
Université de Montréal

Parametric Scattering Networks

par

Shanel Gauthier

Département d’informatique et de recherche opérationnelle
Faculté des arts et des sciences

Mémoire présenté en vue de l’obtention du grade de
Maître ès sciences (M.Sc.)

en Discipline

May 12, 2022

© Shanel Gauthier, 2021

Université de Montréal
Faculté des arts et des sciences

Ce mémoire intitulé

Parametric Scattering Networks

présenté par

Shanel Gauthier

a été évalué par un jury composé des personnes suivantes :

Gauthier Gidel
(président-rapporteur)

Irina Rish et Guy Wolf
(directeur de recherche)

Aaron Courville
(membre du jury)

Résumé

La plupart des percées dans l’apprentissage profond et en particulier dans les réseaux
de neurones convolutifs ont impliqué des efforts importants pour collecter et annoter des
quantités massives de données. Alors que les mégadonnées deviennent de plus en plus
répandues, il existe de nombreuses applications où la tâche d’annoter plus d’un petit nombre
d’échantillons est irréalisable, ce qui a suscité un intérêt pour les tâches d’apprentissage sur
petits échantillons.

Il a été montré que les transformées de diffusion d’ondelettes sont efficaces dans le
cadre de données annotées limitées. La transformée de diffusion en ondelettes crée des
invariants géométriques et une stabilité de déformation. Les filtres d’ondelettes utilisés
dans la transformée de diffusion sont généralement sélectionnés pour créer une trame serrée
via une ondelette mère paramétrée. Dans ce travail, nous étudions si cette construction
standard est optimale. En nous concentrant sur les ondelettes de Morlet, nous proposons
d’apprendre les échelles, les orientations et les rapports d’aspect des filtres. Nous appelons
notre approche le Parametric Scattering Network. Nous illustrons que les filtres appris par le
réseau de diffusion paramétrique peuvent être interprétés en fonction de la tâche spécifique
sur laquelle ils ont été entrainés. Nous démontrons également empiriquement que notre
transformée de diffusion paramétrique partage une stabilité aux déformations similaire à la
transformée de diffusion traditionnelle. Enfin, nous montrons que notre version apprise de
la transformée de diffusion génère des gains de performances significatifs par rapport à la
transformée de diffusion standard lorsque le nombre d’échantillions d’entrainement est petit.
Nos résultats empiriques suggèrent que les constructions traditionnelles des ondelettes ne
sont pas toujours nécessaires.

Mots clés : Apprentissage en profondeur, Données étiquetées limitées, Apprentissage sur
peu d’échantillons, Transformées de diffusion, Ondelettes

5

Abstract

Most breakthroughs in deep learning have required considerable effort to collect massive
amounts of well-annotated data. As big data becomes more prevalent, there are many
applications where annotating more than a small number of samples is impractical, leading
to growing interest in small sample learning tasks and deep learning approaches towards
them.

Wavelet scattering transforms have been shown to be effective in limited labeled data
settings. The wavelet scattering transform creates geometric invariants and deformation
stability. In multiple signal domains, it has been shown to yield more discriminative
representations than other non-learned representations and to outperform learned rep-
resentations in certain tasks, particularly on limited labeled data and highly structured
signals. The wavelet filters used in the scattering transform are typically selected to create
a tight frame via a parameterized mother wavelet. In this work, we investigate whether
this standard wavelet filterbank construction is optimal. Focusing on Morlet wavelets,
we propose to learn the scales, orientations, and aspect ratios of the filters to produce
problem-specific parameterizations of the scattering transform. We call our approach the
Parametric Scattering Network. We illustrate that filters learned by parametric scattering
networks can be interpreted according to the specific task on which they are trained.
We also empirically demonstrate that our parametric scattering transforms share similar
stability to deformations as the traditional scattering transforms. We also show that our
approach yields significant performance gains in small-sample classification settings over
the standard scattering transform. Moreover, our empirical results suggest that traditional
filterbank constructions may not always be necessary for scattering transforms to extract
useful representations.

Keywords: Deep Learning, Limited Labeled Data, Few-sample learning, Scattering
Transforms, Wavelets

7

Contents

Résumé . 5

Abstract . 7

List of tables . 13

List of figures . 15

List of acronyms and abbreviations . 17

Acknowledgements . 19

Introduction . 21

Contribution. 22

Outline . 22

Working Paper . 23

Funding Acknowledgment . 23

Chapter 1. Background . 25

1.1. Single-Layer Perceptron . 26

1.2. Feed Forward Artificial Neural Networks . 27

1.3. Underfitting and Overfitting . 29

1.4. Convolutional Neural Networks . 30

1.5. Supervised and Unsupervised Learning . 33

Chapter 2. Limited Labeled Data . 35

2.1. Data Scarcity . 35

2.2. Strategies . 37
2.2.1. Regularization . 37

9

2.2.2. Data Augmentation . 38
2.2.3. Transfer Learning . 38
2.2.4. Loss Function . 39
2.2.5. Wavelet Scattering Transform . 40
2.2.6. Incorporating Prior Knowledge . 41
2.2.7. Self-Supervised Learning . 41

Chapter 3. Wavelet Scattering Transform . 45

3.1. Stability to Deformations . 45

3.2. Scattering Convolutional Network . 46

3.3. Morlet Wavelets . 49

3.4. Analogy to Visual System. 50

3.5. Properties . 51

3.6. Texture Discrimination . 52

3.7. Scattering Variants . 53

3.8. Scattering Implementations . 55

Chapter 4. Parametric Scattering Networks . 57

4.1. Initialization . 57

4.2. Morlet Wavelet Parameterization. 58

4.3. Backpropagation through the Parametric Scattering Network. 59

4.4. Experimental Protocol . 60

4.5. Exploring Dataset-Specific Parameterizations . 61

Chapter 5. Experiments. 65

5.1. Robustness to Deformation . 65

5.2. Small Data Regime . 66
5.2.1. CIFAR-10 . 66
5.2.2. COVIDx CRX-2 . 70
5.2.3. KTH-TIPS2 . 71
5.2.4. Cosine Loss . 72

10

5.2.5. Number of Filters per Spatial Scale . 73

5.3. Unsupervised Learning of Scattering Parameters . 74

Chapter 6. Conclusion and Future Work . 77

References . 79

Appendix A. Perceptron Learning Algorithm . 89

Appendix B. Dataset Specific Parameterizations . 91
B.1. COVIDX-CRX2. 92
B.2. KTH-TIPS2. 94
B.3. CIFAR-10 . 96

11

List of tables

2.1 Number of samples per dataset . 35
2.2 Number of samples per medical dataset . 37

3.1 Number of channels per scattering coefficient order . 46
3.2 Parameters of Morlet wavelet . 49
3.3 Available wavelet families in Matlab’s wavelet toolbox and PyWavelets 55
3.4 Comparison of Matlab’s wavelet toolbox, PyWavelets and Kymatio. 56

4.1 Parameters initialization of Morlet filters . 58
4.2 Description of the WRN hybrid architecture . 62

5.1 Deformations and their maximum value . 65
5.2 CIFAR-10 mean accuracy and std. error over 10 seeds, with J = 2 69
5.3 CIFAR-10 mean accuracy and std. error over 10 seeds with J = 2 without

autoaugment . 70
5.4 COVIDx CRX-2 mean accuracy & std. error over 10 seeds with J = 4 71
5.5 KTH-TIPS2 mean accuracy & std. error over 16 seeds with J = 4 72
5.6 CIFAR-10, COVIDx-CRX2 and KTH-TIPS2 mean accuracy and std. error using

cosine loss function . 73
5.7 CIFAR-10 accuracy of learnable scattering followed by a linear layer and multiple

numbers of filters per scale trained on all the training set. 73
5.8 CIFAR-10 mean accuracy and std. error over 10 seeds with multiple training

sample sizes and different values of L. 74
5.9 Scattering and learned unsupervised scattering features evaluated by training a

linear classifier on CIFAR-10 . 75

13

List of figures

1.1 Artificial intelligence venn diagram. 25
1.2 Perceptron architecture and linear decision boundary visualization 26
1.3 Artificial neural network architecture with two hidden layers . 27
1.4 Overfitting and underfitting illustration . 29
1.5 Convolutional neural network architecture . 31
1.6 Example of a convolutional and a subsampling layers. 32
1.7 Residual learning block . 33

2.1 Performance of a model based on the amount of labeled data available 36
2.2 Filters learned by the first convolutional layer in AlexNet resemble Gabor filters . 39
2.3 Scattering transform of an image. 40
2.4 SimCLR framework: contrastive learning of visual representations. 42

3.1 Samples of handwritten digits . 46
3.2 Wavelets generated from a mother wavelet via dilations and rotations to cover the

frequency plane . 47
3.3 Scattering convolutional network . 48
3.4 Morlet wavelet filters with 4 scales and 4 orientations . 49
3.5 Visual system and primary visual cortex . 50
3.6 Invariance to translation . 52
3.7 Example of two different textures . 52
3.8 Kymatio traversal algorithm . 56

4.1 Visualization of real part of Morlet wavelet filters . 58
4.2 Samples from CIFAR-10, COVIDx CRX-2, and KTH-TIPS2 . 60
4.3 Parametric scattering network learns dataset specific filters initialized with tight

frame. 63

15

4.4 Parametric scattering network learns dataset specific filters initialized randomly . 64

5.1 Normalized distances between scattering representations of an image and its
deformation . 67

5.2 Initialized canonical wavelet filters pre and post-training.. 68
5.3 Initialized equivariant wavelet filters pre and post-training. 68
5.4 Unsupervised learning of scattering networks visualization. 75

B.1 Filters trained on 1188 samples of COVIDx-CRX2 displayed in pairs that
correspond to the “closest” filters of both types. 92

B.2 Filters trained on 1188 samples of COVIDx-CRX2 displayed in increasing order
of their distances. 93

B.3 Filters trained on 1188 samples of KTH-TIPS2 displayed in pairs that correspond
to the “closest” filters of both types . 94

B.4 Filters trained on 1188 samples of KTH-TIPS2 displayed in increasing order of
their distances. 95

B.5 Filters trained on 1190 samples of CIFAR-10 displayed in pairs that correspond
to the “closest” filters of both types. 96

16

List of acronyms and abbreviations

AI Artificial Intelligence

API Application Programming Interface

ANN Artificial Neural Network

CNN Convolutional Neural Network

DL Deep Learning

LS Learnable Scattering

ML Machine Learning

MLP Multilayer Perceptron

ReLU Rectified Linear Activation Function

SGD Stochastic Gradient Descent

TF Tight Frame

WRN Wide Residual Network

17

Acknowledgements

Throughout my masters, I received a great deal of support and encouragement from nume-
rous people. First, I would like to thank my supervisor, Dr. Irina Rish, for welcoming me to
her team and trusting my abilities. I also want to thank my co-supervisor, Dr. Guy Wolf,
for his mentorship, encouragement and academic advice. Thank you for taking a chance on
me. You gave me insightful feedback and comments that prompted me to refine my thinking.

I would also like to thank Dr. Eugene Belilovky and Dr. Michael Eickenberg, who
collaborated on the research project. Thank you for supporting the project and giving
thoughtful feedback. I am grateful for your guidance and insights.

Next, I would like to thank all my collaborators Benjamin Thérien, Laurent Alcène-
Racicot and Muawiz Chaudary, who made this work possible. They devoted time and effort
to the research project. I am impressed by their incredible work ethic. It was really fun
working with all of them.

I would also like to thank my collaborators from the CHUM (Center Hospitalier de
Montréal) including Dr. An Tang, Dr. Emmanuel Montagon, Pedro de Oliveira Vianna,
Hongliang Li, Sara-Ivana Calce, Boyan Fan, Laurent Patry-Beaudoin and Cassandra
Larocque. It was a pleasure working with all of you.

None of this would have been possible without the support and encouragement of
my parents and my boyfriend, Justin Charbonneau. During the most stressful times, they
were there for me. They always encouraged me to continue my studies. They have been
tremendously supportive. Finally, I would like to thank my friend Jessica Bergeron for
reminding me to take breaks and have fun when I was stressed.

19

Introduction

In the past decade, we have witnessed tremendous breakthroughs in deep learning. Most
of the breakthroughs did involve massive amounts of labeled data. As big data becomes
more prevalent, there are many applications where annotating more than a small number
of samples is infeasible. The limitation of labeled data has sparked a growing interest in
small sample learning tasks and deep learning approaches towards them [23, 17, 18, 24].
Scattering transforms have been shown to be useful in applications involving scarcely
annotated or limited labeled data [26, 128, 108, 44].

The scattering transform, proposed in [93], is a cascade of wavelets and complex mo-
dulus nonlinearities, which can be thought as a convolutional neural network (CNN) with
predetermined filters. It has been shown to give impressive results on problems involving
highly structured signals [26, 107, 9, 129, 62, 61, 44, 7, 131, 112], outperforming several
other classic signal processing techniques. Since scattering transforms are instantiations of
CNNs, they have been studied as mathematical models for understanding the impressive
success of CNNs in image classification [26, 94]. A theoretical and empirical study
of information encoded in scattering networks indicates that they often promote linear
separability, which leads to effective representations for downstream classification tasks
[26, 106, 6, 44].

Recent work has shown that, in image classification, state-of-the-art results can be
obtained by hybrid networks that harness the scattering transform as their first layers
followed by learned layers based on a wide residual network architecture [108]. In this
thesis, we further advance this research by proposing to use the scattering network not only
as fixed preprocessing layers in a concatenated architecture but also as a parametric prior
to learn filters in a CNN. It allows us to also shed light on whether the standard wavelet
construction [92] is an optimal approach for building filterbanks from a mother wavelet for
discriminative tasks.

Recall that the scattering construction is based on complex wavelets, generated from

a mother wavelet via dilations and rotations, aimed to cover the frequency plane while
having the capacity to encode informative variability in input signals [26]. Further, discrete
parameterization and indexing of these operations (i.e., by dilation scaling or rotation angle)
have traditionally been carefully constructed to ensure the resulting filter bank forms an
efficient tight frame [92, 93] with well-established energy preservation properties. On the
other hand, it has been observed that the first layers of convolutional networks resemble
wavelets but may not necessarily form a tight frame [80]. The question then arises: is it
necessary to use the standard wavelet filterbank construction? Here, we relax the traditional
construction by considering another alternative where a small number of wavelet parameters
used to create the wavelet filterbanks are optimized for the task at hand. In other words,
we let the scattering network learn the optimal parameters of each wavelet in an end-to-end
differentiable architecture.

Contribution
In the thesis, we propose to learn the scales, orientations, and aspect ratios of the fil-

ters to produce problem-specific parameterizations of the scattering transform. We call our
approach the Parametric Scattering Network. To our knowledge, this is the first work that
aims to learn the wavelet filters of scattering networks in 2D signals. Our main findings and
contributions can be summarized as follows:

• We empirically demonstrate that our parametric scattering network shares similar
stability to deformations as the traditional scattering transform.
• We illustrate that filters learned by parametric scattering networks can be interpreted
for the task at hand.
• We empirically demonstrate that the parametric scattering network trained in a
supervised and unsupervised manner yields significant performance gains in small-
sample classification settings over the standard scattering network.
• Our empirical results suggest that traditional filterbank constructions may not always
be necessary for scattering transforms to extract effective representations.

Outline
The thesis is organized as follows. Chapter 1 provides the background information needed

to understand the fundamentals of deep learning (DL). We describe deep neural networks
and cover different deep learning architectures. We also introduce the concepts of under-
fitting and overfitting and the difference between supervised and unsupervised learning. In
Chapter 2, we describe the challenge of limited labeled data and describe various techniques
to overcome it. In Chapter 3, we revisit the scattering transform. We start by defining
the stability to deformations using the Lipschitz continuity condition. We then define the

22

formulation of the scattering transform and discuss its properties. We also introduce dif-
ferent variations of the scattering transform and describe different packages that implement
the transformation. In Chapter 4, we introduce the parametric scattering transform. We
describe two scattering parameter initializations and how to differentiate through this para-
metrized scattering transform. We describe the experimental protocol used to evaluate the
parametric scattering network and explore the different filter construction schemes. In Chap-
ter 5, we evaluate the robustness of the parametric scattering networks to deformations. We
then demonstrate the advantages of our approach in limited labeled data settings and study
the adaptation of the wavelet parameters towards a supervised task. We also investigate
the adaptation of the parametrized scattering using an unsupervised objective. Finally, in
Chapter 6, we summarize our contributions and discuss future work.

Working Paper
Chapter 3, 4 and 5 are based on the working paper called Parametric Scattering Net-

works [48], which has been accepted for publication at the 2022 Conference on Com-
puter Vision and Pattern Recognition (CVPR). As the first co-author of the paper, I
contributed to all the stages, including literature review, implementation, and paper wri-
ting. Further, this work has also previously been presented at the 2021 Mathematical
Theory of Deep Learning conference. The code accompanying the work is available on
https://github.com/sgaut023/kymatio_mod. The content of this link contains complete
instructions on how to run the code to reproduce the results presented in this thesis.

Funding Acknowledgment
During my master’s degree, I received a scholarship funded by an IVADO grant (PRF-

2019-6121178858, PI Tang) administered by CHUM (Centre Hospitalier de l’Université de
Montréal). The Faculty of Arts and Sciences awarded me a scholarship in the field of artificial
intelligence in December 2020. I was also awarded the NSERC CGS-M scholarship from May
2021 to April 2022. The CHUM and Mila (Quebec Artificial Intelligence Institute) provided
me with computer equipment and resources to carry out the various experiments.

23

https://github.com/sgaut023/kymatio_mod

Chapter 1

Background

Over the past few years, we have seen a lot of interest and enthusiasm around Artificial
Intelligence (AI) and, more specifically, around deep learning (DL). Geoff Hinton, a pioneer
in AI, even claimed that deep learning would be able to do everything [54]. With such
claims, one might wonder what deep learning is. Deep learning is a subset of Machine
Learning (ML) and AI, as shown in Figure 1.1. [51]. Goodfellow et al. [51] introduce deep
learning as an approach that gathers a “hierarchy of concepts that enables the computer to
learn complicated concepts by building them out of simpler ones”. The concepts are stacked
on top of each other to form deep layers of knowledge. That is why we call the approach
deep learning. Although we have recently seen an increased interest in AI, we can track deep
learning approaches as early as 1943 [95]. The recent success is attributed to the enormous
increase in the amount of available labeled data and to the growth in the size of computer
infrastructures [51].

This chapter provides the information needed to understand the fundamentals of deep
learning. In what follows, we first introduce the perceptron, the simplest form of a neural
network, and then present the multilayer perceptron. We also introduce the convolutional

Fig. 1.1. Artificial intelligence venn diagram. Image from: [67].

neural network (CNN), a well-known deep learning architecture for image processing. We
finally describe the different categories of ML algorithms.

1.1. Single-Layer Perceptron
In the early days of deep learning, Frank Rosenblatt introduced the perceptron [118], the

simplest form of Artificial Neural Network (ANN), at the Cornell Aeronautical Laboratory
[119]. The perceptron architecture includes an input layer and an output layer, as shown in
Figure 1.2 (a). The perceptron maps its input x ∈ Rn to an output value ŷ. Each input x
is associated with a class label y. Historically, the class label was binary, such as y ∈ [−1,1].
The output value, also called the predicted value, is computed as:

ŷ = φ(
n∑
i=1

wixi + b) (1.1.1)

where w ∈ Rn is the weight vector, b is the bias constant and φ is the activation function
[118]. The activation function is used to map the input value to a binary output value
(1 or -1). There are different activation functions, such as the step function defined in
Equation 1.1.2.

H(x) =

 1 ifx ≥ 0
−1 ifx < 0

(1.1.2)

Other typical activation functions are the sigmoid function φ(x) = (1 + e−x)−1 and the
hyperbolic tangent function tanh(x) = ex+e−x

ex−e−x . The perceptron can be seen as a binary
classifier, also known as a logistic regression classifier. The weights of the network show the
importance of each input node and are adjusted to draw a linear decision boundary between

Fig. 1.2. Perceptron architecture and linear decision boundary visualization.(a)
Perceptron architecture. Image from: [16]. (b) Example of linear decision boundary. Image
from: [82].

26

Fig. 1.3. Artificial neural network architecture with two hidden layers. Image
from: [116].

the two classes. In other words, the perceptron divides the input space into two classes (−1
and 1) based on the value of the weights and the bias. An example of a linear decision
boundary is shown in Figure 1.2 (b). The slope of the decision boundary is defined by the
weight vector that is optimized using the learning algorithm described in Algorithm A.1 (see
Appendix A). The intercept of the decision boundary is defined by the bias b.

1.2. Feed Forward Artificial Neural Networks
The perceptron, being the simplest form of ANN, has its limitations. Indeed, the

perceptron cannot solve nonlinearly separable problems. The Multilayer Perceptron (MLP)
overcomes this limitation. The first MLP was introduced in 1968 by Ivakhnenko et al. [71].
A MLP is a neural network composed of layers of perceptrons whose architecture is
illustrated in Figure 1.3. A MLP is also called feed forward artificial neural network because
information circulates in the network starting from the input nodes then passing through
the hidden nodes and finally through the output nodes.

The neural network algorithms are designed to solve a particular task. The algo-
rithms can be classified into different groups based on the task they are trying to solve:
classification or regression. The objective of ANN is to approximate a target function f ∗

associated with the task at hand. The target function is a function that maps the input
to the output. In a classification problem, the target function maps an input to a discrete
output. In a regression problem, the target function maps an input to a continuous output.
The network computes a function f(x;θ) to approximate f ∗ where x ∈ Rn is the input.
The network f is parametrized by the weights of the network θ. The input data points are
linearly transformed to a set of features a(1)(x) ∈ Rm using the weight matrixW (1) ∈ Rn×m

and the bias b(1) such as: a(1)(x) = b(1) +W (1)x. Then, a nonlinear activation function φ is

27

applied element-wise to the linearly transformed input data to obtain a new set of features
such as: h(1)(x) = φ(a(1)(x)) where h(1)(x) ∈ Rm. A commonly nonlinear function used is
the Rectified Linear Units function (ReLU) [103] defined as ReLU(x) = max(x,0).

We suppose that we have a feed forward ANN with L hidden layers. Thus, we com-
pute the pre-activation hidden nodes at layer k > 0 as shown in Equation 1.2.1.

a(k)(x) = b(k) +W (k)h(k−1)(x) (1.2.1)

Then, the hidden layer activation nodes are computed as shown in Equation 1.2.2.

h(k)(x) = φ(a(k)(x)) (1.2.2)

In classification, the output layer consists of two or more nodes. We estimate the probabilities
that the predicted class ŷ is equal to the different classes c by using the softmax activation
function, which is defined as:

softmax(a) =
[

exp(a1)∑
c exp(ac)

,..., exp(aC)∑
c exp(ac)

]T
(1.2.3)

Once the softmax function is applied, the values of the output nodes sum up to one and are
strictly positive. The predicted class is the class associated with the node with the highest
value. Thus, the output value of the network is computed as:

h(L+1)(x) = softmax(a(L+1)(x)) = f(x;θ) (1.2.4)

where θ = (W (1), b(1), . . . ,W (k), b(k), . . . ,W (L+1), b(L+1)) is the set of all parameters in the
network. The network is trained based on a principle known as empirical risk [141] in which
the training of the network is converted into an optimization problem. In empirical risk
minimization [141], training a network is the task of finding a set of parameters θ that
minimize Equation 1.2.5 (i.e., minimize an objective function).

1
T

∑
t

l(f(x(t);θ), y(t)) + λΩ(θ) (1.2.5)

In Equation 1.2.5, T is the number of training samples, x(t) is tth training sample and y(t)

is the label associated with sample x(t). The regularizer Ω penalizes particular values of
θ to help the model generalize better on unseen samples [122]. A common regularizer is
weight decay also called L2 regularization where Ω(θ) = ||θ||22 [51]. The loss function,
denoted by l in Equation 1.2.5, compares the network’s output with the true label. A loss
function is a proxy for the classification error since optimizing a classification error can be

28

Underfit Optimal Overfit

Predictor variable

O
ut

pu
t v

ar
ia

bl
e

O
ut

pu
t v

ar
ia

bl
e

O
ut

pu
t v

ar
ia

bl
e

Predictor variable Predictor variable

Fig. 1.4. Overfitting and underfitting illustration. (Left) The problem of underfitting
when the model is not sufficiently aligned with the training data. (Middle) Ideal balance.
(Right) The problem of overfitting where the model is too closely aligns with the training
data. The models learned the noise of the training data. Image adapted from: [12]

tricky considering it is not a smooth function [51]. One of the most popular loss functions
used in classification tasks is called cross-entropy and corresponds to the negative of the
log-likelihood [51]. The balance between optimizing the average loss and the regularization
is controlled by λ, a hyperparameter1.

Now that the problem of training a neural network is seen as an optimization pro-
blem, we can use different algorithms from the optimization literature, such as Stochastic
Gradient Descent (SGD). The weights and the biases are optimized using backpropagation
which is described in detail in [51].

1.3. Underfitting and Overfitting
The desired objective of training a model (i.e., optimization of weights and biases) is to

be able to generalize from the training data to any data from the problem domain [72]. Ge-
neralization refers to the ability of a model to predict unseen data points correctly [40, 73].
However, generalization is sometimes not possible due to the problem known as underfitting.
Underfitting occurs when a model is not able to capture the relationship between the input
and output data [68]. Usually, this is characterized by poor performance on the training
and testing data. Figure 1.4 (left) illustrates the phenomenon of underfitting where we
observe that the model is not sufficiently aligned with the training data. Underfitting is
unlikely since, according to the Universal Approximation Theorem [64], a neural network
with only one hidden layer can approximate any continuous function well with enough
hidden units. ANNs are known as Universal Function Approximators. Underfitting is also
unlikely, considering that models are now deeper and wider (i.e., high-capacity models). We
can increase the capacity of a neural network by increasing the number of hidden nodes and
layers. Zhang et al. [152] show that high-capacity models can easily fit a random labeling
of the training data.
1A hyperparameter is not learned during the training but is set before the learning process.

29

On the other hand, high-capacity models can easily overfit on the training data. Overfitting
is the opposite of underfitting. This phenomenon can happen when the model is trained
for too many epochs or with limited labeled data. To explain the problem of overfitting,
Hawkins et al. [56] first define the principle of parsimony as the use of models or procedures
that contain only the necessary information, but nothing more. Overfitting is defined as
using models or procedures that violate the principle of parsimony. Figure 1.4 (right)
illustrates the phenomenon where the model fits exactly the data. The model learned the
noise and artifacts of the training data. It is characterized by a good performance on the
training set and poor performance on the testing set.

1.4. Convolutional Neural Networks
One way to deal with overfitting is to decrease the complexity of the model [121]. In the

context of image classification, feed-forward ANNs are highly complex since they require
an unmanageable number of parameters in the fully connected layers. Ideally, we would
want a neural network capable of processing high-dimensional images without requiring a
considerable number of parameters.

LeCun et al. [84] introduced, in 1989, the Convolutional Neural Network (CNN),
also called ConvNet. CNN is a deep learning algorithm with fewer trainable parameters that
takes the spatial information of images into account. In a CNN, hidden units are connected
to sub-regions of the image and connected to all channels, thus reducing the number of
parameters. CNN utilizes the concept of parameter sharing with kernels (also called filters)
that slide along the input image, further reducing the number of parameters. As shown
in Figure 1.5, typical CNNs are made up of three different layers: the convolutional layer,
the subsampling/pooling layer, and the fully-connected layer. The three types of layers are
described below.

Convolutional layers extract the features using kernel matrices, also called filters.
A kernel matrix is the hidden weight matrix W where the rows and columns are flipped.
The outputs of a convolutional layer are called the feature maps and are computed by
performing a discrete convolution (?) of an image X with a kernel matrix K. The width
and height of the kernel are denoted by V and H, respectively. The output of the 2D
discrete convolution Y is computed as shown in Equation 1.4.1.

Y (x,y) =
V∑
u=0

H∑
v=0
X(x− u, y − u)K(u,v) (1.4.1)

30

Fig. 1.5. Convolutional neural network architecture. Typical CNNs are built of
convolutional layers, pooling layers and fully-connected layers. Image from:[4].

We slide the kernel across the input matrix as demonstrated in Figure 1.6. The step size
used while sliding the kernel on the matrix is called “stride”. In Figure 1.6, we use a stride
of 1. We can increase the size of the input matrix by adding zero pixels to the borders.
We call this operation “zero-padding”. Padding is needed in some cases because a discrete
signal is not defined outside its borders. Thus, a convolution is also not defined outside
the borders of an image [28]. The “zero-padding” approach is useful when the signal at
the boundaries are supposed to be zeros. If it is not the case, this method creates dark
borders around the image. Thus, non-zero pixels can also be used in the padding operation.
Once the discrete convolution is computed, the non-linear operation can be applied at every
position of Y , such as ReLU.

Equation 1.4.2 demonstrates how to compute the vertical output size Ov and hori-
zontal output size Oh of a convolutional layer where N is the height of the input matrix, M
the width of the input matrix, P the padding value and S the stride value [2].

Ov = 1 + N + 2P −H
S

Oh = 1 + M + 2P − V
S

(1.4.2)

Convolutional layers have learnable kernels with one trainable bias per feature map and
follow the standard procedure for the forward pass and backpropagation [124].

Subsampling/Pooling layers reduce the dimensionality of feature maps and make
the features invariant to translations [124]. Like the convolutional layer, pooling operations
are computed on subregions (patches) of the feature maps. The patches can be overlapping
or not [124]. Two standard pooling methods are known as average pooling and max pooling.
Average pooling computes the average value of the subregions in the feature maps. Max
pooling returns the maximum value of each subregion. In Figure 1.6, the pooling operation

31

Fig. 1.6. Example of a convolutional and a subsampling layer. The dimension of
the input matrix is 14 × 14. A kernel of size 5 × 5 is convolved on the input image using no
padding and stride of value 1. The output of the convolutional layer has a dimension of 10
× 10. We can also apply at each pixel a non-linear operation such as ReLU. Then, we use a
kernel of size 2 × 2 in the sampling layer to reduce the dimension of the output matrix to 5
× 5. Image from: [89]

is computed on non-overlapping patches of dimension 2 × 2. Usually, the pooling layer
comes after the convolutional layer.

Fully-Connected layers are the layers used in a feed-forward ANN. The objective
is to convert the extracted features to a vector with the size equal to the number of classes.
It is used for end-of-network classification.

Over time, many convolutional neural network architectures have emerged. In 1998,
LeCun et al. [85] proposed LeNet-5, a pioneering CNN used to classify handwritten digits.
In 2012, the AlexNet [80] architecture marked a paradigm shift. The deep model was
trained to classify 1.2 million images of the ImageNet dataset, which has 1000 classes [80].
AlexNet consists of 5 convolutional layers followed by ReLU activation functions and
max-pooling layers. The dropout regularization method is used in the three fully connected
layers and is described in more detail in Section 2.2.1.

In 2014, Simonyan et al. [130] introduced VGG Net in which they increased signifi-
cantly the depth of the network to 16-19 layers. Later in 2014, Szegedy et al. [137] proposed
the Inception architecture where they increased both the depth and the width of the network
by using 1× 1 convolutions. In 2015, He et al. [58] proposed a residual learning framework
called ResNet to ease the training of deep networks by combining residual blocks using
shortcut connections. As shown in Figure 1.7, using residual blocks, the desired mapping

32

Fig. 1.7. Residual learning block. Image from: [58]

is equal to F (x) + x. The authors designed deeper architectures ranging from 18 layers
(ResNet-18) to 150 layers (ResNet-150). The residual learning framework is among the first
architectures to use batch normalization, which is described in Section 2.2.1.

1.5. Supervised and Unsupervised Learning
So far, all of the algorithms described and most of the deep learning algorithms are

fully supervised learning algorithms. In supervised learning, the algorithms learn using
labels from the training data. Kotsiantis [79] defines supervised learning as algorithms that
reason from labels to produce general hypotheses that are then used to make predictions on
unseen samples. Supervised learning algorithms can be divided into two tasks: classification
and regression. In a classification problem, we train a model to approximate a function
that maps an input to a discrete output. In a regression problem, we train a model to
approximate a function that maps an input to a continuous output.

On the other hand, some algorithms don’t need labeled data, which we call unsuper-
vised learning algorithms. No target attributes are used in training. The input data is
grouped and interpreted based on the relationship between the input data [41]. In [63],
Hofmann even suggests using unsupervised learning algorithms to create labels associated
with the input data and then using the generated labels for a classification or regression
task.

Supervised learning algorithms tend to be more accurate than unsupervised ones [37]
but can easily overfit if the number of labeled data is not sufficient. A limited amount of
labeled data is often accompanied by a much larger collection of unlabeled samples. Some
algorithms mix of unsupervised and supervised learning by performing model pre-training
on unlabeled data followed by fine-tuning on limited labeled samples. This type of learning,
called self-supervised learning, is covered in Section 2.2.7.

33

Chapter 2

Limited Labeled Data

Most breakthroughs in deep learning in general, and CNNs in particular, involve significant
effort in collecting massive amounts of well-annotated data. While big data is becoming
increasingly prevalent, there are numerous applications where the task of annotating more
than a small number of samples is infeasible, giving rise to increasing interest in small-sample
learning tasks and deep learning approaches towards them [23, 17, 18, 24]. This chapter
focuses on the limited amount of labeled data challenge by describing the challenge itself
and summarizing various techniques for overcoming it.

2.1. Data Scarcity
Over the past decade, a lot of effort was dedicated to building, creating, and annotating

massive datasets. Table 2.1 lists some popular datasets. We observe that the number of
samples per dataset is enormous. These datasets are now used as common benchmarks
to evaluate different models. For example, the ImageNet1K dataset contains 1.2 million
images. To annotate this number of images, an online platform called Amazon Mechanical
Turk (AMT) was used for outsourcing the images and allowing humans to annotate them
and, in return, get paid [38]. Big datasets, such as ImageNet1K, have been a key component
in the success and revolution of deep learning. Figure 2.1 shows the performance of a model
based on the amount of labeled data available and is used for illustrative purposes only.
Models trained on big datasets live in the top right region of the figure. In this region, deep

Tableau 2.1. Number of samples per dataset
Dataset Number of Samples
IWSLT15 133k

COCO 2014 164k
LibriSpeech 280k
ImageNet1K 1.2M
WMT-14 4.5M

Big Data

No gain
using DL

Big Data
e.g. ImageNet

Small
datasets e.g.

LiTS

Small dataset

DL and ML gap

Fig. 2.1. Performance of a model based on the amount of labeled data available.
Models trained on big datasets live in the top right region of the figure. In this region, deep
learning models outperform old machine learning models. Small datasets live in the bottom
left region of the figure. There is no gain in using deep learning over old machine learning
models in this region. Image adapted from: [5]

learning models outperform old machine learning models.

It is not always possible to have an enormous amount of labeled data. For example,
in biomedicine and healthcare, it requires significant efforts from highly qualified and busy
medical experts to manually annotate the data [55]. Table 2.2 lists examples of medical
datasets. We observe that the numbers of samples are much lower than those shown in
Table 2.1. Privacy laws make it even harder to obtain medical data. All the medical
data must be de-identified, or anonymized [102]. If someone successfully gets medical
data and complies with privacy laws, then the challenge is to annotate it. In medical
applications, it is not possible to outsource data to ask people to annotate it for reasons of
confidentiality. The medical field is not the only field that suffers from limited labeled data.
For example, financial institutions have a large volume of contracts and agreements used
to build risk models. However, few contracts and agreements are processed to extract the
information [22]. Also, in enterprise IT, there is a large amount of customer service chat

36

Tableau 2.2. Number of samples per medical dataset
Dataset Image Modality Number of Samples

DRIVE [135] retinal 40
LiTS [21] CT scan 200
BUSY [1] ultrasound 780

ISIC2017 [19] skin lesion 2,750
Pediatric Chest X-ray [74] chest X-ray 5,863

logs available, but few are annotated [22].

Learning useful representations from little training data [18] is arduous. Small data-
sets live in the bottom left region of Figure 2.1. In this region, there is not much gain
in using deep learning over old machine learning approaches. As a result, interest in
the small-sample learning tasks and deep learning approaches has increased in recent
years [18, 29].

2.2. Strategies
Different strategies have been designed to overcome the limited labeled data challenge.

In this section, we summarize common ones.

2.2.1. Regularization

Regularization techniques were designed to reduce generalization error but at the cost of
increasing the training error [51]. Here, we describe two common regularization techniques:
dropout and batch normalization.

Dropout regularization technique, which was proposed by Srivastava et al. [134],
was developed to reduce overfitting and increase generalization. As the name suggests, the
model drops certain units randomly during training [60]. At each iteration of the training,
some layer outputs are ignored, preventing units from co-adapting [60]. Co-adaptating
occurs when hidden units have highly correlated behavior [50]. We can think of dropout
as an ensemble of subnetworks where each subnetwork is constructed by dropping out
units [51]. Tompson et al. [83] extended the idea of dropout to CNN where entire features
maps are ignored instead of only dropping out neurons.

Batch Normalization, proposed by Ioffe et Szegedy [70], is a method that norma-
lizes the training mini-batch to enable faster and more stable training [123]. Batch
normalization helps reduce internal covariate shift between different layers of a neural
network [70]. Ioffe et Szegedy [70] define covariate shift as the change in the input

37

distribution of each layer during training due to the change of parameters in the previous
layers. We apply batch normalization over a mini-batch B = {x1, . . . xm} by computing the
mini-batch mean µB and mini-batch variance σ2

B. We normalize the input by subtracting
the mini-batch mean and dividing it by the variance. We then scale and shift it by using
learnable parameters (β, γ) to compute the output yi of the batch normalization layer.
Equation 2.2.1 shows how to compute the output value of a batch normalization layer where
ε is a constant used for numerical stability.

yi = γ
xi − µB√
σ2
B + ε

+ β (2.2.1)

2.2.2. Data Augmentation

Data augmentation is a technique used to overcome the problem of data scarcity. It was
developed to reduce overfitting by directly addressing the root of the problem [127]. This
technique is based on the assumption that more information can be extracted from the
initial input data [127]. Data augmentation consists of increasing the size and quality of
the training set via augmentations. Two types of augmentations can be used: data warping
or oversampling [127].

Data warping. Shorten et al. [127] define data warping as inflating the size of a
dataset by transforming existing data samples using geometric transformations (e.g.,
flipping, cropping, rotation, translation and noise injection), color transformations and
adversarial training. The augmentations are usually manually designed. Instead of ma-
nually designing the augmentations, Cubuk et al. [36] proposed the use of the autoaugment
procedure that automatically searches for the best data augmentation policies.

Oversampling. Oversampling creates synthetic training instances. This can be done by
mixing images together [69], by augmenting features directly in the feature space [78, 39]
or by training generative adversarial networks (GANs) [52].

2.2.3. Transfer Learning

A common strategy used when the number of labeled data is limited is called Transfer
Learning. In fact, it has been observed that the first layers of convolutional networks
resemble Gabor filters [80], as shown in Figure 2.2. Gabor filters are described in more
detail in Chapter 4. The first-layer features do not appear to be specific to one particular
dataset [147]. On the contrary, the first-layer features seem general and reusable across
different tasks. Transfer learning was built on this idea of transferring features across
tasks. In traditional machine learning, we assume that the testing data and training

38

Fig. 2.2. Filters learned by the first convolutional layer in AlexNet resemble
Gabor filters. (Left) Filters learned by the first convolutional layer in AlexNet. Image
from: [80] (Right) Examples of Gabor filters from [98].

data come from the same domain. With transfer learning, this assumption is no longer
valid [110, 126]. Transfer learning consists of training a network on a different dataset.
Then, the learned weights are used as the initial weights on another classification task.
With CNNs, we can train the models on the new classification task in two different
ways. We can freeze the learned weights in the convolutional layers and only learn
the weights in the fully connected layers, or we can unfreeze all the weights in the
network. In the former option, we reuse the features learned from another task. In the lat-
ter option, the pre-trained weights are used as initial weights but optimized for the new task.

Multiple works have investigated the transferability of features between tasks [151,
147, 114]. Yosinski and al. [147] found that the higher layers in a CNN are more
specialized to the task for which the model was trained. A lot of attention in the research
community has been put on using natural images to study transfer learning onto the
domain of medical imaging [115, 148, 27, 97, 32, 99]. However, there are fundamental
differences in data sizes, features and task specifications between natural image classification
and medical tasks [114]. Raghu et al. [114] explored properties of transfer learning from
ImageNet to Chest X-Ray images. The authors claim that in a setting where very few
images are available and where time is of the essence, transfer learning from ImageNet is
beneficial. They also point out that transfer learning may seem to work in certain cases
since the models used are over-parameterized.

2.2.4. Loss Function

The choice of the loss function can help improve the performance in some cases when the
number of labeled data is limited. The categorical cross-entropy loss followed by softmax
is commonly used in classification tasks. Recent works have investigated replacing it with
other loss functions in the small data regime. Lezama et al. [88] replaced the categorical
cross-entropy loss with a geometric loss called Orthogonal Low-rank Embedding (OLÉ) to
reduce the intra-class variance and enforce inter-class margins. Barz et al. [17] also proposed

39

Fig. 2.3. Scattering transform of an image x(u). The scattering transform consists of
a cascade of convolutions with fixed wavelet filters. In this example, the spatial scale J is
set to 4 and the number of orientation L is also set to 4. Image from: [94]

.

to replace the cross-entropy loss, but this time with the cosine loss function to decrease
overfitting in the small-sample classification settings. The cosine loss function, as opposed
to the softmax function used with cross-entropy, does not push the logits of the true class
to infinity as explained in [138]. Barz et al. [17] define the cosine loss function as:

Lcos(x,y) = 1− σcos(fθ, φ(y))

where x ∈ X is a sample (in our case an image), y ∈ C is the class label of x, σcos is the
cosine similarity between two vectors, fθ is the model parametrized by θ and φ(y) is the
one-hot vector representing the class label.

2.2.5. Wavelet Scattering Transform

Scattering-based models have been proven useful in several applications involving scar-
cely annotated data [26, 128, 108, 44]. The scattering transform, proposed in [93], is a
cascade of wavelets and complex modulus nonlinearities, which can be thought as a convo-
lutional neural network (CNN) with fixed filters. The scattering transform is described in
more details in Chapter 3. Scattering transform, shown in Figure 2.3, can be used to build
representations with geometric invariants and is shown to be stable to deformations. Since
scattering transforms are instantiations of CNNs, they have been studied as mathematical
models for understanding the impressive success of CNNs in image classification [26, 94].
As discussed in [26], first-order scattering coefficients are similar to SIFT descriptors [90],
and higher-order scattering can provide insight into the information added with depth [94].
Moreover, theoretical and empirical study of information encoded in scattering networks
indicates that they often promote linear separability, which in turn leads to effective repre-
sentations for downstream classification tasks [26, 106, 6, 44].

40

2.2.6. Incorporating Prior Knowledge

As discussed in Section 2.2.3, features extracted by the first layers of a CNN are generic
and not specialized to a particular task, and resemble Gabor filters. Multiple works have tried
to incorporate this prior knowledge into models to tackle the limited labeled data challenge.
In image classification, Oyallon et al. [108] introduced hybrid networks where the scattering
transform was shown to be an adequate replacement for early layers of learned convolutional
networks on wide residual network architecture. Similarly, Raghu et al. [114] proposed to
initialize the filters of the first layer of a CNN as synthetic Gabor filters. The filters are not
constrained to remain Gabor-like during the training. Cotter et al. [35] also proposed a
hybrid network called the learnable ScatterNet, where learned layers are intermixed between
the scattering orders. Ulicny et al. [139] proposed the Harmonic Network (HN), a hybrid
network consisting of fixed discrete cosine transform filters combined with learnable weights
in CNNs. Finally, Alekseev et al. [3] proposed the GaborNet where the filters in the first
layer of the network are constrained to fit the Gabor function.

2.2.7. Self-Supervised Learning

Limited labeled data is often accompanied by a much larger collection of unlabeled
samples. In such a setting, a self-supervised learning approach can be used to utilize
the information contained in the unlabeled data. Self-supervised learning approaches
learn useful semantic representations and have shown promising results in the past
years. In self-supervised representation learning, artificial labels are generated cheaply
from the data and are used in a pretext task [100]. Models that have been pretrained
on a pretext task can be transferred to another task where it is harder to obtain labeled data.

Finding the right pretext task for a specific downstream objective can be challenging.
One of the first solutions proposed by Doersch et al. [42] is to train a model to predict the
position of a random patch relative to another one. Pathak et al. [111] proposed to train a
convolutional neural network to generate the contents of a random image region based on
its surroundings. Noroozi and Favaro [153] proposed [104] to train a CNN to solve jigsaw
puzzles as the pretext task. Zang and al. [153] proposed, as the pretext task, to train a
model to produce realistic colorization of images. Gidaris et al. [49] proposed to learn image
features by training a CNN to recognize 2D rotations that have been applied to the images.
All these methods have in common the fact that the pretext tasks are handcrafted, which
can limit the generality of the learned features [30].

In contrast to handcrafted pretext tasks, contrastive visual representations are lear-
ned by contrasting positive pairs against negative pairs [30]. These frameworks are

41

Fig. 2.4. SimCLR framework: contrastive learning of visual representations.
Image from: [30]

usually simpler and more generic than handcrafted pretext tasks. An example of such a
framework is SimCLR [30] where representations are learned by maximizing agreement
between differently augmented views of the same data example, as shown in Figure 2.4.
The augmented views of an image are created via data augmentations. Data augmentations
are applied sequentially to each image to form pairs of augmented images {xi,xj}. The
augmentations consist of random cropping and resizing it back to the original size, random
colour distortions, and random Gaussian blur [30]. Each correlated image is fed to the
base encoder f(·) to extract representation vectors hi and hj. The encoder is a ResNet-50.
Then a small neural network called projection head g(·) maps the representations hi

and hj to the space where the contrastive loss is applied. Given a positive pair, the
other augmented examples in the mini-batch are considered negative examples. Given
sim(u,v) = uTv/||u||||v||, the contrastive loss function used in the framework is called the
normalized temperature-scaled cross-entropy loss and is defined for a positive pair (i,j) as:

Li,j = − log exp(sim(zi, zj)/τ)∑2N
k=1 1[k 6=i](sim(zi, zk)/τ)

(2.2.2)

Kinakh et al. [75] proposed ScatSimCLR, which is built on the SimCLR framework.
The difference is that in ScatSimCLR the encoder f(·) is not a ResNet-50, but a scattering
network [93]. The authors demonstrate that by using a scattering network instead, the
number of learnable parameters and the number of views can be considerably reduced
without decreasing the classification accuracy.

42

Other contrastive frameworks have been proposed. He et al. [57] proposed Momen-
tum Contrast (MoCo), a contrastive learning framework that uses a dynamic dictionary
and a moving-averaged encoder. Grill et al. [53] proposed a contrastive framework
called Bootstrap Your Own Latent (BYOL) that trains an online network to predict the
representation of a target network based on an augmented image. The target network is
updated using a slow-moving average of the online network [53].

43

Chapter 3

Wavelet Scattering Transform

In this chapter, we describe the wavelet scattering transform in detail. First, we define the
stability to deformations using the Lipschitz continuity condition in Section 3.1. Next, we
define the formulation of the scattering network and describe Morlet wavelets in Section 3.2
and Section 3.3 respectively. In Section 3.4, we describe an analogy between wavelets and the
visual system. In Sections 3.5 and 3.6, we discuss the properties of the scattering transform.
We introduce different variations of the scattering transform in Section 3.7. Finally, in
Section 3.8, we list and describe various packages that implement the transformation. For
simplicity, we focus here on 2D scattering networks.

3.1. Stability to Deformations
An important challenge in extracting informative features from high-dimensional data

is disentangling the different sources of variation in the data. Intra-class variability is the
variation between data points of the same class. Inter-class variability is the variation
between data points of different classes. The challenge is to construct features from data
points that maximize inter-class variability and eliminate intra-class variability. This
challenge is a reality in various tasks, such as the classification of handwritten numbers.
The exact number can be written differently depending on the writing style, as shown in
Figure 3.1. The objective is to construct features that are invariant to rigid transformations
such as rotation, translation and scaling.

The kernel method [77], which transforms a data point x into a new representation
Φ(x), is a general approach used to tackle this challenge. Using the kernel metric, the
distance between two input signals f and g is defined as: d(f,g) = ||Φ(f) − Φ(g)||. The
goal is to have small distances d(f,g) within a class and large distances d(f,g) across
classes. The new representation Φ(x) needs be stable to small deformations and preserve
the information. In other words, small deformations of the input signal x should result in a

Fig. 3.1. Samples of handwritten digits. There are many variations within a single
class. For example, there are 16 "0’s" in the figure. Each individual "0" is different because
of the writer’s style. Image from: [146].

small modification of Φ(x). We can express the stability to deformations using the Lipschitz
continuity condition. A deformation can be expressed as Lτx(u) = x(u − τ(u)) where τ(u)
deforms the image x at position u. In two-dimensional signals, u represents the spatial
location of the pixel in the image. The amplitude of deformation at u is measured using
the norm of the deformation gradient matrix |∇τ(u)|. The Lipschitz continuity condition is
defined in Equation 3.1.1.

||Φ(Lτx)− Φ(x)|| ≤ C||x|| supu|∇τ(u)|, (3.1.1)

where ||x||2 =
∫
|x(u)|2du and C is a constant. A representation Φ(x) is stable to deforma-

tions if it is Lipschitz continuous with respect to the deformation.

3.2. Scattering Convolutional Network
The scattering coefficients are constructed by cascading wavelet transform with modulus

and averaging operators. For simplicity, we focus on 2D scattering networks up to their
2nd order. Subsequent orders can be computed by following the same iterative scheme but
have been shown to yield negligible energy [26]. Given a signal x(u), where u is the spatial
position index, we compute the scattering coefficients S0x, S1x, S2x, of order 0, 1, and 2,
respectively. For integers J and L, corresponding to the spatial scale of the scattering
transform and the number of orientations respectively, and assuming an N ×N signal input
with one channel, the resulting feature maps are of size N

2J ×
N
2J , with channel sizes varying

with the scattering coefficient order. Table 3.1 summarizes the number of channels per

Tableau 3.1. Number of channels per scattering coefficient order
Order Number Channels

0 1
1 JL
2 L2J(J − 1)/2

46

Fig. 3.2. Wavelets covering the frequency plane. Wavelets generated from a mother
wavelet via dilations and rotations to cover the frequency plane. Image from: [28].

scattering order.

To calculate 0th-order coefficients, we consider a low pass filter φJ with a spatial
window of scale 2J , such as a Gaussian smoothing function. We then convolve this filter
with the signal and downsample by a factor of 2J to obtain S0x(u) = x ∗ φJ(2Ju). Two
observations can be made at this point. Due to the low-pass filtering, high-frequency
information is discarded here and is recovered in higher-order coefficients via wavelets
introduced as in a filter bank.

The scattering coefficients of higher orders are constructed by filtering images with
complex wavelets. A complex wavelet filter ψ is defined in Equation 3.2.1.

ψ(u) = ψa(u) + iψb(u);u = [u1,u2] (3.2.1)

The term ψλ(u) = 2−2jψ(2−jrθu) represents all the rotated and dilated versions of the wavelet
with λ = (2j, θ) and 0 ≤ j < J where J is the spatial scale and θ the orientation. The number
of orientations L is used to discretize θ. The orientation of the L filters per scale are set to be
[Θ, Θ + π

L
, Θ + 2π

L
, . . . , Θ + (L−1)π

L
]. First-order scattering coefficients are calculated by first

convolving the input signal with one of the generated complex wavelets. A wavelet transform
is the operation of convolving the input image with each wavelet. Given a family of generated
complex wavelets {ψλ(u)}λ, a wavelet transform is defined as {x ∗ ψλ}λ. Then, the resulting
filtered signal is downsampled by the scale factor 2j1 of the wavelet chosen. Note that a
wavelet transform is not translation invariant, but is translation covariant. Nonlinearity is
needed to build translation invariant representations. Thus, a pointwise complex modulus

47

Fig. 3.3. Scattering convolutional network. We compute the 0th-order coefficients
S0x(u) by convolving the input signal x with a low pass filter φJ with a spatial window of
scale 2J . First-order scattering coefficients S1x(λ1,u) are calculated by convolving the input
signal with one of the generated complex wavelets followed by a pointwise complex modulus
operation. Then, the resulting real signal is smoothed via a low-pass filter. Higher orders
can be computed by following the same iterative scheme. Image adapted from: [91].

is used to add nonlinearity, as shown in Equation 3.2.2:

U1x(λ1) = |x ∗ ψλ1| (3.2.2)

Locally translation invariant representation is obtained by smoothing the resulting signal
via a low pass filter φ2J on a spatial window of size 2J . Finally, another downsampling step
is applied, this time by a factor of 2J−j1 , to obtain an optimally compressed output size.
Mathematically, we have :

S1x(λ1,u) = |x ∗ ψλ1 | ∗ φJ(2Ju) (3.2.3)

The resulting feature map has J · L channels. Second-order coefficients are generated
similarly, with the addition of another cascade of wavelet transform and modulus operator
before the low-pass smoothing, i.e.,

S2x(λ1,λ2,u) = ||x ∗ ψλ1| ∗ ψλ2| ∗ φJ(2Ju) (3.2.4)

Due to the interaction between the bandwidths and frequency supports of first and second
order, only coefficients with j1 < j2 have significant energy. Hence, the second-order output
yields a feature map with 1

2J(J − 1)L2 channels.

To extract scattering coefficients of higher order moments, this procedure is applied
iteratively for a path p = (λ1, λ2, . . . , λm) of length m:

Smx(p,u) = |||x ∗ ψλ1 | ∗ ψλ2| . . . | ∗ ψλm| ∗ φJ(2Ju) (3.2.5)

48

Fig. 3.4. Morlet wavelet filters with 4 scales (J = 4) and 4 orientations (L = 4).
(a) Low pass filter φ. (b) real part of parts of Morlet wavelet filters ψλ and (c) imaginary
parts of parts of Morlet wavelet filters ψλ. Filters are arranged according to orientations
(columns) and scales (rows). Image from: [20]:

This cascade of wavelets creates the scattering convolutional network shown in Figure 3.3.
The scattering coefficients are the concatenation of the coefficients Smx(p,u) for all paths p
with m ≤ mmax. In Figure 3.3, these coefficients are represented by black dots.

3.3. Morlet Wavelets
Morlet wavelets are a typical example of filters used in conjunction with the scattering

transform, and are defined as

ψσ,θ,ξ,γ(u) = e−‖DγRθ(u)‖2/(2σ2)(eiξu′ − β), (3.3.1)

where β is a normalization constant to ensure wavelets integrate to 0 over the spatial domain,

u′ = u1 cos θ + u2 sin θ, Rθ is the rotation matrix of angle θ and Dγ =
1 0

0 γ

 . The four

parameters can be adjusted and are presented in Table 3.2. Wavelets have traditionally been
carefully constructed to ensure the resulting filter bank forms an efficient tight frame [92, 93]
with well-established energy preservation properties. From one Morlet wavelet ψσ′,θ′,ξ′,γ′(u),

Tableau 3.2. Parameters of Morlet wavelet
Param Role
σ Gaussian window scale
θ Global orientation
ξ Frequency scale
γ Aspect Ratio

49

Fig. 3.5. Visual system and primary visual cortex (V1). (Left) There are two pa-
thways of visual information. The ventral pathway is believed to carry information related
to the recognition and discrimination of visual shapes. The dorsal pathway is responsible
for the localization of objects. (Right) The simple cells in the primary virtual cortex are
organized in hypercolumns. Each position defines an orientation and scale.

a tight frame is obtained by dilating it by factors 2j, 0 ≤ j < J , and rotating by L angles θ
equally spaced over the circle, to get {2-2jψσ′,θ′,ξ′,γ′(2-jRθ(u))}, which is then completed with
the low pass φJ . This can be written in terms of the parameters in Table 3.2 as:

ψ2jσ′,θ′−θ,2-jξ′,γ′(u) = ψ(2-jRθ(u)) (3.3.2)

In the tight frame construction, the wavelets are generated from a mother wavelet via dila-
tions and rotations, aimed to cover the frequency plane [26]. In Figure 3.2, we observe that
the wavelets cover the entire frequency plane. By slight abuse of notations, we use ψλ here,
λ = (σj, θ, ξj, γj), to denote such wavelets indexed by θ and j. Figure 3.4 illustrates some
Morlet wavelets where J is set to 4 and L is set to 4. Morlet wavelet is not the only kind of
wavelet that can be used with scattering transform. There are more families such as Haar
wavelets [31], Daubechies wavelets [87] and Ricker wavelets [120].

3.4. Analogy to Visual System
Hubel and Wiesel [66] proposed an analogy between wavelets and the visual system of a

mammal. The visual system is shown in Figure 3.5 (left). There are two different pathways
of visual information in the visual system: ventral and dorsal. The ventral pathway, which is
believed to carry information related to recognition and discrimination of visual shapes [59],
starts at the primary cortex (V1) and terminates at the inferior temporal cortex. The dorsal
pathway begins at the primary visual cortex (V1) and ends in the superior parietal lobule,
which is responsible for the localization of objects [117]. Hubel and Wiesel [66] discovered
that in V1 there is a family of cells called simple cells that behave similarly to linear filters.

50

The simple cells behave like filtering with Morlet wavelets. They also discovered that the
simple cells are organized in hypercolumns as shown in Figure 3.5 (right). The position of
each cell in the column defines the orientation and scale. This is similar to the wavelets
generated via dilations and rotations in the tight-frame construction.

3.5. Properties
Scattering coefficients have several desired properties which are listed and described

below.

No Learning. An important property of scattering coefficients is that they are
constructed without learning. In contrast to a convolutional neural network, the filters are
predetermined and fixed. The scattering coefficients are constructed in an unsupervised
manner without the need for data.

Contractive Operation. The scattering coefficients are contractive: ||Sx−Sy|| ≤ ||x−y||.
Representations that are not contractive can lead to misclassification. For example, Su et
al. [136] demonstrate that only changing one pixel in images can lead to misclassification.
Zajac et al. [150] show that changes in the border of images can also lead to misclassification.
It is crucial to have contractive representations.

Energy Conservation. The scattering operator Ux preserves the signal: ||Ux(p)|| = ||x||.
In the scattering network, the modulus pushes the energy towards low frequencies. In other
words, when mmax increases, the energy of the last layers converges toward zero. The low
pass filters of the last layers capture the remaining energy. Thus, the scattering coefficients
captures all the energy of the signal: ||Sx|| = ||x||.

Translation Invariant. Another important property is that the scattering coeffi-
cients are translation invariant up to the spatial window size 2J . This property arises from
the final convolution with the low pass filter. It is crucial to be invariant to translation since,
in image classification, the objects we are trying to classify can be in different locations, as
shown in Figure 3.6.

Stable to Deformations. One of the most important property is that the scattering
transform is stable to small deformations Lτx(u) = x(u− τ(u)). Given ||τ ||∞ = supu|τ(u)|,
||∇τ ||∞ = supu|∇τ(u)| < 1 and S computed on paths of length m ≤ mmax, it is proven
in [93] that:

||S(Lτx)− Sx|| ≤ Cmmax||x||(2−J ||τ ||∞ + ||∇τ ||∞) (3.5.1)

51

Fig. 3.6. Invariance to translation. Same object in different locations.

for a signal x of compact support with a second order Hessian term, which is negligible if
τ(u) is regular. The translation term can be neglected if 2J ≥ ||τ ||∞. Thus, the scattering
transform is Lipschitz continuous to deformations:

||S(Lτx)− Sx|| ≤ Cmmax||x|| ||∇τ ||∞. (3.5.2)

The stability of small deformations is crucial in object classification. There can be a lot of
intra-class variations as shown in Figure 3.1 with handwritten digits. The classification of
handwritten digits should be stable to the different writing styles.

3.6. Texture Discrimination
All the properties can easily be satisfied with a trivial model, but it has been obser-

ved that scattering coefficients are useful for edge detection and texture discrimination.
First-order scattering coefficients resemble classical image descriptors such SIFT des-
criptors [26, 90]. Higher-order scattering have been shown to be useful for texture
discrimination [26]. A texture can be seen as a signal that is a realization of a stationary

Fig. 3.7. Example of two different textures. (a) Image of two different textures. (b)
Same Fourier spectrum. (c) Similar first-order scattering coefficients. (d) Different second-
order scattering coefficients. Image from: [26]

52

process X(u) that is not characterized by second-order moments [26].

A texture discrimination problem is a subproblem of image classification where the
difficulty is to construct appropriate representations to classify texture. The Fourier
spectrum often does not discriminate between different textures since it does not take into
consideration high-order moments [26]. Figure 3.7 (a) shows an example of two different
textures. In Figure 3.7 (b), we observe that both textures are identical from the Fourier
transform point of view. Figure 3.7 (c) shows that the first-order scattering coefficients of
the two textures are quite similar. On the other end, Bruna and Mallat [26] show that
the scattering coefficients of a stationary process include second-order and higher-order
moments that can discriminate between different textures [26]. Figure 3.7 (d) shows that the
second-order coefficients are very different for each texture since the interference structures
are completely different, which is why they are useful for the texture discrimination problem.

3.7. Scattering Variants
The scattering transform have been adapted to different domains, such as audio

processing ([8, 9, 7, 143, 144]), medical signal processing ([33]) and quantum chemistry
([61, 43, 44, 25]) and still provides the same properties. In this section, we provide a
non-exhaustive list of various variations of the scattering transform.

Roto-Translation Scattering Networks
As we now know, the scattering coefficients are translation invariant up to the spatial win-
dow and stable to small deformation. Sifre and Mallat [128] introduced the roto-translation
scattering operation to construct scattering representations that are also rotation invariant.
Then, Oyallon and Mallat [105] proposed the deep roto-translation scattering transform,
where the scattering representations are not invariant to rotations but stable to rotations.
To obtain representations that linearize variabilities along with the rotation angles, Oyallon
and Mallat [105] compute a wavelet transform along with the angular variables.

3D Scattering Transform
Eickenberg et al. [43] introduced solid harmonic wavelets computed by multiplying solid
harmonic functions with Gaussian windows dilated at different scales. They developed a
3D scattering transform and evaluated it on the estimation of quantum molecular energies.
They achieved state-of-the-art results on small and large datasets of organic molecules.

Hybrid Scattering Networks
Recent work has shown that, in image classification, state-of-the-art results can be achieved

53

by hybrid networks that harness the scattering transform as their early layers followed by
learned layers based on a wide residual network architecture [108]. Oyallon et al. [108]
proposed to use the scattering network as a generic and fixed initialization of the first layers
of deep neural networks.

Generative Scattering Networks
Generative Adversarial Nets (GANs) [52] and Variational Auto-Encoders (VAEs) [76] have
made incredible breakthroughs in the context of image generation. However, the underlying
mathematics of these models is not fully understood. Angles and Mallat [11] study the
statistical properties of these generators by introducing the generative scattering networks.
The generative scattering networks consist of convolutional neural networks as the decoder
to generate images and scattering networks as the encoder to obtain embedding. Since no
learning is involved in the scattering transform, there is no need to train a discriminator.
Jiasong et al. [145] pushed the idea further by proposing the generative fractional scattering
networks. Instead of using the traditional scattering network as the encoder, they proposed
to use more expressive fractional wavelet scattering networks to improve the quality of the
generated images.

Spherical Scattering Networks
McEwen et al. [96] proposed the spherical scattering networks, which are essentially scat-
tering networks constructed on the sphere. The network consists of a cascade of spherical
scale-discretized wavelet transforms followed by absolute value activation functions. The
scattering coefficients are obtained by projecting the resulting signal onto the spherical
wavelet scaling function. This construction yields representations that are rotationally equi-
variant, invariant to isometries up to a particular scale and stable to diffeomorphisms [96].
Similar to the hybrid networks [108], they use the spherical scattering network as the early
layers of a spherical CNN.

Learnability in the Scattering Transform
Adding learnable components to existing wavelet-based representations has been considered
in several recent works in the context of time-series [14, 125, 34, 15]. Balestriero et
al. [14, 125] learn a spline parametrized mother wavelet for 1D problems. Similarly,
Cosentino and Aazhang [34] parameterized the group transform in the context of time-series
data.

Graph and Geometric Scattering Networks
Various datasets are better modeled by graphs or manifolds since they have intrinsically
non-Euclidean structure [112]. Thus, recent works have extended the scattering transform

54

to graph domains ([45, 46, 154, 109]). The scattering transform has also been generalized
to manifolds ([113, 47, 112]).

3.8. Scattering Implementations
The scattering transform is mathematically elegant, but to implement it, some careful

considerations on memory and runtime are needed. There are several packages that
implement the wavelet transform. Three common ones (e.g. Matlab’s wavelet toolbox,
PyWavelets, and Kymatio) are listed and described below.

Matlab’s wavelet toolbox [101] offers a variety of families of wavelets that are lis-
ted in Table 3.3. The package implements 1D and 2D continuous wavelet transform. It
also implements 1D, 2D, and 3D discrete wavelet transform. Some functions can perform
operations on a GPU in order to accelerate the workflow.

PyWavelets [86] is an open-source software for Python. It offers a variety of prede-
fined wavelets shown in Table 3.3. It also gives the possibility to the user to create custom
filters banks. The package implements n-dimensional discrete wavelet transforms and 1D
continuous wavelet transform. The application programming interface (API) is similar to
Matlab’s wavelet toolbox. The package offers additional functionality such as support for
dimension n > 3 and support for real and complex-values data. The PyWavelets package is
now used by other software packages. Scikit-image [140] and the Operator Discretization
Library (ODL) [65] use the package to enable wavelet-based image denoising and to enable
wavelet-based regularization in iterative inverse problems, respectively.

Tableau 3.3. Available wavelet families in Matlab’s wavelet toolbox and PyWavelets
Haar Daubechies

Biorthogonal Reverse Biorthogonal
Gaussian Complex Gaussian
Morlet Complex Morlet
Symlets Shannon

Discrete FIR approximation of Meyer Frequency B-Spline
Mexican Hat Coiflets

Kymatio [10] is an open-source package for Python that implements the wavelet
scattering transform in 1D, 2D and 3D. The package is compatible with deep learning
frameworks such as Pytorch and TensorFlow, which allow GPU accelerated computations.
In contrast with Matlab’s wavelet toolbox and PyWavelets, the Kymatio implementation
of the scattering transform is differentiable. However, it only offers Morlet wavelets. To
reduce memory requirements and save GPU memory, the algorithm traverses the scattering

55

network depth-first, as shown in Figure 3.8, instead of computing the scattering coefficients
layer by layer.

Fig. 3.8. Kymatio traversal algorithm. (Left) Scattering tree (Right) Scattering tra-
versal strategy. The tree is traverses in a breadth-first fashion. Image adapted from: [10]

A comparison of the three packages is shown in Table 3.4.

Tableau 3.4. Comparison of Matlab’s wavelet toolbox, PyWavelets and Kymatio.
Package Wavelet Families GPU Differentiable License Language

Matlab’s Wavelet toolbox Variety 3 Proprietary MATLAB
PyWavelets Variety MIT Python
Kymatio Morlet Only 3 3 BSD-3 Python

56

Chapter 4

Parametric Scattering Networks

In this chapter, we relax the standard tight frame construction by considering another al-
ternative where a small number of wavelet parameters used to create the wavelet filterbanks
are optimized for the task at hand. Focusing on Morlet wavelets, we propose to learn the
scales, orientations, and aspect ratios of the filters to produce problem-specific paramete-
rizations of the scattering transform. We first discuss scattering parameter initialization
in Section 4.1. We then introduce our parametric scattering transform in Section 4.2. In
Section 4.3, we describe how to differentiate through the parametric scattering network. We
describe the experimental protocol used to evaluate our approach in Section 4.4. Finally, in
Section 4.5, we explore the different filter construction schemes by comparing the wavelet
filter parameterizations they produce when optimized over different datasets.

4.1. Initialization
We consider two different ways of initializing the Morlet wavelet filters. First, a tight-

frame initialization follows common implementations of the scattering transform by setting
σj,` = 0.8 × 2j, ξj,` = 3π

4 2-j, and γj,` = 4
L
for j = 1, . . . ,J , ` = 1, . . . ,L, while for each j, we

set θj,` to be equally spaced on [0,π). Second, as an alternative, we consider a random ini-
tialization where these parameters are sampled as σj,` ∼ log(U [exp 1, exp 5]), ξj,` ∼ U [0.5,1],
γj,` ∼ U [0.5,1.5], and θj,` ∼ U [0,2π]. That is, orientations are selected uniformly at random
on the circle, the filter width σ is selected using an exponential distribution across available
scales and the spatial frequency ξ is chosen to be in the interval [0.5, 1], which lies in the cen-
ter of the feasible range between aliasing (> π) and the fundamental frequency of the signal
size (2π/N where N is the number of pixels). Finally, we select the aspect ratio variable to
vary around the spherical setting of 1.0, with a bias towards stronger orientation selectivity
(0.5) compared to lesser orientation selectivity (1.5). The two initialization approaches are
summarized in Table 4.1.

Tableau 4.1. Parameters initialization of Morlet filters.

Parameter Tight Frame Random
σ 0.8 ∗ 2j log(U [e,e5])
θ Equally spaced U [0,2π]
ξ 3π

4 2−j U [0.5,1]
γ 4

L U [0.5,1.5]

4.2. Morlet Wavelet Parameterization
While the wavelet filters in the scattering transform are traditionally fixed to approxi-

mate a tight frame, we let the network learn the optimal parameters of each wavelet. In
other words, we constrain our filters to always be Morlet wavelets by only optimizing the
parameters in Table 3.2. We adapted the Kymatio software package [10] to create the
parametric scattering network. We consider two parameterization approaches.

Morlet Canonical Parameterization. The first approach considered is the Morlet
canonical parameterization of the wavelet. In this approach, the parameters of each wavelet
filter are optimized separately.

Morlet Equivariant Parameterization. In the Morlet canonical parameterization
approach, the canonical parameters of each filter are learned. As an alternative method,
we consider the Morlet equivariant parameterization in which the number of learnable
parameters is reduced by a factor L. Each filter per scale is constructed using the same four
parameters in Table 3.2: σ, ξ, γ and Θ. However, the global orientation of the L filters for
each scale are set to be [Θ, Θ + π

L
, Θ + 2π

L
, . . . , Θ + (L−1)π

L
]. By construction, the tight-frame

filters are equivariant.

Fig. 4.1. Visualization of real part of Morlet wavelet filters with spatial scale
of J = 2 and L = 8. (a) Canonical wavelets initialized with tight frame. (b) Canonical
wavelets initialized randomly. (c) Equivariant wavelets initialized with tight frame. (d)
Equivariant wavelets initialized randomly.

58

Figure 4.1 shows Morlet canonical and equivariant wavelet filters initialized with tight
frame and random initialization. We observe that the canonical and equivariant wavelet
filters initialized with random initialization are different. With the Morlet canonical
parameterization, each filter is different since they are individually initialized with different
parameters. With the Morlet equivariant approach, we observe that the filters in each row
are identical, except for the global orientation. The row corresponds to a different scale.
Since J is set to 2, we have two rows.

4.3. Backpropagation through the Parametric Scatte-
ring Network

We show that it is possible to backpropagate through the parametric scattering network.
Namely, we verify the differentiability of our approach by explicitly computing the partial
derivatives with respect to parameters of Table 3.2. First, the R-linear derivative of the
complex modulus f(z) = |z| is f ′(z) = z

|z| . Next, we show the differentiation of convolution
with wavelets with respect to their parameters. For simplicity, we focus here on differentiation
of the Gabor portion of the filter construction from Equation 3.3.1, written as:

ϕ(u) = exp(− 1
2σ2 (u2

1(cos2(θ) + sin2(θ)γ2) + u2
2(cos2(θ)γ2 + sin2(θ))

+ 2 cos(θ) sin(θ)u1u2(1− γ2)) + iξ(cos(θ)u1 + sin(θ)u2)).

It is not difficult to extend this derivation to Morlet wavelets, but the resulting expressions
are rather cumbersome and left out for brevity. Its derivatives with respect to the parameters
are
∂ϕ

∂θ
(u) = 1

σ2 (u2 cos θ − u1 sin θ)(iξσ2 + u1(γ2 − 1) cos θ + u2(γ2 − 1) sin θ)ϕ(u);

∂ϕ

∂σ
(u) = 1

σ3 (u2
1(cos2 θ + γ2 sin2 θ) + u2

2(γ2 cos2 θ + sin2 θ) + 2u1u2 cos θ sin θ(1− γ2))ϕ(u);

∂ϕ

∂ξ
(u) = i(u1 cos θ + u2 sin θ)ϕ(u); and

∂ϕ

∂γ
(u) =− 1

σ2 (u2
1γ sin2 θ + u2

2γ cos2 θ − 2u1u2γ cos θ sin θ)ϕ(u).

Finally, the derivative of the convolution with such filters is given by
∂

∂ζ
(f ∗ ϕ)(t) =

∫
f(t− u)∂ϕ

∂ζ
(u)du

59

Fig. 4.2. Samples from the three datasets: CIFAR-10 (Top), COVIDx CRX-2
(Middle), and KTH-TIPS2 (Bottom).

where ζ is any of the filter parameter from Table 3.2. It is easy to verify that these derivations
can be chained together to propagate through the scattering cascades. We can now learn
the parameters jointly with other parameters in an end-to-end differentiable architecture.

4.4. Experimental Protocol
Our empirical evaluations are based on three image datasets: CIFAR-10, COVIDx

CRX-2, and KTH-TIPS2, as illustrated in Figure 4.2. CIFAR-10 and KTH-TIPS2 are
natural image and texture recognition datasets, correspondingly. They are often used as
general-purpose benchmarks in similar image analysis settings [13, 128]. COVIDx CRX-2
is a dataset of X-ray scans for COVID-19 diagnosis; its use here demonstrates the via-
bility of our parametric scattering approach in practice, e.g., in medical imaging applications.

We evaluate the use of the parametrized scattering network with two standard mo-
dels. In the first case, we consider the scattering as feeding into a simple linear model
(denoted LL). The LL configurations are used to evaluate the linear separability of the
obtained scattering representations and have the added benefit of providing a more interpre-
table model. In the second case, we take the approach of [108] and consider the scattering
as the first stage of a deeper CNN, specifically a Wide Residual Network (WRN) [149].
The description of the WRN architecture used for the experiments is given in Table 4.2.

For both models (LL and WRN), we compare learned parametric scattering networks

60

(LS) to fixed ones (S). For learned scattering (LS), we consider two scattering paramete-
rization approaches: Morlet canonical, described in Section 4.2 and Morlet equivariant,
described in Section 4.2. To show the importance of the parametric approach, we also ablate
the naive parameterization where all pixels of the wavelets are adapted, which we refer to as
a pixel-wise parameterization. Parametric scattering networks constrain the filters always
to be Morlet wavelets. In the pixel-wise parameterization approach, we relax the constraints
and instead optimize the pixels of the Fourier transform of the wavelets. This alternative
is similar to initializing the kernels of a CNN with Morlet wavelets and letting the model
optimize the pixels of the kernels without any constraint using backpropagation.

We consider both random and tight-frame (TF) initialization for each scattering ar-
chitecture. The fixed scattering models determined by the TF construction are equivalent
to traditional scattering transforms. Finally, we also compare our approach to a fully
learned WRN (with no scattering priors), and ResNet-50 [58] applied directly to input
data. We note that the latter is unmodified form its ImageNet architecture and that we do
not initialize it with pre-trained weights.

Across all scattering configurations, a batch-normalization layer with learnable affine
parameters is added after all scattering layers. Classification is performed via a softmax
layer yielding the final output. All models are trained using cross-entropy loss, minimized
by stochastic gradient descent with a momentum of 0.9. Weight decay is applied to the
linear model and to the WRN. The learning rate is scheduled according to the one cycle
scheduler, which improves convergence during optimization, especially in the small data
regime, due to its so-called super convergence policy [132]. The scheduler’s div factor is
always set to 25.

4.5. Exploring Dataset-Specific Parameterizations
We first compare dataset-specific Morlet wavelet parameterizations and evaluate their

similarities to a tight frame. Specifically, we train our parametric scattering networks
using the canonical Morlet wavelet formulation with a linear classification layer and
quantitatively and qualitatively compare the similarities of the learned filter bank to the
tight-frame initialization. To facilitate quantitative comparison, we use a distance metric for
comparing the sets of Morlet wavelet filters and Morlet wavelet filterbanks (i.e., scattering
network instantiations), allowing us to measure deviations from the tight-frame initialization.

We evaluate distances between two individual Morlet wavelets as:

Υ(M1,M2) =
∥∥∥(σ1,ξ1,γ1)T − (σ2,ξ2,γ2)T

∥∥∥
2

+ arcdist(θ1,θ2) (4.5.1)

61

Tableau 4.2. Description of WRN hybrid architecture used for the experiments. Each
convolutional layer represents a 2D convolution followed by a batch normalization and a
ReLU non-linearity.

Stage Description

scattering Learned or Tight Frame

conv1 3× 3, Conv Layer 128→ 256

conv2

3× 3,Conv Layer 256

3× 3,Conv Layer 256

× 4

conv3

3× 3,Conv Layer 256

3× 3,Conv Layer 256

× 4

avg-pool Avg pooling to a size 1x1

where Mi = (σi,ξi,γi,θi)T denotes the parameterization of the Morlet wavelet. We use the
arc distance on the unit circle to compare values of theta. Since the set of learned scattering
filters does not have a canonical order, to compare a learned scattering network to the
tight frame scattering network, we use a matching algorithm to match one set of filters to
another. Specifically, we first compute Υ between all combinations of filter pairs from both
networks, then use a minimum cost bipartite matching algorithm [81] to find the minimal
distance match between the two sets of filters. The final distance we use as a notion of
similarity between two scattering networks is the sum of Υ for all matched pairs in the
bipartite graph. Henceforth, we will refer to this distance as the filterbank distance.

The graph in Figure 4.3 leverages the filterbank distance to show the evolution of
scattering networks initialized from a tight frame and trained on different datasets. Each
network is trained on 1188 samples of its respective dataset (the standard size for KTH-
TIPS2). All filters deviate quickly from a tight frame, but KTH-TIPS2’s keep changing the
longest and ultimately deviate the most. We also observe that filters initialized with the
random initialization become more similar to our tight-frame initialization during training
(see Appendix B).

On the left-hand side of Figure 4.3, we visualize the dataset-specific scattering net-
work parameterizations in Fourier space. White contours are drawn around each Morlet
wavelet for clarity. The top black border corresponds to tight-frame initialization at J=2,
shown for comparison to CIFAR-10 in blue (also J=2). The bottom black frame corresponds
to tight-frame initialization at J=4, shown for comparison to COVIDX-CRX2 red and
KTH-TIPS2 yellow (both J=4).

62

Fig. 4.3. Parametric scattering network learns dataset specific filters initialized
with tight frame. The graph (top right) shows the filterbank distance over epochs as
the filters are trained on different datasets. We visualize dataset specific parameterizations
of scattering filterbanks (border colors from the legend) in Fourier space. Scattering fil-
ters optimized for natural (CIFAR-10) and medical image (COVIDx CRX2) become more
orientation-selective, i.e., thinner in the Fourier domain. On the other hand, filters optimized
for texture discrimination (KTH-TIPS2) become less orientation-selective and deviate most
from a tight-frame setup.

The filters optimized on the KTH-TIPS2 texture dataset (yellow) become less orientation-
selective (wider in Fourier space) than the tight-frame initialization, with filters at J=0
becoming the least orientation-selective of the whole filter bank. We note that the filters at
spatial scales J= 2 and 3 seem to change the most from a tight frame. In contrast, the filters
optimized on COVIDx-CRX2 become more orientation-selective in general, i.e., thinner in
Fourier space. The filters optimized on CIFAR-10 mirror those optimized on COVIDx-
CRX2, also becoming more orientation-selective than their tight-frame counterparts. We
suspect that this is due to a reliance on edges for object classification datasets, which
seem to require more orientation-selective filters. On the other hand, the Morlet wavelets
optimized for texture classification seem to discard some edge information favouring less
orientation-specific filters. Each dataset-specific parameterization seems to discard unneeded
information from the tight-frame initialization to accentuate problem-specific attributes.
In Section 5.2, we demonstrate these learned filters are not only interpretable but improve

63

Fig. 4.4. Parametric scattering network learns dataset specific filters initialized
randomly. The graph shows the filterbank distance over epochs as the filters, initialized
from random init, are trained on different datasets. To the left, we visualize dataset specific
parameterizations of scattering filterbanks in Fourier space. The graph on the right shows
that the randomly initialized filterbanks become more similar to a tight frame during training.

task performance, suggesting the tight frame is not optimal for many problems of interest.
Nonetheless, a tight frame does constitute a good starting point for learning. Indeed, the
dataset-specific parameterizations for COVIDX-CRX2 and KTH-TIPS2 are, visually, very
different. Yet, they move similar filterbank distances from the tight-frame initialization (see
Figure 4.3), which are small relative to the distances observed for randomly initialized and
trained models. In Figure 4.4, we show how the filters adapt when initialization begins from
a random setting. We note the deviation to a tight frame is much greater than when we
initialize in a tight frame. However, as per our filterbank distance, we observe the filters do
move closer to the tight frame than their initialization.

We have introduced the parametric scattering network, presented two initialization
and parameterization approaches, described the experimental protocol and explored the
different filter construction schemes. In the next chapter, we evaluate the robustness of
the parametric scattering network to deformation and its performance in the small-sample
classification settings.

64

Chapter 5

Experiments

In this chapter, we present the results obtained from various experiments. We first evaluate,
in Section 5.1, the robustness of our parametric scattering network to deformation. In Sec-
tion 5.2, we demonstrate the advantages of our approach in limited labeled data settings and
study the adaptation of the wavelet parameters toward a supervised task. Finally, in Sec-
tion 5.3, we investigate the adaptation of the parametrized scattering using an unsupervised
objective.

5.1. Robustness to Deformation
In [93], it is shown that the scattering transform is stable to small deformations of the

form x(u − τ(u)) where x(u) is a signal and τ a diffeomorphism. Given the substantial
changes to the filter composition in the learning process, we ask now whether these seem
to significantly deviate from the stability result obtained from the carefully handcrafted
construction proposed in [93], and extensively used in previous work, e.g., [26, 44]. To eva-
luate the robustness of our parametric scattering network to different geometric distortions,
we apply several tractable deformations to a chest X-ray image x with varying deformation
strength. The transformed image is denoted by x̃. For each of the different deformation
strengths, we plot the Euclidean distance between the scattering feature constructed from
the original image S(x) and the scattering feature constructed from the transformed image
S(x̃). We then normalize the obtained distance by S(x) to measure the relative deviation
in scattering coefficients (handcrafted or learned). The learned scattering networks use the
Morlet canonical parameterization and are combined with a linear layer during training.

Tableau 5.1. Deformations and their maximum value
Deformation Maximum Value
Rotation 10
Translation 22
Custom1 1
Custom2 1

Deformations used are rotation, translation, and several diffeomorphisms (denoted Custom
1 and Custom 2), and strengths for the deformations range from 0 to the maximum value
for the deformation given in Table 5.1.

Custom 1, τ 1
ε (u), and Custom 2, τ 2

ε (u), are defined as such:

τ 1
ε (u) = ε

0.3u2
1 + 0.2u2

2

0.2(0.2u1)

 , τ 2
ε (u) = ε

0.3(u2
1 + u2

2)
−0.3(2u1u2)

 .
Figure 5.1 demonstrates representative results for a small rotation, translation and custom
transformations on images from the COVIDx datasets. We observe that the substantial
change in the filter construction retains the scattering robustness properties for these simple
deformations, thus indicating that the use of learned filters (instead of designed ones) does
not necessarily detract from the stability of the resulting transform.

5.2. Small Data Regime
We evaluate the parametric scattering network in limited labeled data settings. Following

the evaluation protocol from [108], we subsample each dataset at various sample sizes to
showcase the performance of scattering-based architectures in the small data regime. In
our experiments, we train on a small random subset of the training data but always test
on the entire test set as done in [108]. To obtain comparable and reproducible results, we
control for deterministic GPU behavior and assure that each model is initialized the same
way for the same seed. Furthermore, we use the same set of seeds for models evaluated
on the same number of samples. For instance, the TF learnable hybrid with a linear model
would be evaluated on the same ten seeds as the fixed tight-frame hybrid with a linear model
when trained on 100 samples of CIFAR-10. Some fluctuation is inevitable when subsampling
datasets. Hence all our figures include averages and standard error calculated over different
seeds.

5.2.1. CIFAR-10

CIFAR-10 consists of 60,000 images of size 32 × 32 × 3 from ten classes. The train set
contains 50,000 class-balanced samples, while the test set contains the remaining images.
The linear models were trained using a max learning rate of 0.06 for all parameters on
5K, 1K, 500, and 500 epochs for 100, 500, 1K, 50K samples, respectively. The hybrid
WRN models were trained using a max learning rate of 0.1 on 3K, 2K, 1K, and 200 epochs
for 100, 500, 1K, and 50K samples, respectively. We use batch gradient descent except
when the models are trained with 50K samples where we use mini-batch gradient descent
of size 1024. On the entire training set, we also train the models on ten seeds and, in
all cases, the standard errors are always inferior to 0.3. All scattering networks use a

66

Fig. 5.1. Normalized distances between scattering representations of an image
and its deformation. (Top Left) Rotation Transformation. (Top Right) Translation Trans-
formation. (Bottom Left) Custom 1. (Bottom Right) Custom 2 Transformation.

spatial scale J = 2. Table 5.2 reports the evaluation of our learnable scattering approach
on CIFAR-10 with training sample sizes of 100, 500, 1K, and 50K. The training set is
augmented with horizontal flipping, random cropping, and pre-specified autoaugment [36]
for CIFAR-10. We used autoaugment [36] to showcase the best possible small-sample results.

As shown in Table 5.2, the scattering networks with wavelets optimized pixel-wise
perform the worst in the small-data regime. It shows that with limited labeled samples,
there is not enough data and too many learnable parameters to effectively learn the wavelets’
pixels. Adding more constraints (i.e., constraining the wavelets to be Morlet) is beneficial

67

Tight-Frame Random Initialization

Fig. 5.2. Initialized canonical wavelet filters pre and post-training. Real part of
Morlet canonical wavelet filters with J = 2 initialized with tight-frame (Left) and random
(Right) schemes before (Top) and after (Bottom) training. The filters were optimized on
the entire CIFAR-10 training set with linear model. For the tight-frame filters, we observe
substantial changes in both scale and aspect ratio. On the other hand, all random filters
undergo major changes in orientation and scale.

Fig. 5.3. Initialized equivariant wavelet filters pre and post-training. Real part of
Morlet equivariant wavelet filters with J = 2 initialized with tight-frame (Left) and random
(Right) schemes before (Top) and after (Bottom) training. The filters were optimized on the
entire CIFAR-10 training set with linear model. In the two figures, each row corresponds
to a different scale. Since J is set to 2, we have two rows. We observe that the equivariant
filters in each scale/row are the same, except for the global orientation.

in this setting. We also observe that the Morlet canonical parameterization yields similar
performance to the Morlet equivariant parameterization (i.e., most standard errors overlap).
Thus, adding even more constraints, by reducing the number of learnable parameters in the
parametric scattering transform, does not degrade the performance in the small-data regime.

We observe that randomly initialized learnable with canonical parameterization only
achieves similar performance to TF learnable canonical when trained on the whole dataset.
These results suggest the TF initialization, derived from rigorous signal processing prin-
ciples, is empirically beneficial as a starting point in the very few sample regime but can be
improved upon by learning.

68

Tableau 5.2. CIFAR-10 mean accuracy and std. error over 10 seeds, with J = 2 and
multiple training sample sizes. Learnable scattering with TF initialization improves perfor-
mance for all architectures, while randomly initialized scattering requires more training data
to reach similar performance.

Arch. Init. Parametrization 100 samples 500 samples 1000 samples All
LS+LL† TF Canonical 37.84± 0.57 52.68± 0.31 57.43± 0.17 69.57
LS+LL† TF Equivariant 39.69± 0.56 51.98± 0.25 57.01± 0.16 66.65
LS+LL TF Pixel-Wise 32.30± 0.69 47.14± 0.91 51.87± 0.34 64.53
S +LL TF - 36.01± 0.55 48.12± 0.25 53.25± 0.24 65.58
LS+LL† Rand Canonical 34.81± 0.60 49.6± 0.39 55.72± 0.39 69.39
LS+LL† Rand Equivariant 34.67± 0.73 46.59± 0.60 52.95± 0.36 65.64
LS+LL Rand Pixel-Wise 29.44± 0.41 42.14± 0.27 47.44± 0.43 62.72
S +LL Rand - 29.77± 0.47 41.85± 0.41 46.3± 0.37 57.72
LS+WRN† TF Canonical 43.60± 0.87 63.13± 0.29 70.14± 0.26 93.61
LS+WRN† TF Equivariant 39.86± 1.59 62.85± 0.32 69.52± 0.23 92.57
LS+WRN TF Pixel-Wise 39.20± 0.80 54.14± 0.68 57.59± 0.48 92.97
S +WRN TF - 43.16± 0.78 61.66± 0.32 68.16± 0.27 92.27
LS+WRN† Rand Canonical 41.42± 0.65 59.84± 0.40 67.40± 0.28 93.36
LS+WRN† Rand Equivariant 40.84± 1.02 60.81± 0.40 68.62± 0.31 92.53
LS+WRN Rand Pixel-Wise 31.49± 0.63 45.85± 0.43 50.72± 0.28 91.86
S +WRN Rand - 32.08± 0.46 46.84± 0.21 52.76± 0.33 85.35
WRN-16-8 - - 38.78± 0.72 62.97± 0.41 71.37± 0.31 96.84
ResNet-50 - - 33.17± 0.92 52.13± 0.74 64.42± 0.40 91.23
†: ours; TF: Tight-Frame; LS: Learnable Scattering; S: Scattering; Rand: Random
params : 156k for S+LL; 155k for LS+LL; 22.6M for S+WRN; 22.6M for LS+WRN; 22.3M for WRN;
and 22.5M for ResNet

Among the linear models, our TF-initialized learnable scattering networks (i.e., Mor-
let canonical and equivariant) significantly outperform all others in few sample settings.
This demonstrates that learnable scattering networks obtain a more linearly separable
representation than their fixed counterparts, perhaps by building greater dataset-specific
intra-class invariance.

Figure 5.3 and shows the real part of the canonical wavelet filters before and after
optimization on the entire training set. Among the WRN hybrid models, the TF-initialized
canonical learnable scattering performs best. Canonical TF learnable still improves over TF
fixed when paired with a WRN, indicating some loss of information in the fixed scattering
representation is mitigated by data-driven tuning or optimization. Finally, our approach
outperforms the fully trained ResNet-50 and outperforms the WRN-16-8 on 100 and 500
training samples, demonstrating the effectiveness of the scattering prior in the small data re-
gime. However, the WRN-16-8 outperforms our model on 1,000 samples and 50,000 samples.

The training set of CIFAR-10 is augmented with pre-specified autoaugment in Table
5.2 to demonstrate the best possible results. To understand the effect of autoaugment, we
replicate the same experiments except for not augmenting the training set with autoaugment.
Table 5.3 reports the performance of the different architectures on CIFAR-10. We observe

69

Tableau 5.3. CIFAR-10 mean accuracy and std. error over 10 seeds with J = 2 and mul-
tiple training sample sizes. The table compares the effect of augmenting the training set
with pre-specified autoaugment. When the scattering network is followed by a WRN, using
autoaugment is necessary to obtain better performance.

Init. Arch. AA 100 samples 500 samples 1000 samples All
TF LS+LL† Yes 37.84± 0.57 52.68± 0.31 57.43± 0.17 69.57± 0.1
TF LS+LL† No 39.70± 0.62 50.74± 0.30 54.76± 0.22 74.94± 0.06
TF S +LL Yes 36.01± 0.55 48.12± 0.25 53.25± 0.24 65.58± 0.04
TF S +LL No 37.55± 0.62 49.67± 0.33 53.96± 0.48 70.71± 0.03
Rand LS+LL† Yes 34.81± 0.60 49.6± 0.39 55.72± 0.39 69.39± 0.41
Rand LS+LL† No 32.64± 0.38 42.88± 0.23 47.40± 0.32 74.71± 0.08
Rand S +LL Yes 29.77± 0.47 41.85± 0.41 46.3± 0.37 57.72± 0.1
Rand S +LL No 31.71± 0.34 40.57± 0.32 44.42± 0.51 61.79± 0.31
TF LS+WRN† Yes 43.60± 0.87 63.13± 0.29 70.14± 0.26 93.61± 0.12
TF LS+WRN† No 34.95± 0.96 54.21± 0.39 62.17± 0.28 90.17± 0.34
TF S +WRN Yes 43.16± 0.78 61.66± 0.32 68.16± 0.27 92.27± 0.05
TF S +WRN No 35.15± 0.43 52.77± 0.35 60.72± 0.21 89.05± 0.38
Rand LS+WRN† Yes 41.42± 0.65 59.84± 0.40 67.4± 0.28 93.36± 0.19
Rand LS+WRN† No 31.08± 1.00 48.37± 0.76 55.41± 0.49 88.80± 0.47
Rand S +WRN Yes 32.08± 0.46 46.84± 0.21 52.76± 0.33 85.35± 1.06
Rand S +WRN No 27.73± 0.43 41.05± 0.32 47.19± 0.37 79.67± 0.59

†: ours TF: tight-frame LS: Learnable Scattering AA: Autoaugment
params : 156k for S+LL; 155k for LS+LL; 11M for S+WRN; 22.6M LS+WRN; and 22.3M for WRN

that the scattering networks followed by WRN underperform when no autoaugment is used.
The difference in performance between using autoaugment and not using it is smaller when
the scattering network is followed with a linear layer. Surprisingly, the performance of
the scattering networks followed with a linear layer trained on all data increased without
autoaugment. It seems that in the case of a scattering network followed by a linear model,
autoaugment is not as useful as with a deep model on top and can also be harmful in some
cases.

5.2.2. COVIDx CRX-2

COVIDx CRX-2 is a two-class (positive and negative) dataset of 1024 × 1024 × 1 chest
X-Ray images of COVID-19 patients [142]. The train set contains 15,951 unbalanced
images, while the test set contains 200 positive and 200 negative images. The spatial scale
of the scattering transform is set to J = 4. We always train on a class-balanced subset
of the training set in our experiments. We resize the images to 260 × 260 and train our
network with random crops of 224 × 224 pixels. The only data augmentation we use is
random horizontal flipping. All models were trained on 400 epochs using a max learning
rate of 0.01. All hybrid models are trained with a mini-batch size of 128. Table 5.4 reports
our evaluation on sample sizes of 100, 500, and 1K images. We use the same protocol as
for CIFAR-10. Morlet canonical parameterization yields similar performance to the Morlet

70

Tableau 5.4. COVIDx CRX-2 mean accuracy & std. error with J = 4 over 10 seeds. TF-
initialized learnable scattering network performs better than models that do not incorporate
scattering priors.

Arch. Init. Parameterization 100 samples 500 samples 1000 samples
LS+LL† TF Canonical 82.30± 1.78 88.50± 0.71 89.90± 0.40
LS+LL† TF Equivariant 83.06± 1.53 87.56± 0.94 89.15± 0.60
S +LL TF - 81.08± 1.88 87.20± 0.77 89.23± 0.69
LS+LL† Rand Canonical 76.85± 1.50 86.45± 0.95 89.70± 0.65
LS+LL† Rand Equivariant 76.73± 1.57 85.64± 1.38 87.98± 0.55
S +LL Rand - 76.08± 1.56 84.13± 0.91 86.80± 0.41
LS+WRN† TF Canonical 81.20± 1.73 90.50± 0.70 93.68± 0.35
LS+WRN† TF Equivariant 81.86± 2.07 91.56± 0.52 93.97± 0.34
LS+WRN TF - 80.85± 1.85 89.05± 0.59 91.90± 0.54
LS+WRN† Rand Canonical 80.95± 1.54 88.08± 0.70 91.65± 0.55
LS+WRN† Rand Equivariant 80.12± 1.76 87.44± 1.17 91.40± 0.67
S +WRN Rand - 80.63± 1.73 86.68± 0.59 90.60± 0.50
WRN-16-8 - - 80.50±1.15 85.95± 2.04 88.82± 1.64
ResNet-50 - - 74.04± 1.35 86.45± 0.51 90.86± 0.57
params : 493K for LS/S+LL; 23.05M for LS/S+WRN; 22.3M for WRN;23.5M for ResNet
†: ours; TF: Tight-Frame; LS: Learnable Scattering; S: Scattering; Rand: Random

equivariant parameterization (i.e., most standard errors overlap), as also observed with
CIFAR-10.

When the scattering networks are postpended with a linear layer, TF-initialized lear-
nable (i.e., Morlet canonical and equivariant) performs better than TF fixed, showing the
viability of our approach on real-world data. We observe that randomly initialized learnable
yields lower performance than TF learnable on 100 and 500 samples. On 1K, it achieves
similar performance, demonstrating that random initialization can achieve comparable
performance to TF with enough data. WRN-16-8 performs worse than TF-initialized
learnable followed with a linear layer. When combined with a CNN, TF-initialized learnable
performs better than TF fixed and outperforms WRN-16-8 and ResNet-50.

5.2.3. KTH-TIPS2

KTH-TIPS2 contains 4,752 images from 11 material classes. The images captured the
material at scales. Each class is divided into four samples (108 images each) of different
scales. Using the standard protocol, we train the model on one sample (11 ∗ 108 images),
while the rest are used for testing [133]. In total, each training set contains 1,188 images.
We resize the images to 200 × 200 and train our network with random crops of 128 × 128
pixels. The training data is augmented with random horizontal flips and random rotations.
All scattering networks use a spatial scale of 4. We set the maximum learning rate of the
scattering parameters to 0.1 while it is set to 0.001 for all other parameters. All hybrid
models are trained with a mini-batch size of 128. The hybrid linear models are trained for
250 epochs, while the hybrid WRN models are trained for 150 epochs. We evaluate each

71

Tableau 5.5. KTH-TIPS2 mean accuracy & std. error with J = 4 over 16 seeds. The
WRN-16-8 and ResNet-50 perform extremely poorly relative to hybrid models.

Arch. Init. Parameterization 1188 samples
LS+LL† TF Canonical 66.09± 1.05
LS+LL† TF Equivariant 66.41± 1.24
S +LL TF - 66.17± 1.10
LS+LL† Rand Canonical 65.79± 0.85
LS+LL† Rand Equivariant 65.31± 1.42
S +LL Rand - 61.37± 0.82
LS+WRN† TF Canonical 69.23± 0.67
LS+WRN† TF Equivariant 68.55± 0.80
S +WRN TF - 68.84± 0.71
LS+WRN† Rand Canonical 68.30± 0.47
LS+WRN† Rand Equivariant 67.50± 0.72
S +WRN Rand - 66.29± 0.36
WRN-16-8 - - 51.24± 1.37
ResNet-50 - - 44.95± 0.65

†: ours; TF: Tight-Frame; LS: Learnable Scattering; S: Scattering;
params : 883K for LS/S+LL; 23.7M for LS/S+WRN; 22.3M for WRN;
23.5M for ResNet

model, training it with four different seeds on each sample of material, amounting to 16
total runs.

Table 5.5 reports the classification accuracies. With TF initialization and a linear
layer, we observe that the performance is similar for the different architectures. The
performance of randomly initialized learnable is also similar to TF. The fixed and randomly
initialized model perform the worst, showing that even poorly initialized filters can
effectively be optimized. Altogether, these results further corroborate our previous findings,
notably that TF initialization acts as a good prior for scattering networks. Out of all the
WRN hybrid models, the TF-initialized learnable model using canonical parameterization
achieves the highest average accuracy. While WRN increases the performance compared
to the linear layer, it also significantly increases the total number of parameters, therefore
exhibiting a tradeoff between performance and model complexity. The WRN-16-8 and
ResNet-50 perform extremely poorly relative to hybrid models, showing the effectiveness of
the scattering priors for texture discrimination.

5.2.4. Cosine Loss

In the context of limited amount of labeled data, Lezama et al. [17] propose to replace
the categorical cross-entropy loss with the cosine loss function to decrease overfitting in the
small-sample classification settings. The cosine loss function, as opposed to the softmax
function used with cross-entropy, does not push the logits of the true class to infinity as
explained in [138]. We replicate the experiments with learnable scattering networks followed
by a WRN on CIFAR-10, COVIDx-CRX2, and KTH-TIPS2. We use the same parameters

72

Tableau 5.6. CIFAR-10, COVIDx-CRX2 and KTH-TIPS2 mean accuracy and std. error
using cosine loss function.

Init. Arch. Dataset Loss 100 samples 500 samples 1000 samples 1188 samples
TF LS+WRN CIFAR-10 CE 43.6± 0.87 63.13± 0.29 70.14± 0.26 -
TF LS+WRN CIFAR-10 Cosine 42.94± 0.77 61.42± 0.26 68.29± 0.18 -
TF LS+WRN COVIDx CE 81.20± 1.73 90.50± 0.70 93.68± 0.35 -
TF LS+WRN COVIDx Cosine 80.03± 2.16 89.53± 0.89 92.75± 0.65 -
TF LS+WRN KTH-TIPS2 CE - - - 69.23± 0.67
TF LS+WRN KTH-TIPS2 Cosine - - - 70.86± 0.67
TF: tight-frame LS: Learnable Scattering S: Scattering CE: Cross-Entropy Loss

except for using the cosine loss function [17] instead of cross-entropy. The cosine loss is
described in Section 2.2.4. Wavelet filters are initialized using the tight frame construction.
Table 5.6 demonstrates the average accuracy on the three datasets. For CIFAR-10 and
COVIDx-CRX2, the performance is lower when models are trained using cosine loss. The
same behavior is not observed when the models are trained on KTH-TIPS2. The performance
increases slightly by using the cosine loss function. Thus, cosine loss can improve performance
over small data regimes for some datasets.

5.2.5. Number of Filters per Spatial Scale

Next, we investigate the effect of modifying the number of filters (L) per spatial scale on
CIFAR-10. So far, in all experiments, we have set the number of filters per scale at 8. For
this experiment, we train a parametric scattering network followed by a linear layer where
the wavelets are initialized using the tight frame construction and the canonical parameteri-
zation. The spatial scale is set to 2. We do not use autoaugment on the training set since, as
shown in Table 5.3, autoaugment can be harmful when the scattering network is followed by
a linear layer. Table 5.7 shows the accuracy of the entire training set for different values of

Tableau 5.7. CIFAR-10 accuracy of learnable scattering followed by a linear layer (LS +
LL) and multiple numbers of filters per scale (L) trained on all the training set. The wavelet
filters are initialized using the tight frame construction and the canonical parameterization.
The spatial scale is set to 2. No autoaugment is used for this experiment. We observe that
the performance increases when the number of filters per scale (L) also increases. Around
14 filters per spatial scale, the performance seems to have stopped increasing.

L All Data
2 63.59
4 70.94
6 74.03
8 74.94
10 76.40
12 77.01
14 77.36
16 77.33

73

L. We observe that the performance increases when the number of filters per scale increases.
Around 14-16 filters per spatial scale, the performance seems to have stopped increasing.
Table 5.8 demonstrates the mean accuracy over different sizes of training samples where the
number of filters per scale is set to 8 or 16. We also consider the fixed version of the scat-
tering transform. Over all training sample sizes, we observe that the highest performance
is obtained with learnable scattering using 16 filters per spatial scale. When the scattering
network is fixed, performances are lower with 16 filters instead of 8. It seems that increa-
sing the number of filters per scale is only beneficial in the learned version of the scattering
network.

Tableau 5.8. CIFAR-10 mean accuracy and std. error over 10 seeds with multiple training
sample sizes and different values of L. The wavelet filters are initialized using the tight frame
construction. The spatial scale is set to 2. No autoaugment is used for this experiment. Over
all training sample sizes, we observe that the highest performance is obtained with learnable
scattering using 16 filters per spatial scale.

Arch. Parameterization L 100 samples 500 samples 1000 samples All
LS+LL† Canonical 8 39.70± 0.62 50.74± 0.30 54.76± 0.22 74.94
LS+LL† Canonical 16 39.73± 0.39 54.17± 0.36 58.36± 0.29 77.33
S +LL - 8 37.55± 0.62 49.67± 0.33 53.96± 0.48 70.71
S +LL - 16 35.85± 0.48 48.2± 0.27 52.74± 0.25 70.64

TF: tight-frame LS: Learnable Scattering S: Scattering

5.3. Unsupervised Learning of Scattering Parameters
We have studied the adaptation of the wavelet parameters towards a supervised task.

We now perform a preliminary investigation to determine if the scattering representation
can be improved in a purely unsupervised manner. We consider the recently popularized
SimCLR framework [30] described in Section 2.2.7, which encourages representations from
two data augmentations of the same input to lie close together. We use the same framework
except the encoder f(·) is not a ResNet-50, but a parametric scattering network. We learn
the scattering network parameters on CIFAR-10 using this unsupervised objective function
and subsequently evaluate the discriminativeness of the features under a standard linear
evaluation experiment on the full CIFAR-10 dataset and in the small data regimes comparing
them to the standard scattering transform (experiments illstrated in Figure 5.4). The results
are shown in Table 5.9. We observe the unsupervised learning of filter parameters can improve
the scattering representation under standard unsupervised learning evaluation protocols.

74

hi

Unlabeled
Data

hi

Removed

Data representation
from pretraining

Labeled
 Data

STEP1 STEP2

Logits

Parametric
Scattering
Network

Parametric
Scattering
Network

hi

Labeled
 Data

STEP1

Logits

Scattering
Network

Fig. 5.4. Unsupervised learning of scattering networks visualization. (Left) Vi-
sualization of fixed scattering method where the representations are constructed from fixed
scattering network and evaluated using linear layer colored in purple. (Right) Visualization
of learned scattering method. In step 1, the parametric scattering network followed by a
MLP (colored in yellow) is trained using the unsupervised objective function on the entire
training set. In step 2, the representations are constructed from the trained parametric
scattering network and evaluated using linear probing colored in purple. Images adapted
from: [30].

Tableau 5.9. Scattering and learned unsupervised scattering features evaluated by training
a linear classifier on CIFAR-10. We observe the unsupervised learned scattering improves
the representation.

Method 100 samples 500 samples 1000 samples All
Scattering (Fixed) 36.01± 0.55 48.12± 0.25 53.25± 0.24 65.58± 0.04
Unsupervised Learnt Scattering 38.05± 0.45 52.92± 0.28 57.76± 0.25 68.47± 0.04

75

Chapter 6

Conclusion and Future Work

In this work, we relax the scattering constructions to allow data-driven learning. We propose
to adapt the filters’ scales, orientations, and aspect ratios to produce problem-specific
parametrizations of the scattering transforms. We call our approach the Parametric
Scattering Network, in which the Morlet wavelet parameters are optimized for the task at
hand in an end-to-end differentiable architecture. To assess the importance of the traditional
construction of wavelet filter banks, we considered two different ways of initializing wavelets:
tight-frame initialization and random initialization. We also considered two different Morlet
wavelet parametrizations: canonical and equivariant.

The experiments demonstrate the competitive results of adapting a small number of
Morlet wavelet filter parameters in the scattering network. We show that it is possible to
backpropagate through the parametric scattering transform and we illustrate that filters
learned by parametric scattering can be interpreted in relation to the specific task (e.g.,
becoming thinner in object recognition tasks that require sensitivity to edges). We also
empirically demonstrate that our parametric scattering transform shares similar stability
to deformations as the traditional scattering transform. We show that with limited labeled
samples, there is not enough data and too many learnable parameters to learn the pixels
of the wavelets effectively. Adding more constraints (i.e., constraining the wavelets to
be Morlet) is beneficial in this setting. The results suggest that standard filterbank
initialization is empirically beneficial as a starting point in the few sample regimes but can
be improved upon by learning. In other words, our empirical results suggest that traditional
filterbank constructions may not always be necessary for scattering transforms to extract
effective representations.

We also observe that Morlet’s canonical parametrization gives similar performance to
Morlet’s equivariant parametrization, showing that adding even more constraints does

not degrade performance in the small data regime. We demonstrate, on CIFAR-10, that
increasing the number of filters per spatial scale allows a performance gain. We also
empirically demonstrate that increasing the number of filters per scale is only beneficial
in the learned version of the scattering network. We show that in the case of a scattering
network followed by a linear model trained on CIFAR-10, autoaugment is not as useful as
with a deep model on top. Overall, we find that the parametric scattering network provides
state-of-the-art results for classification in the low-data regime when combined with a linear
layer and as well in a hybrid CNN. These results go towards bridging the gap between
the handcrafted filter design in scattering transforms, which provides tractable properties
and supports low-parameter models, and the fully (unparametrized) learned ones com-
monly used in CNN work, especially in computer vision and generally on 2D structured data.

There are some limitations to this study that could be addressed in future research.
First, the current implementation is limited to two-dimensional data. The implementation
could naturally be extended to one-dimensional and three-dimensional data in future work.
Second, there are pre-trained models available for popular datasets, such as CIFAR-10.
In the study, to compare performance with our approach, we considered a fully learned
WRN-16-8 and ResNet-50, but we did not consider pre-trained models.

Our results may also lead to future work. We are working on a study affiliated with
the Center Hospitalier de Montréal (CHUM), where the task is to classify chronic liver
disease from B-mode ultrasound images. The number of images is limited, and the quality
of the images can be influenced by different factors, such as the motion of the machinery
and equipment. Global translations and rotations can be observed within the same class,
depending on the positioning of the ultrasound collection device. Local scaling can be
associated with variation between the relative size of organs. We obtain promising results
on this task using the traditional scattering network. The next step is to evaluate our para-
metric scattering network on this dataset and see if we can increase the current performance.

Several avenues for improving our approach can also be explored, such as investiga-
ting the impact of downsampling on the representations learned by the parametric
scattering network, as well as application to uncertainty estimation by leveraging the
low parameter CNN in a Bayesian framework. We could vary the number of scales and
create a scale constraint equivalent to the equivariant parameterization. In the equivariant
parameterization, we could investigate whether it makes a difference to initialize the filters
on the Cartesian axis or oblique to it. More exploration would be helpful to glean a deeper
understanding of the parametric scattering network.

78

References

[1] Walid Al-Dhabyani, Mohammed Gomaa, Hussien Khaled et Aly Fahmy : Dataset of breast ultra-
sound images. Data in brief, 28:104863, 2020.

[2] Saad Albawi, Tareq Abed Mohammed et Saad Al-Zawi : Understanding of a convolutional neural
network. In 2017 International Conference on Engineering and Technology (ICET), pages 1–6. Ieee,
2017.

[3] Andrey Alekseev et Anatoly Bobe : Gabornet: Gabor filters with learnable parameters in deep
convolutional neural network. In 2019 International Conference on Engineering and Telecommunica-
tion (EnT), pages 1–4. IEEE, 2019.

[4] Md Zahangir Alom, Tarek M Taha, Chris Yakopcic, Stefan Westberg, Paheding Sidike, Mst Sha-
mima Nasrin, Mahmudul Hasan, Brian C Van Essen, Abdul AS Awwal et Vijayan K Asari : A
state-of-the-art survey on deep learning theory and architectures. Electronics, 8(3):292, 2019.

[5] Md Zahangir Alom, Tarek M Taha, Chris Yakopcic, Stefan Westberg, Paheding Sidike, Mst Sha-
mima Nasrin, Mahmudul Hasan, Brian C Van Essen, Abdul AS Awwal et Vijayan K Asari : A
state-of-the-art survey on deep learning theory and architectures. Electronics, 8(3):292, 2019.

[6] Joakim Andén, Vincent Lostanlen et Stéphane Mallat : Joint time-frequency scattering for audio
classification. In 2015 IEEE 25th International Workshop on Machine Learning for Signal Processing
(MLSP), pages 1–6, 2015.

[7] Joakim Andén, Vincent Lostanlen et Stéphane Mallat : Joint time–frequency scattering. IEEE
Transactions on Signal Processing, 67(14):3704–3718, 2019.

[8] Joakim Andén et Stéphane Mallat : Multiscale scattering for audio classification. In ISMIR, pages
657–662. Miami, FL, 2011.

[9] Joakim Andén et Stéphane Mallat : Deep scattering spectrum. IEEE Transactions on Signal Pro-
cessing, 62(16):4114–4128, 2014.

[10] Mathieu Andreux, Tomás Angles, Georgios Exarchakis, Roberto Leonarduzzi, Gaspar Ro-
chette, Louis Thiry, John Zarka, Stéphane Mallat, Joakim Andén, Eugene Belilovsky et al.
: Kymatio: Scattering transforms in python. J. Mach. Learn. Res., 21(60):1–6, 2020.

[11] Tomás Angles et Stéphane Mallat : Generative networks as inverse problems with scattering trans-
forms. arXiv preprint arXiv:1805.06621, 2018.

[12] AWS : Model fit: Underfitting vs. overfitting. https://docs.aws.amazon.com/machine-learning/
latest/dg/model-fit-underfitting-vs-overfitting.html.

[13] Idan Azuri et Daphna Weinshall : Generative latent implicit conditional optimization when learning
from small sample. In 2020 25th International Conference on Pattern Recognition (ICPR), pages 8584–
8591, 2021.

https://docs.aws.amazon.com/machine-learning/latest/dg/model-fit-underfitting-vs-overfitting.html
https://docs.aws.amazon.com/machine-learning/latest/dg/model-fit-underfitting-vs-overfitting.html

[14] Randall Balestriero, Romain Cosentino, Hervé Glotin et Richard Baraniuk : Spline filters for
end-to-end deep learning. In International conference on machine learning, pages 364–373. PMLR,
2018.

[15] Randall Balestriero, Hervé Glotin et Richard G Baraniuk : Interpretable super-resolution via a
learned time-series representation. arXiv:2006.07713, 2020.

[16] Danilo Bargen : Tikz: Diagram of a perceptron. https://tex.stackexchange.com/questions/
104334/tikz-diagram-of-a-perceptron, Aug 1961.

[17] Bjorn Barz et Joachim Denzler : Deep learning on small datasets without pre-training using cosine
loss. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pages
1371–1380, 2020.

[18] Nihar Bendre, Hugo Terashima Marín et Peyman Najafirad : Learning from few samples: A
survey. arXiv:2007.15484, 2020.

[19] Matt Berseth : Isic 2017-skin lesion analysis towards melanoma detection. arXiv preprint
arXiv:1703.00523, 2017.

[20] R Bharath et Pachamuthu Rajalakshmi : Deep scattering convolution network based features for
ultrasonic fatty liver tissue characterization. In 2017 39th Annual International Conference of the IEEE
Engineering in Medicine and Biology Society (EMBC), pages 1982–1985. IEEE, 2017.

[21] Patrick Bilic, Patrick Ferdinand Christ, Eugene Vorontsov, Grzegorz Chlebus, Hao Chen,
Qi Dou, Chi-Wing Fu, Xiao Han, Pheng-Ann Heng, Jürgen Hesser et al. : The liver tumor seg-
mentation benchmark (lits). arXiv preprint arXiv:1901.04056, 2019.

[22] Cloudera Blog : Learning with limited labeled data. https://blog.fastforwardlabs.com/2019/
03/20/learning-with-limited-labeled-data.html, 2019.

[23] Lorenzo Brigato, Björn Barz, Luca Iocchi et Joachim Denzler : Tune it or don’t use it: Bench-
marking data-efficient image classification. In 2nd Visual Inductive Priors for Data-Efficient Deep
Learning Workshop, 2021.

[24] Robert-Jan Bruintjes, Attila Lengyel, Marcos Baptista Rios, Osman Semih Kayhan et Jan
van Gemert : Vipriors 1: Visual inductive priors for data-efficient deep learning challenges.
arXiv:2103.03768, 2021.

[25] Xavier Brumwell, Paul Sinz, Kwang Jin Kim, Yue Qi et Matthew Hirn : Steerable wavelet scattering
for 3d atomic systems with application to li-si energy prediction. arXiv preprint arXiv:1812.02320,
2018.

[26] Joan Bruna et Stéphane Mallat : Invariant scattering convolution networks. IEEE transactions on
pattern analysis and machine intelligence, 35(8):1872–1886, 2013.

[27] Michał Byra, Grzegorz Styczynski, Cezary Szmigielski, Piotr Kalinowski, Łukasz Mi-
chałowski, Rafał Paluszkiewicz, Bogna Ziarkiewicz-Wróblewska, Krzysztof Zieniewicz,
Piotr Sobieraj et Andrzej Nowicki : Transfer learning with deep convolutional neural network for
liver steatosis assessment in ultrasound images. International journal of computer assisted radiology
and surgery, 13(12):1895–1903, 2018.

[28] Renato Campanini, Dott Matteo Roffilli et Eugenio Nurrito : Scattering networks: Efficient 2d
implementation and application to melanoma classification. Universita di Bologna, 2016.

[29] Jiaao Chen, Derek Tam, Colin Raffel, Mohit Bansal et Diyi Yang : An empirical survey of data
augmentation for limited data learning in nlp. arXiv preprint arXiv:2106.07499, 2021.

[30] Ting Chen, Simon Kornblith, Mohammad Norouzi et Geoffrey E. Hinton : A simple framework
for contrastive learning of visual representations. CoRR, abs/2002.05709, 2020.

80

https://tex.stackexchange.com/questions/104334/tikz-diagram-of-a-perceptron
https://tex.stackexchange.com/questions/104334/tikz-diagram-of-a-perceptron
https://blog.fastforwardlabs.com/2019/03/20/learning-with-limited-labeled-data.html
https://blog.fastforwardlabs.com/2019/03/20/learning-with-limited-labeled-data.html

[31] Xiuyuan Cheng, Xu Chen et Stéphane Mallat : Deep haar scattering networks. Information and
Inference: A Journal of the IMA, 5(2):105–133, 2016.

[32] Vikash Chouhan, Sanjay Kumar Singh, Aditya Khamparia, Deepak Gupta, Prayag Tiwari, Ca-
tarina Moreira, Robertas Damaševičius et Victor Hugo C De Albuquerque : A novel transfer
learning based approach for pneumonia detection in chest x-ray images. Applied Sciences, 10(2):559,
2020.

[33] Václav Chudácek, Ronen Talmon, Joakim Andén, Stéphane Mallat, Ronald R Coifman, Pa-
trice Abry et Muriel Doret : Low dimensional manifold embedding for scattering coefficients of
intrapartum fetale heart rate variability. In 2014 36th Annual International Conference of the IEEE
Engineering in Medicine and Biology Society, pages 6373–6376. IEEE, 2014.

[34] Romain Cosentino et Behnaam Aazhang : Learnable group transform for time-series. In Interna-
tional Conference on Machine Learning, pages 2164–2173. PMLR, 2020.

[35] Fergal Cotter et Nick Kingsbury : A learnable scatternet: Locally invariant convolutional layers.
In 2019 IEEE International Conference on Image Processing (ICIP), pages 350–354. IEEE, 2019.

[36] Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasudevan et Quoc V Le : Autoaugment:
Learning augmentation policies from data. arXiv:1805.09501, 2018.

[37] Julianna Delua : "supervised vs. unsupervised learning: What’s the difference?". v, March 2021.
[38] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li et Li Fei-Fei : Imagenet: A large-scale

hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pages 248–255. Ieee, 2009.

[39] Terrance DeVries et Graham W Taylor : Dataset augmentation in feature space. arXiv preprint
arXiv:1702.05538, 2017.

[40] Tom Dietterich : Overfitting and undercomputing in machine learning. ACM computing surveys
(CSUR), 27(3):326–327, 1995.

[41] MATLAB Documentation : Machine learning in matlab. https://www.mathworks.com/help/
stats/machine-learning-in-matlab.html.

[42] Carl Doersch, Abhinav Gupta et Alexei A Efros : Unsupervised visual representation learning
by context prediction. In Proceedings of the IEEE international conference on computer vision, pages
1422–1430, 2015.

[43] Michael Eickenberg, Georgios Exarchakis, Matthew Hirn et Stéphane Mallat : Solid harmonic
wavelet scattering: Predicting quantum molecular energy from invariant descriptors of 3d electro-
nic densities. In Proceedings of the 31st International Conference on Neural Information Processing
Systems, pages 6543–6552, 2017.

[44] Michael Eickenberg, Georgios Exarchakis, Matthew Hirn, Stéphane Mallat et Louis Thiry
: Solid harmonic wavelet scattering for predictions of molecule properties. The Journal of chemical
physics, 148(24):241732, 2018.

[45] Fernando Gama, Alejandro Ribeiro et Joan Bruna : Diffusion scattering transforms on graphs.
arXiv preprint arXiv:1806.08829, 2018.

[46] Fernando Gama, Alejandro Ribeiro et Joan Bruna : Stability of graph scattering transforms. Ad-
vances in Neural Information Processing Systems, 32:8038–8048, 2019.

[47] Feng Gao, Guy Wolf et Matthew Hirn : Geometric scattering for graph data analysis. In Interna-
tional Conference on Machine Learning, pages 2122–2131. PMLR, 2019.

81

v
https://www.mathworks.com/help/stats/machine-learning-in-matlab.html
https://www.mathworks.com/help/stats/machine-learning-in-matlab.html

[48] Shanel Gauthier, Benjamin Thérien, Laurent Alsène-Racicot, Irina Rish, Eugene Beli-
lovsky, Michael Eickenberg et Guy Wolf : Parametric scattering networks. arXiv preprint
arXiv:2107.09539, 2021.

[49] Spyros Gidaris, Praveer Singh et Nikos Komodakis : Unsupervised representation learning by
predicting image rotations. arXiv preprint arXiv:1803.07728, 2018.

[50] Machine Learning Glossary : Co-adaptation. https://machinelearning.wtf/terms/
co-adaptation/, 2017.

[51] Ian Goodfellow, Yoshua Bengio et Aaron Courville : Deep learning. MIT press, 2016.
[52] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sher-

jil Ozair, Aaron Courville et Yoshua Bengio : Generative adversarial nets. Advances in neural
information processing systems, 27, 2014.

[53] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre H Richemond, Elena
Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Daniel Guo, Mohammad Gheshlaghi
Azar et al. : Bootstrap your own latent: A new approach to self-supervised learning. arXiv preprint
arXiv:2006.07733, 2020.

[54] Karen Hao : Ai pioneer geoff hinton: "deep learning is going to be able to do everything". https:
//www.technologyreview.com/2020/11/03/1011616/ai-godfather-geoffrey-hinton-deep-\
learning-will-do-everything/, Nov 2020.

[55] Hamed Hassanzadeh, Mahnoosh Kholghi, Anthony Nguyen et Kevin Chu : Clinical document
classification using labeled and unlabeled data across hospitals. In AMIA annual symposium procee-
dings, volume 2018, page 545. American Medical Informatics Association, 2018.

[56] Douglas M Hawkins : The problem of overfitting. Journal of chemical information and computer
sciences, 44(1):1–12, 2004.

[57] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie et Ross Girshick : Momentum contrast for un-
supervised visual representation learning. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 9729–9738, 2020.

[58] Kaiming He, Xiangyu Zhang, Shaoqing Ren et Jian Sun : Deep residual learning for image recogni-
tion. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–778,
2016.

[59] Martin N Hebart et Guido Hesselmann : What visual information is processed in the human dorsal
stream? Journal of Neuroscience, 32(24):8107–8109, 2012.

[60] Geoffrey E Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever et Ruslan R Salakhut-
dinov : Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint
arXiv:1207.0580, 2012.

[61] Matthew Hirn, Stéphane Mallat et Nicolas Poilvert : Wavelet scattering regression of quantum
chemical energies. Multiscale Modeling & Simulation, 15(2):827–863, 2017.

[62] Matthew Hirn, Nicolas Poilvert et Stéphane Mallat : Quantum energy regression using scattering
transforms. arXiv:1502.02077, 2015.

[63] Thomas Hofmann : Unsupervised learning by probabilistic latent semantic analysis.Machine learning,
42(1):177–196, 2001.

[64] Kurt Hornik : Approximation capabilities of multilayer feedforward networks. Neural networks, 4(2):
251–257, 1991.

82

https://machinelearning.wtf/terms/co-adaptation/
https://machinelearning.wtf/terms/co-adaptation/
https://www.technologyreview.com/2020/11/03/1011616/ai-godfather-geoffrey-hinton-deep-\learning-will-do-everything/
https://www.technologyreview.com/2020/11/03/1011616/ai-godfather-geoffrey-hinton-deep-\learning-will-do-everything/
https://www.technologyreview.com/2020/11/03/1011616/ai-godfather-geoffrey-hinton-deep-\learning-will-do-everything/

[65] Gao Huang, Zhuang Liu, Laurens Van Der Maaten et Kilian Q Weinberger : Densely connec-
ted convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 4700–4708, 2017.

[66] David H Hubel et Torsten N Wiesel : Receptive fields, binocular interaction and functional archi-
tecture in the cat’s visual cortex. The Journal of physiology, 160(1):106–154, 1962.

[67] Ernesto Iadanza, Rachele Fabbri, Džana Bašić-ČiČak, Amedeo Amedei et Jasminka Hasic Tela-
lovic : Gut microbiota and artificial intelligence approaches: a scoping review. Health and Technology,
pages 1–16, 2020.

[68] IBM : Underfitting. https://www.ibm.com/cloud/learn/underfitting, March 2021.
[69] Hiroshi Inoue : Data augmentation by pairing samples for images classification. arXiv preprint

arXiv:1801.02929, 2018.
[70] Sergey Ioffe et Christian Szegedy : Batch normalization: Accelerating deep network training by

reducing internal covariate shift. In International conference on machine learning, pages 448–456.
PMLR, 2015.

[71] A. Ivakhnenko, V. G. Lapa et R. Mcdonough : Cybernetics and forecasting techniques, volume 8.
American Elsevier Publishing Company, 1967.

[72] Brownlee Jason : Overfitting and underfitting with machine learning algorithms. https:
//machinelearningmastery.com/overfitting-and-underfitting-with-machine-learning-\
algorithms/, March 2019.

[73] Kenji Kawaguchi, Leslie Pack Kaelbling et Yoshua Bengio : Generalization in deep learning. arXiv
preprint arXiv:1710.05468, 2017.

[74] Daniel S Kermany, Michael Goldbaum, Wenjia Cai, Carolina CS Valentim, Huiying Liang, Sally L
Baxter, Alex McKeown, Ge Yang, Xiaokang Wu, Fangbing Yan et al. : Identifying medical
diagnoses and treatable diseases by image-based deep learning. Cell, 172(5):1122–1131, 2018.

[75] Vitaliy Kinakh, Olga Taran et Svyatoslav Voloshynovskiy : Scatsimclr: self-supervised contrastive
learning with pretext task regularization for small-scale datasets. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 1098–1106, 2021.

[76] Diederik P Kingma et Max Welling : Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

[77] Soheil Kolouri, Yang Zou et Gustavo K Rohde : Sliced wasserstein kernels for probability distri-
butions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages
5258–5267, 2016.

[78] Tomohiko Konno et Michiaki Iwazume : Icing on the cake: An easy and quick post-learnig method
you can try after deep learning. arXiv preprint arXiv:1807.06540, 2018.

[79] Sotiris B Kotsiantis, I Zaharakis, P Pintelas et al. : Supervised machine learning: A review of
classification techniques. Emerging artificial intelligence applications in computer engineering, 160(1):
3–24, 2007.

[80] Alex Krizhevsky, Ilya Sutskever et Geoffrey E Hinton : Imagenet classification with deep convo-
lutional neural networks. Advances in neural information processing systems, 25:1097–1105, 2012.

[81] Harold W Kuhn : The hungarian method for the assignment problem. Naval research logistics quar-
terly, 2(1-2):83–97, 1955.

[82] Dorian Lazar : Perceptron: Explanation, implementation and a visual example. https://
towardsdatascience.com/perceptron-explanation-implementation-and-a-visual-example-\
3c8e76b4e2d1, May 2021.

83

https://www.ibm.com/cloud/learn/underfitting
https://machinelearningmastery.com/overfitting-and-underfitting-with-machine-learning-\algorithms/
https://machinelearningmastery.com/overfitting-and-underfitting-with-machine-learning-\algorithms/
https://machinelearningmastery.com/overfitting-and-underfitting-with-machine-learning-\algorithms/
https://towardsdatascience.com/perceptron-explanation-implementation-and-a-visual-example-\3c8e76b4e2d1
https://towardsdatascience.com/perceptron-explanation-implementation-and-a-visual-example-\3c8e76b4e2d1
https://towardsdatascience.com/perceptron-explanation-implementation-and-a-visual-example-\3c8e76b4e2d1

[83] Yann LeCun, Yoshua Bengio et Geoffrey Hinton : Deep learning. nature, 521(7553):436–444, 2015.
[84] Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E Howard, Wayne

Hubbard et Lawrence D Jackel : Backpropagation applied to handwritten zip code recognition.
Neural computation, 1(4):541–551, 1989.

[85] Yann LeCun, Léon Bottou, Yoshua Bengio et Patrick Haffner : Gradient-based learning applied
to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[86] Gregory Lee, Ralf Gommers, Filip Waselewski, Kai Wohlfahrt et Aaron O’Leary : Pywavelets:
A python package for wavelet analysis. Journal of Open Source Software, 4(36):1237, 2019.

[87] AS Lewis et G Knowles : Vlsi architecture for 2d daubechies wavelet transform without multipliers.
Electronics letters, 27(2):171–173, 1991.

[88] José Lezama, Qiang Qiu, Pablo Musé et Guillermo Sapiro : Ole: Orthogonal low-rank embedding-a
plug and play geometric loss for deep learning. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 8109–8118, 2018.

[89] Shan Sung Liew, Mohamed Khalil Hani, Syafeeza Ahmad Radzi et Rabia Bakhteri : Gender
classification: a convolutional neural network approach. Turkish Journal of Electrical Engineering &
Computer Sciences, 24(3):1248–1264, 2016.

[90] David G Lowe : Distinctive image features from scale-invariant keypoints. International journal of
computer vision, 60(2):91–110, 2004.

[91] S Mallat : Communications on pure and applied mathematics. Wiley Periodicals, Inc, 65:1331–1398,
2012.

[92] Stéphane Mallat : A wavelet tour of signal processing. Elsevier, 1999.
[93] Stéphane Mallat : Group invariant scattering. Communications on Pure and Applied Mathematics,

65(10):1331–1398, 2012.
[94] Stéphane Mallat : Understanding deep convolutional networks. Philosophical Transactions of the

Royal Society A: Mathematical, Physical and Engineering Sciences, 374(2065):20150203, 2016.
[95] Warren S McCulloch et Walter Pitts : A logical calculus of the ideas immanent in nervous activity.

The bulletin of mathematical biophysics, 5(4):115–133, 1943.
[96] Jason D McEwen, Christopher GR Wallis et Augustine N Mavor-Parker : Scattering networks on

the sphere for scalable and rotationally equivariant spherical cnns. arXiv preprint arXiv:2102.02828,
2021.

[97] Dan Meng, Libo Zhang, Guitao Cao, Wenming Cao, Guixu Zhang et Bing Hu : Liver fibrosis
classification based on transfer learning and fcnet for ultrasound images. Ieee Access, 5:5804–5810,
2017.

[98] Oliver Meynberg et Georg Kuschk : Airborne crowd density estimation. ISPRS Annals of the
Photogrammetry, Remote Sensing and Spatial Information Sciences, 2:49–54, 2013.

[99] Shervin Minaee, Rahele Kafieh, Milan Sonka, Shakib Yazdani et Ghazaleh Jamalipour Soufi :
Deep-covid: Predicting covid-19 from chest x-ray images using deep transfer learning. Medical image
analysis, 65:101794, 2020.

[100] Matthias Minderer, Olivier Bachem, Neil Houlsby et Michael Tschannen : Automatic shortcut
removal for self-supervised representation learning. arXiv preprint arXiv:2002.08822, 2020.

[101] Michel Misiti, Yves Misiti, Georges Oppenheim et Jean-Michel Poggi : Wavelet toolbox. The
MathWorks Inc., Natick, MA, 15:21, 1996.

[102] Blake Murdoch : Privacy and artificial intelligence: challenges for protecting health information in a
new era. BMC Medical Ethics, 22(1):1–5, 2021.

84

[103] Vinod Nair et Geoffrey E Hinton : Rectified linear units improve restricted boltzmann machines. In
Icml, 2010.

[104] Mehdi Noroozi et Paolo Favaro : Unsupervised learning of visual representations by solving jigsaw
puzzles. In European Conference on Computer Vision, pages 69–84. Springer, 2016.

[105] E. Oyallon et S. Mallat : Deep roto-translation scattering for object classification. In Proc. of
CVPR, pages 2865–2873, 2015.

[106] Edouard Oyallon, Eugene Belilovsky et Sergey Zagoruyko : Scaling the scattering transform:
Deep hybrid networks. In Proceedings of the IEEE international conference on computer vision, pages
5618–5627, 2017.

[107] Edouard Oyallon, Stéphane Mallat et Laurent Sifre : Generic deep networks with wavelet scat-
tering. arXiv:1312.5940, 2013.

[108] Edouard Oyallon, Sergey Zagoruyko, Gabriel Huang, Nikos Komodakis, Simon Lacoste-
Julien, Matthew Blaschko et Eugene Belilovsky : Scattering networks for hybrid representation
learning. IEEE transactions on pattern analysis and machine intelligence, 41(9):2208–2221, 2018.

[109] Chao Pan, Siheng Chen et Antonio Ortega : Spatio-temporal graph scattering transform. arXiv
preprint arXiv:2012.03363, 2020.

[110] Sinno Jialin Pan et Qiang Yang : A survey on transfer learning. IEEE Transactions on knowledge
and data engineering, 22(10):1345–1359, 2009.

[111] Deepak Pathak, Philipp Krahenbuhl, Jeff Donahue, Trevor Darrell et Alexei A Efros : Context
encoders: Feature learning by inpainting. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 2536–2544, 2016.

[112] Michael Perlmutter, Feng Gao, Guy Wolf et Matthew Hirn : Geometric wavelet scattering
networks on compact riemannian manifolds. In Mathematical and Scientific Machine Learning, pages
570–604. PMLR, 2020.

[113] Michael Perlmutter, Guy Wolf et Matthew Hirn : Geometric scattering on manifolds. arXiv
preprint arXiv:1812.06968, 2018.

[114] Maithra Raghu, Chiyuan Zhang, Jon Kleinberg et Samy Bengio : Transfusion: Understanding
transfer learning for medical imaging. arXiv preprint arXiv:1902.07208, 2019.

[115] Hariharan Ravishankar, Prasad Sudhakar, Rahul Venkataramani, Sheshadri Thiruvenkadam,
Pavan Annangi, Narayanan Babu et Vivek Vaidya : Understanding the mechanisms of deep transfer
learning for medical images. In Deep learning and data labeling for medical applications, pages 188–196.
Springer, 2016.

[116] Rcassani : Rcassani/mlp-example: Code for a simple mlp (multi-layer perceptron). https://github.
com/rcassani/mlp-example.

[117] Giulia Righi et Jean Vettel : Dorsal Visual Pathway, pages 887–888. Springer New York, New York,
NY, 2011.

[118] Frank Rosenblatt : The perceptron: a probabilistic model for information storage and organization
in the brain. Psychological review, 65(6):386, 1958.

[119] Frank Rosenblatt : Perceptron simulation experiments. Proceedings of the IRE, 48(3):301–309, 1960.
[120] Harold Ryan : Ricker, ormsby; klander, bntterwo-a choice of wavelets, 1994.
[121] Abhinav Sagar : "5 techniques to prevent overfitting in neural networks". https://www.kdnuggets.

com/2019/12/5-techniques-prevent-overfitting-neural-networks.html, Nov 2019.
[122] Claude Sammut et Geoffrey I Webb : Encyclopedia of machine learning. Springer Science & Business

Media, 2011.

85

https://github.com/rcassani/mlp-example
https://github.com/rcassani/mlp-example
https://www.kdnuggets.com/2019/12/5-techniques-prevent-overfitting-neural-networks.html
https://www.kdnuggets.com/2019/12/5-techniques-prevent-overfitting-neural-networks.html

[123] Shibani Santurkar, Dimitris Tsipras, Andrew Ilyas et Aleksander Mądry : How does batch norma-
lization help optimization? In Proceedings of the 32nd international conference on neural information
processing systems, pages 2488–2498, 2018.

[124] Dominik Scherer, Andreas Müller et Sven Behnke : Evaluation of pooling operations in convo-
lutional architectures for object recognition. In International conference on artificial neural networks,
pages 92–101. Springer, 2010.

[125] Léonard Seydoux, Randall Balestriero, Piero Poli, Maarten De Hoop, Michel Campillo et
Richard Baraniuk : Clustering earthquake signals and background noises in continuous seismic data
with unsupervised deep learning. Nature communications, 11(1):1–12, 2020.

[126] Ling Shao, Fan Zhu et Xuelong Li : Transfer learning for visual categorization: A survey. IEEE
transactions on neural networks and learning systems, 26(5):1019–1034, 2014.

[127] Connor Shorten et Taghi M Khoshgoftaar : A survey on image data augmentation for deep
learning. Journal of Big Data, 6(1):1–48, 2019.

[128] Laurent Sifre et Stéphane Mallat : Rotation, scaling and deformation invariant scattering for texture
discrimination. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages
1233–1240, 2013.

[129] Laurent Sifre et Stéphane Mallat : Rigid-motion scattering for texture classification.
arXiv:1403.1687, 2014.

[130] Karen Simonyan et Andrew Zisserman : Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

[131] Paul Sinz, Michael W Swift, Xavier Brumwell, Jialin Liu, Kwang Jin Kim, Yue Qi et Matthew
Hirn : Wavelet scattering networks for atomistic systems with extrapolation of material properties.
The Journal of Chemical Physics, 153(8):084109, 2020.

[132] Leslie N Smith et Nicholay Topin : Super-convergence: Very fast training of neural networks using
large learning rates. In Artificial Intelligence and Machine Learning for Multi-Domain Operations
Applications, volume 11006, page 1100612, 2019.

[133] Yang Song, Fan Zhang, Qing Li, Heng Huang, Lauren J O’Donnell et Weidong Cai : Locally-
transferred fisher vectors for texture classification. In Proceedings of the IEEE International Conference
on Computer Vision, pages 4912–4920, 2017.

[134] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever et Ruslan Salakhutdinov
: Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning
research, 15(1):1929–1958, 2014.

[135] Joes Staal, Michael D Abràmoff, Meindert Niemeijer, Max A Viergever et Bram Van Ginne-
ken : Ridge-based vessel segmentation in color images of the retina. IEEE transactions on medical
imaging, 23(4):501–509, 2004.

[136] Jiawei Su, Danilo Vasconcellos Vargas et Kouichi Sakurai : One pixel attack for fooling deep neural
networks. IEEE Transactions on Evolutionary Computation, 23(5):828–841, 2019.

[137] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov,
Dumitru Erhan, Vincent Vanhoucke et Andrew Rabinovich : Going deeper with convolutions. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages 1–9, 2015.

[138] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens et Zbigniew Wojna : Rethin-
king the inception architecture for computer vision. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 2818–2826, 2016.

86

[139] Matej Ulicny, Vladimir A. Krylov et Rozenn Dahyot : Harmonic networks with limited training
samples. In 2019 27th European Signal Processing Conference (EUSIPCO), pages 1–5, 2019.

[140] Stefan Van der Walt, Johannes L Schönberger, Juan Nunez-Iglesias, François Boulogne, Jo-
shua D Warner, Neil Yager, Emmanuelle Gouillart et Tony Yu : scikit-image: image processing
in python. PeerJ, 2:e453, 2014.

[141] Vladimir Vapnik : Principles of risk minimization for learning theory. In Advances in neural informa-
tion processing systems, pages 831–838, 1992.

[142] Linda Wang, Zhong Qiu Lin et Alexander Wong : Covid-net: A tailored deep convolutional neural
network design for detection of covid-19 cases from chest x-ray images. Scientific Reports, 10(1):1–12,
2020.

[143] Guy Wolf, Stéphane Mallat et Shihab Shamma : Audio source separation with time-frequency
velocities. In 2014 IEEE International Workshop on Machine Learning for Signal Processing (MLSP),
pages 1–6. IEEE, 2014.

[144] Guy Wolf, Stephane Mallat et Shihab Shamma : Rigid motion model for audio source separation.
IEEE Transactions on Signal Processing, 64(7):1822–1831, 2015.

[145] Jiasong Wu, Xiang Qiu, Jing Zhang, Fuzhi Wu, Youyong Kong, Guanyu Yang, Lotfi Senhadji et
Huazhong Shu : Fractional wavelet-based generative scattering networks. Frontiers in neurorobotics,
15, 2021.

[146] Christopher J.C. Burges Yann LeCun, Corinna Cortes : Mnist dataset sample. http://yann.lecun.
com/exdb/mnist/, 1999.

[147] Jason Yosinski, Jeff Clune, Yoshua Bengio et Hod Lipson : How transferable are features in deep
neural networks? arXiv preprint arXiv:1411.1792, 2014.

[148] Yuhai Yu, Hongfei Lin, Jiana Meng, Xiaocong Wei, Hai Guo et Zhehuan Zhao : Deep transfer
learning for modality classification of medical images. Information, 8(3):91, 2017.

[149] Sergey Zagoruyko et Nikos Komodakis : Wide residual networks. In Proceedings of the British
Machine Vision Conference (BMVC), 2016.

[150] Michał Zajac, Konrad Zołna, Negar Rostamzadeh et Pedro O Pinheiro : Adversarial framing for
image and video classification. In Proceedings of the AAAI Conference on Artificial Intelligence, pages
10077–10078, 2019.

[151] Amir R Zamir, Alexander Sax, William Shen, Leonidas J Guibas, Jitendra Malik et Silvio Sava-
rese : Taskonomy: Disentangling task transfer learning. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 3712–3722, 2018.

[152] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht et Oriol Vinyals : Understanding
deep learning (still) requires rethinking generalization. Communications of the ACM, 64(3):107–115,
2021.

[153] Richard Zhang, Phillip Isola et Alexei A Efros : Colorful image colorization. In European conference
on computer vision, pages 649–666. Springer, 2016.

[154] Dongmian Zou et Gilad Lerman : Graph convolutional neural networks via scattering. Applied and
Computational Harmonic Analysis, 49(3):1046–1074, 2020.

87

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/

Appendix A

Perceptron Learning Algorithm

The perceptron learning algorithm is described in Algorithm A.1.
Algorithm A.1. Perceptron Learning Algorithm

Inputs: training samples (x0,x1, ...,xN) where all xi ∈ Rn,
the labels associated with the samples (y0, y1, ..., yN) where all yi ∈ {−1,1}
and r the learning rate.
w := 0 ∈ Rn Initialize weight vector with 0
b := 0 Initialize bias with 0
while not converged do:

for i ∈ {1,2,...N} do: for each sample
ŷ ← φ(wTxi) predict
if ŷ 6= yi then: if error

w← w + r(yixi):
return w,b

Appendix B

Dataset Specific Parameterizations

The following figures show the configuration obtained by our minimal bipartite matching
algorithm. Each wavelet titles share a common naming scheme. The first letter of the title
is either F (fixed filters) or O (optimized filters). The next character is always a number and
corresponds to the ID of the match. For all Oixxxxxxx titles, there will be a corresponding
Fixxxxxxxx title. These filters are matched to each other. The next character is always
D (distance). It is superseded by a numerical value, the Morlet wavelet distance between
the filter and its match. The next character is the Gaussian window scale σ, followed by a
number corresponding to the magnitude of the distances between the σ parameters of both
filters. The next character is the aspect ratio γ, followed by a number corresponding to the
magnitude of the distances between the γ parameters of both filters. The next character is
the frequency scale ξ, followed by a number corresponding to the magnitude of the distances
between the ξ parameters of both filters.

B.1. COVIDX-CRX2

Fig. B.1. Filters trained on 1188 samples of COVIDx-CRX2 for 500 epochs, the first, third,
fifth, and seventh rows correspond to filters optimized from a tight-frame, while the second,
fourth, sixth, and eighth rows correspond to tight-frame initialized filters. The filters are
displayed in pairs correspond to the “closest” (by our distance metric defined above) filters
of both types. For instance, the first filter of row one matches the first filter of row 2.

92

Fig. B.2. Filters trained on 1188 samples of COVIDx-CRX2 for 500 epochs, the first, third,
fifth, and seventh rows correspond to filters optimized from a tight-frame, while the second,
fourth, sixth, and eighth rows correspond to tight-frame initialized filters. The filters are
displayed in pairs correspond to the “closest” (by our distance metric defined above) filters
of both types. For instance, the first filter of row one matches the first filter of row 2. The
filters are displayed in increasing order of their distances. The top left corner corresponds
to the filters that changed the least from their initialization, while the filters in the bottom
right corner changed the most.

93

B.2. KTH-TIPS2

Fig. B.3. Filters trained on 1188 samples of KTH-TIPS2 for 500 epochs, the first, third,
fifth, and seventh rows correspond to filters optimized from a tight-frame, while the second,
fourth, sixth, and eighth rows correspond to tight-frame initialized filters. The filters are
displayed in pairs correspond to the “closest” (by our distance metric defined above) filters
of both types. For instance, the first filter of row one matches the first filter of row 2.

94

Fig. B.4. Filters trained on 1188 samples of KTH-TIPS2 for 500 epochs, the first, third,
fifth, and seventh rows correspond to filters optimized from a tight-frame, while the second,
fourth, sixth, and eighth rows correspond to tight-frame initialized filters. The filters are
displayed in pairs correspond to the “closest” (by our distance metric defined above) filters
of both types. For instance, the first filter of row one matches the first filter of row 2. The
filters are displayed in increasing order of their distances. The top left corner corresponds
to the filters that changed the least from their initialization, while the filters in the bottom
right corner changed the most.

95

B.3. CIFAR-10

Fig. B.5. Filters trained on 1190 samples of CIFAR-10 for 500 epochs, the first and third,
rows correspond to filters optimized from a tight-frame, while the second and fourth rows
correspond to tight-frame initialized filters. The filters are displayed in pairs correspond to
the “closest” (by our distance metric defined above) filters of both types. For instance, the
first filter of row one matches the first filter of row 2.

96

	Résumé
	Abstract
	Contents
	List of tables
	List of figures
	List of acronyms and abbreviations
	Acknowledgements
	Introduction
	Contribution
	Outline
	Working Paper
	Funding Acknowledgment

	Chapter 1. Background
	1.1. Single-Layer Perceptron
	1.2. Feed Forward Artificial Neural Networks
	1.3. Underfitting and Overfitting
	1.4. Convolutional Neural Networks
	1.5. Supervised and Unsupervised Learning

	Chapter 2. Limited Labeled Data
	2.1. Data Scarcity
	2.2. Strategies
	2.2.1. Regularization
	2.2.2. Data Augmentation
	2.2.3. Transfer Learning
	2.2.4. Loss Function
	2.2.5. Wavelet Scattering Transform
	2.2.6. Incorporating Prior Knowledge
	2.2.7. Self-Supervised Learning

	Chapter 3. Wavelet Scattering Transform
	3.1. Stability to Deformations
	3.2. Scattering Convolutional Network
	3.3. Morlet Wavelets
	3.4. Analogy to Visual System
	3.5. Properties
	3.6. Texture Discrimination
	3.7. Scattering Variants
	3.8. Scattering Implementations

	Chapter 4. Parametric Scattering Networks
	4.1. Initialization
	4.2. Morlet Wavelet Parameterization
	4.3. Backpropagation through the Parametric Scattering Network
	4.4. Experimental Protocol
	4.5. Exploring Dataset-Specific Parameterizations

	Chapter 5. Experiments
	5.1. Robustness to Deformation
	5.2. Small Data Regime
	5.2.1. CIFAR-10
	5.2.2. COVIDx CRX-2
	5.2.3. KTH-TIPS2
	5.2.4. Cosine Loss
	5.2.5. Number of Filters per Spatial Scale

	5.3. Unsupervised Learning of Scattering Parameters

	Chapter 6. Conclusion and Future Work
	References
	Appendix A. Perceptron Learning Algorithm
	Appendix B. Dataset Specific Parameterizations
	B.1. COVIDX-CRX2
	B.2. KTH-TIPS2
	B.3. CIFAR-10

