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Résumé

La possibilité pour un robot de naviguer en utilisant uniquement la vision est attrayante
en raison de sa simplicité. Les approches de navigation traditionnelles basées sur la vision
nécessitent une étape préalable de construction de carte qui est ardue et sujette à l’échec,
ou ne peuvent que suivre exactement des trajectoires précédemment exécutées. Les nou-
velles techniques de navigation visuelle basées sur l’apprentissage réduisent la dépendance à
l’égard d’une carte et apprennent plutôt directement des politiques de navigation à partir
des images. Il existe actuellement deux paradigmes dominants : les approches de bout en
bout qui renoncent entièrement à la représentation explicite de la carte, et les approches
topologiques qui préservent toujours une certaine connectivité de l’espace. Cependant, alors
que les méthodes de bout en bout ont tendance à éprouver des difficultés dans les tâches
de navigation sur de longues distances, les solutions basées sur les cartes topologiques sont
sujettes à des défaillances dues à des arêtes erronées dans le graphe.

Dans ce document, nous proposons une méthode de navigation visuelle topologique basée
sur l’apprentissage, avec des stratégies de mise à jour du graphe, qui améliore les performances
de navigation sur toute la durée de vie du robot. Nous nous inspirons des algorithmes de
planification basés sur l’échantillonnage pour construire des graphes topologiques basés sur
l’image, ce qui permet d’obtenir des graphes plus épars et d’améliorer les performances
de navigation par rapport aux méthodes de base. En outre, contrairement aux contrôleurs
qui apprennent à partir d’environnements d’entraînement fixes, nous montrons que notre
modèle peut être affiné à l’aide d’un ensemble de données relativement petit provenant de
l’environnement réel où le robot est déployé. Enfin, nous démontrons la forte performance
du système dans des expériences de navigation de robots dans le monde réel. 1

Mots-clés : navigation visuelle, apprentissage à vie, robotique, planification

1. Site internet du projet : https://montrealrobotics.ca/ltvn/

5

https://montrealrobotics.ca/ltvn/




Abstract

The ability for a robot to navigate using vision only is appealing due to its simplicity.
Traditional vision-based navigation approaches require a prior map-building step that was
arduous and prone to failure, or could only exactly follow previously executed trajectories.
Newer learning-based visual navigation techniques reduce the reliance on a map and instead
directly learn policies from image inputs for navigation. There are currently two preva-
lent paradigms: end-to-end approaches forego the explicit map representation entirely, and
topological approaches which still preserve some loose connectivity of the space. However,
while end-to-end methods tend to struggle in long-distance navigation tasks, topological
map-based solutions are prone to failure due to spurious edges in the graph.

In this work, we propose a learning-based topological visual navigation method with
graph update strategies that improves lifelong navigation performance over time. We take in-
spiration from sampling-based planning algorithms to build image-based topological graphs,
resulting in sparser graphs with higher navigation performance compared to baseline meth-
ods. Also, unlike controllers that learn from fixed training environments, we show that our
model can be finetuned using a relatively small dataset from the real-world environment
where the robot is deployed. Finally, we demonstrate strong system performance in real
world robot navigation experiments. 2

Keywords: visual navigation, lifelong learning, robotics, planning

2. Project page: https://montrealrobotics.ca/ltvn/
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Chapter 1

Introduction

Regardless of the application, the ability to navigate within unstructured environments
is essential for mobile robots. For instance, this ability can enable robots to facilitate work in
warehouses, and to assist healthcare professionals in hospitals. Despite the progress over the
past few decades, robots have yet to be able to reliably navigate using only visual sensors.
This is unfortunate because this ability can reduce the overall cost of robots by eliminating
the needs of other more costly sensors, which will make them more accessible. We thus
focus on developing efficient methods to solve the semantic visual navigation task for mobile
robots. In particular, we propose a topological visual navigation method that can improve
lifelong navigation performance. 1

One key challenge for general-purpose autonomous mobile robots is the arduous setup
requirements for operating in a new environment. Classical navigation methods combine
mapping with separate planning and control modules [104, 103, 89, 34]. Traditionally, a
robot must first be expertly piloted to collect information from the environment, and build a
metric representation of the space, for example using Simultaneous Localization and Mapping
(SLAM) and Concurrent Mapping and Localization (CML) [63, 100]. However, this often
requires costly equipment such as light detection and ranging sensors. To overcome these
limitations, one appealing strategy is to forego the global metric map and instead maintain
a topological representation (i.e., a graph) of the space [60, 104]. In this class of approaches,
the connectivity of the graph encodes the traversability of the environment, and it is assumed
that some local controller is responsible for actually navigating each of the edges.

Another limitation of metric-based navigation systems is that specifying goals in metric
space, such as a point coordinate, is not intuitive to humans. Ideally, we need a system where
we can specify the navigation goals in some semantic representation that humans can easily
comprehend, such as images of target objects or locations. However, teaching a machine to
understand semantic representations is also a challenging problem by itself. Recently, we see

1. This work is under review at the International Conference on Robotics and Automation 2022.



(a) Image sequence (b) Subgoal poses

Figure 1.1. A sample plan produced with our method to move from the top-left to the
bottom-right image. The intermediary subgoal images transition smoothly, which helps the
robot’s image-based controller easily navigate to the goal.

the emergence of learning-based methods that directly infer actions from images or natural
language queries [123, 20, 2, 112]. However, these policies tend to be reactive, are not data
efficient, and are not suitable for long-distance navigation tasks.

Our method builds a graph that represents an environment where each node corresponds
to a particular image of a location. Figure 1.1 illustrates how our agent uses the graph for
planning a navigation task in the image space. A crucial component of the system is a trained
model for estimating connectivity and traversability between nodes. Our work specifically
addresses erroneous labelling when building the graph, which can hamper navigation per-
formance. False positives from this model will cause the robot to try to execute potentially
infeasible plans, while false negative predictions may result in failure to find a feasible plan
when one actually exists. Compared with other learning-based topological navigation meth-
ods [92, 74, 29, 96], we share a common algorithmic structure, as shown in Figure 1.2, yet
differ in choices for the learned model, data collection procedure, graph building approach,
what graph edges encode, controller used, and, in particular, graph update strategy.

To help with graph building, localization, and control, we train our single neural model
to take two images and jointly predict if one is reachable from the other, and, if so, their
relative transformation in the Special Euclidean group in two dimensions (i.e., SE(2)). While
we initially train this model using simulated environments, we can later finetune it in the
target (e.g., real-world) environment. To finetune the model, we collect a small added set of
trajectory images with the help of relative geometric information from odometry on the real
robot, and generate a finetuning dataset from these images.

We take inspiration from sampling-based motion planners such as Probabilistic Roadmaps
(PRM) [54] and Rapidly-exploring Random Tree (RRT) [61] to build a graph, by sampling
nodes from a pool of collected images and using our model to determine their connectivity.
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Figure 1.2. Our navigation framework consists of two phases: graph building and naviga-
tion. During the graph building phase, the robot collects sequences of observations from the
environment and builds a graph using a previously learned model. In the navigation phase,
the agent is given a query (i.e., a goal observation), localizes itself on the graph, and plans
a path to reach the goal. The agent picks a subgoal from the planned path, predicts what
action to take to reach the subgoal, and executes the action with its controller. The agent
then relocalizes itself and updates the graph using its latest observations.

During navigation, our agent continuously refines the graph based on its experience, to
improve lifelong navigation performance.

The main contributions of our method are as follows:

(1) We develop a sampling-based graph building process that, compared to several exist-
ing methods, produces sparser graphs and improves navigation performance,

(2) Our model can be finetuned in a target domain using only a small amount of data
while yielding large performance gains,

(3) We propose a graph update procedure that enables the graph to be continually refined
during operation, which further improves lifelong navigation performance as the agent
executes more navigation queries.

Our evaluations show that our method outperforms the baseline methods when evaluated
in various simulated environments. We also show how our graph update method is able to
remove spurious edges, which leads to significant improvement in navigation performance
over time. We further show real-world navigation instances, where our system can navigate
successfully across cluttered environments.
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Chapter 2

Background

In this section, we discuss the necessary background to understand the problem of visual
navigation that we tackle. First, we discuss various visual navigation tasks variations in
Chapter 2.1.1. We then continue on with discussions of the vital components of this work:
motion planning (Chapter 2.1.2), control (Chapter 2.1.3), belief update (Chapter 2.1.4), map-
based navigation (Chapter 2.1.5), and deep learning for robotics (Chapter 2.1.6). We present
related works in Chapter 2.2, which comprises classical visual navigation (Chapter 2.2.1),
learning-based visual navigation (Chapter 2.2.2), and learning-based topological navigation
(Chapter 2.2.3). Finally, we discuss the baseline methods that we use as comparisons in our
experiments in Chapter 2.3.

2.1. Preliminaries
2.1.1. Visual Navigation Tasks

Visual navigation is a task where a robot is given a query to navigate within an envi-
ronment using only its visual sensors (i.e., cameras). For example, a query can be defined
by asking the robot to go to a particular room inside a house. A room, however, can be
specified in many different ways, be it as a point coordinate, a description of how the room
looks, or an image of the room. Regardless of how the goal is specified, the robot needs
to know how to navigate safely and efficiently. Table 2.1 describes different types of visual
navigation tasks based on how a query is specified. While there are many variants of tasks
available in the context of visual navigation, we focus our work on image goal navigation,
where the target is represented as a Red-Green-Blue-Depth (RGBD) image observation.

There are many different approaches to solve these visual navigation tasks. For example,
most common visual navigation approaches are based on building a map of the environment,
and using the map to guide navigation. Mapless approaches to visual navigation also exist,



Table 2.1. Different types of visual navigation tasks and their descriptions.

Visual Navigation Tasks Goal Specification Task Description

Point goal navigation (e.g.,
[112, 5])

Point coordinate Navigate to an (x,y) coordinate rela-
tive to the robot.

Object goal navigation
(e.g., [114, 18])

Object category Navigate to find an object, usually
from a predefined set of categories
(e.g., “book”, “television”).

Place or area goal naviga-
tion (e.g., [115])

Place category Navigate to a place or an area within
an environment (e.g., “kitchen”,
“lounge”).

Image goal navigation (e.g.,
[123, 92, 74, 96])

Image Navigate to a place specified with an
image of a goal location.

Vision and language navi-
gation (e.g., [2])

Natural language navi-
gation instructions

Follow a series of natural language
navigation instructions (e.g., “Move
forward, and then turn right at the
second intersection.”).

Embodied question answer-
ing (e.g., [20, 121])

Natural language ques-
tions

Answer a natural language question
by navigating an environment (e.g.,
“Where is the microwave?”).

and usually are based on optical flow, appearance matching, or visual recognition. We discuss
the existing visual navigation techniques in Chapter 2.2.

2.1.2. Motion Planning with Graph

Sense, plan, and act is an early hierarchical robotics paradigm where a robot operates
by sequentially sensing the environment, planning its action, and executing its action [80].
Motion planning is the task of finding a feasible path (i.e., a sequence of states) from a given
start location to a given goal location. A state refers to the configuration of the robot at
a specific time (e.g., spatial coordinates, images, etc.). Feasible path means that the path
is free of obstacles, and can be followed by the robot without violating its kinematics or
dynamics constraints. In some cases, we may also want to aim for the path to not only be
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feasible, but also optimal, where the definition of optimality depends on the use case. For
example, it can be finding the path with the shortest distance, the one with the lowest energy
required to traverse, or the one with the highest probability of reaching its destination.

There are various techniques that we can use to solve motion planning problems. One
approach is the behavior-based planner such as the bug algorithms [70]. These typically work
by moving an agent toward a goal until it hits an obstacle, then traversing the boundary of
the obstacle until it can continue moving toward the goal. We are interested in another class
of approaches that turns planning into graph construction and search problems. In this class
of approaches, once the graph is built, we can then use search algorithms, such as A∗ [44] or
Dijkstra’s [24], to plan a path. We take inspiration from sampling-based planners to develop
our graph building algorithm. The idea of sampling-based planners is to iteratively sample
a state from the unoccupied space in a map to enable motion planning. In particular, we
take inspiration from PRM [54] and RRT [61] both during graph building and expansion.

PRM builds a graph to perform motion planning by sampling states from a given set
of states and connecting them. Concretely, given a set of states S to sample from, which
usually is derived from a given environment, we initialize the graph with a set of nodes V
randomly sampled from S (i.e., V ⊂ S) without edges between the nodes. Then, for each
state v ∈ V , we find a set of nearest nodes U around v, check if v can be reached from every
u ∈ U (and vice-versa) without collision, and if so, connect v and u. PRM is considered a
multi-query approach, since the graph is only built once and can be reused to perform path
planning for any future queries.

In contrast to PRM, RRT is a single-query sampling-based planner, which builds a graph
for every query we receive. For a given query, RRT incrementally builds a graph until a path
from the starting location to the goal is found. In each iteration, RRT samples a random
node xr from a set of nodes S, finds the nearest node xn in the graph, and interpolates a
state xm in between xr and xn. If xm can be reached from xn, we then add xm to the graph
and connect xm and xn together. This iterative procedure is repeated until a path is found.
While RRT does not necessarily produce an optimal path, the algorithm is guaranteed to
find a path from the start to goal node, if there is any, as the number of samples goes to ∞.

Note that both PRM and RRT require a perfect knowledge of the map to determine
distance between states and to check for collision. In this work, we train a single neural
model that can perform both of these functionalities. Similar to PRM, our graph building
method samples nodes from the collected trajectory data and produces a graph that can
be reused for path planning. Additionally, when a path cannot be found for a given query
during test time, we expand our graph by iteratively sampling the remaining nodes from the
trajectory data until a path is found, which is similar to RRT. We discuss our graph building
and update approaches in more detail in Chapter 3.2.2 and 3.2.3.
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Figure 2.1. Illustration of a feedback control loop. The controller takes the error signal
e(t) as an input to compute the new control signal u(t) at each time step t.

2.1.3. Robot Control

Control refers to the problem of determining what command to issue to our robot. A
controller therefore outputs desired actions, motions, or control signals that can be executed
by our robot. For example, in the case of a ground or planar-motion robot, the control
signals can be the linear velocity and angular velocity (i.e., turning rate) of the robot.

A feedback controller is a type of controller that adjusts the control signal u(t) based
on error signals e(t) from some reference point r(t), so that the error decreases as the time
t increases. Figure 2.1 illustrates how a feedback controller operates. Perhaps one of the
most commonly used feedback controllers is the Proportional-Integral-Derivative (PID) con-
troller [3]. In PID control, the control law is defined by three different terms: proportional,
integral, and derivative terms. The proportional term is responsible to adjust the control
signals proportionally to the error signal, and can be used to adjust the time needed to reach
the reference point. The integral term adjusts the controller output based on the integral
of the error over time, and can be used to attenuate steady-state bias. The derivative term
adjusts the output based on how fast the error changes over time, and can be used to adjust
the amount of overshoot. Concretely, the control signal u(t) is computed as

u(t) = Kpe(t) +Ki

∫ t

0
e(t)dt+Kd

de(t)
dt

, (2.1.1)

where Kp, Ki, and Kd denote the adjustable parameters for each of the terms.
Feedback control can also be formulated as an optimization problem. That is, we aim to

find the control function u(t) that causes the robot system to approach a target by minimizing
some cost function, while also respecting the constraints of the system. One valid method
to solve this is by using dynamic programming [9]. For example, a method called Linear
Quadratic Regulator (LQR) assumes a linear system, a linear controller, and a quadratic
cost function [53]. Another well-known optimization-based control is the Model Predictive
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Control (MPC) [35], which solves the optimization problem at every single time step, and
only applies the computed control signal for one time step.

Whereas conventionally, control methods are carried out in the robot’s positional space,
feedback control methods can also be applied to the image domain. This class of methods
where a controller is given a starting image and a goal image as inputs is called visual
servoing [49]. Visual servoing typically computes the error signal by comparing the image
features from the two images. For example, given the camera parameters and features from
an image pair, we can geometrically compute the pose of where the goal image is taken
relative to the starting image. We can then compute the required control signals that will
bring us closer to the goal location. In this proposed topological visual navigation work,
our controller can be thought of as a learning-based visual servo controller which combines
a pose estimation model and a feedback controller. While the controller is only able to
reach a nearby goal, its combination with graph planning enables the system to perform
long-distance navigation tasks. We discuss our controller in Chapter 3.2.1.

2.1.4. Belief Update

Belief update is the task to updating our belief about the world after receiving new
information. In the context of robotics, this means to update the belief state by incorporating
noisy sensor measurements z0:t:

bel(xt) ∆= p(xt|z0:t), (2.1.2)

where xt is the state random variable at time t and z0:t are the state measurements seen so
far up to time t, which we may obtain from a sensor.

One general framework to do this is via Bayesian inference. To simplify the problem,
we often assume that given the current state xt, the current measurement zt is conditionally
independent of past measurements (i.e., p(zt|xt, z0:t−1|) = p(zt|xt)). Thus, we can directly
apply the Bayes rule to compute the posterior p(xt|zt):

p(xt|zt) = p(zt|xt)p(xt)
p(zt)

, (2.1.3)

where p(zt|xt) is the likelihood or measurement model.
In practice, Bayes update is not tractable for continuous random variables, due to the

marginal p(zt). Thus, an additional assumption is usually proposed to make this practical.
Most commonly, if we assume that the measurement model and the prior are Gaussian, the
posterior is also Gaussian. This family of approaches is also often referred as the Gaussian
filters [105]. For a single measurement zt, the closed-form solution for the posterior is:
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µn = σ2

σ2
0 + σ2µ0 + σ2

0
σ2

0 + σ2 zt,

σn =
( 1
σ2

0
+ 1
σ2

)−1
, (2.1.4)

where (µ0, σ
2
0) are the parameters of the prior, σ2 is the variance of the measurement model,

and (µn, σ2
n) are the parameters of the posterior. In fact, one particular implementation

of Gaussian filters known as the Kalman filter [52] has been widely used in many robotics
applications, including in the Project Apollo [41].

In this work, we apply the discrete Bayes update to update the connectivity of the graph
that we build for navigation purposes. In addition, since the edge weights of the graph are
continuous variables, we also use the Gaussian filter to update them. For further in-depth
discussion about the topic of state estimation and belief update in robotics, we refer readers
to Thrun et al. [105] and Barfoot [6].

2.1.5. Map-based Navigation

Classically, visual navigation can be categorized into map-based and mapless naviga-
tion [23, 13]. In map-based approaches, we explore the environment, integrate the observed
data, and build a map that can be used for navigation. Once a map is built, we can then
localize the robot and plan a feasible path to reach the goal using classical search algorithms
such as A∗ [44] and Dijkstra’s [24]. Thus, navigation tasks are decomposed into percep-
tion, mapping, localization, planning, and control problems. The types of map can further
be categorized into metric, topological, and topological-metric [13]. In contrast, mapless
approaches directly infer a control command from an observation.

A metric map is built using a predefined coordinate system and stores metric information.
For example, one may represent a map using an occupancy grid [28] where each grid cell is
associated with a point coordinate and an indicator of the free space. To build a metric map,
one typically resorts to SLAM or CML techniques [63, 100]. Building a metric map is chal-
lenging because whenever we take a sensor measurement, we need to know its location, and
to combine them with techniques such as the Iterative Closest Point (ICP) [11] algorithm.
It is even more challenging in practice since real world sensors are noisy, requiring us to use
filtering techniques such as the Kalman filter [52, 50]. When we constrain ourselves to only
using image measurements, we also need to extract features from the collected images that
can be aggregated into a map. In the past, methods such as Scale-Invariant Image Features
(SIFT) [69, 68], Features from Accelerated Segment Test (FAST) [88], Speeded Up Robust
Features (SURF) [7], Binary Robust Independent Elementary Features (BRIEF) [17], and
Oriented FAST and Rotated BRIEF (ORB) [90] were often used to extract image features
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for map building [95, 30, 47, 78]. Nevertheless, building a metric map is not within the
scope of this work. For recent reviews of SLAM and CML techniques we refer readers to
Cadena et al. [16], Taketomi et al. [102], or Rosen et al. [87].

Another type of map – which is the focus of this work – is the topological map represen-
tation. A topological map is a graph where the nodes represent some distinctive feature of
a location within an environment (e.g., poses, objects, places [19, 122, 8]), and the edges
represent the traversability between the nodes. The edge can encode different things de-
pending on what the node represents. For example, if a state corresponds to a coordinate in
two-dimensional space, then a simple Euclidean distance between two points may be used.
Unlike a metric map representation, a topological map does not usually contain information
such as free space. Thus, the navigation system needs to consider other strategies to avoid
obstacles. Compared to metric representations, topological maps tend to be more compact,
thus require less storage and allow the robot to perform faster computation during localiza-
tion and planning. However, the sequence of states that the robot observes during test time
will be different than the nodes on the graph. Therefore, the system needs to be able to
associate new observations with the nodes on the graph robustly.

A topological-metric map is a hybrid between metric and topological maps, where the
construction of both maps are consistent with each other. One approach to do this is to
partition the grid map into different regions within a Voronoi graph [104, 8, 33]. We can
then use the graph for planning, and enjoy the benefits of using a purely topological map
for navigation. While intriguing, this class of approaches still requires one to build a metric
map, which as we discussed previously, is challenging and computationally expensive.

In this work, we focus on topological visual navigation where the graph is built in the
image space. We show that we can build a graph using a learned reachability and pose
estimator model, and use the built map to perform image goal visual navigation tasks both
in the simulation and the real world. While the edges in our graph encode metric information
that are inferred with the learned model, the graph is not derived from a metric map.
Furthermore, we show how we can update our graph based on what our agent observes
during navigation to improve lifelong navigation performance.

2.1.6. Deep Learning for Robotics

Deep learning [62, 38] is a family of machine learning techniques that is based on neural
networks. Neural networks are parametric models that can be trained to approximate a func-
tion. To train neural networks, one needs to first specify a loss function that measures the
performance of the model. For example, in supervised learning, the loss function measures
how far the model predictions are from the ground truth labels. Typically, for a differen-
tiable loss function, one can then compute the gradient of the loss function with respect to

31



the parameters of the neural network using the backpropagation algorithm [91]. Once the
gradient is known, we iteratively update the neural network parameters using optimization
algorithms such as stochastic gradient methods [15].

When dealing with image inputs, we usually resort to a class of neural networks known
as Convolutional Neural Network (CNN). CNNs employ convolution operations and the
parameters of the neural network are made of convolutional filters. Ever since the remarkable
achievements of CNNs in solving image classification tasks [57], deep learning has also been
applied to solve various computer vision tasks such as object detection [37, 36, 86, 85], visual
object tracking [46, 10, 108], image segmentation [97, 45], and visual odometry [110, 64].
Since many robotics tasks are heavily related to vision tasks, we can directly apply these
techniques to solve various robotics tasks. In fact, deep learning has also been used to develop
mapless end-to-end visual navigation techniques that directly predict a control signal from
image inputs [12, 123].

Deep learning has also been heavily used together with Reinforcement Learning (RL)
to solve various robotics tasks. In RL, an agent learns how to perform a task via learning
a value function or a policy by acting in the world and maximizing its reward. The value
function is a measure of how good a state is for the agent to be in to maximize its future
reward, while a policy defines how the agent should behave in order to maximize its future
reward. With deep RL, we parametrize the value function or the policy with deep neural
networks. RL, however, is not within the scope of this work. Thus, we refer readers to
Sutton and Barto [101] for a comprehensive background of RL.

We will see in Chapter 2.2 that many recent visual navigation techniques rely on deep
learning at their core. In this work, we apply deep learning to determine whether two images
are taken from locations that are nearby, and to predict the relative pose difference between
the two frames. We then use this model to build a graph and to provide our controller with
an intermediate waypoint during navigation. We show that we can solve complex visual
navigation tasks with this hybrid approach.

2.2. Related Work
2.2.1. Classical Visual Navigation

As discussed in Chapter 2.1.5, classical visual navigation approaches can be categorized
into map-based and mapless methods. One class of map-based approaches is to build a
detailed geometric description of an environment known as a metric map, and use it to guide
the robot during navigation. Various metric-map navigation systems that rely on range
sensors have been developed [26, 27, 14, 25]. However, they have difficulty distinguishing
between hallways and different doors along a hallway [56]. While this problem may be
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alleviated using image sensors, image signals are ambiguous and hard to interpret, making
localization and data association more difficult to do in map building.

The Stanford cart early visual navigation stack builds a metric map by tracking and
correlating image features acquired from its stereo camera [76]. A robotic museum guide
system called MINERVA [103, 22] combines cameras and laser sensors to build occupancy
and ceiling maps of the museum. Curious George [73, 32] is another indoor navigation
system that builds an occupancy grid map with cameras and laser sensors, that is also
equipped with an object recognition model to perform visual search tasks.

An alternative to the metric map is the topological map representation. Kortenkamp
and Weymouth [56] build a topological map of gateways’ images, where the features of
the images can be extracted for localization and navigation purposes. Another valid class of
approaches is to pair visual servoing with image graphs where the nodes correspond to image
features [71, 72, 113]. Kuipers and Beeson [59] cluster the collected trajectory images based
on their visual features, and build a graph where the nodes correspond to each cluster, and
the edges are determined based on their temporal occurrence during trajectory collection.
Vasudevan et al. [109] build a probabilistic topological map of detected objects and doors.
During navigation, localization is then done based on the detected objects.

Visual navigation approaches that rely on hybrid topological and metric maps also
abound. The Tour model [58] builds an image-based graph with high level actions that
connect the nodes. In addition, the graph is accompanied with a metric information such as
the location of the nodes and the magnitude of the actions. Tomatis et al. [107] couple a
metric map with a landmark-based graph where landmarks are defined as room corners and
openings. Other techniques build a dense grid map which is then partitioned into different
regions using Voronoi diagram [4] to build the topological map [104, 8, 33]. Visual Teach
and Repeat (VT&R) [34] collects sequence of stereo images and clusters them into a set of
overlapping submaps. Each submap is made of feature keypoints such that they are sufficient
to compute the camera pose and position when the robot observes a new image during the
repeat pass to enable localization and navigation.

As previously discussed, building a detailed metric map usually requires heavy engineer-
ing and costly equipment. Classical navigation methods that rely only on vision typically
are also constrained by the limitation of “hand-crafted” visual features when building the
maps and during navigation. Furthermore, existing topological maps are typically built
without considering the capability of the controller. In contrast, our map building method is
controller-dependent, thus reducing the amount of spurious edges that are not actually tra-
versable by the controller. In this work, we combine classical navigation with learning-based
approaches to enable lifelong topological visual navigation.
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2.2.2. Learning-based Visual Navigation

As machine learning tools are becoming ever more powerful, we are seeing the emergence
of new techniques that learn navigation behaviors directly from sensor inputs without ex-
plicitly building the map of the environment. Today, this is typically done via deep and/or
reinforcement learning. Nevertheless, this idea is not new and has been explored long before
the era of deep learning. Autonomous Land Vehicle In a Neural Network (ALVINN) [84] is
one of the early applications of artificial neural networks in autonomous driving. Concretely,
ALVINN trains a shallow neural network to learn a road following behavior directly from
image and laser range finder inputs.

Deep learning has demonstrated even more promising results in solving visual naviga-
tion tasks. For example, CNNs have been successfully trained end-to-end to directly map
camera frames into steering commands to perform autonomous driving [12]. Another ap-
proach leverages learning-based object detection and segmentation models to produce object
bounding boxes and segmentations maps, which are then used as the inputs to train a policy
network via imitation learning [77]. The cognitive mapping and planning approach jointly
learns a neural mapper and a planner, where the mapper integrates observations to build a
map, while the planner uses the latest map to plan a path to the goal and take actions to
follow the path [43]. PoliNet [48] performs visual path following task with learning-based
MPC. Learning-based waypoint navigation [5] is another hybrid approach that combines an
LQR feedback controller with learning-based waypoint prediction.

Deep RL techniques were also proposed as promising approaches for developing visual
navigation policies. For example, actor-critic style models have been used to train an RL
policy for solving goal-conditioned navigation tasks [75, 123, 94]. An RL policy for object
goal navigation tasks can also be trained with the help of a pretrained object recognition
model as the reward provider [120, 119, 117]. SplitNet [39] further shows that an RL-based
navigation agent can be improved by separating visual representation and policy learning.
Self-adaptive visual navigation [114] proposes a method to adjust an RL navigation policy
during test time via self-supervised learning and meta-learning. A deep RL policy can also
be augmented with priors of how objects in the world are related to each other to improve
navigation performance [118]. Furthermore, various RL policies have also been developed
for language-based navigation tasks [2, 20, 40, 111].

Although learning-based methods have shown promising results, they still struggle to
solve long-distance navigation tasks. Furthermore, training RL policies requires significant
computation and time, and thus is impractical to do in real-world environments. While
many simulators have been created to support the development of embodied agents [55,
116, 93, 98, 21], models trained with simulated data usually do not transfer well to the
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real-world [106]. In contrast, our method combines a feedback position-based controller with
a learning-based pose estimation model that can be finetuned in a target domain.

2.2.3. Learning-based Topological Navigation

As discussed in Chapter 2.2.1, the idea of representing robot motion as a sequence of
images with the help of topological map is not novel. However, classical topological nav-
igation approaches struggle especially when restricted to only use camera data. Recently,
learning-based approaches have further pushed the boundary of visual topological navigation
due to their strengths in understanding images.

The most comparable approaches to our method are Semi-Parametric Topological Mem-
ory (SPTM) [92] and Visual Navigation with Goals (ViNG) [96]. SPTM trains a binary
classifier to predict if two frames are close as measured by temporal distance during tra-
jectory collection, and uses it to build a graph. Similar to SPTM, ViNG determines the
connectivity between two frames based on their temporal difference. However, instead of a
binary classifier, ViNG regresses the number of steps required to move from one image to the
other, and uses this to weigh the graph edges. We compare our method with both SPTM
and ViNG, and we discuss them in more details in Chapter 2.3.1 and 2.3.2. As a common
concern with SPTM and ViNG, they build a navigation graph using all images within the
collected trajectories, which poses scalability issues. Also, these methods build the graph
without considering the capability of their controller, which may result in edges that are
not actually traversable. Moreover, by solely relying on temporal distance within collected
trajectories, these methods are blind to image pairs that are spatially close, yet temporally
far within the explored trajectories circumstantially.

Bayesian Relational Memory (BRM) [115] builds a fully-connected graph where nodes
and edges correspond to room types and the probability of room connectivity. BRM trains
a classifier that predicts the probability of an image belonging to different room types. As
the agent navigates, BRM uses its learned classifier to infer the type of rooms that it has
seen so far. BRM assumes that room types that are seen within small temporal distance are
connected, and then refines the edge weights of the graph using Bayesian updates. Our graph
update strategy also uses Bayesian updates at its core, but we determine the connectivity
measurement based on an actual attempt in traversing an edge. In addition, we also introduce
new nodes to the graph to improve lifelong navigation performance.

Hallucinative Topological Memory (HTM) [66] trains a generative model to generate
the possible states of an environment given information such as the floor plan or image of
the environment. This model is used to replace the trajectory collection phase previously
depicted in Figure 1.2. The generated states are then used to build a graph that represents
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the environment, where Contrastive Predictive Coding (CPC) [82] is used to differentiate
reachable image pairs from non-reachable ones, as well as to weigh the edges.

Meng et al. [74] proposed a controller-dependent graph building method. At its core,
a classifier is trained based on the controller rollout outcome in simulation to predict if an
image pair is reachable. To build the graph, this classifier model is used to first sparsify highly
reachable redundant nodes in the collected trajectories. Then, remaining nodes are connected
with edges weighted by predicted reachability scores. As a drawback, it is impractical to
finetune this reachability model in the real world, as it would require empirically unsafe
controller rollouts between location pairs.

There are also methods that rely on an actor-critic RL policy such as Latent Embeddings
for Abstracted Planning (LEAP) [81], Search on Replay Buffer (SoRB) [31], and Sparse
Graphical Memory (SGM) [29], which evaluate node connectivity using the value function
predicted by the critic. In addition, SGM proposes to sparsify the graph by only adding
perceptually distinct nodes, merging nodes with shared connections, limiting the number of
edges per node, and removing edges predicted as not traversable during test time. However,
these sparsification strategies may lead to excessive false negative edges. Additionally, such
simulation-trained RL policies may not transfer well to real-world environments.

While we use the same framework for topological navigation shown in Figure 1.2, we
highlight several design decisions that improve the overall performance of the system. These
include: the learned model, data collection procedure, graph construction, what the edges
of the graph encode, the controller, and graph update strategy. Table 2.2 summarizes the
differences between various learning-based topological navigation techniques, and we detail
our approach in Chapter 3.
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Table 2.2. Comparison of various learning-based topological navigation methods for image-goal navigation tasks.

SPTM [92] HTM [66] Meng et
al. [74]

LEAP [81] SoRB [31] SGM [29] ViNG [96] Ours

Query
type

Multi-query Multi-query Multi-query Single-query Multi-query Multi-query Multi-query Multi-query

Controller Inverse
dynamics

Inverse
dynamics

Potential-
based

RL RL RL Position-
based

Position-
based

Trajectory
type

Sequential Model-
generated

Sequential Model-
generated

Any Any Any Any

Node
selection

All nodes All nodes Incrementally
selected

Optimization-
based

All nodes Incrementally
selected

All nodes Sampling-
based

Edge
weight

Unweighted,
temporal-
based

Contrastive
loss

Reachability
score

Value func-
tion

Value func-
tion

Value func-
tion

Number of
steps

Geodesic
distance

Path
planner

Graph search Graph search Graph search Optimization-
based

Graph search Graph search Graph search Graph search

Graph up-
date

None None None None None Edge prun-
ing

None Edge up-
date, node
addition

Model
finetuning

Self-
supervised

None None None None None Self-
supervised

Self-
supervised
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2.3. Baseline Methods
In this section, we discuss two of the learning-based topological navigation techniques

that we compare against in our experiments.

2.3.1. Semi-parametric Topological Memory (SPTM)

SPTM [92] applies deep learning to visual topological navigation by learning a reacha-
bility estimator between two images as well as a controller. The learning components consist
of retrieval and locomotion models that are parametrized by neural networks. To train these
models, SPTM first rolls out a random policy to explore the training environments and
collects a sequence of states and actions dataset D = {(o1, a1), ..., (oN , aN)}. The retrieval
model R(oi, oj) is a binary classifier that takes two observations (oi, oj) as inputs, and is
trained to predict the probability of whether these two frames are taken at most l time steps
away from each other (i.e., |i − j| <= l). To reduce the amount of noisy data, SPTM only
considers the observation pairs as negative samples if they are at least l×m steps away. The
locomotion model L(oi, oj) also takes two observations as inputs, and is trained to predict
what action to take (from a given set of discrete actions) such that the agent goes from one
observation to the other (i.e., an inverse dynamics model). To train the locomotion model,
SPTM samples two observations from D that are at most l steps apart and uses the action
corresponding to the first observation oi as the label.

During test time, the agent is given time to explore the environment and collect sequences
of images, which will be used to build the graph of the environment where the nodes cor-
respond to images. To determine the connectivity between nodes, SPTM first connects all
the nodes that are at most one step apart. In addition, SPTM also creates shortcut con-
nections between nodes whenever there is a node pair oi and oj where R(oi, oj) > sshortcut

and |i − j| ≥ ∆T`. To increase robustness, rather than predicting only the pair of in-
terest at a time, SPTM takes ∆Tw nearest neighbors of oi and oj and form a sequence
of observation pairs. To get the final score, SPTM takes the median of the predictions
from the sequence. Concretely, instead of checking if R(oi, oj) > sshortcut, SPTM checks if
median{R(oi−∆Tw , oj−∆Tw), ..., R(oi, oj), ..., R(oi+∆Tw , oj+∆Tw)} > sshortcut.

Once the graph is built, given a query, the SPTM agent localizes itself and the goal on the
graph, and plans a path using Dijkstra’s algorithm [24]. To localize an observation on the
graph, SPTM uses the retrieval model to find a node that is closest to the observation based
on its output. To save computational cost, SPTM first only performs a local localization by
searching only within k-nearest neighbors from the last known position of the agent. When
performing local localization, SPTM also checks if the score predicted by the retrieval model
is higher than slocal. SPTM then chooses the furthest node in the path that is within Hmin
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to Hmax steps, and has a retrieval score of at least sreach to be the intermediate subgoal for
the locomotion model to reach.

2.3.2. Visual Navigation With Goals (ViNG)

Like SPTM, ViNG also trains a neural network to learn a distance function between
images based on their temporal difference during trajectory collection. ViNG formulates
this as a multinomial classification problem by discretizing the number of steps into dmax
bins. As the controller, ViNG trains a network that maps two observations (oi, oj) to the
relative pose of oj from where oi is taken, and uses a simple proportional-derivative controller
to reach the estimated pose during navigation.

To train the network, ViNG collects a dataset of a robot moving following a time-
correlated random walk in various environments from Kahn et al. [51]. The dataset consists
of multiple trajectories, where each trajectory is made of a sequence of observations. An im-
age pair (oi, oj) is considered as a positive sample if they come from the same trajectory and
if 0 ≤ j − i < dmax. To generate negative samples, ViNG takes any other pairs that do not
meet these criteria. Both the positive and negative samples dataset are then used to train
the distance estimator to minimize the cross entropy loss, where all the negative samples are
labeled as class dmax. The pose estimator is trained exclusively using the positive samples
dataset to minimize the L2 regression loss.

To build the graph, ViNG considers all observations in the trajectory and connects them
using the predicted distance as the edge weight. To reduce the number of edges in the graph,
ViNG removes edges where the distance is less than a constant δsparsify. During test time, the
ViNG agent takes its current observation at each time step, adds it to the graph according
to the distance estimator, plans the path to reach the goal using Dijkstra’s algorithm [24],
and chooses the first node within the path to be the intermediate subgoal.
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Chapter 3

Lifelong Topological Visual Navigation

We discuss our methodology in this section. We start by formalizing the navigation prob-
lem and setting in Chapter 3.1. We then discuss each of the components of our navigation
system in Chapter 3.2, as well as main differences of our approach compared to other existing
learning-based topological navigation methods. These include the controller, the reachability
and waypoint prediction model (Chapter 3.2.1), graph building algorithm (Chapter 3.2.2),
graph update procedure (Chapter 3.2.3), and real world finetuning (Chapter 3.2.4).

3.1. Problem Formulation
We focus our work on visual navigation tasks with image goals. When we deploy our

agent in a target environment, we first execute a trajectory collection phase to obtain a
sequence of RGBD images T = {o1, ..., oN}. We then use T to build a graph G = (V,E),
where vertices V are a subset of the collected images, and directed edges E are weighted by
some distance function d(oi, oj). The distance function can be determined based on what we
value most during navigation such as safety or navigation efficiency.

During navigation, we present the agent with a query represented as an RGBD goal
image og. The agent first localizes itself on the graph based on its current observation oc,
and plans a path to reach og. From the planned path, the agent picks a subgoal observation
osg and moves towards it using its controller. After executing the control command, the
agent relocalizes itself on the graph using its latest observation, and updates the graph.
These processes are repeated until the robot reaches og.

3.2. Components of the Proposed Method
3.2.1. Controller, Reachability, and Waypoint Prediction Model

We train a CNN f : I×I 7→ (0,1)×SE(2) that takes two images and jointly predicts the
probability of reachability r̂ from one image to the other, and the relative transformation in



source RGBD observation

target RGBD observation

Figure 3.1. Illustration of our model. Our model takes two RGBD images and predicts a
reachability score r̂ and a waypoint ŵ = [d̂x, d̂y, d̂θ].

SE(2) that relates them (i.e., a waypoint ŵ = [d̂x, d̂y, d̂θ]) as illustrated in Figure 3.1. For
practicality, we only consider ŵ to be valid for reachable image pairs. We train our model
by minimizing the binary cross-entropy loss for reachability, L2 loss for the relative position,
and L1 loss for the relative rotation. Concretely, the loss functions are as follow 1:

Lr(r, r̂) = −(r log(r̂) + (1− r) log(1− r̂)),

Lp(dx, dy, d̂x, d̂y) = ||[dx, dy]− [d̂x,d̂y]||2,

Lθ(dθ, d̂θ) = | sin(dθ)− sin(d̂θ)|+ | cos(dθ)− cos(d̂θ)|,

Ltotal(r, dx, dy, dθ, r̂, d̂x, d̂y, d̂θ) = Lr(r, r̂) + αLp(dx, dy, d̂x, d̂y) + βLθ(dθ, d̂θ), (3.2.1)

where Lr(r, r̂) is the reachability loss, Lp(dx, dy, d̂x, d̂y) is the position loss, Lθ(dθ, d̂θ) is the
rotation loss. Here, the variables r, dx, dy, dθ are the ground truth labels for the reachability
and the relative waypoint predictions, whereas α and β are hyperparameters. After training,
we also calibrate the reachability estimator using Platt scaling [42] on a validation dataset.

In this work, we use a position-based feedback controller to execute predicted waypoints.
Similar to Meng et al. [74], we define node-to-node reachability to be controller-dependent.
In our case, we assume a control strategy based on motion primitives, namely straight-line
motion and in-place rotation, which imposes simple geometric constraints. Specifically, two
nodes should be connected when:

(1) The visual overlap ratio between the two images, p, is larger than Pmin, computed
based on depth data;

1. Note that Lr(r, r̂) may not be numerically stable. Fortunately, standard machine learning libraries
such as PyTorch [83] normally have the numerically stable implementation of the loss function.
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(2) The ratio of the shortest feasible path length over Euclidean distance between the
poses, rd, is larger than Rmin, to filter out obstacle-laden paths;

(3) The target pose is visible in the initial image, so that our model can visually determine
reachability;

(4) The Euclidean distance to the target is less than Emax, and the relative yaw is less
than Θmax.

source

target

source target

source target sourcetarget

source

target

not reachablereachable
fie

ld 
of 
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w

Figure 3.2. Illustration of reachable and non-reachable situations.

During training, we define oj to be reachable only if it is in front of oi. Yet, when navigating,
the robot can move from oj to oi by following the predicted waypoint w in reverse. Figure 3.2
illustrates various reachable and non-reachable situations during data collection.

3.2.2. Graph Building, Planning, and Localization

Instead of using all images in T , we build the graph G incrementally, as seen in Algo-
rithm 1. We initialize G as a randomly drawn node o ∈ T . Then, in each iteration, we
sample a node orand ∈ T , and use our model to check if it can be merged with or connected
to existing graph vertices, and if so, remove it from T . Concretely, let the geodesic distance
of a predicted waypoint be d(ŵ) = || log T (ŵ)||F [6], where T (·) converts a waypoint into
its homogeneous transformation matrix representation in SE(2) 2, and || · ||F computes the

2. A matrix in the form of
[

R t
01×2 1

]
, where R ∈ R2×2 denotes the rotation matrix, and t ∈ R2 denotes

the translation vector.
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Algorithm 1 Graph Building
Input: trajectory data T , reachability score threshold ε, Euclidean distance threshold δe,
yaw threshold δθ, and merging threshold Dmerge

Output: graph G = (V,E)
Initialize: V = {o ∈ T }, E = ∅
while there are still connectable nodes in T do
Sample random node orand ∈ T
for all oj ∈ V do

(r̂f , ŵf )← f(orand, oj)
(r̂b, ŵb)← f(oj, orand)
if r̂f > r̂b and (r̂f , ŵf ) satisfy connectivity test then
Connect orand to oj with d(ŵf ) as the weight

end if
if r̂b > r̂f and (r̂b, ŵb) satisfy connectivity test then
Connect oj to orand with d(ŵb) as the weight

end if
end for
if orand is connectable or mergeable then
remove orand from T

end if
end while
Return: G

Frobenius norm. The node orand is mergeable to an existing graph vertex if d(ŵ) < Dmerge

in either direction. To determine node-to-node connectivity, we check if reachability r̂ > ε,
the Euclidean distance e = ||[d̂x, d̂y]||2 < δe, and the relative yaw angle d̂θ < δθ. If orand is
deemed connectable to graph nodes, each new edge is assigned d(ŵ) as weight.

Once the graph is built, we use Dijkstra’s algorithm [24] to find a path to a given goal
vertex, and select the first node in the path as subgoal osg. To localize the agent’s current
observation oc on the graph, we use our model to compare pairwise geodesic distances between
oc and all nodes in the graph, and identify the closest vertex. We also require the reachability
score between oc and the closest node to be larger than ε`, and the geodesic distance between
them to be smaller than δ`. To save computational cost, we first attempt to localize locally
by considering only directly adjacent vertices from nodes within the last planned path, and
then reverting to global localization among all graph nodes if it fails.

3.2.3. Edge Traversal and Graph Updates

To traverse an edge, once we identify osg from planning, we predict its relative waypoint
from oc, and use the controller to move towards it. Then, we update oc to be the latest
observation, and check if edge traversal was successful: either if oc localizes to osg, or, if our
model’s predicted waypoint distance to osg is below Dmin.
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connectivity

(a) Connectivity update

update
connectivity

+ 
edge

(b) Connectivity and edge up-
dates

Figure 3.3. Illustration of graph update as the agent moves from oi to oj. If the agent
diverges from the target, we reduce connectivity between oi and oj probabilistically, then
prune the edge if the updated reachability score falls below Rp. Otherwise, we update both
the connectivity and the edge weight based on the predicted geodesic distance d̂cj.

Since we built the graph using a predictive model, it is important to address the possibil-
ity of spurious edges. We thus propose two types of continuous graph refinements, towards
lifelong navigation. Firstly, as seen in Figure 3.3, when traversing an edge, we can update
both its connectivity and weight based on the success of traversal, z, modeled as a Bernoulli
random variable. Letting the prior p(x) be the predicted reachability score, and given an
empirically-tuned likelihood parameter p(z|x) of the edge’s existence, we can compute the
posterior p(x|z) using a Bayesian update. When the agent fails to reach a subgoal, it de-
creases the edge’s reachability score, and further prunes the edge if reachability falls below
Rp. As for edge weights, we model each prior dij as a Gaussian around its geodesic distance
d(ŵ) with a common variance derived empirically from our model’s distance predictions for
a validation dataset. Only upon success in traversing an edge from our current image oc to
oj, we treat the predicted geodesic distance d̂cj as a measurement, and compute the weight
posterior akin to a Kalman filter update step [52].

As a second type of lifelong graph update, we add new nodes to the graph either when
they are novel or when we cannot find a path to the goal. Concretely, an observation oc is
considered novel when we fail to localize it on the graph. When connecting a novel node to
existing vertices, we loosen the graph building criteria, especially to accommodate adding
locations around sharp turns. On the other hand, when we are unable to find a path during
navigation, we iteratively sample from remaining trajectory nodes T and tentatively add
them to the graph G, until a path is found. We then keep only new nodes in G that are
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Figure 3.4. Illustration of node resampling. When we suddenly cannot find a path to reach
the goal, we resample new nodes from the remaining ones in T and add them to the graph
until we are able to find a path to reach the goal. We then keep the nodes that are within
the path to reach the goal in the graph.

along the found path, while returning other tentative nodes back into T . This process is
illustrated in Figure 3.4.

3.2.4. Real World Finetuning

A key feature of our method is the ability to finetune our model in the target domain, by
using the same trajectories collected to build the graph. As an added requirement for real-
world finetuning, the collected trajectories must have associated pose odometry to substitute
for ground-truth pose data. Thankfully, odometry is readily available from commodity robot
sensors such as inertial measurement units or wheel encoders. Although other methods like
ViNG can also finetune on target-domain trajectories, our model can improve performance
efficiently using a small finetuning dataset, as it has already been well-trained to navigate
within a diverse range of simulated environments.

For real-world trajectories, we determine node-to-node reachability using the same goal-
visibility and maximum-waypoint criteria as when labeling data in simulation. Additionally,
since image-to-image visual overlap and shortest feasible path length are not readily obtain-
able in the real-world, as a proxy criterion we take an observation pair (oi, oj) ∈ T where
j > i and check if they are separated by at most H time steps during trajectory collection.
Note that constraining reachable waypoints to be temporally close is also favourable because
using odometry as a supervisory signal for predicting waypoints can be noisy due to the
long-term drift. Since reachable waypoints must be temporally close, the long-term pose
drift should be minimal.
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Chapter 4

Experiments

We now present an empirical assessment of the proposed method. First, we start by
laying out the experimental setup in Chapter 4.1. We then compare navigation performance
in simulation against baseline methods in Chapter 4.2. We also evaluate how the navigation
performance changes as we perform graph updates over time in Chapter 4.3. Finally, we
demonstrate the ability of the proposed method to navigate in the real-world setup using
only a small amount of finetuning dataset in Chapter 4.4.

4.1. Setup
We use the Gibson [116] simulator to quantify navigation performance in simulation, and

10 of the interactive environments from iGibson [98] to generate training datasets. When
generating our dataset, particularly when computing image overlap, we ignore pixels that
belong to background classes (e.g., floors, walls, ceilings). To generate a dataset for our
model, we set Pmin = 2e−4, Rmin = 1.1, Emax = 1.0m, and Θmax = 0.79 rad. For the SPTM
dataset, we let the agent move around following a random policy and let l = 15 and m = 5.
For the ViNG dataset, we use dmax = 15, and let the agent explore the environment by
moving in forward zig-zag motion, similar to the time-correlated policy in Kahn et al. [51].
We collect 288,000 data points to train our model, and 500,000 data points for SPTM and
ViNG, where the size of each RGBD observation is 96 × 72 pixels. All models are based
on VGG16 [99] with different output layers (see Appendix A). We train all of the networks
with AdamW optimizer [67]. We use the LoCoBot [1] in both simulated and real-world
experiments, and we teleoperate it in each test map to collect trajectories for graph building.

4.1.1. Evaluation Settings

We evaluate navigation performance to reflect real-world usage: the agent should be able
to navigate between any image pairs from the graph, and should not just repeat trajectories
based on how the images were collected. We pick several goal images from different locations



that cover major locations in each map, and generate random test episodes. In simulation,
we consider navigation as successful if the position and yaw errors from the goal pose are
less than 0.72m and 0.4 rad, respectively. We consider an episode to be a failure if the agent
collides more than 20 times, and if it requires more than K simulation steps to reach the
goal. For the real-world experiments, an episode is deemed successful if it finishes within 10
minutes, does not collide with the environment, and we verify that its final observation has
sufficient visual overlap with the goal image.

During operations, if the agent is unable to localize itself or find a path, we rotate it in-
place at 30◦ increments and take new observations until it recovers. To ensure fair comparison
with other methods, we let SPTM to use the same controller as ours and ViNG, by coupling
a position-based feedback controller with a pose estimator.

(a) Barahona (b) Bellemeade (c) Akiak (d) Caruthers

(e) Barahona Traj. (f) Bellemeade Traj. (g) Akiak Traj. (h) Caruthers Traj.

Figure 4.1. Top-down view of the test environments with the corresponding agent’s tra-
jectory during trajectory collection phase (not-to-scale).
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4.2. Navigation Performance in Simulation
In this section, we compare the navigation performance of our method against SPTM

and ViNG in the simulated environments. In this set of experiments, note that we do not
perform graph updates with our method, which is evaluated separately in Chapter 4.3.

We evaluate on four test environments that are different from the training environments:
Barahona (57m2), Bellemeade (70m2), Akiak (124m2), and Caruthers (129m2). For the
graph building phase, we teleoperate the robot to explore roughly three to four loops around
each map, resulting in 985, 1,685, 1,609, 2,243 images for Barahona, Bellemeade, Akiak, and
Caruthers, respectively. Figure 4.1 visualizes the top-down view of each test environment
with its corresponding trajectory. We pick 10 goal images spanning major locations in each
map and generate 500 random test episodes. Given diverse map sizes, we set K = 1,000
for Barahona and Bellemeade, and K = 2,000 for Akiak and Caruthers. Since our graph
building method is stochastic, we evaluate our method three times so we can report the mean
and the standard deviation. We summarize the parameters for each method in Table 4.1.

As seen in Figure 4.2, our method consistently yields higher navigation success rates in all
environments, especially after model finetuning. Additionally, our graphs have a significantly
fewer number of nodes and edges, thus keeping planning costs practical when scaling to large
environments. Therefore, compared to the baselines that use entire trajectory images to build
graphs, our method produces demonstrably superior performance and efficiency.
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Figure 4.2. Comparison of navigation success rates and graph sizes among topo-
logical visual navigation methods in various test environments. To see visual results
of our experiments, including real-world deployment videos, see our project page:
https://montrealrobotics.ca/ltvn/.

Figure 4.3 and 4.4 qualitatively compare sample graphs built using different methods.
We see that our graphs have the fewest number of vertices, yet still maintain proper map
coverage. Visually, our graphs also have few false positive edges through walls, and we shall
later demonstrate how our graph updates can prune these in Chapter 4.3.

In comparison, the SPTM graphs also have few false positive edges. However, because
edges are unweighted in SPTM, anecdotally its agent often chose spurious edges during
navigation. With ViNG, since it uses the discretized temporal distance to weigh edges, its
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Table 4.1. Navigation parameters for each method.

Method Parameter Value Description

SPTM

sshortcut 0.9 Score threshold for determining shortcut connections.

slocal 0.9 Score threshold during localization.

sreach 0.95 Score threshold when determining subgoal.

k 5 The number of nearest neighbors to be considered dur-
ing localization.

∆Tl 3 Minimum temporal distance between node to create
shortcut connections.

∆Tw 6 Number of nearest neighbors to consider when making
a prediction with the retrieval model.

Hmin 1 Minimum threshold for the subgoal search window.

Hmax 7 Maximum threshold for the subgoal search window.

ViNG
dmax 15 The maximum number of steps between two images that

the model can predict.

δsparsify 3 Minimum temporal distance for graph pruning.

Ours

ε 0.95 Reachability score threshold for graph building.

δe 0.35m Minimum Euclidean distance to determine connectivity
during graph building.

δθ 0.4 rad Minimum relative yaw angle to determine connectivity
during graph building.

Dmerge 0.15 Maximum geodesic distance to the existing node to be
considered mergeable during graph building.

ε` 0.9 Reachability score threshold for localization.

δ` 0.4 Geodesic distance threshold for localization.

graph has many false positive edges with large weights. This becomes problematic when the
goal is far away from the robot, as the planned path will likely include some spurious edges.
This also leads to an unwanted behavior where the agent always outputs a path no matter
how unlikely it is to reach the goal.
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(a) SPTM Barahona (b) SPTM Bellemeade (c) SPTM Akiak (d) SPTM Caruthers

(e) ViNG Barahona (f) ViNG Bellemeade (g) ViNG Akiak (h) ViNG Caruthers

(i) Ours Barahona (j) Ours Bellemeade (k) Ours Akiak (l) Ours Caruthers

Figure 4.3. Comparison of the graphs built without any finetuning and graph updates.
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(a) SPTM Barahona (b) SPTM Bellemeade (c) SPTM Akiak (d) SPTM Caruthers

(e) ViNG Barahona (f) ViNG Bellemeade (g) ViNG Akiak (h) ViNG Caruthers

(i) Ours Barahona (j) Ours Bellemeade (k) Ours Akiak (l) Ours Caruthers

Figure 4.4. Comparison of the graphs built after model finetuning.
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Figure 4.5. Changes in success rate, number of nodes, and number of edges as the agent
performed more queries and updated its graph in each test environment.

4.3. Lifelong Improvement
We evaluate the proposed graph update method to see how navigation performance is

affected as the agent performs more queries. We start these experiments using graphs built
with our finetuned models, and ask the agent to execute random queries while performing
continuous graph updates. Table 4.2 summarizes the graph update parameters. After every
100 queries, we re-evaluate the navigation performance on the same static set of test episodes
used in Chapter 4.2. We repeat this experiment three times so we can report the mean and
the standard deviation.

Table 4.2. Graph update parameters.

Parameter Value Description

ε 0.5 Reachability score threshold for adding new nodes.

δe 0.35m Minimum Euclidean distance to determine node connectivity.

δθ 0.4 rad Minimum relative yaw angle to determine node connectivity.

Dmerge 0.0 Maximum geodesic distance to the existing node to be considered
mergeable when adding new nodes.

Dmin 0.65 Maximum geodesic distance when checking the success of edge
traversal.

p(z = 1|x = 1) 0.55 Measurement model for Bayes update.

Rp 0.5 Reachability score threshold for edge pruning.

σ 0.015 Variance of the measurement.

As seen in Figure 4.5, the success rate generally improves as we perform more queries,
with notable gains initially, while the number of nodes and edges in the graphs do not
substantially grow. We also see an initial decrease in the number of edges, suggesting that
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our graph updates successfully pruned spurious edges causing initial navigation failures, then
later added useful new nodes. We can see examples where the agent successfully completed
initially-failed queries after performing graph updates in Figure 4.6. Qualitatively, we can see
fewer spurious edges when comparing sample graphs before and after updates in Figure 4.7.

(a) Barahona (before) (b) Barahona (after) (c) Bellemeade (before) (d) Bellemeade (after)

(e) Akiak (before) (f) Akiak (after) (g) Caruthers (before) (h) Caruthers (after)

Figure 4.6. Comparison of navigation episodes in various simulated environments before
and after 700 queries graph updates. Here, the blue and green arrows indicate the initial and
goal pose of the agent, respectively. We can see a few instances where the agent initially failed
to complete a query, and successfully completed the same query after the graph updates. To
see the images seen by the agent during these episodes, see Figure A.2 in Appendix A.2.

We observe that sometimes the success rate decreased after a batch of graph updates.
This is likely caused by spurious edges when adding new graph nodes near each 100th query,
before we re-evaluate navigation performance. Nevertheless, such spurious edges are pruned
in later updates, thus leading to increasing performance trends during lifelong navigation.
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(a) Barahona-100 (b) Bellemeade-100 (c) Akiak-100 (d) Caruthers-100

(e) Barahona-400 (f) Bellemeade-400 (g) Akiak-400 (h) Caruthers-400

(i) Barahona-700 (j) Bellemeade-700 (k) Akiak-700 (l) Caruthers-700

Figure 4.7. Comparison of the updated graphs after 100, 400, and 700 queries.
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4.4. Real World Experiments
We evaluate the performance of our method in two real-world environments: a studio

apartment and a medium-sized university laboratory. After teleoperating the robot in three
to four loops around each space to collect trajectory data, we pick five goal images, and gen-
erate 20 test episodes. We use the iterative LQR [65] implementation from the PyRobot [79]
library for our controller. In Table 4.3, we report navigation success rate before and after
we perform graph updates with 30 queries.

Table 4.3. Navigation success rate before and after 30 queries graph updates in real-world
environments.

Environments Before After

Apartment 4/20 13/20

University Laboratory 4/20 14/20

These experiments confirm that our model performs well without needing large amounts
of real-world data, especially when combined with our proposed graph update method. Our
graph update method enhances the navigation performance with more than 3× increase
in success rate in both environments. Figure 4.8 depicts successful navigation tasks across
multiple twists and turns within both apartment and lab environments.
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goal

(a) Apartment

goal

(b) University laboratory

Figure 4.8. Samples of sequence of images seen by the robot in both apartment and
lab environments when navigating from top-left to the bottom-right image. To see more
real-world deployment videos, see our project page: https://montrealrobotics.ca/ltvn/.
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Chapter 5

Conclusion

We proposed a new image-based graph construction method that applies a sampling-
based map building approach. The resulting topological visual navigation system not only
produced sparser graphs compared to baseline methods, it also led to higher navigation per-
formance. This system combines classical graph-based navigation with neural-based learning
to enable the agent to update the graph continuously during navigation. Our experiments
showed that these graph updates added useful new nodes and removed spurious edges, thus
increasing performance throughout lifelong navigation. We also demonstrated a training
regime using purely simulated data, combined with optional finetuning using small amounts
of data from a target domain. Our real-world experiments showed that such deployment and
finetuning resulted in significant gains in navigation performance.

While our graph update methods demonstrated promising results, its efficacy in only
adding useful graph information can be further improved, especially when sampling new
nodes to add when path planning fails. Furthermore, future work on learning-based topolog-
ical visual navigation can also benefit from more theoretical analysis based on the capability
of the learned model. In addition, our model finetuning method relies on expertly piloted tra-
jectories with added odometry information. To improve its practicality, future work should
consider methods to finetune the model using unordered set of images that can come from
sources other than the robot (e.g., mobile phone cameras). Finally, in this work we consider
the world to be static; extending to non-stationary environments remains a fruitful challenge.
Future work should consider methods that can detect changes in the topology as the agent
navigates the environment.
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Appendix A

Additional Experimental Data

A.1. Network Architectures
Here, we visualize the neural networks architectures that we use to train our model and

the baseline methods. All of the models used in our experiments are based on the VGG16
architecture [99]. Thus, the main difference in each model is the output layer. Figure A.1
illustrates the architecture for each model.
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Figure A.1. Neural network architectures that we use in our experiments.



A.2. Comparison of Images Seen During Navigation Be-
fore and After Graph Updates in Simulation

Previously, we show the visualization of top-down trajectories of the agent navigat-
ing multiple episodes shown in Figure 4.6. To better understand the behavior of the
agent when navigating these episodes, we also show the images as seen by the agent
in Figure A.2. These are however best illustrated in the videos on our project page:
https://montrealrobotics.ca/ltvn/.

(a) Barahona (before) - success (b) Barahona’s goal (c) Barahona (after) - success

(d) Bellemeade (before) - fail (e) Bellemeade’s goal (f) Bellemeade (after) - success

(g) Akiak (before) - fail (h) Akiak’s goal (i) Akiak (after) - success

(j) Caruthers (before) - fail (k) Caruthers’s goal (l) Caruthers (after) - success

Figure A.2. Comparison of the image sequences seen during navigation before and after
graph updates.
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A.3. Navigation Images in Real-World Environments
We present additional real-world navigation examples after the graph updates in Fig-

ure A.3 and A.4. These are however best illustrated in the videos on our project page:
https://montrealrobotics.ca/ltvn/.

goal

(a) Episode 1

goal

(b) Episode 2

Figure A.3. Examples of image sequences seen by the robot (from top-left to bottom-right)
during successful navigation episodes in the apartment environment.
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goal

(a) Episode 1

goal

(b) Episode 2

Figure A.4. Examples of image sequences seen by the robot (from top-left to bottom-right)
during successful navigation episodes in the university laboratory environment.
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