different contexts (12–16), there exist data sparsity

and high-dimensionality challenges (17). One solution to these challenges lies in defining hypothet-

ical longitudinal interventions that shift an individual’s propensity score, making them more or less

likely to be exposed, corresponding to exposure encouragement or discouragement. The intervention

can also be applied conditional on the observed exposure, e.g. only discouraging exposure for those

who actually were exposed (18, 19).

In this paper, we demonstrate the application of LTMLE in a complex substantive application. We

consider an observational cohort study called Nicotine Dependence in Teens (NDIT) (20, 21). Asso-

ciations between alcohol use in adolescence and later risk-taking behaviours have been established

in longitudinal studies (22, 23). Regarding assessment of the longitudinal effect of alcohol use on

depressive symptoms in early adulthood, to the best of our knowledge, no study has adjusted for

time-varying confounding using causal inference methods (24–27). We aim to study the effect of

time of initiation and the cumulative duration of drinking in adolescence on depression in young

adulthood. We take into account time-varying confounders that can also be caused by drinking in

adolescence, including depressive symptoms (24, 28), smoking (29, 30), stress (31, 32), and partici-

pation in team sports (33, 34). We define two target trials that recruit adolescents who have not yet

initiated regular drinking. Using working MSMs, we correspondingly define the “intention-to-treat”

(ITT) and “as-treated” (AT) effects respectively, and investigate effect modification by sex. The

working MSM represents a projection of a true causal relationship between exposures and the out-

come onto a low-dimensional linear model. We then estimate the parameters of the two MSMs using
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G-computation and LTMLE. We describe high-dimensionality and sparsity challenges encountered

when estimating the AT effect and explore ways to address them.

NDIT data

The NDIT is a prospective longitudinal investigation of 1,294 grade 7 students recruited from 10

Montréal-area (Canada) high schools in 1999-2000 (21). Self-report questionnaires were admin-

istered at each of the 10 schools every three months for a total of 20 cycles from 1999 to 2005

(i.e., during the five years of high school). Mail or in-person questionnaires were administered in

2007/2008 (cycle 21) when participants were age 20.4 years on average. The data collected include

repeated measures of a wide range of socio-demographic, substance use, psychosocial, lifestyle, and

physical and mental health variables. Participants in the NDIT study completed self-report ques-

tionnaire at school every three months from grade 7 to 11. Figure S1 in Appendix I presents the

structure of the follow-ups in the NDIT study. Parents and legal guardians provided informed con-

sent, and all students provided assent and then consent in adulthood. The study was approved by

the Ethics Research Committee of the Centre de recherche du Centre Hospitalier de l’Université de

Montréal.

Exposure

Participants were asked “During the past three months, how often did you drink alcohol (beer,

wine, hard liquor)?” We considered a participant exposed to regular alcohol use if the participant

answered “once or a couple of times a week” or “usually every day” (alternatives were “never,” “a bit

to try” or “once or a couple of times a month”). Therefore, “alcohol use” in this paper refers to “at

least weekly use”. We correspondingly denote the binary exposure over time as At, t ∈ (0, · · · , 19)

with At = 1 representing exposure and At = 0 representing unexposed. In defining the population

of interest, we excluded all participants reporting regular alcohol use at time zero. We then defined

exposure initiation as the time when participants first became exposed.
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Censoring

We denote the censoring indicators as Ct, t ∈ (1, · · · , 20). A participant was censored by time t,

denoted Ct = 1, when they were lost to follow-up or when they skipped more than one entire year

of follow-up; otherwise, Ct = 0.

Covariates

Baseline covariates As baseline variables, we included socio-demographic characteristics including

sex, school indicator, mothers’ education, whether the participant lived in a single-parent home, if

the participant spoke French at home, and country of birth, which were assessed in the first data

collection cycle. In addition, we also included as baseline covariates: self-esteem, impulsivity, and

novelty-seeking, measured in the cycle 12, since they are considered as personal traits and unlikely

to vary considerably over time. We denoted the baseline variables as W .

Time-varying covariates The time-varying covariates Lt, t ∈ (1, · · · , 20) were measured between

exposures At and A(t+1) and included: current depressive symptoms (validated 6-item symptoms

scale)(35–37); participation in team sports; family-related stress (validated 4-point scale) with higher

values indicating more stress; other type stress (validated 4-point scale); worry about weight; and

ever smoked.

Detailed information on all covariates is given in Appendix A.

Outcomes

The outcome Y , depression symptoms, was measured using the Major Depressive Inventory (MDI)

in 2007/2008. This scale measures depression symptoms over the past two weeks with range 0-50,

where greater values indicate more severe symptoms (36, 38). A detailed list of items included in

the MDI is presented in Appendix B.

Data structure

Given the above, the following represents the observed data structure:

O = {W ,L1, A1,L2, C2, A2 · · · ,L19, C19, A19,L20, C20, Y }.
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By design, A0 = 0 and C1 = 0 for all participants.

Definition of target parameter

Target trial

We define two target trials, with corresponding ITT and AT parameters of interest. Both trials

recruit participants who had not initiated regular drinking at the beginning of grade 7. The first

target trial randomizes drinking initiation to one of the first 19 follow-up time points. The second

target trial randomizes drinking (yes/no) at each of the 19 time points during the follow-up. The

depression score outcome is measured at the follow-up time in adulthood. The parameters of

interest are the coefficients of a linear regression conditional on sex, drinking assignment and their

interaction.

Parameter of interest

In the observational study, we characterize counterfactuals under the different types of hypothetical

interventions. In the ITT trial, the intervention is initiation time where the analysis ignores changes

in subsequent alcohol use. There are 19 possible initiation times denoted δ = 1, ..., 19 or never. In

contrast, the AT study randomizes drinking at each time, so that some pattern of drinking, denoted

ā, a vector of length 19 of zeros and ones, is assigned to each participant. Therefore, we have 219

potential treatment patterns. We define a specific treatment pattern ād, for ād ∈ D where D is

the set of all possible patterns.

Define Y (δ) and Y (ād) as the counterfactual outcomes that would have been observed under assigned

initiation time δ or treatment pattern ād = (ad1, · · · , ad19), respectively. The parameters of interest

are defined through working MSMs to summarize how the mean counterfactual outcome varies as a

function of different interventions, and the baseline covariate sex. Then the true causal quantities

can be interpreted as the projection of the true function onto the linear working models.
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The two working MSMs are:

E[Y (δ)|sex] = m(sex, δ;βδ) = βδ0 + βδ1sex + βδ2(20− δ) + βδ3{sex× (20− δ)} (1)

E[Y (ād)|sex] = m(sex, ād;βd) = βd0 + βd1sex + βd2cum (ād) + βd3{sex× cum(ād)} (2)

where cum((ād) counts the number of exposed time-points in the pattern and E[Y (·)|sex] repre-

sents the mean counterfactual outcome under some intervention in a sex subgroup such that sex=1

denotes female. The true parameter values of βδ and βd minimize the risk under a squared error

loss function, summing over the all patterns (See Appendix C), corresponding to the parameters

estimated in the target trials. Equations (1) and (2) thus contrast the counterfactual mean depres-

sion score given different alcohol initiation times and usage patterns, respectively.

Assumptions

Several causal assumptions allow us to write the parameters in terms of distributions of the observed

data (identifiability). The consistency assumption requires that the counterfactuals under the treat-

ment pattern actually taken are equal to the observed outcomes. Conditional exchangeability (or

no unmeasured confounders) for AT [ITT, respectively], requires that at each time point, exposure

[initiation] is effectively randomized within each stratum defined by the participant history up to

that point, among uncensored [and uninitiated] participants. Non-interference requires that one in-

dividual’s drinking exposure does not impact others’ drinking and others’ depression outcomes given

their respective exposures. Finally, the positivity assumption requires that all individuals must have

a positive probability of initiating (ITT) or continuing to follow any drinking pattern (AT) given

their covariate history. The latter implies that all participants must be able to consume alcohol or

abstain at all time points. Even if theoretically satisfied, if these probabilities are estimated to be

close to zero, this amounts to practical positivity violations (or sparsity) and the estimation relies on

extrapolation or smoothing across covariate strata (39). Under these assumptions, we can identify

the parameter of interest using Iterated Conditional Expectations (ICE) (1, 8) (See Appendix D).
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Methods

In the application of the causal inference methods to obtain point estimates of the parameters

of interest, we assumed independence between study participants. However, the variance estima-

tion adjusted for clustering by school (12). Our handling of baseline and time-varying covariate

missingness involved multiple imputations by chained equations (See Appendix A).

Sequential G-computation

We use the notation L̄t to denote the history of time-dependent covariates up to time t and likewise

Āt represents the history of the exposure A1, · · · , At. Define Q̄t(ād) as the mean counterfactual

outcome at time t ∈ (21, · · · , 1), had past exposures been set to ādt , given the covariate history. To

apply G-computation, we first rescaled the continuous outcome Y to (0, 1) and defined Q̄21(ā
d) = Y ,

then sequentially, for each time t, we fit logistic regressions conditioning on exposure and covariate

history using uncensored participants (Appendix E). Finally we obtained estimates of Q̄1(ā
d) for

all participants by predicting from this fit under imputed exposure history corresponding to the

given pattern ād. We then stacked the vectors Q̄1(ā
d) for each pattern ād and regressed this vector

on baseline covariates and summaries of regular drinking exposure using linear regression according

to the MSM. Standard errors were then estimated by clustered bootstrap (5, 12). The detailed

algorithm of sequential G-computation is given in the Appendix G. To estimate the variance, for

each imputed dataset we bootstrapped 100 samples to estimate the standard errors then calculated

the confidence intervals using Rubin’s rule (40).

LTMLE

In contrast to the sequential G-computation, LTMLE requires models for the treatment and cen-

soring mechanisms to update the initial estimates of each Q̄t(ā
d) with the objective of satisfying

the efficient influence function estimating equation (41). This results in double robustness and

asymptotic local efficiency (42). First we used logistic regression models to estimate the treatment

probabilities stratified by time conditional on the baseline and time varying covariates, and lagged

exposure for uncensored participants. The probabilities of censoring were estimated using logistic

regression models conditioning on all the covariate and exposure history (Appendix E). Define wdt
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Table 1: Pooled LTMLE Algorithm

Pooled LTMLE Algorithm

1. Estimate every component of wd
t for t = 1, · · · , 20 to obtain the estimated weights wd

t,n for each
treatment pattern ād.

2. Define Q̄d∗
21,n = Y , where Y is rescaled to (0, 1).

3. For t = 20, · · · , 1
3.1 Initial estimate of Q̄d

t,n: Fit a logistic regression of Q̄d∗
t+1,n on uncensored participants given

all the treatment and covariate history. When t = 20, predict outcomes by setting Ā19 = ād
19

otherwise setting Āt = ād
t for each treatment pattern and each subject. Define Q̄d

t,n as the
stacked vector of predictions with length n× |D|.

3.2 Construct a covariate matrix for each subject and each treatment pattern ād,
ht(ā

d, sex) = 1(Āt = ād
t , Ct = 0)× [∂m(β, sex, ād)/∂β] where ∂m(β, sex, ād)/∂β in our

example equals 1, sex, cum(ād
t ), sex× cum(ād

t ). For a treatment pattern ād, the dimension of
ht(ā

d, sex) is the same as the dimension of β. Thus, for all possible patterns, the ht(ā
d, sex)

is of dimension (n× |D|)× 4.
3.3 Update Q̄d

t,n to Q̄d∗
t,n by fitting a intercept-free weighted pooled logistic regression of Q̄d∗

t+1,n

on the covariate matrix produced from the previous step with offset logit(Q̄d
t,n) and wd

t,n

as weights for each ād, logit(Q̄d∗
t,n) = logit(Q̄d

t,n) + εht(ā
d, sex).

3.4 Generate Q̄d∗
t,n by making predictions for every subject under each regime ād using the

logistic model fit in step 3.3 Q̄d∗
t,n is the stacked vector of predictions and has length n× |D|.

4. Rescale Q̄d∗
1,n (length n× |D|) to the original scaling of Y.

5. The coefficients are estimated by fitting a pooled linear regression of Q̄d∗
1,n on stacked covariates and

all treatment patterns D corresponding to the MSM model in Equation 2.

as the cumulative weight which is the cumulative product of the inverse of treatment and censoring

probabilities from time one to t under the specific treatment pattern ād. Here, we used stabilized

weights which results in a weaker positivity assumption (39) (see Appendix F). Because we ob-

served practical positivity violations, we also truncated the weights at fixed values (1,000, 5,000,

and 10,000) to improve the performance of the estimators.

LTMLE allows for the integration of machine learning to increase the chances of consistent esti-

mation under regularity conditions (10). Super Learning (SL) is a methodology that uses V-fold

cross validation to find an optimal convex combination of the predictions of a library of candidate

algorithms defined by the user (43). We therefore used SL to estimate the Q̄t(ād)s, and the exposure

and censoring probabilities. In the AT analysis, we included the following methods in the SL library:

generalized additive models (gam function), generalized linear models (GLM) (glm function), and

LASSO (glmnet function). We customized these functions by adding interaction terms between

treatment and sex in the SL wrappers. We present the pooled LTMLE algorithm to estimate the

parameters of an MSM (11) in Table 1. The subscript n is used to denote an estimate of a quantity.
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Since we hand-coded the pooled LTMLE algorithm for the clustered setting (12), we verified its

correctness using two simulations with two time points and clustered observations and estimated

ITT and AT parameters, described in Appendix H. We simulated 500 datasets where we generated

5, 000 participants in 50 clusters, with random intercepts in the outcome model. We verified the

unbiasedness of the LTMLE and also compared standard error estimators assuming independence

and clustering (respectively) using the influence function based sandwich estimator and clustered

bootstrap, respectively, showing that the clustered versions are needed under random effects. The

full data-generation and results are given in Table S2 and S3 in Appendix H.

Challenges and strategies due to high-dimensionality and sparsity in the AT analysis

The main challenges in the AT analysis involved computational issues introduced by the very large

number of potential treatment patterns. Recall that we have |D| = 219 = 524, 288 potential treat-

ment patterns which would thereby produce several very large stacked vectors and matrices when we

perform the pooled TMLE procedure. The vectors are of length |D|×n = 219×1, 231 = 645, 398, 528

for each time t in the update step (steps (3.2-3.4) of the pooled LTMLE algorithm in Section

LTMLE). However, objects of this size cannot be stored in the R memory or easily manipulated

using R.

The parameters of interest are defined in terms of the minimization of a risk calculated over all

219 patterns (see Appendix D). However, in order to tackle this issue, we proposed a pragmatic

strategy that redefines the parameters of interest by minimizing risk over the patterns that are most

supported by the data. Let Dt be the set of patterns that were supported by data (i.e. observed

to be followed by at least one individual up to time t) for each time t = 1, · · · , 19. Table S4 in

Appendix I gives the cardinality (size) of Dt at each time point. We firstly performed an analysis

involving all supported patterns up to time 19, such that |D19| = 227 patterns were included. In

order to test the sensitivity of the results to the number of time-points used, we ran analyses using

the patterns in D18 (494 patterns; note that these include the patterns in D19); then in D17 (936

patterns) ; and finally in D16 (1,688 patterns). On our local computer, we could not realistically go

further than t = 16 for the LTMLE analysis with GLMs. We focused on D17 (936 patterns) since

this was the largest number of patterns that could be incorporated in the LTMLE analysis with SL.
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Longitudinal modified treatment policies (LMTP)

Inspired by the hypothetical interventions based on the natural value of treatment first discussed

by Robins et al. (44) then formalized by other researchers (45, 46), Díaz et al. (19) proposed

longitudinal modified treatment policies (LMTPs). LMTP involves a hypothetical intervention at

each time point which can be expressed as a deterministic or random function of the observed

treatment and the unit’s covariate history. In this paper, we apply an incremental propensity score

intervention based on risk ratio scale (47, 48) that shifts the propensity scores to discourage alcohol

use in adolescents. Specifically, the intervention assigns a new exposure whose likelihood can be

determined hypothetically by the user-defined risk ratio value. Under this intervention effects can

be identified and estimated under weak conditions on the propensity score (47); consequentially,

sparsity less destabilizes the analysis. We used the lmtp R package (available at (49) and CRAN)

which implements LTMLE to estimate effects under specified LMTPs. We choose five risk ratios of

alcohol use in [0.1, 0.3, 0.5, 0.7, 0.9] then estimated the mean MDI stratified by sex and compared

them with the mean MDI without any intervention. We applied the same SuperLearner algorithms

as Section LTMLE. Further details are given in Appendix J.

Results

The dataset included 1,294 participants. We excluded participants who only completed the first

follow-up, skipped the first year of the study, or reported alcohol consumption at baseline, leaving

1,231 participants in the analysis (Figure S2 in Appendix I). Summaries of baseline and time-

varying characteristics of the 1,231 participants are presented in Table 2. There was missingness

in the baseline covariates. Table 3 reports the cumulative numbers and percentages of censoring,

initiators and actual exposed participants at each time. Note that at t = 1, there was no censoring

due to the exclusion criteria.

ITT analysis

The range of the cumulative stabilized weights lay within [0.22, 72.38] with mean 1.02, so no trun-

cations were applied. In Figure 1 and Table S5 in Appendix I, we see that all estimates agreed that

female sex was associated with more severe depressive symptoms. LTMLE suggested a stronger sex
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Table 2: Baseline characteristics and time-varying covariates at time t = 1 of the 1,231 participants
in the analytic sample from the NDIT study.

Covariates Variables Class Median IQR N. % Missing

Baseline

Sex Female/Male 644/587 52.3/47.7
Single-parent Yes/No 148/1,083 12/88
Speaking French Yes/No 368/863 29.9/70.1
Country of birth In/Outside Canada 1,132/99 92/8
Mother education Less/Some university 523/419 55.5/44.5 289
Self esteema Numeric 2.7 (2.2; 2,9) 276
Impulsivitya Numeric 2.1 (1.6; 2.9) 326
Novelty-seekinga Numeric 2.9 (2.3; 3.4) 324

L1

Weight worry Yes/No 427/736 36.7/63.3 68
Participate sports Yes/No 750/437 63.2/36.8 44
Ever smoked Yes/No 365/862 29.7/70.3 4
Current dep. sym. Numeric 2.0 (1.7; 2.5) 55
Family stress Numeric 1.2 (1.0; 1.4) 59
Other stress Numeric 1.4 (1.2; 1.6) 52

a Note that these three covariates, considered time-invariant, were measured at cycle 12.

Table 3: Size, cumulative size and cumulative percentage of censoring, size of cumu-
lative initiators, exposed participants, and corresponding percentages at 20 follow-
up time points

Time Censoring Alcohol use
N. Cum. N Cum. % Cum. Init. Cum. Init. % N. Expo. Expo. %

0 0 0 0 0
1 0 0 0.0 30 2.4 30 2.4
2 9 9 0.7 56 4.5 40 3.2
3 20 29 2.4 68 5.5 43 3.5
4 85 114 9.3 101 8.2 60 4.9
5 7 121 9.8 151 12.3 100 8.1
6 5 126 10.2 188 15.3 111 9.0
7 10 136 11.0 210 17.1 103 8.4
8 81 217 17.6 233 18.9 116 9.4
9 10 227 18.4 257 20.9 113 9.2
10 2 229 18.6 276 22.4 113 9.2
11 7 236 19.2 284 23.1 104 8.4
12 87 323 26.2 289 23.5 119 9.7
13 8 331 26.9 317 25.8 136 11.0
14 2 333 27.1 340 27.6 124 10.1
15 3 336 27.3 358 29.1 134 10.9
16 39 375 30.5 377 30.6 170 13.8
17 2 377 30.6 394 32.0 171 13.9
18 5 382 31.0 411 33.4 167 13.6
19 7 389 31.6 425 34.5 184 14.9
20 169 558 45.3 425 34.5
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association than G-computation. In addition, LTMLE using GLM and SL indicated that earlier

alcohol initiation time was associated with more severe depression symptoms in males but lower

depression severity in female adults. G-computation estimated no association between alcohol ini-

tiation and depression.

AT analysis

We performed the AT analysis with 227, 494, 936 and 1, 688 patterns, respectively, where the

models in the pooled LTMLE procedure were fitted using GLM. We set fixed bounds at 1, 000,

5, 000 and 10, 000 on the cumulative stabilized weights. Table 4 summarizes the median values and

interquartile ranges of the cumulative stabilized weights and the percentages of truncated cumulative

weights. There was no difference in the percentage of weights truncated over the different numbers

of patterns. The bounding truncated 7− 12% of participants.

Figure 2 and Table S6 in Appendix I show the estimated coefficients using LTMLE with GLM at

three levels of truncation. The estimated counterfactual mean of MDI in females was around 5

points higher than in males and was stable over different numbers of patterns. The cumulative

duration of drinking over time was also associated with increased depressive levels but this estimate

waned with a greater number of patterns and less restrictive bounds. The point estimates of the

interaction term were stable with different numbers of treatment patterns but increased with less

restrictive weights; the confidence interval widths also increased with less.

To better understand the impact of the weights, we compared the LTMLE results with GLM and

SL, respectively, with the parametric sequential G-computation estimator (Figure 3 and Table S7

in Appendix I) using 936 patterns. LTMLE with GLM and SL produced similar results, though

LTMLE with SL sometimes produced broader confidence intervals under the less restrictive bounds.

G-computation produced much more narrow confidence intervals that contained the null for both

the main term effect of cumulative duration and the interaction term. The weights had an important

impact on the point-estimate for the coefficient of cumulative exposure, with LTMLE using GLM at

three bounds and LTMLE using SL under the 1, 000 bound suggesting an association. No method

concluded that sex modified the effect of cumulative exposure.

12



0.0

2.5

5.0

7.5

LTMLE
GLM

LTMLE
SL

G−comp
GLM

Intercept

0.0

2.5

5.0

7.5

LTMLE
GLM

LTMLE
SL

G−comp
GLM

Sex

−0.3

−0.2

−0.1

0.0

0.1

LTMLE
GLM

LTMLE
SL

G−comp
GLM

cumA

−0.3

−0.2

−0.1

0.0

0.1

LTMLE
GLM

LTMLE
SL

G−comp
GLM

Interaction of Sex and cumA

Figure 1: Estimated coefficients of G-computation and LTMLE with GLM and SL, and 95%
confidence intervals in ITT analysis
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cumulative stabilized weights
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15



Table 4: The median, IQR, and percentage of truncated cumulative weights
with GLM for 227, 494, 936 and 1,688 patterns.

N. patterns Median IQR % truncated

1,000 bound 5,000 bound 10,000 bound

227 1.45 (0.91; 18.50) 0.11 0.08 0.07
494 1.70 (0.93; 23.64) 0.11 0.08 0.07
936 1.87 (0.94; 27.21) 0.11 0.08 0.07

1,688 2.09 (0.95; 32.94) 0.12 0.08 0.07

LMTP estimates

Using LTMLE, we estimated mean MDI and the 95% confidence intervals in males and females sep-

arately under five policies of LMTP discouraging alcohol use at each time-point and no intervention

in the Appendix J. For both males and females, comparisons between each intervention that would

have discouraged alcohol use versus no intervention did not suggest any difference.

Discussion

Our study demonstrates how to apply target trials and modified treatment policies to define causal

effects in a challenging longitudinal problem, using LTMLE for estimation. Our analysis involved

detailed information on alcohol initiation and use in adolescents and depression in adulthood, with

21 follow-up time points and many baseline and time-dependent confounders. Censoring led to

gradually decreasing sample size over time. Analytical challenges in the AT analysis included highly

variable weights induced by data sparsity (17) and high-dimensional potential exposure patterns.

To tackle these challenges, we used two approaches to modify the target parameter: an ad hoc

approach to remove patterns with less data-support from the loss function; and through defining

longitudinal interventions shifting the propensity scores to discourage drinking in adolescents.

Our LTMLE with GLM and SL analysis suggested that earlier drinking initiation time was associ-

ated with increased depression in males and reduced symptoms in females. LTMLE also indicated

that cumulative drinking duration was associated with increased depression in males and females.

However, this last analysis was hampered by sparsity and was sometimes sensitive to the weight

bounds, though less sensitive to the number of patterns included in the loss function. For better in-

sight, we employed sequential G-computation which uses the same estimation procedure as LTMLE
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without the weighting component and again noted the large difference in the point estimates and

standard errors. Because LTMLE is doubly robust, influential weights suggest misspecified models

for the outcome. But it is not clear to what point the instability of the weights inserted bias into

the analysis. Under the LMTP intervention discouraging alcohol use to various degrees, no effect

was apparent. Similar LMTP parameters have been proposed elsewhere (18).

Gender and sex differences in the relationship between alcohol use and depression have been in-

vestigated in recent years. Fergusson et al. (50) found no gender differences of the association

between alcohol use and depressive symptoms using a 25-year longitudinal study. Edwards et al.

(51) observed the association between harmful alcohol use and depression in females, but not in

males based on a prospective population based cohort data. Inconsistencies between these results

and our own may be explained to some extent by different populations under study that vary in age

composition, the social norms, the degree of depressive symptoms, the estimation methods, and the

confounding adjustment involved.

Limitations in our analysis include the interference assumption likely being violated to some ex-

tent (e.g. within school classes) since drinking behavior is transmissible in adolescents as perceived

peer norms have a direct effect on alcohol use (52). Second, though we adjusted for many relevant

confounders, the no unmeasured confounders assumption is likely unmet as we do not have a com-

plete profile on personal circumstances that would affect the timing of drinking in adolescence and

depression in adulthood. Third, due to the limited computational ability of our local computers,

we included at most 1,688 treatment patterns in the AT analysis which changed the parameter

of interest, potentially leading to bias. However, we did not see much deviation in the statistical

conclusions when we varied the set of treatment patterns, suggesting that the bias may not be

substantial.

Our study contributes to a growing literature on the application of robust longitudinal causal infer-

ence methods. While these methods have many important theoretical properties, data sparsity is a

common challenge. We thus encourage epidemiologists and applied statisticians to explore recently

proposed parameter definitions and estimation methods that reduce positivity constraints, leading

to more robust results.
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