

Université de Montréal

Modeling Meiotic Recombination Hotspots using Deep Learning

Par

Emad Takla

Département de Biochimie et Médecine Moléculaire

Faculté de Médecine

Mémoire présenté en vue de l’obtention du grade de M.Sc.

en Bio-Informatique option Recherche - Bio-informatique statistique et apprentissage machine

2021

© Emad Takla, 2021

Université de Montréal

Unité académique: Département de Biochimie et Médecine Moléculaire

Faculté de Médecine

Ce mémoire intitulé

Modeling Meiotic Recombination Hotspots using Deep Learning

Présenté par

Emad Takla

A été évalué(e) par un jury composé des personnes suivantes

Guillaume Dumas
Président-rapporteur

Julie Hussin
Directeur de recherche

Yoshiaki Tanaka
Membre du jury

 i

Résumé

La	 recombinaison	méiotique	 joue	un	 rôle	 essentiel	dans	 la	 ségrégation	des	 chromosomes	

pendant	la	méiose	et	dans	la	création	de	nouvelles	combinaisons	du	matériel	génétique	des	

espèces.	Ses	effets	cause	une	déviation	du	principe	de	l'assortiment	indépendant	de	Mendel;	

cependant,	les	mécanismes	moléculaires	impliqués	restent	partiellement	incompris	jusqu'à	

aujourd'hui.	 Il	 s'agit	 d'un	 processus	 hautement	 régulé	 et	 de	 nombreuses	 protéines	 sont	

impliquées	 dans	 son	 contrôle,	 dirigeant	 la	 recombinaison	 méiotique	 dans	 des	 régions	

génomiques	 de	 1	 à	 2	 kilobases	 appelées	 « hotspots ».	 Au	 cours	 des	 dernières	 années,	

l'apprentissage	 profond	 a	 été	 appliqué	 avec	 succès	 à	 la	 classification	 des	 séquences	

génomiques.	Dans	ce	travail,	nous	appliquons	l'apprentissage	profond	aux	séquences	d'ADN	

humain	 afin	 de	 prédire	 si	 une	 région	 spécifique	 d'ADN	 est	 un	 hotspot	 de	 recombinaison	

méiotique	ou	non.	Nous	avons	appliqué	des	réseaux	de	neurones	convolutifs	sur	un	ensemble	

de	 données	 décrivant	 les	 hotspots	 de	 quatre	 individus	 non-apparentés,	 atteignant	 une	

exactitude	 de	 plus	 de	 88	%	 avec	 une	 précision	 et	 un	 rappel	 supérieur	 à	 90	%	 pour	 les	

meilleurs	modèles.	Nous	explorons	l'impact	de	différentes	tailles	de	séquences	d'entrée,	les	

stratégies	de	séparation	des	jeux	d'entraînement/validation	et	l’utilité	de	montrer	au	modèle	

les	 coordonnées	 génomiques	 de	 la	 séquence	 d'entrée.	 Nous	 avons	 exploré	 différentes	

manières	de	construire	les	motifs	appris	par	le	réseau	et	comment	ils	peuvent	être	liés	aux	

méthodes	classiques	de	construction	de	matrices	position-poids,	et	nous	avons	pu	déduire	

des	connaissances	biologiques	pertinentes	découvertes	par	le	réseau.	Nous	avons	également	

développé	 un	 outil	 pour	 visualiser	 les	 différents	 modèles	 afin	 d'aider	 à	 interpréter	 les	

différents	 aspects	 du	 modèle.	 Dans	 l'ensemble,	 nos	 travaux	 montrent	 la	 capacité	 des	

méthodes	d'apprentissage	profond	à	étudier	la	recombinaison	méiotique	à	partir	de	données	

génomiques.	

Mots-clés : Méiose, recombinaison méiotique, apprentissage profond, PRDM9, extraction des

motifs.

Abstract

Meiotic	recombination	plays	a	critical	role	in	the	proper	segregation	of	chromosomes	during	

meiosis	and	in	forming	new	combinations	of	genetic	material	within	sexually-reproducing	

species.	 For	 a	 long	 time,	 its	 side	 effects	were	 observed	 as	 a	 deviation	 from	 the	Mendel’s	

principle	 of	 independent	 assortment;	 however,	 its	 molecular	 mechanisms	 remain	 only	

partially	understood	until	today.	We	know	that	it	is	a	highly	regulated	process	and	that	many	

molecules	are	involved	in	this	tight	control,	resulting	in	directing	meiotic	recombination	into	

1-2	kilobase	genomic	pairs	regions	called	hotspots.	During	the	past	few	years,	deep	learning	

was	successfully	applied	to	the	classification	of	genomic	sequences.		In	this	work,	we	apply	

deep	learning	to	DNA	sequences	in	order	to	predict	if	a	specific	stretch	of	DNA	is	a	meiotic	

recombination	 hotspot	 or	 not.		 We	applied	convolution	 neural	 networks	 on	 a	 dataset	

describing	 the	hotspots	 of	 four	unrelated	male	individuals,	 achieving	 an	 accuracy	of	 over	

88%	with	precision	and	recall	above	90%	for	the	best	models.	We	explored	the	impact	of	

different	input	sequence	lengths,	train/validation	split	strategies	and	showing	the	model	the	

genomic	 coordinates	 of	 the	 input	 sequence.	We	 explored	 different	ways	to	 construct	 the	

learnt	motifs	by	the	network	and	how	they	can	relate	to	the	classical	methods	of	constructing	

position-weight-matrices,	 and	 we	 were	 able	 to	 infer	 relevant	 biological	 knowledge	

uncovered	by	 the	network.	We	also	developed	a	 tool	 for	visualizing	 the	different	models	

output	in	order	to	help	digest	the	different	aspects	of	the	model.	Overall,	our	work	shows	the	

ability	for	deep	learning	methods	to	study	meiotic	recombination	from	genomic	data.	

Keywords: meiosis, meiotic recombination, deep learning, PRDM9, motif extraction

Acknowledgements

I	am	truly	grateful	for	all	the	people	who	helped	me	reach	this	point	of	master’s	work.	I	thank	

prof	 Julie	Hussin	 for	 the	 liberty	given	to	me	to	explore,	 for	 the	encouragement	 to	put	my	

thoughts	while	 guiding	me	 all	 along,	 and	 for	 the	 patience	 until	 the	 last	moment.	 And	 to	

Raphael	for	all	the	countless	discussions	we	had	about	the	project.	It	was	a	true	privilege	to	

work	with	all	the	MHI-OMICs	team	at	the	Institut	de	Cardiologie	de	Montreal,	discussing	with	

them	frequently	the	project	and	getting	their	feedback.	I	thank	Elaine	for	all	her	countless	

reminders	 and	 helping	 with	 all	 the	 administrative	 aspects.	 I	 am	 thankful	 for	 the	

Dataperformers	team	who	truly	helped	me	to	go	along	this	journey,	offering	to	me	a	lot	of	

flexibility.	Finally,	my	family	and	especially	my	parents	and	my	grandmother.	I	am	sure	that	

this	journey	would	not	have	happened	without	you.	I	love	you!	

Table of Contents

Chapter 1 Introduction 1

1.1 Biology 1

1.1.1 Role of DNA in Life 1

1.1.2 DNA, Proteins and Chromosomes 1

1.1.3 Effect of DSBs on Cell 4

1.1.4 Cell Division 6

1.1.5 Position Weight Matrices 18

1.2 Machine	Learning 20

1.2.1 Reasoning 20

1.2.2 Supervised Task Learning in Artificial Neural Networks 22

1.2.3 Neural Networks 22

1.2.4 Number of Tasks in Supervised Learning 25

1.3 Machine	Learning	in	Genomics 26

1.3.1 ML Success in Biology is Proved on Different Data Sources 26

1.3.2 Architectures 30

1.3.3 Metrics 34

1.3.4 Model Explanation 36

Chapter 2 Research Questions and Hypothesis 37

Chapter 3 Methods 39

3.1 Used	Dataset 39

3.2 Software 39

3.2.1 Dataset Explorer 40

3.2.2 Dataset Builder 41

3.2.3 Model Trainer 43

3.2.4 Models Comparisons 47

3.2.5 Predictions Visualization Tool 47

3.2.6 Motif Extraction 47

3.3 Experiments 48

Chapter 4 Results 50

4.1 Exploratory	Data	Analysis 50

4.2 Hyperparameters	Search 53

4.3 Experiments	Results 53

4.3.1 Overall Results 54

4.3.2 Importance of Test2 Set 66

4.3.3 Extracted Motifs 70

4.4 Model	Predictions	Explorer 81

Chapter 5 Discussion, Conclusion and Future Work 86

5.1 Input	Sequence 86

5.2 Dataset 87

5.3 Input	Features 88

5.4 Motif	Search	and	Interpretability 88

5.5 Deep	Learning	Limitations 89

5.6 Software 91

5.7 Future	Work 92

5.8	Conclusion 93

References 94

	

	
Table of Tables

	
TABLE 1.1 MOST COMMONLY USED ACTIVATION FUNCTIONS IN DEEP LEARNING. 23
TABLE 4.1 EXPERIMENTS	WINNERS	ON	THE	EARLY-STOP	VALIDATION	SET,	AVERAGED	OVER	ALL	

INDIVIDUALS	DATASETS.	THE	INPUT	SEQUENCE	LENGTH	OF	800	NEVER	OUTPERFORMED	THE	

OTHER	TWO,	SHOWING	THAT	THERE	IS	IMPORTANT	INFORMATION	THE	MODEL	LEARNS	FROM	

THAT	ARE	LOCATED	AWAY	FROM	THE	HOTSPOT’S	CENTER 55
TABLE 4.2 EXPERIMENTS	WINNERS	ON	THE	TEST2	SET,	AVERAGED	OVER	ALL	INDIVIDUALS	DATASETS.	

DESPITE	DISAGREEING	SOMETIMES	WITH	THE	EARLY-STOP-VALIDATION	SET,	THEY	BOTH	SHOW	

THAT	THE	800BP	INPUT	SEQUENCE	NEVER	HAD	A	HIGHER	PERFORMANCE	THAN	THE	LONGER	

SEQUENCES 57
TABLE 4.3 EXPERIMENTS SPLITTING-FUNCTIONS WINNERS ON THE EARLY-STOP VALIDATION SET, AVERAGED OVER

ALL INDIVIDUALS DATASETS. 59
TABLE 4.4 EXPERIMENTS SPLITTING-FUNCTIONS WINNERS ON THE TEST2 SET, AVERAGED OVER ALL INDIVIDUALS

DATASETS. 61
TABLE 4.5 EXPERIMENTS WINNERS FOR SHOWING SEQUENCE LOCATION, EVALUATED ON THE EARLY-STOP

VALIDATION SET, AVERAGED OVER ALL INDIVIDUALS’ DATASETS. 63
TABLE 4.6 EXPERIMENTS WINNERS FOR SHOWING SEQUENCE LOCATION, EVALUATED ON TEST2 SET, AVERAGED

OVER ALL INDIVIDUALS DATASETS 65

	
	 	

	
Table of Figures

	
FIGURE	1.1	MEIOSIS	AND	THE	ROLE	OF	DMC1.	(A)	SHOWS	THE	STAGES	OF	MEIOSIS	(MALIK	ET	AL.,	2007)	

(B)	DMC1	COILS	AROUND	SSDS	GUIDING	THE	SEARCH	FOR	HOMOLOGY	(SUNG	&	KLEIN,	2006).	THE	

RED	BOX	AROUND	THE	FIGURE	LINKS	THIS	STEP	TO	FIGURE	A.	(C)	ELECTRON	MICROSCOPY	OF	DMC1	

LOOPS	(SUNG	&	KLEIN,	2006) 8
FIGURE	1.2	MEIOTIC	RECOMBINATION	LEADS	TO	THE	FORMATION	OF	CHIASMA.	(A)	AN	OVERVIEW	OF	

MEIOSIS	(KEENEY	ET	AL.,	2014)	(B)	EARLY	STEPS	OF	MEIOSIS	(KEENEY	ET	AL.,	2014)	(C)	AN	

ELECTRON	MICROSCOPY	IMAGE	OF	A	TETRAD	AND	AN	OVERLAYED	RENDERING	OF	THE	BIVALENTS	

(SUNG	&	KLEIN,	2006) 11
FIGURE	1.3	PRDM9	MOTIFS	AND	HOW	IT	WORKS	(A)	PRDM9	MYERS	SEQUENCE	(MYERS	ET	AL.,	2010,	P.	9)	AS	

A	LOGO	PLOT	FROM	THE	POSITION	WEIGHT	MATRIX	(PWM)	(B)	ZNF	SEQUENCE	(IN	AMINO	ACIDS	

SHOWN	AT	THE	BOTTOM)	AND	ITS	EXPECTED	MOTIF	DERIVED	FROM	THE	AMINO	ACID	A.A.	SEQUENCE	

SHOWN	AT	THE	BOTTOM	,	IDENTICAL	ZNF	SHARE	THE	SAME	COLOR	(MYERS	ET	AL.,	2010,	P.	9)	(C)	

PRDM9	BINDS	TO	THE	MOTIF,	AND	RECRUITS	SPO11	(REPRESENTED	AS	THE	SCISSORS)	TO	NICK	THE	

DNA	AND	PRODUCE	THE	DOUBLE	STRAND	BREAK	(BRICK	ET	AL.,	2012) 17
FIGURE 1.4 PWM PROBABILITY EXAMPLE 20
FIGURE	1.5	PWM	INFORMATION	CONTENT 20
FIGURE	3.1 THE	STRATEGY	FOR	TRAINING	ON	WHOLE	CONTIGUOUS	SECTIONS	OF	CHROMOSOMES.	IN	

EACH	FOLD,	THE	SAME	REGION	IS	KEPT	CONSTANT	ACROSS	ALL	CHROMOSOMES.	NOTE	THAT	THESE	

BOUNDARIES	ARE	JUST	FOR	ILLUSTRATION,	IN	REALITY	SINCE	THE	SPLIT	IS	DONE	BY	AN	EQUAL	

AMOUNT	OF	EXAMPLES,	THE	MIDDLE	SECTION	IS	MUCH	LARGER 44
FIGURE	3.2 THE	STRATEGY	FOR	TRAINING	ON	WHOLE	CONTIGUOUS	SECTIONS	OF	CHROMOSOMES,	WHILE	

ALTERNATING	THESE	REGIONS	FROM	ONE	CHROMOSOME	TO	THE	NEXT.	NOTE	THAT	THESE	

BOUNDARIES	ARE	JUST	FOR	ILLUSTRATION,	IN	REALITY	SINCE	THE	SPLIT	IS	DONE	BY	AN	EQUAL	

AMOUNT	OF	EXAMPLES,	THE	MIDDLE	SECTION	IS	MUCH	LARGER 45
FIGURE	3.3	THE	FINAL	MODEL	ARCHITECTURE	CONSISTS	OF	A	MAIN	INPUT	THAT	REPRESENTS	THE	ONE-

HOT-ENCODED	DNA	SEQUENCE	AND	ITS	REVERSE	COMPLEMENT.	BOTH	REPRESENTATIONS	ARE	

SCANNED	THROUGH	THE	SAME	CONVOLUTION	LAYER	AND	THEIR	RESPECTIVE	ACTIVATION	MAPS	

ARE	ADDED	TOGETHER.	AN	OPTIONAL	SECOND	INPUT	THAT	REPRESENTS	THE	SEQUENCE’S	INPUT	

IS	TURNED	ON	ONLY	FOR	THE	SUBSET	OF	EXPERIMENTS	WHERE	WE	EVALUATE	THE	ADVANTAGE	

OF	SHOWING	THE	MODEL	THIS	FEATURE.	IN	THAT	CASE,	THIS	INPUT	IS	CONCATENATED	TO	THAT	

OF	THE	CONVOLUTION	FILTERS,	AND	THEN	THEY	PROCEED	TO	THE	FULLY	CONNECTED	LAYERS.	A	

FINAL	LAYER	WITH	A	SIGMOID	ACTIVATION	FUNCTION	OUTPUTS	THE	CLASSIFICATION	OF	THE	

EXAMPLE. 49

FIGURE	4.1 CORRELATION	HEATMAP	BETWEEN	DIFFERENT	INDIVIDUALS	IN	THE	DATASET.	WE	CAN	SEE	

THAT	HETEROZYGOUS	INDIVIDUAL	AC	(ROW/COLUMN	AC_HOTSPOTS	IN	THE	FIGURE)	IS	SLIGHTLY	

NEGATIVELY	CORRELATED	WITH	THE	REST	OF	THE	INDIVIDUALS.	ALLELE-C	DEPENDENT	HOTSPOTS	

(C_HOTSPOTS	ENTRY	IN	THE	HEATMAP)	ARE	HIGHLY	NEGATIVELY	CORRELATED	WITH	THE	REST	OF	

THE	NON	AC	ENTRIES.	NOTE	THAT	WE	DISCARDED	AB2	INDIVIDUALS	DUE	TO	ITS	OUTLIER	NUMBER	

OF	HOTSPOTS 51
FIGURE	4.2	NUMBER	OF	HOTSPOTS	PER	INDIVIDUAL.	NOTE	THE	LOW	COUNT	FOR	INDIVIDUAL	AB2. 52
FIGURE	4.3		BOXPLOTS	OF	HOTSPOT	LENGTHS	PER	CHROMOSOME.	SOME	OUTLIERS	WITH	HOTSPOT	

LENGTHS	REACHING	OVER	20KBPS	EXIST.	CHROMOSOME	X	HAS	THE	HIGHEST	NUMBER	OF	

OUTLIERS. 52
FIGURE	4.4		CUMULATIVE	DISTRIBUTION	OF	HOTSPOT	LENGTHS.	THE	99TH	PERCENTILE	IS	EQUAL	3537.9	

BASEPAIRS 53
FIGURE	4.5	MODELS	BY	INPUT	SEQUENCE	LENGTH	PERFORMANCE	ON	EARLY-STOP	VALIDATION	SET.	THE	

WINNER	PLOTS	(LEFT	COLUMN)	REPRESENT	THE	COUNT	OF	THE	INSTANCES	WHEN	A	SPECIFIC	

INPUT	SEQUENCE	LENGTH	OUTPERFORMED	THE	OTHER	TWO	WHEN	THEY	HAD	THE	SAME	OTHER	

TWO	PARAMETERS.	EACH	BOXPLOT	REPRESENTS	THE	PERFORMANCE	OF	A	SET	OF	MODELS	WITH	A	

SPECIFIC	INPUT	LENGTH 56
FIGURE	4.6		RESULTS	ON	TEST2	(NON-EARLY-STOP)	VALIDATION	SET.	LIKE	IN	4.5,	THE	LEFT	COLUMN	

REPRESENTS	THE	COUNT	OF	THE	INSTANCES	WHEN	A	SPECIFIC	INPUT	SEQUENCE	LENGTH	

OUTPERFORMED	THE	OTHER	TWO	WHEN	THEY	HAD	THE	SAME	OTHER	TWO	PARAMETERS.	EACH	

BOXPLOT	REPRESENTS	THE	PERFORMANCE	OF	A	SET	OF	MODELS	WITH	A	SPECIFIC	INPUT	LENGTH.	

NOTE	THAT	FOR	THE	LOSS	PLOTS,	LOWER	IS	BETTER	BUT	IN	THE	REMAINING	ONES,	HIGHER	IS	

BETTER. 58
FIGURE	4.7	RESULTS	ON	EARLY-STOP	VALIDATION	SET.	FOR	FIGURE	CLARITY,	THE	FUNCTIONS	WERE	

RENAMED	AS	FOLLOWS:	FUNCTION	1	IS	THE	“PARTIAL	CHROM	CONTIG”	IN	THE	TABLE,	FUNCTION	2	IS	

“PARTIAL	CHROM	CONTIG	ALTERNATE”,	FUNCTION	3	IS	“PARTIAL	CHROM	SHUFFLED”	AND	FUNCTION	4	

IS	“WHOLE	GENOME	SHUFFLED	K	FOLD” 60
FIGURE	4.8		RESULTS	ON	HOLDOUT	(NON-EARLY-STOP)	VALIDATION	SET 62
FIGURE	4.9	RESULTS	ON	EARLY-STOP	VALIDATION	SET 64
FIGURE	4.10		RESULTS	ON	HOLDOUT	(NON-EARLY-STOP)	VALIDATION	SET 66
FIGURE	4.11		AA1	DATASET,	VALIDATION	FOLD	PERFORMANCE	OF	DIFFERENT	SPLITTING	FUNCTION 68
FIGURE	4.12		AA1	DATASET,	TEST2	FOLD	PERFORMANCE	OF	DIFFERENT	SPLITTING	FUNCTION 69
FIGURE	4.13	:	FULL	MYER	MOTIF	(PRM9A	ALLELE)	LEARNED	BY	THE	MODEL	OVER	THE	DATA	COMING	

FROM	THE	AA1	INDIVIDUAL 72
FIGURE	4.14	PARTIAL	MYER	MOTIF	(PRM9_A	ALLELE)	LEARNED	BY	THE	MODEL	OVER	THE	DATA	COMING	

FROM	THE	AA1	INDIVIDUAL 73

FIGURE	4.15	REVERSE	COMPLEMENT	FULL	MYER	MOTIF	(PRM9_A	ALLELE)	LEARNED	BY	THE	MODEL	

OVER	THE	DATA	COMING	FROM	THE	AA1	INDIVIDUAL 74
FIGURE	4.16		REVERSE	COMPLEMENT	PARTIAL	MYER	MOTIF	(PRM9_A	ALLELE)	LEARNED	BY	THE	MODEL	

OVER	THE	DATA	COMING	FROM	THE	AA1	INDIVIDUAL 75
FIGURE	4.17		C	AND	G	DETECTOR	LEARNED	BY	THE	MODEL	OVER	THE	AA1	INDIVIDUAL 77
FIGURE	4.18		ANOTHER	C	AND	G	DETECTOR	LEARNED	BY	THE	MODEL	OVER	THE	AA1	INDIVIDUAL 78
FIGURE	4.19		NUMBER	OF	HOTSPOTS	PER	INDIVIDUAL.	NOTE	THE	LOW	COUNT	FOR	INDIVIDUAL	AB2. 79
FIGURE	4.20		NUMBER	OF	HOTSPOTS	PER	INDIVIDUAL.	NOTE	THE	LOW	COUNT	FOR	INDIVIDUAL	AB2. 80
FIGURE	4.21	SCREENSHOT	OF	THE	MODEL’S	PREDICTIONS	EXPLORATION	TOOL. 81
FIGURE	4.22		THE	UI	IS	SPLIT	INTO	5	REGIONS.	REGION	1	CONTAINS	THE	CONTROLS	TO	SELECT	WHICH	

MODEL	TO	DISPLAY,	REGION	2	DISPLAY	THE	RESULTS,	REGION	3	ALLOWS	ZOOMING	TO	SPECIFIC	

REGIONS	ON	THE	CHROMOSOME,	REGION	4	CONTAINS	THE	PERFORMANCE	METRICS	ACROSS	THE	

WHOLE	DATASET	AND	ON	THAT	SPECIFIC	CHROMOSOME	AND	REGION	5	CONTAINS	AN	

INTERACTIVE	LEGEND	TO	TURN	ON	AND	OFF	THE	DISPLAY	OF	CERTAIN	EXAMPLES 83
FIGURE	4.23			DETAILS	OF	PANE	2.	REGION	A	CONTAINS	THE	X-AXIS	TICKS,	WHICH	ARE	THE	GENOMIC	

LOCATION.	REGIONS	B	AND	C	CONTAIN	THE	BAR	PLOTS	OF	THE	ERROR	AND	CORRECTNESS	OF	THE	

PREDICTION	RESPECTIVELY,	AND	THESE	BAR	PLOTS	ARE	COLOR	ENCODED	ACCORDING	TO	THE	

TRUE	LABEL	OF	THE	EXAMPLE.	REGION	D	CONTAINS	THE	GROUND	TRUTH	OF	THE	EXAMPLE.	

REGION	E	COLOR	ENCODES	THE	CONFUSION	MATRIX	CATEGORY	OF	THE	EXAMPLE. 84
FIGURE	4.24	PREVIEW	OF	CHROMOSOME	1	ON	AA1	DATASET	ACROSS	ALL	USED	SEQUENCE	LENGTHS.	WE	

CAN	NOTICE	INSIDE	THE	BOLD	RED	BOX	THAT	AS	THE	SEQUENCE	LENGTH	INCREASES,	ERRORS	

INSIDE	THIS	REGION	DECREASE	AND	THESE	ERRORS	DISAPPEAR	AT	SEQUENCE	LENGTH	3500. 85
FIGURE 5.1 GERIHOS	ET	AL.	PERFORMED	A	STYLE	TRANSFER	OF	AN	IMAGE	CONTAINING	AN	ELEPHANT’S	

SKIN	(IMAGE	A)	TO	AN	IMAGE	CONTAINING	A	CAT	(IMAGE	B).	THE	RESULT	IS	IMAGE	C.	BELOW	EACH	

IMAGE,	THERE	ARE	THE	TOP	PREDICTIONS	OF	THE	NEURAL	NETWORK	TO	THIS	IMAGE 89
FIGURE 5.2 EARLY	EXPERIMENTS	OF	USING	MC	DROPOUTS	FOR	ESTIMATING	MODEL	UNCERTAINTY.	THE	

LEFT	COLUMN	CONTAINS	A	HISTOGRAM	OF	THE	MODEL’S	PREDICTIONS	WHILE	THE	RIGHT	

CONTAINS	THE	AVERAGE	PREDICTION	OF	100	PREDICTIONS	WITH	DROPOUTS	LEFT	ACTIVE	(MC	

DROPOUT).	THE	FIRST	ROW	CONTAINS	ALL	PREDICTIONS,	THE	SECOND	ROW	CONTAINS	THE	

PREDICTION	OF	THE	POSITIVE	MEIOTIC	RECOMBINATION	HOTSPOTS	EXAMPLES	AND	BOTTOM	ROW	

CONTAINS	THE	PREDICTIONS	OF	THE	NEGATIVE	EXAMPLES. 91

	

List	of	Abbreviations	
	
	

.bed Browser Extensible Data file

.tsv Tab separated value file

A Adenine

AI Artificial Intelligence

bp, bps, kbps Basepair, basepairs, kilo basepairs

C Cytosine

ChIP, ChIP-seq Chromatin immunoprecipitation, Chromatin immunoprecipitation
sequencing

CNN Convolution neural network

DMC1 DNA meiotic recombinase 1

DNA Deoxyribonucleic acid

DSB Double Strand Breaks

G Guanine

GRU Gated Recurrent Unit

LD Linkage Disequilibrium

LSTM Long Short-Term Memory

LTR Long Terminal Repeat

ML Machine Learning

NDR Nucleosome Depleted Region

PRDM9 PR domain zinc finger protein 9

PWM Position Weight Matrix

RNN Recurrent Neural Network

SNV Single-nucleotide variant

ssDNA Single stranded Deoxyribonucleic acid

SSDS Single stranded Deoxyribonucleic acid sequencing

SVM Support Vector Machines

T Thymine

ZnF Zinc Finger

1

	
	

Chapter 1 Introduction

Meiotic	 recombination	 is	one	of	nature’s	 tricks	 to	generate	genetic	diversity	and	ensures	

proper	segregation	of	chromosomes	in	sexually	reproducing	organisms.	It	was	observed	as	

a	deviation	of	Mendelian	genetics,	but	its	underlying	processes	remained	elusive	until	higher	

resolution	 methods	 working	 directly	 with	 DNA	 sequences	 became	 available.	 Directly	

working	with	DNA	sequences	has	been	traditionally	studied	using	string	patterns	matching	

algorithms.	However,	in	recent	years,	applying	deep	learning	to	DNA	sequences	gave	similar	

results	to	the	pure	algorithmic	approach,	opening	new	doors	to	study	these	problems	from	

a	new	angle.	

1.1	 Biology	

1.1.1 Role of DNA in Life

Biology	is	the	study	of	life.	Defining	what	is	life	and	what	is	a	living	being	may	seem	like	a	

trivial	question	at	a	first	glance.	However,	detailing	a	complete	definition	for	what	is	life	is	a	

hard	 task.	The	National	Aeronautics	 and	Space	Administration	 (NASA),	 for	 its	mission	 to	

explore	extraterrestrial	existence	of	 life,	has	defined	 life	 to	be	 “a	 self-sustaining	chemical	

system	capable	of	Darwinian	evolution”	(NASA	Astrobiology,	n.d.).	This	Darwinian	evolution	

mentioned	 in	 the	definition	explains	 that	 organisms	adapt	 through	 selection	of	 inherited	

genetic	 variation	 to	 increase	 its	 ability	 to	 survive	 and	 reproduce.	 Large	 sized	 biological	

molecules	(macromolecules)	called	nucleic	acids	are	the	storage	medium	of	genetic	material	

and	thus	play	a	central	role	in	this	Darwinian	evolution.	In	many	organisms,	the	nucleic	acid	

carrying	this	genetic	information	is	the	deoxyribonucleic	acid	(DNA).	

1.1.2 DNA, Proteins and Chromosomes

Polymers	 are	 long	 chains	of	macromolecules.	DNA	 is	 a	polymer,	made	of	building	blocks	

called	nucleotides.	The	main	4	nucleotides	(also	referred	to	as	“bases”	and	“base-pairs”	(bp))	

2

are	adenine	(A),	guanine	(G),	cytosine	(C)	and	thymine	(T)	(Base	Pair,	n.d.).	These	bases	rest	

on	a	sugar-phosphate	(De	Bont	&	van	Larebeke,	2004)	hate	backbone	to	form	a	single-strand	

of	DNA	(ssDNA).	A	ssDNA	pairs	with	another	strand	made	of	the	complement	sequence	to	

form	 the	 double	 stranded	 DNA	 helix	 (Watson	 &	 Crick,	 1953).	Base	 pairing	 happens	 as	

follows,	Adenine	pairs	with	Thymine	and	Cytosine	pairs	with	Guanine.	The	DNA	backbone	is	

a	fragile	structure	prone	to	damage.	Backbone	damage	can	happen	for	many	reasons.	For	

example,	environmental	reasons	include	ionizing	radiation	(Reisz	et	al.,	2014)	and	viruses	

(Weitzman	&	Fradet-Turcotte,	2018),	and	endogenous	factors	like	hydrolysis	(De	Bont	&	van	

Larebeke,	2004).	In	another	example,	UV	energy	can	cause	two	adjacent	base-pairs	to	bond	

covalently,	forming	a	dimer.	This	dimer	distorts	the	double	helix	structure	leading	to	DSBs	

(Douki	et	al.,	2003).	Such	a	breakage	can	affect	only	one	strand	of	the	double	helix	(single	

strand	break)	or	it	can	affect	both	strands	(Double-Strand	Breaks,	or	DSB).	

The	4	bases	of	DNA	can	exist	under	different	chemical	conditions.	For	example,	cytosine	and	

adenine	can	get	methylated	(Bird,	2002)	(a	methyl	group	gets	attached	to	the	DNA	base).	

DNA	base	methylation	plays	an	important	role	in	the	functioning	of	DNA,	as	well	as	being	a	

source	of	mutation	in	the	sequence.	One	pathway	of	such	mutation	is	that	5-methyl-cytosine	

undergoes	spontaneous	deamination,	which	converts	it	to	thymine.	Unmethylated	cytosine	

deamination	creates	a	uracil,	which	is	a	foreign	base	for	DNA	and	therefore	corrected	and	no	

mutation	happens	(Lander	et	al.,	2001).	

If	the	distribution	of	the	4	nucleotides	was	totally	random,	we	would	model	their	distribution	

as	 a	 uniform	distribution.	 For	 example,	we	would	 expect	 each	 base	 pair	 to	 be	 represent	

roughly	25%	of	any	sequence	with	sufficient	length	(sample	size).	We	would	also	expect	that	

two	 consecutive	 base	 pairs	 to	 have	 the	 same	 nucleotides	 6.25%	 of	 the	 time.	 Sequence	

homology	is	when	DNA	sequences	share	an	evolutionary	source.	We	can	identify	them	by	a	

high	 similarity	 of	 their	 sequence	 that	 cannot	 happen	 due	 to	 chance	 alone.	 Sequence	

homology	can	happen	in	many	ways,	including	speciation	(orthologs),	duplication	(paralogs)	

or	gene	transfer	(xenologs).	

The	genetic	 information	is	organized	into	different	regions,	and	each	region	has	a	certain	

functional	role	and	work	with	each	other	to	accomplish	the	vital	operations.	For	example,	

3

there	are	regions	encoding	for	end	products	(usually	a	protein)	called	genes.	Other	functional	

parts	of	the	genome	control	the	genes,	like	promoters	and	enhancers	regions.	Other	genomic	

regions	of	interest	are	regions	where	the	statistical	distribution	of	base	pairs	is	not	uniform.	

For	example,	there	are	regions	unusually	rich	in	C-G	pairs	called	CpG	islands	(Lander	et	al.,	

2001),	and	we	usually	find	these	near	promoter	regions	(Saxonov	et	al.,	2006).	Some	DNA	

regions	 exhibit	 high	mutability	 and	mobility.	 For	 example,	 regions	with	 repeated	motifs	

called	long	tandem	repeats	(LTR)	have	a	high	mutation	rate.	Depending	on	the	length	of	the	

LTR,	 they	 can	 sometimes	 be	 referred	 to	 as	 microsatellite	 and	 minisatellite	 DNA.	 Other	

interesting	 genomic	 region	 are	 regions	 that	 can	 migrate	 on	 the	 genome	 called	

retrotransposons.	 These	 retrotransposons	 contain	 repeats	 as	well	 and	 are	 classified	 into	

families.	One	example	being	the	low-repeat-family	THE1	(Smit,	1993).	

1.1.2.1	Proteins	and	Protein-DNA	Interaction	

Another	important	family	of	macromolecules	for	life	are	proteins.	Proteins	are	a	sequence	of	

amino	acids	(a.a.)	chained	together,	forming	a	polymer.	Such	polymers	take	a	3-dimensional	

conformation,	and	such	structures	dictate	the	function	of	the	protein	(Janin	&	Wodak,	1983).	

The	overall	structure	has	different	stable	parts,	called	domains	(Janin	&	Wodak,	1983).	Zinc	

fingers	 (ZnF)	 (Klug	 &	 Rhodes,	 1987)	 are	 one	 important	 protein	 domain.	 Intramolecular	

forces	between	a	ZnF	and	a	stretch	of	DNA	can	attract	and	attach	a	ZnF	to	a	specific	sequence	

of	DNA,	making	 them	an	 important	 tool	 to	 recognize	DNA	 regions	by	 cellular	machinery	

(Klug,	2010).	The	more	matching	a	DNA	sequence	to	the	ZnF,	the	higher	the	binding	affinity	

(Klug,	2010).	We	can	use	such	a	relationship	to	predict	binding	affinity	of	a	DNA	sequence	to	

a	ZnF	by	knowing	the	exact	order	of	amino-acids	in	the	ZnF	array	(Luscombe	et	al.,	2001).	

Proteins	 that	 recognize	 specific	 regions	 of	 DNA	 play	 an	 important	 role	 in	 regulating	 the	

functioning	of	DNA.	One	example	is	transcription	factors,	which	are	proteins	that	regulate	

the	activity	of	genes.	But	protein	recognition	of	a	stretch	of	DNA	is	not	the	only	way	for	a	

protein	to	interact	with	a	DNA.	There	are	non-specific	DNA-protein	interactions	where	the	

protein	interacts	with	the	DNA	regardless	of	its	sequence.	Such	non-specific	interactions	play	

an	important	role	in	keeping	DNA	in	order.	One	such	DNA-protein	union	is	the	chromosome,	

where	histones,	 a	protein	 complex,	 group	 together	 to	 form	a	basic	DNA	packaging	called	

nucleosome	and	bind	to	the	DNA	(Luger	et	al.,	1997).	This	regulates	DNA’s	3-dimensional	

4

structure	and	its	spatial	position	inside	the	nucleus.	Some	organisms	have	the	total	of	their	

genetic	 information	packaged	 in	only	one	chromosome	(Crosland	&	Crozier,	1986),	while	

others	have	theirs	stored	on	multiple	separate	chromosomes.	

1.1.2.2	Ploidy	

In	sexually	reproducing	organisms,	each	chromosome	has	multiple	copies	coming	from	the	

parents.	Ploidy	 is	 the	number	of	 copies	of	 each	chromosome	 (Otto,	2007).	Humans	are	a	

diploid	organism,	and	therefore	in	most	cells	these	chromosomes	are	in	pairs	(46	in	total).	

The	only	exception	cell	where	there	is	only	one	copy	of	the	23	chromosomes	are	the	sex	cells	

(ovules	in	female	humans	and	sperms	in	male	humans).	Aneuploidy	is	the	abnormal	count	

of	chromosomes	in	cells	(Otto,	2007).	It	is	important	to	establish	the	nomenclature	in	the	

right	context.	Sister	chromatids	are	copies	of	the	same	base	chromosome	and	are	attached	

through	their	centromeres.	Sister	chromosomes	are	the	homologous	chromosomes.	Tetrads	

are	 sister	 chromatids	 attached	 to	 their	 homologous	 chromosome,	 and	 a	 bivalent	 is	 a	

chromosome	within	a	tetrad.	

1.1.3 Effect of DSBs on Cell

As	 explained	 above,	 the	 DNA	 backbone	 can	 break	 leading	 to	 DSBs.	 DSBs	 can	 lead	 to	

detrimental	results	for	the	organism.	For	example,	the	loose	part	of	the	chromosome	can	get	

erroneously	 fused	 on	 a	 different	 chromosome	 (translocation).	 One	 known	 translocation	

from	chromosome	9	to	chromosome	22	causes	over	one	form	of	leukemia	in	humans	(Kang	

et	 al.,	 2016).	 Therefore,	 cells	 have	developed	multiple	 lines	 of	 defense	 to	 fix	DSBs.	 Some	

examples	 of	 such	 DSB	 mending	 mechanisms	 are	 non-homologous	 end	 joining	 and	

homologous	recombination	(Sung	&	Klein,	2006).	The	homologous	recombination	process,	

in	principle,	happens	when	two	identical	or	nearly	identical	stretches	of	DNA	are	attracted	

to	each	other	and	exchange	genetic	information.	In	fixing	a	DSB,	homologous	recombination	

depends	 on	 using	 the	 homologous	 chromosome	 (and	 sometimes	 the	 sister	 chromatid)	

(Shrivastav	 et	 al.,	 2008)	 as	 a	 template	 to	 fix	 the	 DSB	 on	 the	 affected	 chromosome.	

Homologous	recombination	is	a	definition	of	a	general	process,	but	the	process	details	can	

take	multiple	paths	to	fix	the	DSB.	Examples	of	these	paths	include	single-strand	annealing	

5

(SSA),	break-induced	replication	(BIR)	and	gene	conversion	(with	or	without	crossover).	A	

break-induced	replication	process	involves	important	processes	(Sung	&	Klein,	2006).	

When	a	breakage	happens,	the	first	step	of	repair	is	that	the	5’	DNA	stretch	at	the	breaking	

gets	degraded,	 leaving	a	 stretch	of	3’	DNA	exposed.	Multiple	proteins	get	 involved	 in	 the	

process	 after.	 For	 example,	 a	 process	 called	 strand-invasion	 involves	 Rad51	 (and	 DMC1	

during	meiosis	as	well,	(Figure	1.1	b	and	c))	proteins	recruited	over	the	single-stranded	DNA.	

These	 proteins	 guide	 the	 ssDNA	 towards	 another	 stretch	 of	 a	 nearly	 identical	 double-

stranded	DNA	sequence.	Searching	for	homology	is	usually	very	efficient,	and	some	work	has	

shown	that	matching	the	sequence	can	happen	within	30	minutes	(Hicks	et	al.,	2011).	Once	

the	stretch	of	ssDNA	is	in	the	vicinity	of	the	nearly	identical	homolog,	it	gets	inserted	into	

this	homologous	region,	pairing	with	the	strand	containing	the	complementary	sequence.	

The	 other	 strand	 of	 the	 homologous	 sequence	 forms	 a	 displacement	 loop	 (D-loop).	

Endonuclease	proteins	finally	resolve	a	Holliday	junction.	This	resolution	can	happen	in	two	

different	ways.	 In	 one	way,	 non-crossover	 resolution	would	 give	 back	 each	 strand	 to	 its	

original	pairing	one.	The	other	resolution	would	cause	a	switch	between	the	strands	leading	

to	what	is	called	a	crossover.	Crossovers	result	in	the	exchange	of	stretches	of	DNA	between	

the	two	chromosomes,	leading	to	a	shuffle	of	the	genetic	information.	

1.1.3.1	Chromosome	accessibility	

The	 nucleosome	 is	 the	 starting	 point	 to	 bend	 the	 DNA	 double	 helix	 into	 an	 organized	

structure	 called	 chromatin.	 Nucleosomes	 are	 not	 evenly	 distributed	 throughout	 the	

chromosomes,	 with	 regions	 having	 no	 nucleosomes	 called	 nucleosome-depleted-regions	

(NDR)	(Lee	et	al.,	2004).	Because	nucleosomes	help	package	the	DNA	into	a	more	compact	

form,	NDR	regions	are	more	accessible	 to	cellular	machinery.	NDR	is	not	 the	only	way	to	

make	a	stretch	of	DNA	more	accessible	to	the	cellular	machinery.	Nucleosome	rich	regions	

can	become	more	open	as	well:	 this	histone	protein-complex	can	be	chemically	modified	

during	its	lifetime,	and	such	histone	modifications	will	change	the	chromatin	structure,	in	a	

process	called	“chromatin	remodeling”.	One	example	of	such	modifications,	referred	to	as	

H3K4me3,	triggers	a	chromatin	remodeling,	allowing	access	to	the	stretch	of	DNA	by	other	

cellular	mechanisms.	

6

1.1.3.2	Studying	Protein-DNA	Interaction:	CHiP-SEQ	

For	 the	 importance	 of	 the	 role	 protein-DNA	 interaction	 plays	 in	 genetics,	 studying	 such	

interaction	such	as	DNA	sequence	binding	affinity	to	a	certain	protein	became	important.	An	

approach	called	chromatin	immunoprecipitation	(ChIP)	proved	to	be	very	useful.	We	first	

create	a	solution	containing	fragmented	DNA	and	the	protein.	Then,	we	add	antibodies	(Y-

shaped	proteins	with	high	binding	capabilities	to	other	proteins)	with	high	binding	affinity	

to	 the	 protein	 of	 interest	 to	 the	 solution.	 Then	 the	 protein-antigen	 is	 precipitated	 in	 the	

solution.	The	precipitated	content	will	have	the	DNA	sequences	bound	to	the	protein,	and	

therefore	this	precipitation	 is	 filtered	 for	 its	DNA	content.	Finally,	 this	DNA	is	sequenced.	

ChIP-seq	is	a	method	where	massive	parallel	sequencing	is	used	to	sequence	ChIP	results	

(Johnson	 et	 al.,	 2007;	Whole-Genome	 Chromatin	 IP	 Sequencing	 (ChIP-Seq),	 n.d.)	 and	 this	

method	 has	 become	 the	 main	 approach	 to	 study	 DNA-protein	 interaction.	 Histone	

modifications,	such	as	H3K4me3,	can	also	be	studied	using	ChIP-seq.	

1.1.4 Cell Division

Over	the	life	span	of	an	organism,	its	cells	will	go	through	different	stages	(Cell	Division,	n.d.).	

Most	of	the	time,	they	are	in	a	state	called	interphase.	At	this	stage,	a	cell	would	grow,	and	

among	other	things,	it	would	copy	each	chromosome.	There	may	be	some	confusion	in	the	

nomenclatures	when	 a	 chromosome	has	 replicas	 in	 a	 cell,	 since	we	 have	 two	 equivalent	

homologous	chromosomes	and	each	of	these	has	an	exact	copy.	So,	a	human	cell	ready	for	

division	has	92	chromosomes,	of	which	there	are	the	expected	46	sister	chromosomes,	each	

having	its	own	sister	chromatid.	

After	interphase,	the	cell	will	undergo	cell	division,	a	process	by	which	they	give	rise	to	new	

daughter	 cells.	 It	 gives	 rise	 to	new	cells	 that	would	have	 their	genetic	 code	based	on	 the	

parent	 cell’s	 one.	 In	 eukaryotes,	 this	 process	 can	 happen	 in	 either	 two	ways:	mitosis	 or	

meiosis,	 each	 having	 a	 difference	 in	 purpose	 and	 the	 number	 of	 chromosomes	 in	 the	

resulting	daughter	cell.	In	mitosis,	the	purpose	is	to	create	two	identical	cells	to	the	parent	

cell,	 while	 in	meiosis	 the	 purpose	 is	 to	 create	 daughter	 cells	 with	 a	 reduced	 number	 of	

chromosomes	 (and	hence	 the	name	meiosis,	 from	Greek,	means	 reducing).	They	both	go	

through	 essentially	 the	 same	 steps.	 These	 steps	 are	 prophase,	 metaphase,	 anaphase,	

7

telophase	 and,	 finally,	 cytokinesis.	 At	 prophase,	 the	 chromosomes,	 which	 are	 already	

duplicated	 into	 two	 sister	 chromatids,	 condense	 and	microtubules	 become	 visible.	 Also,	

homologous	 chromosomes	 must	 pair	 up	 in	 the	 case	 of	 meiosis.	 At	 metaphase,	 the	

homologous	 chromosomes	 line	 up	 at	 the	 center	 of	 the	 nucleus,	 with	 each	 one	 facing	 an	

opposite	pole	of	 the	cell.	At	anaphase,	 the	spindles	pull	away	each	daughter’s	cell	genetic	

material.	 In	mitosis,	 the	spindles	 separate	 the	chromatids,	while	 in	meiosis,	 they	pull	 the	

homologous	chromosomes	towards	the	poles	of	the	cell.	At	telophase,	two	new	nuclei	form	

around	each	set	of	chromosomes	at	the	pole.	Finally,	cytokinesis	is	when	the	cytoplasm	splits	

into	two	cells,	each	having	one	nucleus	formed	at	telophase.	In	meiosis	(Figure	1.1	a),	these	

steps	happen	two	times	in	succession,	and	therefore	are	numbered.	So	in	meiosis,	the	cell	

division	steps	are:	prophase	I,	metaphase	I,	anaphase	I,	telophase	I,	cytokinesis	I,	prophase	

II,	metaphase	II,	anaphase	II,	telophase	II	and	finally	cytokinesis	II.	Prophase	I	stage	itself	is	

divided	into	five	stages:	leptotene,	zygotene,	pachytene,	diplotene	and	diakinesis.	

8

Figure	1.1	Meiosis	and	the	role	of	DMC1.	(a)	Shows	the	stages	of	meiosis	(Malik	et	al.,	2007)	(b)	

DMC1	coils	around	SSDS	guiding	the	search	for	homology	(Sung	&	Klein,	2006).	The	red	box	

around	the	figure	links	this	step	to	figure	a.	(c)	Electron	microscopy	of	DMC1	loops	(Sung	&	

Klein,	2006)	

1.1.4.1	Meiosis	Details	

Prophase	I	is	an	important	stage	in	meiosis.	During	that	stage,	homologous	chromosomes	

come	closer	to	each	other	in	a	process	called	synapse,	and	a	synaptonemal	complex	forms	

between	 them.	 This	 complex	 holds	 both	 of	 the	 homologous	 chromosomes	 to	 become	 a	

bivalent.	

At	leptotene,	the	replicated	chromosomes	condense	into	thin	threads	(leptotene	means	thin	

threads	in	Greek)	and	these	threads	coil	up	form	loops.	These	loops	are	the	beginning	of	the	

9

formation	of	the	synaptonemal	complex,	an	important	protein	structure	that	facilitates	the	

adhesion	 of	 both	 sister	 chromosomes	 (synapsis).	 During	 meiosis,	 double-strand	 breaks	

happen.	 Of	 course,	 the	 usual	 DNA	 damage	 causes	 can	 be	 one	 reason	 for	 it.	 However,	 a	

different	type	of	highly	regulated	DSB	formation	happens	as	well.	Such	a	control	is	important	

because	DSBs	 in	principle	cause	damage	to	the	DNA,	and	may	cause	shuffling	of	 the	DNA	

information.	 Therefore,	 it	 is	 imperative	 that	 they	 do	 not	 occur	 at	 random,	 but	 in	

predetermined	safe	regions.	When	these	pre-programmed	DSBs	are	 initiated,	 the	cellular	

machineries	 responsible	 for	 fixing	 DSBs	 intervene.	 Few	 DSBs	 are	 resolved	 through	

homologous	recombination,	a	process	called	meiotic	recombination.	For	the	DSBs	that	will	

be	fixed	through	recombination,	during	leptotene,	the	process	is	started	all	the	way	to	the	

strand	invasion	point.	

Next,	at	zygotene,	the	tetrad	becomes	much	more	tightly	linked	by	the	full	formation	of	the	

synapsis	process.	In	male	meiosis,	the	sex	chromosomes	(chromosomes	X	and	Y)	play	the	

role	of	homology	for	each	other,	partially	pairing	at	a	homologous	region	called	the	pseudo-

autosomal	region	(PAR).	Another	sex-specific	difference	is	that	the	number	of	recombination	

events	is	higher	in	female	meiosis	than	in	male	ones.	After,	at	pachytene,	the	chromosomal	

crossover	continues	by	linking	up	the	chromosomes	through	the	Holliday	junction.	Holliday	

junctions,	in	the	context	of	meiotic	recombination,	are	called	chiasma	(plural	is	chiasmata).	

Since	not	all	DSBs	are	resolved	using	homologous	recombination,	therefore	not	all	DSBs	will	

create	 a	 chiasma.	 These	 chiasmata	 hold	 tight	 both	 homologous	 chromosomes	 together	

during	meiosis	I.	

In	 the	 diplotene	 stage,	 the	 synaptonemal	 complex	 disintegrates,	 and	 the	 chromosomes	

would	separate	from	each	other	again.	However,	chiasmata	formed	during	the	DSB	repair	

process	is	still	holding	them	together.	These	chiasmata	should	remain	until	anaphase	I.	

After	diplotene,	the	diakinesis	phase	starts,	and	this	is	where	the	nucleus	disappears	and	the	

meiotic	spindles	form.	

In	anaphase	I,	the	spindles	would	pull	sister	chromosomes	away	from	each	other.	But	for	this	

to	happen	correctly,	each	sister	chromosome’s	centromeres	should	face	an	opposite	pole	of	

the	cell.	

10

Such	precise	opposite	orientation	 is	only	guaranteed	by	 the	mechanical	 rigid	attachment	

between	 both	 sister	 chromosomes	 through	 the	 chiasmata.	 Improper	 orientation	 is	

detrimental	 for	 proper	 segregation	 of	 the	 chromosomes,	 and	 disoriented	 chromosomes	

would	suffer	from	a	first	division	nondisjunction,	leading	to	a	trisomy	in	the	daughter	cells	

(and	a	constantly	defective	segregation	causes	infertility,	explained	below).	And	this	shows	

one	of	the	important	roles	of	meiotic	recombination,	 it	creates	the	chiasmata,	and	proper	

segregation	needs	at	least	one	chiasma	per	tetrad.	The	other	important	role	of	chiasmata	is	

their	role	as	a	major	source	of	genetic	diversity	in	the	offspring.	The	resolution	of	Holliday	

junctions	 can	 be	 a	 crossover,	 which	 exchanges	 the	 material	 between	 homologous	

chromosomes,	giving	rise	to	a	new	hybrid	chromosome.	

During	the	last	phase	of	meiosis,	cytoplasmic	division	is	distinct	between	males	and	females.	

In	males,	the	division	is	more	or	less	equal,	resulting	in	four	spermatids	of	similar	size.	In	

females,	this	division	is	highly	asymmetric,	resulting	in	one	cell	having	most	of	the	cytoplasm	

and	is	viable	for	reproduction.	The	three	remaining	daughter	cells	become	a	polar	body	and	

are	removed.	Another	noteworthy	sex-specific	difference	is	that	in	females,	the	oocytes	form	

at	the	embryo	stage.	But	they	get	arrested	at	the	point	of	chiasmata	formation	at	prophase	I	

until	further	development	is	triggered	through	hormones	when	it	is	the	time	to	release	the	

egg.	

11

Figure	1.2	Meiotic	recombination	leads	to	the	formation	of	chiasma.	(a)	An	overview	of	meiosis	

(Keeney	et	al.,	2014)	(b)	Early	steps	of	meiosis	(Keeney	et	al.,	2014)	(c)	An	electron	microscopy	

image	of	a	tetrad	and	an	overlayed	rendering	of	the	bivalents	(Sung	&	Klein,	2006)	

1.1.4.2	Meiotic	DSB	Formation	and	Regulation	

1.1.4.2.1 How we study DSB Hotspots

Meiotic	recombination	was	well	inferred	for	a	long	time:	according	to	Mendelian	heredity,	

the	principle	of	independent	assortment	meant	we	should	expect	traits	mixing	to	be	roughly	

equal.	However,	it	was	observed	that	certain	traits	were	almost	always	inherited	together.	

Further	 studies	 showed	 that	 these	 genetically	 linked	 traits	 are	 in	 proximal	DNA	 regions,	

leading	to	the	development	of	the	theory	of	linkage	disequilibrium	(LD).	We	can	study	LD	

through	pedigrees	using	genetically	related	individuals,	and	the	genetic	maps	built	using	LD	

can	identify	recombination	hotspots	with	a	coarse	resolution	of	a	few	kbps.	There	are	other	

12

methods	 that	 can	 yield	 similar	 results	 as	 well,	 like	 admixture-based	 genetic	 maps.	 An	

interesting	 fact	 is	 that	 the	 results	 of	 recombination	 hotspots	 are	 not	 consistent	 between	

these	methods	because	of	their	different	sensitivities.	For	example,	pedigree	methods	results	

are	more	sensitive	to	selection,	and	they	represent	currently	active	hotspots.	

Studying	LD	has	shown	that	LD	locations	persist	for	temporal	time	only	then	they	change	

locations.	The	reason	behind	this	remained	unclear	until	finer	resolution	methods	became	

available.	Finer	resolution	methods	rely	on	directly	working	on	sequences	of	gamete	cells	

from	individuals.	Many	of	these	methods	are	ChIP-seq	based,	working	by	using	laboratory	

assays	targeting	the	proteins	involved	in	the	process	of	recombination.	Direct	ChIP-seq	usage	

is	more	a	more	challenging	process	for	a	variety	of	reasons	including	the	low	frequency	of	

recombination	events	and	high	heterogeneity	of	 the	 sex	cells	 (Khil	 et	al.,	2012).	 So	other	

approaches	tailored	for	DSB	detection	were	developed	as	well,	one	called	Single	Stranded	

DNA	Sequencing	(SSDS).	In	SSDS,	an	extra	step	is	added	to	the	ChIP-seq	process.	This	step	

takes	advantage	of	molecular	properties	of	ssDNA	(hairpin	formation)	to	remove	most	of	the	

double-stranded	 DNA	 from	 the	 analysis,	 leaving	 mostly	 ssDNA	 for	 the	 sequencing.	 The	

results	are	higher	sensitivity	and	specificity	to	the	identification	of	DSB	locations.	

There	is	another	method	called	sperm-genotyping	can	also	be	used	to	study	DSBs,	however	

it	does	not	scale	to	genome-wide	analysis	(Khil	et	al.,	2012).	

In	practice,	such	direct	methods	only	study	sperm	cells.	This	is	due	to	the	relative	ease	of	

obtaining	a	large	sample	of	cells,	and	also	that	female	oocyte	has	already	passed	through	the	

initial	phases	of	recombination	(as	they	are	arrested	at	prophase	I).	On	the	other	hand,	one	

important	counter-advantage	of	pedigree	and	admixture	methods	is	that	they	work	on	data	

coming	from	both	male	and	female	individuals.	

1.1.4.2.2 Mechanics of Meiotic Hotspots

All	 the	 aforementioned	 methods	 helped	 explain	 the	 distribution	 of	 programmed	

recombination	hotspots.	It	is	now	understood	that	DSBs	are	concentrated	in	clusters	of	1-2	

kbps	 (kilo-base-pairs)	 regions	 called	 recombination	 hotspots.	 These	 hotspots	 are	 much	

more	abundant	in	telomeric	regions	and	become	scarcer	as	they	get	closer	to	the	centromere.	

13

Studies	show	that	there	are	well	over	30,000	recombination	hotspots	in	the	human	genome	

(~34k	Myers	et	al.,	2007	and	~39k	Pratto	et	al.,	2014).	It	is	worth	noting	that	despite	the	

presence	 of	 a	 large	 number	 of	 DSBs	 hotspots,	 only	 a	 few	 do	 actually	 sustain	 an	 actual	

crossover	during	meiosis.	As	explained,	a	tetrad	needs	at	least	one	for	proper	segregation,	

but	having	too	many	DSBs	is	linked	to	cellular	problems.	The	average	number	of	chiasmata	

per	chromosome	is	estimated	to	be	1.56	(Beye	et	al.,	2006).	Other	alternatives	for	DSB	repair	

in	meiosis	can	happen	through	sister-chromatid	exchange	(SCE)	as	well,	and	this	mechanism	

becomes	useful	for	DSBs	at	highly	polymorphic	regions	(Goldfarb	&	Lichten,	2010),	where	

homologous	 regions	 between	 sister	 chromosomes	 are	 not	 nearly	 identical.	 One	 study	

estimated	that	up	to	one	third	of	meiotic	DSBs	end	up	getting	fixed	using	SCE	in	budding	

yeast	(Goldfarb	&	Lichten,	2010).	

Recombination	hotspots	in	general	have	on	average	about	100kbps	(Arnheim	et	al.,	2003)	in	

between,	but	of	course	since	hotspots	are	not	uniformly	distributed	across	a	chromosome,	

they	may	be	separated	by	a	shorter	distance	towards	the	telomere.	Hotspots	are	negatively	

correlated	with	regions	rich	in	genes,	however	they	also	tend	to	be	not	too	distant	from	a	

gene,	they	just	happen	rarely	within	a	coding	region	(CDS)	(Myers	et	al.,	2005).	

1.1.4.2.3 Molecular Processes Driving Meiotic Hotspots

Early	research	on	DNA	sequences	at	these	hotspots	showed	the	repeated	presence	of	a	5-

9mer	 short	 motifs	 (CCTCCCT	 and	 CCCCACCCC)	 that	 was	 overrepresented	 in	 THE1A/B	

retrotransposons	present	at	meiotic	hotspots	(Myers	et	al.,	2005).	A	later	study	by	the	same	

authors	using	phase	2	HapMap	have	revealed	13bp	DNA	motif	that	was	thought	to	be	present	

in	40%	of	the	hotspots,	called	the	Myer	motif	(Myers	et	al.,	2008)	(5′-NCCNCCNTNNCCNCN-

3′).	 It	 also	showed	 that	 the	motif	 is	 strongly	present	at	disease	causing	 locations	such	as	

nonallelic	homologous	recombination	and	common	mitochondrial	deletion	locations	(Myers	

et	al.,	2008).	Higher	resolution	methods	later	have	shown	that	70%	of	hotspots	centers	lie	

with	250	bps	from	that	motif.	This	motif	was	later	shown	to	bind	to	a	protein	called	PRDM9	

(Pratto	 et	 al.,	 2014).	 PRDM9	 motif	 is	 not	 the	 only	 DNA	 sequence	 marker	 related	 to	

recombination	 hotspots.	 There	 are	 other	motifs	 that	 are	 known	 to	 repulse	 nucleosomes	

(Anderson	&	Widom,	2001)	and	therefore	are	more	abundant	in	NDRs	that	are	present	as	

14

well.	One	such	sequence	is	the	consecutive	repeats	of	A	bp	(poly-A)	(Heissl	et	al.,	2019)	and	

in	another	study	showed	that	the	repeats	of	poly-pyrimidine	and	poly-purine	to	be	present	

in	human	and	yeast	hotspots	(Bagshaw	et	al.,	2006).	

1.1.4.2.3.1 PRDM9

PRDM9	 is	 a	 protein	 only	 expressed	 in	 germ	 cells	 entering	 prophase	 I	 (Diagouraga	 et	 al.,	

2018).	The	protein	is	active	across	many	species	(but	not	all),	such	as	in	humans,	great	apes	

and	rats.	Multiple	domains	make	up	the	PRDM9	protein,	two	of	which	are	a	ZnF	and	a	PR/SET	

(Thibault-Sennett	et	al.,	2018).	The	PRDM9	gene	contains	a	minisatellite	at	the	region	coding	

for	the	ZnF,	leading	to	a	high	mutation	rate	(on	an	evolutionary	scale)	at	this	location	(Úbeda	

&	Wilkins,	2011).	Studies	have	showed	that	the	ZnF	multi-domain	in	the	PRDM9	can	form	a	

long-lived	complex	with	its	bound	DNA	region.	PRDM9	proteins	do	not	work	in	single	units,	

rather	they	form	a	polymer	chain	with	other	PRDM9	proteins	and	they	work	as	a	long	unit	

(Baker	et	al.,	2015,	p.	9).	

When	the	PRDM9’s	ZnFs	amino-acid	sequence	was	analyzed,	 it	was	expected	to	bind	to	a	

slightly	different	DNA	sequence	than	the	one	inferred	by	the	DNA	sequence	analysis	of	the	

hotspots	(Baudat	et	al.,	2010).	Further	structural	studies	of	PRDM9	protein	have	shown	it	

has	a	binding	plasticity,	meaning	 that	 it	 can	bind	 to	mismatched	sequences,	albeit	with	a	

reduced	binding	affinity	(Patel	et	al.,	2016).		But	it	is	important	to	note	that	mutations	in	the	

motif	 can	 affect	 the	 binding	 affinity	 at	 different	 levels,	 with	 substitutions	 at	 the	 most	

important	bps	 in	 the	motif	 completely	disrupting	 the	activity	of	 its	hotspots	 (Patel	 et	 al.,	

2016).	

Such	binding	plasticity	may	be	one	explanation	for	why	not	all	hotspots	contain	the	motif	

and	why	there	is	a	mismatch	between	the	Myer	motif	and	the	expected	canonical	motif.	On	

the	other	hand,	studies	done	using	sperm	typing	show	a	complete	lack	of	the	motif	at	certain	

hotspots	(Berg	et	al.,	2010).		Also,	in	mice	(thought	to	share	a	similar	meiotic	recombination	

like	the	one	in	humans),	𝑃𝑅𝐷𝑀9!"# 	allele	activates	multiple	hotspots	that	do	not	share	an	

exact	consensus	motif,	 suggesting	a	hidden	complex	mechanism	 for	DNA-PRDM9	binding	

(Billings	et	al.,	2013).	Other	proofs	for	non-PRDM9	motif	hotspot	activity	exist.	For	example,	

it	was	shown	that	the	PRDM9	motif	exists	outside	of	hotspots,	proving	that	the	presence	of	

15

the	motif	alone	 is	not	 the	reason	 for	activity	of	 the	hotspot	and	 that	 there	must	be	other	

factors	 involved	 such	 as	 chromatin	 environment	 (Brick	 et	 al.,	 2012).	 Another	 extremely	

importance	 proof	 is	 a	 fertile	 human	 female	 with	 a	 mutation	 in	 her	 PRDM9	 causing	 the	

protein	to	cause	its	ZnF.	A	small	fraction	of	crossovers	in	that	individual	happened	at	PRDM9	

dependent	hotspots,	and	the	remaining	happened	outside	(Narasimhan	et	al.,	2016).	

The	 role	 of	 methylation	 has	 some	 contradictory	 evidence.	 One	 study	 showed	 that	 DNA	

methylation	plays	a	coarse	role	in	determining	hotspot	regions.	It	found	a	high	correlation	

when	the	calculations	used	large	bins	(500	kbp	bins)	but	with	a	low	correlation	at	smaller	

windows	(J.	Zeng	&	Yi,	2014).	In	another	study,	it	was	shown	in	vitro	that	methylation	in	CpG	

islands	reduced	PRDM9’s	binding	affinity	to	its	motif	(Diagouraga	et	al.,	2018).	

Another	chromosomal	feature	with	high	correlation	to	DSBs	is	NDRs	(Pan	et	al.,	2011)	(Baker	

et	al.,	2014).	They	are	known	for	having	high	DNA	accessibility,	and	DNA	accessibility	seems	

to	 be	 a	 pattern	 for	 hotspots.	 Even	 regions	 with	 nucleosomes	 show	 signs	 of	 chromatin	

modification	that	increase	accessibility.	The	PR/SET	component	of	the	PRDM9	protein	can	

induce	 histone-modifications,	 especially	 an	H3K4me3	methylation	 (Hayashi	 et	 al.,	 2005),	

causing	a	more	accessible	DNA	to	the	cellular	machinery.	But	the	exact	role	of	the	H3K4me3	

is	not	completely	understood.	These	marks	asymmetrically	flank	from	both	directions	many	

of	the	meiotic	recombination	hotspots	regardless	of	the	PRDM9	motif	orientation,	leading	to	

the	belief	 that	 they	 are	 an	 important	meiotic	 recombination	marker	 (Baker	 et	 al.,	 2014).	

H3K4me3	is	not	the	only	methylation	that	is	found	at	hotspots,	but	also	H3K36me3	are	also	

found	in	hotspots	despite	being	mutually	exclusive	with	H3K4	modifications	elsewhere	in	

the	genome.	In	vitro	experiments	showed	PRDM9	can	put	H3K36me3	marks,	albeit	at	a	much	

slower	rate	than	making	H3K4	marks	(Powers	et	al.,	2016).	Other	potential	factors	include	

the	chromosome	size.	Although	the	number	of	recombination	events	seems	to	be	very	close	

across	 chromosomes	 of	 different	 sizes,	 smaller	 chromosomes	 have	 a	 higher	 density	 of	

hotspots.	One	exception	to	this	rule	is	chromosome	19	(Myers	et	al.,	2005),	where	it	has	a	

lower	density	 for	hotspots.	Chromosome	19	 is	very	rich	 in	genes,	which	 is	an	 interesting	

exception	since	hotspots	happen	near	genes.	Another	exception	is	chromosome	X,	which	has	

higher	than	expected	hotspots.	

16

1.1.4.2.4 PRDM9 Evolution Across Species

The	process	of	recombination	causes	the	destruction	of	the	sequence	at	the	recombination	

site.	There	are	multiple	reasons	for	this,	including	gene	conversion,	that	happens	when	the	

cleaved	site	 is	 fixed	using	 the	sequence	 from	the	homologous	chromosome	that	does	not	

contain	the	exact	same	motif.	Another	reason	is	that	naked	ssDNA	(before	it	gets	repaired)	

is	more	susceptible	 to	mutation	because	of	deamination.	This	process	of	motif	 erosion	 is	

observed	 when	 comparing	 ortholog	 sequences	 of	 hotspot	 regions	 in	 human	 and	

chimpanzees	(Myers	et	al.,	2010,	p.	9).	

Such	destruction	of	motifs	is	referred	to	as	the	“hotspot	paradox”.	The	paradox	here	is	that	

since	PRDM9’s	activity	depletes	the	motif	it	needs	to	work,	it	should	at	some	point	run	out	of	

target	regions	and	therefore	the	hotspot	activity	should	have	been	very	low.	Yet,	the	activity	

is	still	high,	which	means	that	the	PRDM9	constantly	finds	new	regions	to	work	on.	The	Red	

Queen	theory	of	recombination	hotspots	(Úbeda	&	Wilkins,	2011)	explained	this	paradox,	

that	as	the	genome	gets	depleted	from	the	correct	motif,	the	PRDM9	evolves	in	parallel	to	

recognize	new	motifs.	Such	evolution	migrates	the	hotspots	to	new	regions,	and	that	also	

explains	the	non-constant	LD	identified	hotspots	through	pedigrees.	Such	fast	evolution	can	

be	also	explained	that	the	ZnF	coding	region	has	a	highly	mutating	minisatellite,	helping	to	

keep	pace	with	the	sequence	erosion.	

Such	a	high	rate	of	mutation	has	a	cost,	though:	PRDM9	is	accepted	to	be	a	speciation	gene	

(Mihola	 et	 al.,	 2009).	 It	 can	 cause	 hybrid	 sterility	 (or	 partial	 sterility)	 in	 offspring	 of	

individuals	with	evolutionary	distant	enough	PRDM9	ZnF.	In	fact,	this	process	was	inferred	

long	before	understanding	PRDM9,	to	which	it	was	referred	to	Hst1	(Hybrid	sterility	gene	1)	

locus	(Forejt	&	Iványi,	1974).	The	reason	for	this	sterility	is	that	in	a	hybrid’s	gamete,	each	

PRDM9	allele	finds	plenty	of	non-eroded	sequences	in	the	non-self-chromosome.	This	results	

in	asymmetric	hotspot	distribution	between	homologous	chromosomes,	which	may	delay	

the	resolution	of	all	these	DSBs	and	therefore	the	cell	gets	discarded	(Mihola	et	al.,	2009).	

Another	 study	 (Davies	 et	 al.,	 2016)	 showed	 this	 PRDM9	 difference	 and	 hybrid	 sterility	

relationship.	In	an	experiment	where	a	hybrid	rat	(M6	and	PWD)	that	is	known	to	be	a	sterile	

hybrid	had	 its	ZnF	sequence	modified	 to	 that	of	 the	human’s	𝑃𝑅𝐷𝑀9$ 	 allele.	The	human	

17

PRDM9	 is	 distant	 enough	 to	 have	 its	 target	 motif	 equally	 present	 in	 both	 homologous	

chromosomes,	and	this	solved	the	sterility	problem.	The	exact	reasons	for	repair	delays	are	

not	understood,	but	one	study	hypothesized	that	both	homologous	chromosomes	should	be	

targeted	in	order	to	facilitate	homology	search	(Davies	et	al.,	2016).	

1.1.4.2.5 PRDM9 Alleles in Humans

The	human	PRDM9	gene	has	many	variations,	with	 the	A,	B	and	C	alleles	being	 the	most	

frequent	(Pratto	et	al.,	2014).	The	allele	PRDM9A	is	most	frequent	in	European	populations	

and	the	C	allele	in	African	populations.	Alleles’	A	and	B	ZnF	recognize	very	similar	motifs,	

and	 therefore	 their	 hotspots	 intersect.	 The	 C	 allele	 codes	 for	 a	 very	 different	motif	 and	

therefore	its	hotspots	occur	at	different	places	(Pratto	et	al.,	2014).	

These	 different	 alleles	 not	 only	 recognize	 a	 different	motif	 but	 also,	 they	 have	 different	

binding	affinity	to	these	motifs.	For	example,	𝑃𝑅𝐷𝑀9! 	has	a	higher	affinity	for	its	motif	than	

𝑃𝑅𝐷𝑀9%’s	affinity	for	its	own	motif.	This	in	parts	can	explain	why	the	𝑃𝑅𝐷𝑀9! 	is	dominant	

over	𝑃𝑅𝐷𝑀9%	in	heterozygote	individuals	(Baudat	et	al.,	2010).	

Figure	1.3	PRDM9	motifs	and	how	it	works	(a)	PRDM9	Myers	sequence	(Myers	et	al.,	2010,	p.	
9)	as	a	logo	plot	from	the	Position	Weight	Matrix	(PWM)	(b)	ZnF	sequence	(in	amino	acids	

18

shown	at	the	bottom)	and	its	expected	motif	derived	from	the	amino	acid	a.a.	Sequence	shown	
at	the	bottom	,	identical	ZnF	share	the	same	color	(Myers	et	al.,	2010,	p.	9)	(c)	PRDM9	binds	to	
the	motif,	and	recruits	SPO11	(represented	as	the	scissors)	to	nick	the	DNA	and	produce	the	
double	strand	break	(Brick	et	al.,	2012)	

1.1.4.2.6 Overview of the remaining PRDM9 mechanism of meiotic DSB creation

PRDM9,	as	explained,	recognizes	the	region	where	a	hotspot	would	happen,	and	it	would	

bind	 there	 and	 induce	 the	 histone	modifications.	 The	 PRDM9,	 potentially	 along	with	 the	

presence	of	the	H3K4	histone	modification	as	well	interaction	with	other	proteins	such	as	

SPP1	and	Rec8,	then	recruits	a	protein	complex	responsible	for	breaking	the	DNA	backbone.	

This	protein	is	the	DNA	topoisomerase	VI	complex,	part	of	which	a	protein	complex	made	of	

spo11	and	top6B	proteins	acts	as	an	endonuclease	that	breaks	the	DNA	itself.	SPO11	will	

nick	 the	 DNA	 backbone,	 causing	 the	 DSB	 to	 happen.	 The	 5’	 ends	will	 get	 trimmed,	 then	

afterwards,	DMC1	and	RAD51	proteins	will	coil	up	around	these	sites.	DMC1	is	active	only	

during	meiosis.	These	two	proteins	handle	the	search	for	homology,	and	once	they	bind	the	

DNA,	the	process	of	recombination	continues	till	the	end,	as	described	earlier.	Since	DMC1	

binds	to	ssDNA	at	DSB	sites,	it	is	a	good	proxy	for	studying	the	hotspot	sites	on	a	genome.	

1.1.5 Position Weight Matrices

As	discussed	in	the	previous	section,	DNA	motifs	play	a	highly	important	role	and	extracting	

them	 involves	performing	a	sequence	of	operations.	When	we	have	many	of	 these	highly	

similar	sequences,	we	can	use	alignment	algorithms	to	derive	a	consensus	sequence,	which	

is	a	sequence	 that	maximizes	 the	similarity	with	all	 the	other	sequences.	Another	way	 to	

represent	such	highly	similar	sequences	is	a	matrix	called	position	weight	matrix	(PWM,	also	

referred	to	as	a	position-specific	weight	matrix	(PSWM)	or	position-specific	scoring	matrix	

(PSSM)).	PWM	has	one	row	per	nucleotide,	and	one	column	per	position.	To	compute	the	

PWM,	 we	 start	 by	 calculating	 the	 position	 frequency	 matrix	 (PFM),	 by	 counting	 the	

occurrences	of	each	bp	at	each	position.	Next,	we	use	the	PFM	to	compute	the	probabilities	

per	bp	per	position.	Assuming	independence	between	the	value	at	each	position,	we	get	

𝑝&,(=
𝑐𝑜𝑢𝑛𝑡-𝑏𝑝&,(/
∑ 𝑏)*|)|
)*, 𝑝&,)

	

19

where	 i	 is	 the	position	 in	 the	 sequence	 (the	 column),	 j	 is	 the	bp	 (the	 row)	and	 |k|	 is	 the	

number	of	possible	values	(4	in	the	case	of	DNA).	The	problem	with	such	a	model	is	that	if	a	

bp	was	never	seen	in	any	of	the	sequences,	it	will	have	a	probability	of	zero,	which	should	

not	be	correct.	To	correct	this	problem	(which	is	likely	to	happen	if	we	have	a	small	number	

of	motifs),	we	use	pseudo	counts	

𝑝&,(=
𝑐𝑜𝑢𝑛𝑡-𝑏𝑝&,(/ + 𝜆
∑ 𝑏)*|)|
)*, 𝑝&,) + |𝑘|𝜆

	

The	 values	 are	 usually	 represented	 as	 the	 log-likelihood	 of	 seeing	 a	 specific	 bp	 at	 this	

position.	 To	do	 this,	we	use	 a	 background	model.	 The	 simplest	 background	model	 is	 the	

uniform	distribution	(that	all	bps	are	equally	likely	to	appear	at	that	position).	However,	it	is	

better	to	use	a	more	informed	background	model	that	considers	the	gc	content.	We	compute	

the	 logarithm	of	 the	PFM	by	 the	background	value	 to	get	 the	 log-likelihood,	which	 is	 the	

PWM.	

𝑝&,(= log- 5
𝑝&,(
𝑏(
6	

The	problem	of	such	a	representation	is	that	all	positions	are	weighed	with	respect	to	the	

probabilities,	 which	 must	 sum	 to	 one.	 However,	 converting	 the	 representation	 to	 the	

Shannon	information	carried	by	each	position	yields	a	more	intuitive	result,	as	it	attenuates	

the	values	 as	 they	get	 closer	 to	 the	background	model.	We	 can	 compute	 the	 information	

carried	at	a	specific	position	in	the	sequence	as	

𝐼& = 8 𝑝&,(

(*|)|

(*,

log- 5
𝑝&,(
𝑏(
6	

which	is	the	Kullback-Leibler	divergence.	

Graphically,	we	can	represent	these	by	drawing	the	letter	with	a	proportional	height	to	the	

value.	An	example	of	such	a	representation	is	in	figures	1.4	and	1.5	where	they	depict	the	

logos	of	a	probability	and	information	matrices	respectively.	

20

Figure 1.4 PWM Probability Example	

Figure	1.5	PWM	Information	content	

We	 can	 see	 that	 as	 the	 position	 yields	 little	 information	with	 respect	 to	 the	 background	

model,	the	position	is	plotted	with	a	lower	height.	

1.2	 Machine	Learning	

1.2.1 Reasoning

Humanity	has	examined	reasoning	and	logic	since	antiquity.	Logic	is	the	process	of	coming	

up	with	conclusions	based	on	a	set	of	premises.	Formal	logic	has	defined	multiple	approaches	

for	reasoning,	including	deductive	reasoning,	inductive	reasoning,	and	abductive	reasoning	

(Mill,	2011).	

Deductive	 reasoning	 aims	 to	 draw	 conclusions	 in	 a	 top-down	 fashion,	 i.e.,	 from	 the	

generalization	to	the	specific.	A	conclusion	from	a	deductive	process	is	necessarily	true	if	the	

premises	are	also	true.	For	example,	in	the	syllogism,	“All	men	are	mortal.	Socrates	is	a	man.	

Therefore,	 Socrates	 is	 mortal”	 (Mill,	 2011),	 the	 conclusion	 that	 Socrates	 is	 mortal	 is	

necessarily	true	if	the	premises	are	also	true.	

21

Inductive	 reasoning	 takes	 a	 bottom-up	 approach	 going	 from	 specifics	 to	 generalization.	

Conclusions	 from	 inductive	 processes	 are	 uncertain,	 but	 probable.	 We	 must	 update	 the	

conclusions	 coming	 from	 inductions	 if	 a	 new	 body	 of	 evidence	 comes	 up.	 Statistical	

generalizations	(drawing	a	conclusion	about	a	population	based	on	a	sample)	are	a	form	of	

inductive	reasoning.	Inductive	reasoning	does	not	explain	observations,	rather,	 it	stops	at	

stating	what	is	probable,	and	not	the	cause.	

Abductive	 reasoning,	 in	 its	 modern	 usage,	 refers	 to	 “inference	 to	 the	 best	 explanation”	

(Douven,	2021).	 In	 this	approach,	we	reach	conclusions	because	there	are	no	hypotheses	

that	 offer	 a	 better	 explanation.	 An	 important	 distinction	 from	 the	 previous	 forms	 is	 that	

abduction	 is	 used	 to	 going	 backwards	 in	 reasoning,	 to	 explain	 causes	 based	 on	 effects.	

Abductive	 reasoning	 has	 strong	 links	 to	 Bayesian	 statistics.	 Inductive	 and	 abductive	

reasoning	can	be	referred	to	as	non-necessary	reasoning.	

1.2.1.1	Computational	Reasoning	

After	the	invention	of	computers	and	as	they	became	an	important	part	of	the	human	process	

of	decision	making,	the	field	of	artificial	intelligence	(AI)	has	developed	to	mimic	formal	logic.	

Computational	 logic,	 for	 example,	 is	 the	branch	of	AI	 that	 studies	deductive	 reasoning	 in	

computers	(Robinson,	1971).	

1.2.1.2	Approaches	to	Computational	Non-Necessary	Reasoning	

Computers	 have	 shined	 at	 non-necessary	 reasoning	 as	 well.	 Non-necessary	 inference	 is	

statistical	in	nature,	as	explained	above.	It	is	seen	to	be	tightly	linked	to	learning.	Examples	

are	machine	 learning	 (ML)	and	statistical	 learning.	One	definition	 for	ML	has	 linked	 it	 to	

learning	from	experience	gained	through	seeing	data.	It	states	that	“A	computer	program	is	

said	 to	 learn	 from	 experience	 E	with	 respect	 to	 some	 class	 of	 tasks	 T	 and	 performance	

measure	P,	if	its	performance	at	tasks	in	T,	as	measured	by	P,	improves	with	experience	E”	

(Mitchell,	1997).	

Statistical	learning	is	broadly	defined	as	learning	a	generalization	from	examples	(data	or	

dataset).	Leo	Breiman	defined	(Breiman,	2001)	two	approaches	of	statistical	learning,	based	

on	the	assumptions	of	the	processes	that	have	generated	the	dataset.	In	the	first	approach,	

22

the	 assumption	 is	 that	 such	 processes	 are	 model	 based,	 and	 therefore	 we	 would	 fit	 a	

statistical	model	to	make	inferences.	

The	second	approach	is	algorithmic.	It	does	not	make	any	assumptions	about	the	statistical	

distributions	 of	 the	 processes	 that	 generated	 the	 dataset.	 Rather,	 they	 are	 treated	 as	

unknown.	We	can	infer	that	this	second	approach	is	ML,	as	he	states	ML	algorithms	such	as	

random	forests.	Other	examples	of	ML	algorithms	are	support-vector-machines	(SVM)	and	

artificial	 neural	 networks.	 These	 algorithms	 can	 learn	 in	 a	 variety	 of	 settings,	 such	 as	

supervised	learning	and	unsupervised	learning.	

Breiman	continues	that	the	second	approach	is	result	oriented.	For	example,	the	goodness	

of	the	model	is	decided	based	on	the	prediction	accuracy.	However,	it	may	fall	short	in	terms	

of	mathematical	rigour	that	proves	the	validity	of	the	models.	

1.2.2 Supervised Task Learning in Artificial Neural Networks

The	goal	of	supervised	machine	learning	is	to	generalize	the	patterns	within	the	input	data–

the	 features,	 in	 order	 to	 predict	 an	 outcome	 (commonly	 called	 the	 target	 variable,	 or	

objective).	Artificial	neural	networks	are	one	 form	of	machine	 learning	and	are	 the	main	

approach	we	 are	 considering	 in	 this	 work.	 They	 are	made	 of	 successive	 layers	 of	 affine	

transformations,	followed	by	a	non-linearity	function.	When	the	number	of	layers	is	greater	

than	two,	these	artificial	neural	networks	are	designated	as	“deep”,	and	hence	the	term	deep	

learning.	Neural	networks	are	used	to	model	very	complex	models,	and	analytical	solutions	

are	not	practically	feasible.	Therefore,	they	are	trained	incrementally	by	minimizing	a	loss	

function	that	describes	how	far	is	the	network’s	output	from	the	desired	one,	and	in	which	

direction	to	change	weights	(the	gradient)	to	come	closer	to	the	desired	outcome	using	the	

backpropagation	algorithms	(Bengio	et	al.,	2013).		

1.2.3 Neural Networks

The	goal	of	supervised	machine	learning	is	to	generalize	the	patterns	within	the	input	data–

the	 features,	 in	 order	 to	 predict	 an	 outcome	 (commonly	 called	 the	 target	 variable,	 or	

objective).	Artificial	neural	networks	are	one	form	of	machine	learning	that	can	be	trained	in	

23

a	supervised	manner	and	are	the	main	approach	we	are	considering	in	this	work.	They	are	

made	of	 successive	 layers	of	 affine	 transformations,	 followed	by	a	non-linearity	 function.	

When	 the	 number	 of	 layers	 is	 greater	 than	 two,	 these	 artificial	 neural	 networks	 are	

designated	as	“deep”,	and	hence	the	term	deep	learning.	

At	 the	 heart	 of	 ANNs	 is	 the	 neuron.	 The	model	 of	 a	 neuron	 is	 similar	 to	 that	 of	 a	 linear	

regression,	with	an	extra	non-linearity	function	added	to	the	output.	This	non-linear	function	

is	often	referred	to	as	the	activation	function.	

𝑦: = 𝑓(𝑋,𝑊) = 𝜙(𝑊#𝑋 + 𝑏)	

Where	𝑊	is	the	learned	weights	of	the	model,	and	b,	the	bias,	is	a	constant.	

The	 There	 are	 a	 variety	 of	 functions	 𝜙	 that	 can	 be	 used	 as	 an	 activation	 function.	 An	

important	criterion	for	such	functions	is	that	they	must	be	differentiable.	The	following	table	

shows	some	examples	of	these	

Table 1.1 Most commonly used activation functions in deep learning.

NAME	 Equation	 Range	

Sigmoid	 𝑆(𝑥) =
1

1 + 𝑒!"	
[0,1]	

Tanh	 𝑆(𝑥) =
𝑒" − 𝑒!"

𝑒" + 𝑒!" 	
[−1,1]	

Rectified	Linear	Unit	(ReLU)	 𝑆(𝑥) =
1

1 + 𝑒!"	
[0,∞]	

Softmax	 𝑆(𝑥) =
𝑒"!
∑ 𝑒""#

	 [0,1]	

A	 single	 neuron	 alone	 cannot	 model	 complex	 equations	 but	 stacking	 multiple	 neurons	

together	 in	parallel	adds	modeling	power.	Such	a	stack	 is	called	a	 layer.	According	 to	 the	

universal	approximation	 theorem,	such	a	 layer	 is	 capable	of	approximating	any	arbitrary	

function.	In	practice,	however,	it	is	easier	to	train	a	succession	of	neural	networks	layers.	The	

mathematical	model	of	3	layers	of	neurons	is	

𝑦: = 𝑓.(𝑓-(𝑓,(𝑋,𝑊,),𝑊-),𝑊.) = 𝜙(.)-𝑊.𝜙(-)-𝑊-𝜙(,)(𝑊,𝑋 + 𝑏,) + 𝑏-/ + 𝑏./	

24

Where	the	superscript	represents	the	layer	number,	and	not	an	exponent.	

The	loss	function	(Also	referred	to	as	cost	function)	is	a	function	that	quantifies	a	distance	

between	the	model’s	error.	Such	a	function	for	our	3	layers	network	example	is	

𝐶(𝑦, 𝑦:) = 𝐶 C𝑦, 𝜙(.)-𝑊.𝜙(-)-𝑊-𝜙(,)(𝑊,𝑋 + 𝑏,) + 𝑏-/ + 𝑏./D	

Where	C	is	the	loss\cost	function.	

The	 learning	process	 consists	 of	minimizing	 such	 a	 function.	 Because	 finding	 an	 analytic	

solution	is	not	practically	feasible,	neural	networks	are	trained	incrementally	by	minimizing	

the	loss	function.	To	minimize	the	loss	function,	we	compute	the	gradient	of	the	error	with	

respect	to	the	inputs.	Applying	the	chain	rule,	we	get	

𝑑𝐶
𝑑𝑋 =

𝑑𝐶
𝑑𝜙. .

𝑑𝜙.

𝑑𝜙- .
𝑑𝜙-

𝑑𝜙, .
𝑑𝜙.

𝑋 	

which	is	used	to	know	how	much	we	should	change	W’s	and	b’s	in	order	to	reduce	the	errors.	

This	algorithm	is	called	the	backpropagation	(Rumelhart	et	al.,	1986)	algorithms.	

This	learning	is	performed	using	iterative	methods,	like	the	gradient	descent	approach	and	

its	derivatives,	where	at	each	training	step	we	aim	to	reduce	the	loss	function	by	a	small	step.	

There	are	no	mathematical	guarantees	to	find	the	best	workable	solution	(A	global	minimum	

of	the	 loss	 function),	which	 is	why	we	must	take	some	precautions	to	make	sure	that	the	

model	would	perform	as	expected	on	unseen	points.	One	of	these	measures	is	holding	out	a	

portion	of	the	data	for	testing	the	performance	of	the	model	(A	test	set)	(LeCun	et	al.,	2015).	

If	 the	model	 is	 good,	 then	we	should	get	 a	 comparable	performance	 to	 the	 training	data.	

Another	serious	problem	with	training	deep	neural	networks	is	overfitting	(Goodfellow	et	

al.,	2016).	Overfitting	is	when	the	network	learns	(memorizes)	the	specifics	of	the	training	

examples	 rather	 than	 the	 generalized	 signal	 common	 within	 the	 data	 points.	 Many	

techniques	 are	 used	 to	 fight	 overfitting	 in	 deep	 neural	 networks,	 including	 L1	 and	 L2	

regularization,	 early	 stopping	 and	 dropout	 (Goodfellow	 et	 al.,	 2016).	 Although	 dropouts	

(Srivastava	et	al.,	2014)	were	originally	intended	to	be	used	during	model	training	as	a	way	

to	 combat	 overfitting,	 further	 research	 showed	 that	 using	 dropouts	 during	 inference	

25

approximates	 a	 deep	 gaussian	 process.	 Such	 approximation	 means	 that	 we	 can	 get	 an	

uncertainty	estimation	about	the	estimation,	and	not	just	a	point	estimate.	

The	other	part	of	training	a	deep	learning	model	is	architectural	considerations,	such	as	the	

number	of	layers	and	the	number	of	units	in	each	layer.	Hyperparameters	search	is	finding	

the	best	possible	parameters	concerning	these	decisions.	The	term	comes	from	the	statistical	

term	describing	the	parameters	of	the	parameters	in	Bayesian	models.	

1.2.4 Number of Tasks in Supervised Learning

1.2.4.1	Single	Task	Learning	

Single	task	learning	is	the	most	common	approach	for	doing	machine	learning.	In	single	task	

learning,	the	model	is	trying	to	learn	a	single	outcome.	

1.2.4.2	Multitask	Learning	

Multitask	learning	(MTL)	refers	to	the	approach	of	learning	multiple	objectives	at	the	same	

time.	It	can	be	done	in	different	ways,	such	as	joint-learning	more	than	one	task	together,	

adding	 the	 other	 tasks	 as	 an	 auxiliary	 task	 to	 the	 side	 to	 the	 one	 that	 interests	 us	 or	 by	

“learning	to	learn”	(Caruana,	n.d.).	MTL	improves	the	model’s	generalization	by	being	forced	

to	pay	attention	 to	different	signals	within	 the	dataset	needed	to	be	 learned	 for	different	

tasks	(Abu-Mostafa,	1990).	MTL	can	be	approached	either	by	hard	parameters	sharing	or	

soft	parameters	sharing	(Caruana,	n.d.).	In	hard	parameter	sharing,	we	have	a	single	network	

with	multiple	outputs,	where	 the	 initial	 layers	are	shared	among	all	 tasks.	This	approach	

reduces	the	risk	of	overfitting	by	the	order	of	the	number	of	tasks	being	learned	(Caruana,	

n.d.).	The	second	 type	of	MTL	 is	 the	soft	parameters	 sharing.	 In	 this	approach,	 the	 tasks’	

models	are	kept	separate,	but	they	are	used	to	regularizing	each	other	(Caruana,	n.d.).	Some	

reasons	the	MTL	approach	is	promising	is	that	 it	enables	the	model	to	better	 identify	the	

patterns	from	the	noise	in	the	data,	since	it	needs	to	find	the	relevant	signal	that	is	useful	for	

all	tasks	at	hand	(Caruana,	n.d.).	This	is	also	related	to	using	hints	(Kaiser	et	al.,	2017),	where	

some	features	are	easier	to	be	extracted	in	the	light	of	certain	tasks	than	others,	although	

both	 tasks	 make	 use	 of	 the	 same	 features.	 Another	 reason	 is	 the	 representation	 bias,	 a	

consequence	coming	from	the	fact	that	the	model	will	have	to	prefer	to	learn	the	features	

26

that	apply	to	all	tasks	at	hand.	This	also	acts	like	a	regularizer,	helping	to	reduce	the	risk	of	

overfitting.	For	applying	the	multitask	 learning	approach,	we	are	not	constrained	by	only	

using	two	related	tasks.	We	can	also	use	two	opposite	tasks	if	such	data	are	the	only	ones	

available.	This	approach	is	called	adversarial	training,	in	which	the	model	is	trained	using	an	

adversarial	loss,	in	which	the	optimization	gradient	for	the	task	at	hand	is	the	opposite	of	the	

adversarial	 task.	Multitask	 training	has	proved	beneficial	 in	many	domains.	For	example,	

machine	 translation	models	were	 trained	 in	many	 languages,	 they	 learned	to	 translate	 to	

new	languages	within	only	one	iteration	of	learning,	a	behavior	called	few\one\zero	learning	

(Li	et	al.,	2016).	

1.3	 Machine	Learning	in	Genomics	

Purely	 wet-lab	 experimental	 approaches	 for	 uncovering	 the	 functional	 role	 of	 a	 given	

genomic	region	are	expensive	and	time-consuming.	This	makes	computational	approaches	

highly	desired	 (LeCun	et	 al.,	 2015).	 In	 this	 review,	we	will	 go	 through	 the	different	deep	

learning	architectures	and	approaches	that	aimed	to	decipher	the	functional	role	of	genomic	

regions	using	mainly	the	genomic	sequence.	These	trained	models	can	be	used	not	only	to	

annotate	newly	sequenced	genomes	but	also	 in	predicting	the	effects	of	single	nucleotide	

variants	(SNV)	on	the	overall	function	of	the	region.	

1.3.1 ML Success in Biology is Proved on Different Data Sources

Biological	 data	 can	 come	 from	 different	 functional	 levels,	 lowest	 ones	 being	 DNA	 level,	

passing	through	single-cell	level	data,	multicellular	data	all	the	way	to	population	level	data	

(Zitnik	et	al.,	2019).	Examined	DNA	functional	annotation	papers	mainly	on	the	 low-level	

datasets.	One	of	the	most	important	data	sources	is	the	DNA	sequence	itself,	which	alone	can	

be	 mined	 for	 a	 wealth	 of	 information,	 including	 predicting	 epigenetic	 information	

(Angermueller	et	al.,	2017).	Sequencing	technologies	have	provided	the	opportunity	to	get	

several	sequencing-based	epigenetic	data	that	can	augment	the	sequence	include:	

DNase-seq	 (DNase	 I	 hypersensitive	 sites	 sequencing,	 also	 sometimes	 referred	 to	 using	

simply	 DNase	 I	 cleavage	 since	 it	 is	 the	 base	 method	 combined	 with	 next	 generation	

sequencing)	experiments	measure	chromatin	accessibility	(Boyle	et	al.,	2008),	which	hints	

27

to	regions	that	can	bind	to	transcription	factors,	shall	the	DNA	sequence	is	receptive	to	it.	

Assay	for	transposase-Accessible	Chromatin	using	sequencing	(ATAC-seq)	can	also	be	used	

for	the	same	purpose	(Buenrostro	et	al.,	2013).	

Another	 potentially	 useful	 dataset	 is	 the	RNA-seq	 (Lister	 et	 al.,	 2008).	RNA-seq	data	 can	

quantify	 gene	 expressions,	 and	 therefore	 they	 can	 augment	 other	 genomic	 datasets.	 For	

example,	RNA-seq	data	was	provided	as	part	of	the	ENCODE-DREAM	challenge	and	was	used	

by	Quang	and	Xie	(Quang	&	Xie,	2017)	in	their	model.	

Finally,	Hi-C	technology	can	reveal	regions	of	DNA	that	are	spatially	near	each	other	in	the	

cell,	revealing	long-range	interactions	between	different	chromosome	regions	(Lieberman-

Aiden	et	 al.,	 2009).	Chromatin	 Interaction	Analysis	by	Paired-End	Tag	Sequencing	 (ChIA-

PET)		(Fullwood	&	Ruan,	2009)	and	Hi-ChIP	(Mumbach	et	al.,	2016)	can	also	be	used	for	the	

same	purpose.	

These	datasets	have	already	been	used	alone	or	together	in	deep	learning	tasks	for	genomic	

regions	 mapping	 and	 predicting	 their	 epigenetic	 properties.	 For	 example,	 Zhou	 and	

Troyanskaya	(Zhou	&	Troyanskaya,	2015)	used	DNase	I	sensitivity	with	the	DNA	sequence	

from	the	GRCh37	assembly	to	predict	transcription	factor	binding	and	from	there	they	used	

this	to	evaluate	the	effect	of	non-coding	variants.	Using	the	same	input,	Kelley	et	al.	(Kelley	

et	al.,	2015)	took	a	multitask	approach	by	predicting	simultaneously	the	DNA	activity	in	164	

cell	types.	Zeng	et	al.	(H.	Zeng	et	al.,	2016)	used	ChIP-seq	data,	DNA	sequence,	and	Hi-C	data	

for	motif	discovery	and	motif	occupancy.	Wang	et	al.	(M.	Wang	et	al.,	2018)	used	ChIP-seq	

and	the	DNA	sequence	to	predict	the	DNA\Transcription	factor	binding	intensities.	Min	et	al.	

(Min	 et	 al.,	 2017)	 used	 only	 the	DNA	 sequence	 to	 detect	 enhancer	 sites	 from	 input	DNA	

sequences.	For	the	same	task,	Cohn	et	al.	(Cohn	et	al.,	2018)	also	used	the	sequence	along	

with	the	ChIP-seq	data.	In	Umarov	and	Solovyev	(Umarov	&	Solovyev,	2017)	work,	the	DNA	

sequence	of	5	distant	organisms	(a	mix	of	prokaryotes	and	eukaryotes)	was	used	to	train	a	

neural	network	on	promoter	regions	recognition,	and	they	showed	that	trained	features	on	

one	organism	are	useful	to	be	transferred	to	another.	Angermueller	et	al.	(Angermueller	et	

al.,	2017)	used	cell	methylation	profiling	(Smallwood	et	al.,	2014)	of	neighboring	regions	to	

predict	the	CpG	methylation	state	of	a	DNA	sequence.	Quang	and	Xie	(Quang	&	Xie,	2017)	

28

have	used	more	data	side	by	side,	 including	genomic	sequence,	genome	annotation,	gene	

expressions	and	epigenetic	signals	at	the	single	nucleotide	level	such	as	DNase	I	cleavage	to	

predict	transcription	factor	binding.	In	Xiong	et	al.	(Xiong	et	al.,	2015)	work,	DNA	sequence	

is	used	to	identify	the	splicing	of	RNA	(for	labeling	the	data,	RNA-seq	data	was	also	used)	

revealing	insights	about	three	diseases.	

Although	 the	 approach	 of	 interest	 is	 deep	 learning,	 which	 is	 known	 for	 its	 ability	 to	 do	

automatic	feature	engineering,	some	tasks	are	still	inherently	hard	without	our	intervention	

in	feature	transformation.	One	of	those	interventions	is	transforming	sequence	features	into	

a	 more	 suitable	 representation	 that	 encodes	 for	 inferred	 notions,	 called	 a	 latent	

representation.	Sequence	constituents	(tokens)	usually	do	not	have	an	inherent	order,	which	

makes	numeric	encoding	for	them	generally	unfavoured	(Ng,	2017).	Instead,	they	should	be	

expanded	into	mutually	exclusive	binary	variables,	a	technique	called	one	hot	encoding.	Such	

one	hot	encoding	increases	the	dimensionality	of	the	input,	so,	for	example,	if	we	want	to	

study	the	DNA	sequence	in	terms	of	k-mers,	we	will	have	to	have	our	input	increase	to	2k.	

High	dimensionality	is	not	the	only	problem	here,	also	the	fact	that	one-encoded	vectors	are	

all	equidistant	from	each	other	and	not	continuous	makes	the	representation	lose	some	of	

the	signal	to	be	learned.	A	proven	approach	in	natural	language	processing	is	to	build	an	n-

dimensional	continuous	vector	to	represent	these	one-hot-encoded	tokens.	There	are	two	

general	approaches	for	this	using	neural	networks:	either	given	the	token	we	try	to	predict	

its	context	(i.e.	the	tokens	that	are	around	it)	(Mikolov	et	al.,	2013)	or	given	the	context	we	

try	to	predict	the	token	in	the	middle.	The	first	approach	is	faster	to	train	but	the	second	one	

is	better	with	rare	words	(Ng,	2017).	After	the	training	process	is	complete,	the	weights	of	

the	 inner	 hidden	 layer	 of	 the	 trained	 network	 hold	 the	 information	 about	 the	 latent	

representation	 of	 each	 token.	 This	 approach	 yields	 very	 interesting	 representations	 of	

words,	and	even	doing	arithmetic	between	tokens	 is	possible.	For	example,	 the	 following	

operation	is	true	in	(Vylomova	et	al.,	2016):	king	–	man	+	woman	=	queen.	This	approach	

applied	to	biological	sequences,	and	the	results	were	very	interesting.	In	Biovec	(Asgari	&	

Mofrad,	2015),	the	skip-gram	approach	was	applied	to	protein	sequences,	using	k-mer	size	

of	3.	The	resulting	latent	representation,	called	embedding,	was	used	by	a	separate	task	to	

predict	the	protein’s	family.	Based	on	the	sequence	embeddings	alone,	it	performed	as	good	

29

as	an	SVM	approach	that	needs	more	extra	features	like	hydrophobicity,	secondary	structure	

and	solvent	accessibility,	showing	that	the	embeddings	captured	meaningful	structural	3D	

features	 that	 could	 be	 inferred	 from	 the	 sequence	 alone	 (Asgari	 &	 Mofrad,	 2015).	 An	

application	of	the	approach	to	the	DNA	sequence	is	seq2vec	(Kimothi	et	al.,	2016).	They	have	

found	 that	 the	 trained	 embedding	 distances	 between	 k-mers	 had	 very	 similar	 results	 to	

global	alignment	scores	coming	from	Needleman-Wunsch	algorithm	(Needleman	&	Wunsch,	

1970)	and	 local	alignment	scores	coming	 from	the	Smith-Waterman	(Smith	&	Waterman,	

1981)	one.	In	a	different	approach	(Ng,	2017),	Patrick	Ng	generalized	the	concept	by	training	

on	 variable	 k-mer	 DNA	 fragments	 instead.	 Another	 insight	 for	 feature	 engineering	 was	

proposed	 by	 Shrikumar	 et	 al.	 (Shrikumar	 et	 al.,	 2017).	 In	 this	work,	 they	 suggested	 that	

training	 the	network	with	 separate	 filters	 of	 the	 forward	 and	 reverse	 complement	while	

forcing	later	layers	to	have	the	same	signal	for	both	patterns	increased	the	accuracy	over	the	

test	set	and	stating	that	taking	advantage	of	known	biological	information	can	increase	the	

efficiency	 of	 a	 trained	 model.	 Sequence	 embeddings	 are	 not	 the	 only	 possible	 feature	

engineering	approach,	there	are	other	opportunities	of	using	machine	learning	to	increase	

the	quality	of	 the	data	 for	 further	modelling,	 for	example	by	using	generative	adversarial	

models	to	filter	bias	in	the	data	by	learning	the	original	distribution	of	the	data	from	biased	

one	(Zitnik	et	al.,	2019).	

Deep	 learning	has	been	used	 to	explore	meiotic	 recombination	hotspots	as	well,	 through	

population	and	genetic	mapping	data.	Nath	et	al.	(Nath	&	Karthikeyan,	2018)	used	yeast	data	

to	 feed	autoencoders	 for	 feature	extraction,	 then	performed	 the	 classification	using	 tree-

based	ML	algorithms.	Using	the	same	dataset,	Khan	et	al.	 (Khan	et	al.,	2020)	encoded	the	

input	 sequence	 using	 Gapped	 Di-nucleotide	 composition	 before	 passing	 the	 resulting	

features	to	a	fully	connected	neural	network	for	the	classification.	Li	et	al.	(Li	et	al.,	2021)	in	

a	preprint	used	a	DanQ-like	hybrid	CNN-RNN	architecture	with	the	addition	of	a	multi-head	

attention	on	7	different	genetic	maps	datasets	in	addition	to	histone	modification	data	and	

showed	that	deep	learning	gave	highly	accurate	and	interpretable	results.	Brown	and	Lunter	

(Brown	 &	 Lunter,	 2019)	 used	 simulated	 and	 LD	 datasets	 using	 a	 CNN	 variation	 called	

equivariant	CNN	networks	for	predicting	the	DNA	sequences	and	reported	improvements	to	

both	 accuracy	 and	 motif	 finding	 compared	 to	 normal	 convolution.	 All	 of	 these	 predict	

30

location	 of	 crossovers	 hotspots	 and	would	miss	 recombination	 activity	 resulting	 in	 gene	

conversion	events.	To	our	knowledge,	nobody	has	attempted	using	ChIP-Seq	DMC1	data	with	

deep	 learning	methods	 to	classify	DNA	sequences	 for	 their	 recombination	activity,	which	

would	reflect	both	crossovers	and	gene	conversion	events.	

	

1.3.2 Architectures

1.3.2.1	Fully	Connected	Neural	Networks	

Fully	connected	neural	networks	are	the	most	straightforward	approach	in	deep	learning.	In	

this	approach,	all	neurons	in	each	layer	are	connected	to	all	neurons	in	the	previous	and	the	

following	layer,	and	the	weights	of	those	connections	are	updated	during	the	learning	phase.	

Fully	connected	architecture	is	powerful,	but	because	it	does	not	take	any	advantage	of	the	

structure	of	the	input,	they	tend	to	have	the	highest	number	of	parameters	to	train.	Liu	et	al.	

(Liu	et	al.,	2016)	trained	a	model	to	predict	enhancers,	reaching	state-of-the-art	accuracy	on	

the	task.	It	was	trained	on	1114	heterogeneous	features	to	test	the	approach	of	learning	from	

different	data	sources.	Then	they	used	the	same	approach	to	learn	enhancers	prediction	from	

22	cell	 types\tissues.	They	further	commented	that	 including	chromosomal	conformation	

data	(like	Hi-C	data	described	above)	should	further	increase	the	accuracy	of	the	model.	Li	

et	al.	(Li	et	al.,	2016)	used	a	fully	connected	model	to	distinguish	enhancers,	promoters,	and	

background	sequences.	

1.3.2.2	Convolutional	Neural	Networks	

Convolutional	 neural	 networks	 (CNN)	 rely	 on	 the	 idea	 of	 learned	 parameter	 sharing,	

reducing	the	number	of	needed	parameters	in	an	equivalent	fully	connected	network.	The	

way	they	work	is	very	similar	to	the	visual	cortex	(Hubel	&	Wiesel,	1968).	Early	application	

of	this	approach	involved	using	human-designed	kernels	(Lin	&	Inigo,	1991),	but	soon	the	

way	of	 learning	the	network-weights	automatically	through	gradient	descent	was	created	

(LeCun	 et	 al.,	 1989).	 The	 CNN	 have	 the	 advantage	 of	 being	 able	 to	 recognize	 its	 target	

features	regardless	of	their	position	within	the	input	image	(translation	invariant)	(LeCun	et	

al.,	2015),	which	makes	it	ideal	to	locate	objects	of	interest	when	their	initial	position	within	

31

the	context	is	not	known	beforehand.	Convolutional	neural	networks	have	many	convolution	

kernels	(filter)	per	layer,	each	will	be	trained	to	identify	a	useful	feature.	These	kernels	scan	

the	image	doing	a	matrix	multiplication	operation	called	convolution,	hence	the	name	of	the	

architecture.	The	size	of	the	step	of	the	scan	is	called	a	stride.	The	higher	the	value	of	the	

matrix	multiplication,	 the	more	 similar	 is	 the	 region	 to	 the	 filter.	 Each	 convolution	 layer	

learns	to	use	the	features	captured	by	its	previous	one	to	recognize	more	complex	features,	

eventually	 able	 to	 recognize	 very	 complex	 patterns,	 as	 in	 the	 case	 of	 computer	 vision	

applications.	In	most	cases,	a	convolutional	layer	is	followed	by	a	pooling	layer,	which	acts	

as	a	summary	of	the	similarity	of	the	region	with	the	filter.	The	most	common	pooling	layer	

is	 the	 max-pooling	 (LeCun	 et	 al.,	 2015)	 (Sakoe	 et	 al.,	 1989).	 The	 original	 convolutional	

architectures	need	a	fixed	input	size,	and	to	comply	with	this,	all	explored	papers	have	fixed	

the	input	sequence	to	a	fixed	length.	

To	process	a	sequence	of	nucleotides	using	a	CNN,	we	transform	the	sequence	into	a	one-

hot-encoded	matrix,	effectively	having	an	equivalent	format	of	an	image	of	4	pixels	high	and	

the	 same-sequence-length	 pixels	 long.	 For	 genomic	 regions	 annotation,	 there	 have	 been	

different	approaches	to	the	problem	(Alipanahi	et	al.,	2015;	Blum	&	Kollmann,	2019;	Cohn	

et	al.,	2018;	Kelley	et	al.,	2015,	p.	20;	Min	et	al.,	2017;	Umarov	&	Solovyev,	2017;	M.	Wang	et	

al.,	2018;	H.	Zeng	et	al.,	2016;	Zhou	&	Troyanskaya,	2015).	The	first	convolutional	layer	of	

the	network	works	as	a	position-weight-matrix	that	scans	for	motifs	(Alipanahi	et	al.,	2015).	

With	transcription	factor	binding	papers	(Cohn	et	al.,	2018;	Min	et	al.,	2017;	M.	Wang	et	al.,	

2018;	H.	Zeng	et	al.,	2016),	the	motifs	were	verified	against	known	motif	databases	such	as	

JASPAR	 (JASPAR,	 n.d.),	 and	 the	 results	were	 similar	 to	 each	other	 and	outperforming	 the	

earlier	SVM	methods	(Quang	&	Xie,	2015).	The	most	common	kernel	size	employed	was	24	

basepair	long,	but	Zhou	and	Troyanskaya	(Zhou	&	Troyanskaya,	2015)	used	a	window	size	

of	 8	 basepairs	 for	 example.	 With	 the	 exception	 of	 the	 method	 of	 Umarov	 and	 Solovyev	

(Umarov	&	Solovyev,	2017),	all	other	papers	used	3	 layers	of	convolutions.	Something	 to	

note	in	here	is	that	these	numbers	are	small	compared	to	the	usual	ones	related	to	computer	

vision	tasks.	For	example,	VGGNet	(Simonyan	&	Zisserman,	2015),	a	2014	network,	had	16	

convolutional	layers	and	ResNet	(He	et	al.,	2016)	had	152	layers.	This	hints	that	the	level	of	

complexity	of	the	task	is	much	smaller	than	computer	vision	(H.	Zeng	et	al.,	2016).	Zeng	et	

32

al.	(H.	Zeng	et	al.,	2016).		have	experimented	with	the	number	of	convolutional	filters	to	use	

and	 have	 noted	 that	 there	was	 an	 improvement	 of	 the	 network's	 performance	with	 the	

increase	of	the	number	of	filters,	and	this	improvement	reached	a	saturation	by	having	128	

filters.	Although	convolutional	neural	networks	are	typically	used	to	detect	features	that	are	

spatially	 positioned	 next	 to	 each	 other,	 an	 interesting	 approach	 by	 Paggi	 et	 al.	 (Paggi	 &	

Bejerano,	2017)	to	overcome	this	was	the	use	of	dilated	convolutions,	which	can	scan	for	

features	having	some	gaps	between	them.	Another	very	interesting	approach	was	applied	by	

Blum	et	al.	(Blum	&	Kollmann,	2019).	In	their	paper,	they	have	created	what	they	have	called	

circular	 filters.	They	argued	convolution	 filters	 learn	sometimes	 the	required	pattern	but	

rolled	 to	 the	 left	 or	 right	 in	 a	 circular	manner	 (i.e.,	 shifted	 in	 a	 certain	direction,	 but	 the	

shifted	nucleotides	that	get	pushed	out	of	the	frame	from	one	end	are	reinserted	from	the	

other	end),	because	that	the	gradient	descent	approach	is	greedy	in	essence,	and	this	shifted	

representation	of	the	motif	is	where	the	local	optimum	is.	Trained	networks	can	still	do	the	

prediction	 with	 these	 semi-correct	 filters	 because	 they	 partially	 recognize	 parts	 of	 the	

correct	motifs,	and	then	higher	layer	can	mix	and	match	these	fractions	of	the	correct	motif	

together	 to	 create	 an	 accurate	prediction.	They	have	 suggested	what	 they	 called	 circular	

convolutions,	 in	which	they	create	a	shifted	k	times	filters	of	 the	 learned	filters,	and	then	

train	the	network.	They	found	that	the	network	always	chose	the	most	correct	form	of	the	

motif	 and	 ignored	 the	 rest,	 and	 that	 also	 the	 network	 trained	 faster	 and	 needed	 fewer	

parameters	to	train.	

1.3.2.3	Recurrent	Neural	Networks	

Recurrent	 neural	 networks	 RNN	 (LeCun	 et	 al.,	 2015)	 are	 networks	 that	 contain	 special	

components	 that	 have	 a	 feedback	 loop	 called	 recurrent	 blocks.	 This	 feedback	 loop	

(sometimes	referred	to	as	the	hidden	state)	is	used	when	the	next	input	is	passed,	allowing	

it	to	keep	a	summary	of	the	context	(For	example,	the	subject\object	and	their	gender	in	a	

language	sequence)	of	 the	previous	 inputs.	This	ability	makes	 them	the	most	suitable	 for	

sequence	processing,	for	example,	the	sequence	of	nucleotides	representing	the	genome.	The	

early	versions	of	RNN	(Rumelhart	et	al.,	1986)	were	very	limited	in	the	amount	of	context	

they	could	keep	as	new	information	always	overwrote	the	previous	ones,	making	them	not	

very	practical	(Bengio	et	al.,	1994).	The	other	problem	was	that	this	recurrent	layer	can	be	

33

unrolled	like	a	graph.	Analysis	of	this	graph	shows	that	each	new	token	in	the	sequence	has	

the	effect	of	adding	an	extra	layer	to	the	network,	effectively	making	it	a	very	deep	network.	

Such	deep	neural	networks	 suffer	 from	 the	vanishing\exploding	gradient	 (Pascanu	et	 al.,	

2013).	 A	 major	 development	 was	 the	 creation	 of	 the	 Long-Short-Term-Memory	 RNNs	

(Hochreiter	&	Schmidhuber,	1997)	(LSTM).	These	have	the	capability	of	recognizing	context	

switches,	so	they	are	trained	to	selectively	retain	or	forget	the	context	(even	retaining	only	

a	 fraction	of	 it)	and	this	allowed	 for	vast	 improvements	 in	 the	performance.	LSTMs	were	

hard	to	train,	so	a	new	simplified	version	called	Gated	Recurrent	Units	GRU	(Cho	et	al.,	2014)	

was	introduced.	These	networks	have	a	simpler	structure	than	LSTMs,	making	them	easier	

to	train	with	little	deterioration	in	the	performance.	Another	variant	that	was	introduced	to	

the	original	RNNs	and	also	available	in	LSTMs	and	GRUs	is	the	bidirectional	RNN	(Schuster	

&	 Paliwal,	 1997).	 Such	 networks	 scan	 the	 input	 sequence	 from	 both	 ends,	 allowing	

subsequent	layers	having	a	representation	of	both	past	and	future	tokens.			

In	all	the	examined	work,	RNNs	were	not	used	alone	but	with	CNNs,	sometimes	referred	to	

as	hybrid	networks.	Quang	and	Xie	 (Quang	&	Xie,	 2015).	The	approach	 they	 took	was	 to	

create	two	separate	branches	in	the	network,	one	for	the	enhancers	and	the	other	for	the	

promoters.	It	is	also	noteworthy	that	they	have	picked	a	relatively	large	filter	size	for	their	

convolution	layer	(40	nucleotides	wide).	The	output	of	these	two	convolutional	branches	is	

then	concatenated	 into	a	 single	matrix,	which	 is	 then	 fed	 to	 the	 subsequent	bidirectional	

LSTM	 layer,	 which	 is	 where	 the	 long-range	 interaction	 is	 identified.	 The	 final	 different	

variation	to	present	in	the	hybrid	architectures	is	Chen	et	al.’s	(Chen	et	al.,	2019),	where	they	

introduce	 an	 attention	 module	 (Bahdanau	 et	 al.,	 2016)	 after	 the	 bidirectional	 LSTM.	

Attention	mechanism	was	 created	 from	experience	with	 the	natural	 language	 translation	

effort,	 a	 type	of	 sequence	 to	 sequence	 (i.e.,	both	 the	 input	 and	 the	output	 are	 sequences,	

sometimes	 abbreviated	 as	 seq2seq)	 problem.	 In	 the	 seq2seq	 problem,	 the	 architectural	

approach	is	using	separate	recurrent	blocks	to	generate	the	output	sequence,	while	sharing	

only	the	final	hidden	state	of	the	encoder	as	the	starting	point	of	the	decoder.	The	attention	

mechanism	was	a	breakthrough,	and	it	works:	instead	of	only	keeping	the	last	hidden	state	

of	the	encoder,	we	keep	all	the	intermediate	states	as	well.	Then	we	train	a	set	of	weights	(a	

mini-internal	neural	network)	to	select	which	of	these	intermediate	hidden	states	to	use	for	

34

the	current	output	token.	This	intermediate	representation	is	a	matrix	of	m	x	n	dimensions,	

where	m	is	the	length	of	the	input	sequence	and	n	is	the	length	of	the	output.	The	approach’s	

scalability	is	acceptable	in	natural	language	processing,	as	the	length	of	sentences	does	not	

yield	 huge	 matrices.	 In	 the	 genomic	 context,	 to	 make	 this	 approach	 feasible,	 the	 input	

training	is	cut	into	sets	of	hundreds	or	few	thousands	base	pairs.	In	their	work,	they	start	

with	the	same	Siamese	architecture	of	Quang	and	Xi’s	(Quang	&	Xie,	2017),	where	each	side	

works	over	the	forward	and	reverse	complement	independently,	then	merge	and	pass	the	

flow	of	 information	 to	 the	 bidirectional	 LSTM.	 The	 attention	weights	 are	 then	 computed	

using	 the	 LSTM	 hidden	 states,	 where	 they	 are	 normalized	 using	 a	 SoftMax	 function	

(Goodfellow	et	al.,	2016)	and	then	each	token	position	is	averaged.	Afterwards,	they	add	the	

fully	 connected	 layer.	 They	have	 reported	 improvement	 in	 9/13	 of	 the	TFs	 compared	 to	

FactorNet	 (Quang	 &	 Xie,	 2017),	 and	 generally	 better	 than	 the	 top	 4	 contestants	 in	 the	

ENCODE-DREAM	 challenge.	 They	 have	 extended	 their	 performance	 analysis	 to	 other	

CNN\RNN	models	as	well	and	show	the	same.	An	interesting	part	in	their	work	is	that	they	

also	analyzed	the	results	per	transcription	factor	and	not	on	the	whole	dataset.	They	found	

that	the	attention	approach	performed	much	better	on	TFs	that	had	low	accuracy	in	other	

networks.	Further	investigation	for	which	of	the	input	signals	did	attention	rely	on	the	most,	

they	discovered	it	had	better	“sensitivity”	to	DNase-Seq	peak	signal.	The	last	benefit	of	using	

the	attention	mechanism	is	in	the	ability	to	look	at	which	token	had	the	highest	responsibility	

to	the	network’s	output,	demystifying	a	bit	of	what	the	network	learned.	This	is	discussed	in	

more	details	in	the	section	below	about	interpreting	the	model’s	output.	

1.3.3 Metrics

For	binary	classification	tasks,	we	compare	the	model’s	prediction	to	the	true	label.	We	can	

categorize	 the	 result	 into	 four	 types	 depending	 on	 the	 correctness	 and	 the	 class	 of	 the	

example.	For	a	positive	example,	a	correct	prediction	is	referred	to	as	a	true	positive	(TP)	

and	a	misclassified	example	is	called	a	false	positive	(FP).	FP	is	sometimes	referred	to	as	type	

I	 error.	 For	 negative	 examples,	 a	 correct	 prediction	 is	 called	 true	 negative	 (TN)	 and	 an	

incorrect	prediction	is	a	false	negative	(FN).	FN	is	also	referred	to	as	type	II	error.	Since	ML	

is	a	 culture	2	according	 to	Breiman’s	classification,	 its	usefulness	heavily	depends	on	 the	

35

choice	 of	 metrics.	 The	 most	 straightforward	 metric	 is	 classification	 accuracy,	 where	 we	

compute	the	proportion	of	the	correct	predictions	across	both	classes.	

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇1 + 𝑇2

𝑇1 + 𝑇2 + 𝐹1 + 𝐹2
	

But	 accuracy	may	 sometimes	 be	 less	 useful	 than	 other	metrics,	 or	 even	misleading.	 For	

example,	sometimes	the	model’s	usefulness	greatly	decreases	if	it	has	a	high	type	II	error,	

while	type	I	error	is	less	costly.	Other	metrics	can	be	used	in	such	cases	where	we	measure	

the	 correctness	 of	 TPs	 (Precision,	 also	 called	 positive	 predictive	 value	 or	 PPV)	 or	 the	

percentage	 of	 positive	 cases	 that	 were	 identified	 (Recall,	 also	 sometimes	 referred	 to	 as	

sensitivity)	independently.	

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇1

𝑇1 + 𝐹1
	

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇1

𝑇1 + 𝐹2
	

Higher	interest	in	the	positive	examples	may	be	more	important	in	cases	of	disease	and	fraud	

detection,	where	FPs	cost	further	investigation	to	verify	the	error,	but	the	cost	of	FNs	are	

higher.	In	cases	where	there	is	a	higher	interest	in	the	negative	cases,	we	can	use	specificity	

and	the	negative	predictive	value	(NPV)	

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇2

𝐹1 + 𝐹2
	

𝑁𝑃𝑉 =
𝑇2

𝐹2 + 𝑇1
	

But	even	when	both	classes	equally	matter,	accuracy	may	be	misleading	if	both	classes	are	

not	roughly	equally	present.	In	imbalanced	datasets	(i.e.,	there	is	a	majority	class	in	terms	of	

numbers),	accuracy	can	give	a	false	sense	of	high	performance.	For	example,	if	the	negative	

class	represents	95%	of	the	cases,	a	model	giving	a	constant	negative	prediction	would	be	

95%	accurate.	In	these	cases,	it	is	better	to	use	the	F	score:	

36

𝐹3 = (1 + 𝛽-).
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛. 𝑅𝑒𝑐𝑎𝑙𝑙

(𝛽-. 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛) + 𝑅𝑒𝑐𝑎𝑙𝑙	

where	𝛽	is	a	positive	floating	point	parameter.	A	special	case	is	when	𝛽	is	equal	to	one,	also	

referred	to	as	F1	score.	It	computes	the	harmonic	mean	of	the	precision	and	recall,	and	thus	

it	 is	 less	 sensitive	 to	 class	 imbalance	while	 putting	 equal	 emphasis	 on	 both	 positive	 and	

negative	classes	

𝐹, =
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛. 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙	

When	𝛽	 is	0,	we	consider	only	the	precision,	and	when	𝛽	 is	 infinity,	we	consider	only	the	

recall.	

1.3.4 Model Explanation

A	major	benefit	from	having	accurate	models	is	reverse	engineering	their	insight	about	the	

problem.	Shedding	light	on	such	insight	is	especially	challenging	when	the	phenomenon	is	

highly	 non-linear	 or	when	 the	data	 does	not	 have	 an	 intrinsic	 structure,	 such	 as	 images.	

There	are	two	things	that	we	would	want	to	explain:	a	local	explanation	in	which	we	want	to	

understand	why	a	model	behaved	in	response	to	a	specific	input,	and	a	global	explanation	in	

which	we	want	to	understand	how	the	model	sees	the	data.	For	local	explanation	on	such	

unstructured	data,	work	has	 focused	on	 studying	 the	 strength\path	of	 the	 signal	 coming	

from	 the	 input	 that	 contributed	 most	 to	 the	 output.	 Examples	 of	 such	 approaches	 are	

occlusion	 sensitivity	 (Habibi	Aghdam	&	 Jahani	Heravi,	 2017),	Grad-CAM	 (Selvaraju	 et	 al.,	

2017),	saliency	maps	(Simonyan	et	al.,	2014),	and	integrated	gradient	(Sundararajan	et	al.,	

2017)	which	averages	the	gradient	of	the	path	of	a	certain	input	all	the	way	to	the	output.		

	 	

37

Chapter 2 Research Questions and Hypothesis

There	are	unanswered	questions	about	both	meiotic	recombination	and	best	practices	for	

building	and	interpreting	deep	learning	projects	for	genomic	sequences.	In	this	work,	we	will	

work	on	investigating	if	the	prediction	of	meiotic	recombination	hotspots	in	humans	can	be	

done	 using	 deep	 learning.	 Specifically,	 we	will	 train	 deep	 learning	models	whose	 inputs	

include	the	DNA	sequence,	and	their	output	is	the	binary	classification.	The	binary	output	is	

whether	 the	 input	 DNA	 sequence	 is	 a	 meiotic	 recombination	 hotspot	 or	 not.	 Such	 an	

approach	can	help	researchers	further	understand	the	meiotic	recombination	process	in	a	

non-invasive	 manner	 and	 incur	 cheaper	 costs.	 Since	 different	 PRDM9	 alleles	 recognize	

different	hotspot	regions,	we	will	build	separate	models	for	combinations	of	PRDM9	alleles.	

We	will	also	investigate	if	different	PRDM9	alleles	have	varying	difficulties	for	a	model	to	

learn.	

We	will	investigate	if	a	successfully	trained	model	can	provide	more	biological	insights	than	

what	is	already	known	from	model-based	approaches.	For	example,	if	it	will	be	able	to	learn	

the	 reasons	 behind	 different	 behaviors	 across	 the	 chromosome,	 like	 chromosome	 19’s	

distinct	patterns	than	the	rest	of	the	genome.	To	analyze	such	a	question,	we	will	investigate	

if	adding	 the	sequence’s	positional	 information	as	an	 input	 feature	 to	 the	network	would	

increase	 the	 predictive	 power	 or	 not.	 Next	 question	 to	 address	 is	 the	 effect	 of	 the	 input	

sequence	length.	Since	hotspots	vary	in	length,	an	important	question	to	examine	is	the	effect	

of	the	input	sequence	length	on	the	network’s	learning.	

We	will	investigate	if	introducing	a	bias	in	the	train/validation	splits	influences	the	model’s	

performance.	We	introduce	such	a	bias	in	different	ways.	First,	we	will	investigate	the	effect	

of	 training	a	model	with	sequences	 that	are	non-randomly	sampled,	 for	example	 training	

with	sequences	mostly	from	the	extremities	of	the	chromosome	and	testing	on	the	examples	

coming	from	the	mid-sections.	This	parallels	the	biological	knowledge	that	hotspots	occur	

more	towards	the	telomeres.	We	will	also	contrast	the	difference	between	a	total	random	

sampling	of	the	train/validation	set	versus	sampling	from	each	chromosome	independently.	

This	strategy	preserves	the	exact	train/validation	ratios	per	chromosome.	

38

Finally,	because	of	the	biological	importance	of	DNA	motifs,	we	explored	extracting	the	learnt	

motif	by	the	network	by	investigating	the	method	provided	by	Alipanahi	et	al.	(Alipanahi	et	

al.,	2015)	versus	simply	visualizing	the	CNN	weights	directly.	

	 	

39

Chapter 3 Methods

3.1	 Used	Dataset	

The	 dataset	 we	 used	was	 generated	 using	 the	 SSDS	method	 from	 Pratto	 and	 colleagues	

(Pratto	 et	 al.,	 2014)	 (NCBI	 Accession:	 GSE59836).	 It	 targets	 the	 DMC1	 protein	 in	 five	

unrelated	male	 individuals.	The	data	 is	made	publicly	available	by	the	authors	 in	a	“.bed”	

format	file.	This	format	is	widely	used	to	store	information	about	genomic	intervals.	It	must	

contain	at	 least	 four	columns.	The	 first	 column	contains	 the	chromosome	 ID.	Second	and	

third	 columns	 define	 the	 interval’s	 start	 and	 end.	 The	 remaining	 one	 or	 more	 columns	

describe	 target	 values	 for	 the	model.	The	 provided	 .bed	 file	was	 derived	 from	 the	 peak-

calling	of	the	SSDS	experiment.	DMC1	SSDS	is	a	good	proxy	for	the	frequency	of	hotspots,	

despite	that	the	count	at	a	specific	hotspot	can	be	affected	by	other	factors	as	well	such	as	

ssDNA	intermediates	life	cycle	(Pratto	et	al.,	2014).	These	individuals	have	different	PRDM9	

alleles.	 Two	 are	 homozygous	𝑃𝑅𝐷𝑀9%	 allele	 (referred	 to	AA1	 and	AA2	 individuals),	 two	

heterozygous	 𝑃𝑅𝐷𝑀9%	 and	 𝑃𝑅𝐷𝑀9$ 	 alleles	 (AB1	 and	 AB2	 individuals)	 and	 one	

heterozygous	𝑃𝑅𝐷𝑀9%	and	𝑃𝑅𝐷𝑀9! 	alleles	(AC	 individual).	The	dataset	provides	a	high-

resolution	map	of	meiotic	hotspots.	It	identifies	about	39,000	hotspots	per	individual,	about	

double	the	number	found	in	mice	by	the	same	research	group	(Brick	et	al.,	2012).	The	signal	

strength	 was	 much	 higher	 on	 sex	 chromosomes	 than	 on	 autosomes.	 In	 autosomal	

chromosomes,	 the	 counts	 varied	 in	 a	 range	 that	 is	 3	 orders	 of	 magnitude	 between	 the	

weakest	and	strongest	signals.	There	are	about	100	hotspots	having	stronger	signals	than	

any	previously	known	hotspots.	The	study	mapped	the	SSDS	result	to	the	hg19	reference	

genome,	and	therefore	we	used	this	human	reference	genome	to	build	the	DNA	sequence	of	

hotspots.	The	dataset	also	provides	extra	information,	for	example	AA	hotspots,	which	is	the	

merging	of	the	hotspots	AA	and	AB	individuals.	

3.2	 Software	

Machine	learning	development	process	is	still	a	work	in	progress,	with	a	lot	of	missing	best	

practices.	For	example,	Gartner,	a	leading	research	and	consulting	company,	foresees	that	

40

85%	of	artificial	intelligence	projects	will	not	be	successful	for	a	variety	of	reasons	(Gartner	

Says	Nearly	Half	of	CIOs	Are	Planning	 to	Deploy	Artificial	 Intelligence,	n.d.),	 including	data	

problems	such	as	bias	or	because	of	 the	algorithms.	This	problem	 in	 the	 industry	 is	 also	

present	 in	 academia,	 with	 one	 notable	 side-effect	 known	 as	 the	 reproducibility	 crisis	 in	

machine	learning.	Therefore,	a	significant	effort	in	the	project	was	put	into	robust	software	

development.	 One	 end	 goal	 was	 to	 increase	 automation	 for	 the	 project,	 allowing	 faster	

experiment	cycles	and	more	time	and	 flexibility	 for	results	analysis.	Other	goals	 included	

increasing	the	ease	of	reproducibility	and	code	reuse	in	future	projects.	The	goal	of	being	

able	to	decrease	the	time	between	two	consecutive	experiments	was	especially	important,	

as	one	of	the	initial	goals	was	to	build	a	custom	dataset	based	on	a	collection	of	bed	files	in	a	

user-friendly	manner.	We	based	the	software	design	on	the	principle	of	separating	the	code	

from	the	experiment	configuration.	This	means	that	the	code	will	not	define	any	values	or	

constants;	these	are	defined	in	external	files.	This	separation	means	that	the	same	code	can	

be	reused	in	multiple	different	projects,	and	reproducing	an	experiment	requires	only	the	

configuration	files	(and	of	course	using	the	same	version	of	the	code,	which	can	be	kept	track	

of	using	different	approaches:	for	example,	we	can	use	a	commit	hash	sha	if	the	code	is	kept	

track	of	using	a	git-based	system).	In	this	context,	we	developed	two	sets	of	tools.	The	first	

set	 of	 tools	 is	 related	 to	 model	 training.	 This	 includes	 a	 tool	 for	 creating	 deep	 learning	

suitable	datasets	out	of	 one	or	more	bed	 files	 and	another	 to	 train	 a	model	 according	 to	

training	parameters.	We	also	defined	some	supportive	tools	for	the	scientific	work	to	help	

with	drawing	conclusions.	These	supportive	tools	are	for	dataset	exploratory	data	analysis	

and	model	results	exploration.	We	go	through	these	tools	in	the	following	sections.	

3.2.1 Dataset Explorer

The	aim	of	this	tool	is	to	increase	the	user’s	understanding	of	the	input	“.bed”	dataset.	This	

task	can	help	with	hypothesis	generation	and	 refinement.	The	 tool	 shows	some	statistics	

about	the	dataset,	such	as	how	many	intervals	there	are	overall	and	the	cumulative	count	of	

the	interval’s	length.	For	datasets	for	multi-task	models	(i.e.,	defining	multiple	outputs	for	

each	genomic	interval),	the	correlation	of	outputs	is	displayed	as	well.	The	tool	is	made	of	

two	parts.	The	first	one	is	a	script	that	analyses	the	input	file	and	saves	the	results	of	the	

41

analysis.	 Second	 is	 a	 dashboard	 to	 display	 the	 results	 of	 the	 analysis.	 The	 reason	 for	

separating	the	analysis	from	the	display	is	to	avoid	recomputing	the	analysis	every	time	the	

tool	is	used.	

3.2.2 Dataset Builder

The	Dataset	 Builder	 tool	 ensures	 that	 the	 file	 is	 self-contained.	 It	will	 save	 the	 dataset’s	

metadata	entries,	such	as	creation	date,	information	about	the	conversion	between	the	bp	

and	its	numerical	encoding.	It	also	enforces	saving	a	separate	testing	dataset,	which	should	

not	be	used	until	the	final	stages	of	the	project.	

Bed	file	data	is	not	suitable	for	direct	use	with	ML	models.	One	reason	is	that	the	intervals	

do	not	have	a	fixed	length,	and	most	machine	learning	models	cannot	handle	such	variable	

length	inputs.	Therefore,	this	tool	converts	the	input	bed	files	into	a	format	that	is	suitable	

for	ML.	The	tool	expects	to	be	a	tab-separate-value	“.tsv”	format	(“.bed”	files	are	“.tsv”	based),	

containing	at	least	all	4	mandatory	columns.	

3.2.2.1	Negative	Examples	

Another	problem	with	bed	files	is	that	they	define	only	positive	intervals.	We	cannot	use	the	

control	data	provided	by	Pratto	et.	al	(input	DNA)	to	define	negative	examples	as	these	data	

only	measure	noise	in	the	experiment,	as	this	is	generally	a	sample	that	has	been	cross-linked	

and	 sonicated	 but	 not	 immuno-precipitated.	 In	 our	 case,	 negative	 examples	 are	 all	 the	

remaining	regions	of	the	genome.	However,	an	ML	model	also	needs	a	negative	class	in	order	

to	 learn	 the	 task.	Thus,	 the	 tool	will	 sample	negative	examples.	The	sampling	of	negative	

examples	is	not	totally	random,	rather,	we	control	it	to	be	within	a	certain	distance	from	the	

nearest	positive	example.	The	tool	can	save	multiple	negative	examples	based	on	different	

ranges	from	the	positive	regions.	

There	 are	 more	 requirements	 for	 the	 negative	 examples.	 A	 negative	 example	 must	 not	

overlap	with	 a	 positive	 example	 interval	 as	 defined	 in	 the	 original	 bed	 file,	 and	 not	 the	

positive	 example	 defined	 in	 the	machine	 learning	 dataset.	 This	 distinction	 is	 important,	

because	 there	may	 be	 instances	where	 the	 original	 interval	 is	 longer	 than	 the	 sequence	

42

length	provided	to	the	tool.	This	risks	a	stretch	of	a	positive	sequence	that	may	end	up	as	a	

negative	example.	

Another	requirement	is	that	we	need	to	control	the	number	of	generated	negative	examples.	

The	tool	can	accept	a	direct	number	of	negative	examples	to	generate,	or	a	percentage	of	the	

positive	 examples,	 or	 it	 can	 automatically	 balance	 the	 number	 of	 negative	 and	 positive	

examples	to	be	closely	equal.	The	percentage	option	is	useful	for	multiple-output	datasets,	

where	there	are	a	lot	of	negative	examples	per	output	indirectly	defined	in	the	dataset.	This	

happens	when	a	positive	interval	in	one	output	is	negative	for	some	of	the	other	outputs.	So	

adding	a	certain	number	of	negative	sequences	for	all	outputs	may	be	desired.	

3.2.2.2	Separating	SubDatasets	by	Chromosome	

For	 both	 training	 and	 testing	 datasets,	 each	 chromosome’s	 data	 is	 saved	 separately.	 The	

reason	behind	this	decision	is	that,	in	many	instances,	the	behavior	of	chromosomes	could	

be	different,	such	that	separating	the	data	of	each	chromosome	can	help	with	designing	more	

biologically	relevant	experiments.		

3.2.2.3	HDF5	Dataset	

The	 final	output	of	 this	 tool	 is	an	HDF5	 file.	The	aim	of	 the	HDF5	 format	 is	 to	contain	all	

needed	information,	which	allows	enough	flexibility	for	later	stages	of	the	software.	HDF5	

files	are	binary	files,	with	a	structure	similar	to	that	of	a	folder	organization	on	a	hard	drive.	

One	advantage	of	HDF5	files	is	that	they	appear	as	a	single	file	for	the	operating	system,	but	

internally	 they	 can	 host	multiple	 datasets	 and	 their	metadata.	 The	metadata	 is	 a	 python	

dictionary	saved	inside	the	HDF5	file.			

The	root	directory	of	the	HDF5	file	contains	two	folders,	one	for	training	data	and	another	

for	the	testing	data.	Each	folder	will	contain	the	data	separated	by	chromosome.	We	separate	

each	chromosome’s	data	into	three	HDF5	datasets.	The	first	one	contains	the	model’s	input,	

which	is	an	integer	encoded	DNA	sequence.	Second	dataset	is	the	model’s	output.	The	third	

table	contains	some	metadata	about	the	examples.	For	example,	it	includes	the	start	and	end	

indexes	for	both	the	original	positive	region	and	that	of	the	ML	dataset.	

43

3.2.3 Model Trainer

Once	we	generated	the	HDF5	dataset,	it	is	ready	for	modeling.	What	comes	next	are	scripts	

to	load	and	prepare	the	data	from	the	HDF5	(Dataloader)	and	the	model’s	training	loop.	They	

can	 work	 in	multiple	 different	 ways,	 depending	 on	 the	 configurations	 we	 passed	 to	 the	

scripts.	

3.2.3.1	Dataloader	Module	

The	 dataset	 configuration	 file	 includes	 information	 such	 as	which	 outputs	 to	 use	 for	 the	

model	(An	HDF5	dataset	can	define	multiple	outputs,	however,	we	may	decide	to	use	only	a	

subset	of	these).	Note	that	discarding	an	output	would	not	remove	its	positive	intervals	from	

the	dataset,	it	will	still	be	present	during	the	training.	

It	also	contains	the	training	and	validation	ratios	and	the	possibility	of	setting	a	random	seed.	

The	dataset-loader	will	also	take	extra	configurations.	For	example,	it	can	create	the	reverse-

complement	of	the	sequences	and	pass	them	to	the	model	as	a	second	input,	which	is	the	

most	 widely	 used	 approach	 in	 literature.	 The	 dataloader	 can	 also	 accept	 other	 custom	

transformations	to	the	input,	as	long	as	we	define	them	as	a	python	function.	

Another	input	that	the	data-loader	can	create	is	the	embedding	of	the	genomic	location	of	

the	 sequence.	This	 is	 represented	by	a	one-hot-encoded	vector	 for	 the	 chromosome,	 and	

another	value	encoding	the	normalized	location	between	0	and	1	over	the	chromosome.	

Other	necessary	parameters	are	defined	in	the	configurations	as	well,	like	the	model’s	batch	

size.	

This	module	returns	a	dictionary	containing	the	training	examples	by	chromosome.	The	next	

stage	 of	 the	 pipeline	will	 split	 the	 dataset	 into	 training	 and	 validation	 datasets.	 The	 tool	

supports	multiple	ways	to	split	the	data.	First	one	is	“Whole	Chromosome	Shuffle”,	where	we	

shuffle	each	chromosome	independently	then	we	sample	the	training	and	validation	set.	The	

second	strategy	is	“Whole	Genome	Shuffle”,	where	we	shuffle	the	dataset	as	a	whole,	then	we	

create	the	splits.	This	can	lead	to	a	slight	imbalance	in	terms	of	seeing	examples	from	specific	

chromosomes,	 especially	 the	 smaller	 ones.	 Third	 strategy	 is	 “Partial	 Chromosome	

44

Contiguous”	 (figure	 3.1),	where	we	 split	 the	 of	 each	 chromosome	 into	 three	 equal	 parts	

without	 shuffling.	This	means	 that	 at	 each	 fold,	 the	model	would	not	 see	one	 contiguous	

portion	 of	 all	 the	 chromosomes.	 For	 example,	 in	 the	 fold	where	 the	 validation	 set	 is	 the	

middle	fold,	the	model	will	be	trained	only	on	extremities	data,	and	would	be	tested	over	the	

examples	 that	 are	 closer	 to	 the	 centromere.	 The	 final	 strategy,	 “Partial	 Chromosome	

Contiguous	 Alternate”	 (Figure	 3.2)	 is	 very	 similar	 to	 the	 previous	 one,	 except	 that	 we	

alternate	the	validation	set	for	each	chromosome.	For	example,	in	the	first	fold	we	validate	

on	part	1	of	 chromosome	1,	part	2	of	 chromosome	2,	part	3	of	 chromosome	3,	part	1	of	

chromosome	4	and	so	on.	

Figure	3.1 The	strategy	for	training	on	whole	contiguous	sections	of	chromosomes.	In	each	

fold,	the	same	region	is	kept	constant	across	all	chromosomes.	Note	that	these	boundaries	are	

just	for	illustration,	in	reality	since	the	split	is	done	by	an	equal	amount	of	examples,	the	

middle	section	is	much	larger	

45

Figure	 3.2 The	 strategy	 for	 training	 on	 whole	 contiguous	 sections	 of	 chromosomes,	 while	

alternating	these	regions	from	one	chromosome	to	the	next.	Note	that	these	boundaries	are	just	

for	illustration,	 in	reality	since	the	split	 is	done	by	an	equal	amount	of	examples,	the	middle	

section	is	much	larger	

After	the	split,	we	shuffle	the	resulting	dictionary	to	avoid	any	bias	coming	from	training	the	

data	in	order.	The	tool	also	supports	K-Fold	cross	validation,	in	which	case	the	training	data	

will	be	split	into	k	chunks,	and	the	validation	set	will	alternate	across	these.	The	tool	creates	

an	 extra-validation	 set	 as	 well,	 other	 than	 the	 one	 used	 in	 early	 stopping.	 This	 extra	

validation	 set	 will	 be	 referred	 to	 as	 validation2	 (Sebastien	 Lemieux,	 personal	

communication).	If	the	configuration	file	defines	the	problem	as	a	binary	classification,	the	

dataset	builder	will	cast	the	outputs	into	a	binary	format,	if	not	they	are	left	as	is.	

46

3.2.3.2	Model	Training	

Once	we	construct	the	dataset,	the	next	phase	in	the	pipeline	is	to	fit	a	model	to	the	data.	Any	

Keras	 model,	 the	 Python	 deep	 learning	 Application	 Programming	 Interface	

(https://keras.io/)	model	 is	 currently	 supported;	 however,	 the	 tool	 can	 generate	 a	 deep	

learning	model	based	on	the	passed	configurations.	The	current	function	always	forces	the	

first	layer	to	be	a	CNN,	acting	as	a	PWM	motif	scanner.	The	model	creation	also	handles	extra	

passed	inputs.	For	example,	it	will	share	the	initial	CNN	layer	if	the	model	takes	the	reverse	

complement	sequence.	In	the	case	of	passing	the	genomic	coordinate	location	as	an	input	

feature,	a	small	embedding	layer	will	be	added	after	the	one-hot-encoded	chromosome	ID	

vector.	Next,	it	can	optionally	add	more	CNN	layers,	optional	GRU	layers,	and	then	at	least	

one	fully	connected	hidden	layer	before	reaching	the	output	layer.	The	configuration	file	also	

defines	the	activation	functions,	and	the	loss	function	and	custom	weighing	the	loss	for	each	

output.	It	also	defines	an	early-stop	patience,	which	is	the	number	of	training	epochs	without	

improvement	 over	 the	 validation	 set	 before	 we	 halt	 the	 training.	 We	 will	 refer	 to	 the	

validation	set	used	for	early-stopping	as	the	“early-stopping	validation	set”.	

The	final	part	of	the	training	pipeline	is	the	training	and	evaluation	scripts.	This	part	takes	

the	already	created	dataset	and	instantiated	model	and	will	fit	the	model	to	the	data.	With	K-

fold	validation,	 it	 is	possible	 to	 launch	 training	all	 folds	 in	parallel	using	multiprocessing.	

However,	it	is	important	to	be	sure	that	all	folds	will	fit	in	memory.	The	script	has	integrated	

support	for	MLFlow	(https://mlflow.org/).	MLFlow	tracks	the	experiment’s	results	and	the	

model’s	artifacts.	The	model	trainer	reports	to	MLFlow	each	epoch’s	performance.	The	tool	

supports	an	optional	early	stop	on	validation,	as	well	as	MC-Dropout	evaluation.	In	the	MC-

Dropout	evaluation,	we	predict	the	whole	dataset	n	times	(n	is	defined	in	the	configuration	

files)	with	the	dropouts	turned	on.	Once	we	train	the	model,	the	script	can	optionally	run	an	

evaluation	script.	The	evaluation	script	is	going	to	predict	all	examples	(training,	early-stop-

validation	and	the	validation2	set)	and	will	save	the	output	probability	of	the	examples.	It	

can	also	save	the	trained	model	for	further	inspection.	For	example,	we	can	inspect	the	learnt	

motifs	by	the	first	convolution	layer.	The	training	configurations	are	also	saved	as	an	artifact	

in	MLFlow.	

47

3.2.4 Models Comparisons

This	tool	compares	multiple	models	and	performance.	The	tool	is	a	dashboard	that	displays	

different	metrics	of	each	model.	Like	in	the	model	performance	tool,	this	tool	compares	the	

different	models	by	the	performance	over	the	whole	dataset,	and	by	chromosome.	Since	the	

choice	of	the	validation2	dataset	is	not	random,	this	means	that	all	experiments	evaluated	

over	 validation2	 are	 tested	 over	 the	 same	 examples.	 The	 tool	 currently	 supports	 binary	

models,	computing	the	following	metrics:	accuracy,	precision,	recall,	sensitivity,	specificity,	

area-under-curve	(AUC)	and	F1	score.	

3.2.5 Predictions Visualization Tool

This	 module	 is	 a	 web	 browser-based	 explorer	 of	 the	 predictions	 of	 the	 model	 per	

chromosome.	We	built	 the	 tool	using	 the	bokeh	 library,	 and	 it	 takes	a	model’s	prediction	

along	the	HDF5	dataset	and	plots	the	performance	metric	as	bar	plots	superimposed	on	each	

chromosome’s	layout.	The	tool	draws	the	chromosome’s	ideogram	layout	with	the	cytobands	

for	easier	visual	recognition	of	the	region.	

3.2.6 Motif Extraction

The	first	convolution	layer	of	a	CNN	model	applied	to	DNA	sequences	can	be	interpreted	as	

a	PWM.	There	are	multiple	ways	to	interpret	the	learned	motif.	The	straight-forward	way	is	

to	inspect	the	convolution	weights	directly.	The	tricky	part	about	this	approach	is	that	the	

filters	include	negative	numbers,	which	are	not	straight	forward	to	interpret.	First	option	for	

handling	negative	values	is	to	just	ignore	the	negative	numbers	and	rely	on	the	fact	that	if	we	

use	 a	 ReLU	 activation,	 such	 negative	 numbers	 are	 not	 passed	 to	 the	 subsequent	 layers.	

Another	approach	to	explore	is	the	method	introduced	by	Alipanahi	et	al.	(Alipanahi	et	al.,	

2015).	In	this	approach,	we	pass	the	convolution	filter	over	the	dataset	(the	referenced	work	

used	the	training	set),	and	extract	locations	with	high	activation.	Then	we	perform	a	post-

hoc	multi-sequence-alignment	over	these	extracted	sequences	in	order	to	deduce	the	learnt	

motif.	To	implement	this	method,	we	created	a	keras	model	with	a	single	convolution	layer,	

and	we	passed	the	learnt	weights	to	this	new	model.	After,	we	predicted	the	training	dataset,	

and	looked	at	the	activation	map,	which	is	the	layer’s	output	after	the	activation	function.	We	

48

extracted	all	the	positions	that	were	2	standard	deviations	away	from	the	mean,	and	then	we	

used	the	index	of	positions	with	a	positive	activation	and	extracted	its	DNA	sequence	from	

the	 input	 example.	We	 accumulated	 all	 the	 activations	 of	 the	 training	 examples	 then	we	

performed	 a	 multiple-sequence-alignment	 using	 the	 biopython	 package.	 We	 display	 the	

results	using	sequence	 logos	(Schneider	&	Stephens,	1990),	where	the	numerical	value	of	

each	 nucleotide	 is	 replaced	 by	 a	 letter	 that	 has	 a	 height	 proportional	 to	 the	 numerical	

magnitude.		

3.3	 Experiments	

The	 goal	 of	 the	 experiments	 is	 to	 test	 our	 hypotheses	 to	 assess	 both	 the	 biological	 and	

informatics	questions.	The	informatics	questions	are	the	benefits	of	using	longer	or	shorter	

sequence	 lengths,	 and	 which	 dataset	 shuffling	 approaches	 yielded	 better	 results	 and	

whether	using	the	genomic	location	of	the	sequence	can	increase	a	model’s	performance.	

First,	we	ran	a	hyperparameter	search	to	find	the	best	model	for	each	dataset.	We	have	used	

the	Google	cloud	hyperparameter	optimization	tool,	which	uses	a	Bayesian	algorithm.	We	

have	run	the	search	for	300	models,	running	a	maximum	of	3	trials	in	parallel.	Then,	we	used	

the	 best	 hyperparameters	 of	 the	 AA	 allele	 model	 to	 investigate	 the	 effect	 of	 different	

questions	on	the	hypothesis.	The	structure	of	the	model	is	shown	in	figure	3.3.	Each	question	

was	considered	an	experiment.	Launching	the	experiments	was	done	using	bash	scripts.	The	

main	experiment	that	was	done	was	training	the	models	of	each	dataset	of	the	4	high-quality	

individuals	(AA1,	AA2,	AB1,	AC)	using	3	different	input	sequence	lengths	(800	bp,	2000	bp	

and	3500	bp).	We	decided	to	use	these	3	sequence	lengths	based	on	three	criteria.	First,	we	

found	 in	 the	 literature	 that	often,	 the	 sequence	 lengths	were	 less	 than	1kb,	 therefore	we	

included	one	sequence	length	to	be	in	that	range.	Second,	the	established	average	of	hotspots	

size	is	between	1.5	and	2kbp	in	our	dataset,	so	we	used	the	upper	limit.	Third,	after	exploring	

the	dataset,	almost	99%	of	the	examples	were	less	than	3500bp.	We	included	this	value	to	

inspect	whether	including	this	longer	sequence	towards	the	extremity	of	the	hotspot	would	

increase	the	performance	or	not.	For	each	of	these	datasets,	we	applied	the	four	different	

data	 splitting	 strategies	 described	 above	 (Whole	 chromosome,	 shuffled	 whole	 genome,	

shuffled	chromosomes	and	contiguous	chromosome)	and	switched	on	using	the	sequence	

49

genomic	 location.	Each	model	was	 trained	on	a	3-fold	cross	validation	approach,	and	 the	

performance	of	each	fold	was	saved	as	well	as	the	validation	set.	The	resulting	effort	was	

training	4	x	3	x	4	x	2=	92	experiments,	and	each	experiment	had	3	models,	one	per	 fold,	

resulting	in	an	evaluation	of	276	models.	The	complexity	of	managing	such	a	large	number	

of	experiments	and	models	was	eased	by	the	developed	software	and	open-source	libraries	

used,	such	as	MLFlow	for	experiment	tracking.	We	based	model	comparison	on	the	average	

performance	of	a	3-fold	cross	validation.	

Figure	3.3	The	final	model	architecture	consists	of	a	main	input	that	represents	the	one-hot-

encoded	DNA	sequence	and	its	reverse	complement.	Both	representations	are	scanned	

through	the	same	convolution	layer	and	their	respective	activation	maps	are	added	together.	

An	optional	second	input	that	represents	the	sequence’s	input	is	turned	on	only	for	the	subset	

of	experiments	where	we	evaluate	the	advantage	of	showing	the	model	this	feature.	In	that	

case,	this	input	is	concatenated	to	that	of	the	convolution	filters,	and	then	they	proceed	to	the	

fully	connected	layers.	A	final	layer	with	a	sigmoid	activation	function	outputs	the	

classification	of	the	example.	

	

50

Chapter 4 Results

4.1	 Exploratory	Data	Analysis	

Exploring	the	dataset,	generated	using	the	SSDS	method	from	Pratto	and	colleagues	(2014),	

has	provided	 important	 information	 that	guided	the	project.	AA	 individuals	shared	about	

89%	of	the	hotspots	 locations,	and	they	shared	88%	of	the	hotspot	 locations	with	the	AB	

individuals	while	sharing	only	43%	with	the	AC	individual.	Inspecting	the	target	columns’	

correlation	(Figure	4.1)	verified	that	the	individual	with	the	C	allele	(individual	AC)	had	less	

overlap	 with	 the	 remaining	 individuals.	 Individual	 AB2	 had	 much	 lower	 correlation	

strengths	(around	half	the	strength)	to	other	columns	when	compared	to	AB1	correlation’s	

strength	to	the	same	other	columns.	Even	correlation	between	AB1	and	AB2	was	lower	than	

AB1’s	correlation	with	AA1	and	AA2,	which	was	not	expected	from	individuals	with	the	same	

PRDM9	alleles.	After	inspecting	the	number	of	hotspots	per	individual	(Figure	4.2),	it	was	

clear	 that	AB2	was	off	distribution	as	 it	had	a	very	 low	count	of	hotspots.	Therefore,	we	

decided	to	discard	this	individual	from	the	modeling	phase.	Individual	AB1	had	the	highest	

intersection	with	allele-A	dependent	hotspots	(0.9	correlation).	

The	other	important	conclusion	that	came	from	the	exploratory	data	analysis	was	related	to	

deciding	the	input	sequence	lengths	for	the	deep	learning	models.	First,	inspecting	the	length	

of	hotspots	per	chromosome	revealed	that	despite	the	presence	of	very	long	hotspots,	the	

average	size	was	similar	(Figure	4.3).	Further	investigations	over	the	cumulative	distribution	

(Figure	4.4)	showed	that	about	99%	of	the	dataset	had	a	sequence	length	of	3537	bps.	We	

concluded	that	a	maximum	length	of	3500	should	be	enough	to	evaluate	 the	effect	of	 the	

input	sequence	length	to	the	model.	

51

Figure	4.1 Correlation	heatmap	between	different	individuals	in	the	dataset.	We	can	see	that	

heterozygous	 individual	 AC	 (row/column	 AC_hotspots	 in	 the	 figure)	 is	 slightly	 negatively	

correlated	with	the	rest	of	the	individuals.	Allele-C	dependent	hotspots	(C_hotspots	entry	in	the	

heatmap)	are	highly	negatively	correlated	with	the	rest	of	 the	non	AC	entries.	Note	that	we	

discarded	AB2	individuals	due	to	its	outlier	number	of	hotspots	

52

Figure	4.2	Number	of	hotspots	per	individual.	Note	the	low	count	for	individual	AB2.	

Figure	4.3	 	Boxplots	of	hotspot	 lengths	per	chromosome.	Some	outliers	with	hotspot	 lengths	

reaching	over	20kbps	exist.	Chromosome	X	has	the	highest	number	of	outliers.	

53

Figure	 4.4	 	 Cumulative	 distribution	 of	 hotspot	 lengths.	 The	 99th	 percentile	 is	 equal	 3537.9	

basepairs	

4.2	 Hyperparameters	Search	

The	best	model	 in	terms	of	architecture	was	on	the	simpler	side	of	 the	search	space.	The	

input	convolution	filter	size	was	30bps	and	using	a	recurrent	layer	did	not	give	an	advantage,	

so	we	opted	for	the	simpler	model	using	only	two	convolution	layers.	Providing	the	model	

with	both	the	input	and	its	reverse	complement	at	once	seemed	to	accelerate	the	learning	

process,	although	passing	the	reverse	complement	sequences	as	extra	examples	still	yielded	

comparable	results.		

The	 final	 model	 used	 to	 evaluate	 the	 performance	 over	 different	 datasets	 had	 two	

convolution	layers	followed	by	two	fully	connected	hidden	layers.	The	first	convolution	layer	

made	of	120	convolution	filters	of	size	30	each.	Following	layer	had	a	filter	size	of	5,	and	the	

fully	connected	layers	had	250	and	400	neurons	respectively.		

4.3	 Experiments	Results	

There	are	two	main	experiments	in	our	study.	The	first	one	is	to	explore	the	best	parameters	

to	 generate	 examples	 on	which	 to	 train	 a	model.	 These	 parameters	 are	 the	 input	model	

sequence,	length,	the	best	train/test	split	strategy	and	finally	if	providing	the	model	extra	

information	about	the	genomic	location	of	the	input	sequence	would	improve	its	predictive	

54

power.	 The	 second	 experiment	 is	 to	 train	 a	 model	 on	 AA1	 individual	 using	 these	 best	

parameters	and	to	investigate	what	the	model	learns.	As	a	side	note,	we	ran	the	pipeline	to	

the	remaining	individuals	(AA2,	AB1	and	AC)	and	obtained	some	preliminary	results.		These	

were	close	in	performance	to	the	reported	results	of	AA1,	with	variations	are	in	the	vicinity	

of	2%).		

4.3.1 Overall Results

We	evaluated	the	three	parameters	over	two	sets.	The	first	set	is	the	validation	set	that	was	

used	for	early-stopping	and	the	second	is	a	test	set	(referred	to	as	test2,	to	differentiate	it	

from	the	held-out	 test	set).	The	 test2	set	 is	every	10th	example	 in	 the	dataset	before	 the	

train/validation	split.	Therefore,	test2	examples	are	spread	over	the	genome	with	roughly	

with	the	same	locations	of	the	original	dataset.	All	possible	permutations	of	these	parameters	

were	used,	and	 for	each	of	 these	sets	we	 trained	a	3-fold	cross-validation	and	report	 the	

average	of	these	folds.		

4.3.1.1	By	Sequence	Length	

Aggregating	 the	 results	 by	 the	 sequence	 length	 revealed	 the	 underperformance	 of	 the	

800bps	model	with	respect	to	the	other	two.	The	800bps	models	still	learned	a	lot	about	the	

task,	achieving	on	average	about	86%	in	terms	of	accuracy	in	both	early-stop-validation	and	

test2	 sets.	More	 importantly,	 800bps	models	 achieved	an	average	of	 a	 little	over	90%	 in	

recall,	which	means	 it	 learned	to	recognize	most	of	 the	hotspot	sequences.	However,	 it	 is	

visibly	worse	than	both	other	sets	of	models	(Figures	4.5	and	4.6).	Table	4.1	shows	the	best	

performance	of	a	sequence	length	on	the	early-stop	validation	step,	with	respect	to	other	

parameters.	The	800	bps	never	shows	up,	with	the	results	being	a	mix	between	2000	and	

3500	 bps.	 A	 similar	 conclusion	 on	 the	 test2	 table	 (table	 4.2)	 can	 be	 achieved.	 The	 one	

important	exception	to	note	is	that	the	shorter	sequences	had	a	better	precision	performance	

(2000	bps	in	early-stop	set	and	800	bps	in	test2	set).	

	

	

55

	

	

4.3.1.1.1 Validation

Table	4.1	Experiments	Winners	on	the	early-stop	validation	set,	averaged	over	all	individuals	

datasets.	The	input	sequence	length	of	800	never	outperformed	the	other	two,	showing	that	

there	 is	 important	 information	 the	 model	 learns	 from	 that	 are	 located	 away	 from	 the	

hotspot’s	center	

fold_fn_name	 chrom_idx	 lowest
loss	

highest
accuracy	 highest AUC	 highest

precision	
highest
recall	

partial chrom contig	 FALSE	 3500bps	 3500bps	 3500bps	 2000bps	 2000bps	
partial chrom contig	 TRUE	 2000bps	 3500bps	 2000bps	 2000bps	 2000bps	
partial chrom contig alternate	 FALSE	 3500bps	 3500bps	 3500bps	 2000bps	 3500bps	
partial chrom contig alternate	 TRUE	 3500bps	 3500bps	 3500bps	 3500bps	 3500bps	
partial chrom shuffled	 FALSE	 3500bps	 3500bps	 3500bps	 3500bps	 3500bps	
partial chrom shuffled	 TRUE	 2000bps	 2000bps	 2000bps	 2000bps	 3500bps	
whole genome shuffled k fold	 FALSE	 3500bps	 3500bps	 3500bps	 2000bps	 3500bps	
whole genome shuffled k fold	 TRUE	 3500bps	 3500bps	 3500bps	 3500bps	 3500bps	

56

Figure	 4.5	 Models	 by	 input	 sequence	 length	 performance	 on	 early-stop	 validation	 set.	 The	

winner	plots	(Left	column)	represent	the	count	of	the	instances	when	a	specific	input	sequence	

length	 outperformed	 the	 other	 two	 when	 they	 had	 the	 same	 other	 two	 parameters.	 Each	

boxplot	represents	the	performance	of	a	set	of	models	with	a	specific	input	length	

57

4.3.1.1.2 Test 2

Table	 4.2	 Experiments	Winners	 on	 the	 test2	 set,	 averaged	 over	 all	 individuals	 datasets.	

Despite	disagreeing	sometimes	with	the	early-stop-validation	set,	they	both	show	that	the	

800bp	input	sequence	never	had	a	higher	performance	than	the	longer	sequences	

fold_fn_name	 chrom_idx	 lowest
loss	

highest
accuracy	 highest AUC	 highest

precision	
highest
recall	

partial chrom contig	 FALSE	 3500bp	 3500bp	 2000bp	 800bp	 3500bp	
partial chrom contig	 TRUE	 2000bp	 2000bp	 2000bp	 800bp	 2000bp	
partial chrom contig alternate	 FALSE	 3500bp	 3500bp	 2000bp	 2000bp	 3500bp	
partial chrom contig alternate	 TRUE	 3500bp	 3500bp	 2000bp	 800bp	 3500bp	
partial chrom shuffled	 FALSE	 3500bp	 2000bp	 2000bp	 3500bp	 2000bp	
partial chrom shuffled	 TRUE	 2000bp	 3500bp	 2000bp	 2000bp	 3500bp	
whole genome shuffled k fold	 FALSE	 3500bp	 3500bp	 3500bp	 2000bp	 3500bp	
whole genome shuffled k fold	 TRUE	 3500bp	 3500bp	 2000bp	 800bp	 3500bp	

58

Figure	 4.6	 	 Results	 on	 test2	 (non-early-stop)	 validation	 set.	 Like	 in	 4.5,	 the	 left	 column	

represents	the	count	of	the	instances	when	a	specific	input	sequence	length	outperformed	the	

other	 two	 when	 they	 had	 the	 same	 other	 two	 parameters.	 Each	 boxplot	 represents	 the	

performance	of	a	set	of	models	with	a	specific	input	length.	Note	that	for	the	loss	plots,	lower	is	

better	but	in	the	remaining	ones,	higher	is	better.	

59

4.3.1.2	By	Train/Validation	Splitting	Function	

The	 next	 parameter	 to	 evaluate	 is	 the	 effect	 of	 the	 train-validation	 split	 scheme	 on	 the	

model’s	 performance.	We	 tested	 four	 strategies.	 First	 strategy	 is	 to	 trains	 on	 contiguous	

regions	 of	 a	 chromosome	 and	 test	 on	 another	 contiguous	 region	 as	 well	 (Partial	

Chromosome	Contiguous).	The	second	strategy	(Partial	Chromosome	Contiguous	alternate)	

is	similar	to	the	first	one,	except	that	we	alternate	the	validation	fold	in	each	chromosome.	

Next	strategy	(Whole	Chromosome	Shuffle)	shuffles	each	chromosome	data	and	do	the	split	

by	 chromosome	 before	 merging	 the	 whole	 dataset	 and	 reshuffling	 again.	 The	 final	 one	

(Whole	Genome	Shuffle)	shuffles	all	the	data,	then	creates	the	split.	

The	results	(table	4.3)	favored	the	whole	genome	split,	which	is	the	classical	way	to	split	the	

dataset.	 One	 interesting	 result	 was	 that	 the	 model	 trained	 on	 the	 contiguous	 regions	

(strategy	 1)	 had	 the	 best	 precision	 on	 the	 early-stop	 validation	 set	 and	 not	 at	 the	 test2	

dataset	(Figures	4.7	and	4.8).	We	analyze	this	difference	in	section	4.3.2	

4.3.1.2.1 Validation

Table	4.3		Experiments	splitting-functions	winners	on	the	early-stop	validation	set,	averaged	

over	all	individuals	datasets.	

seq_len	 chrom_idx	 lowest loss	 highest accuracy	 highest AUC	 highest precision	 highest recall	
800	 FALSE	 Whole Genome Shuffle	 Whole Chrom. Shuffle	 Whole Genome Shuffle	 Partial Chrom. Contig	 Whole Genome Shuffle	
800	 TRUE	 Whole Genome Shuffle	 Whole Genome Shuffle	 Whole Genome Shuffle	 Partial Chrom. Contig	 Whole Chrom. Shuffle	

2,000	 FALSE	 Whole Chrom. Shuffle	 Whole Chrom. Shuffle	 Whole Chrom. Shuffle	 Partial Chrom. Contig	 Partial Chrom. Contig	
2,000	 TRUE	 Whole Genome Shuffle	 Whole Chrom. Shuffle	 Whole Chrom. Shuffle	 Partial Chrom. Contig	 Whole Genome Shuffle	
3,500	 FALSE	 Partial Chrom. Alternate	 Whole Chrom. Shuffle	 Whole Chrom. Shuffle	 Partial Chrom. Alternate	 Partial Chrom. Alternate	
3,500	 TRUE	 Whole Genome Shuffle	 Whole Genome Shuffle	 Whole Genome Shuffle	 Whole Genome Shuffle	 Whole Chrom. Shuffle	

60

Figure	4.7	Results	on	early-stop	validation	set.	For	figure	clarity,	the	functions	were	renamed	

as	 follows:	 function	1	 is	 the	“partial	chrom	contig”	 in	the	table,	 function	2	 is	“partial	chrom	

contig	 alternate”,	 function	 3	 is	 “partial	 chrom	 shuffled”	 and	 function	 4	 is	 “whole	 genome	

shuffled	k	fold”	

	

61

4.3.1.2.2 Test 2

Table	4.4	Experiments	splitting-functions	winners	on	the	test2	set,	averaged	over	all	individuals	

datasets.	

seq_len	 chrom_idx	 lowest loss	 highest accuracy	 highest AUC	 highest precision	 highest recall	
800	 FALSE	 Whole Genome Shuffle	 Whole Chrom. Shuffle	 Whole Chrom. Shuffle	 Whole Genome Shuffle	 Whole Chrom. Shuffle	
800	 TRUE	 Whole Genome Shuffle	 Whole Chrom. Shuffle	 Whole Genome Shuffle	 Partial Chrom. Alternate	 Whole Chrom. Shuffle	

2,000	 FALSE	 Whole Chrom. Shuffle	 Whole Chrom. Shuffle	 Whole Chrom. Shuffle	 Partial Chrom. Alternate	 Whole Chrom. Shuffle	
2,000	 TRUE	 Whole Genome Shuffle	 Whole Genome Shuffle	 Whole Genome Shuffle	 Whole Chrom. Shuffle	 Partial Chrom. Contig	
3,500	 FALSE	 Partial Chrom. Alternate	 Partial Chrom. Alternate	 Whole Chrom. Shuffle	 Whole Chrom. Shuffle	 Partial Chrom. Contig	
3,500	 TRUE	 Whole Genome Shuffle	 Partial Chrom. Alternate	 Whole Genome Shuffle	 Whole Chrom. Shuffle	 Partial Chrom. Alternate	

62

Figure	4.8		Results	on	holdout	(non-early-stop)	validation	set	

4.3.1.3	By	Including	Sequence	Location	

The	final	parameter	is	the	inclusion	of	the	location	of	the	sequence.	The	model	received	a	

one-hot-encoded	 vector	 representing	 the	 chromosome	 ID,	 and	 another	 contiguous	 value	

63

representing	 the	 index	 of	 the	middle-point	 of	 the	 input	 sequence.	 The	 result	 (Table	 4.5)	

shows	that	providing	such	information	slightly	helped	the	model	improve	its	prediction.	One	

interesting	 exception	 was	 that	 the	 partial	 chromosome	 contiguous	 strategy	 performed	

better	without	 showing	 the	 location.	The	 interesting	 thing	 about	 this	 strategy	 is	 that	 the	

model	predicts	sequences	within	locations	that	were	never	seen	in	the	training	dataset.	That	

implies	that	the	model	has	reached	false	hypothesis	about	the	effect	of	such	information.	

	

4.3.1.3.1 Validation

Table	4.5	 	 Experiments	winners	 for	 showing	 sequence	 location,	 evaluated	on	 the	 early-stop	

validation	set,	averaged	over	all	individuals’	datasets.	

seq_len	 fold_fn_name	 lowest loss	 highest
accuracy	 highest AUC	 highest

precision	 highest recall	

800	 partial chrom contig	 Loc not provided	 Loc not provided	 Loc not provided	 Loc provided	 Loc not provided	
800	 partial chrom contig alternate	 Loc provided	 Loc provided	 Loc provided	 Loc provided	 Loc not provided	
800	 partial chrom shuffled	 Loc provided	 Loc provided	 Loc provided	 Loc not provided	 Loc provided	
800	 whole genome shuffled k fold	 Loc provided	 Loc provided	 Loc provided	 Loc not provided	 Loc not provided	

2,000	 partial chrom contig	 Loc not provided	 Loc not provided	 Loc not provided	 Loc provided	 Loc not provided	
2,000	 partial chrom contig alternate	 Loc provided	 Loc provided	 Loc provided	 Loc not provided	 Loc provided	
2,000	 partial chrom shuffled	 Loc provided	 Loc provided	 Loc provided	 Loc provided	 Loc provided	
2,000	 whole genome shuffled k fold	 Loc provided	 Loc provided	 Loc provided	 Loc not provided	 Loc provided	
3,500	 partial chrom contig	 Loc not provided	 Loc not provided	 Loc not provided	 Loc provided	 Loc not provided	
3,500	 partial chrom contig alternate	 Loc provided	 Loc provided	 Loc provided	 Loc provided	 Loc provided	
3,500	 partial chrom shuffled	 Loc provided	 Loc provided	 Loc provided	 Loc provided	 Loc provided	
3,500	 whole genome shuffled k fold	 Loc provided	 Loc provided	 Loc provided	 Loc provided	 Loc provided	

64

Figure	4.9	Results	on	early-stop	validation	set	

	

65

4.3.1.3.2 Test 2

Table	4.6	Experiments	winners	for	showing	sequence	location,	evaluated	on	test2	set,	averaged	

over	all	individuals	datasets	

seq_len	 fold_fn_name	 lowest loss	 highest
accuracy	 highest AUC	 highest

precision	 highest recall	

800	 partial chrom contig	 Loc not provided	 Loc provided	 Loc provided	 Loc provided	 Loc not provided	
800	 partial chrom contig alternate	 Loc provided	 Loc provided	 Loc provided	 Loc provided	 Loc not provided	
800	 partial chrom shuffled	 Loc provided	 Loc not provided	 Loc provided	 Loc provided	 Loc not provided	
800	 whole genome shuffled k fold	 Loc provided	 Loc provided	 Loc provided	 Loc provided	 Loc provided	

2,000	 partial chrom contig	 Loc not provided	 Loc provided	 Loc not provided	 Loc not provided	 Loc provided	
2,000	 partial chrom contig alternate	 Loc provided	 Loc provided	 Loc provided	 Loc not provided	 Loc provided	
2,000	 partial chrom shuffled	 Loc provided	 Loc not provided	 Loc provided	 Loc provided	 Loc not provided	
2,000	 whole genome shuffled k fold	 Loc provided	 Loc provided	 Loc provided	 Loc not provided	 Loc provided	
3,500	 partial chrom contig	 Loc not provided	 Loc provided	 Loc not provided	 Loc provided	 Loc not provided	
3,500	 partial chrom contig alternate	 Loc provided	 Loc provided	 Loc provided	 Loc not provided	 Loc provided	
3,500	 partial chrom shuffled	 Loc provided	 Loc provided	 Loc provided	 Loc provided	 Loc provided	
3,500	 whole genome shuffled k fold	 Loc provided	 Loc provided	 Loc provided	 Loc provided	 Loc not provided	

66

Figure	4.10		Results	on	holdout	(non-early-stop)	validation	set	

4.3.2 Importance of Test2 Set

The	main	motivation	of	using	the	test2	dataset	was	that	since	early-stopping	is	decided	by	

the	performance	over	the	validation	set,	 there	 is	an	indirect	 leakage	in	the	metrics	which	

67

may	lead	to	overoptimistic	performance.	Such	over-optimistic	performance	can	be	observed,	

one	example	is	figures	4.11	and	4.12.	By	contrasting	the	performances	in	these	two	plots,	we	

can	see	that	the	performance	of	the	test2	set	is	worse	than	that	of	the	early-stop	validation	

set.	 Another	 important	 observation	 is	 related	 to	 the	 “Partial	 Chromosome	 Contiguous”	

strategy.	In	the	early-stop	validation	set,	we	can	see	how	the	middle	fold	(where	validation	

was	performed	over	the	middle	fold)	shows	an	increase	in	performance	over	the	two	other	

folds.	However,	such	an	increase	is	not	as	pronounced	in	the	test2	dataset.	

	

68

Figure	4.11		AA1	Dataset,	validation	fold	performance	of	different	splitting	function	

69

Figure	4.12		AA1	Dataset,	test2	fold	performance	of	different	splitting	function	

70

4.3.3 Extracted Motifs

We	worked	on	multiple	ways	to	extract	the	learnt	DNA	motifs	and	contrasted	the	benefits	of	

each.	The	 intuitive	way	was	to	 inspect	 the	convolution	 filters	values	directly.	Although	 in	

many	 instances	 we	 can	 clearly	 see	 the	 learnt	 motifs	 when	 plotting	 them	 as	 logograms,	

interpreting	the	negative	values	 in	the	 filter	was	the	part	 the	needed	the	most	work.	The	

straightforward	interpretation	of	negative	values	 is	to	 ignore	them,	 for	the	simple	reason	

that	we	use	ReLU	as	an	activation	function	and	therefore	the	subsequent	layers	will	not	be	

aware	by	these	values	anyway,	meaning	that	they	should	not	contribute	to	the	prediction.	

However,	 closer	 inspection	 showed	some	 interesting	 insights	 that	we	discuss	 in	 the	next	

section	

After	 performing	 the	 multiple-sequence-alignment	 of	 the	 sequences	 that	 activated	 each	

filter,	we	had	a	count	matrix,	and	we	can	interpret	such	an	output	in	many	ways.	The	first	

one	is	the	consensus	sequence	of	all	the	positions,	which	we	display	at	the	top	sub-image	in	

the	motif	 result	 figures	 4.13	 to	 4.20.	We	 also	 used	 the	 traditional	 PWM	 calculations,	 the	

count-matrix,	the	weight-matrix,	the	probability-matrix	and	the	information	matrix.	These	

are	the	third,	fourth,	fifth	and	sixth	subplots	in	the	figures,	respectively.	

In	the	following	figures	showing	the	chosen	learnt	features,	each	figure	is	made	of	6	subplots.	

Each	subplot	is	in	the	logo	form,	constructed	using	the	logomaker	python	library.	

4.3.3.1	PRDM9	

On	a	model	trained	on	the	AA1	individual,	we	ran	our	procedure	and	manually	inspected	the	

results.	 Four	 filters	 (Figures	 4.13,	 4.14,	 4.15	 and	 4.16,	 were	 easily	 recognizable	 just	 by	

looking	to	the	simple	convolution	weights	when	visualized	as	a	logogram	(second	subplot).	

They	represented	the	motif	of	the	𝑃𝑅𝐷𝑀9%	allele.	In	Figure	4.13,	we	can	see	the	Myers	motifs	

starting	at	the	third	position	(index	2	on	the	x-axis).	The	learnt	motif	looks	most	similar	to	

the	weight-matrix	 (subplot	4),	although	 the	most	 interpretable	plot	was	 the	 information-

matrix	(subplot	6).	One	interesting	observation	that	can	be	seen	in	this	figure	is	related	to	

the	negative	weights.	Positions	with	high	negative	values	for	3	basepairs	corresponds	to	a	

very	high	value	of	the	4th	basepair	in	the	information-matrix	plot.	For	example,	at	index	5,	

71

the	C	bp	has	a	height	that	is	not	too	different	from	the	ones	before	it,	however	the	3	other	

basepairs	have	a	much	higher	negative	value.	Looking	at	 the	 information	matrix	at	 these	

positions,	we	can	see	that	the	magnitude	of	the	C	is	more	proportional	the	negative	values	

rather	than	to	its	own	positive	value.	This	can	be	a	starting	point	for	further	work	to	inspect	

the	meaning	of	negatively	 learnt	values	 in	 the	convolution	 filters	as	 they	potentially	may	

indicate	high	confidence	from	the	network.	

In	Figure	4.14,	we	can	see	a	filter	where	the	model	has	learned	only	the	first	half	of	the	motif.	

The	region	preceding	the	CCxCC	part	seems	distantly	similar	to	the	ZnF	inferred	sequence	

but	dominated	with	thymine	instead	of	Adenine	or	Cytosine.	Figures	4.13	and	4.16	tell	the	

same	story	but	in	the	reverse	complement	sequences.	

72

Figure	4.13	:	Full	Myer	motif	(PRM9A	allele)	learned	by	the	model	over	the	data	coming	from	

the	AA1	individual	

73

Figure	4.14	Partial	Myer	motif	(PRM9_A	allele)	learned	by	the	model	over	the	data	coming	

from	the	AA1	individual	

74

Figure	4.15	Reverse	complement	full	Myer	motif	(PRM9_A	allele)	learned	by	the	model	over	

the	data	coming	from	the	AA1	individual	

75

Figure	4.16		Reverse	complement	partial	Myer	motif	(PRM9_A	allele)	learned	by	the	model	

over	the	data	coming	from	the	AA1	individual	

76

4.3.3.2	Other	Genomic	Features	

The	 network	 was	 able	 to	 learn	 important	 features	 related	 to	 recombination	 as	 well.	

Interpreting	filters	that	learnt	such	features	is	less	obvious	than	inspecting	the	convolution	

filters,	however	they	become	clearer	by	looking	at	the	information-matrix,	but	even	then,	it	

is	open	for	interpretations.	For	example,	in	Figure	4.17,	we	can	see	that	the	motif	is	encoding	

some	region	 that	 is	 rich	 in	C,	but	 it	 is	 less	 clear	 than	 the	Myers	motif	 convolution	 filters.	

However,	the	information-matrix	hints	to	both	C	and	G	presence	in	those	regions,	despite	

having	the	prominent	A	at	 the	28th	position.	Figure	4.18	shows	that	the	model	has	 likely	

learned	the	same	feature	(because	of	the	prominent	A	present),	however	its	sequences	are	

more	G	rich.	

Figures	4.19	and	4.20	show	that	the	model	seem	to	be	detecting	A	and	T	rich	regions,	which	

could	 be	 poly-A	 regions,	 and	 since	 T	 is	 the	 complement	 of	 A,	 in	 reverse	 complement	

sequences	a	T	detector	is	also	detecting	a	poly-A	regions.	The	filter	in	Figure	4.19	seems	to	

be	 more	 specialized	 in	 the	 poly-A	 while	 Figure	 4.20	 seem	 to	 have	 equally	 leaned	 both	

basepairs.	

77

Figure	4.17		C	and	G	detector	learned	by	the	model	over	the	AA1	individual	

78

Figure	4.18		Another	C	and	G	detector	learned	by	the	model	over	the	AA1	individual	

79

Figure	4.19		Number	of	hotspots	per	individual.	Note	the	low	count	for	individual	AB2.	

80

Figure	4.20		Number	of	hotspots	per	individual.	Note	the	low	count	for	individual	AB2.	

81

4.4	 Model	Predictions	Explorer	

Performance	 metrics	 and	 DNA	 motifs	 provide	 a	 lot	 of	 insights	 about	 the	 model’s	

performance;	however,	they	do	not	give	a	full	picture	about	how	the	model	performed	across	

different	parts	of	the	genome.	We	wanted	to	be	able	to	visualize	such	a	relationship,	which	

can	help	generate	new	hypothesis,	like	for	example	if	there	are	certain	regions	on	a	specific	

chromosome	that	behaved	in	a	peculiar	manner.	For	this	reason,	we	built	a	dashboard	to	plot	

different	model	predictions	overlayed	over	all	chromosomes.	

Figure	 4.21	 contains	 a	 screenshot	 of	 the	 models’	 predictions	 exploration	 tool.	 The	

importance	of	such	a	tool	is	that	it	allows	for	visual	encoding	of	the	model’s	performance	

which	can	lead	to	further	insights	on	top	of	knowing	the	performance	metrics.	The	tool	splits	

the	 results	 by	 chromosome	 and	 provides	 access	 to	 the	 global	 results	 across	 the	 whole	

dataset.	

Figure	4.21	Screenshot	of	the	model’s	predictions	exploration	tool.	

The	 user	 interface	 (UI)	 is	 split	 into	 5	 subsections,	 annotated	 in	 Figure	 4.22.	 Window	 1	

contains	7	dropdown	menus	to	select	which	model/experiment	to	show.	These	dropdowns	

get	the	models	by	the	chromosome	number,	dataset,	input	sequence	length,	folds	splitting	

82

function,	if	the	model	was	provided	the	input	sequences’	genomic	location	and	which	of	the	

3	 folds	 to	 display.	Window	 2	 contains	 the	 main	 results	 of	 the	 examples	 at	 that	 specific	

chromosome,	and	these	examples	are	displayed	on	the	figure	at	their	genomic	coordinate.	

The	x-axis	of	the	result	represents	this	genomic	location.	

Window	2	is	split	to	5	subsections	annotated	in	Figure	4.23.	Part	A	contains	the	x-axis	values,	

which	is	the	genomic	location.	Parts	B	and	C	are	reciprocal	to	each	other.	Part	B	contains	the	

error	bar	plot	of	the	prediction	at	that	location,	while	part	C	contains	the	(1	-	error)	value,	

which	could	be	interpreted	as	the	correctness	of	the	prediction.	The	reason	why	we	included	

both	 is	 due	 to	 two	 reasons.	 First,	 in	 B,	 extremely	 low	 values	 of	 an	 example	 cannot	 be	

distinguished	 from	 regions	 that	 do	 not	 contain	 examples	 at	 all.	 Second,	 since	 there	 are	

regions	 that	 have	 a	 high	 density	 of	 the	 examples	 relative	 to	 the	 plotting	 area	 (like	 the	

telomeres),	it	becomes	difficult	to	spot	good	versus	bad	predictions.	The	bar	plots	in	both	

sections	are	color	encoded	according	to	the	true	labels,	where	blue	means	it	is	a	cold	spot	

and	red	means	a	hotspot.	Section	D	re-encodes	the	true	labels,	but	in	this	section,	we	can	

clearly	see	the	distribution	of	the	examples	along	the	chromosome,	which	is	complementary	

to	 the	 bar	 plots.	 Section	 E	 contains	 a	 color	 encoding	 of	 the	 correctness	 of	 the	 model’s	

prediction.	The	correctness	is	assessed	according	to	the	4	categories	of	a	confusion	matrix,	

which	 are	 true	 positives	 (blue),	 true	 negatives	 (green),	 false	 positives	 (red)	 and	 false	

negatives	(orange).	The	whole	window	has	the	chromosome	cytogenetic	bands	plotted	in	

the	background	with	a	high	transparency	to	allow	a	rough	estimation	of	the	location	of	the	

example.	

Back	 to	 Figure	 4.22,	 pane	 3	 contains	 a	 navigation	 pane	 that	 allows	 zooming	 on	 certain	

locations	 in	 pane	 2,	 which	 helps	 inspecting	 regions	 with	 high	 examples	 density.	 Pane	 4	

contains	the	numerical	performance	summary	of	the	model	on	both	across	the	whole	dataset	

(top	table)	and	on	this	specific	chromosome	(second	table).	Third	and	fourth	tables	isolate	

the	 confusion	 matrices	 across	 the	 whole	 dataset	 and	 this	 specific	 chromosome.	 Both	

confusion	 matrices	 are	 displayed	 twice,	 once	 with	 absolute	 numbers	 and	 another	 time	

normalized	between	0	and	1.	Finally,	pane	5	contains	an	interactive	legend,	where	clicking	

on	a	category	toggles	the	visibility	of	its	corresponding	items	in	window	2.	For	example,	in	

83

Figure	4.23,	the	true	positives	and	true	negatives	were	turned	off	in	pane	E,	showing	only	

misclassified	examples.	

	

	

Figure	4.22		The	UI	is	split	into	5	regions.	Region	1	contains	the	controls	to	select	which	model	

to	display,	region	2	display	the	results,	region	3	allows	zooming	to	specific	regions	on	the	

chromosome,	region	4	contains	the	performance	metrics	across	the	whole	dataset	and	on	that	

specific	chromosome	and	region	5	contains	an	interactive	legend	to	turn	on	and	off	the	

display	of	certain	examples	

	

	

84

Figure	4.23			Details	of	pane	2.	Region	A	contains	the	x-axis	ticks,	which	are	the	genomic	

location.	Regions	B	and	C	contain	the	bar	plots	of	the	error	and	correctness	of	the	prediction	

respectively,	and	these	bar	plots	are	color	encoded	according	to	the	true	label	of	the	example.	

Region	D	contains	the	ground	truth	of	the	example.	Region	E	color	encodes	the	confusion	

matrix	category	of	the	example.	

	

The	tool	allowed	to	understand	better	the	effect	of	 the	sequence	 length	on	predictions.	 It	

showed	 that	 the	sequence	 lengths	specifically	helped	with	reducing	 the	errors	 in	specific	

regions,	 and	 it	 was	 especially	 helpful	 with	 reducing	 false	 negatives.	 In	 Figure	 4.24,	 we	

overlayed	the	results	of	the	same	model	across	all	3	sequence	lengths.	In	the	region	defined	

by	the	red	box,	we	can	see	that	as	the	sequence	length	increases,	the	number	of	errors	in	that	

region	decreases,	with	practically	no	errors	performed	in	this	genomic	region	with	an	input	

sequence	length	of	3500	bps.	

85

Figure	4.24	Preview	of	chromosome	1	on	AA1	dataset	across	all	used	sequence	lengths.	We	can	

notice	inside	the	bold	red	box	that	as	the	sequence	length	increases,	errors	inside	this	region	

decrease	and	these	errors	disappear	at	sequence	length	3500.	

	 	

86

Chapter 5 Discussion, Conclusion and Future Work

In	 this	 project,	 we	 explored	 deep	 learning’s	 capacity	 to	 model	 meiotic	 recombination	

hotspots	from	DMC1	ChIP-seq	data.	The	results	showed	that	this	approach	is	suitable	for	the	

task.	The	model	has	learned	to	contrast	DNA	sequence	classes	and	learned	motifs	that	are	

known	to	be	important	for	the	DSB	creation.	We	have	explored	new	ways	to	construct	our	

models	and	the	effect	of	different	experiment	parameters	we	discuss	in	the	next	sections.	

5.1	 Input	Sequence	

The	first	important	finding	is	that	the	input	sequence	lengths	found	in	the	literature	are	not	

the	best	ones	for	the	task,	and	that	it	is	better	to	base	the	input	sequence	length	based	on	

what	we	already	know	through	biology.	Despite	that	most	of	the	examples	were	identifiable	

through	 showing	 only	 the	 middle	 800	 bps	 of	 the	 sequence,	 a	 significant	 increase	 in	

performance	was	obtained	by	using	longer	sequences.	The	shorter	sequences	still	had	their	

advantages	 though,	 as	 they	had	 a	higher	precision	 and	 less	 computational	 requirements.	

Higher	precision	can	indeed	have	its	important	use-cases,	but	if	false	negatives	are	less	of	an	

issue,	then	this	advantage	can	be	ignored.	For	the	other	computational	benefit	of	using	short	

sequences,	with	the	ever-increasing	computational	performance	of	GPUs	means	that	in	the	

near	future	such	a	concern	will	never	be	a	problem.	Such	an	increase	will	allow	also	to	test	

additional	 architectures.	 For	 example,	 in	 our	 early	 experiments,	we	 have	 tried	 using	 the	

original	transformer	architecture	(Vaswani	et	al.,	2017).	At	the	3500	bps	sequence,	we	could	

not	use	over	 two	attention	heads,	 and	even	 then	we	had	 to	 reduce	 the	batch	 size	 to	 two	

examples	in	order	to	avoid	out	of	memory	errors.	The	performance	was	not	good,	with	an	

accuracy	less	than	60%,	which	is	very	close	to	a	random	baseline	in	balanced	datasets	(50%	

accuracy).	

The	second	finding	is	that	providing	the	model	with	the	sequence	position	can	improve	the	

model’s	 performance.	 However,	 it	 is	 important	 not	 to	 extrapolate	 what	 the	 model	 has	

learned,	i.e.,	to	never	try	to	predict	hotspots	in	chromosomal	regions	the	model	has	never	

seen	before.	We	also	noticed	that	models	trained	solely	on	extremities	of	chromosomes	had	

87

better	recall,	and	this	needs	more	investigation	to	better	understand	the	distinct	predictive	

features	near	the	centromeres.	

5.2	 Dataset	

Our	use-case	was	based	over	just	5	individuals,	which	is	a	very	small	sample	size.	Of	course,	

the	extremely	high	resolution	at	the	bp	level,	and	the	usage	of	the	reference	genome	make	

up	for	these	and	we	can	draw	conclusions	about	the	general	population	as	proved	by	learning	

the	 correct	PRDM9	motifs.	However,	 integrating	more	knowledge	will	 boost	 the	 findings	

much	more.	One	example	is	integrating	the	genetic	maps	based	on	LD	patterns.	As	discussed	

in	 the	 introduction,	 pedigree	 methods	 represent	 contemporary	 active	 hotspots,	 and	

therefore	 integrating	 them	with	 the	current	reference	human	genome	should	still	 lead	 to	

good	results.	

The	usage	of	the	unprocessed	ChIP-seq	data	should	be	explored.	Avsec	et	al.	(Avsec	et	al.,	

2020)	 have	 used	 these	 files	 and	 reported	 high	 performance	 with	 high	 sensitivity	 to	

individual	single	nucleotide	polymorphism	(SNP).	However,	these	raw	reads	require	more	

computational	power	than	using	the	.bed	files	and	will	probably	require	more	scrutiny	to	the	

trained	model	as	these	files	contain	unfiltered/noisy	signals.	

Integrating	 other	 data	 sources	 and	 implementing	multitasking	 can	be	 useful	 as	well.	 For	

example,	building	a	model	that	jointly	learns	to	predict	meiotic	recombination	hotspots	and	

H3K4me3	methylation	may	prove	interesting,	as	we	know	they	are	biologically	related	in	

meiosis.	 However,	 in	 our	 initial	 exploratory	 experiments,	 we	 found	 that	 extreme	

multitasking	that	was	reported	in	the	literature	is	harder	to	train	and	interpret.	For	example,	

the	outputs	become	highly	imbalanced	(much	more	negative	examples,	with	ratios	over	9	to	

1),	 and	despite	 that	we	used	 custom	 loss	 functions	 to	 compensate	 for	 that,	we	 could	not	

match	the	performance	of	models	learning	each	task	alone	across	all	tasks.	

Another	 limitation	 is	 that,	 since	 the	dataset	was	produced	over	a	previous	version	of	 the	

reference	genome,	we	do	not	make	use	of	the	full	knowledge	we	have	today.	Remapping	the	

experiment	to	the	most	recent	version	of	the	reference	genome	can	provide	better	results,	

however	such	an	operation	needs	a	lot	of	care	in	choosing	the	pipeline	parameters.	

88

5.3	 Input	Features	

A	 significant	 amount	 of	 design	 can	 be	 put	 into	 the	 input	 features.	 We	 used	 a	 one-hot-

encoding	 for	 the	 DNA	 sequences	 and	 we	 filtered-out	 sequences	 that	 contained	 any	

ambiguous	basepairs	(N).	This	leads	to	losing	some	examples.	Despite	that	for	the	overall	

task,	we	still	had	plenty	of	examples	for	the	model	to	learn	on,	this	strategy	leads	to	the	loss	

of	some	examples	that	may	be	interesting	to	study.	A	future	work	will	be	to	study	the	impact	

of	 other	 approaches,	 such	 as	 one-hot-encode	 the	 N	 as	 a	 new	 category	 or	 encode	 such	

locations	with	different	schemes	such	as	setting	all	positions	as	1,	0	or	0.25.	There	is	other	

possible	 sequence	 encoding	 methods,	 for	 example	 byte-pair	 encoding	 (Gage,	 1994)	 was	

already	 used	 for	 DNA	 sequences	 (Zaheer	 et	 al.,	 2021)	 ,	 however	 we	 think	 we	 lose	 the	

advantage	of	using	the	convolution	filter	as	a	PWM	and	therefore	we	opted	not	to	use	it.	

5.4	 Motif	Search	and	Interpretability	

A	lesson	learned	is	that	training	new	model	changes	the	position	of	the	learnt	motif.	This	

changes	every	time,	which	makes	inspecting	the	filters	laborious,	and	an	automated	search	

for	motifs	in	known	databases	like	JASPAR	will	further	guide	future	steps.	

We	found	the	multiple-sequence-alignment	of	positive	activation	regions	to	give	excellent	

results,	especially	with	less	well-defined	regions	that	can	have	a	variable	length,	such	as	poly-

A	regions.	Out	of	the	different	representations	that	we	tried;	we	preferred	the	information	

content	matrix	to	be	the	most	interpretable	one.	Directly	inspecting	the	convolution	weights	

was	useful	in	cases	where	there	is	a	pre-defined	clear	motif,	and	that	the	learnt	weight	bears	

a	 large	 resemblance	 to	 the	 PWM	 weight	 matrix	 calculation.	 We	 also	 visually	 noticed	 a	

relationship	between	 the	negative	values	of	 the	 learnt	weights	 and	 the	magnitude	of	 the	

PWM	information,	and	that	may	be	a	starting	point	for	further	investigation.	

The	major	limitation	of	such	a	method	is	when	there	is	no	prior	knowledge	on	a	motif	to	be	

found.	Our	work	acts	as	a	positive	control:	 the	deep	 learning	model	has	 learnt	 the	Myers	

motif.	 But,	 if	 for	 example,	 the	 biological	 problem	at	 hand	 is	 affected	 by	 a	motif	 that	was	

partially	learned	by	the	model,	inspecting	the	convolution	filter	will	not	yield	an	immediately	

obvious	 result.	 One	 suggestion	 could	 be	 to	 train	 the	model	 several	 times	 over	 different	

89

training	and	validation	splits,	and	at	each	time	to	save	the	learnt	motifs.	Then,	we	can	inspect	

the	recurrent	learnt	features	across	different	training	rounds.	

5.5	 Deep	Learning	Limitations	

Despite	the	unprecedented	modeling	powers	that	deep	learning	provided	to	the	scientific	

communities,	 it	 is	a	 far	 from	perfect	 tool	and	 its	results	should	be	 treated	with	care.	One	

reason	is	that	the	way	we	train	the	models	only	minimizes	a	loss	function.	However,	this	does	

not	necessarily	mean	to	learn	the	underlying	causal	process.	We	can	see	this	as	the	drawback	

of	Breiman’s	culture	2	(Breiman,	2001)	approach,	that	in	many	cases	the	models	will	find	

“hacks”	 to	 minimize	 the	 loss	 function	 that	 are	 not	 in	 line	 with	 the	 biology.	 An	 elegant	

demonstration	for	this	was	performed	by	Geirhos	et	al.	(Geirhos	et	al.,	2019).	In	their	work,	

they	performed	a	style	transfer	(Gatys	et	al.,	2015)	of	an	elephant’s	skin	to	a	cat	image	(Figure	

5.1).	Although	that	the	resulting	image	is	still	easily	recognizable	by	a	human	to	contain	a	cat,	

the	network	classified	the	 image	to	be	that	of	an	elephant,	showing	that	 the	prediction	 is	

largely	driven	by	the	skin	texture	rather	than	elephant	morphology.	Such	pitfalls	should	be	

addressed	with	great	care	when	working	with	deep	learning	in	genomics	as	well,	especially	

when	inferring	de	novo	insights.	

Figure 5.1 Gerihos	et	al.	performed	a	style	transfer	of	an	image	containing	an	elephant’s	skin	

(image	A)	to	an	image	containing	a	cat	(image	B).	The	result	is	image	C.	Below	each	image,	

there	are	the	top	predictions	of	the	neural	network	to	this	image	

90

Another	limitation	of	deep	learning	is	the	direct	interpretation	of	the	output	as	probability.	

For	example,	a	model’s	output	of	0.8	cannot	be	directly	used	as	an	accurate	quantification	of	

the	model’s	uncertainty.	Bayesian	neural	networks	can	provide	a	more	accurate	estimate	for	

such	uncertainty,	and	one	way	to	compute	these	is	using	MC	Dropouts	(Gal	&	Ghahramani,	

2015).	In	this	approach,	the	network’s	dropouts	are	kept	active	at	prediction	time,	knocking	

out	 a	 certain	 amount	 of	 the	 information	 flow	 inside	 the	 network.	 This	 leads	 to	 a	 certain	

variability	in	the	prediction,	and	if	we	make	a	large	enough	number	of	predictions,	we	can	

use	their	average	as	an	approximation	to	Bayesian	network.	When	we	applied	this	approach,	

we	 got	 some	 interesting	 but	 mixed	 results.	 In	 certain	 cases,	 the	 model’s	 performance	

improved	and	in	some	other	instances	it	metrics	deteriorated.	In	Figure	5.2,	we	applied	this	

approach	where	we	turned	off	the	dropouts	and	predicted	the	test2	dataset,	then	we	turned	

them	on	and	predicted	the	same	dataset	100	times	and	plotted	a	histogram	of	the	average	of	

predictions.	We	noticed	that	in	many	instances,	the	model’s	certainty	decreased	for	correct	

(this	can	be	noticed	by	the	flattening	of	the	modes	on	the	MC	dropout	predictions	in	the	right	

column),	and	that	also	the	incorrect	predictions	shifted	towards	the	middle.	However,	for	

different	hyperparameters,	this	was	not	the	case,	and	therefore	further	investigation	must	

be	performed	before	we	can	report	the	final	findings.	This	method	should	also	be	contrasted	

to	 directly	 training	 a	 full	 Bayesian	 neural	 network,	 which	 can	 be	 performed	 using	 the	

TensorFlow-probability	library.	This	library	uses	variational	inference	to	fit	such	a	network.	

91

Figure 5.2 Early	experiments	of	using	MC	Dropouts	for	estimating	model	uncertainty.	The	left	

column	contains	a	histogram	of	the	model’s	predictions	while	the	right	contains	the	average	

prediction	of	100	predictions	with	dropouts	left	active	(MC	Dropout).	The	first	row	contains	all	

predictions,	 the	 second	 row	 contains	 the	 prediction	 of	 the	 positive	 meiotic	 recombination	

hotspots	examples	and	bottom	row	contains	the	predictions	of	the	negative	examples.	

5.6	 Software	

We	worked	on	exploring	different	best	practices	for	developing	deep	learning	models.	The	

most	important	best	practices	are	to	separate	the	configuration	files	from	the	code,	and	to	

keep	track	of	both	separately	in	order	to	reproduce	the	results.	The	second	important	best	

practice	is	that,	in	case	we	plan	on	using	early	stopping,	we	need	to	save	a	fourth	set,	the	one	

referred	to	as	test2	in	this	project.	This	set	provides	a	better	measure	for	model	performance.	

The	result	exploration	tool	is	a	very	promising	seed	for	a	larger	project	where	we	can	add	

92

other	 covariates	 to	 the	 plots,	 such	 as	 the	 genomic	 annotations	 coming	 from	 the	 CHESS	

database	(Pertea	et	al.,	2018)	.	The	UI	design	is	by	far	the	part	that	needs	a	lot	of	work,	since	

the	amount	of	data	to	be	presented	is	not	trivial.	But	such	a	tool	can	play	an	important	role	

in	hypothesis	generation	and	refinement.	

5.7	 Future	Work	

Further	investigations	about	the	examples	that	gained	performance	by	increasing	the	input	

sequence	length	would	be	interesting.	We	can	do	such	investigations	using	gradient	feature	

importance,	such	as	the	integrated	gradients	(Sundararajan	et	al.,	2017).	Another	planned	

approach	is	to	gradually	remove	the	known	important	features	such	as	mutating	or	shuffling	

the	 PRDM9	 Myers	 motif	 across	 the	 examples	 and	 inspect	 the	 change	 in	 the	 model’s	

prediction.	

A	next	step	to	explore	is	the	effect	of	sampling	the	negative	examples	of	the	dataset.	We	used	

only	negative	examples	that	are	of	close	proximity	to	the	hotspot	(between	1000	and	5000	

bps).	So,	investigating	the	effect	of	using	further,	far-out	examples	would	have	an	effect	over	

the	model’s	performance	would	be	an	interesting	question	to	explore.	

Since	showing	the	model	the	sequences’	genomic	location	enhanced	the	predictive	power,	

providing	better	positional	information	may	be	beneficial.	For	example,	chromosomes	13,	

14,	15,	21,	22	and	Y	are	acrocentric,	and	therefore	the	q-arm	in	these	chromosomes	has	little	

hotspots.	One	way	to	embed	such	an	information	is	to	show	the	model	the	distance	of	the	

sequence	 from	 the	 centromere	 instead	 of	 the	 normalized	 position,	 which	 has	 different	

properties	across	different	chromosomes.	

Software-wise,	the	current	dataset	is	saved	as	an	HDF5	file.	Such	a	format	is	not	thread-safe	

and	therefore	is	not	suitable	for	very	large	datasets.	Restructuring	the	output	dataset	to	use	

a	thread-safe	type	such	as	parquet	would	make	the	dataset	suitable	for	encoding	much	larger	

datasets.	Also,	incorporating	a	dataset	version	tracking	tool	such	as	DVC	(https://dvc.org/)	

can	be	very	useful	for	managing	a	large	number	of	different	but	related	datasets.	

93

Finally,	 exploring	 further	 the	 best	 way	 to	 use	 the	 transformer	 architecture	 should	 be	

attempted.	As	of	today,	there	are	more	efficient	implementations	such	as	the	linformer	(S.	

Wang	et	al.,	2020),	which	can	help	with	the	computational	cost	of	computing	attention.	

5.8	Conclusion	

In	 this	 thesis,	we	 introduced	the	biology	of	meiotic	recombination	and	 its	 importance	 for	

successive	reproduction	for	different	organisms.	We	also	introduced	deep	learning’s	success	

on	working	with	DNA	sequences,	and	we	went	through	our	work	on	applying	it	to	predict	

meiotic	 recombination	 hotspots.	 The	 results	 are	 encouraging	 as	 they	 showed	 that	 deep	

learning	 achieved	high	performance	metrics	 and	 the	problem,	 and	 that	 also	 the	network	

learned	 biologically	 relevant	 features.	 Ultimately,	 we	 believe	 that	 the	 approach	 can	 be	

pushed	 far	 enough	 to	 uncover	 new	 insights,	 with	 the	 only	 caveat	 of	 respecting	 the	

development	best	practices	and	scrutinizing	the	model’s	predictions.		

	 	

94

	

References

Abu-Mostafa, Y. S. (1990). Learning from hints in neural networks. Journal of Complexity, 6(2),

192–198. https://doi.org/10.1016/0885-064X(90)90006-Y

Alipanahi, B., Delong, A., Weirauch, M. T., & Frey, B. J. (2015). Predicting the sequence

specificities of DNA- and RNA-binding proteins by deep learning. Nature Biotechnology,

33(8), 831–838. https://doi.org/10.1038/nbt.3300

Anderson, J. D., & Widom, J. (2001). Poly(dA-dT) Promoter Elements Increase the Equilibrium

Accessibility of Nucleosomal DNA Target Sites. Molecular and Cellular Biology, 21(11),

3830–3839. https://doi.org/10.1128/MCB.21.11.3830-3839.2001

Angermueller, C., Lee, H. J., Reik, W., & Stegle, O. (2017). DeepCpG: Accurate prediction of single-

cell DNA methylation states using deep learning. Genome Biology, 18(1), 67.

https://doi.org/10.1186/s13059-017-1189-z

Arnheim, N., Calabrese, P., & Nordborg, M. (2003). Hot and Cold Spots of Recombination in the

Human Genome: The Reason We Should Find Them and How This Can Be Achieved.

American Journal of Human Genetics, 73(1), 5–16.

Asgari, E., & Mofrad, M. R. K. (2015). Continuous Distributed Representation of Biological

Sequences for Deep Proteomics and Genomics. PLOS ONE, 10(11), e0141287.

https://doi.org/10.1371/journal.pone.0141287

95

Avsec, Ž., Weilert, M., Shrikumar, A., Krueger, S., Alexandari, A., Dalal, K., Fropf, R., McAnany, C.,

Gagneur, J., Kundaje, A., & Zeitlinger, J. (2020). Base-resolution models of transcription

factor binding reveal soft motif syntax (p. 737981). https://doi.org/10.1101/737981

Bagshaw, A. T., Pitt, J. P., & Gemmell, N. J. (2006). Association of poly-purine/poly-pyrimidine

sequences with meiotic recombination hot spots. BMC Genomics, 7, 179.

https://doi.org/10.1186/1471-2164-7-179

Bahdanau, D., Cho, K., & Bengio, Y. (2016). Neural Machine Translation by Jointly Learning to

Align and Translate. ArXiv:1409.0473 [Cs, Stat]. http://arxiv.org/abs/1409.0473

Baker, C. L., Petkova, P., Walker, M., Flachs, P., Mihola, O., Trachtulec, Z., Petkov, P. M., & Paigen,

K. (2015). Multimer Formation Explains Allelic Suppression of PRDM9 Recombination

Hotspots. PLOS Genetics, 11(9), e1005512.

https://doi.org/10.1371/journal.pgen.1005512

Baker, C. L., Walker, M., Kajita, S., Petkov, P. M., & Paigen, K. (2014). PRDM9 binding organizes

hotspot nucleosomes and limits Holliday junction migration. Genome Research, 24(5),

724–732. https://doi.org/10.1101/gr.170167.113

Base Pair. (n.d.). Genome.Gov. Retrieved December 16, 2021, from

https://www.genome.gov/genetics-glossary/Base-Pair

Baudat, F., Buard, J., Grey, C., Fledel-Alon, A., Ober, C., Przeworski, M., Coop, G., & de Massy, B.

(2010). PRDM9 is a Major Determinant of Meiotic Recombination Hotspots in humans

and mice. Science (New York, N.Y.), 327(5967), 836–840.

https://doi.org/10.1126/science.1183439

96

Bengio, Y., Courville, A., & Vincent, P. (2013). Representation Learning: A Review and New

Perspectives. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(8),

1798–1828. https://doi.org/10.1109/TPAMI.2013.50

Bengio, Y., Simard, P., & Frasconi, P. (1994). Learning long-term dependencies with gradient

descent is difficult. IEEE Transactions on Neural Networks, 5(2), 157–166.

https://doi.org/10.1109/72.279181

Berg, I. L., Neumann, R., Lam, K.-W. G., Sarbajna, S., Odenthal-Hesse, L., May, C. A., & Jeffreys, A.

J. (2010). PRDM9 variation strongly influences recombination hot-spot activity and

meiotic instability in humans. Nature Genetics, 42(10), 859–863.

https://doi.org/10.1038/ng.658

Beye, M., Gattermeier, I., Hasselmann, M., Gempe, T., Schioett, M., Baines, J. F., Schlipalius, D.,

Mougel, F., Emore, C., Rueppell, O., Sirviö, A., Guzmán-Novoa, E., Hunt, G., Solignac, M.,

& Page, R. E. (2006). Exceptionally high levels of recombination across the honey bee

genome. Genome Research, 16(11), 1339–1344. https://doi.org/10.1101/gr.5680406

Billings, T., Parvanov, E. D., Baker, C. L., Walker, M., Paigen, K., & Petkov, P. M. (2013). DNA

binding specificities of the long zinc-finger recombination protein PRDM9. Genome

Biology, 14(4), R35. https://doi.org/10.1186/gb-2013-14-4-r35

Bird, A. (2002). DNA methylation patterns and epigenetic memory. Genes & Development, 16(1),

6–21. https://doi.org/10.1101/gad.947102

Blum, C. F., & Kollmann, M. (2019). Neural networks with circular filters enable data efficient

inference of sequence motifs. Bioinformatics, 35(20), 3937–3943.

https://doi.org/10.1093/bioinformatics/btz194

97

Boyle, A. P., Davis, S., Shulha, H. P., Meltzer, P., Margulies, E. H., Weng, Z., Furey, T. S., & Crawford,

G. E. (2008). High-Resolution Mapping and Characterization of Open Chromatin across

the Genome. Cell, 132(2), 311–322. https://doi.org/10.1016/j.cell.2007.12.014

Breiman, L. (2001). Statistical modeling: The two cultures (with comments and a rejoinder by the

author). Statistical Science, 16(3), 199–231.

Brick, K., Smagulova, F., Khil, P., Camerini-Otero, R. D., & Petukhova, G. V. (2012). Genetic

recombination is directed away from functional genomic elements in mice. Nature,

485(7400), 642–645. https://doi.org/10.1038/nature11089

Brown, R. C., & Lunter, G. (2019). An equivariant Bayesian convolutional network predicts

recombination hotspots and accurately resolves binding motifs. Bioinformatics, 35(13),

2177–2184. https://doi.org/10.1093/bioinformatics/bty964

Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y., & Greenleaf, W. J. (2013). Transposition

of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-

binding proteins and nucleosome position. Nature Methods, 10(12), 1213–1218.

https://doi.org/10.1038/nmeth.2688

Caruana, R. (n.d.). Multitask Learning. 35.

Cell Division: Stages of Mitosis | Learn Science at Scitable. (n.d.). Retrieved December 25, 2021,

from http://www.nature.com/scitable/topicpage/mitosis-and-cell-division-205

Chen, C., Hou, J., Shi, X., Yang, H., Birchler, J. A., & Cheng, J. (2019). Interpretable attention model

in transcription factor binding site prediction with deep neural networks [Preprint].

Bioinformatics. https://doi.org/10.1101/648691

98

Cho, K., van Merrienboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., & Bengio, Y.

(2014). Learning Phrase Representations using RNN Encoder–Decoder for Statistical

Machine Translation. Proceedings of the 2014 Conference on Empirical Methods in

Natural Language Processing (EMNLP), 1724–1734. https://doi.org/10.3115/v1/D14-

1179

Cohn, D., Zuk, O., & Kaplan, T. (2018). Enhancer Identification using Transfer and Adversarial Deep

Learning of DNA Sequences [Preprint]. Bioinformatics. https://doi.org/10.1101/264200

Crosland, M. W., & Crozier, R. H. (1986). Myrmecia pilosula, an Ant with Only One Pair of

Chromosomes. Science (New York, N.Y.), 231(4743), 1278.

https://doi.org/10.1126/science.231.4743.1278

Davies, B., Hatton, E., Altemose, N., Hussin, J. G., Pratto, F., Zhang, G., Hinch, A. G., Moralli, D.,

Biggs, D., Diaz, R., Preece, C., Li, R., Bitoun, E., Brick, K., Green, C. M., Camerini-Otero, R.

D., Myers, S. R., & Donnelly, P. (2016). Re-engineering the zinc fingers of PRDM9 reverses

hybrid sterility in mice. Nature, 530(7589), 171–176.

https://doi.org/10.1038/nature16931

De Bont, R., & van Larebeke, N. (2004). Endogenous DNA damage in humans: A review of

quantitative data. Mutagenesis, 19(3), 169–185.

https://doi.org/10.1093/mutage/geh025

Diagouraga, B., Clément, J. A. J., Duret, L., Kadlec, J., de Massy, B., & Baudat, F. (2018). PRDM9

Methyltransferase Activity Is Essential for Meiotic DNA Double-Strand Break Formation

at Its Binding Sites. Molecular Cell, 69(5), 853-865.e6.

https://doi.org/10.1016/j.molcel.2018.01.033

99

Douki, T., Reynaud-Angelin, A., Cadet, J., & Sage, E. (2003). Bipyrimidine photoproducts rather

than oxidative lesions are the main type of DNA damage involved in the genotoxic effect

of solar UVA radiation. Biochemistry, 42(30), 9221–9226.

https://doi.org/10.1021/bi034593c

Douven, I. (2021). Abduction. In E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy

(Summer 2021). Metaphysics Research Lab, Stanford University.

https://plato.stanford.edu/archives/sum2021/entries/abduction/

Forejt, J., & Iványi, P. (1974). Genetic studies on male sterility of hybrids between laboratory and

wild mice (Mus musculus L.). Genetics Research, 24(2), 189–206.

https://doi.org/10.1017/S0016672300015214

Fullwood, M. J., & Ruan, Y. (2009). ChIP-based methods for the identification of long-range

chromatin interactions. Journal of Cellular Biochemistry, 107(1), 30–39.

https://doi.org/10.1002/jcb.22116

Gage, P. (1994). A new algorithm for data compression. The C Users Journal, 12(2), 23–38.

Gal, Y., & Ghahramani, Z. (2015). Dropout as a Bayesian Approximation: Representing Model

Uncertainty in Deep Learning. https://arxiv.org/abs/1506.02142v6

Gartner Says Nearly Half of CIOs Are Planning to Deploy Artificial Intelligence. (n.d.). Gartner.

Retrieved January 3, 2022, from https://www.gartner.com/en/newsroom/press-

releases/2018-02-13-gartner-says-nearly-half-of-cios-are-planning-to-deploy-artificial-

intelligence

Gatys, L. A., Ecker, A. S., & Bethge, M. (2015). A Neural Algorithm of Artistic Style.

ArXiv:1508.06576 [Cs, q-Bio]. http://arxiv.org/abs/1508.06576

100

Geirhos, R., Rubisch, P., Michaelis, C., Bethge, M., Wichmann, F. A., & Brendel, W. (2019).

ImageNet-trained CNNs are biased towards texture; increasing shape bias improves

accuracy and robustness. ArXiv:1811.12231 [Cs, q-Bio, Stat].

http://arxiv.org/abs/1811.12231

Goldfarb, T., & Lichten, M. (2010). Frequent and Efficient Use of the Sister Chromatid for DNA

Double-Strand Break Repair during Budding Yeast Meiosis. PLoS Biology, 8(10), e1000520.

https://doi.org/10.1371/journal.pbio.1000520

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. The MIT Press.

Habibi Aghdam, H., & Jahani Heravi, E. (2017). Visualizing Neural Networks. In H. Habibi Aghdam

& E. Jahani Heravi, Guide to Convolutional Neural Networks (pp. 247–258). Springer

International Publishing. https://doi.org/10.1007/978-3-319-57550-6_7

Hayashi, K., Yoshida, K., & Matsui, Y. (2005). A histone H3 methyltransferase controls epigenetic

events required for meiotic prophase. Nature, 438(7066), 374–378.

https://doi.org/10.1038/nature04112

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep Residual Learning for Image Recognition. 2016

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 770–778.

https://doi.org/10.1109/CVPR.2016.90

Heissl, A., Betancourt, A. J., Hermann, P., Povysil, G., Arbeithuber, B., Futschik, A., Ebner, T., &

Tiemann-Boege, I. (2019). The impact of poly-A microsatellite heterologies in meiotic

recombination. Life Science Alliance, 2(2), e201900364.

https://doi.org/10.26508/lsa.201900364

101

Hicks, W. M., Yamaguchi, M., & Haber, J. E. (2011). Real-time analysis of double-strand DNA break

repair by homologous recombination. Proceedings of the National Academy of Sciences

of the United States of America, 108(8), 3108–3115.

https://doi.org/10.1073/pnas.1019660108

Hochreiter, S., & Schmidhuber, J. (1997). Long Short-Term Memory. Neural Computation, 9(8),

1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735

Hubel, D. H., & Wiesel, T. N. (1968). Receptive fields and functional architecture of monkey striate

cortex. The Journal of Physiology, 195(1), 215–243.

https://doi.org/10.1113/jphysiol.1968.sp008455

Janin, J., & Wodak, S. J. (1983). Structural domains in proteins and their role in the dynamics of

protein function. Progress in Biophysics and Molecular Biology, 42, 21–78.

https://doi.org/10.1016/0079-6107(83)90003-2

JASPAR An open-access database of transcription factor binding profiles. (n.d.). Retrieved

December 29, 2021, from http://jaspar.genereg.net

Johnson, D. S., Mortazavi, A., Myers, R. M., & Wold, B. (2007). Genome-Wide Mapping of in Vivo

Protein-DNA Interactions. Science. https://doi.org/10.1126/science.1141319

Kaiser, L., Gomez, A. N., Shazeer, N., Vaswani, A., Parmar, N., Jones, L., & Uszkoreit, J. (2017). One

Model To Learn Them All. https://arxiv.org/abs/1706.05137v1

Kang, Z.-J., Liu, Y.-F., Xu, L.-Z., Long, Z.-J., Huang, D., Yang, Y., Liu, B., Feng, J.-X., Pan, Y.-J., Yan, J.-

S., & Liu, Q. (2016). The Philadelphia chromosome in leukemogenesis. Chinese Journal of

Cancer, 35, 48. https://doi.org/10.1186/s40880-016-0108-0

102

Keeney, S., Lange, J., & Mohibullah, N. (2014). Self-Organization of Meiotic Recombination

Initiation: General Principles and Molecular Pathways. Annual Review of Genetics, 48,

187–214. https://doi.org/10.1146/annurev-genet-120213-092304

Kelley, D. R., Snoek, J., & Rinn, J. (2015). Basset: Learning the regulatory code of the accessible

genome with deep convolutional neural networks [Preprint]. Genomics.

https://doi.org/10.1101/028399

Khan, F., Khan, M., Iqbal, N., Khan, S., Muhammad Khan, D., Khan, A., & Wei, D.-Q. (2020).

Prediction of Recombination Spots Using Novel Hybrid Feature Extraction Method via

Deep Learning Approach. Frontiers in Genetics, 11, 539227.

https://doi.org/10.3389/fgene.2020.539227

Khil, P. P., Smagulova, F., Brick, K. M., Camerini-Otero, R. D., & Petukhova, G. V. (2012). Sensitive

mapping of recombination hotspots using sequencing-based detection of ssDNA. Genome

Research, 22(5), 957–965. https://doi.org/10.1101/gr.130583.111

Kimothi, D., Soni, A., Biyani, P., & Hogan, J. M. (2016). Distributed Representations for Biological

Sequence Analysis. ArXiv:1608.05949 [Cs, q-Bio]. http://arxiv.org/abs/1608.05949

Klug, A. (2010). The Discovery of Zinc Fingers and Their Applications in Gene Regulation and

Genome Manipulation. Annual Review of Biochemistry, 79(1), 213–231.

https://doi.org/10.1146/annurev-biochem-010909-095056

Klug, A., & Rhodes, D. (1987). Zinc fingers: A novel protein fold for nucleic acid recognition. Cold

Spring Harbor Symposia on Quantitative Biology, 52, 473–482.

https://doi.org/10.1101/sqb.1987.052.01.054

103

Lander, E. S., Linton, L. M., Birren, B., Nusbaum, C., Zody, M. C., Baldwin, J., Devon, K., Dewar, K.,

Doyle, M., FitzHugh, W., Funke, R., Gage, D., Harris, K., Heaford, A., Howland, J., Kann, L.,

Lehoczky, J., LeVine, R., McEwan, P., … The Wellcome Trust: (2001). Initial sequencing and

analysis of the human genome. Nature, 409(6822), 860–921.

https://doi.org/10.1038/35057062

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444.

https://doi.org/10.1038/nature14539

LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., & Jackel, L. D.

(1989). Backpropagation Applied to Handwritten Zip Code Recognition. Neural

Computation, 1(4), 541–551. https://doi.org/10.1162/neco.1989.1.4.541

Lee, C.-K., Shibata, Y., Rao, B., Strahl, B. D., & Lieb, J. D. (2004). Evidence for nucleosome depletion

at active regulatory regions genome-wide. Nature Genetics, 36(8), 900–905.

https://doi.org/10.1038/ng1400

Li, Y., Chen, S., Rapakoulia, T., Kuwahara, H., Yip, K. Y., & Gao, X. (2021). Deep learning identifies

and quantifies recombination hotspot determinants (p. 2021.07.29.454133). bioRxiv.

https://doi.org/10.1101/2021.07.29.454133

Li, Y., Wu, F.-X., & Ngom, A. (2016). A review on machine learning principles for multi-view

biological data integration. Briefings in Bioinformatics, bbw113.

https://doi.org/10.1093/bib/bbw113

Lieberman-Aiden, E., van Berkum, N. L., Williams, L., Imakaev, M., Ragoczy, T., Telling, A., Amit,

I., Lajoie, B. R., Sabo, P. J., Dorschner, M. O., Sandstrom, R., Bernstein, B., Bender, M. A.,

Groudine, M., Gnirke, A., Stamatoyannopoulos, J., Mirny, L. A., Lander, E. S., & Dekker, J.

104

(2009). Comprehensive Mapping of Long-Range Interactions Reveals Folding Principles of

the Human Genome. Science, 326(5950), 289–293.

https://doi.org/10.1126/science.1181369

Lin, J. T., & Inigo, R. (1991). Hand written zip code recognition by back propagation neural

network. IEEE Proceedings of the SOUTHEASTCON ’91, 731–735.

https://doi.org/10.1109/SECON.1991.147854

Lister, R., O’Malley, R. C., Tonti-Filippini, J., Gregory, B. D., Berry, C. C., Millar, A. H., & Ecker, J. R.

(2008). Highly Integrated Single-Base Resolution Maps of the Epigenome in Arabidopsis.

Cell, 133(3), 523–536. https://doi.org/10.1016/j.cell.2008.03.029

Liu, F., Li, H., Ren, C., Bo, X., & Shu, W. (2016). PEDLA: Predicting enhancers with a deep learning-

based algorithmic framework [Preprint]. Bioinformatics. https://doi.org/10.1101/036129

Luger, K., Mäder, A. W., Richmond, R. K., Sargent, D. F., & Richmond, T. J. (1997). Crystal structure

of the nucleosome core particle at 2.8 A resolution. Nature, 389(6648), 251–260.

https://doi.org/10.1038/38444

Luscombe, N. M., Laskowski, R. A., & Thornton, J. M. (2001). Amino acid–base interactions: A

three-dimensional analysis of protein–DNA interactions at an atomic level. Nucleic Acids

Research, 29(13), 2860–2874.

Malik, S.-B., Pightling, A. W., Stefaniak, L. M., Schurko, A. M., & Logsdon, J. M. (2007). An

expanded inventory of conserved meiotic genes provides evidence for sex in Trichomonas

vaginalis. PloS One, 3(8), e2879. https://doi.org/10.1371/journal.pone.0002879

105

Mihola, O., Trachtulec, Z., Vlcek, C., Schimenti, J. C., & Forejt, J. (2009). A Mouse Speciation Gene

Encodes a Meiotic Histone H3 Methyltransferase. Science, 323(5912), 373–375.

https://doi.org/10.1126/science.1163601

Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient Estimation of Word Representations

in Vector Space. ArXiv:1301.3781 [Cs]. http://arxiv.org/abs/1301.3781

Mill, J. S. (2011). A System of Logic, Ratiocinative and Inductive: Being a Connected View of the

Principles of Evidence, and the Methods of Scientific Investigation (Vol. 1). Cambridge

University Press. https://doi.org/10.1017/CBO9781139149839

Min, X., Zeng, W., Chen, S., Chen, N., Chen, T., & Jiang, R. (2017). Predicting enhancers with deep

convolutional neural networks. BMC Bioinformatics, 18(S13), 478.

https://doi.org/10.1186/s12859-017-1878-3

Mitchell, T. (1997). Machine Learning. McGraw Hill. http://www.cs.cmu.edu/~tom/mlbook.html

Mumbach, M. R., Rubin, A. J., Flynn, R. A., Dai, C., Khavari, P. A., Greenleaf, W. J., & Chang, H. Y.

(2016). HiChIP: Efficient and sensitive analysis of protein-directed genome architecture.

Nature Methods, 13(11), 919–922. https://doi.org/10.1038/nmeth.3999

Myers, S., Bottolo, L., Freeman, C., McVean, G., & Donnelly, P. (2005). A fine-scale map of

recombination rates and hotspots across the human genome. Science (New York, N.Y.),

310(5746), 321–324. https://doi.org/10.1126/science.1117196

Myers, S., Bowden, R., Tumian, A., Bontrop, R. E., Freeman, C., MacFie, T. S., McVean, G., &

Donnelly, P. (2010). Drive Against Hotspot Motifs in Primates Implicates the PRDM9 gene

in Meiotic Recombination. Science (New York, N.Y.), 327(5967),

10.1126/science.1182363. https://doi.org/10.1126/science.1182363

106

Myers, S., Freeman, C., Auton, A., Donnelly, P., & McVean, G. (2008). A common sequence motif

associated with recombination hot spots and genome instability in humans. Nature

Genetics, 40(9), 1124–1129. https://doi.org/10.1038/ng.213

Narasimhan, V. M., Hunt, K. A., Mason, D., Baker, C. L., Karczewski, K. J., Barnes, M. R., Barnett,

A. H., Bates, C., Bellary, S., Bockett, N. A., Giorda, K., Griffiths, C. J., Hemingway, H., Jia, Z.,

Kelly, M. A., Khawaja, H. A., Lek, M., McCarthy, S., McEachan, R., … van Heel, D. A. (2016).

Health and population effects of rare gene knockouts in adult humans with related

parents. Science (New York, N.Y.), 352(6284), 474–477.

https://doi.org/10.1126/science.aac8624

NASA Astrobiology. (n.d.). Retrieved December 8, 2021, from

https://astrobiology.nasa.gov/research/life-detection/about/

Nath, A., & Karthikeyan, S. (2018). Enhanced prediction of recombination hotspots using input

features extracted by class specific autoencoders. Journal of Theoretical Biology, 444, 73–

82. https://doi.org/10.1016/j.jtbi.2018.02.016

Needleman, S. B., & Wunsch, C. D. (1970). A general method applicable to the search for

similarities in the amino acid sequence of two proteins. Journal of Molecular Biology,

48(3), 443–453. https://doi.org/10.1016/0022-2836(70)90057-4

Ng, P. (2017). dna2vec: Consistent vector representations of variable-length k-mers.

https://arxiv.org/abs/1701.06279v1

Otto, S. P. (2007). The Evolutionary Consequences of Polyploidy. Cell, 131(3), 452–462.

https://doi.org/10.1016/j.cell.2007.10.022

107

Paggi, J. M., & Bejerano, G. (2017). A sequence-based, deep learning model accurately predicts

RNA splicing branchpoints [Preprint]. Bioinformatics. https://doi.org/10.1101/185868

Pan, J., Sasaki, M., Kniewel, R., Murakami, H., Blitzblau, H. G., Tischfield, S. E., Zhu, X., Neale, M.

J., Jasin, M., Socci, N. D., Hochwagen, A., & Keeney, S. (2011). A hierarchical combination

of factors shapes the genome-wide topography of yeast meiotic recombination initiation.

Cell, 144(5), 719–731. https://doi.org/10.1016/j.cell.2011.02.009

Pascanu, R., Mikolov, T., & Bengio, Y. (2013). On the difficulty of training Recurrent Neural

Networks. ArXiv:1211.5063 [Cs]. http://arxiv.org/abs/1211.5063

Patel, A., Horton, J. R., Wilson, G. G., Zhang, X., & Cheng, X. (2016). Structural basis for human

PRDM9 action at recombination hot spots. Genes & Development, 30(3), 257–265.

https://doi.org/10.1101/gad.274928.115

Pertea, M., Shumate, A., Pertea, G., Varabyou, A., Breitwieser, F. P., Chang, Y.-C., Madugundu, A.

K., Pandey, A., & Salzberg, S. L. (2018). CHESS: A new human gene catalog curated from

thousands of large-scale RNA sequencing experiments reveals extensive transcriptional

noise. Genome Biology, 19(1), 208. https://doi.org/10.1186/s13059-018-1590-2

Powers, N. R., Parvanov, E. D., Baker, C. L., Walker, M., Petkov, P. M., & Paigen, K. (2016). The

Meiotic Recombination Activator PRDM9 Trimethylates Both H3K36 and H3K4 at

Recombination Hotspots In Vivo. PLoS Genetics, 12(6), e1006146.

https://doi.org/10.1371/journal.pgen.1006146

Pratto, F., Brick, K., Khil, P., Smagulova, F., Petukhova, G. V., & Camerini-Otero, R. D. (2014).

Recombination initiation maps of individual human genomes. Science (New York, N.Y.),

346(6211), 1256442. https://doi.org/10.1126/science.1256442

108

Quang, D., & Xie, X. (2015). DanQ: A hybrid convolutional and recurrent deep neural network for

quantifying the function of DNA sequences [Preprint]. Genomics.

https://doi.org/10.1101/032821

Quang, D., & Xie, X. (2017). FactorNet: A deep learning framework for predicting cell type specific

transcription factor binding from nucleotide-resolution sequential data [Preprint].

Genomics. https://doi.org/10.1101/151274

Reisz, J. A., Bansal, N., Qian, J., Zhao, W., & Furdui, C. M. (2014). Effects of Ionizing Radiation on

Biological Molecules—Mechanisms of Damage and Emerging Methods of Detection.

Antioxidants & Redox Signaling, 21(2), 260–292. https://doi.org/10.1089/ars.2013.5489

Robinson, J. A. (1971). Computational Logic: The Unification Computation. Machine Intelligence,

6, 63–72.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-

propagating errors. Nature, 323(6088), 533–536. https://doi.org/10.1038/323533a0

Sakoe, H., Isotani, R., Yoshida, K., Iso, K.-I., & Watanabe, T. (1989). Speaker-independent word

recognition using dynamic programming neural networks. International Conference on

Acoustics, Speech, and Signal Processing, 29–32 vol.1.

https://doi.org/10.1109/ICASSP.1989.266355

Saxonov, S., Berg, P., & Brutlag, D. L. (2006). A genome-wide analysis of CpG dinucleotides in the

human genome distinguishes two distinct classes of promoters. Proceedings of the

National Academy of Sciences of the United States of America, 103(5), 1412–1417.

https://doi.org/10.1073/pnas.0510310103

109

Schneider, T. D., & Stephens, R. M. (1990). Sequence logos: A new way to display consensus

sequences. Nucleic Acids Research, 18(20), 6097–6100.

Schuster, M., & Paliwal, K. K. (1997). Bidirectional recurrent neural networks. IEEE Transactions

on Signal Processing, 45(11), 2673–2681. https://doi.org/10.1109/78.650093

Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., & Batra, D. (2017). Grad-CAM:

Visual Explanations from Deep Networks via Gradient-Based Localization. 2017 IEEE

International Conference on Computer Vision (ICCV), 618–626.

https://doi.org/10.1109/ICCV.2017.74

Shrikumar, A., Greenside, P., & Kundaje, A. (2017). Reverse-complement parameter sharing

improves deep learning models for genomics [Preprint]. Bioinformatics.

https://doi.org/10.1101/103663

Shrivastav, M., De Haro, L. P., & Nickoloff, J. A. (2008). Regulation of DNA double-strand break

repair pathway choice. Cell Research, 18(1), 134–147.

https://doi.org/10.1038/cr.2007.111

Simonyan, K., Vedaldi, A., & Zisserman, A. (2014). Deep Inside Convolutional Networks:

Visualising Image Classification Models and Saliency Maps. ArXiv:1312.6034 [Cs].

http://arxiv.org/abs/1312.6034

Simonyan, K., & Zisserman, A. (2015). Very Deep Convolutional Networks for Large-Scale Image

Recognition. ArXiv:1409.1556 [Cs]. http://arxiv.org/abs/1409.1556

Smallwood, S. A., Lee, H. J., Angermueller, C., Krueger, F., Saadeh, H., Peat, J., Andrews, S. R.,

Stegle, O., Reik, W., & Kelsey, G. (2014). Single-Cell Genome-Wide Bisulfite Sequencing

110

for Assessing Epigenetic Heterogeneity. Nature Methods, 11(8), 817–820.

https://doi.org/10.1038/nmeth.3035

Smit, A. F. A. (1993). Identification of a new, abundant superfamily of mammalian LTR-

transposons. Nucleic Acids Research, 21(8), 1863–1872.

https://doi.org/10.1093/nar/21.8.1863

Smith, T. F., & Waterman, M. S. (1981). Identification of common molecular subsequences.

Journal of Molecular Biology, 147(1), 195–197. https://doi.org/10.1016/0022-

2836(81)90087-5

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Dropout: A

Simple Way to Prevent Neural Networks from Overfitting. Journal of Machine Learning

Research, 15(56), 1929–1958.

Sundararajan, M., Taly, A., & Yan, Q. (2017). Axiomatic Attribution for Deep Networks.

Proceedings of the 34th International Conference on Machine Learning, 3319–3328.

https://proceedings.mlr.press/v70/sundararajan17a.html

Sung, P., & Klein, H. (2006). Mechanism of homologous recombination: Mediators and helicases

take on regulatory functions. Nature Reviews Molecular Cell Biology, 7(10), 739–750.

https://doi.org/10.1038/nrm2008

Thibault-Sennett, S., Yu, Q., Smagulova, F., Cloutier, J., Brick, K., Camerini-Otero, R. D., &

Petukhova, G. V. (2018). Interrogating the Functions of PRDM9 Domains in Meiosis.

Genetics, 209(2), 475–487. https://doi.org/10.1534/genetics.118.300565

Úbeda, F., & Wilkins, J. F. (2011). The Red Queen theory of recombination hotspots. Journal of

Evolutionary Biology, 24(3), 541–553. https://doi.org/10.1111/j.1420-9101.2010.02187.x

111

Umarov, R. Kh., & Solovyev, V. V. (2017). Recognition of prokaryotic and eukaryotic promoters

using convolutional deep learning neural networks. PLOS ONE, 12(2), e0171410.

https://doi.org/10.1371/journal.pone.0171410

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., & Polosukhin,

I. (2017). Attention Is All You Need. ArXiv:1706.03762 [Cs].

http://arxiv.org/abs/1706.03762

Vylomova, E., Rimell, L., Cohn, T., & Baldwin, T. (2016). Take and Took, Gaggle and Goose, Book

and Read: Evaluating the Utility of Vector Differences for Lexical Relation Learning.

ArXiv:1509.01692 [Cs]. http://arxiv.org/abs/1509.01692

Wang, M., Tai, C., E, W., & Wei, L. (2018). DeFine: Deep convolutional neural networks accurately

quantify intensities of transcription factor-DNA binding and facilitate evaluation of

functional non-coding variants. Nucleic Acids Research, 46(11), e69–e69.

https://doi.org/10.1093/nar/gky215

Wang, S., Li, B. Z., Khabsa, M., Fang, H., & Ma, H. (2020). Linformer: Self-Attention with Linear

Complexity. ArXiv:2006.04768 [Cs, Stat]. http://arxiv.org/abs/2006.04768

Watson, J. D., & Crick, F. H. C. (1953). Molecular Structure of Nucleic Acids: A Structure for

Deoxyribose Nucleic Acid. Nature, 171(4356), 737–738.

https://doi.org/10.1038/171737a0

Weitzman, M. D., & Fradet-Turcotte, A. (2018). Virus DNA Replication and the Host DNA Damage

Response. Annual Review of Virology, 5(1), 141–164. https://doi.org/10.1146/annurev-

virology-092917-043534

Whole-Genome Chromatin IP Sequencing (ChIP-Seq). (n.d.). 3.

112

Xiong, H. Y., Alipanahi, B., Lee, L. J., Bretschneider, H., Merico, D., Yuen, R. K. C., Hua, Y.,

Gueroussov, S., Najafabadi, H. S., Hughes, T. R., Morris, Q., Barash, Y., Krainer, A. R., Jojic,

N., Scherer, S. W., Blencowe, B. J., & Frey, B. J. (2015). The human splicing code reveals

new insights into the genetic determinants of disease. Science, 347(6218), 1254806.

https://doi.org/10.1126/science.1254806

Zaheer, M., Guruganesh, G., Dubey, A., Ainslie, J., Alberti, C., Ontanon, S., Pham, P., Ravula, A.,

Wang, Q., Yang, L., & Ahmed, A. (2021). Big Bird: Transformers for Longer Sequences.

ArXiv:2007.14062 [Cs, Stat]. http://arxiv.org/abs/2007.14062

Zeng, H., Edwards, M. D., Liu, G., & Gifford, D. K. (2016). Convolutional neural network

architectures for predicting DNA–protein binding. Bioinformatics, 32(12), i121–i127.

https://doi.org/10.1093/bioinformatics/btw255

Zeng, J., & Yi, S. V. (2014). Specific Modifications of Histone Tails, but Not DNA Methylation,

Mirror the Temporal Variation of Mammalian Recombination Hotspots. Genome Biology

and Evolution, 6(10), 2918–2929. https://doi.org/10.1093/gbe/evu230

Zhou, J., & Troyanskaya, O. G. (2015). Predicting effects of noncoding variants with deep

learning–based sequence model. Nature Methods, 12(10), 931–934.

https://doi.org/10.1038/nmeth.3547

Zitnik, M., Nguyen, F., Wang, B., Leskovec, J., Goldenberg, A., & Hoffman, M. M. (2019). Machine

learning for integrating data in biology and medicine: Principles, practice, and

opportunities. Information Fusion, 50, 71–91.

https://doi.org/10.1016/j.inffus.2018.09.012

