
Université de Montréal

On the VC-dimension of Tensor Networks

par

Behnoush Khavari

Département d’informatique et de recherche opérationnelle
Faculté des arts et des sciences

Mémoire présenté en vue de l’obtention du grade de
Maître ès sciences (M.Sc.)

en Computer Science

5 january 2022

© Behnoush Khavari, 2022

Université de Montréal
Faculté des arts et des sciences

Ce mémoire intitulé

On the VC-dimension of Tensor Networks

présenté par

Behnoush Khavari

a été évalué par un jury composé des personnes suivantes :

Prof. Simon Lacoste-Julien
(président-rapporteur)

Prof. Guillaume Rabusseau
(directeur de recherche)

Prof. Gauthier Gidel
(membre du jury)

Résumé

Les méthodes de réseau de tenseurs (TN) ont été un ingrédient essentiel des progrès de
la physique de la matière condensée et ont récemment suscité l’intérêt de la communauté
de l’apprentissage automatique pour leur capacité à représenter de manière compacte des
objets de très grande dimension. Les méthodes TN peuvent par exemple être utilisées
pour apprendre efficacement des modèles linéaires dans des espaces de caractéristiques
exponentiellement grands [1]. Dans ce manuscrit, nous dérivons des limites supérieures et
inférieures sur la VC-dimension et la pseudo-dimension d’une grande classe de Modèles TN
pour la classification, la régression et la complétion . Nos bornes supérieures sont valables
pour les modèles linéaires paramétrés par structures TN arbitraires, et nous dérivons des
limites inférieures pour les modèles de décomposition tensorielle courants (CP, Tensor
Train, Tensor Ring et Tucker) montrant l’étroitesse de notre borne supérieure générale. Ces
résultats sont utilisés pour dériver une borne de généralisation qui peut être appliquée à la
classification avec des matrices de faible rang ainsi qu’à des classificateurs linéaires basés
sur l’un des modèles de décomposition tensorielle couramment utilisés. En corollaire de
nos résultats, nous obtenons une borne sur la VC-dimension du classificateur basé sur le
matrix product state introduit dans [1] en fonction de la dimension de liaison (i.e. rang
de train tensoriel), qui répond à un problème ouvert répertorié par Cirac, Garre-Rubio et
Pérez-García [2].

Mots clés: réseau de tenseur, décomposition de tenseur, VC-dimension, apprentissage
supervisé

5

Abstract

Tensor network (TN) methods have been a key ingredient of advances in condensed mat-
ter physics and have recently sparked interest in the machine learning community for their
ability to compactly represent very high-dimensional objects. TN methods can for example
be used to efficiently learn linear models in exponentially large feature spaces [1]. In this
manuscript, we derive upper and lower bounds on the VC-dimension and pseudo-dimension
of a large class of TN models for classification, regression and completion. Our upper
bounds hold for linear models parameterized by arbitrary TN structures, and we derive
lower bounds for common tensor decomposition models (CP, Tensor Train, Tensor Ring and
Tucker) showing the tightness of our general upper bound. These results are used to derive
a generalization bound which can be applied to classification with low-rank matrices as well
as linear classifiers based on any of the commonly used tensor decomposition models. As a
corollary of our results, we obtain a bound on the VC-dimension of the matrix product state
classifier introduced in [1] as a function of the so-called bond dimension (i.e. tensor train
rank), which answers an open problem listed by Cirac, Garre-Rubio and Pérez-García [2].

Key words: Tensor network, Tensor decomposition, VC-dimension, Supervised learn-
ing

7

Contents

Résumé . 5

Abstract . 7

List of Tables. 13

List of Figures. 15

Liste des sigles et des abréviations . 17

Remerciements . 19

Introduction . 21

Notations . 27

Chapter 1. Tensors and Tensor Networks. 29

1.1. Introduction . 29

1.2. Notation . 29

1.3. Tensors and Tensor Networks . 30
1.3.1. Fundamental operations on tensors . 30

1.4. Tensor network decompositions and tensor rank . 32
1.4.1. Candecomp/Parafac (CP). 33
1.4.2. Tucker . 34
1.4.3. Tensor Train (TT) . 37
1.4.4. Other decompositions: Hierarchical Tucker and Tensor Ring. 40

1.5. Classification with Tensor Train Weight . 41

1.6. Equivalence of TNs with Convolutional Arithmetic Circuits 42
1.6.1. CP Model as a Shallow CAC/CNN . 43
1.6.2. Hierarchical Tucker Decomposition as a Deep CAC. 44

Chapter 2. Generalization Bound and Complexity Measures 47

9

2.1. Introduction . 47

2.2. Classical Generalization Bounds for Classification . 47
2.2.1. Finite Class of Hypotheses . 48
2.2.2. Infinite Class of Hypotheses . 50

2.3. Generalization Bounds for Regression . 54
2.3.1. Finite Class of Hypotheses . 54
2.3.2. Infinite Class of Hypotheses . 54

Chapter 3. Generalization Bound and VC-dimension of Tensor Networks . 57

3.1. Introduction . 57
3.1.1. Tensor Network structures . 57

3.2. Tensor Network Learning Models . 59
3.2.1. Examples . 60

3.3. Bounds on the VC/Pseudo-dimension and the Generalization Gap. 61
3.3.1. Special cases . 64
3.3.2. Experiments . 65

3.4. Lower Bounds . 66
3.4.1. Proof of Theorem 11 . 67
3.4.2. Rank-One Tensors . 68
3.4.3. Tensor Train and Tensor Ring. 68
3.4.4. Tucker . 72
3.4.5. CP . 72

Chapter 4. Conclusion and Future Directions. 77

Bibliography . 79

Appendix A. Useful Formulas . 85

A.1. Essential Inequalities . 85
A.1.1. Markov’s inequality . 85
A.1.2. Chebyshev’s inequality . 86
A.1.3. Hoeffding’s inequality . 86
A.1.4. Popoviciu’s inequality [3] . 89

Appendix B. Proofs for Chapter 2 . 91

10

B.1. Proof of Lemma 2.2.1 . 91

B.2. Proof of Corollary 2.2.2. 93

B.3. Proof of Lemma 2.2.4 . 94

Appendix C. VC-dimension of Half-Spaces . 97

Appendix D. Lower Bounds on the Number of Sign Patterns 99

D.1. Main Results . 99
D.1.1. Lower-bound on the Number of Sign Patterns of Low-rank Matrices [4] . . . 99
D.1.2. Lower-bound on the Number of Sign Patterns of Tensor Trains 100

D.2. Proofs for Section D.1 . 102
D.2.1. Proof of General Position for the Ranks r = 2 . 102
D.2.2. Proof of General Position based on Moment Curve for Tensor Train 103
D.2.3. Dichotomy Counting [5] . 104

11

List of Tables

1.1 Some properties of CP, Tucker and TT compared against each other 41

3.1 Summary of our results for common TN structures. Both lower and upper bounds
hold for the VC/pseudo-dimension of Hclassif

G , Hcompletion
G and Hregression

G for the
corresponding TN structure G (see Equations (3.2.1-3.2.3)). The upper bounds
follow from applying our general upper bound (Theorem 8) to each TN structure.
The lower bounds are proved for each TN structure specifically. Each lower bound
is followed by the condition under which it holds in parenthesis (small font). Note
that the two bounds for TT and TR hold for both TN structures. 66

13

List of Figures

1.1 Tensor network representation of common operations on matrices and vectors. . . 30

1.2 TN representation of the outer product of three vectors.. 31

1.3 Mode-n product of a third order tensor with three matrices . 32

1.4 Inner product of tensors T and S . 32

1.5 CP decomposition of a 4-th order tensor . 34

1.6 Tucker decomposition of a 4-th order tensor . 34

1.7 Figure from [6]. TT-SVD algorithm applied to a 4-th order tensor 39

1.8 Illustration of some common tensor networks. 40

1.9 Figure from [1]. Each pixel value of a grayscale image is mapped to a normalized
two-component vector. 42

1.10 Decomposition of the weight tensor as a tensor train . 42

1.11 Figure from [7]. CAC corresponding to the CP decomposition of the weight tensor
of a linear model. 44

1.12 Illustration of the Equation (1.6.5), i.e., the first recursion step for the construction
of the Hierarchical Tucker tensor. Note that r0 shows the dimension of the hyper-
edge along all its modes. 45

1.13 Illustration of the Hierarchical Tucker representation of a tensor of order eight,
defined by Equation (1.6.6).. 45

1.14 Figure from [7]. Deep CAC corresponding to the HT decomposition of the weight
tensor. 46

2.1 From [8]. (a) Illustration of shattering of three points in 2-dim by lines. (b)
Two categories of four points in general position in two dimensions. The two sign
patterns illustrated here are the ones that are not linearly separable. On the left,
the four points lie on a convex hull. On the right one point lies inside the convex
hull of the other three points. 53

15

2.2 Pseudo-shattering of two points in one dimension, with thresholds t1 and t2

witnessing the pseudo-shattering. 56

3.1 Disentangling the graph structure of a tensor network from its parameters. 58
3.2 Graph structures of TN representation of common decomposition models for

4th order and 9th order tensors. For CP, the black dot represents a hyperedge
corresponding to a joint contraction over 4 indices. For the ease of representation,
the edge weights, i.e., the dimensions of the core tensors are not shown. 59

3.3 Dashed lines represent the theoretical bound, full lines represent the generalization
gap (averaged over 20 runs for both experiments), and shaded areas show the
standard deviation. (left) Generalization error for two models with ranks r = 2
and r = 4 as a function of training size. (right) Generalization error for two sample
sizes n = 2000 and n = 4000 as a function of the rank of the learned hypothesis. 66

3.4 Visualization of the proof of the lower bound on the VC-dimension of a tensor
train tensor . 71

D.1 Figure from [9] . 100
D.2 (1) A 4-th order tensor train G with the core highlighted in red being free to take

any arbitrary values. (2) Mode-n Matricization of the same tensor G w.r.t. the
mode corresponding to the highlighted core.. 101

D.3 Part (1) The broken TT of Figure D.2. Part (2) illustrates the matricization of
the broken TT. 101

16

Liste des sigles et des abréviations

CAC Convolutional Arithmetic Circuit

CNN Convolutional Neural Network

CP Candecomp/Parafac

ERM Empirical Risk Minimization

FC Fully Connected

GMM Gaussian Mixture Model

HMM Hidden Markov Model

HOSVD Higher Order SVD

HT Hierarchical Tucker

ML Machine Learning

MPS Matrix Product State

17

ReLU Rectified Linear Unit

SVD Singular Value Decomposition

TN Tensor Network

TR Tensor Ring

TT Tensor Train

18

Remerciements

It is my pleasure to thank the many people who made this thesis possible. First and
foremost, I would like to express my deep gratitude to my supervisor, Professor Guillaume
Rabusseau, for providing me with this masters opportunity at the university of Montreal
and MILA. I feel so privileged for having found this opportunity and I will be ever grateful
for. I really enjoyed every course that I took during this period at UdeM/MILA and I would
like to thank my professors for those great classes. But again, all of that became possible
thanks to my supervisor. Thank you Guillaume! It was an absolute pleasure learning
about tensor networks in your excellent class on tensor factorization techniques. Also, I
really enjoyed working under your supervision on this topic and I greatly appreciate your
continuous support, precious advice and encouragements throughout my course of study and
research work.

I would like to thank all the group members, past and present, especially Dr. Jacob Miller
for the very helpful discussions on tensor networks. Also, I really enjoyed our great group
meetings that helped me a lot to learn about many interesting aspects of tensor networks
as well as other subjects in machine learning. A big ’Thank you!’ to all of you Guillaume,
Jacob, Ali, Andy, Beheshteh, Kaiwen, Farzaneh, Marawan, Maude, Meraj, Michael, Omar
and Tianyu!

I cannot thank my family enough for their endless emotional support that always gave
me courage and confidence to keep going!

Finally, I owe many thanks to my lovely housemates, Karen&André, who made my
residence in Montreal such a wonderful experience. Merci infiniment!

19

Introduction

We know vectors and matrices as 1-dimensional and 2-dimensional arrays respectively.
Tensors are the generalization of vectors and matrices to higher-order arrays. Therefore,
vectors are first-order tensors and matrices are second-order tensors. One important place
in machine learning (ML) where vectors and matrices are extensively used is in dealing with
data with grid-like structure. Structured data can have different number of dimensions. A
classical example of 1-dimensional data is the data with temporal dependence or time series,
e.g., audio data, which is naturally represented as a vector whose entries are the frequencies
recorded at each time step. Grey-scale images on the other hand, are well-known examples
of 2-dimensional objects that are represented by matrices, where the entries of the matrix
record the intensity of the color at the corresponding pixel of the image.
If we now consider RGB images, we need three such matrices to record the intensities
over the three red, green and blue channels and in this case, a convenient way to keep all
this information is to use a structured data type like a third-order tensor. By continuing
this discussion to more and more complex data, like videos, which add time as the fourth
dimension to the story, we observe how higher and higher-order tensors can be seen as
natural candidates to represent specific types of data. This being said, which data type
to take to represent the data points is a choice that among other factors depends on the
learning model as well. While a neural network with fully-connected neurons takes the
vectorization of images as input, in order to implement a convolutional neural network
model on image data the matrix structure of images has to be kept.
Now, as we consider tensors of higher order, they become more expensive to deal with.
That is because the number of entries grows exponentially with the order of the tensor; a
vector of dimension d has d entries, a d × d matrix has d2 entries, and so on, a p-th order
tensor with dimension d along all its modes has dp parameters. This fact makes it costly to
work with high-order tensors. Tensor decomposition techniques get around this problem by
decomposing a high-order tensor into lower-order components that compared to the initial
tensor, have considerably less parameters. This idea is the generalization of the well-known
low-rank decomposition of matrices in linear algebra, to the realm of multi-linear algebra.
There exist many types of tensor decompositions, such as CP decomposition [10], Tucker

decomposition [11] and tensor train (TT) decomposition [12], to name a few. As the order
of tensors increases, the ordinary notation of multi-linear algebra results in very lengthy
expressions to represent operations on tensors even for the simplest tensor decompositions,
let alone if for any reason, some more complicated decomposition is required. This negatively
affects the tractabilty of tensor operations, and hence the introduction of tensor networks.
Tensor networks (TNs) have emerged in the quantum physics community as a mean to
compactly represent wave functions of large quantum systems [13, 14, 15] which are tensors
of potentially very high orders. Their introduction in physics can be traced back to the
work of Penrose [16] and Feynman [17].
As a generalization of specific tensor decompositions, TN methods rely on factorizing a
high-order tensor into small factors and have recently gained interest from the machine
learning community for their ability to efficiently represent and perform operations on very
high-dimensional data and high-order tensors.
Yet, the practicality of tensors is not restricted to data representation. A prevailing appli-
cation of tensors is in parameterizing large machine learning models more efficiently. One
of the first steps in this direction was done in [18], where tensor decomposition techniques
are used to compress fully-connected layers in neural networks by first tensorizing the
corresponding dense weight matrices. An important concern in working with modern
deep networks is the huge number of their parameters which to some extent is due to the
fully-connected (FC) layers. This number can reach orders of magnitude of millions due
to both the input representation and output layers having large dimensions. The authors
of [18] propose to reshape the FC layer into a high-order tensor before applying a low-rank
tensor approximation to it and report a compression factor around 7 on the VGG network.
This reshaping of low-order arrays into high-order tensors has proved better performance in
case of matrix completion [19] as well and has become a common practice in completion
tasks [19, 20, 21].
Apart from their successful application in compressing large neural networks[18, 22,
23, 24, 25], high-order tensors have been used in designing novel approaches to su-
pervised [1, 26, 27] and unsupervised [28, 29, 30] learning. Most of these methods
leverage the fact that TN can be used to efficiently parameterize high-dimensional linear
maps, which is appealing from two perspectives: it makes it possible to learn models in
exponentially large feature spaces and it acts as a regularizer, controlling the capacity of the
class of hypotheses considered for learning. As another application, [31] takes advantage
of tensor decomposition techniques to estimate the parameters of common latent variable
models, such as Gaussian mixture model (GMM) and Hidden Markov model (HMM), in the
framework of the method of moments. Their key observation is the natural representation
of the n-th order moment by a n-th order tensor and using tensor decomposition methods
to solve the corresponding equations.

22

Besides these applications, on the theory side, tensor networks served to the development
of new insights on the expressiveness of deep neural networks [7, 32, 33, 34]. Especially,
in [7] the statement deeper models are exponentially more expressive than shallower models,
or depth efficiency in short, was examined theoretically for convolutional arithmetic circuits
(CAC).
Regarding the studies on the theoretical foundations of tensor networks, while the expressive
power of TN models has been studied recently [35, 36], the focus has mainly been on the
representation capacity of TN models, but not on their ability to generalize in the context
of supervised learning tasks. In this work, we study the generalization ability of TN models
by deriving lower and upper bounds on the VC-dimension and pseudo-dimension of TN
models commonly used for classification, completion and regression, from which bounds
on the generalization gap of TN models can be derived. Using the general framework of
tensor networks, we derive an upper bound for models parameterized by arbitrary TN
structures, which applies to all commonly used tensor decomposition models [37] such as
CP [10], Tucker [38] and tensor train (TT)) [12], as well as more sophisticated structures
including hierarchical Tucker [39, 40], tensor ring (TR) [41] and projected entangled state
pairs (PEPS) [42].
The goal of supervised learning is to learn a function f mapping inputs x ∈ X to
outputs y ∈ Y from a sample of input-output examples S = {(x1,y1), · · · ,(xn,yn)} drawn
from an unknown distribution D where each yi ' f(xi). Given a space of hypothesis
H ⊂ YX , one natural objective is to find the hypothesis h ∈ H minimizing the risk
R(h) = E(x,y)∼D `(h(x),y) where ` : Y × Y → R+ is a loss function measuring the quality of
the predictions made by h. However, since the distribution D is unknown, machine learning
algorithms often rely on the empirical risk minimization principle which consists in finding
the hypothesis h ∈ H that minimizes the empirical risk R̂S(h) = 1

n

∑n
i=1 `(h(xi),yi). It

is easy to see that the empirical risk is an unbiased estimator of the risk (though, notice
that this is only true if we have not used the sample S to learn a minimizer function
hmin ∈ H, which is by default assumed) and one of the focus of learning theory is to provide
guarantees on the quality of this estimator. Such guarantees include generalization bounds,
which are probabilistic bounds on the generalization gap R(h)− R̂S(h). The generalization
gap naturally depends on the size of the sample S, but also on the richness (or capacity,
complexity) of the hypothesis class H. There exist several ways to measure the complexity
of H including VC-dimension, Rademacher complexity, covering numbers and packing
numbers[43, 8, 44, 45].
In this work, we focus on two combinatorial measures of comlexity, VC-dimension for
classification, and pseudo-dimension for regression and completion. For the classification
task, we consider the class of linear models h : X 7→ sign(〈X ,W〉) taking p-th order tensors
X ∈ Rd1×···×dp as input and whose weight tensor W is compactly represented using some

23

tensor network. Our analysis proceeds mainly in two steps. First, we formally define the
notion of TN learning model by disentangling the underlying graph structure of a TN from
its parameters (the core tensors, or factors, involved in the decomposition). This allows
us to define, in a conceptually simple way, the hypothesis class HG corresponding to the
family of linear models whose weights are represented using an arbitrary TN structure G.
We then proceed to deriving upper bounds on the VC-dimension and generalization error
of the class HG. For the regression and completion tasks a quite similar approach results
in the same bound on the pseudo-dimension. These bounds follow from a classical result
from Warren [46] which was previously used to obtain generalization bounds for neural
networks [47], matrix completion [4], tensor completion [48] as well as probability classes
based on quantum circuits [49]. The bounds we derive naturally relate the capacity of HG

to the underlying graph structure G through the number of nodes and effective number
of parameters of the TN. To assess the tightness of our general upper bound, we derive
lower bounds for particular TN structures (rank-one, CP, Tucker, TT and TR). These lower
bounds show that, for completion, regression and classification, our general upper bound
is tight up to a log factor for rank-one, TT and TR tensors, and is tight up to a constant
for matrices. This implies that our upper bound for tensor networks in general is tight; but
better upper bounds for specific tensor network structures could be derived in the future.
Lastly, as a corollary of our results, we obtain a bound on the VC-dimension of the tensor
train classifier introduced in [1], which answers one of the open problems listed by Cirac,
Garre-Rubio and Pérez-García in [2].

Related work Machine learning models using low-rank parametrization of the weights
have been investigated (mainly from a practical perspective) for various decomposition
models, including low-rank matrices [50, 51, 52], CP [53, 54, 55], Tucker [56, 57, 58, 59],
tensor train [19, 60, 26, 1, 27, 61, 62, 63, 64] and PEPS [65]. From a more theoretical
perspective, generalization bounds for matrix and tensor completion have been derived
in [4, 48] (based on the Tucker format for the tensor case). A bound on the VC-dimension
of low-rank matrix classifiers was derived in [52] and a bound on the pseudo-dimension of
regression functions whose weights have low Tucker rank was given in [59] (for both these
cases, we show that our results improve over these previous bounds, see Section 3.3.1).
To the best of our knowledge the VC-dimension of tensor train classifiers has not been
studied in the past, but the statistical consistency of the convex relaxation of the tensor
completion problem was studied in [66, 67] for the Tucker decomposition and in [68]
for the tensor train decomposition. In [69] the authors study the complexity of learning
with tree tensor networks using the notion of metric entropy and covering numbers. They
provide generalization bounds which are qualitatively similar to ours, but their results only
hold for TN structures whose underlying graph is a tree (thus excluding models such as

24

CP, tensor ring and PEPS) and they do not provide lower bounds. Lastly, in [49], the
expressive power of a class of quantum circuits is studied using the pseudo-dimension.
The pseudo-dimension is bounded in terms of the dimension of the qudits, the depth of
the quantum circuit and the number of unitaries in the circuit. The setup of the problem
as well as the techniques used to upper-bound the pseudo-dimension are very similar to
our study. In their work, they consider two different setups. The first one has a fixed
circuit structure, resulting in their upper-bound in Theorem 3.3, which is similar to the
general upper-bound that we provide in Theorem 8. In the second setup, they consider
variable circuit structure with fixed depth and fixed total number of unitaries, but otherwise
arbitrary architecture. In this case the upper-bound takes a depth dependence as stated in
Theorem 3.7. For this part of their work, we did not do a similar study on TNs. Regard-
ing the tightness of their bounds, they do not provide lower-bounds on the pseudo-dimension.

Summary of contributions We introduce a unifying framework for TN-based learn-
ing models, which generalizes a wide range of models based on tensor factorization for
completion, classification and regression. This framework allows us to consider the class
HG of low-rank TN models for a given arbitrary TN structure G (Section 3.1.1). We
provide general upper bounds on the pseudo-dimension and VC-dimension of the hypothesis
class HG for arbitrary TN structure G for regression, classification and completion. Our
results naturally relate the capacity of HG to the number of parameters of the underlying
TN structure G (Section 3.3). From these results, we derive a generalization bound for
TN-based classifiers parameterized by arbitrary TN structures (Theorem 10). We compare
our results to previous bounds for specific decomposition models and show that our
general upper bound is always of the same order and sometimes even improves on previous
bounds (Section 3.3.1). We derive several lower bounds showing that our general upper
bound is tight up to a log factor for particular TN structures (Section 3.4). A summary
of the lower bounds derived in this work, as well as upper bounds implied by our general
result for particular TN structures, can be found in Table 3.1.
This thesis is based on a paper published at NeurIPS 2021 by the author and their supervi-
sor [70]. The content of the paper is mainly included in Chapter 3 of this manuscript.
The outline of the thesis is as follows. We start Chapter 1 by introducing tensors as the
generalization of vectors and matrices to arrays of higher order and we continue by defining
the main tensor operations. Then, we present tensor networks as a convenient graphical
notation for dealing with tensor decompositions of high-order tensors. Following that, we
introduce different notions of rank for high-order tensors and study several common tensor
networks in more details. Also, we review some supervised learning models in the literature
which are based on those tensor network structures [1, 7]. Then, we see the equivalence of
some tensor network models with specific sum-product neural networks and briefly review

25

how this equivalence can be used to show the depth efficiency in neural networks [7].
Chapter 2 goes over some basic concepts in supervised learning theory; we study the
generalization bound for binary classification models with both finite and infinite hypothesis
classes. Closely related to that, we define the VC-dimension of binary-valued function
classes and upper-bound the generalization gap in terms of the VC-dimension. We end
this chapter by explaining how a similar notion of complexity, called the pseudo-dimension,
is defined for the class of real-valued functions and serves to quantify the complexity of
hypothesis classes for regression and completion tasks.
Chapter 3 mainly contains the content of our paper [70]. We include our two main theorems
on the upper and lower bounds on the VC/pseudo-dimensions of tensor network models.
To make it easier to follow the details of our analysis, here we have expanded some parts of
the paper. Furthermore, while in the paper the calculation of our lower bounds are put in
the appendices, in the thesis we have included all those calculations in the main body of the
fourth chapter. We have also added some examples of those proofs for tensor networks of
relatively low order. Chapter 4 gives a short summary of our results along with commenting
on several possible future directions.
Finally, we devote Appendices A to D to lengthier calculations or proofs of theorems and
lemmas.

26

Notations

[k] set of integers from 1 to k
[h,k] set of integers from h to k
|S|, |a| cardinality of the set S, absolute value of the scalar a
δij Kronecker symbol: equals 1 if i = j and 0 otherwise

a, v, M, T scalar, vector, matrix, tensor
In n× n identity matrix

Tr(M) trace of the matrix M
〈T ,S〉 inner product between vectors, matrices or tensors
|| · ||F Frobenius norm
V ⊗k k-th order tensor (k-fold tensor) product of the vector space V

Mi,:,M:,j,T k,:,: i-th row of M, j-th column of M, k-th mode-1 slice of T
T(k) or T (k) mode-k matricization of the tensor T

v ◦ u outer product between vectors, matrices or tensors
v⊗ u Kronecker product (for vectors, matrices and higher-order tensors)

T ×k M mode-k matrix product
P[·] probability of an event
E[·] expectation of a random variable

sign(·) Sign function
YX the space of functions f : X 7→ Y

Chapter 1

Tensors and Tensor Networks

1.1. Introduction
This whole chapter is a brief review of some basic concepts in the tensor network liter-

ature which are tightly related to the subject of our study. The goal of this chapter is to
give a comprehensive view of tensors and tensor operations as well as some relevant tensor
decompositions in the tensor network representation. We review two well-known algorithms
used to build some specific tensor decompositions. We also give some examples of tensor
network models used in supervised learning tasks like classification and show how some of
them are equivalent to specific neural network models.

1.2. Notation
In this section, we present basic notions of tensor algebra and tensor networks. We

start by introducing some notations. For any integer k we use [k] to denote the set of
integers from 1 to k. For a set S, the notation |S| represents the cardinality of the
set. We use lower case bold letters for vectors (e.g. v ∈ Rd1), upper case bold letters
for matrices (e.g. M ∈ Rd1×d2) and bold calligraphic letters for higher order tensors (e.g.
T ∈ Rd1×d2×d3). The inner product of two k-th order tensors S,T ∈ Rd1×···×dk is defined
by 〈T ,S〉 = ∑d1

i1=1 . . .
∑dk
ik=1 T i1...ikSi1...ik . The outer product of two vectors u ∈ Rd1 and

v ∈ Rd2 is denoted by u ◦ v ∈ Rd1×d2 with elements (u ◦ v)i,j = uivj. The outer product
generalizes to an arbitrary number of vectors. We use the notation (Rd)⊗p to denote the
space of p-th order hypercubic tensors of size d× d× · · · × d︸ ︷︷ ︸

p times

. We denote by YX the space of

functions f : X 7→ Y . sign(·) stands for the sign function. Finally, given a graph G = (V,E)
and a vertex v ∈ V , we denote by Ev = {e ∈ E | v ∈ e} the set of edges incident to the
vertex v.

A B = AB A = Tr(A) x M y = x>My

Figure 1.1. Tensor network representation of common operations on matrices and vectors.

1.3. Tensors and Tensor Networks
A tensor T ∈ Rd1×···×dp can simply be seen as a multidimensional array of scalars

(T i1,··· ,ip : in ∈ [dn], n ∈ [p]). Tensors can be seen as the generalization of vectors and
matrices to arrays of higher order. As the order increases the representation of array be-
comes more difficult. Tensor networks provide a simple way of representing and dealing
with these high-order objects and substantially simplify the analysis of tensor operations in
several ways.
Complex operations on tensors can be intuitively represented using the graphical notation of
tensor network (TN) diagrams [14, 13]. In tensor networks, a p-th order tensor is illustrated

as a node with p edges (or legs) in a graph Td1

d2

dp . That is, a vector v of dimension d is

simply shown as a one-node graph with one edge as v
d

and a m × n matrix is represented
as Mm n . An edge between two nodes of a TN represents a contraction over the cor-
responding modes of the two tensors. Consider the following simple TN with two nodes:

A xm n . The first node represents a matrix A ∈ Rm×n and the second one a vector
x ∈ Rn. Since this TN has one dangling leg (i.e. an edge which is not connected to any
other node), it represents a first order tensor, i.e. a vector. The edge between the second leg
of A and the leg of x corresponds to a contraction between the second mode of A and the
first mode of x. Hence, the resulting TN represents the classical matrix-product between
a tensor and a vector, which can be seen by calculating the i-th component of this TN:

A xi = ∑
j Aijxj = (Ax)i . Examples of TN representations of some other common

operations on matrices and vectors can be found in Figure 1.1.
In this thesis, we mainly deal with the factorization of tensors into lower-order tensors,

including matrices and vectors. The combination of these constitutional components into
the high-dimensional tensor is through the notion of tensor product. There are different
types of such products and here we mention a couple of them that we will see later again.

1.3.1. Fundamental operations on tensors

Matricization and vectorization We first introduce modes of a tensor. Each
dimension or way of a p-th order tensor is called a mode, i.e., a tensor of order p has p
modes [11]. Corresponding to each mode, we can extract fibers of a tensor; mode-i fibers
of a tensor for i = 1, . . . , p, are obtained by fixing all indices of the tensor but the i-th

30

one. E.g., for a third-order tensor T ∈ Rd1×d2×d3 , we have d2d3 mode-1 fibers, which are all
vectors T :,i2,i3 ∈ Rd1 for i2 ∈ [d2] and i3 ∈ [d3]. Here the colon notation for the first index of
T means that we go over all possible values of the first index.
Matricization of a p-th order tensor is rearranging its entries into a matrix. There exist
many ways to matricize or flatten a tensor, here we only consider the mode-n matricization
that means reordering a tensor T ∈ Rd1×···×dn×···×dp as a matrix T(n) ∈ Rdn×d1...dn−1dn+1...dp ,
or more compactly T (n) ∈ Rdn×

∏
i6=n

di . Stating it in our new terminology, the mode-n
matricization of T has the mode-n fibers of T as columns.

Tensor contraction Contraction is an operation between two tensors of arbitrary
orders. In general, if two tensors have the same dimensions along some of their modes, one
can contract these tensors along any of those modes. As an example, consider two tensors
T ∈ Rd1×d2×d3×d4 and S ∈ Rd5×d2×d6×d3 . We can contract the two tensors into a new 4-th
order tensor U with the components U i,j,m,n = ∑d2

k=1
∑d3
l=1 T i,k,l,jSm,k,n,l. Needless to say,

the contraction does not need to be done along all modes that have the same dimensions in
the two tensors; therefore, in this example, we can contract the two tensors along only one
of their modes, which results in a tensor of order six, e.g., V i,l,j,m,n,h = ∑d2

k=1 T i,k,l,jSm,k,n,h.

Outer product The outer product, as defined earlier, generalizes to an arbitrary
number of vectors. The outer product of p vectors v1 ∈ Rd1 , . . . ,vp ∈ Rdp , denoted by
v1 ◦ · · · ◦ vp ∈ Rd1×···×dp , is a p-th order tensor T with elements T i1,...,ip = (v1)i1 . . . (vp)ip ,
where (v1)i1 stands for the i1-th element of v1. Finally, if a p-th order tensor T is
decomposable as T = v1 ◦ · · · ◦vp, we call it a rank-1 tensor (observe that not all tensors are
rank-1 tensors). From our above definition, each element of a rank-1 tensor is the product
of the corresponding vector elements. To see the representation of outer product in tensor
network format, Figure 1.2 illustrates the third-order tensor T = u ◦ v ◦w.

T

d2
d1 d3

= u
d1

v
d2

w
d3

Figure 1.2. TN representation of the outer product of three vectors.

Mode-n product This product can be seen as a generalization of the matrix prod-
uct to tensors of arbitrary orders. Mode-n product is defined between a p-th order ten-
sor T ∈ Rd1×···×dn×···×dp and a matrix M ∈ Rm×dn . The operation consists of contract-
ing the n-th mode of the tensor with the second mode of the matrix which results in a
new tensor with the dimensionality m instead of dn at the n-th mode. More precisely:
(T ×n M)i1,...,in−1,j,in+1,...,ip = ∑dn

in=1 T i1,...,in,...,ipMj,in ∈ Rd1,...,dn−1,m,dn+1,...,dp . As a simple
example, for a third-order tensor X , we have (X ×2 M)i1i2i3 = ∑

j X i1ji3Mi2j. Figure 1.3

31

illustrates the mode-n product of a third order tensor T along its three modes with three
matrices A, B and C.

TA

B

C

m1

m2

m3

n1
n2

n3
(T ×1 A×2 B×3 C)i1,i2,i3 =

n1∑
k1=1

n2∑
k2=1

n3∑
k3=1

T k1k2k3Ai1k1Bi2k2Ci3k3

Figure 1.3. Mode-n product of a third order tensor with three matrices

Inner product The inner product is defined for two tensors of the same size as their
contraction along all modes. The inner product of two k-th order tensors S,T ∈ Rd1×···×dk

is defined by 〈T ,S〉 = ∑d1
i1=1 . . .

∑dk
ik=1 T i1...ikSi1...ik . In tensor network format, the inner

product is represented by linking all corresponding edges of these tensors together. Figure 1.4
illustrates the inner product of two third-order tensors.

S T
d1
d2

d3

〈S,T 〉 = ∑d1
i1=1

∑d2
i2=1

∑d3
i3=1 Si1i2i3T i1i2i3

Figure 1.4. Inner product of tensors T and S

Frobenius norm The Frobenius norm of a tensor T of order p is defined as the square
root of the sum of its squared entries, i.e., ‖T ‖F =

(∑
i1,...,ip T 2

i1,...,ip

) 1
2 =

√
〈T ,T 〉.

Tensor rank The rank of a high-order tensor can be defined in several ways. It is
a key concept in tensor studies and there exist several variants of it, each of which is
associated with a special tensor decomposition. We will define some of these different
types of rank as we proceed in this chapter. At this point, it suffices to introduce it as a
generalization of the matrix rank. Recall that the rank of a matrix M ∈ Rm×n, denoted by
r, is the smallest possible value for which there exist two matrices A ∈ Rm×r and B ∈ Rr×n

whose matrix product gives M, i.e., M = AB.

1.4. Tensor network decompositions and tensor rank
Manipulating high-order tensors is computationally expensive, because the number of

tensor entries grows exponentially with the order. Tensor decompositions get around this
problem by breaking down a big tensor into smaller tensor components of lower order and
dimension which altogether have much less entries than the initial tensor. Among many
possible tensor network decompositions of a given tensor, we only introduce some of the
more common ones that we will study in the next sections and subsequent chapters. Also,

32

we will see that for each of these prevalent decompositions, an associated notion of rank is
defined. The first decomposition to introduce here is the Candecomp/Parafac (CP) [10].

1.4.1. Candecomp/Parafac (CP)

For any tensor T ∈ Rd1×···×dp of order p, there exist an integer r ≥ 1 and rp vectors
{{t(k)

i ∈ Rdi}rk=1}
p
i=1, in terms of which T is decomposed as

T =
r∑

k=1
λ(k)t(k)

1 ◦ t(k)
2 ◦ · · · ◦ t(k)

p (1.4.1)

It is easy to show that such a decomposition always exists; that is because there always exists
a trivial decomposition, i.e., when r = d1d2 . . . dp with the vectors t(k)

i being all canonical
bases of the real spaces Rdi and the scalars λ(k) being the entries of the tensor T . Obviously,
the interesting case is when r < d1d2 . . . dp and the smaller r, the more efficient the CP
decomposition. The CP-rank, or simply the rank, of a tensor T is the smallest value r for
which the CP representation (1.4.1) exists. To mention a major difference between tensors
and matrices, note that while the singular value decomposition of a matrix and accordingly
its rank can be calculated in polynomial time, it is a NP-hard problem to determine the rank
of a tensor [71]. Nevertheless, there are some bounds for special cases, e.g., it is not difficult
to show that for a third-order tensor T ∈ Rd1×d2×d3 , the tensor rank is upper-bounded by

rank(T) ≤ min{d2d3,d1d3,d1d2} (1.4.2)

Another difference between matrices and tensors in terms of the rank decomposition is the
uniqueness. For a matrix of rank r, we can find infinitely many distinct decompositions;
if a matrix M ∈ Rm×n has rank r, it can be decomposed as M = AB with A ∈ Rm×r

and B ∈ Rr×n. However, the right-hand side would not change if we had instead M =
AW−1WB with W ∈ Rr×r being an invertible matrix. Now, by defining S = AW and
T = W−1B, matrix M can also be decomposed as M = ST, which means that the rank
decomposition of a matrix is not unique. This is not the case for the CP decomposition. The
CP decomposition can be unique (up to trivial permutations and scaling) under relatively
weak assumptions [11]. In [11] the sufficient and necessary conditions for the uniqueness of
a given CP decomposition of a tensor of an arbitrary order and a given rank are explained.
We do not go through the details of this subject, as it is out of the scope of our study.
To give the TN representation of the CP, we now introduce an equivalent representation
of this decomposition. This representation works by arranging all r sets of vectors t(k)

i ∈
Rdi ’s into matrices of size di × r, which we denote by Tk’s for k ∈ [p]. This alternative
representation is based on mode-n product. In terms of these matrices, the elements of T
are written as

T i1,...,ip =
∑

k1...,kp

δk1,...,kp(T1)i1,k1(T2)i2,k2 , . . . , (Tp)ip,kp , (1.4.3)

33

with δk1,...,kp being the Kronecker delta function in p dimensions, i.e., δi1,i2,...,ip = 1 if i1 =
i2 = · · · = ip , and 0 otherwise. Note that, in this representation, we have absorbed the
scalar values λ(k) in (1.4.1) into the matrices Ti’s. From the definition of mode-n product,
this relation can be rewritten as

T = I ×1 T1 ×2 T2 · · · ×p Tp, (1.4.4)

with I being the super-identity, i.e., the p-th order tensor representation of the corresponding
Kronecker delta. Having this formula, the TN representation of the CP decomposition of a
4-th order tensor is illustrated as below

T1 T2 T3 T4
r

d1 d2 d3 d4

Figure 1.5. CP decomposition of a 4-th order tensor

The black dot in the diagram represents the super-identity tensor I. Also, the alternative
definition of the CP given in (1.4.4) shows that the CP decomposition can be seen as a special
case of the Tucker representation, which we will see in the next subsection.

1.4.2. Tucker

As defined earlier, the mode-n product of a p-th order tensor X ∈ Rd1×···×dn×···×dp and a
matrix M ∈ Rm×dn , denoted by X ×n M, is of size d1 × · · · × dn−1 ×m× dn+1 × · · · × dp.
The Tucker decomposition of a p-th order tensor X ∈ Rd1×···×dp , is defined by

X = G ×1 U1 ×2 U2 · · · ×p−1 Up−1 ×p Up, (1.4.5)

where G ∈ Rr1×···×rp and Ui ∈ Rdi×ri . The tensor G is called the core tensor and the matrices
{Ui}pi=1 are known as the factor matrices. The tuple (ri)pi=1 containing the dimensions of
the core tensor along all its modes is called the Tucker-rank. As an example, the TN
representation of the Tucker decomposition of a 4-th order tensor X is as shown in Figure 1.6.

U1 U2 U3 U4

G
r r r r

d1 d2 d3 d4

Figure 1.6. Tucker decomposition of a 4-th order tensor

By comparing this definition with Equation (1.4.4) we observe that the CP decomposi-
tion is a special case of the Tucker with the core tensor G being the super-identity tensor.
Furthermore, since for every tensor there always exists a CP decomposition, we conclude that

34

the Tucker decomposition always exists as well. More interestingly, it is not difficult to show
that the factor matrices Ui ∈ Rdi×ri can always be set as unitary. This can be verified based
on three facts; first, that any matrix M has a SVD decomposition as M = UΣV>, with
U and V being unitary matrices, secondly, that as long as dimensionality-wise consistent,
T ×n U1 ×n U2 = T ×n (U2U1), and lastly, that the order of mode-n products for different
modes does not matter, i.e., T ×1 U1×2 U2 · · · = T ×2 U2×1 U1 . . . , and this generalizes to
any number of mode-n products with any arbitrary ordering of them. Based on these three
observations, we now show how the non-unitary parts of the factor matrices can be absorbed
inside the core tensor G and leads to a Tucker decomposition with unitary factors. Consider
a tensor T ∈ Rd1×···×dp with a Tucker decomposition T = G ×1 U1 ×2 U2 · · · ×p Up. By
replacing each factor matrix {Ui}pi=1 with its SVD decomposition Ui = SiΣiT>i , we have
T = G ×1 (S1Σ1T>1) ×2 (S2Σ2T>2) · · · ×p (SpΣpT>p). From the second observation made
above, this is equal to

T = G ×1 (Σ1T>1)×1 S1 ×2 (Σ2T>2)×2 S2 · · · ×p (ΣpT>p)×p Sp (1.4.6)

Then, from the third fact mentioned above, the ordering of the mode-n products can be
changed as follows

T = G ×1 (Σ1T>1)×2 (Σ2T>2) · · · ×p (ΣpT>p)×1 S1 ×2 S2 · · · ×p Sp (1.4.7)

Note that to go from Equation (1.4.6) to Equation (1.4.7), we only need to change the
order of mode-n products with different modes and hence, it is possible to apply the third
consideration above. Finally, we can define a new core tensor as C = G ×1 (Σ1T>1) ×2

(Σ2T>2) · · · ×p (ΣpT>p) and rewrite Equation (1.4.6) as

T = C ×1 S1 ×2 S2 · · · ×p Sp (1.4.8)

which is a Tucker decomposition for T with unitary factor matrices S1, · · · ,Sp.
Henceforth, whenever we talk about the Tucker decomposition we assume that the factor
matrices are orthogonal. Note that, the unitarity of matrices Ui implies the following relation
that can be seen as the inverse of Equation (1.4.5)

G = X ×1 U>1 ×2 U>2 · · · ×p−1 U>p−1 ×p U>p , (1.4.9)

which results from reordering the terms in the identity G = G ×1 U>1 U1 ×2 U>2 U2 · · · ×p−1

U>p−1Up−1 ×p U>p Up.
We proceed by stating a theorem on the rank of a Tucker decomposition.
Theorem 1. The Tucker-rank of a tensor T is given by the ranks of its matricizations, i.e.,
rank(T (i)).

Proof. To prove this, we first show that the i-th component of the tucker-rank of T ,
which is denoted by ri with i ∈ [p], is always lower-bounded by the matrix rank of the i-th

35

matricization of T . We utilize a useful formula which gives the matricized version of (1.4.5):

T (i) = Ui G(i) (Un ⊗Un−1 ⊗ · · · ⊗Ui−1 ⊗Ui+1 ⊗ · · · ⊗U1)> (1.4.10)

Since Ui ∈ Rdi×ri , we have rank(T i) ≤ ri; that is equivalent to having ri lower-bounded by
rank(T i). Next, we show that this lower-bound is in fact reachable; that is, for any tensor
T , there always exists a Tucker representation of multi-rank (ri)pi=1 with ri = rank(T (i)).
The proof of this part is constructive and results in an algorithm, called higher-order singular
value decomposition (HOSVD) [72], which constructs the Tucker decomposition of a given
tensor T . The proof is based on a key observation; that for any p-th order tensor T , with the
SVD decompositions of the mode-i matricizations as T (i) = UiΣiV>i , i ∈ [p], the following
identity is valid

T = T ×1 U1U>1 ×2 U2U>2 · · · ×p UpU>p (1.4.11)

To prove this, we first show T = T ×1 U1U>1 . Notice that the i-mode matricization of a
tensor is uniquely defined, therefore, if we prove this equality between a mode-i matricization
of both sides, that implies the equality for the tensors as well. To show T (1) = (T ×1

U1U>1)(1), we write

(T ×1 U1U>1)(1) = U1U>1 T (1)

= U1U>1 U1Σ1V>1 = U1Σ1V>1 = T (1) (1.4.12)

This is also true for any other mode matricization, i.e., we have T = T ×iUiU>i . This leads
to Equation (1.4.11). Now, by reordering Equation (1.4.11), we get

T = (T ×1 U>1 ×2 U>2 · · · ×p U>p)×1 U1 ×2 U2 · · · ×p Up (1.4.13)

By defining the core tensor as G = T ×1 U>1 ×2 U>2 · · · ×p U>p and factor matrices as Ui for
i = 1, · · · , p, the Tucker decomposition with the minimal rank tuple (ri)pi=1 is constructed.
This gives the HOSVD algorithm for the exact decomposition of a tensor in a Tucker repre-
sentation. �

Finally, without going into the details, we mention that the HOSVD algorithm also gives a
quasi-optimal result for the low-rank Tucker decomposition of a tensor, i.e., with multi-rank
(r′i)

p
i=1 < (rank(T (i)))pi=1. Although finding the best low-rank approximation is a NP-hard

problem [71], the quasi-optimal approximation is obtained by arranging only the first r′i left
singular vectors of each T (i) in a unitary matrix U′i ∈ Rdi×r′i (truncated SVD) and defining
the approximate core tensor and factor matrices as G = T ×1 U′>1 ×2 U′>2 · · · ×p U′>p and
{U′i}

p
i=1 respectively. The quasi-optimality of this algorithm means that if T ∗ is the best

low-rank approximation of T in terms of the Frobenius norm, the approximate tensor T ′

36

resulting from the HOSVD satisfies the following inequality [72]

‖T − T ′‖F ≤
√

3‖T − T ∗‖F . (1.4.14)

1.4.3. Tensor Train (TT)

Another important TN is the tensor train decomposition [12], also known as matrix
product state (MPS) [13, 15], which factorizes a n-th order tensor T in the following form

G1

d1

r1 G2

d2

r2 Gn-1
rn−2

dn−1

rn−1 Gn

dn

This corresponds to

T i1,i2,...,in =
r1∑

α1=1
. . .

rn−1∑
αn−1=1

(G1)i1,α1(G2)α1,i2,α2 . . . (Gn−1)αn−2,in−1,αn−1(Gn)αn−1,in (1.4.15)

where the tuple (ri)n−1
i=1 associated with the TT representation is called TT-rank. One spe-

cial point about the tensor train representation is that the TT-rank of the minimal tensor
train decomposition of a tensor can be determined in terms of some matricizations of the
tensor[12]. However, these are not the mode-i matricizations. We define a new type of
matricization for a p-th order tensor T ∈ Rd1×···×dp denoted by T [k] ∈ R

∏k

i=1 di×
∏p

j=k+1 dj for
k ∈ {1, · · · ,p− 1} with the components written as

(T [k])i1,··· ,ik;ik+1,··· ,ip = T i1,··· ,ip (1.4.16)

That means T [k] ∈ Rd1d2···dk×dk+1dk+2···dp . First, we prove that the TT-rank of T cannot
be smaller than the rank of these matricizations. Consider the matricization defined in
Equation (1.4.16) for a tensor T in tensor train format. From Equations (1.4.15) and (1.4.16),
we have

(T [k])i1,··· ,ik;ik+1,··· ,ip =
∑

α1,··· ,αk−1,αk,αk+1,··· ,αp−1

(G1)i1,α1 · · · (Gk)αk−1,ik,αk
(Gk+1)αk,ik+1,αk+1 · · · (Gp)αp−1,ip

=
∑
αk

(
∑

α1,··· ,αk−1

(G1)i1,α1 · · · (Gk)αk−1,ik,αk
)(

∑
αk+1,··· ,αp−1

(Gk+1)αk,ik+1,αk+1 · · · (Gp)αp−1,ip)

(1.4.17)

By doing some reshaping, we can see the first factor inside the parenthesis as a matrix in
Rd1···dk×αk and the second term in the parenthesis as another matrix in Rαk×dk+1···dp . Then,
from this matrix product, we infer that the matricization T [k] has rank at most equal to rk.
Therefore, so far we have proved that the k-th component of the TT-rank tuple is greater
than or equal to the rank of the matricization T [k]. Now, we show that the equality is in
fact possible; that is, for any tensor of arbitrary order p, the minimal TT representation
exists, which is a tensor train where each component k of the TT-rank is given by the rank

37

of the corresonding matricization T [k]. The proof is constructive and results in an algorithm
known as TT-SVD.
We consider the SVD of T [1], i.e., T [1] = U1Σ1V>1 . Note that U1 ∈ Rd1×r1 and intuitively
this matrix U1 can serve as the first core of the TT decomposition of T . Let’s call the other
part of the SVD decomposition W1, that is W1 = Σ1V>1 ∈ Rr1×d2d3···dp . Also, we introduce
the p-th order tensor W1 ∈ Rr1×d2×d3×···×dp which is made by rearranging the components of
the matrix W1. To continue, a key step is to show that the rank of the [k]-th matricization
of the p-th order tensor W1 is less than or equal to the corresponding matricization rank of
the initial tensor T . From the SVD decomposition of T [1] and the definition of W1, we have

W1 = U>1 T [1] (1.4.18)

From Equation (1.4.17) for the matricization T [k], we have

T i1,··· ,ip =
rk∑

αk=1
Mi1,··· ,ik;αk

Nαk;ik+1,··· ,ip (1.4.19)

with Mi1,··· ,ik;αk
and Nαk;ik+1,··· ,ip being respectively equal to

∑
α1,··· ,αk−1(G1)i1,α1 · · · (Gk)αk−1,ik,αk

and ∑
αk+1,··· ,αp−1(Gk+1)αk,ik+1,αk+1 · · · (Gp)αp−1,ip . Then, Equation (1.4.18) results in the

following relation

(W1)α1,i2,··· ,ip = (W1)α1,i2···ip =
∑
i1

(U1)i1,α1(T[1])i1;i2,i3,··· ,ip =
∑
i1

(U1)i1,α1T i1,i2,i3,··· ,ip

(1.4.20)

This can be rewritten as

(W1)α1,i2,··· ,ip =
∑
i1

(U1)i1,α1T i1,i2,i3,··· ,ip =
∑
i1

(U1)i1,α1

rk∑
αk=1

Mi1,··· ,ik;αk
Nαk;ik+1,··· ,ip

=
rk∑

αk=1
(
∑
i1

(U1)i1,α1Mi1,··· ,ik;αk
)Nαk;ik+1,··· ,ip (1.4.21)

Now, since the left-hand side of this equation is equal to (W1[k])α1,i2··· ,ik;ik+1,··· ,ip , we conclude
that the rank of any matricization W [k] is at most equal to rk.
Knowing this, we can reshape W1 as Wreshaped

1 ∈ Rr1d2×d3···dp and again apply a SVD de-
composition as W1 = U2Σ2V>2 with U2 ∈ Rr1d2×r2 and W2 = Σ2V>2 ∈ Rr2×d3···dp . By
reshaping U2 as U2 ∈ Rr1×d2×r2 , the second core tensor of the TT decompossition is formed.
By proceeding in this same way and iteratively applying SVD we find all core tensors and
thus, the tensor train representation of T with the TT-rank (r1, · · · ,rp−1) is constructed;
note that each rk is the rank of the corresponding matricization T [k]. Finally, since the SVD
decomposition always exists for any matrix, this constructive proof shows the existence of
the minimal tensor train for any arbitrary tensor. Figure 1.7 illustrates the application of
TT-SVD algorithm on a 4-th order tensor.

38

Figure 1.7. Figure from [6]. TT-SVD algorithm applied to a 4-th order tensor

It is worth mentioning that as in the Tucker case, the TT-SVD algorithm can be modified
to find an approximate TT decomposition rather than the exact one. This is again realized
by using truncated SVD inside the TT-SVD algorithm instead of the ordinary SVD. The
resulting TT decomposition is quasi-optimal; that is, if T ∗ is the best low-rank approximation
of a given tensor T in terms of the Frobenius norm, the approximate tensor T ′ resulting
from the (truncated) TT-SVD satisfies the following inequality [12]

‖T − T ′‖F ≤
√
p− 1‖T − T ∗‖F . (1.4.22)

As the final point regarding the TT decomposition, in [12], it is shown how different tensor
operations such as summation, elementwise (Hadamard) product as well as inner product
of TT tensors reduce to some operations on the core tensors of the TT tensors and result
in tensors with bounded TT-rank in terms of the ranks of the initial tensors. Besides that,
the inner product of TT tensors with uniform TT-rank r has linear (in terms of the tensor
orders) time complexity O(ndr4) which is a substantial improvement over the exponential
time dn which is ordinarily required for the inner product of two n-th order tensors with

39

uniform dimension d. Table 1.1 summarizes some significant differences between the tensor
networks that we have seen so far.

1.4.4. Other decompositions: Hierarchical Tucker and Tensor Ring

As could be expected, there are other tensor networks that we have not considered in
our short introduction to the subject. Figure 1.8 represents some of those tensor networks.
Two of them which can be seen as the generalization of the tensor networks that we saw
above, are tensor ring (TR) [41] (also known as periodic MPS) and PEPS decompositions.
They have initially emerged in quantum physics and recently gained interest in the machine
learning community (see e.g., [65, 20, 73, 74]). Each one of these TNs generalize tensor
trains in their own way. Especially TR overcomes two limitations of TT; first, that the two
bordering tensors of TT are constrained to have dimension 1 along one of their three modes,
secondly, the bond dimension of TT increases from the borders towards the center. The TR
decomposition expresses each component of a p-th order tensor T as the trace of a product
of slices of p core tensors G(1) ∈ Rr0×d1×r1 , G(2) ∈ Rr1×d2×r2 , · · · , G(p) ∈ Rrp−1×dp×rp with
rp = r0. As an example, for a 4-th order tensor we have T i1,i2,i3,i4 = Tr(G(1)

:,i1,:G
(2)
:,i2,:G

(3)
:,i3,:G

(4)
:,i4,:).

The tensor train (TT) decomposition is then a particular case of the tensor ring where r0 is
equal to 1.

Figure 1.8. Illustration of some common tensor networks.

One more tensor network of special interest is the hierarchical Tucker (HT) decomposition
initially introduced in [39, 40]. An important property of this TN is its high expressive power
compared to some less expressive TNs like the CP. In the final section of this chapter we
show an equivalence between the CP and the HT tensor networks on the one hand and
some specific shallow and deep neural networks on the other hand. This is a part of a study
of the expressive power of shallow and deep neural networks based on a tensor network
analysis [32]. Before going through that, in the next section we exemplify a TN learning
model which was introduced in [1], based on TT.

40

CP Tucker Tensor Train
Parameters r

∑p
i=1 di

∏p
i=1 ri +∑p

i=1 ridi
∑p−1
i=2 riri−1di + d1r1 + dprp−1

Computing the rank NP-hard Polynomial Polynomial
Low-rank approximations ? Quasi-optimal algorithm (HOSVD) Quasi-optimal algorithm (TTSVD)

Table 1.1. Some properties of CP, Tucker and TT compared against each other

1.5. Classification with Tensor Train Weight
The goal of this section is to briefly show an example of a tensor-network-based learning

model. In [26] the interaction between data features has been modeled by mapping input
data into a tensor in a high dimensional space. As a way to avoid the curse of dimensionality,
the model is regularized by using the TT representation of the exponentially high-dimensional
weight tensors; the rank of the tensor is a hyperparameter of the model which controls the
amount of regularization. In a separate work [1], the authors closely follow the same idea
to perform image classification task on MNIST dataset and obtain a test error of 0.97%.
The idea is to work with data projected into a high-dimensional representation space, as in
kernel models. In order to deal with the exponentially high-dimensional weight tensor, they
suggest a TT representation of this tensor. In this way, the number of model parameters
scales linearly with the tensor dimension, rather than exponentially. The rest of this section
is based on the tensor train classifier proposed in [1] which is one of the first works showing
the potential of quantum-inspired tensor networks for supervised learning.
Let S = {(x1,y1), · · · ,(xn,yn)} be a sample drawn i.i.d. from an unknown distribution D,
where each xi ∈ Rp and yi ∈ {−1,1}.
In [1], Stoudenmire and Schwab propose to map each element of the input vector to a two-
dimensional local space. This is called a local feature map. Figure 1.9 shows an example of
this feature map for the case of image input data where each image pixel is mapped to a
2-dim vector. Then, the input tensor in the high-dimensional space is constructed by taking
the outer product of these local feature maps; that means, if we consider x = (x1, . . . , xp),
the suggested M -dimensional local feature map over every component xi is of the general
form φφφ(xi) =

(
φ1(xi) φ2(xi) . . . φM(xi)

)>
. Then, the representation of the input data,

is defined as the outer product of these individual local maps

x = (x1, x2, . . . xp) 7→ Φ(x) = φφφ(x1) ◦ φφφ(x2) · · · ◦ φφφ(xp) ∈ (RM)⊗p (1.5.1)

The classifier is given by the contraction of the data tensor and a p-th order weight tensor
W , as below

f(x) = sign
 M∑
i1,i2...ip=1

W i1,i2...ipφφφ(x1)i1φφφ(x2)i2 . . .φφφ(xp)ip

 = sign (〈W ,Φ(x)〉) (1.5.2)

41

Figure 1.9. Figure from [1]. Each pixel
value of a grayscale image is mapped to a
normalized two-component vector.

The weight tensor W needs to be in the space (RM)⊗p which is typically of very high
dimension; the authors of [1] overcome this problem by considering W in the tensor train
representation of low rank given in Eq. (1.4.15). That means

W i1,i2,...,ip =
ri∑

αi=1
T α1

1,i1T α1,α2
2,i2 . . .T αp−2,αp−1

p−1,ip−1 T αp−1
p,ip (1.5.3)

or pictorially, as in Figure 1.10.

W
d2 dp−1 dpd1

= T 1

d1

r1 T 2

d2

r2 T p-1
rp−1

dp−1

rp T p

dp

Figure 1.10. Decomposition of the weight tensor as a tensor train

1.6. Equivalence of TNs with Convolutional Arithmetic
Circuits

In this section, we introduce two more examples of tensor-network-based learning models
which have CP and HT as their weight tensor. Following the lines of [7], we show how they are
respectively equivalent to shallow and deep convolutional arithmatic circuits (CAC) which
are special types of sum-product neural networks.
As a reminder, For a tensor T of order p and another tensor S of order q, i.e., T ∈
Rd1×d2×···×dp and S ∈ Rd′1×···×d

′
q , we have T ◦ S ∈ Rd1×···×dp×d′1×···×d

′
q . This tensor product is

defined by

(T ◦ S)i1,··· ,ip,j1,··· ,jq = T i1,··· ,ipSj1,··· ,jq (1.6.1)

Also, the CP decomposition of a p-th order tensor X ∈ Rd1×···×dp given by X = ∑r
i=1 u1

i ◦
u2
i ◦ · · · ◦upi , can be represented as a tensor network as in Figure 1.5, if we define p matrices
{Ui ∈ Rdi×r}pi=1, where each Ui is made up of r vectors uir as its columns.

42

1.6.1. CP Model as a Shallow CAC/CNN

While following [7], to unify our notation for the TN models, we use the same notation
as in the previous section for the tensor train model. Assume the tensorial data Φ(x) of
potentially large dimension in (RM)⊗p space. A linear model to do classification or regression
on this input space consists of tensor weights of the same dimension:

f(x) =
∑

i1,··· ,ip
W i1,··· ,ipΦ(x)i1,··· ,ip (1.6.2)

{W i1,··· ,ip}Mi1,··· ,ip=1 are Mp entries of the weight tensor W that is to learn. A possible
TN representation of W is the CP decomposition in Equation (1.4.1). Replacing that in
Equation (1.6.2), we get

f(x) =
∑

i1,··· ,ip
(
r∑
l=1

al a1
l,i1a

2
l,i2 · · · a

p
l,ip

) Φ(x)i1,··· ,ip

=
∑

i1,··· ,ip
(
r∑
l=1

al a1
l,i1a

2
l,i2 · · · a

p
l,ip

)φφφi1(x1) · · ·φφφip(xp) (1.6.3)

with akl ∈ RM for all k = 1, · · · ,p. The last expression can be reorganized so that f(x) takes
the following form

f(x) =
r∑
l=1

al

p∏
k=1

M∑
ik=1

akl,ikφφφik(xk) (1.6.4)

From this, we can describe a shallow CNN that is equivalent to the above CP-classifier model.
To elaborate on this analogy with the CNN, we think of the input data in (RM)⊗p as an
image. In that case, p can be considered as the spatial size of the image, like height×width.
Also, M is interpreted as the number of channels, which is 3 for RGB images. Each φφφik(xk)
is one pixel in the ik-th channel which is convolved by r different kernel functions (filters)
{akl,ik}

r
l=1. These kernels are scalars (or more precisely, each set {akl,ik}

M
ik=1 is a kernel of

volume M × 1× 1) and hence this is a 1× 1 convolution. As in ordinary CNN, we have a
summation overM input channels which is done by the innermost summation over the index
ik. The output of this summation is another representation of the data, again of spatial size
p, but now in r different channels. The next operation is a global product pooling which
multiplies all p elements of each of the r channels together and downscales the spatial size
to 1, while keeping the number of channels r. This operation is shown by the product over
the index k and the result of that is a vector of dimension r. Finally, the inner product of
this vector with a vector made up of al’s results in an scalar which is the score of the input
data x. This is done in the output layer of the corresponding CNN through the summation
over the index l. This convolutional arithmetic circuit is illustrated in Figure 1.11 from [7].
Note that we have only one layer of convolution and hence a shallow CAC.

43

Figure 1.11. Figure from [7]. CAC corresponding to the CP decomposition of the weight
tensor of a linear model.

1.6.2. Hierarchical Tucker Decomposition as a Deep CAC

In order to follow the analysis of HT-classifier and its corresponding convolutional arith-
metic circuit (CAC) in [7], we start by reviewing the representation of the tensor product of
matrices in tensor network diagrams. First, we remember from the CP decomposition that
a summation of the form ∑r

i=1 aibi ◦ ci is equivalent to a matrix product BACT , where B
and C are matrices of dimension dB × r and dC × r, with dB and dC being the dimensions
of vectors {bi}ri=1 and {ci}ri=1 respectively. A is a r × r diagonal matrix with the scalars
{ai}ri=1 as its entries. Therefore, the above summation is represented as the tensor network
B A C . If we now consider a similar summation with matrices Bi,Ci instead of the
vectors bi,ci, i.e.,

∑r
i=1 aiBi ◦Ci, then, by stacking the matrices Bi into a tensor B and Ci’s

into C, this summation is represented by the diagram B
A

C , where A is again a r × r
diagonal matrix with the scalars {ai}ri=1 as its entries. With this intuition about the TN
representation of tensor decompositions including the outer product of tensors of arbitrary
orders, here we just give a high-level overview of the classifier model that was detailed in [7].
It is in fact a special HT with a binary tree structure; moreover, the core tensors enjoy
some types of symmetries that makes it possible to represent all of them by tensors of order
at most two, i.e., with matrices. Following the notation of [7], The predictor function is
defined recursively. The first step of the recursion includes the outer product of the vector
parameters vαj

ψ1,j,γ =
r0∑
α=1

a1,j,γ
α vα2j−1 ◦ vα2j, j ∈ [p/2], γ ∈ [r1] , (1.6.5)

where vα2j,vα2j−1 ∈ Rd, ∀j ∈ [p2],∀α ∈ [r0].
TN representation of this step is shown in Figure 1.12. As described above, Vi matrices in
this figure for odd i values, i = 2j − 1, have vectors vα2j−1 as their columns, i.e., Vi ∈ Rd×r0 .

44

Also, for each j ∈ [p2] and each γ ∈ [r1], we can put the entries {a1,j,γ
α }r0

α=1 in a vector in Rr0 .
Then, for each j, by placing all r1 vectors as columns of matrices Aj ∈ Rr0×r1 , the following
figure illustrates the outer product of j tensors ψ1,j,γ of Equation (1.6.5), for j = 4.

V1

A1

V2
d d

r0

r1

V3

A2

V4
d d

r0

r1

V5

A3

V6
d d

r0

r1

V7

A4

V8
d d

r0

r1

Figure 1.12. Illustration of the Equation (1.6.5), i.e., the first recursion step for the con-
struction of the Hierarchical Tucker tensor. Note that r0 shows the dimension of the hyper-
edge along all its modes.

The next step of the recursion combines ψ1,j,γs to calculate ψ2,j,γs, and so on and so forth,
for all ψl,j,γs in terms of ψl−1,j,γs. Finally, the last equation in the recursion gives the weight
tensor W , which is the same as ψL,j=1,γ=1 in terms of ψL−1,j,γs.

ψ2,j,γ =
r1∑
α=1

a2,j,γ
α ψ1,2j−1,α ◦ ψ1,2j,α, j ∈ [p4], γ ∈ [r2]

· · ·

ψl,j,γ =
rl−1∑
α=1

al,j,γα ψl−1,2j−1,α ◦ ψl−1,2j,α, j ∈ [p2l], γ ∈ [rl]

· · ·

W =
rL−1∑
α=1

aLαψ
L−1,1,α ◦ ψL−1,2,α (1.6.6)

In terms of TN format, the whole weight tensor defined by Equations (1.6.6) has the HT
representation in Figure 1.13, for a 8-th order tensor

V1

A1
1

A2
1

y

V2
d d

r0

r1 r1

r0

r2

V3

A1
2

V4
d d

V5

A1
3

A2
2

V6
d d

r0 r0

r1 r1

r2

V7

A1
4

V8
d d

Figure 1.13. Illustration of the Hierarchical Tucker representation of a tensor of order eight,
defined by Equation (1.6.6).

45

With the same observations as mentioned above, each Al
j is made by arranging all rl

vectors in Rrl−1 , i.e., {{al,j,γα }
rl−1
α=1}rl

γ=1, as columns of a matrix in Rrl−1×rl . Finally, the vector
y ∈ RrL−1 contains {aLα}

rL−1
α=1 as its entries.

Using a similar analysis as in Section 1.6.1, the HT-based classifier is equivalent to a deep
CAC as in Figure 1.14 [7].

Figure 1.14. Figure from [7]. Deep CAC corresponding to the HT decomposition of the
weight tensor.

Note that in each layer of this CAC, we again have 1 × 1 convolutions; however, the
collapse of the spatial dimension of the image occurs gradually over the layers, rather than
at once which was the case in the CP model. That means, instead of the global product
pooling in the CP model, here at each level, local product pooling operations are applied
over size-2 windows (because the HT tree is chosen to be binary in this case), and hence the
number of layers of this deep CAC is log p.
Finally, we mention one important result in [7] on the expressiveness of shallow and deep
CACs based on this equivalence. That is, in order for a shallow network to express a function
captured by a random deep CAC network, with probability 1 in the corresponding function
space, the former needs exponentially more parameters compared to the latter. The proof
is based on this observation that representing a HT network in CP format, with probability
1 requires exponentially more parameters in terms of the order of the tensor. This result
comes from the fact that the CP rank of a tensor is always larger than or equal to the
rank of any of its matricizations. Since with probability 1, there always exists [7] a special
matricization of the HT network for which the rank is at least r p

2 , with r being the HT
rank and p the order of the tensor, the corresponding CP rank will be higher than r p

2 ; this
results in exponentially more parameters for the CP than for the HT representation (again
with probability 1). This is what the authors call complete efficiency, which means the set
of functions for which this statement does not hold, has measure zero in the corresponding
function space. Also interestingly, in [32] it is shown that this depth efficiency would no
longer be complete for the case of neural networks with ReLU non-linearity.

46

Chapter 2

Generalization Bound and Complexity
Measures

2.1. Introduction
As shortly explained in the first chapter, within the framework of the empirical risk

minimization (ERM) for supervised learning, generalization bounds upper-bound the gap
between the empirical and the true risks, i.e., between R̂S(h) and R(h). In this thesis,
we focus on uniform generalization bounds, which for a class of functions denoted by H,
bound the generalization gap uniformly for any hypothesis h ∈ H, as a function of the
training sample size and of the complexity of H. While there are many ways of measuring
the complexity of H, including VC-dimension, Rademacher complexity, metric entropy and
covering numbers, we focus on the VC-dimension for classification tasks and its counterpart
for real-valued functions, the pseudo-dimension, for completion and regression tasks. We
begin with studying the calculation of the generalization bound for the classification task in
detail. After that, we briefly review a similar problem for the regression task, as well as for
the completion.

2.2. Classical Generalization Bounds for Classification
Let S = {(x1,y1) . . . ,(xn, yn)} be a sample drawn i.i.d. from an unknown distribution

D. Based on this subset S, we want to find a function h : Rd → R, such that for all i ∈ [n],
yi = sign(h(xi)) ∈ {−1,1}. It is not always guaranteed that all (xi,yi)’s satisfy this relation;
so, this will be an approximation and we are interested in quantifying its accuracy; we define
the loss: L(y, ŷ) = Iy 6=ŷ. From that, we can write Li = L(yi, sign(h(xi))) to denote the loss
on the i-th example. The empirical risk of a function (or hypothesis) is defined as the average

of the loss function L over the entire sample S

R̂S(h) =
n∑
i=1

1
n
L(yi, sign(h(xi))) (2.2.1)

However, what we finally care about is the true risk defined as R(h) =
E(x,y)∼D[L(y, sign(h(x)))]. Given that we do not have access to all samples in the
distribution D, we cannot calculate it. Instead, we ask the following question :
Does the empirical risk R̂S(h) give an upper bound on the true risk, R(h)?
To answer this question, we first remind some facts regarding the loss function. First, we
observe that the loss function Li = L(yi, sign(h(xi))) = Iyi 6=sign(h(xi)), as a random variable,
has Bernoulli distribution with probability p = R(h). This is a result of the expectation of
the loss L being the true risk, from the definition of the true risk, and the fact that the
0− 1 loss takes only two values.
Knowing that the loss has a Bernoulli distribution, we consider the implication of Theo-
rem 19 for the loss as the random variable.
By replacing Xi’s of this theorem with losses Li, and noting that the sample average of
losses is the empirical risk, the theorem straightforwardly results in the following upper
bound on the probability of the difference between the empirical risk and the true risk
exceeding an arbitrary real value ε

P
[
|R̂S(h)−R(h)| > ε

]
≤ 2 exp (−2nε2), (2.2.2)

with n being the size of the sample S. So far, we have considered only one hypothesis.
However, most of the time the question is to find a bound when the hypothesis h is just
one function out of a class of functions H. Then, the problem would be to put an upper
bound on the probability of having at least one hypothesis in H like hi for which |R̂S(hi)−
R(hi)| > ε. In most cases the set of hypotheses is infinite and our goal is to finally obtain a
generalization bound for that case. Nevertheless, here we start with the finite class which is
more straightforward and then generalize this formulation to the infinite case.

2.2.1. Finite Class of Hypotheses

We use the union bound which states that for a finite set of k events e1, . . . , ek, the
probability that at least one of the k events happens, i.e., P(∪ki=1ei), is no greater than the
sum of the probabilities of the individual events:

P
[
∪ki=1ei

]
≤

k∑
i=1

P[ei] (2.2.3)

48

From the union bound and our earlier result (2.2.2) for one hypothesis, we find out the
following relation, known as a uniform convergence bound

P
[
∃hi ∈ H, |R̂S(hi)−R(hi)| > ε

]
≤
|H|∑
i=1

P
[
|R̂S(hi)−R(hi)| > ε

]
≤ 2|H| exp (−2nε2)

(2.2.4)

As a side note, one might wonder about the bias-variance trade-off through the lens of this
relation. To comment on this point, note that for highly complex hypothesis classes, that is
for large values of |H|, the above bound on the probability gets loose if the data sample is
relatively small. That means, the event of the generalization error being remarkably different
than the empirical error, becomes more likely. In this case, the empirical error is not a good
estimation of the true error and we get a high approximation error due to a high-variance
model. As we know from the standard statistical learning theory, in order to deal with
models diagnosed with high variance, we either provide samples with more data points or
regularize the function class by decreasing the cardinality of the set of hypotheses. We now
observe how these two approaches result in tightening the generalization gap through the
corresponding probability relation in Equation (2.2.4). Moreover, the bias-variance trade-off
is seen here from the fact that although one can arbitrarily diminish |H| to tighten the bound
in Equation (2.2.4), the hypothesis class needs to be large enough so that the target function
is included in it or at least is close enough to this class. In fact, while the above probability
bound is uniform, we are finally concerned with this bound for a learned function h ∈ H that
should be as close as possible to a target function h∗. That means, in the complete learning
setup, the objective to be minimized is |R̂S(ĥ)−R(h∗)|. This expression is equivalent to

|R̂S(ĥ)−R(h∗)| = |R̂S(ĥ)−R(h) +R(h)−R(h∗)| ≤ |R̂S(ĥ)−R(h)|+ |R(h)−R(h∗)|
(2.2.5)

The first term on the right-hand side is called the estimation error which is due to the use
of a limited number of data points, i.e., is high for high-variance models. The second term
on the other hand, which is the difference between the true errors of the learned model and
the target model, estimates the best performance that we can get from a model in our model
class. For this second term, known as the approximation error, to be small, we need to have
a big enough hypothesis class to avoid high-bias models.
The bound on the likelihood in Equation (2.2.4), can be recast into a bound on the gap
between the empirical and true risk. We define δ as the probability of this gap exceeding
the value ε. Then, the inequality in (2.2.4) is equivalent to the following statement: with
probability at least 1−δ over the choice of the sample S, the difference between the empirical

49

and the true risk is bounded as

|R̂S(h)−R(h)| ≤
√

log |2H| − log δ
2n (2.2.6)

To extend this result to the infinite-size hypothesis class, we first notice that, in that case
the above bound will be uninformative. As explained in the next section, to deal with this
case, we introduce the notion of restriction of the infinite class to a finite sample.

2.2.2. Infinite Class of Hypotheses

Definition 2. The restriction of a class of hypotheses H to a set S = {x1, . . . ,xn} is defined
as HS = {(h(x1), . . . , h(xn)) | h ∈ H}.

We remind that H is a subset of all Boolean-valued functions on the space of input data
points. Each member of HS is called a dichotomy or a sign pattern. Evidently, not all H
have enough capacity to generate all 2n possible sign patterns for n data inputs. Therefore,
in general, we get an upper bound on the cardinality of HS : |HS| ≤ 2n. In case of equality,
we say that the class H shatters the set S. It is important to note that HS and consequently
the shattering property are strongly dependent on the data points by definition; while one
set of n points can be shattered by a class of functions, typically there exist many other sets
of size n that are not shattered by this same class H. Based on this fact, we introduce the
growth function .
Definition 3. Let H ⊂ {−1,+1}X be a hypothesis class. The growth function ΠH : N→ N
of H is defined by

ΠH(n) = sup
S={x1,...,xn}⊂X

|{(h(x1), . . . , h(xn)) | h ∈ H}|.

That is, the growth function of a hypothesis class for a given number n is the maximum
cardinality of the restriction of that hypothesis class to a sample S of size n.
Growth function generalization bound Equipped with the new concept of the growth
function, we prove a generalization bound for infinite hypothesis classes. We use the sym-
metrization lemma which is based on the concept of restriction introduced in Definition 2.
As we see later, using this lemma interestingly results in a useful reduction of the analysis
of the infinite class to that of a finite set.
The following theorem gives the generalization bound in terms of the growth function.
Theorem 4. (Vapnik-Chervonenkis). Let H be an infinite class of hypotheses. For any
δ > 0 with probability at least 1− δ over a random draw of a sample of finite size n, we have

∀h ∈ H , R(h) < R̂S(h) + 2
√

2
log ΠH(2n) + log 4

δ

n
(2.2.7)

50

Proof. To prove this theorem we use a symmetrization lemma and a corollary of Hoeffding’s
inequality.
Lemma 2.2.1. (Symmetrization Lemma) Let S and S ′ be two random samples of size n
drawn from a distribution D. Then for any t > 0, with large enough n such that nt2 ≥ 2, we
have

PS∼D
[
sup
h∈H

(
R(h)− R̂S(h)

)
≥ t

]
≤ 2 PS,S′∼D

[
sup
h∈H

(
R̂S′(h)− R̂S(h)

)
≥ t

2

]
, (2.2.8)

This lemma relates the difference between the true risk and the empirical risk of one
given sample, to the difference between empirical risks of that sample and another random
sample of the same size, sometimes called the ghost sample. The proof can be found in
Appendix B.
Next, we give a corollary of Hoeffding’s theorem.
Corollary 2.2.2. If Z1, . . . , Zn, Z

′
1, . . . , Z

′
n are 2n i.i.d. random variables drawn from a

Bernoulli distribution, then for all ε > 0 we have

P
[

1
n

n∑
i=1

Zi −
1
n

n∑
i=1

Z ′i > ε

]
≤ 2 exp

(
−nε

2

2

)
(2.2.9)

The proof is again in Appendix B.
From Lemma 2.2.1 we have

PS∼D
[
sup
h∈H

(
R(h)− R̂S(h)

)
≥ 2ε

]
≤ 2 PS∼D,S′∼D

[
sup
h∈H

(R̂S′(h)− R̂S(h)) ≥ ε

]
(2.2.10)

Now, since on the right-hand side, both risk terms are empirical risks over samples of finite
size, we can restate the supremum over infinite set of hypotheses as the maximum operation
over the restriction of the hypothesis class to the set of data points. So, the right-hand side
becomes

2 PS,S′∼D
[
sup
h∈H

(R̂S′(h)− R̂S(h)) ≥ ε

]
= 2 PS,S′∼D

[
max
h∈HS,S′

(R̂S′(h)− R̂S(h)) ≥ ε

]
,

(2.2.11)

where on the right, we have implicitly changed the meaning of h as a hypothesis to the
projection of that hypothesis onto the subset S ∪ S ′ taken from the distribution D.
We can restate this expression as below

2 PS,S′∼D
[

max
h∈HS,S′

(R̂S′(h)− R̂S(h)) ≥ ε

]
= 2 PS,S′∼D

[
∃h ∈ HS,S′ | (R̂S′(h)− R̂S(h)) ≥ ε

]
,

(2.2.12)

because the realization of each side implies the other side as well. We note that now the
hypothesis function is chosen among the restriction of the infinite class to the finite set of
S ∪S ′ and therefore it has finite size. Hence, we can apply the union bound as we did in the

51

finite case.
The maximum possible value occurs when the restriction of all hypotheses in H to the 2n-
sized set S ∪ S ′, i.e., all members of the set HS,S′ reach the maximum possible probability
P
[
R̂S′(h)− R̂S(h) ≥ ε

]
. The number of these 2n-sized sets is at most equal to the growth

function ΠH(2n). So the above probability is at most

2 ΠH(2n) max
h∈H

(
PS,S′∼D

[
R̂S′(h)− R̂S(h) ≥ ε

])
On the other hand, the probability term is upper-bounded according to Corollary 2.2.2,
where we have taken it into account that L has Bernoulli distribution. Therefore, we get

2 PS,S′∼D
[

max
h∈HS,S′

(R̂S′(h)− R̂S(h)) ≥ ε

]
≤ 2ΠH(2n) max

h∈H

(
PS,S′∼D

[
R̂S′(h)− R̂S(h) ≥ ε

])

≤ 2ΠH(2n) 2 exp
(
−nε

2

2

)
(2.2.13)

Combining equations (2.2.10) and (2.2.13), we obtain the following relation

PS∼D
[
sup
h∈H

(
R(h)− R̂S(h)

)
≥ 2ε

]
≤ 4 ΠH(2n) exp (−nε

2

2) (2.2.14)

As before, by taking this probability as δ, i.e., by putting 4 ΠH(2n) exp (−nε2

2) = δ, we
find the following generalization bound for any hypothesis h from the infinite class H with
probability at least 1− δ over the choice of a random sample

R(h) < R̂S(h) + 2
√

2
log ΠH(2n) + log 4

δ

n

So, Theorem 4 is proved. �

VC-Dimension From Definition 3, the growth function ΠH(m) is an increasing function
of its argument which is always upper-bounded by 2m. The important point is that if for a
given H and m the equality holds, then the equality will hold for all smaller m’s as well. In
other words, for a given H and m if there exists a set of m points shattered by H, then, for
any n < m, there exists a set of n points shattered by H as well. Now, we are at the right
point to define the VC dimension of a class of hypotheses.
Definition 5. Let H ⊂ {−1,+1}X be a hypothesis class. The VC-dimension of H, dVC(H),
is the largest number of points x1, · · · ,xn shattered by H, i.e., for which |{(h(x1), . . . , h(xn)) |
h ∈ H}| = 2n. In other words: dVC(H) = sup{n | ΠH(n) = 2n}.

As an example of an infinite hypothesis class, consider the set of lines in 2-dimensional
Euclidean space. We want to see how many two-dimensional points can be shattered by
this class. Obviously, for any two (non-coinciding) points we can always find three distinct
lines giving all four possible sign patterns. Figure 2.1a shows how three points can also
be shattered by the set of lines in two dimensions. On the other hand, if we consider four

52

points in two dimensions, it is shown that for any set of four points in two dimensions, there
always exists at least one sign pattern that is not linearly separable; that means there exists
no line that can perfectly separate the two classes. Figure 2.1b illustrates a specific binary
labelling of four points (more precisely, two binary labelling of four points, for two possible
configurations of four points in general position) which is not linearly separable and therefore,
prevents the set of four points from being shattered. It can be shown that in general, the
VC-dimension of hyperplanes in d-dimensional space is equal to d+ 1. The proof of this fact
is given in Appendix C.

(a) (b)

Figure 2.1. From [8]. (a) Illustration of shattering of three points in 2-dim by lines. (b)
Two categories of four points in general position in two dimensions. The two sign patterns
illustrated here are the ones that are not linearly separable. On the left, the four points lie
on a convex hull. On the right one point lies inside the convex hull of the other three points.

From Definition 5 and our discussion above on the growth function, an important lemma
follows:
Lemma 2.2.3. If H has VC-dimension dVC, then for all m ≤ ddVC, ΠH(m) = 2m. On the
other hand, for all m > dVC, 2dVC ≤ ΠH(m) < 2m.

The upper bound in this lemma is in fact trivial. If we know the VC-dimension of a
hypothesis class, there is a lemma, known as Sauer’s lemma, that tightens this bound to a
more informative one.
Lemma 2.2.4. (Sauer’s Lemma) Let H be a hypothesis set of VC-dimension dVC. Then for
all n ∈ N, the following relation holds

ΠH(n) ≤
dVC∑
i=0

(
n

i

)
(2.2.15)

The proof of this lemma can be found in Appendix B.
Following Lemma 2.2.4, it can be shown that for n > dVC, the growth function of a hy-
pothesis class H is bounded as ΠH(n) ≤ (ne

dVC
)dVC [8]. By applying this upper-bound to

Equation (2.2.7), we get the generalization bound in terms of the VC-dimension. Let H be
an infinite class of hypotheses with the VC-dimension dVC. For any δ > 0 with probability
at least 1− δ over a random draw of a sample of finite size n, the generalization error (true

53

error) is bounded as below

∀h ∈ H , R(h) < R̂S(h) + 2
√

2
n

(
dVC log 2ne

dVC
+ log 4

δ

)
(2.2.16)

2.3. Generalization Bounds for Regression
In this section, we go through the subject of generalization bound and complexity of the

hypothesis class for the regression problem, i.e., for a supervised learning problem where the
data points are labeled by real numbers and the loss function is accordingly a measure of
the difference between the predicted label and the true label.
Let S = {(x1,y1) . . . ,(xn, yn)} be a sample drawn i.i.d. from an unknown distribution D.
Based on this subset S, we want to find a function h : Rd → R, such that for all i ∈ [n],
yi ≈ h(xi), with ≈ denoting the approximation. The loss is usually the squared loss, defined
as L(y, ŷ) = (y− ŷ)2 which gives the mean squared error as the empirical risk for the sample,
i.e., R̂ = 1

n

∑n
i=1(yi − h(xi))2. Similarly to the classification case, we consider both finite

and infinite classes of hypotheses for regression. Also, we only consider bounded losses with
L ≤M ∈ R.

2.3.1. Finite Class of Hypotheses

For finite set of hypotheses, for each function h ∈ H, from the Hoeffding’s inequality in
Corollary A.1.1 and Equation (A.1.19) in the proof of Theorem 19, we obtain

P(R̂(h)−R(h) ≥ ε) ≤ exp (−2nε2

M2) (2.3.1)

Here, we have only used the fact that the generalization gap can be written as a sum over
n centered loss terms, i.e., L(yi, h(xi))− R(h)

n
, which are all upper-bounded by M ; then, by

applying the union bound, we get

P(∃h ∈ H | R(h)− R̂(h) ≥ ε) ≤ |H| exp (−2nε2

M2) (2.3.2)

As we saw in the classification case, this probability bound is equivalent to an upper bound
on the generalization gap which is valid with probability at least 1 − δ for an arbitrary
0 < δ ≤ 1

R(h)− R̂(h) ≤M

√
log |H| − log δ

2n . (2.3.3)

2.3.2. Infinite Class of Hypotheses

The subject of generalization bounds for problems with real-valued loss functions is more
involved than the classification case. As we saw in the previous section, VC-dimension is a

54

combinatorial measure of the complexity of the class of binary-valued functions. For real-
valued functions that are pertinent to the regression problem, a similar quantity is defined
which is called pseudo-dimension. Similar to the VC-dimension which is defined based on
the notion of shattering, the pseudo-dimension is related to pseudo-shattering. The following
definitions introduce these concepts.
Definition 6. For a real-valued hypothesis class H ⊂ RX , we say that H pseudo-shatters the
points x1, ..., xn ∈ X with thresholds t1, ..., tn ∈ R , if for every binary labeling of the points
(s1,...,sn) ∈ {−1,+1}n, there exists h ∈ H s.t. h(xi) < ti if and only if si = −1.
Definition 7. The pseudo-dimension of a real-valued hypothesis class H ⊂ RX , Pdim(H),
is the supremum over n for which there exist n points that are pseudo-shattered by H (with
some thresholds).

In other words, the class of functions H pseudo-shatters the points x1, ..., xn ∈ X with
thresholds t1, ..., tn ∈ R if for each of the 2n subsets of the set of these n points, there exists a
function h ∈ H which passes above those threshold values ti, i ∈ [n] which correspond to the
points xi belonging to that subset, and goes below other thresholds. Figure 2.2 illustrates
the pseudo-shattering of two points in R by the class of threshold functions. In this figure,
we have chosen the points p1 = 1 and p2 = 3 and the thresholds t1 = 2 , t2 = 4. The four
linear functions that we choose to pseudo-shatter p1 and p2 with thresholds t1 and t2, are:
f1(x) = 2x − 1, f2(x) = −x + 5 , f3(x) = 1 , f4(x) = 5, which are shown by the green,
blue, yellow and red lines respectively. It can be verified that three points in one dimension
cannot be pseudo-shattered by linear functions. Therefore, the pseudo-dimension of the class
of linear functions in one dimension is two. This result generalizes to higher dimensions and
gives d+ 1 as the pseudo-dimension of linear functions in Rd, similar to the VC-dimension of
the class of linear classifiers. More generally, it is shown that for any real-valued hypothesis
class H from X to R, the VC-dimension of the classifiers sign(H) = {sign(h) | h ∈ H} is
upper-bounded by the pseudo-dimension of H [75]. This is because, from the definitions of
shattering and pseudo-shattering, the pseudo-dimension is related to the VC-dimension by
the relation

Pdim(H) = dVC({(x,t) 7→ sign(h(x)− t) | h ∈ H})

which holds for any H ⊂ RX [8].
In [8], it is shown how the generalization gap can be bounded in terms of the pseudo-
dimension of a class of bounded loss functions associated to a hypothesis class of real-valued
regression functions. In order to write this upper bound in terms of the pseudo-dimension of
the corresponding hypothesis class, the loss function needs to satisfy some constraints, e.g.,
if the loss is a monotonic function of the hypothesis, then the pseudo-dimension of the class
of loss functions {L(h(X), y) | h ∈ H} is equal to the pseudo-dimension of the hypothesis
class H [8]. These intricacies of the real-valued loss functions are beyond the scope of this

55

Figure 2.2. Pseudo-shattering of two points in one dimension, with thresholds t1 and t2
witnessing the pseudo-shattering.

thesis and therefore we do not go through the discussion of generalization bounds for the
regression problem in terms of the pseudo-dimension. The main point of the current section
is to emphasis on the pseudo-dimension as a combinatorial measure of complexity for real-
valued hypothesis classes. Based on the above discussion, in the next chapter, we provide
a unified approach for bounding both VC-dimension and pseudo-dimension for different
supervised learning tasks, i.e., classification, regression and completion. In fact, pseudo-
dimension can equivalently be defined for completion problems as we briefly see in the rest
of this subsection.
Consider a completion problem; we are given a m × n matrix M ∈ Rm×n, where we only
observe a subset of S entries of the matrix with S < mn. Assuming that the matrix is of low
rank r < m, n, we want to estimate the unobserved entries of the matrix. The binary version
of this problem is when the matrix contains only plus and minus signs, and we want to find
the correct sign for the missing entries. The relation of this problem to the classification
problem is that this can be seen as a binary-classification problem with data points being
the set of tuples containing the indices of the matrix entries. Therefore, the function class
is a set of functions that maps from the space of matrix indices to {−1, + 1} [4]. Clearly,
this problem extends to the tensor completion case with a similar interpretation in terms of
a classification problem. Then, we can define a VC-dimension for the class of completion
functions, similar to what we have in classification. In this case, the VC-dimension of the
completion task gives the maximum number of entries of a m × n matrix of rank at most
r to which any configuration of plus and minus signs can be assigned. Lemma 3.4.1 in the
next chapter is a result of this definition and sheds more light on this point.
In a similar way, the pseudo-dimension is defined for matrix/tensor completion task when
we are not only concerned with the sign of the entries, but also with their real values; in
that case the completion function would map the indices to the real space and hence the
pertinence of the pseudo-dimension.

56

Chapter 3

Generalization Bound and VC-dimension of
Tensor Networks

As already mentioned in the introduction chapter, the content of this chapter is the main
contribution of the thesis and has been published in NeurIPS 2021 [70].

3.1. Introduction
We start this chapter by formally introducing tensor network learning models and show-

casing some examples of such models. Then, we give a general upper bound on the VC-
dimension and pseudo-dimension of hypothesis classes parameterized by arbitrary TN struc-
tures for linear regression, classification and completion. We then discuss corollaries of this
general upper bound for common TN models including low-rank matrices and TT tensors,
and compare them with existing results. Examples of particular upper bounds that can be
derived from our general result can be found in Table 3.1. The last section of this chapter
provides some lower bounds on several TN models. This is our first step towards tightening
our general upper bound.

3.1.1. Tensor Network structures

In this section, we introduce a notation that simplifies defining the hypothesis class of
tensor network models. In general, tensor networks can become too involved and contain
too many vertices and edges. In such a case, the definition of the corresponding hypothesis
class in a precise way can become too lengthy and unpractical. This notation resolves this
problem and provides a way to concretely define the hypothesis class of any tensor network
model in a neat way. To introduce our notation, we note that a tensor network (TN) can
be fundamentally decomposed in two constituent parts: a tensor network structure, which
describes its graphical structure, and a set of core tensors assigned to each node. For example,
the tensor in Rd1×d2×d3×d4 represented by Td1

d2

R S
d3

d4 is obtained by assigning the core tensors

T ∈ Rd1×d2×R and S ∈ RR×d3×d4 to the nodes of the TN structure d1

d2

R

d3

d4 .
This decomposition is illustrated in Figure 3.1.

Td1

d2

R S
d3

d4

d1

d2

R

d3

d4 S∈RR×d3×d4

T ∈Rd1×d2×R

Graph structure G = (V,E, dim) Tensor parameters

Figure 3.1. Disentangling the graph structure of a tensor network from its parameters

Formally, a tensor network structure is given by a graph G = (V,E,dim) where edges are
labeled by integers: V is the set of vertices, E ⊂ V ∪ (V × V) is a set of edges containing
both classical edges (e ∈ V × V) and singleton edges (e ∈ V) and dim : E → N assigns a
dimension to each edge in the graph. The set of singleton edges δG = E ∩ V corresponds to
the dangling legs of a TN; it follows that δG has as many members as the order of the tensor.
Given a TN structure G, one obtains a tensor by assigning a core tensor T v ∈⊗e∈Ev

Rdim(e)

to each vertex v in the graph, where Ev = {e ∈ E | v ∈ e}. The resulting tensor, denoted by
TN(G, {T v}v∈V), is a tensor of order |δG| in the tensor product space ⊗e∈δG

Rdim(e). Given
a tensor structure G = (V,E,dim), the set of all tensors that can be obtained by assigning
core tensors to the vertices of G is denoted by T (G) ⊂⊗e∈δG

Rdim(e):

T (G) = {TN(G, {T v}v∈V) : T v ∈
⊗
e∈Ev

Rdim(e), v ∈ V }. (3.1.1)

As an illustration, one can check that the set of m × n matrices of rank at most r is equal
to T (m r n). Similarly, the set of all 4th order d-dimensional tensors of TT rank at
most r is equal to T (

d

r

d

r

d

r

d
). Finally, for a given graph structure G, the number

of parameters of any member of the family T (G) in Equation (3.1.1) (which is the total
number of entries of the core tensors {T v}v∈V) is given by

NG =
∑
v∈V

∏
e∈Ev

dim(e) (3.1.2)

This will be a central quantity in the generalization bounds and bounds on the VC-dimension
of TN models that we derive in subsequent sections. Graph structure of some common tensor
networks are illustrated in Figure 3.2.

58

CP Tucker Tensor Train Tensor Ring

Hierarchical Tucker PEPS

Figure 3.2. Graph structures of TN representation of common decomposition models for
4th order and 9th order tensors. For CP, the black dot represents a hyperedge corresponding
to a joint contraction over 4 indices. For the ease of representation, the edge weights, i.e.,
the dimensions of the core tensors are not shown.

3.2. Tensor Network Learning Models
In this section, we formalize the general notion of tensor network models for supervised

learning tasks. We then show how it encompasses classical models such as low-rank matrix
completion [76, 77, 78, 79], classification [50, 51, 52], and tensor-train-based models [1, 27,
61, 62, 63, 64]. Consider a classification problem where the input space X is the space of p-
th order tensors Rd1×d2×···×dp . One motivation for TN models is that the tensor product space
X can be exponentially large, thus learning a linear model in this space is often not feasible.
Indeed, the number of parameters of a linear classifier h : X 7→ sign(〈X ,W〉), where W ∈
Rd1×···×dp is the tensor weight, grows exponentially with p. TN models parameterize W as a
low-rank TN, thus reducing the number of parameters needed to represent a model h. Our
objective is to derive generalization bounds for the class of such hypotheses parameterized
by low-rank tensor networks for classification, regression and completion tasks.
Formally, let G = (V,E, dim) be a TN structure for tensors of shape d1× · · · × dp, i.e. where
the set of singleton edges is δG = E ∩ V = {v1, · · · ,vp} and dim(vi) = di for each i ∈ [p].
We are interested in the class of models whose weight tensors are represented in the TN
structure G:

Hregression
G = {h : X 7→ 〈W ,X 〉 |W ∈ T (G)} (3.2.1)

Hclassif
G = {h : X 7→ sign(〈W ,X 〉) |W ∈ T (G)} (3.2.2)

Hcompletion
G = {h : (i1, · · · ,ip) 7→W i1,··· ,ip |W ∈ T (G)} (3.2.3)

Notice how by disentangling the graph structure of tensor networks from their entries, the
notation that we introduced in the earlier section allows us to define these hypothesis classes
in a neat and concrete way for any arbitrary TN structure G. In Equation (3.2.3) for
the completion hypothesis class, p-th order tensors are interpreted as real-valued functions
f : [d1]× · · · × [dp]→ R over the indices of the tensor. Hcompletion

G is thus a class of functions

59

over the indices domain, for which the notion of pseudo-dimension is well-defined. This
treatment of completion as a supervised learning task was considered previously to derive
generalization bounds for matrix and tensor completion [4, 48].
As mentioned before, the benefit of TN models comes from the drastic reduction in param-
eters when the TN structure G is low-rank, in the sense that the number of parameters
NG is small compared to d1d2 · · · dp. In addition to allowing one to represent linear models
in exponentially large spaces, this compression controls the capacity of the corresponding
hypothesis class HG.

3.2.1. Examples

To illustrate some TN models, we now present several examples of models based on
common TN structures: low-rank matrices and tensor trains.

Low-rank matrices As discussed in Section 3.1.1, if we define the TN structure
Gmat(r) = d1 r d2 , then T (Gmat(r)) is the set of matrices in Rd1×d2 of rank at most
r. The hypothesis class Hcompletion

Gmat(r) then corresponds to the classical problem of low-rank
matrix completion [76, 77, 78, 79]. Similarly Hclassif

Gmat(r) corresponds to the hypothesis
class of low-rank matrix classifiers. This hypothesis class was previously considered,
notably to compactly represent the parameters of support vector machines for matrix
inputs [50, 51, 52]. Lastly, for the regression case, Hregression

Gmat(r) is the set of functions
{h : X 7→ Tr(WX>) | rank(W) ≤ r}. Learning hypotheses from this class is relevant
in, e.g., quantum tomography, where it is known as the low-rank trace regression prob-
lem [80, 81, 82, 83].

Tensor train tensors As explained in Chapter 1, the tensor train (TT) decomposi-
tion model [12], has a number of parameters that grows only linearly with the order of the
tensor and this makes the TT format an appealing model for compressing the parameters
of ML models [1, 26, 35, 18]. Let us remind the tensor train classifier model that we
reviewed in Subsection 1.5, which was introduced in [1] and subsequently explored in [27].
Given a vector input x ∈ Rp, Stoudenmire and Schwab [1] propose to map x into a
high-dimensional space of p-th order tensors X = Rd×···×d by applying a local feature
map φ : R → Rd to each component of the vector x and taking their outer product:
Φ(x) = φ(x1)⊗ φ(x2)⊗ · · · ⊗ φ(xp) ∈ (Rd)⊗p.
Instead of relying on the so-called kernel trick, Stoudenmire and Schwab propose to directly
learn the parameters W of a linear model h : x 7→ sign(〈W ,Φ(x)〉) in the exponentially large
feature space X . The learning problem is made tractable by parameterizing W as a low-rank
TT tensor (see Equation (1.4.15)). Letting GTT(r1, · · · ,rp−1) =

d1

r1

d2

r2 · · ·rp−2

dp−1

rp−1

dp
,

60

the hypothesis class considered in [1] is Hclassif
GTT(r1,··· ,rp−1). In addition to the approach of [1],

which was extended in [27] and [61], tensor train classifiers were also previously considered
in [62, 63, 64]. Similarly, the hypothesis class Hcompletion

GTT(r1,··· ,rp−1) corresponds to the low-rank
TT completion problem [84, 19, 85].

Other TN models Lastly, we mention that our formalism can be applied to any
tensor models having a low-rank structure, including CP, Tucker, tensor ring and PEPS.
As mentioned previously, for the case of the CP decomposition, the graph G of the TN
structure is in fact a hyper-graph with |V | = p nodes and NG = pdr parameters for a
weight tensor in (Rd)⊗p with CP rank at most r. Several TN learning models using these
decomposition models have been proposed previously, including [58, 59] for regression in
the Tucker format, [65] for classification using the PEPS model, [54, 55] for classification
with the CP decomposition and [20, 86] for tensor completion with TR.

3.3. Bounds on the VC/Pseudo-dimension and the Gen-
eralization Gap

The following theorem states one of our main results which upper bounds the VC and
pseudo-dimension of models parameterized by arbitrary TN structures.
Theorem 8. Let G = (V,E, dim) be a tensor network structure and let Hregression

G , Hclassif
G ,

Hcompletion
G be the corresponding hypothesis classes defined in Equations (3.2.1-3.2.3), where

each model has NG parameters (see Equation (3.1.2)). Then, Pdim(Hregression
G), dVC(Hclassif

G)
and Pdim(Hcompletion

G) are all upper-bounded by 2NG log(12|V |) .
These bounds naturally relate the capacity of the TN classesHregression

G , Hclassif
G , Hcompletion

G

to the number of parameters NG of the underlying TN structure G.

Proof. Following the analysis of [4] for matrix completion and its extension to the Tucker
decomposition model presented in [48], the proof of this theorem leverages Warren’s theorem
which bounds the number of sign patterns a system of polynomial equations can take.
Theorem 9. [46] The number of sign patterns of n real polynomials, each of degree at most
v, over N variables is at most

(
4evn
N

)N
for all n > N > 2 (where e is Euler’s number).

We start with the pseudo-dimension introduced in Definition 7. Consider n input tensors
X 1, · · · ,X n and arbitrary threshold values t1, · · · ,tn. To upper-bound Pdim(Hregression

G), it
is enough to show that for any set S = {X 1, · · · ,X n} and threshold values t1 · · · ,tn, the
number of relative sign patterns realized by the class of functions Hregression

G is bounded by
a value depending only on n and the tensor network structure G. Formally, we define the

61

maximal number of sign patterns as follows:

f(n,G) := sup
X 1,···X n∈X
t1,··· ,tn∈R

∣∣∣∣∣∣∣∣∣




sign(h(X 1)− t1)
...

sign(h(X n)− tn)

 ∣∣∣ h ∈ Hregression
G


∣∣∣∣∣∣∣∣∣ (3.3.1)

Let G = (V,E) be an arbitrary TN structure. For h ∈ Hregression
G , by definition, h : X 7→

〈W ,X 〉 for some weight tensor W ∈ T (G). Consequently, there exists a collection of core
tensors T v ∈ ⊗

e∈Ev
Rdim(e) such that W = TN(G, {T v}v∈V) (see Equation (3.1.1)) and

it follows that h(X) is a polynomial of degree |V | over NG variables. The variables of the
polynomial are the entries of the core tensors {T v}v∈V .
Now, given a set of input tensors S = {X 1, · · · ,X n}, the value f(n,G) in Equation (3.3.1) is
thus bounded by the number of sign patterns that a system of n polynomial equations (one
for each input data point) of order |V | over NG variables can take. It then follows from
Warren’s theorem (Theorem 9) that

f(n,G) ≤
(

4en|V |
NG

)NG

. (3.3.2)

Bound on the pseudo-dimension To extract a bound on the pseudo-dimension from
the above bound on the number of relative sign patterns, we follow the line of the proof
of Theorem 8.3 in [47]. First observe that by the definition of the pseudo-dimension, if
f(n,NG) < 2n for some n, then Pdim(Hregression

G) < n. Using the bound on f(n,NG), we
have f(n,NG) ≤

(
4en|V |
NG

)NG
< 2n if and only if

NG

(
log n+ log 4e|V |

NG

)
< n. (3.3.3)

Using the classical inequality lnn ≤ nb + ln 1
b
− 1, or equivalently log n ≤ nb

ln 2 + log 1
eb
, it

follows that
log n ≤ n

2NG

+ log 2NG

e ln 2 .

Consequently, Equation (3.3.3) is implied by n > 2NG log 8|V |
ln 2 , which is in turn implied by

n > 2NG log(12|V |).
We thus have shown that Pdim(Hregression

G) ≤ 2NG log(12|V |). Since for any hypothesis class
H, Pdim(H) = dVC({(x,t) 7→ sign(h(x) − t) | h ∈ H}) this upper bound implies that there
exists no set of k ≥ 2NG log(12|V |) points that are shattered by the hypothesis class

{(X ,t) 7→ sign(h(X)− t) | h ∈ Hregression
G } = {(X ,t) 7→ sign(〈W ,X 〉 − t) |W ∈ T (G)}.

In particular, no set of k points with thresholds t1 = · · · = tk = 0 is shattered by Hregression
G ,

which is equivalent to no set of k points being shattered by Hclassif
G , hence dVC(Hclassif

G) ≤

62

2NG log(12|V |).
Similarly, for the completion case we argue that the maximum number of multiples of indices
shattered by the function class Hcompletion

G is bounded by the same value as Pdim(Hregression
G).

The Pseudo-dimension of Hcompletion
G is by definition, the maximum number of indices, i.e.,

the maximum number of the entries of the tensor, that could be pseudo-shattered (with
thresholds zero) by the class of tensors Hcompletion

G . Each component of the tensor T i1,···ip can
be written as the following inner product

T i1,···ip = 〈T , e(1)
i1 ⊗ e(2)

i2 ⊗ · · · ⊗ e(p)
ip 〉

where each e(j)
i ∈ Rdj is the i-th vector of the canonical basis of Rdj . Thus, no set of more

than 2NG log(12|V |) indices is shattered by Hcompletion
G , since otherwise the corresponding set

of points e(1)
i1 ⊗ · · · ⊗ e(p)

ip would be shattered by Hregression
G . Therefore, Pdim(Hcompletion

G) ≤
2NG log(12|V |). �

The bounds on the VC-dimension and pseudo-dimension presented in Theorem 8 can be
leveraged to derive bounds on the generalization error of the corresponding learning models;
see for example [8]. In the following theorem, we derive such a generalization bound for
classifiers parameterized by arbitrary TN structures.
Theorem 10. Let S be a sample of size n drawn from a distribution D and let ` be a loss
bounded by 1, including the 0 − 1 loss. Then, for any δ > 0, with probability at least 1 − δ
over the choice of S, for any h ∈ Hclassif

G ,

R(h) < R̂S(h) + 2

√√√√ 2
n

(
NG log 8en|V |

NG

+ log 4
δ

)
. (3.3.4)

The proof takes into account the general formula in Theorem 4 as well as the bound on
the growth function which follows from Theorem 9, i.e., f(n,G) ≤

(
4en|V |
NG

)NG as in Equa-
tion (3.3.2). It follows from this theorem that, with high probability, the generalization gap
R(h) − R̂S(h) of any hypothesis h ∈ Hclassif

G is in O
(√

NG log (n)
n

)
. This bound naturally

relates the sample complexity of the hypothesis class with its expressiveness. The notion of
richness of the hypothesis class appearing in this bound reflects the structure of the under-
lying TN through the number of parameters NG. Using classical results (see, e.g., Theorem
10.6 in [8]), similar generalization bounds for regression and classification with arbitrary
TN structures can be obtained from the bounds on the pseudo-dimension of Hregression

G and
Hcompletion
G derived in Theorem 8. As detailed in Subsection 3.3.2, to examine this upper

bound in practice, we perform an experiment with low-rank TT classifiers on synthetic data.
In the next subsection, we present corollaries of our results for particular TN structures,
including low-rank matrix completion and the TT classifiers introduced in [1].

63

3.3.1. Special cases

We now discuss special cases of Theorems 8 and 10 and compare them with existing
results.

Low-rank matrices Let Gmat(r) = d1 r d2 and T (Gmat(r)) be the set of d1 × d2

matrices of rank at most r. In this case, we have |V | = 2 and NGmat(r) = r(d1 + d2), and
Theorems 8 and 10 give the following result.
Corollary 3.3.1. Pdim(Hregression

Gmat(r)), dVC(Hclassif
Gmat(r)) and Pdim(Hcompletion

Gmat(r)) are all upper-
bounded by 10r(d1 + d2). Moreover, with high probability over the choice of a sample S
of size n drawn i.i.d. from a distribution D, the generalization gap R(h) − R̂S(h) of any
hypothesis h ∈ Hclassif

Gmat(r) is in O
(√

r(d1+d2) log(n)
n

)
.

This bound improves on the one given in [52] where the VC-dimension of Hclassif
Gmat(r) is

bounded by r(d1 + d2) log(r(d1 + d2)) (see Theorem 2 in [52]). For the matrix completion
case, our upper bound improves on the bound Pdim(Hcompletion

Gmat(r)) ≤ r(d1 +d2) log 16ed1
r

derived
in [4]; recall that this improvement is the result of extracting our VC-dimension upper
bound from the upper bound on the number of sign patterns using a more sophisticated
approach than the one in [4] (Our approach is demonstrated in the proof of Theorem 8). In
Section 3.4, we will derive lower bounds showing that the upper bounds on the VC/pseudo-
dimension of Corollary 3.3.1 are tight up to the constant factor 10 for matrix completion,
regression and classification.

Tensor train Let GTT(r) =
d1

r
d2

r · · · r
dp−1

r
dp

and T (GTT(r)) be the set of

tensors of TT rank at most r. In this case, we have |V | = p and NG = O (dpr2) where
d = maxi di. For this class of hypotheses, Theorems 8 and 10 give the following result.
Corollary 3.3.2. Pdim(Hregression

GTT(r)), dVC(Hclassif
GTT(r)) and Pdim(Hcompletion

GTT(r)) are all in
O (dpr2 log(p)), where d = maxi di. Moreover, with high probability over the choice of a
sample S of size n drawn i.i.d. from a distribution D, the generalization gap R(h)− R̂S(h)
of any hypothesis h ∈ Hclassif

GTT(r) is in O
(√

dpr2 log(n)
n

)
.

This result applies for the MPS model introduced in [1] and thus answers the open
problem listed as Question 13 in [2]. To the best of our knowledge, the VC-dimension of
tensor train classifier models has not been studied previously and our work is the first to
address this open question. The lower bounds we derive in Section 3.4 show that the up-
per bounds on the VC/pseudo-dimension of Corollary 3.3.2 are tight up to aO (log(p)) factor.

Tucker We briefly compare our result with the ones proved in [48] for tensor com-
pletion and in [59] for tensor regression using the Tucker decomposition. For a Tucker

64

decomposition with maximum rank r for tensors of size d1×· · ·×dp with maximal dimension
d = maxi di, the number of parameters is in O (rp + dpr) and the number of vertices in
the TN structure is p + 1. In this case, Theorems 8 and 10 show that the VC/pseudo-
dimensions are in O ((rp + dpr) log(p)) and the generalization gap is in O

(√
(rp+dpr) log(n)

n

)
with high probability for any classifer parameterized by a low-rank Tucker tensor. It is
worth observing that in contrast with the tensor train decomposition, all bounds have an
exponential dependency on the tensor order p. In [48], the authors give an upper bound on
the analogue of the growth function for tensor completion problems which is equivalent to
ours. In [59], the pseudo-dimension of regression functions whose weight parameters have
low Tucker rank is upper-bounded by O ((rp + drp) log(pdp−1)), which is looser than our
bound due to the term dp−1 (though a similar argument to the one we use in the proof of
Theorem 10 can be used to tighten the bound given in [59]).

Tree tensor networks Lastly, we compare our result with the ones presented in [69]
where the authors study the complexity of learning with tree tensor networks using metric
entropy and covering numbers. The results presented in [69] only hold for TN structures
whose underlying graph G is a tree. Let G be a tree and ` be a loss function which is
both bounded and Lipschitz. Under these assumptions, it is shown in [69] that, for any
h ∈ Hregression

G , with high probability over the choice of a sample S of size n drawn i.i.d. from
a distribution D, the generalization gap R(h)− R̂(h) is in Õ(

√
NG/n). Theorem 10 gives a

similar upper bound in Õ(
√
NG/n) on the generalization gap of low-rank tensor classifiers.

However, our results hold for any TN structure G. Thus, in contrast with our general upper
bound (Theorem 8), the bounds from [69] cannot be applied to TN structures containing
cycles such as tensor ring and PEPS.

3.3.2. Experiments

To evaluate the theoretical upper bound provided in Theorem 10, we perform a simple
binary classification experiment with synthetic data. We draw a random low-rank TT target
tensor W ∈ R4×4×4×4 of rank 8 by drawing the components of the cores of the TT decom-
position i.i.d. from a uniform distribution between -1 and 1. Input-output data is generated
with yi = sign(〈W ,X i〉) for training and testing, where the components of X i are drawn
i.i.d. from a normal distribution. Using the cross-entropy as loss function, we optimize the
empirical risk using stochastic gradient descent with a learning rate of 10−2 to learn a TT
hypothesis of rank r.
In Figure 3.3, we report the generalization gap of the learned hypothesis h, R(h) − R̂S(h),
where the true risk R(h) is estimated on a test set of size 4,000 for different scenarios. In
Figure 3.3 (left), we show how the sample size affects the generalization gap for learned

65

hypothesis of rank r = 2 and r = 4. As expected, the generalization gap decreases as the
sample size grows, and is smaller for r = 2 than r = 4 which is also expected from Theo-
rem 10. In Figure 3.3 (right), we show how the rank r of the learned hypothesis affects the
generalization for sample sizes 2,000 and 4,000. As expected, the higher the rank of the TT
weight tensor, the larger the model complexity and hence the generalization gap. In both
figures, we observe that the theoretical upper bound and the experimental results follow a
similar trend as a function of the sample size and hypothesis rank.

Figure 3.3. Dashed lines represent the theoretical bound, full lines represent the generaliza-
tion gap (averaged over 20 runs for both experiments), and shaded areas show the standard
deviation. (left) Generalization error for two models with ranks r = 2 and r = 4 as a function
of training size. (right) Generalization error for two sample sizes n = 2000 and n = 4000 as
a function of the rank of the learned hypothesis.

3.4. Lower Bounds
We now present lower bounds on the VC and pseudo-dimensions of standard TN models:

rank-one, CP, Tucker, TT and TR.

rank one CP Tucker TT / TR

Decomposition d d · · · d d d d · · · d d

r r r r

d d · · · d d

r r r r d

r

d

r ··· r

d

r

d
/

d

r

d

r ···
r r

d

r

d

Lower Bound (d− 1)p rd (r ≤ dp−1) rp (r ≤ d) r2d (r ≤ db
p−1

2 c,p ≥ 3)

(condition) p(r2d−1)
3 (r = d, p3 ∈ N)

Upper bound 2dp log(12p) 2prd log(12p) 2(rp+prd) log(24p) 2pr2d log(12p)

Table 3.1. Summary of our results for common TN structures. Both lower and upper
bounds hold for the VC/pseudo-dimension of Hclassif

G , Hcompletion
G and Hregression

G for the cor-
responding TN structure G (see Equations (3.2.1-3.2.3)). The upper bounds follow from
applying our general upper bound (Theorem 8) to each TN structure. The lower bounds
are proved for each TN structure specifically. Each lower bound is followed by the condition
under which it holds in parenthesis (small font). Note that the two bounds for TT and TR
hold for both TN structures.

Theorem 11. The VC-dimension and pseudo-dimension of the classification, regression
and completion hypothesis classes defined in Equations (3.2.1-3.2.3) for the rank-one, CP,

66

Tucker, TT and TR tensor network structures satisfy the lower bounds presented in Table 3.1.
These lower bounds show that the general upper bound of Theorem 8 is tight up to a O (log(p))
factor for rank-one, TT and TR tensors and is tight up to a constant for low-rank matrices.

We devote the next section to the proof of this theorem. These lower bounds show that
our general upper bound is nearly optimal (up to a log factor in p) for rank-one, TT and TR
tensors. Indeed, for rank-one tensors we have (d − 1)p ≤ Crank−one ≤ 2dp log(12p) and for
TT and TR tensors of rank r = d whose order p is a multiple of 3 we have p(r2d − 1)/3 ≤
CTT/TR
r ≤ pr2d · 2 log(12p), where Crank−one (resp. CTT/TR

r) denotes any of the VC/pseudo-
dimension of the regression, classification and completion hypothesis classe associated with
rank-one tensors (resp. rank r TT and TR tensors). In addition, the lower bound for the CP
case shows that our general upper bounds are tight up to a constant for matrices. Indeed,
for p = 2 and r ≤ d the bounds for the CP case give rd ≤ Cmatrix

r ≤ 20rd where Cmatrix
r

denotes the VC/pseudo-dimension of the hypothesis classes associated with d × d matrices
of rank at most r.

3.4.1. Proof of Theorem 11

In the remaining sections, we give the proofs of all the lower bounds appearing in Ta-
ble 3.1. All proofs rely on the following lemma which gives a useful way for jointly deriving
lower bounds on the pseudo-dimension and VC-dimension of the hypothesis classes of linear
models for regression, completion and classification defined in Equations (3.2.1-3.2.3).
Lemma 3.4.1. Let V ⊂ Rd and define the hypothesis classes

Hcompletion = {h : i 7→ wi | w ∈ V }

Hregression = {h : x 7→ 〈w,x〉 | w ∈ V }

Hclassif = {h : x 7→ sign(〈w,x〉) | w ∈ V } .

If there exist k indices i1, · · · ,ik ∈ [d] that are shattered by V , i.e., such that

|{(sign(wi1), sign(wi2), · · · , sign(wik)) | w ∈ V }| = 2k ,

then dVC(Hclassif), Pdim(Hregression) and Pdim(Hcompletion) are all lower bounded by k.

Proof. Let e1, · · · , ed be the canonical basis of Rd and let i1, · · · ,ik ∈ [d] be a set of indices
shattered by V . Since 〈w,ei〉 = wi for all i ∈ [d], the points ei1 , · · · , eik are shattered by
Hclassif and thus dVC(Hclassif) ≥ k.
Similarly, since Pdim(H) = dVC({(x,t) 7→ sign(h(x) − t) | h ∈ H}) for any hypothesis class
H, the set of points ei1 , · · · , eik with thresholds t1 = t2 = · · · = tk = 0 is shattered by the
hypothesis class {(x,t) 7→ sign(〈w,x〉 − t) | w ∈ V }, and thus Pdim(Hregression) ≥ k.

67

Lastly, the set of indices i1, · · · , ik with thresholds t1 = t2 = · · · = tk = 0 is shattered by the
class {(i,t) 7→ sign(wi − t) | w ∈ V }, and thus Pdim(Hcompletion) ≥ k. �

3.4.2. Rank-One Tensors

Theorem 12. Let Grank-one = d d
· · ·

d d be the tensor network structure corresponding
to p-th order rank-one tensors, i.e., T (Grank-one) = {u1 ⊗ u2 ⊗ · · · ⊗ up | u1,u2, · · · ,up ∈
Rd}. The VC-dimension and pseudo-dimensions dVC(Hclassif

Grank-one
), Pdim(Hregression

Grank-one
),

Pdim(Hcompletion
Grank-one

) are all lower-bounded by (d− 1)p.

Proof. We show that the set of indices

S = {(d, · · · ,d︸ ︷︷ ︸
i−1 times

,j, d, · · · ,d︸ ︷︷ ︸
p−i times

) | i ∈ [p],j ∈ [d− 1]}

is shattered by T (Grank-one), the result then follows from Lemma 3.4.1. More precisely, we
show that S is shattered by the set of rank-one tensors

A =


v1

1

⊗
v2

1

⊗ · · · ⊗
vp

1

 | v1,v2, · · · ,vp ∈ Rd−1

 ⊂ T (Grank-one) .

Indeed, for any multi-index (d, · · · ,d︸ ︷︷ ︸
i−1 times

,j, d, · · · ,d︸ ︷︷ ︸
p−i times

) ∈ S and any rank one tensor X =
v1

1

⊗
v2

1

⊗ · · · ⊗
vp

1

 ∈ A, we have

X d,··· ,d︸ ︷︷ ︸
i−1 times

,j, d,··· ,d︸ ︷︷ ︸
p−i times

=
v1

1

⊗
v2

1

⊗ · · · ⊗
vp

1


d,··· ,d,j,d,··· ,d

= (vi)j .

It follows that the (d− 1)p components X i1,··· ,ip for X ∈ A and (i1, · · · ,ip) ∈ S can take any
arbitrary values (the entries of the vectors v1, · · · ,vp ∈ Rd−1) and thus, that S is shattered by
A and accordingly by T (Grank-one). The result then directly follows from Lemma 3.4.1. �

3.4.3. Tensor Train and Tensor Ring

Theorem 13. Let r ≤ db
p−1

2 c, let GTT(r) =
d

r

d

r
···

r

d

r

d
be the tensor network struc-

ture corresponding to pth order tensors of tensor train rank at most r, and let GTR(r) =

d

r

d

r
···
r r

d

r

d
be the tensor network structure corresponding to pth order tensors of

tensor ring rank at most r. Then, the VC-dimension and pseudo-dimensions dVC(Hclassif
GTT(r)),

dVC(Hclassif
GTR(r)), Pdim(Hregression

GTT(r)), Pdim(Hregression
GTR(r)), Pdim(Hcompletion

GTT(r)) and Pdim(Hcompletion
GTR(r))

are all lower-bounded by r2d.

68

Moreover, in the particular case where r = d and p = 3k for some k ∈ N, the VC-dimension
and pseudo-dimensions dVC(Hclassif

GTT(r)), dVC(Hclassif
GTR(r)), Pdim(Hregression

GTT(r)), Pdim(Hregression
GTR(r)),

Pdim(Hcompletion
GTT(r)) and Pdim(Hcompletion

GTR(r)) are all lower-bounded by p(r2d−1)
3 .

Proof. We start with the tensor train case, the tensor ring case will be handled
similarly. Let r ≤ db

p−1
2 c. We will show that there exists a set of r2d indices

(i1, · · · ,j1), · · · ,(ir2d, · · · ,jr2d) that is shattered by T (GTT(r)) (the set of tensors of
tensor train rank at most r), i.e., such that

∣∣∣{(sign(W i1,··· ,j1), sign(W i2,··· ,j2), · · · , sign(W ir2d,··· ,jr2d
)) |W ∈ T (GTT(r))}

∣∣∣ = 2r2d .

In order to do so, we will consider a tensor train tensor T with cores G(1), · · · ,G(p), where
the (k+ 1)-th core G(k+1) will be free while the other cores are fixed in such a way that each
component of G(k+1) appears exactly once in the entries of T .
Let e1, · · · , er be the canonical basis of Rr and let ei = 0 for any i > r. Let k = bp2c and let
G(k) be the k-th core of the tensor train tensor T (i.e., the middle core). The other cores of
T are defined as follows: for each j ∈ [d],

G(1)
j,: = e>j

G(s)
:,j,: = e1e>(j−1)ds−1+1 + e2e>(j−1)ds−1+2 + · · ·+ ere>(j−1)ds−1+r for s = 2, · · · , k − 1

G(s)
:,j,: = e(j−1)dp−s+1e>1 + e(j−1)dp−s+2e>2 + · · ·+ e(j−1)dp−s+re>r for s = k + 1, · · · , p− 1

G(p)
:,j = ej .

With these definitions, one can check that

G(1)
i1,:G

(2)
:,i2,:G

(3)
:,i3,: · · ·G

(k−1)
:,ik−1,: = e>i1+(i2−1)d+(i3−1)d2+···+(ik−1−1)dk−2

for any i1, · · · ,ik−1 ∈ [d] and

G(k+1)
:,ik+1,:G

(k+2)
:,ik+2,: · · ·G

(p−1)
:,ip−1,:G

(p)
:,ip = eip+(ip−1−1)d+(ip−2−1)d2+···+(ik+1−1)dp−k−1

for any ik+1, · · · ,ip ∈ [d]. Letting [[j0, · · · ,jt]] = j0 + (j1 − 1)d + (j2 − 1)d2 + · · · + (jt − 1)dt

for any j0, · · · ,jt ∈ [d], it follows that for any i1, · · · ,ip ∈ [d],

T i1,··· ,ip =

G(k)
[[i1,i2··· ,ik−1]],ik,[[ip,ip−1,··· ,ik+1]] if [[i1,i2 · · · ,ik−1]] ≤ r and [[ip,ip−1, · · · ,ik+1]] ≤ r

0 otherwise.

Before continuing, we write a lemma that will be frequently used in our proofs for the lower
bounds.

69

Lemma 3.4.2. For any integer base, b ≥ 2, every natural number has a unique base repre-
sentation.

One result of this lemma is that, if we take base b, then the non-negative integer number
n = a0 + a1b+ a2b

2 + · · ·+ at−1b
t−1 with all integers 0 ≤ ai < b for 0 ≤ i ≤ t− 1, is always

lower than or equal to bt − 1. This lemma implies that for any natural number n < bt, there
exists one and only one tuple of corresponding coefficients (a0, a1, · · · , at−1) which generates
n in base b as described above. Note that this is consistent with the fact that there are bt

of such coefficient tuples. Then, since one of the counted generated numbers is zero, which
happens when all ai’s are zero, the uniqueness property as stated in Lemma 3.4.2 results in
the largest generated number being bt − 1.
Back to the proof, Since r ≤ db

p−1
2 c and k = bp2c, this implies that for any k-th core G(k),

the tensor train tensor T contains all the r2d entries of G(k+1). Thus, the set of r2d indices
{(i1, · · · , ip) | [[i1,i2 · · · ,ik−1]] ≤ r, ik ∈ [d], [[ip,ip−1, · · · ,ik+1]] ≤ r} is shattered by T (GTT(r))
and the first part of the theorem follows from Lemma 3.4.1.
We now prove the second part of the theorem for the TT case, using a different construction.
Let r = d and p = 3k for some k ∈ N. We will construct a family of tensors in T (GTT(r))
where a third of the p = 3k cores will be free while the other cores are fixed in such a way
that the resulting tensor T can be seen as the outer product of k 3rd order tensor of size
d× d× d. By observing that such tensors can be interpreted as rank one k-th order tensors
in Rd3×d3×···×d3 , the second part of the theorem will follow from Theorem 12.
Let G(1), · · · ,G(p) be the core tensors of the TT decomposition. The core tensors G(3s+2) ∈
Rd×d×d for s = 0, · · · , p − 1 are free while the other cores are defined as follows: for any
j ∈ [d],

G(1)
j,: = e>j

G(3s+3)
:,j,: = eje>1 for s = 0, · · · ,k − 2

G(3s+1)
:,j,: = e1e>j for s = 1, · · · ,k − 1

G(p)
:,j = ej .

It follows that, for any i1, · · · , ip ∈ [d], we have

T i1,··· ,ip = G(1)
i1,:G

(2)
:,i2,: · · ·G

(p−1)
:,ip−1,:G

(p)
:,ip

= (e>i1)(G(2)
:,i2,:)(ei3e

>
1) (e1e>i4)(G(5)

:,i5,:)(ei6e
>
1) · · · (e1e>ip−2)(G(p−1)

:,ip−1,:)(eip)

= G(2)
i1,i2,i3G(5)

i4,i5,i6 · · ·G
(p−1)
ip−2,ip−1,ip

which implies that T = G(2) ⊗ G(5) ⊗ · · · ⊗ G(p−1) = ⊗k−1
s=0 G(3s+2). By reshaping the set

of tensors constructed in this way into k-th order tensors in Rd3×···×d3 , one can see that

70

this set of tensors is exactly the set of rank-one k-th order tensors of size d3 × · · · × d3︸ ︷︷ ︸
k times

,

for which the corresponding VC-dimension and pseudo-dimensions are lower-bounded by
k(d3 − 1) = p(r2d− 1)/3 from Theorem 12.
To see a simple example of how the proof for this second part works, Figure 3.4 illustrates
the proof for a 9-th order uniform tensor train with rank r = d. In this figure, the core
tensors highlighted in red are free. The other cores are fixed according to Equations (3.4.1).

r=dd
i1

G1

i2

G2

i3

G3

i4

G4

i5

G5

i6

G6

i7

G7

i8

G8

i9

G9G2 G5 G8

Figure 3.4. Visualization of the proof of the lower bound on the VC-dimension of a tensor
train tensor

G(1)
i1,: = e>i1 , G(9)

:,i9 = ei9

G(3)
:,j,: = G(6)

:,j,: = eje>1 , G(4)
:,j,: = G(7)

:,j,: = e1e>j (3.4.1)

It follows that, for any i1, · · · , i9 ∈ [d], we have

T i1,··· ,i9 = G(1)
i1,: G(2)

:,i2,: G(3)
:,i3,: G(4)

:,i4,: G(5)
:,i5,: G(6)

:,i6,: G(7)
:,i7,: G(8)

:,i8,: G(9)
:,i9

= (e>i1)(G(2)
:,i2,:)(ei3e

>
1) (e1e>i4)(G(5)

:,i5,:)(ei6e
>
1)(e1e>i7)(G(8)

:,i8,:)(ei9)

= G(2)
i1,i2,i3 G(5)

i4,i5,i6 G(8)
i7,i8,i9

This expression is equivalent to

T = G2 ⊗ G5 ⊗ G8 , (3.4.2)

and from Theorem 12 results in the following bound on the VC-dimension

dV C ≥ p(r2d− 1)/3 (3.4.3)

Finally, turning to the tensor ring, the proof for this case uses the exact same constructions
with the difference in the definition of the first and last core tensors which are defined by
G(1)

:,j,: = e1e>j and G(p)
:,j,: = eje>1 for each j ∈ [d]. With these definitions, one can check that

G(1)
:,i1,:G

(2)
:,i2,:G

(3)
:,i3,: · · ·G

(k−1)
:,ik−1,: = e1e>[[i1,i2,···ik−1]]

for any i1, · · · , ik−1 ∈ [d] and

G(k+1)
:,ik+1,:G

(k+2)
:,ik+2,: · · ·G

(p−1)
:,ip−1,:G

(p)
:,ip,: = e[[ip,ip−1,ik+1]]e>1

for any ik+1, · · · , ip ∈ [d]. It follows that for any i1, · · · , ip ∈ [d],

71

T i1,··· ,ip = Tr
(
G(1)

:,i1,:G
(2)
:,i2,:G

(3)
:,i3,: · · ·G

(k−1)
:,ik−1,:G

(k)G(k+1)
:,ik+1,:G

(k+2)
:,ik+2,: · · ·G

(p−1)
:,ip−1,:G

(p)
:,ip,:

)

=

G(k)
[[i1,i2··· ,ik−1]],ik,[[ip,ip−1,··· ,ik+1]] if [[i1,i2 · · · ,ik−1]] ≤ r and [[ip,ip−1, · · · ,ik+1]] ≤ r

0 otherwise.

The proof of the first part of the theorem then follows the exact same argument as for the
TT case. The second part of the theorem for TR is proved exactly as the one for TT by
replacing the first and last cores again by G(1)

:,j,: = e1e>j and G(p)
:,j,: = eje>1 for each j ∈ [d]. �

3.4.4. Tucker

Theorem 14. Let r ≤ d and let GTucker(r) = d d
· · ·

d d

r
r r

r

be the tensor network structure
corresponding to p-th order tensors of Tucker rank at most r. Then, the VC-dimension and
pseudo-dimensions dVC(Hclassif

GTucker(r)), Pdim(Hregression
GTucker(r)) and Pdim(Hcompletion

GTucker(r)) are all lower-
bounded by rp.

Proof. Let r ≤ d. We show that there exists a set of rp indices (i1, · · · ,j1), · · · ,(irp , · · · ,jrp)
that is shattered by T (GTucker(r)) (the set of tensors of Tucker rank at most r), i.e., such
that

|{(sign(W i1,··· ,j1), sign(W i2,··· ,j2), · · · , sign(W irp ,··· ,jrp)) |W ∈ T (GTucker(r))}| = 2rp

.

Let P =
(
Ir×r 0r×(d−r)

)>
∈ Rd×r. We consider the following subset of T (GTucker(r)):

A = {G ×1 P×2 P×3 · · · ×p P | G ∈ Rr×r×···×r} ⊂ T (GTucker(r))

where ×k denotes the mode-k product (see, e.g., [11]). It is easy to see that any tensor
T = G×1 P×2 P×3 · · ·×p P ∈ A will have entries T i1,··· ,ip = Gi1,··· ,ip for any i1, · · · ,ip ∈ [r].
Hence the set of rp indices [r]×[r]×· · ·×[r] ⊂ [d]×[d]×· · ·×[d] is shattered by T (GTucker(r))
and the result directly follows from Lemma 3.4.1. �

3.4.5. CP

Theorem 15. Let r ≤ dp−1 and let GCP(r) = d d
· · ·

d d

r
r r

r

be the tensor network struc-
ture corresponding to p-th order tensors of CP rank at most r. Then, the VC-dimension
and pseudo-dimensions dVC(Hclassif

GCP(r)), Pdim(Hregression
GCP(r)) and Pdim(Hcompletion

GCP(r)) are all lower-
bounded by rd.

72

Proof. Let r ≤ dp−1. We show that there exists a set of rd indices (i1, · · · ,j1), · · · ,(ird, · · · ,jrd)
that is shattered by T (GCP(r)) (the set of tensors of CP rank at most r), i.e., such that

|{(sign(W i1,··· ,j1), sign(W i2,··· ,j2), · · · , sign(W ird,··· ,jrd
)) |W ∈ T (GCP(r))}| = 2rd .

We construct a tensor T of CP rank at most r such that each component of a matrix
A ∈ Rd×r appears at least once in the entries of T . Similarly to the previous proofs,
A will be a free parameter allowed to take any value while the other components of the
parametrization of T will be fixed.
Let A ∈ Rd×r, we define p tensors A(1), · · · ,A(p) ∈ Rd×···×d of order p as follows: for all
i1, · · · ,ip,τ1, · · · ,τp−1 ∈ [d],

A(1)
i1,τ1,···τp−1 =

Ai1,τ1+(τ2−1)d+···+(τp−1−1)dp−2 if τ1 + (τ2 − 1)d+ · · ·+ (τp−1 − 1)dp−2 ≤ r

0 otherwise

A(s)
is,τ1,···τp−1 = δis,τs−1 for s = 2, · · · ,p

where δ is the Kronecker symbol. Let S = {(τ1, · · · ,τp−1) ∈ [d]× · · · × [d] | τ1 + (τ2 − 1)d+
· · · + (τp−1 − 1)dp−2 ≤ r}. Note that since r ≤ dp−1 and τ1, · · · ,τp−1 ∈ [d], Lemma 3.4.2
implies that

|S| = r (3.4.4)

Let T ∈ Rd×···d be the p-th order tensor defined by

T i1,i2,··· ,ip =
d∑

τ1=1

d∑
τ2=1
· · ·

d∑
τp−1=1

A(1)
i1,τ1,τ2,··· ,τp−1A(2)

i2,τ1,τ2,··· ,τp−1 · · ·A
(p)
ip,τ1,τ2,··· ,τp−1

for all i1, · · · ,ip ∈ [d]. It can easily be checked that T is a tensor of CP rank at most r, i.e.,
T ∈ T (GCP(r)). Indeed, from the definition of A(1), we have

T i1,i2,··· ,ip =
d∑

τ1=1

d∑
τ2=1
· · ·

d∑
τp−1=1

A(1)
i1,τ1,τ2,··· ,τp−1A(2)

i2,τ1,τ2,··· ,τp−1 · · ·A
(p)
ip,τ1,τ2,··· ,τp−1

=
∑

(τ1,··· ,τp−1)∈S
A(1)
i1,τ1,τ2,··· ,τp−1A(2)

i2,τ1,τ2,··· ,τp−1 · · ·A
(p)
ip,τ1,τ2,··· ,τp−1

where from Equation (3.4.4), the sum is over at most r terms. At the same time, we have

73

T i1,i2,··· ,ip =
∑

(τ1,··· ,τp−1)∈S
A(1)
i1,τ1,τ2,··· ,τp−1A(2)

i2,τ1,τ2,··· ,τp−1 · · ·A
(p)
ip,τ1,τ2,··· ,τp−1

=
∑

(τ1,··· ,τp−1)∈S
A(1)
i1,τ1,τ2,··· ,τp−1δi2,τ1δi3,τ2 · · · δip,τp−1

=

Ai1,i2+(i3−1)d+···+(ip−1)dp−2 if i2 + (i3 − 1)d+ · · ·+ (ip − 1)dp−2 ≤ r

0 otherwise

Since for all values of n ∈ [r] with r ≤ dp−1, there exists one tuple (i2,i3, · · · , ip) for which
i2 + (i3− 1)d+ · · ·+ (ip− 1)dp−2 = n, each one of the components of A appears exactly once
in T . In particular, this implies that the set of indices

{(i1, · · · ,ip) ∈ [d]× · · · × [d] | i2 + (i3 − 1)d+ · · ·+ (ip − 1)dp−2 ≤ r}

of size rd is shattered by T (GCP(r)). The theorem then directly follows from Lemma 3.4.1.
�

Before finishing this section, let us see two examples of the above proof. The first one is a
3-rd order tensor T of uniform dimension d and rank r = d and the second one is a 3-rd order
tensor of uniform dimension d and rank r = d2. In both cases, the CP-decomposition (1.4.3)
takes the following form

T i1,i2,i3 =
r∑

k1,k2,k3

δk1,k2,k3(T1)i1,k1(T2)i2,k2(T3)i3,k3 (3.4.5)

In the first example, we define three matrices T1,T2,T3 ∈ Rd×d as follows: T1 is a free
matrix and T2 and T3 are both identity matrices Id×d. Then Equation (3.4.5) becomes

T i1,i2,i3 =
r∑

k1=1
(T1)i1,k1

r∑
k2,k3=1

δk1,k2,k3δi2,k2δi3,k3

=
r=d∑
k1=1

(T1)i1,k1δk1,i2,i3 = (T1)i1,i2δi2,i3 (3.4.6)

We observe that tensor T has exactly as many entries as the free matrix T1, i.e., dr = d2

entries and therefore the proof for this first example is completed.
In the second example, we define three matrices T1,T2,T3 ∈ Rd×d2 as follows: first off, T1

is a free matrix. Also, from Equation (3.4.5) we have

T i1,i2,i3 =
r∑

k=1
(T1)i1,k(T2)i2,k(T3)i3,k (3.4.7)

Now, let’s say we want each of the d3 entries of T1 ∈ Rd×d2 to appear once and only once
in T ∈ Rd×d×d. This is possible if for any k ∈ [d2] we have a unique pair (i2,i3) for which
(T2)i2,k(T3)i3,k = 1. More precisely, if we make a 1-to-1 map between the index k on the
one hand and (i2,i3) on the other hand, then our goal is realized. We identify each k ∈ [d2]

74

with a pair (i2,i3) that satisfies k = i2 + (i3 − 1)d. Since k ∈ [d2], from Lemma 3.4.2, this is
a 1-to-1 map. Having this relation, we can now construct the two matrices T2 and T3; each
k ∈ [d] is mapped to (i2,i3) = (k, 1), each k ∈ [d + 1,2d] is mapped to (i2,i3) = (k − d, 2),
etc., each k ∈ [d2 − d+ 1,d2] is mapped to (i2,i3) = (k − d(d− 1), d). Therefore, we have

(T2)i2,k =

1 if i2 = k mod d

0 otherwise
, (T3)i3,k =

1 if i3 = dk
d
e

0 otherwise

or more explicitly

T2 =
(
Id×d Id×d · · · Id×d

)
∈ Rd×d2 (3.4.8)

and

T3 =


1 1 · · · 1
0 0 · · · 0
... ...
0 · · · 0 0

0 0 · · · 0
1 1 · · · 1
... ...
0 · · · 0 0

· · ·

0 0 · · · 0
0 0 · · · 0
... ...
1 · · · 1 1


d×d2

(3.4.9)

Note that, matrices T2 and T3 above are constructed in such a way that by fixing indices
i2 and i3, there is only one index k in the sum for which (T2)i2,k(T3)i3,k is non-zero, and is
equal to 1(only one non-zero entry at each column).
Before finishing this chapter, it is worth mentioning that the approach that we took in this
section to show the tightness of our upper bound on the VC/pseudo-dimension is different
from the one in some similar works in the tensor network literature, such as [4, 48]. In
order to examine the tightness of their bound, the authors of these works calculate some
lower-bounds on the number of sign patterns produced by the corresponding hypothesis
class. The reason why we did not use this method is that, it does not seem straightforward
to extract a lower-bound on the VC-dimension from this lower-bound on the number of sign
patterns. Therefore, we opted to directly lower-bound the VC/pseudo-dimensions. In spite
of that, since the other approach involves some interesting proof techniques that worth being
reviewed, in Appendix D, we write the proof for the matrix case [4] and also, we use the
same technique to derive some lower bounds on the number of sign patterns produced by
TT-based models.

75

Chapter 4

Conclusion and Future Directions

We derived a general upper bound on the VC and pseudo-dimension of a large class of
tensor models parameterized by arbitrary tensor network structures for classification, regres-
sion and completion. We showed that this general bound can be applied to obtain bounds on
the complexity of relevant machine learning models such as matrix and tensor completion,
trace regression and TT-based linear classifiers. In particular, our result leads to an improved
upper bound on the VC-dimension of low-rank matrices for completion tasks. As a corollary
of our results, we answer the open question listed in [2] on the VC-dimension of the MPS
classification model introduced in [1]. To demonstrate the tightness of our general upper
bound, we derived a series of lower bounds for specific TN structures, notably showing that
our bound is tight up to a constant for low-rank matrix models for completion, regression
and classification.
Future directions include deriving tighter upper bounds and/or lower bounds for specific TN
structures. This includes investigating whether our general upper bound can be tightened
by removing the log factor in the number of vertices of the TN structure, deriving a stronger
lower bound for CP and Tucker, and loosening the condition under which our stronger lower
bound holds for TT and TR. Especially, in Appendix D.1.2 we discuss some evidence for
the possibility of the tightness of the bound for the TT case in larger parts of the parameter
space than the one shown in Table 3.1.
One limitation of the combinatorial complexity measures like VC/pseudo-dimension is
their independence to the data distribution and the data samples. Studying other data-
dependent complexity measures (e.g. Rademacher complexity [45]) and extending recent
data-dependant generalization bounds for overparameterized deep neural networks, such as
the ones used in [87, 88], to TN learning models is worth pursuing. Finally, building upon
the connection between the depth of convolutional arithmetic circuits and tensor network
structures introduced in [7], it is interesting to connect our result on the VC-dimension of
tensor networks to the expressiveness and generalization ability of neural networks.

To elaborate more on this final direction, in [7] the well-known depth efficiency in neural
networks, was examined theoretically for convolutional arithmetic circuits (CAC). Using the
equivalence of these neural networks with some specific tensor networks, i.e., CP and hi-
erarrchical tucker, the authors use tensor network considerations to show that in general,
representing a function that is realized by a deep CAC network of polynomial size, requires
a shallow CAC of exponential size. One interesting question is whether this property has
some implications for the VC-dimension of the corresponding tensor network models as well.
Especially, to make analogy with [7], we need to consider tensor network learning models
with rank-1 input data, i.e., the input tensorial data of order p represented as the tensor
products of p vectors. Note that in our current work, we had no such constraint on the input
data, while in [7], the fact that they consider rank-1 data, makes it possible to relate the
levels of the tree of the hierarchical tucker to the layers of the neural network. Adding to this
story, the dependence of the VC-dimension of ReLU neural networks on their depth [75],
this question comes up: does there exist a similar dependence of the VC-dimension on the
equivalent notion of depth in tensor networks as well? This being said, one interesting next
step would be to study the dependence of the VC-dimension of CAC neural networks on
their depth.

78

Bibliography

[1] E. Stoudenmire and D. J. Schwab, “Supervised learning with tensor networks,” Advances in Neural
Information Processing Systems, vol. 29, pp. 4799–4807, 2016.

[2] J. I. Cirac, J. Garre-Rubio, and D. Pérez-García, “Mathematical open problems in projected entangled
pair states,” Revista Matemática Complutense, vol. 32, no. 3, pp. 579–599, 2019.

[3] T. Popoviciu, “Sur les équations algébriques ayant toutes leurs racines réelles,” Mathematica, vol. 9,
pp. 129–145, 1935.

[4] N. Srebro, N. Alon, and T. S. Jaakkola, “Generalization error bounds for collaborative prediction with
low-rank matrices,” in Advances In Neural Information Processing Systems, pp. 1321–1328, 2005.

[5] T. M. Cover, “Geometrical and statistical properties of systems of linear inequalities with applications
in pattern recognition,” IEEE transactions on electronic computers, no. 3, pp. 326–334, 1965.

[6] S. Miron, Y. Zniyed, R. Boyer, A. de Almeida, G. Favier, D. Brie, and P. Comon, “Tensor methods for
multisensor signal processing,” IET signal processing, 2020.

[7] N. Cohen, O. Sharir, and A. Shashua, “On the expressive power of deep learning: A tensor analysis,”
in Conference on learning theory, pp. 698–728, PMLR, 2016.

[8] M. Mohri, A. Rostamizadeh, and A. Talwalkar, Foundations of machine learning. MIT press, 2018.

[9] “Svd and data compression using low-rank matrix approximation.” https://dustinstansbury.github.
io/theclevermachine/svd-data-compression.

[10] F. L. Hitchcock, “The expression of a tensor or a polyadic as a sum of products,” Journal of Mathematics
and Physics, vol. 6, no. 1-4, pp. 164–189, 1927.

[11] T. G. Kolda and B. W. Bader, “Tensor decompositions and applications,” SIAM review, vol. 51, no. 3,
pp. 455–500, 2009.

[12] I. V. Oseledets, “Tensor-train decomposition,” SIAM Journal on Scientific Computing, vol. 33, no. 5,
pp. 2295–2317, 2011.

[13] R. Orús, “A practical introduction to tensor networks: Matrix product states and projected entangled
pair states,” Annals of Physics, vol. 349, pp. 117–158, 2014.

[14] J. Biamonte and V. Bergholm, “Tensor networks in a nutshell,” arXiv preprint arXiv:1708.00006, 2017.

[15] U. Schollwöck, “The density-matrix renormalization group in the age of matrix product states,” Annals
of physics, vol. 326, no. 1, pp. 96–192, 2011.

[16] R. Penrose, “Applications of negative dimensional tensors,” Combinatorial mathematics and its appli-
cations, vol. 1, pp. 221–244, 1971.

https://dustinstansbury.github.io/theclevermachine/svd-data-compression
https://dustinstansbury.github.io/theclevermachine/svd-data-compression

[17] R. P. Feynman, “Quantum mechanical computers,” Foundations of physics, vol. 16, no. 6, pp. 507–531,
1986.

[18] A. Novikov, D. Podoprikhin, A. Osokin, and D. P. Vetrov, “Tensorizing neural networks,” in Advances
in neural information processing systems, pp. 442–450, 2015.

[19] H. N. Phien, H. D. Tuan, J. A. Bengua, and M. N. Do, “Efficient tensor completion: Low-rank tensor
train,” arXiv preprint arXiv:1601.01083, 2016.

[20] W. Wang, V. Aggarwal, and S. Aeron, “Efficient low rank tensor ring completion,” in IEEE International
Conference on Computer Vision, 2017.

[21] M. Hashemizadeh, M. Liu, J. Miller, and G. Rabusseau, “Adaptive tensor learning with tensor networks,”
arXiv preprint arXiv:2008.05437, 2020.

[22] Y. Yang, D. Krompass, and V. Tresp, “Tensor-train recurrent neural networks for video classification,”
in Proceedings of the 34th International Conference on Machine Learning, vol. 70, 2017.

[23] A. Novikov, A. Rodomanov, A. Osokin, and D. P. Vetrov, “Putting mrfs on a tensor train,” in Proceedings
of the 31th International Conference on Machine Learning, vol. 32, 2014.

[24] P. Izmailov, A. Novikov, and D. Kropotov, “Scalable gaussian processes with billions of inducing inputs
via tensor train decomposition,” in International Conference on Artificial Intelligence and Statistics,
vol. 84, 2018.

[25] R. Yu, M. G. Li, and Y. Liu, “Tensor regression meets gaussian processes,” in International Conference
on Artificial Intelligence and Statistics, vol. 84, 2018.

[26] A. Novikov, M. Trofimov, and I. Oseledets, “Exponential machines,” arXiv preprint arXiv:1605.03795,
2016.

[27] I. Glasser, N. Pancotti, and J. I. Cirac, “From probabilistic graphical models to generalized tensor
networks for supervised learning,” IEEE Access, vol. 8, pp. 68169–68182, 2020.

[28] E. M. Stoudenmire, “Learning relevant features of data with multi-scale tensor networks,” Quantum
Science and Technology, vol. 3, no. 3, p. 034003, 2018.

[29] Z.-Y. Han, J. Wang, H. Fan, L. Wang, and P. Zhang, “Unsupervised generative modeling using matrix
product states,” Physical Review X, vol. 8, no. 3, p. 031012, 2018.

[30] J. Miller, G. Rabusseau, and J. Terilla, “Tensor networks for probabilistic sequence modeling,” in The
24th International Conference on Artificial Intelligence and Statistics, vol. 130, 2021.

[31] A. Anandkumar, R. Ge, D. Hsu, S. M. Kakade, and M. Telgarsky, “Tensor decompositions for learning
latent variable models,” Journal of machine learning research, vol. 15, pp. 2773–2832, 2014.

[32] N. Cohen and A. Shashua, “Convolutional rectifier networks as generalized tensor decompositions,” in
International Conference on Machine Learning, pp. 955–963, PMLR, 2016.

[33] O. Sharir and A. Shashua, “On the expressive power of overlapping architectures of deep learning,”
arXiv preprint arXiv:1703.02065, 2017.

[34] V. Khrulkov, A. Novikov, and I. V. Oseledets, “Expressive power of recurrent neural networks,” in Proc.
of ICLR, 2018.

[35] I. Glasser, R. Sweke, N. Pancotti, J. Eisert, and I. Cirac, “Expressive power of tensor-network factoriza-
tions for probabilistic modeling,” in Advances in Neural Information Processing Systems, pp. 1498–1510,
2019.

80

[36] S. Adhikary, S. Srinivasan, J. Miller, G. Rabusseau, and B. Boots, “Quantum tensor networks, stochastic
processes, and weighted automata,” in The 24th International Conference on Artificial Intelligence and
Statistics, vol. 130, 2021.

[37] L. Grasedyck, D. Kressner, and C. Tobler, “A literature survey of low-rank tensor approximation tech-
niques,” GAMM-Mitteilungen, vol. 36, no. 1, pp. 53–78, 2013.

[38] L. R. Tucker, “Some mathematical notes on three-mode factor analysis,” Psychometrika, vol. 31, no. 3,
pp. 279–311, 1966.

[39] L. Grasedyck, “Hierarchical singular value decomposition of tensors,” SIAM Journal on Matrix Analysis
and Applications, vol. 31, no. 4, pp. 2029–2054, 2010.

[40] W. Hackbusch and S. Kühn, “A new scheme for the tensor representation,” Journal of Fourier analysis
and applications, vol. 15, no. 5, pp. 706–722, 2009.

[41] Q. Zhao, G. Zhou, S. Xie, L. Zhang, and A. Cichocki, “Tensor ring decomposition,” arXiv preprint
arXiv:1606.05535, 2016.

[42] F. Verstraete, V. Murg, and J. I. Cirac, “Matrix product states, projected entangled pair states, and
variational renormalization group methods for quantum spin systems,” Advances in Physics, vol. 57,
no. 2, pp. 143–224, 2008.

[43] T. F. M. Anthony and P. L. Bartlett, “Neural network learning theoretical foundations,”

[44] V. N. Vapnik and A. Y. Chervonenkis, “On the uniform convergence of relative frequencies of events to
their probabilities,” in Measures of complexity, pp. 11–30, Springer, 2015.

[45] V. Koltchinskii and D. Panchenko, “Rademacher processes and bounding the risk of function learning,”
in High dimensional probability II, pp. 443–457, Springer, 2000.

[46] H. E. Warren, “Lower bounds for approximation by nonlinear manifolds,” Transactions of the American
Mathematical Society, vol. 133, no. 1, pp. 167–178, 1968.

[47] M. Anthony and P. L. Bartlett, Neural network learning: Theoretical foundations. cambridge university
press, 2009.

[48] M. Nickel and V. Tresp, “An analysis of tensor models for learning on structured data,” in Joint European
Conference on Machine Learning and Knowledge Discovery in Databases, pp. 272–287, Springer, 2013.

[49] M. Schuld, R. Sweke, and J. J. Meyer, “Effect of data encoding on the expressive power of variational
quantum-machine-learning models,” Physical Review A, vol. 103, no. 3, p. 032430, 2021.

[50] L. Luo, Y. Xie, Z. Zhang, and W.-J. Li, “Support matrix machines,” in International conference on
machine learning, pp. 938–947, 2015.

[51] H. Pirsiavash, D. Ramanan, and C. C. Fowlkes, “Bilinear classifiers for visual recognition,” in Advances
in neural information processing systems, pp. 1482–1490, 2009.

[52] L. Wolf, H. Jhuang, and T. Hazan, “Modeling appearances with low-rank svm,” in 2007 IEEE Confer-
ence on Computer Vision and Pattern Recognition, pp. 1–6, IEEE, 2007.

[53] E. Acar, D. M. Dunlavy, T. G. Kolda, and M. Mørup, “Scalable tensor factorizations for incomplete
data,” Chemometrics and Intelligent Laboratory Systems, vol. 106, no. 1, pp. 41–56, 2011.

[54] K. Makantasis, A. D. Doulamis, N. D. Doulamis, and A. Nikitakis, “Tensor-based classification models
for hyperspectral data analysis,” IEEE Transactions on Geoscience and Remote Sensing, vol. 56, no. 12,
pp. 6884–6898, 2018.

81

[55] D. Cai, X. He, J.-R. Wen, J. Han, and W.-Y. Ma, “Support tensor machines for text categorization,”
tech. rep., 2006.

[56] J. Liu, P. Musialski, P. Wonka, and J. Ye, “Tensor completion for estimating missing values in visual
data,” in IEEE 12th International Conference on Computer Vision, 2009.

[57] S. Gandy, B. Recht, and I. Yamada, “Tensor completion and low-n-rank tensor recovery via convex
optimization,” Inverse Problems, vol. 27, no. 2, p. 025010, 2011.

[58] Z. He, J. Hu, and Y. Wang, “Low-rank tensor learning for classification of hyperspectral image with
limited labeled samples,” Signal Processing, vol. 145, pp. 12–25, 2018.

[59] G. Rabusseau and H. Kadri, “Low-rank regression with tensor responses,” in Advances in Neural Infor-
mation Processing Systems, pp. 1867–1875, 2016.

[60] C. Chen, Z.-B. Wu, Z.-T. Chen, Z.-B. Zheng, and X.-J. Zhang, “Auto-weighted robust low-rank tensor
completion via tensor-train,” Information Sciences, vol. 567, pp. 100–115, 2021.

[61] R. Selvan and E. B. Dam, “Tensor networks for medical image classification,” arXiv preprint
arXiv:2004.10076, 2020.

[62] Z. Chen, K. Batselier, J. A. Suykens, and N. Wong, “Parallelized tensor train learning of polynomial
classifiers,” IEEE transactions on neural networks and learning systems, vol. 29, no. 10, pp. 4621–4632,
2017.

[63] Y. Wang, W. Zhang, Z. Yu, Z. Gu, H. Liu, Z. Cai, C. Wang, and S. Gao, “Support vector machine
based on low-rank tensor train decomposition for big data applications,” in 2017 12th IEEE Conference
on Industrial Electronics and Applications (ICIEA), pp. 850–853, IEEE, 2017.

[64] X. Xu, Q. Wu, S. Wang, J. Liu, J. Sun, and A. Cichocki, “Whole brain fmri pattern analysis based on
tensor neural network,” IEEE Access, vol. 6, pp. 29297–29305, 2018.

[65] S. Cheng, L. Wang, and P. Zhang, “Supervised learning with projected entangled pair states,” arXiv
preprint arXiv:2009.09932, 2020.

[66] R. Tomioka, T. Suzuki, K. Hayashi, and H. Kashima, “Statistical performance of convex tensor decom-
position,” in Advances in Neural Information Processing Systems, 2011.

[67] R. Tomioka and T. Suzuki, “Convex tensor decomposition via structured schatten norm regularization,”
in Advances in Neural Information Processing Systems, 2013.

[68] M. Imaizumi, T. Maehara, and K. Hayashi, “On tensor train rank minimization : Statistical efficiency
and scalable algorithm,” in Advances in Neural Information Processing Systems, pp. 3930–3939, 2017.

[69] B. Michel and A. Nouy, “Learning with tree tensor networks: complexity estimates and model selection,”
arXiv preprint arXiv:2007.01165, 2020.

[70] B. Khavari and G. Rabusseau, “Lower and upper bounds on the pseudo-dimension of tensor network
models,” Advances in Neural Information Processing Systems, vol. 34, 2021.

[71] C. J. Hillar and L.-H. Lim, “Most tensor problems are np-hard,” Journal of the ACM (JACM), vol. 60,
no. 6, pp. 1–39, 2013.

[72] L. De Lathauwer, B. De Moor, and J. Vandewalle, “A multilinear singular value decomposition,” SIAM
journal on Matrix Analysis and Applications, vol. 21, no. 4, pp. 1253–1278, 2000.

[73] W. Wang, Y. Sun, B. Eriksson, W. Wang, and V. Aggarwal, “Wide compression: Tensor ring nets,” in
2018 IEEE Conference on Computer Vision and Pattern Recognition, 2018.

82

[74] L. Yuan, J. Cao, X. Zhao, Q. Wu, and Q. Zhao, “Higher-dimension tensor completion via low-rank
tensor ring decomposition,” in 2018 Asia-Pacific Signal and Information Processing Association Annual
Summit and Conference (APSIPA ASC), pp. 1071–1076, IEEE, 2018.

[75] P. L. Bartlett, N. Harvey, C. Liaw, and A. Mehrabian, “Nearly-tight vc-dimension and pseudodimension
bounds for piecewise linear neural networks,” The Journal of Machine Learning Research, vol. 20, no. 1,
pp. 2285–2301, 2019.

[76] E. J. Candès and B. Recht, “Exact matrix completion via convex optimization,” Foundations of Com-
putational mathematics, vol. 9, no. 6, pp. 717–772, 2009.

[77] E. J. Candès and T. Tao, “The power of convex relaxation: Near-optimal matrix completion,” IEEE
Transactions on Information Theory, vol. 56, no. 5, pp. 2053–2080, 2010.

[78] D. Gross, “Recovering low-rank matrices from few coefficients in any basis,” IEEE Transactions on
Information Theory, vol. 57, no. 3, pp. 1548–1566, 2011.

[79] B. Recht, M. Fazel, and P. A. Parrilo, “Guaranteed minimum-rank solutions of linear matrix equations
via nuclear norm minimization,” SIAM review, vol. 52, no. 3, pp. 471–501, 2010.

[80] N. Hamidi and M. Bayati, “On low-rank trace regression under general sampling distribution,” arXiv
preprint arXiv:1904.08576, 2019.

[81] Y. Wang et al., “Asymptotic equivalence of quantum state tomography and noisy matrix completion,”
The Annals of Statistics, vol. 41, no. 5, pp. 2462–2504, 2013.

[82] H. Kadri, S. Ayache, R. Huusari, A. Rakotomamonjy, and R. Liva, “Partial trace regression and low-
rank kraus decomposition,” in International Conference on Machine Learning, pp. 5031–5041, PMLR,
2020.

[83] V. Koltchinskii and D. Xia, “Optimal estimation of low rank density matrices.,” J. Mach. Learn. Res.,
vol. 16, no. 53, pp. 1757–1792, 2015.

[84] L. Grasedyck, M. Kluge, and S. Kramer, “Variants of alternating least squares tensor completion in the
tensor train format,” SIAM Journal on Scientific Computing, vol. 37, no. 5, pp. A2424–A2450, 2015.

[85] W. Wang, V. Aggarwal, and S. Aeron, “Tensor completion by alternating minimization under the tensor
train (tt) model,” arXiv preprint arXiv:1609.05587, 2016.

[86] L. Yuan, C. Li, D. Mandic, J. Cao, and Q. Zhao, “Tensor ring decomposition with rank minimization
on latent space: An efficient approach for tensor completion,” in Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 33, pp. 9151–9158, 2019.

[87] S. Arora, R. Ge, B. Neyshabur, and Y. Zhang, “Stronger generalization bounds for deep nets via a
compression approach,” in International Conference on Machine Learning, pp. 254–263, PMLR, 2018.

[88] J. Li, Y. Sun, J. Su, T. Suzuki, and F. Huang, “Understanding generalization in deep learning via
tensor methods,” in International Conference on Artificial Intelligence and Statistics, pp. 504–515,
PMLR, 2020.

[89] L. Babai and P. Frankl, Linear algebra methods in combinatorics. University of Chicago, 1988.

83

Appendix A

Useful Formulas

A.1. Essential Inequalities
We introduce some concentration inequalities in probability theory that have been used

frequently in the text.

A.1.1. Markov’s inequality

Theorem 16. (Markov’s inequality). Let X be a non-negative random variable. For any
t > 0,

P[X > t] ≤ E[X]
t

Proof. We use the definition of the expectation value of the random variable X, and we
split the integral as follows

E[X] =
∫ ∞

0
XP[X]dX =

∫ t

0
XP[X]dX +

∫ ∞
t

XP[X]dX (A.1.1)

From that we have ∫ ∞
t

XP[X]dX = E[X]−
∫ t

0
XP[X]dX ≤ E[X] (A.1.2)

On the other hand we have ∫ ∞
t

XP[X]dX ≥ t
∫ ∞
t

P[X]dX (A.1.3)

Combining the two inequalities of Equation (A.1.2) and Equation (A.1.3), we get

tP[X > t] = t
∫ ∞
t

P[X]dX ≤
∫ ∞
t

XP[X]dX ≤ E[X] (A.1.4)

or equivalently

P[X > t] ≤ E[X]
t

(A.1.5)

�

A.1.2. Chebyshev’s inequality

Theorem 17. (Chebyshev’s inequality) Let µ = E[X] and σ2 = V[X]. Then, for any t > 0
we have

P [|X − µ| ≥ t] ≤ σ2

t2
(A.1.6)

Equivalently, for any k > 0 we have

P
[
|X − µ|

σ
≥ k

]
≤ 1
k2 (A.1.7)

Proof. We define positive random variable (|X − µ|)2. Its expectation value is by the
definition of the variance, equal to V[X] = σ2. Using the fact that for any t > 0,

P[|X − µ| ≥ t] = P[(|X − µ|)2 ≥ t2], (A.1.8)

we get from Markov’s inequality

P[|X − µ| ≥ t] = P
[
(|X − µ|)2 ≥ t2

]
≤ E[(|X − µ|)2]

t2
= V[X]

t2
= σ2

t2

and therefore

P[|X − µ| ≥ t] ≤ σ2

t2
(A.1.9)

�

A.1.3. Hoeffding’s inequality

Theorem 18. (Hoeffding’s inequality). Let Y1, . . . ,Yn be independent random variables such
that E[Yi] = 0 and Yi ∈ [ai, bi] for all i = 1, . . . ,n. Let ε > 0. Then for any t > 0

P
[
n∑
i=1

Yi ≥ ε

]
≤ exp (−tε)

n∏
i=1

exp(t
2(bi − ai)2

8) (A.1.10)

Proof. First, we consider the positive variable et
∑

i
Yi and use Markov’s inequality to obtain

P
[∑

i

Yi ≥ ε

]
= P

[
et
∑

i
Yi ≥ etε

]
≤

E
[
et
∑

i
Yi

]
etε

=
∏
i E
[
etYi

]
etε

, (A.1.11)

where we used the independence of Yi’s to write the last equality. In order to upper-bound
E [etYi], we use the property that Yi is bounded as Yi ∈ [ai,bi]; therefore, it can be written as a
convex combination of ai and bi as Yi = αai+(1−α)bi , with α = Yi−bi

ai−bi
(note that α ∈ [0,1]).

Since etYi is a convex function of Yi, and a convex function f satisfies f(αx + (1 − α)y) ≤
αf(x) + (1− α)f(y) for 0 < α < 1, we have

etYi = eαtai+(1−α)tbi ≤ αetai + (1− α)etbi

86

Taking expectations of both sides we obtain

E
[
etYi

]
≤ E[α]etai + (1− E[α])etbi (A.1.12)

and using E[Yi] = 0 we get

E[α] = E
[
Yi − bi
ai − bi

]
= −bi
ai − bi

. (A.1.13)

Equation (A.1.12) can then be rewritten as

E
[
etYi

]
≤ −bi
ai − bi

etai + ai
ai − bi

etbi . (A.1.14)

Finally, we use (one form of) Taylor’s theorem which states that for a differentiable function
g, there is a number η ∈ (0,x) such that g(x) = g(0) + xg′(0) + x2

2 g
′′(η).

To apply this theorem, we do the following change of variable to write −bi

ai−bi
etai + ai

ai−bi
etbi =

eg(u):

u = t(bi − ai) , g(u) = −γu+ log(1− γ + γeu) with γ = − ai
bi − ai

. (A.1.15)

We observe that g(0) = g′(0) = 0. The second derivative is given by

g′′(u) = γ(1− γ)eu
(1− γ + γeu)2

which in terms of u, ai and bi is g′′(u) = −aibie
u

(bi−aieu)2 . It can easily be seen that its maximum
value is 1

4 . Therefore, we have shown that

g′′(u) ≤ 1
4

Now, Taylor’s theorem states that there exists η ∈ (0,u) such that

g(u) = u2

2 g
′′(η) ≤ u2

8 = t2(bi − ai)2

8
From Equation (A.1.14) we get

E[etYi] ≤ exp (g(u)) ≤ exp
(
t2(bi − ai)2

8

)
and Hoeffding’s theorem is proved. �

As we will see below, Hoeffding’s inequality results in the following theorem.
Theorem 19. If X1, . . . , Xn are n random variables drawn i.i.d. from a Bernoulli distribu-
tion Bernoulli(p), or just to have values in [0,1], then for all ε > 0 we have

P
[∣∣∣∣∣ 1n

n∑
i=1

Xi − p
∣∣∣∣∣ > ε

]
≤ 2 exp

(
−2nε2

)
. (A.1.16)

87

or

P
[∣∣∣∣∣ 1n

n∑
i=1

Xi − E[Xi]
∣∣∣∣∣ > ε

]
≤ 2 exp

(
−2nε2

)
. (A.1.17)

Proof. We introduce the new random variable Yi = 1
n
(Xi − p), for which E[Yi] = 0 and

Yi ∈ [a = − p
n
, b = 1−p

n
] hold. Then, b− a = 1

n
and from Hoeffding’s theorem we have

P
[
n∑
i=1

Yi ≥ ε

]
≤ exp (−tε)

n∏
i=1

exp (t2 1
8n2) = exp (−tε) exp

(
t2

8n

)
. (A.1.18)

Since Hoeffding’s inequality holds for arbitrary t > 0, we can put t = arg min
(
exp (−tε) exp

(
t2

8n

))
to get the tightest bound in terms of t. This results in t = 4nε which gives the following
bound

P
[
n∑
i=1

Yi ≥ ε

]
≤ e−2nε2 . (A.1.19)

On the other hand, from the union bound, we have

P
[
| 1
n

n∑
i=1

Xi − p |≥ ε

]
≤ P

[
1
n

n∑
i=1

Xi − p ≥ ε

]
+ P

[
1
n

n∑
i=1

Xi − p ≤ −ε
]
.

So, it remains for us to bound the following quantity

P
[

1
n

n∑
i=1

Xi − p ≤ −ε
]

= P
[
n∑
i=1

Yi ≤ −ε
]

= P
[
n∑
i=1

(−Yi) ≥ ε

]
.

We can again use Hoeffding’s theorem; we notice that E[(−Yi)] = 0 and (−Yi) ∈ [−b =
−1−p

n
,−a = p

n
]. For arbitrary t > 0, we have

P
[
n∑
i=1

(−Yi) ≥ ε

]
≤ e−tε

n∏
i=1

exp (t
2

8n). (A.1.20)

As before, by choosing t = 4nε we obtain the same bound as the one on P[∑n
i=1(Yi) ≥ ε] :

P
[
n∑
i=1

(−Yi) ≥ ε

]
≤ e−2nε2 . (A.1.21)

Replacing the above result in Equation (A.1.20), we find

P
[
| 1
n

n∑
i=1

Xi − p| ≥ ε

]
≤ P

[
(1
n

n∑
i=1

Xi − p ≥ ε)
]

+ P
[

1
n

n∑
i=1

Xi − p ≤ −ε
]
≤ 2e−2nε2 .

(A.1.22)

�

Also, it is straightforward to verify that this theorem holds for any bounded random
variables. In this case, we have b− a = M2

n2 and the Hoeffding’s expression is minimized by
the value t = 4nε

M2 and gives the following result

88

Corollary A.1.1. If X1, . . . , Xn are n random variables drawn i.i.d. from a bounded distri-
bution with values in [0,M], then for all ε > 0 we have

P
[∣∣∣∣∣ 1n

n∑
i=1

Xi − p
∣∣∣∣∣ > ε

]
≤ 2 exp

(
−2nε2

M2

)
. (A.1.23)

or

P
[∣∣∣∣∣ 1n

n∑
i=1

Xi − E[Xi]
∣∣∣∣∣ > ε

]
≤ 2 exp

(
−2nε2

M2

)
. (A.1.24)

A.1.4. Popoviciu’s inequality [3]

Theorem 20. Let b and a be the upper and lower bounds on the values of a random variable
X with a particular probability distribution. Then Popoviciu’s inequality states:

V[x] ≤ (b− a)2

4 (A.1.25)

We will not prove this inequality. We only mention that this inequality is consistent with
the intuition that the distribution with highest variance corresponds to having half of the
data on one end, say a, and half of the data on the other end of the interval, b. In that case
the expectation value of the distribution will be a+b

2 and the distance between every point
and the expectation value is equal to b−a

2 . Therefore, from the definition of variance, the
highest possible value is given by (b−a2)2, as stated by the theorem.

89

Appendix B

Proofs for Chapter 2

B.1. Proof of Lemma 2.2.1
Lemma. (Symmetrization Lemma)Let S and S ′ be two random samples of size n drawn
from a distribution D. Then for any t > 0, with large enough n such that nt2 ≥ 2, we have

PS∼D
[
sup
h∈H

(
R̂S(h)−R(h)

)
≥ t

]
≤ 2 PS,S′∼D

[
sup
h∈H

(
R̂S(h)− R̂S′(h)

)
≥ t

2

]
, (B.1.1)

Proof. First we consider h̃ as the hypothesis maximizing
(
R̂S(h)−R(h)

)
:

h̃ = arg sup
h∈H

(
R̂S(h)−R(h)

)
and we define the corresponding errors for h̃ as below

ε = R̂S(h̃)−R(h̃) = sup
h∈H

(
R̂S(h)−R(h)

)
, ε′ = R̂S′(h̃)−R(h̃)

We notice that if ε ≥ t and ε′ < t
2 , we have ε−ε

′ ≥ t
2 . As this last inequality is a deterministic

result of the two first inequalities, we have P
[
ε ≥ t and ε′ < t

2

]
≤ P

[
ε− ε′ ≥ t

2

]
. Since the

two events ε ≥ t and ε′ < t
2 are independent, we can rewrite this inequality as

P [ε ≥ t]P
[
ε′ <

t

2

]
≤ P

[
ε− ε′ ≥ t

2

]
(B.1.2)

Notice that as the events ε and ε′ are defined in terms of different samples, the above
probabilities are accordingly over S, S ′ or the mixed samples S ∪ S ′. Now, we notice from
the definition of ε and ε′ that ε−ε′ = R̂S(h̃)−R̂S′(h̃). That is, for the rhs of equation (B.1.2),
we can write

P
[
ε− ε′ ≥ t

2

]
= P

[
R̂S(h̃)− R̂S′(h̃) ≥ t

2

]
≤P

[
sup
h

(R̂S(h)− R̂S′(h)) ≥ t

2

]

=P
[
∃h ∈ H | R̂S(h)− R̂S′(h) ≥ t

2

]
(B.1.3)

Therefore, up to now, we have found the following relation

P [ε ≥ t]P
[
ε′ <

t

2

]
≤ P

[
sup
h

(R̂S(h)− R̂S′(h)) ≥ t

2

]
(B.1.4)

From (B.1.4), if we can lower-bound the expression P
[
ε′ < t

2

]
, it will result in upper-bounding

P[ε ≥ t]. To do this, we can alternatively upper-bound the complementary event, which is
ε′ = R̂S′(h̃)−R(h̃) > t

2 . By taking this alternative approach we are able to again profit from
some concentration inequalities. We start by considering the following natural inequality

P
[
ε′ >

t

2

]
≤ P

[
|ε′| > t

2

]
(B.1.5)

Then, from the fact that E[ε′] = 0 and by using Chebyshev’s inequality given in Theorem 17,
we have

P
[
ε′ >

t

2

]
≤ P

[
|ε′| > t

2

]
≤ V [ε′]

(t2)2 (B.1.6)

Now, in order to deal with the term V [ε′], we take into account that it is the variance of an
average over independent random variables Zi = L(yi, h̃(x′i)) − R(h̃) and rewrite the event
ε′ > t

2 as 1
n

∑n
i=1 Zi >

t
2 or equivalently ∑i Zi >

nt
2 . By definition of Zi and since the true

risk is nothing but the expectation value of the loss function, we see that the expectation
value of the random variables Zi is zero. Then from the fact that loss values are always in
the interval [0,1] and by using Popoviciu’s inequality (A.1.25), the variance of Zi is bounded
as V[Zi] ≤ 1

4 . therefore, we can rewrite Equation (B.1.6) as below

P
[

1
n

∑
i

Zi >
t

2

]
= P

[∑
i

Zi >
nt

2

]
≤ P

[
|
∑
i

Zi| >
nt

2

]
≤ V [∑i Zi]

n2(t2)2 (B.1.7)

As Zi’s are i.i.d. variables, this reduces to

P
[∑

i

Zi >
nt

2

]
≤ nV[Zi]

n2(t2)2 ≤
1
4

1
n(t2)2 = 1

nt2
(B.1.8)

So, we have shown that

P
[
ε′ >

t

2

]
= P

[
R̂S′(h̃)−R(h̃) > t

2

]
= P

[
1
n

n∑
i=1

Zi >
t

2

]
≤ 1
nt2

(B.1.9)

As explained after Equation (B.1.4) we are interested in the probability of the complimentary
event, i.e. ε′ < t

2 .

P
[
ε′ <

t

2

]
= P

[
R̂S′(h̃)−R(h̃) < t

2

]
≥ 1− 1

nt2
≥ 1

2 (B.1.10)

92

where the last inequality comes from the Lemma’s assumption, nt2 ≥ 1
2 . By replacing the

above result in equation (B.1.4), we get

P[ε ≥ t] ≤ 2 P
[
sup
h

(
R̂S(h)− R̂S′(h)

)
≥ t

2

]
(B.1.11)

To put everything in place, we replace P[ε ≥ t] by P
[
suph∈H

(
R̂S(h)−R(h)

)
≥ t

]
to get

P
[
sup
h∈H

(
R̂S(h)−R(h)

)
≥ t

]
≤ 2 P

[
sup
h∈H

(
R̂S(h)− R̂S′(h)

)
≥ t

2

]
(B.1.12)

�

We close this section by mentioning that it is easy to show that the same approach could be
taken to prove a similar symmetrization lemma as below

P
[
sup
h∈H

(
R(h)− R̂S(h)

)
≥ t

]
≤ 2 P

[
sup
h∈H

(
R̂S′(h)− R̂S(h)

)
≥ t

2

]
(B.1.13)

B.2. Proof of Corollary 2.2.2
Corollary. If Z1, . . . , Zn, Z

′
1, . . . , Z

′
n are 2n i.i.d. random variables drawn from a Bernoulli

distribution, then for all ε > 0 we have

P
[

1
n

n∑
i=1

Zi −
1
n

n∑
i=1

Z ′i > ε

]
≤ 2 exp

(
−nε

2

2

)

Proof. We first rewrite the left-hand side of the above relation as below

P
[

1
n

n∑
i=1

Zi −
1
n

n∑
i=1

Z ′i > ε

]
= P

[
n∑
i=1

1
n

(Zi − p)−
n∑
i=1

1
n

(Z ′i − p) > ε

]
, (B.2.1)

with p being the expected value of random variables Zi. As shown in the proof of Theorem 19,
by defining Yi = 1

n
(Zi − p), we have

P
[
n∑
i=1

(−Yi) ≥ ε

]
≤ e−2nε2 and P

[
n∑
i=1

Yi ≥ ε

]
≤ e−2nε2

So we can write

P
[
n∑
i=1

1
n

(Zi − p)−
n∑
i=1

1
n

(Z ′i − p) > ε

]
= P

[
n∑
i=1

Yi −
n∑
i=1

Y ′i > ε

]
≤ P

[(
n∑
i=1

Yi >
ε

2

)⋃(
−

n∑
i=1

Y ′i >
ε

2

)]
(B.2.2)

The last inequality comes from the fact that in order for the event ∑n
i=1 Yi −

∑n
i=1 Y

′
i > ε to

hold, it is necessary that either ∑n
i=1 Yi >

ε
2 or ∑n

i=1(−Y ′i) > ε
2 is satisfied. However, it is

only a necessary, but not sufficient condition and hence the inequality.

93

By using the union bound, we have

P
[

1
n

n∑
i=1

Zi −
1
n

n∑
i=1

Z ′i > ε

]
≤ P

[(
n∑
i=1

Yi >
ε

2

)]
+P

[(
n∑
i=1
−Y ′i >

ε

2

)]
≤ 2 exp

(
−2n(ε2)2

)
= 2 exp

(
−nε

2

2

)

�

B.3. Proof of Lemma 2.2.4
Lemma. (Sauer’s Lemma) Let H be a hypothesis set of VC-dimension d. Then for all
n ∈ N, the following relation holds

ΠH(n) ≤
d∑
i=0

(
n

i

)
(B.3.1)

Proof. The proof is by induction in both dataset size,n, and VC-dimension. Intuitively,
we show that the restriction of any hypothesis class H to a dataset S, i.e., HS, can be
decomposed into the restriction of two different subclasses of H to a subset of the data with
one data point less than the initial data set. This decomposition is constructed in such a
way that on the one hand, the VC-dimensions of these two subclasses are upper-bounded by
d and d− 1, and on the other hand, the union of the two smaller restrictions is equal to HS.
For the induction step, we use the following identity(

n

i

)
=
(
n− 1
i

)
+
(
n− 1
i− 1

)
(B.3.2)

According to this short description of the proof, we need two base cases as n = 1, d = 1
and n = 1, d = 0. For both cases we see that the inequality in Sauer’s lemma holds. The
induction assumption is that the inequality in Equation (B.3.1) is valid for the case with
the dataset size m− 1 and VC-dimension d as well as the case with the dataset size m− 1
and VC-dimension d− 1. If we then show that this assumption results in the validity of the
result for the case of dataset size m and VC-dimension d, then the lemma is proved.
Let’s consider the restriction of H to S = {x1, · · · ,xm}. Also, consider all sign patterns
realized by this classH over data points S ′ = {x1, · · · ,xm−1}. Now we construct two different
(representative) subsets of H. The first one includes a representative function h for any
possible sign pattern realized by H on S ′. That is, its cardinality is equal to the number of
all possible sign patterns on S ′ formed by the hypothesis class H. We call this subset H1.
Then, we form H2 as all representative functions in H that are not included in H1. This
means each members of H2 has a counterpart in H1, which results in the same labelling of
data points in S ′, but a different label on xm. Therefore, the cardinality of the restriction of
H to S is the sum of the cardinality of the restriction of H1 to S ′ and the cardinality of the

94

restriction of H2 to S ′.

|HS| = |H1,S′|+ |H2,S′| (B.3.3)

Also, by construction we have |H1,S′| ≥ |H2,S′|. Another important observation is that since
any labeling realized by H2 on S ′ has a counterpart in H1 which gives a different label for
xm, if a subset Sshattered ⊂ S ′ is shattered by H2, this implies Sshattered ∪ {xm} is shattered
by H. From that, we have the inequality dVC(H2) ≤ dVC(H) − 1 = d − 1. On the other
hand, since H1 is included in H, we have dVC(H1) ≤ dVC(H) = d.
Now, applying the induction assumption on H2 over the set S ′, we have

ΠH2(n− 1) ≤
d−1∑
i=0

(
n− 1
i

)
and ΠH1(n− 1) ≤

d∑
i=0

(
n− 1
i

)
(B.3.4)

Replacing these upper bounds into Equation (B.3.3) we get

ΠH(n) ≤
d−1∑
i=0

(
n− 1
i

)
+

d∑
i=0

(
n− 1
i

)
=

d∑
i=1

(
n− 1
i− 1

)
+

d∑
i=1

(
n− 1
i

)
+
(
n− 1

0

)
=

d∑
i=0

(
n

i

)
,

(B.3.5)

where we have used the identity in Equation (B.3.2) as well as the fact that
(
n−1

0

)
=
(
n
0

)
=

1. �

95

Appendix C

VC-dimension of Half-Spaces

In this section, we review the calculation of the VC-dimension for a prevalent class of
hypotheses known as half-spaces. Consider data points with d number of features that
reside in the d-dimensional real space Rd. The points are labeled either 1 or −1 and we are
concerned with the classification problem of these points. The class of hypotheses that we
consider is the set of hyperplanes of dimension d−1. These subspaces are called half-spaces.
Now, the question is: what is the maximum number of dichotomies or sign patterns that
can be realized for a dataset of size n under this class, i.e., the growth function of the set of
half-spaces. This is tightly related with the VC-dimension of this hypothesis class.
Here, we consider the simpler case where half-spaces are constrained to pass through the
origin. This is the homogeneous case. Using the rules of linear algebra, we show that the
VC-dimension of homogeneous half-spaces of the space Rd is equal to d. For that, we should
first show that there always exists at least one dataset of d points which is shattered by
homogeneous half-spaces. Secondly, we have to prove that no dataset of d+ 1 points can be
shattered by this class of functions.
In terms of linear algebra language, the set of hyperplane-classifiers in Rd is defined as

H =
{
h : x 7→ (sign(a.x)) | a ∈ Rd

}
(C.0.1)

which from the geometry perspective is the set of all hyperplanes passing through the origin
with normal vectors proportional to a. To show that there exists at least one dataset of
d points shattered by this class of hypotheses, we consider the canonical basis of the d-
dimensional real space as the data points. We represent this dataset as P = {p1, . . . , pd}
with the following coordinate representation

p1 =


1
0
...
0

 , p2 =


0
1
...
0

 , . . . , pd =


0
...
0
1

 (C.0.2)

Now, let’s consider the restriction of the half-space class defined in Equation (C.0.1) to this
set of data points, denoted by HP . This is given by

HP = {(sign(a1), sign(a2), . . . , sign(ad)) | a1, . . . , ad ∈ R} (C.0.3)

with a1, · · · , ad, being the d components of the vector a. From the above relation, it is clear
that there are 2d possibilities for the sign patterns of these points and in order to get any of
the two possible signs for each data point pi, we only need to let the corresponding coefficient
ai have that same sign (without affecting the sign of the other data points). Therefore, we
have shown that the VC-dimension of half-spaces of Equation (C.0.1) is at least d.
Next, we should show that no d + 1 points are shattered by this same hypothesis class. To
keep the analysis general and inclusive, we write the coordinates of the ith data point as pi =[
x

(i)
1 x

(i)
2 . . . x

(i)
d

]T
. Since in d-dimensional space we have at most d linearly independent

vectors, the (d + 1)-th point is a linear combination of the other d ones; so we write it as
pd+1 = α1p1+· · ·+αdpd. Also, we define a function f : x 7→ a.x. Then we consider the value
of the function class on the point pd+1 which gives sign(a.pd+1) = sign(α1a.p1 + · · ·+αda.pd)
= sign(α1f(p1) + · · ·+ αdf(pd)).
A given pd+1 is associated with unique values for α1, . . . , αd. For that set of αi’s, any
combination of f(p1), . . . , f(pd), results in either f(pd+1) = α1f(p1) + α2f(p2) + · · · +
αdf(pd) > 0 or f(pd+1) = α1f(p1) + α2f(p2) + · · · + αdf(pd) < 0. The fact that the
dichotomy corresponding to the same combination of f(p1), . . . , f(pd), cannot give rise to
both f(pd+1) > 0 and f(pd+1) < 0 means that, the dataset of size d+ 1 cannot be shattered
by this class of functions and hence d ≤ dVC < d + 1. We conclude that for half-spaces,
dVC = d.

98

Appendix D

Lower Bounds on the Number of Sign
Patterns

D.1. Main Results
We saw in Chapter 3, that for tensor trains with some constraints (r = d and p mod 3 =

0), the upper-bound on the VC-dimension is tight up to the logarithmic factor log p. We
guess that this tightness should be the case for more general setups. Here, we want to give
an evidence for this claim. This is based on an approach that the number of sign patterns
realized by a hypothesis class, rather than its VC-dimension. Since lower-bounding the
VC-dimension from the number of sign patterns does not seem straightforward, we did not
discuss this approach in Chapter 3. However, the technicality involved in this method as
well as the evidence it provides, make it worth mentioning it here.

D.1.1. Lower-bound on the Number of Sign Patterns of Low-rank
Matrices [4]

We start by the low-rank matrix case. Let M be a m×n matrix of rank k, so that it has
a rank decomposition as illustrated in Figure D.1, with the left and right low-rank matrices
called Lk and Rk.
Our goal is to find a lower bound on the number of sign patterns of M given that it has this
low-rank decomposition. We make some key observations. First, Each of the matrices Lk

and Rk are free to take any values. That is, we can take Lk to be quite arbitrary, and Rk

to be in general position.
Definition 21. A set of vectors in Rd is in general position if and only if every subset of
exactly d vectors is linearly independent.
Lemma D.1.1. There are exactly 2∑d−1

k=0

(
N−1
k

)
homogeneously linearly separable sign pat-

terns of N points in general position in Rd.

Proof. The proof of this lemma can be found in Section D.2.3. �

Figure D.1. Figure from [9]

Now, the above decomposition can be interpreted as follows: let us think of the n columns
of the matrix Rk as n points in Rk, then each row of the matrix Lk can be seen as a linear
classifier of these n points. Therefore, Lemma D.1.1 says that for each classifier, i.e., each
row of Lk, we have exactly the following number of sign patterns (SP)

#SP(each row) = 2
k−1∑
i=0

(
n− 1
i

)

Now, if we consider low-rank matrices for which n > k, we get

#SP(each row) ≥
(
n− 1
k − 1

)
> (n− 1

k − 1)k−1

Having this many sign patterns by each row of Lk, the sign patterns realized by the whole
matrix Lk on the n points of Rk are at least as many as(

(n− 1
k − 1)k−1

)m
∼ (n

k
)mk

Now,if we further constrain the matrix rank as k2 < n, the above lower bound simplifies to

#SP(each row) ≥ n
mk

2

By comparing this lower bound with the upper bound coming from Warren’s theorem 9, i.e.,
with #SP ≤ (8e.2.nm

k(n+m))
k(n+m) ≤ (16en

k
)k(n+m), we observe the tightness of the upper bound up

to a multiplicative factor in the exponent, for the case of n > k2.

D.1.2. Lower-bound on the Number of Sign Patterns of Tensor
Trains

Analogously to the above study for low-rank matrices, we can consider other tensor net-
works, like tensor train.
For the tensor completion and classification tasks with a tensor G ∈ Rd×d×d×d in TT repre-
sentation, as G1 G2 G3 G4 , if we can find an optimal way of breaking the tensor into
two parts, one which we can claim it to be in general position, and the other one that can

100

take any arbitrary value, then it is possible to take the same approach as in the previous
part to estimate a lower bound on the number of sign patterns of the tensor.
To make it clear, let’s consider a scenario for tensor completion task as illustrated in Fig-
ure D.2 part (1); the core tensor highlighted in red is assumed to take any arbitrary value.
Then, the rest of the diagram needs to be in general position, so that one could do the same
analysis as in the low-rank matrix case to find a lower bound on the number of dichotomies.
Since this approach works based on the matricization of the tensor, in part (2) we have
represented the corresponding matricization.

G2 G3 G4G1 (1) r
GG1 (2)

Figure D.2. (1) A 4-th order tensor train G with the core highlighted in red being free to
take any arbitrary values. (2) Mode-n Matricization of the same tensor G w.r.t. the mode
corresponding to the highlighted core.

We first consider the diagram on the left with G1 taking arbitrary values. Figure D.3
shows the rest of the diagram, which we will call broken TT.

G2 G3 G4 (1) r d3

G (2)

Figure D.3. Part (1) The broken TT of Figure D.2. Part (2) illustrates the matricization
of the broken TT.

Now, we claim that the matricization of the broken TT can be put in general position;
that is, the broken TT can be seen as d3 points in general position in Rr. A constructive
proof is provided in Appendix D.2.1 for the special case of r = 2. For general r ≤ d, a
constructive proof based on moment curves is given in Appenxix D.2.2.
The upshot is that the first matricization in part (2) of Figure D.2 is the matrix product of
an arbitrary matrix G1 of size d × r by a matrix G of size r × d3, interpreted as stacking
d3 points in general positions in Rr. Each row of G1 as a homogeneous linear classifier on
these points produces 2∑r−1

i=0

(
d3−1
i

)
dichotomies which gives the following lower bound on

the total number of such dichotomies, when taking into account all independent rows of G1

#dichotomies ≥ (d
3 − 1
r − 1)d(r−1) (D.1.1)

This result straightforwardly generalizes to higher-order tensors, giving the following lower
bound on the number of sign patterns that a tensor train of arbitrary order p with a uniform
TT-rank r ≤ d can take

#dichotomies ≥ (d
p−1 − 1
r − 1)d(r−1) ∼ d(p−2)(r−1)d (D.1.2)

101

This could be interpreted as an evidence for the possibility of tightening our lower bound on
the VC-dimension of TT models that we have shown in Table 3.1 for the case r < d.

D.2. Proofs for Section D.1
To review the calculation of lower bound in earlier works for tensor completion task, we

explain some concepts.

D.2.1. Proof of General Position for the Ranks r = 2

Theorem 22. There exist a broken TT, as defined in Figure D.3, with uniform TT-rank 2
and arbitrary order, for which the columns of the first matricization could be seen as points
in general position in 2 dimensions.

Proof.
Lemma D.2.1. Points on a semi-circle in two dimensions, are in general position in the
sense of Definitio 21.

Let us call the broken TT, G>1, and assume that G>1 is of order n. Consider one element
of G>1 as G>1

r1,i2··· ,in ∈ R2×d2×···×dn , with r1 associated with the broken bond dimension and
the rest of the indices corresponding to all physical legs. By construction, this tensor element
is written in terms of the core tensors (matrices) as below

G>1
r1,··· ,in =

∑
r2,··· ,rn−1

G2
r1,i2,r2G3

r2,i3,r3 · · ·G
n
rn−1,in (D.2.1)

with {Gk
:,ik,:}

n−1
k=2 , being matrices of dimension 2 × 2 and Gn

:,in a 2-d vector. Next, we define
d2 · · · dn different polar angles as below

θ
(2)
1 = 2π

d2
, θ

(2)
2 = 22π

d2
, · · · , θ(2)

d2 = d2
2π
d2

θ
(3)
1 = 2π

d2 d3
, θ

(3)
2 = 2 2π

d2 d3
, · · · , θ(3)

d3 = d3
2π
d2 d3

· · ·

θ
(n)
1 = 2π

d2 d3 · · · dn
, θ

(n)
2 = 2 2π

d2 d3 · · · dn
, · · · , θ(n)

dn
= dn

2π
d2 d3 · · · dn

(D.2.2)

Next, we construct {Gk
:,ik,:}

n−1
k=2 in terms of θ(2)

j ’s up to θ(n−1)
j ’s as below

Gk
:,ik,: =

 cos θ(k)
ik

sin θ(k)
ik

− sin θ(k)
ik

cos θ(k)
ik

 (D.2.3)

102

and vector Gn
:,in as Gn

:,in =
(
sin θ(n)

in cos θ(n)
in

)
. From the following matrix identities

sin(α + β) = sinα cos β + cosα sin β

cos(α + β) = cosα cos β − sinα sin β

or equivalently sin(α + β)
cos(α + β)

 =
 cosα sinα
− sinα cosα

sin β
cos β


it is easily verified that ∑rn−1 Gn−1

:,in−1,rn−1Gn
rn−1,in =

(
sin (θ(n)

in + θ
(n−1)
in−1) cos (θ(n)

in + θ
(n−1)
in−1)

)T
.

This analysis is easily generalized to the whole TT and leads to the following result for
every element : ,i2, · · · ,in of the broken TT

∑
r2,··· ,rn−1

G2
:,i2,r3 · · ·G

n−1
:,in−1,rn−1Gn

rn−1,in =
(
sin (θ(n)

in + θ
(n−1)
in−1 + · · ·+ θ

(2)
i2) cos (θ(n)

in + θ
(n−1)
in−1 + · · ·+ θ

(2)
i2)

)T
(D.2.4)

which also comes from the fact that consecutive rotations of a point by several angles is
equivalent to one rotation by the sum of those angles. This means each vector G:,i2,··· ,in is
interpreted as a point on a unit circle centered at the origin at the radial angle θ(n)

in +θ
(n−1)
in−1 +

· · · + θ
(2)
i2 . The point is that with the choice of angles as in Equation (D.2.2) no two angles

out of all d2 d3 · · · dn are the same; hence, all points are uniformly placed around the unit
circle and according to Lemma D.2.1 are in general position. �

D.2.2. Proof of General Position based on Moment Curve for Ten-
sor Train

Proposition D.2.2. For any dimension d2, · · · , dp and any rank R, there exist {G(k) ∈
RR×dk×R}p−1

k=2 and G(p) ∈ RR×dp, such that the d2 · · · dp points in RR defined by

xi2,··· ,ip = G(2)
:,i2,: · · ·G

(p)
:,ip ∈ RR for i2 ∈ [d2], · · · ,ip ∈ [dp]

are in general position.

Proof.
Proposition D.2.3 (Proposition 3.3 in [89]). The points of the moment curve
{(1,α,α2, · · · ,αd−1) | α ∈ R} ⊂ Rd are in general position.

We will show that the core tensors G(k) can be chosen in such a way that the points
xi2,··· ,ip correspond to distinct points on the moment curve {(1,α,α2, · · · ,αR−1) | α ∈ R}, the
result then follows from Proposition D.2.3.
For all k ∈ [2 : p], jk = 0, · · · ,dk − 1, let αk,jk = exp(jkd2 · · · dk−1) (for k = 2, we take

103

α2,j2 = exp(j2)). With considerations similar to Lemma 3.4.2, one can check that the
products α2,j2 · · ·αp,jp are all distinct. More precisely, we have{ p∏

k=2
αk,jk | jk ∈ [dk]

}
= {exp(l − 1) | l ∈ [d2 · · · dp]}

Now, for each k = 2, · · · ,p− 1, let G(k) be defined by

G(k)
:,ik,: = diag(1,αk,jk ,α2

k,jk
, · · · ,αR−1

k,jk
) for each ik ∈ [dk]

and let Gp be defined by

G(p)
:,ip =

(
1, αp,jp ,α2

p,jp , · · · ,α
R−1
p,jp

)
for each ip ∈ [dp],r ∈ [R]

One can check that,

G(2)
:,i2,: · · ·G

(p)
:,ip =

(
1, βi1,··· ,ip , β2

i1,··· ,ip , · · · , β
R−1
i1,··· ,ip

)
where βi1,··· ,ip = ∏p

k=2 αk,jk . It follows that each point xi2,··· ,ip is given by

xi2,··· ,ip =
(
1,βi1,··· ,ip ,β2

i1,··· ,ip , · · · , β
R−1
i1,··· ,ip

)
.

Since all the βi1,··· ,ip are distinct, the points xi1,i2,··· ,ip are distinct points on the moment
curve. Then, according to Proposition D.2.3, these points are in general position. �

D.2.3. Dichotomy Counting [5]

Lemma. For n > d, for n points in general position in Rd, the number of homogeneously
linearly separable sign patterns is given by

C(n,d) = 2
d−1∑
i=0

(
n− 1
i

)
(D.2.5)

Proof. The proof is based on induction on n and d and also uses the following lemma.
Lemma D.2.4. Consider a set of n points in Rd as X = {x1,x2, · · · ,xn} with a given
fixed dichotomy {X+,X−}. Consider a new point y such that X ⋃

y is in general position
in Rd. Then the dichotomies {X+ ∪ y,X−} and {X+,X− ∪ y} are both homogeneously
linearly separable if and only if {X+,X−} is homogeneously linearly separable by a (d − 1)-
dim subspace containing y. For later use, we call this (d− 1)-dim subspace V.

Note that in the following, whenever we talk about linearly separable or just separable
dichotomies, we mean homogeneously linearly separable. To prove the theorem we consider
X = {x1,x2, · · · ,xn} as the set of n points in general position, with C(n,d) the number of its
separable dichotomies. We then take xn+1 s.t. X∪xn+1 are in general position as well. Then
we consider the C(n,d) separable dichotomies of X. For any dichotomy {X+,X−}, where
X+ (X−) is the subset of X with all members positively (Negatively) labeled, either {X+ ∪

104

xn+1,X
−} or {X+,X− ∪ xn+1} will also be linearly separable. According to Lemma D.2.4

there are also some dichotomies for which both {X+ ∪ xn+1,X
−} and {X+,X− ∪ xn+1} are

linearly separable. Let’s call the number of such dichotomies D. From the above lemma, we
know that such dichotomies, when projected onto the (d− 1)-dim hyperplane perpendicular
to the subspace V defined in Lemma D.2.4, are still linearly separable; that means D is equal
to C(n,d− 1). From this observation, a recursive relation for C(n,d) follows

C(n+ 1, d) = C(n, d)−D + 2D = C(n,d) + C(n,d− 1) (D.2.6)

By repeatedly applying this identity to the right-hand side of it, we getCounting [5]

C(n, d) =
n−1∑
i=0

(
n− 1
i

)
C(1,d− i) (D.2.7)

Now, since C(1,t) vanishes for t < 1, the above sum reduces to ∑d−1
i=0

(
n−1
i

)
C(1,d− i). Also,

since C(1,t) = 2 for t ≥ 1, we get

C(n, d) = 2
d−1∑
i=0

(
n− 1
i

)
(D.2.8)

�

105

	Résumé
	Abstract
	Contents
	List of Tables
	List of Figures
	Liste des sigles et des abréviations
	Remerciements
	Introduction
	Notations
	Chapter 1. Tensors and Tensor Networks
	1.1. Introduction
	1.2. Notation
	1.3. Tensors and Tensor Networks
	1.3.1. Fundamental operations on tensors

	1.4. Tensor network decompositions and tensor rank
	1.4.1. Candecomp/Parafac (CP)
	1.4.2. Tucker
	1.4.3. Tensor Train (TT)
	1.4.4. Other decompositions: Hierarchical Tucker and Tensor Ring

	1.5. Classification with Tensor Train Weight
	1.6. Equivalence of TNs with Convolutional Arithmetic Circuits
	1.6.1. CP Model as a Shallow CAC/CNN
	1.6.2. Hierarchical Tucker Decomposition as a Deep CAC

	Chapter 2. Generalization Bound and Complexity Measures
	2.1. Introduction
	2.2. Classical Generalization Bounds for Classification
	2.2.1. Finite Class of Hypotheses
	2.2.2. Infinite Class of Hypotheses

	2.3. Generalization Bounds for Regression
	2.3.1. Finite Class of Hypotheses
	2.3.2. Infinite Class of Hypotheses

	Chapter 3. Generalization Bound and VC-dimension of Tensor Networks
	3.1. Introduction
	3.1.1. Tensor Network structures

	3.2. Tensor Network Learning Models
	3.2.1. Examples

	3.3. Bounds on the VC/Pseudo-dimension and the Generalization Gap
	3.3.1. Special cases
	3.3.2. Experiments

	3.4. Lower Bounds
	3.4.1. Proof of Theorem 11
	3.4.2. Rank-One Tensors
	3.4.3. Tensor Train and Tensor Ring
	3.4.4. Tucker
	3.4.5. CP

	Chapter 4. Conclusion and Future Directions
	Bibliography
	Appendix A. Useful Formulas
	A.1. Essential Inequalities
	A.1.1. Markov's inequality
	A.1.2. Chebyshev's inequality
	A.1.3. Hoeffding's inequality
	A.1.4. Popoviciu's inequality popoviciu1935equations

	Appendix B. Proofs for Chapter 2
	B.1. Proof of Lemma 2.2.1
	B.2. Proof of Corollary 2.2.2
	B.3. Proof of Lemma 2.2.4

	Appendix C. VC-dimension of Half-Spaces
	Appendix D. Lower Bounds on the Number of Sign Patterns
	D.1. Main Results
	D.1.1. Lower-bound on the Number of Sign Patterns of Low-rank Matrices srebro2005generalization
	D.1.2. Lower-bound on the Number of Sign Patterns of Tensor Trains

	D.2. Proofs for Section D.1
	D.2.1. Proof of General Position for the Ranks r=2
	D.2.2. Proof of General Position based on Moment Curve for Tensor Train
	D.2.3. Dichotomy Counting cover1965geometrical

