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Résumé

Le traitement médical de choix pour la maladie rénale chronique est la transplantation d’or-
gane. Cependant, plusieurs patients ne sont en mesure que de trouver un donneur direct avec
lequel ils ne sont pas compatibles. Les Programmes de Don Croisé de Reins peuvent aider
plusieurs paires donneur-patient incompatibles à échanger leur donneur entre elles. Typi-
quement, l’objectif principal d’un tel programme est de maximiser le nombre total de trans-
plantations qui seront effectuées grâce à un plan d’échange. Plusieurs solutions optimales
peuvent co-exister et comme la plupart correspondent à différents ensembles de patients
obtenant un donneur compatible, il devient important de considérer quels individus seront
sélectionnés. Fréquemment, ce problème n’est pas abordé et la première solution fournie par
un solveur est choisie comme plan d’échange. Ceci peut mener à des parti-pris en faveur
ou défaveur de certains patients, ce qui n’est pas considéré une approche juste. De plus, il
est de la responsabilité des informaticiens de s’assurer du contrôle des résultats fournis par
leurs algorithmes. Pour répondre à ce besoin, nous explorons l’emploi de multiples solutions
optimales ainsi que la manière dont il est possible de sélectionner un plan d’échange parmi
celles-ci. Nous proposons l’emploi de politiques aléatoires pour la sélection de solutions op-
timales suite à leur enumération. Cette tâche est accomplie grâce à la programmation en
nombres entiers et à la programmation par contraintes. Nous introduisons aussi un nouveau
concept intitulé équité individuelle. Ceci a pour but de trouver une politique juste pouvant
être utilisée en collaboration avec les solutions énumerées. La mise à disposition de plu-
sieurs métriques fait partie intégrante de la méthode. En faisant usage de la génération de
colonnes en combinaison au métrique L1, nous parvenons à appliquer la méthode à de plus
larges graphes. Lors de l’évaluation de l’équité individuelle, nous analysons de façon systé-
matique d’autres schémas d’équité tels que le principle d’Aristote, la justice Rawlsienne, le
principe d’équité de Nash et les valeurs de Shapley. Nous étudions leur description mathé-
matiques ainsi que leurs avantages et désavantages. Finalement, nous soulignons le besoin de
considérer de multiples solutions, incluant des solutions non optimales en ce qui concerne le
nombre de transplantations d’un plan d’échange. Pour la sélection d’une politique équitable
ayant comme domaine un tel ensemble de solutions, nous notons l’importance de trouver un
équilibre entre les mesures d’utilité et d’équité d’une solution. Nous utilisons le Programme
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de Bien-être Social de Nash afin de satisfaire à un tel objectif. Nous proposons aussi une
méthodologie de décomposition qui permet d’étendre le système sous-jacent et de faciliter
l’énumeration de solutions.

Mots clés: Programmes de Don Croisé de Reins; Équité; Programmation en nombres
entiers
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Abstract

The preferred treatment for chronic kidney disease is transplantation. However, many pa-
tients can only find direct donors that are not fully compatible with them. Kidney Exchange
Programs (KEPs) can help these patients by swapping the donors of multiple patient-donor
pairs in order to accommodate them. Usually, the objective is to maximize the total number
of transplants that can be realized as part of an exchange plan. Many optimal solutions can
co-exist and since a large part of them features different subsets of patients that obtain a
compatible donor, the question of who is selected becomes relevant. Often, this problem is
not even addressed and the first solution returned by a solver is chosen as the exchange plan
to be performed. This can lead to bias against some patients and thus is not considered
a fair approach. Moreover, it is of the responsibility of computer scientists to have control
of the output of the algorithms they design. To resolve this issue, we explore the use of
multiple optimal solutions and how to pick an exchange plan among them. We propose the
use of randomized policies for selecting an optimal solution, first by enumerating them. This
task is achieved through both integer programming and constraint programming methods.
We also introduce a new concept called individual fairness in a bid to find a fair policy
over the enumerated solutions by making use of multiple metrics. We scale the method to
larger instances by adding column generation as part of the enumeration with the L1 metric.
When evaluating individual fairness, we systematically review other fairness schemes such as
Aristotle’s principle, Rawlsian justice, Nash’s principle of fairness, and Shapley values. We
analyze their mathematical descriptions and their pros and cons. Finally, we motivate the
need to consider solutions that are not optimal in the number of transplants. For the selec-
tion of a good policy over this larger set of solutions, we motivate the need to balance utility
and our individual fairness measure. We use the Nash Social Welfare Program in order to
achieve this, and we also propose a decomposition methodology to extend the machinery for
an efficient enumeration of solutions.

Keywords: Kidney Exchange Programs; Fairness; Integer programming

7





Contents

Résumé . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

List of tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

List of figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Notation and abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Kidney Exchange Program. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Structure of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Chapter 1. Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.1. Mathematical formulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.2. Hierarchical optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.3. Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.3.1. INESC TEC / PrefLib (Saidman Generator) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
1.3.2. UNOS dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.4. Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Chapter 2. Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.1. Multiple solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2. Enumerating optimal solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.2.1. IP enumeration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.2.2. CP enumeration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.2.3. Comparison of the enumeration methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

9



2.3. Solution selection policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Chapter 3. Fairness in KEPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.1. Individual fairness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2. Various metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3. Evaluating the various metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.4. Comparison of IF and GF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.5. Scaling methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Chapter 4. Price of fairness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.1. Aristotle’s equity principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2. Rawls and the Veil of Ignorance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.3. Nash standard of comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.4. Shapley values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.5. Discussion of fairness schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.6. Comparison between fair procedure and fair outcome. . . . . . . . . . . . . . . . . . . . . . . . . 55

4.7. Limitations of the utilitarian approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Chapter 5. The Nash Social Welfare Program (NSWP). . . . . . . . . . . . . . . . . . . 59

5.1. Competing objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.2. The Social Welfare Program (SWP). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.3. The Nash Social Welfare Program. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.4. Algorithmic enhancement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.5. Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.5.1. Hard-to-match patients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.5.2. NSWP solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Chapter 6. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.1. Extended literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.2. Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

10



References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Appendix A. Optimal L1 distribution for Figure 3.2 . . . . . . . . . . . . . . . . . . . . . . 85

11





List of tables

1.1 Parameters used for the experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.1 Average number of solutions per graph size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.1 Comparing group fairness (GF) with individual fairness (IF) over the INESC TEC
dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.1 Efficiency of the NSWP compared to Utilitarian approach. . . . . . . . . . . . . . . . . . . . . . . 70

13





List of figures

0.1 Example of a KEP graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.1 ABO model: an arc indicates donation compatibility. blood type O is universal
donor and blood type AB is universal recipient. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.1 Comparison of enumeration methods for optimal KEP exchange plans. . . . . . . . . . . 34
2.2 Measuring the effect of relaxing the optimality constraint . . . . . . . . . . . . . . . . . . . . . . . 36

3.1 Comparison of the optimal distributions corresponding to our metrics and first-
best . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2 Worst-case scenario for uniform distribution when compared to Lp-norm . . . . . . . . 41
3.3 Evaluating the L1-optimal distribution over the L1 and L2 metrics against First-

best . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.4 Average time to solve (CF) using column generation as a function of graph sizes . 45

4.1 Many maximal exchanges involving patient A, but few involving patient B . . . . . . 47
4.2 Worst-case scenario for Rawlsian fairness. Kn is a clique of size n . . . . . . . . . . . . . . . 51
4.3 Sequential Battle-of-the Sexes Game . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.4 Ultimatum Game . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.5 Sequential Battle-of-the Sexes Game with Fair Procedure . . . . . . . . . . . . . . . . . . . . . . . 56

5.1 Illustrating Weakness 3 of the SWP. The points in blue form the Pareto frontier. 61
5.2 Pareto front and the NSWP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.3 How often does a vertex appear in cycles?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.4 Average time to solve (PIF ) using column generation as a function of graph sizes 71

15





Notation and abbreviations

KEP Kidney Exchange Program

IP Integer programming

IF Individual fairness

GF Group fairness

CP Constraint programming

SOCP Second-ordre conic programming

MOOP Multi-objective optimization

SWP Social Welfare Program

NSWP Nash Social Welfare Program

P(X) Set of probability distributions over the set X

17



2X Power set of set X

18



Introduction

Kidney Exchange Program
Every year, chronic kidney disease plagues millions of people worldwide. Dialysis is an

effective treatment but can prove costly [1]. Kidney transplantation provides a more afford-
able alternative as well as enhancing the life quality of the patients and their life expectancy:
this is why transplantation is often preferred. However, many patients do not have a com-
patible donor. In most countries, a compatible donor eligible for direct transplantation can
either be a friend or a relative. The organ can also come from a compatible deceased donor;
patients are registered in a waiting list managing their transplant priority whenever a de-
ceased donor’s kidney becomes available. However, patients in these lists can often wait
years before a donor is presented with a compatible kidney, which would simply be inviable
as patient health deteriorates over time. Kidney Exchange Programs (KEPs) allow patients
that have an incompatible donor1 to “trade” or exchange (in a figurative sense) their donor’s
kidney with another person. This facilitates the search of an organ for patients suffering
from chronic kidney disease.

Explicitly, incompatible patient-donor pairs register in a KEP; these are implemented in
several countries, e.g. South Korea [2], United Kingdom [3], Canada [4] and The Netherlands
[5]. The system will try to swap each patient’s donor with another from the available pool in
order to form an exchange plan satisfactory to everyone involved, i.e. patients are matched
with a compatible donor. If this cannot be done for a certain incompatible patient-donor
pair, the pair is left untouched and considered again in the next KEP run. In other words,
a patient only relinquishes their donor if they manage to obtain a new donor in return. As
a simple example, we can consider two incompatible patient-donor pairs. If the patient of
pair A is compatible with the donor of pair B, and vice versa, we can perform an exchange
with these two pairs. Every donor in this exchange plan gives a kidney and every patient in
the exchange plan receives a kidney. We can also further extend the basic description of a
KEP by allowing chains starting with non-directed donors (NDDs), also known as altruistic

1This donor must be a friend or relative of the patient.



donors. These are donors that are not part of an incompatible patient-donor pair. Non-
directed donors can give to whoever is compatible, without necessitating the receipt of a
kidney from another pair or NDD; hence the term non-directed donor.

As we will see in the next chapter, a KEP instance motivates a mathematical optimization
formulation, namely an integer program (IP). We can then lift tools from this particular field
and find an optimal exchange plan. By optimal, we mean maximizing the patients’ benefits.
We must point out that we are referring to an exchange plan, therefore nothing is set in stone
and no actual medical operation has been performed at this point. Also, for ethical reasons,
the exchange of all kidneys and operation on each patient must be performed simultaneously
when dealing with cycles. The reason behind this remark is that each patient would only
be willing to let go of their incompatible donor if they can ensure receiving a compatible
donor in exchange. Also, issues might arise if a patient or donor drops out before the actual
medical procedure, thus invalidating part or the entirety of the exchange plan. An exchange
plan must simply be seen as a tool that helps doctors in finding compatible donors for their
patients, to the mutual benefit of other patients. When looking at Figure 0.1, it is possible

v1

v2 v3

v6

v5

v4

P = {v1, . . . , v5} N = {v6}

Fig. 0.1. Example of a KEP graph

to observe the key elements that form a KEP exchange plan. Vertices in the tuple (v1,v2,v3)
form a cycle, while the tuple (v6,v5,v4) forms a chain. The sizes of the cycle and the chain
are 3 and 2 respectively. In addition to the arcs forming the cycle (v1,v2,v3), it can be seen
that there are other arcs between the same set of vertices. For example, (v3,v2) is such an
arc. It is referred to as a back-arc. In other words, a back-arc is any arc between two vertices
of a cycle, that is not itself counted among the arcs of the cycle.

Contributions
Chapter 2 is based on the work of Farnadi et al. [6]. I contributed scientifically to this

article, specifically in the methodology development, computational implementation and in
the writing process. Chapter 4 is based on an article by Bertsimas et al. [7] and on the
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work of Lloyd Shapley [8]. My contribution consists of transposing the discussion related
to fairness schemes to KEPs. I analyze the benefits and tradeoffs of the various schemes
and from this discussion, I motivate the need to use the Nash Social Welfare Program [9].
Chapter 5 is based on the work of Charkhgarda et al. [9]. All the experiments were developed
by my own hand as well as the algorithmic enhancement to the basic Nash Social Welfare
Program.

Structure of this thesis
This thesis is structured in various chapters. Chapter 1 defines two important mathemat-

ical formulations of a KEP: the cycle formulation and the position-indexed edge formulation
[10]. It also surveys the datasets that are used over the course of the experiments of this
thesis and the experimental setup used to run them. In Chapter 2, the need to retrieve
multiple solutions is motivated, and two different approaches are introduced: enumeration
through integer programming and through constraint programming. The two approaches
are then evaluated in terms of their efficiency to enumerate solutions. Finally, we motivate
the need to have a good solution selection policy, i.e. a policy that is considered “fair” by
the participants in the KEP. Chapter 3 introduces the concept of individual fairness (IF)
[6]. Various metrics that can be used for this approach are described and evaluated exper-
imentally. The chapter also compares IF to group fairness and lays out a method to scale
the IF approach to larger graphs using column generation. Chapter 4 describes a useful
set of concepts when discussing fairness in KEPs. First, Price of Fairness (POF) helps the
reader to understand the tradeoff between a solution maximizing the number of transplants
and selecting a fair solution. Then, various fairness schemes are introduced to further the
discussion surrounding fairness in KEPs and ultimately to motivate the need of IF in the
first place. These fairness schemes are: Aristotle’s equity principle [7], Nash’s standard of
comparison [11], Rawlsian justice (or the Veil of Ignorance) [12], and Shapley values [8]. We
also explain the difference between a fair outcome and a fair procedure as it is relevant to the
introduction of distributions in the solution selection process of IF. Finally, the limitations
of the utilitarian approach are discussed and we consider an alternative that seeks to bal-
ance both the social utility and fairness, i.e. the Nash Social Welfare Program (NSWP) [9].
Chapter 5 details the NSWP and how it can be applied to KEPs. An algorithmic enhance-
ment similar to the column generation approach of Chapter 3 is provided, although in the
context of second-order conic programming (SOCP). Experiments detailing the efficiency of
the method, both in terms of the number of transplants that can be realized and the running
time, are listed. Chapter 6 discusses some weaknesses of the methods introduced in the
thesis and future improvements that can be realized. It also highlights interesting research
avenues that could expand the scope of the current literature on fairness in KEPs.
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Chapter 1

Preliminaries

1.1. Mathematical formulation
A KEP instance is a graph G = (V, A) where V = P ∪ N is the set of incompatible

patient-donor pairs P together with the non-directed donors N and where A is the set of
arcs between these vertices. There is an arc (i,j) from vertex i to vertex j if and only if the
donor of vertex i is compatible with the patient from vertex j. It can readily be seen that
no (i,j) ∈ A exists for j ∈ N , i.e. no altruistic donor can have an arc pointing to them.

The simplest way of formulating the instance mathematically with IP is to use the cycle
formulation. We first need to compute the set C of cycles or chains of G. We introduce a
binary variable xc ∈ {0,1} for each cycle (or chain) c ∈ C. We denote the weight (benefit)
of a cycle c by wc. As a remark, it can be observed that generally, wc = |c| for cycles and
wc = |c| − 1 for chains, i.e. the number of involved patients. Different coefficient weights
might correspond to utility values when receiving a kidney from a particular donor. We then
have the following IP [13, 14]:

max
∑
c∈C

wcxc

s.t.
∑

c∈C|v∈c

xc ≤ 1 ∀v ∈ V

xc ∈ {0,1} ∀c ∈ C.

(CF)

The first constraint ensures that each vertex is in at most 1 cycle or chain. We need this
constraint as performing an exchange c means that each donor’s kidney in c will be matched
with a patient, the one from the adjacent vertex in c. The constraint also ensures that a
donor only donates one kidney. In other words, selected cycles or chains must be disjoint.
We can modify the program (CF) by restricting the set V to P and eliminate NDDs. There
are other ways of formulating a KEP in mathematical form. One drawback that we can see



right away in the cycle and chain formulation is that its size can increase exponentially in
terms of |V |.

Dickerson et al. [10] introduce the position-indexed edge formulation (PIEF) for KEPs.
The main objective of this formulation is to tackle the exponentially large size that a KEP
instance can take when described using (CF). The authors present a polynomial-size de-
scription by cleverly getting rid of symmetries in the choice of cycles via the introduction of
graph “copies”. First, they define Gl = (V l,Al),∀l ∈ V to be the subgraph of G induced by
{i ∈ V : i ≥ l}. They also define

K(i,j,l) =


{1} i = 1
{2, . . . ,K − 1} i,j > l

{2, . . . ,K} j = l,

the set of positions k at which edge (i,j) ∈ A can be selected in the lth copy. The value K

is the limit to the length of chains or cycles and it is fixed beforehand. For the KEPs where
cycles or chains are uncapped, the value of K can bet set to |V |. The set Al can be thought as
the set of arcs in the lth copy of the graph. It consists of the set of arcs {(i,j) ∈ A : i,j ≥ l}.
Hence, the formulation looks like

max
∑
l∈V

∑
(i,j)∈Al

∑
k∈K(i,j,l)

wijx
l
ijk (PIEF)

s.t.
∑
l∈V

∑
j:(j,i)∈Al

∑
k∈K(j,i,l)

xl
jik ≤ 1 ∀i ∈ V (1.1.1)

∑
j:(j,i)∈Al∧
k∈K(j,i,l)

xl
jik =

∑
j:(i,j)∈Al∧

k+1∈K(i,j,l)

xl
ijk

∀l∈V
i∈{l+1,...,n}

k∈{1,...,K−1}
(1.1.2)

xl
ijk ∈ {0,1}

∀l∈V
(i,j)∈Al

k∈K(i,j,l)

The Constraint (1.1.1) ensures that all selected vertices can only appear once among all
the graph copies. It also ensures that it has at most one adjacent vertex, i.e. its donor
cannot donate more than one kidney or its patient cannot receive multiple kidneys. Finally,
this constraint also ensures that each vertex is selected in at most one position in a cycle
or chain. The Constraint (1.1.2) ensures that the patient of the incompatible patient-donor
pair i receives a kidney if and only if its donor gives their own away. Otherwise, the pair does
not participate in an exchange; it will be available for a future KEP run. The formulation is
polynomial because |K(i,j,l)| ≤ K ≤ n for all arcs (i,j) ∈ A and l ∈ V . We thus have O(n3)
variables (remark, n := |V |). One interesting property of PIEF is that it has a very good
LP relaxation when no chains are involved: it is equal to the LP relaxation for (CF) [10].
When chains are involved, the relaxation is not as tight and can even be arbitrarily bad.
Dickerson et al. [10] show that this is not the case experimentally, especially on real and
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generated data. Furthermore, the number of constraints is also polynomially bounded since
there are n inequality constraints and O(n3) equality constraints. PIEF can thus become
a more tractable alternative when the size of the instance graph becomes large. Over the
course of this thesis, both the cycle formulation and PIEF will be used. As a remark, it
must be noted that other formulations exist [13, 14, 15, 16]. We chose the cycle formulation
because it is simple and has good relaxation bounds. It is therefore the standard for small
graphs with limited cycle and chain length. As for the PIEF, it is the state-of-the-art in
KEPs and its use was warranted in this thesis.

1.2. Hierarchical optimization
Over the course of this thesis, whenever referring to hierarachical optimization, this will

consist in optimizing a KEP formulation such as (CF) or (PIEF) in an iterative way with
different objective functions, thus refining the set of solutions; see [17, 18]) for examples of
objectives used in European KEPs. Explicitly, a KEP formulation is solved with a sequence
of linear objectives (w1, . . . , wm). For the sake of simplicity, we suppose all of the objectives
must be maximized. After, solving for wi, a constraint of the form (wi)T x ≥ OPTi is added
to the model, where OPTi is the optimal value obtained after optimizing the ith objective
(i.e. lexicographic optimization). Some natural candidates for the sequence of objectives
are:

• Maximizing the number of transplants;
• Maximizing the number of cycles. This ensures that the selected cycles are small

and if a pair drops out of an exchange, it will minimize its impact on the rest of the
exchange plan;
• Maximizing the number of back-arcs. For example, if a pair drops out of a three-way

exchange, and if there were two back-arcs between the other two pairs, then they will
still be able to be matched together. Thus, by having more flexibility using back-arcs,
an exchange plan is more robust to pairs dropping out of the KEP pool. One can
look at Figure 0.1 for reference. If the edges {(v1,v2),(v2,v3),(v3,v1)} are selected as
part of the exchange plan, then the arc (v1,v3) is a back-arc.

1.3. Datasets
In this section, the reader can find a description of the datasets that are used in the

experimental results of this thesis. These datasets mimic real-world graph topology of KEPs
and have been widely used in the literature. One can now explore how these datasets are
generated to validate their use when analyzing the concept of fairness in KEPs, a notion
that will be introduced in Chapter 2.
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1.3.1. INESC TEC / PrefLib (Saidman Generator)

The Institute for Systems and Computer Engineering, Technology and Science (INESC
TEC)1 and PrefLib2 data is generated using the Saidman generator [19]. Based on the ABO
model (see Figure 1.1), every generated patient is coupled with one generated donor. There
are conditionally independent probability distributions of the patient-donor pair properties:

(1) blood types for the patient and donor are generated according to a predefined distri-
bution (ABO model);

(2) The sex of each patient and donor follows a predetermined probability distribution
based on the general population;

(3) The relationship between the patient and donor is either “spouse” or “other” and is
generated using a predetermined distribution;

(4) Patients were attributed a low, medium, or high Panel-Reactive Antibody (or PRA,
see definition below) level and a compatible positive cross-match probability with a
random donor (1 value per category). In the event of a couple with a female patient,
the positive cross-match probability is updated to 100− 0.75× (100− PRA).

O AB

A

B

Fig. 1.1. ABO model: an arc indicates donation compatibility. blood type O is universal
donor and blood type AB is universal recipient.

Definition 1.3.1. The PRA percentage corresponds to the chance of a patient having anti-
bodies that would reject a donor’s organ when that donor is drawn at random from the general
population.
Thus, having a low PRA value increases a patient chance of finding a match when compared
to an individual that has a very high PRA. The PRA is thus a value between 0 and 1 (0 and
100%). Many pairs are generated and those that have compatible blood types or a positive
cross-match are discarded. Amongst the incompatible patient-donor pairs that are left, the
compatibility arcs are determined according to the positive cross-match probability of each
1https://rdm.inesctec.pt/dataset/ii-2019-001
2https://www.preflib.org/data/MD/00001
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patient. All the values for the default generator (i.e. the one used for the INESC TEC data)
can be found on James Trimble’s GitHub page3 and in Saidman et al. [19].

Instances for the INESC TEC dataset were generated for various graph sizes, i.e. the
size |V |. No NDDs were provided as part of the graphs. Thus, all the experiments involving
this dataset do no make use of chains. The graph sizes in this dataset are: 20, 30, 40, 50, 60
and 70. In total, 50 instances per graph size are provided, for a total of 300 instances.

1.3.2. UNOS dataset

In Dickerson et al. [10], the authors use both real and synthetic data. The two real
datasets that are used are the UNOS (United Network for Organ Sharing) US-wide exchange
and the NLDKSS UK-wide exchange. The synthetic data is obtained from a generator seeded
with the real UNOS data. The code for the generator can be found on Dickerson’s GitHub
page4.

After inspecting the code, we can observe that there are multiple samplers available to
us. The one that is used by Dickerson et al. [10] is the RealSplitUNOSSAmpler. It takes
the set of all UNOS pairs and altruistic donors, and samples randomly (with replacement).
Although all match runs of the UNOS programs are used, it is possible to only use a subset
of them. We can thus generate graphs of the desired size that will conform to a distribution
induced by the UNOS data (a real dataset).

In this thesis, all experiments involving the UNOS dataset were done over instances of
sizes: 16, 32, 64, 128, 256, and 512 vertices. By having exponentially increasing sizes, it
will be possible to validate the scaling of experiments to larger instance sizes than for the
INESC TEC data, especially in Chapter 5. Each graph size has instances with no NDDs and
instances with varying amounts of NDDs (5,10 and 15% of the graph size). There are thirty
instances of size 16 and forty instances for the other graph sizes for a total of 230 instances.

1.4. Experimental setup
In all experiments realized as part of this thesis, the solvers used were Gurobi 9.0.1

(Chapters 2 and 3) and Mosek 9.2 (Chapter 5). The only exception is for Section 2.2.3,
where the constraint programming solver used was OscaR-CP 4.1.0 (with Scala 2.12.85)
combined with CPLEX 12.8 (relaxation of linear programs). Nodes from the Compute
Canada clusters6 (Cedar) were used to run the experiments. For each job, one CPU and one
thread were used. A time limit of one hour was set and 8 gigabytes of RAM was allocated

3https://jamestrimble.github.io/kidney-webapp/#/generator
4https://github.com/JohnDickerson/KidneyExchange/blob/master/src/edu/cmu/cs/dickerson/
kpd/structure/generator/UNOSGenerator.java
5https://www.scala-lang.org/
6https://www.computecanada.ca
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for each task. The detailed list of parameters used for each section can be found in Table 1.1.
It also contains the cycle and chain cap K used for each experiment. All the experiments

Section Dataset RAM Time Language Solver Cycle cap Chain cap
2.2.3 INESC TEC 8GB 1h Scala 2.12.8 Oscar-CP 4.1.0 3 3
2.3 INESC TEC 8GB 1h Python 3.7.4 Gurobi 9.0.1 3 3
3.3 INESC TEC 8GB 1h Python 3.7.4 Gurobi 9.0.1 3 3
3.4 INESC TEC 8GB 1h Python 3.7.4 Gurobi 9.0.1 3 3
3.5 INESC TEC 8GB 1h Python 3.7.4 Gurobi 9.0.1 3 3

5.5.1 UNOS 8GB 1h Julia 1.4.1 Mosek 9.2 3 0
5.5.2 UNOS 8GB 1h Julia 1.4.1 Mosek 9.2 3 3

Table 1.1. Parameters used for the experiments7

in Chapters 2 and 3 were programmed using Python 3.7.48, except for the Section 3.5, which
used Julia 1.4.19 combined with JuMP 0.21.810. Experiments in Chapter 5 also made use of
Julia and JuMP.

7The code for all the experiments can be found at https://github.com/stawaway/William-s-Master-Thesis.
8https://www.python.org
9https://www.julialang.org
10https://jump.dev
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Chapter 2

Methodology

In this chapter, we explore the need to strengthen our grasp on the choice of solution for (CF).
Using this newly gained control over the choice of solution, we aim to further our objective
of developing responsible algorithms that do not exhibit some undesirable properties such
as biases anchored to individuals’ characteristics. In Section 2.1, we motivate the need for
fairness in KEPs. Section 2.2 explores different mechanisms to enumerate solutions of a
KEP. Finally, in Section 2.3, we propose a solution selection policy that takes advantage of
having multiple solutions to promote fairness.

2.1. Multiple solutions
A key point to observe is that for a particular KEP instance, we can have multiple optimal

solutions [20]. García-Soriano and Bonchi [21] discuss this multiplicity for general matching
problems. These are all solutions that maximize the objective (cf. (CF)). At first, we will
consider the objective of maximizing the total number of transplants performed, as it is
usually the primary goal of KEPs to provide as many patients as possible with a new kidney
[17]. Later, alternative criteria will be introduced in the form of a “hierarchical” structure
of simpler objectives to maximize in a lexicographic way. A table of the various criteria that
are used in the European KEPs can be found in [17].

We first note that using any of the mathematical formulations of the previous Chapter,
we can have multiple exchange plans that correspond to the same set of patients receiving
a kidney. By looking at Figure 0.1, it can be seen that an exchange plan involving the
cycle (v1,v2,v3) includes the same patients as the cycle (v1,v3,v2). Under the assumption
that these same patients do not have a preference for their choice of donor, it can be seen
that all these exchanges are equivalent. This motivates the introduction of KEP-equivalent
exchange plans.
Definition 2.1.1. Two solutions (exchange plans) are called KEP-equivalent if the set of
patients that receive a kidney is the same under each solution.



Figure 0.1 shows that the exchange plan defined by the set {(v1,v2),(v2,v3),(v3,v1)} of
arcs contains the same patients as the exchange plan {(v1,v3), (v3,v2), (v2,v1)}. One can look
at the number of (optimal) exchange plans that contains a particular patient. Some patients
will be in a large number of those, while others can be in very few optimal exchange plans.
If one always picks the same solution, say the one with the lowest lexicographic ordering
(when looking at the solution vector), patients that are not in this exchange plan but who
might be in another one will never be chosen. We then have a problem: is this process fair?
It seems that it is not since some patients are prioritized over others in terms of their chance
of receiving a compatible kidney. Surely, the viability of a KEP will lie in its capacity of
maximizing the matching probability of every patient, if not, why participate in the first
place?

The natural way of tackling this issue is to account for multiple solutions of a KEP. By
having many candidate solutions to choose from, one increases the capability to add variance
in the choice of exchange plan and correct for the bias introduced by the optimization method
(the one finding a single solution). The reader can later see how having a set of solutions
lends itself to using distributions over that set as a way to draw an exchange plan randomly.
But now, to consider multiple solutions, one first needs a method to enumerate them. We
propose two basic approaches to doing so based on integer programming (IP) and constraint
programming (CP).

2.2. Enumerating optimal solutions
2.2.1. IP enumeration

Using the mathematical program (CF), we can enumerate further solutions by adding a
solution cut constraint and an optimality constraint. The first constraint has the form:∑

c∈C|xk
c =1

(1− xc) +
∑

c∈C|xk
c =0

xc ≥ 1 (2.2.1)

where xk is the k-th solution enumerated by the method. Essentially, the inequality forbids
xk from being computed again in the next iteration. The optimality constraint has the form:∑

c∈C
wcxc = OPT, (2.2.2)

where OPT is the optimal value of the initial IP. One first solves the problem in its basic
form to obtain the first solution x1. Then a cut is added for that solution and the entire
problem is resolved with the new cut. One obtains x2 and the procedure is repeated until
infeasibility is reached. This can be described by Algorithm 2.2.1. The main issue with
this approach is that we are only cutting one solution at each iteration. Unfortunately, the
enumeration of solutions for an IP problem is NP-hard [13].
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Algorithm 2.2.1. Enumeration using solution cuts

procedure enumIP(G, OPT ) ▷ G = (V,A), where V = P ∪N
sols ← [ ] ▷ initialize to empty array
while true do

x← SOLVEKEP1 (G, OPT ) ▷ returns null if no solution2

addCut(x, SOLVEKEP)3 ▷ add solution cut for x
if x = null then

break
end if
append(x, sols) ▷ append solution x to the list

end while
return sols

end procedure

2.2.2. CP enumeration

Another solution is to propose a mechanism based on constraint programming. Con-
straint programming only seeks to find a solution that satisfies a certain set of constraints.
Many solvers also exist for this particular framework. Before delving into it, we will intro-
duce a few basic concepts that are at the core of this approach. For the reader interested
in an extensive exploration of constraint programming and its applications, the Handbook of
Constraint Programming [22] can be a good introduction. Constraint programming takes a
slightly different route to enumerating the solutions. We must first model the KEP instance
as part of the CP formulation. The CP problem can be represented as a tuple (V, D, C),
where V is the set of variables, D the domain of the variables, and C the constraints. Each
constraint is defined over a subset of variables and determines the valid assignments. The
CP problem is then solved through search and propagation. The search consists of “fixing”
values to variables and propagation is done through the constraints that include those vari-
ables or a subset of them. A propagator for each constraint is used for that specific purpose.
Using these ideas, we can represent the CP constraints mathematically. To begin with and
for the sake of clarity, it is assumed that the limit to the size of cycles and chains is 3. In
fact, this is the limit adopted by several KEPs due to practical reasons [14, 23]. We use
X, an array of variables indexed by the vertices of V and the notation X[v] to mean the
successor of v in some path. Its domain is defined as {v} ∪ {u : (v,u) ∈ A}. In other words,
X[v] represents the patient to whom v’s donor gives their kidney. By X[v] = v, it is implied
that the donor in v does not donate under the exchange plan. The different constraints in

31



the model are:
X[v] = X[w] ⇐⇒ v = w ∀v,w ∈ V

(X[v] = v) ∨ (X[X[v]] = v) ∨ (X[X[X[v]]] = v) ∀v ∈ V∑
v∈V

111{w:X[w] ̸=w}(v) = OPT

(CP ∗)

The first constraint ensures that no vertex is chosen as the successor of two or more vertices
(i.e. we get disjoint cycles and chains). Also notice that the second constraint is for cycles of
maximal size 3, but we can extend the concept to any cycle size by adding more terms. Thus,
for size K, we can add constraints X[X[X[X[v]]]] up to X ◦ . . .

K times
◦ X[v] to the sequence

of logical disjunctions. The last constraint of the model ensures that we are enumerating
optimal solutions. We can always relax the optimality condition if we wish and this will be
explored later on.

Thus, Algorithm 2.2.2 describes the CP enumeration. At every node of the search tree,
the CP method selects the variable with the smallest number of values left in its domain.
Two branches are then created. On the first branch, the solver fixes the value of the variable
to the smallest possible, removes the other values and then triggers a call to the procedure
propagate. On the second branch, the smallest value of variable’s domain is instead removed
and the solver calls propagate. The bitset contains[v,u] is calculated for each arc (v,u): a
component is equal to 1 if and only if the corresponding cycle contains the arc (v,u). Another
binary mask is maintained in memory: validCycles. At every node of the search tree, it is
computed. For each cycle, a value of 1 indicates that the cycle can still be selected as part
of a solution without violating the constraints (CP ∗). The procedure updateCycle uses the
sets ∆v of elements removed from the domains to determine which solutions are infeasible.
It essentially eliminates the cycles that cannot be part of a solution after the ∆v’s have been
updated by a call to filterDomains. The ∆v’s only keep the removed values from a previous
call to propagate in the search tree (current node or upstream) The procedure filterDomains
uses the domains of the variables and the graph arcs to determine which vertices can be
ruled out of each variable’s domain. Finally, the method propagate combines both previous
procedures to find a solution. By employing the LP relaxation of the KEP formulation, it
is able to take advantage of a key feature of integer programming; by computing a bound
on the relaxation, the algorithm is able to have another indicator (apart from the directly
verifying the valid cycles) as to whether or not an integer solution exists at the current node
in the search tree. When solving the problem relaxedKEP, we set the variables xc to the
same values as the corresponding validCycles component.
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Algorithm 2.2.2. Enumeration using CP

procedure updateCycle(G, OPT ) ▷ G = (V,A), where V = P ∪N
for v ∈ V do

mask ← 0 ▷ binary mask with one component for each cycle c
for u ∈ ∆v \ {v} do ▷ ∆v is the set of removed values from the domain of X[v]

mask ← mask | contains[v,u] ▷ bitwise or4

end for
mask ← ¬ mask ▷ bitwise negation
validCycles ← validCycles & mask ▷ bitwise AND

end for
end procedure
procedure filterDomains

for v ∈ V do
for u ∈ dom(X[v]) \ {v} do ▷ dom(w) is the domain of the variable w

if validCycles & contains[v,u] = 0 then
dom(X[v])← dom(X[v]) \ {u} ▷ remove u since it is never in valid cycles

end if
end for

end for
end procedure
procedure propagate

udpateCycles()
if validCycles = 0 then

return Backtrack ▷ backtrack since there is no valid cycle under the current
assignment

end if
UB ← relaxedKEP() ▷ LP relaxation of (CF)
if UB < OPT then

return Backtrack ▷ the desired integer solution will never be found
end if
filterDomains()

end procedure

2.2.3. Comparison of the enumeration methods

In order to compare the IP and CP approaches for enumeration, we can look at how many
instances they are able to solve; in other words, when can we fully enumerate all solutions
with each method? We will use the following enumeration methods for our comparison:

• IP-lazy-cut
• CP-standard
• CP-specialized
• CP-greedy
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IP-lazy-cut will refer to the IP enumeration of Algorithm 2.2.1. This is referred to as lazy
cut because we generate the solution cuts using the lazy cut function of Gurobi. CP-standard
corresponds to giving CP ∗ to the solver. CP-specialized will refer to Algorithm 2.2.2. We
want to see if this propagator performs better than the general propagator. Finally, CP-
greedy simply uses CP to find a greedy cover of the vertices.
Definition 2.2.3. A set of solutions of a KEP is a greedy cover if each individual solution
includes at least one vertex that is not present in the other solutions of that set.

With this in mind, when trying to solve instances of various sizes (indexed by the number
of vertices in each graph), we obtain Figure 2.1. The INESC TEC dataset was used [19].
By inspecting Figure 2.1, we conclude that CP methods seem to better take advantage

Fig. 2.1. Comparison of enumeration methods for optimal KEP exchange plans

of the available state-of-the-art solvers. The specialized propagator (CP-specialized) is an
improvement over the default propagator. CP-greedy is highly efficient but since it uses a
greedy cover for the enumeration, we anticipated it to be able to solve more instances because
we are not looking for all possible solutions. We will later examine if having a greedy cover
can achieve good results when tackling fairness. To better understand the complexity of this
problem, it is interesting to see the actual number of solutions enumerated for the instances.
These can be found in Table 2.1. The row of Table 2.1 labelled Projected corresponds to
only enumerating solutions such that no two solutions are KEP-equivalent. The Hierarchical
row corresponds to performing multiple optimizations over different objective functions in
a sequential way. In this particular case, maximization of the number of transplants was
performed, followed by maximization of the number of cycles, and then maximization of the
number of back-arcs. These secondary criteria can be found in the sequential optimization
procedure of some Kidney Exchange Programs [17].
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|V | 20 30 40 50 60 70
All 256 8524 220181 352953 594217 788673

Projected 31 86 2522 6570 7001 10953
Hierarchical 76 495 54012 142137 62569 42478

Table 2.1. Average number of solutions per graph size

2.3. Solution selection policy
Once we have a set of optimal solutions, we still need to pick an exchange plan that will be

realized. Now, a natural approach is to draw a solution from this set. This system of lottery
is the most intuitive way to eliminate the bias and arbitrariness introduced by selecting the
solution given by a solver. For example, the solutions returned by a solver might be biased
against O blood-type patients since it is difficult to find a compatible donor. However, we
still need to consider the types of distributions that make the selection “fair”. If we draw
solutions uniformly at random, we can still run in the issue of having multiple solutions
corresponding to the same set of patients. Therefore, these KEP-equivalent solutions are
prioritized in a sense over other sets of patients that do not exhibit such behaviour (i.e.
they do not have multiple KEP-equivalent solutions including them). We can counter that
effect by accounting for each patient’s true probability of receiving a kidney when drawing
exchange plans from the optimal solution set. When all these probabilities are at one’s
disposition, it is possible to set a policy in place that will increase the probability of the
most disadvantaged individuals. No characteristic of the patients except these probabilities
are taken into account. This concept will be referred to as individual fairness (IF) and
described more thoroughly in the next Chapter. This will be contrasted with the concept
of group fairness (or GF), where certain groups of individuals are given priority because of
characteristics that normally negatively affect their chance of getting matched in an exchange
plan (e.g. their PRA score or their blood type) [23, 24].

To better understand the balance between individual and group fairness, we can evaluate
over instances how many of the patients are included by the distribution, that is patients
with a nonzero probability of being selected as part of an exchange plan. We can measure
how this value will vary as we relax the constraint enforcing that a maximal number of
transplantations are to be performed. We do this measurement both for the absolute number
of patients included and for the subgroup of patients that are labelled as hard-to-match using
a PRA value threshold of 80% [23]. Because hard-to-match patients are more likely to be
incompatible with many donors, they will tend not to be selected in exchange plans. They
thus form a group of patients that are at a disadvantage when looking for a compatible
kidney. A group fairness approach will then account for these patients’ smaller probability
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of receiving a kidney by actively looking to improve this probability. Again, we use instances
from the INESC TEC dataset and obtain Figure 2.2. Figure 2.2 shows that we do not

Fig. 2.2. Measuring the effect of relaxing the optimality constraint

have to sacrifice greatly the number of transplants to include more patients. In fact, we
reach the maximum value possible quite easily. When relaxing the optimality constraint
to OPT − x (i.e. ∑

c∈C xc ≥ OPT − x during enumeration), it is possible to include the
maximal number of patients with a value of x = 3. The same can be said of the hard-to-
match patients. Therefore, we can account for the concept of group fairness even within the
scheme of individual fairness and find a desirable balance between the two. Although the
way this was done can seem ad hoc, we will later see that we can have a systematic process
to balance these concepts.
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Chapter 3

Fairness in KEPs

In the previous chapter, we showed the practical diversity of optimal solutions in a KEP.
We will now demonstrate how to leverage this diversity and ensure fairness. In Section
3.1, distributions over the set of optimal solutions are considered: metrics over these sets
of distributions will be optimized as part of a new concept called individual fairness (IF).
Section 3.2 discusses various metrics that will be used to validate IF experimentally. In
Section 3.3, the general mathematical form of the optimization process will be explicitly
given and multiple experiments will be devised to evaluate the properties and performance
of the individual fairness scheme. Section 3.4 will compare IF with GF in a bid to explore the
pros and cons of each approach. The reader will then be introduced to the useful concept of
column generation (Section 3.5), in an effort to scale the IF approach. Next, the reader will
be able to see the connection of the various metrics to their philosophical roots in regards
to fairness.

3.1. Individual fairness
Supposing we have a set of solutions (exchange plans) S to draw from, we define P(S)

to be the space of probability measures (distributions) over the solutions of S. We define δs

as being the probability of selecting solution s ∈ S under distribution δ ∈ P(S). We also
define each patient v’s probability of receiving a kidney as δv for all v ∈ P ′ ⊆ P , where
v ∈ P ′ if and only if v is in at least one solution of S (P is the set of patient-donor pairs).
The reason for introducing P ′ is that it would be nonsensical to factor in pairs that cannot
be in an optimal solution when computing a fairness score. Since they do not even affect
the selection process, by giving them a weight in the decision process involving other pairs
would be unfair in itself. We remark that the vertices v here refer to a patient-donor pair.
Therefore, δv corresponds to the probability of receiving a kidney for the patient of pair v.
We will refer to the vertex set of solution s as the set π(s) = {v | v ∈ c ∧ sc = 1}. We have



the following equation for δv:
δv =

∑
s∈S|v∈π(s)

δs.

Given that we now have defined a probability associated to each vertex in the graph, we
can proceed to define a measure of individual fairness for these vertices. This will come
in the form of a metric L : P(S) → R. We will seek to find the distribution δ ∈ P(S)
that minimizes the loss L(δ). Intuitively, this can often be thought of as minimizing the
difference in the probabilities of each patient to obtain a kidney. In an ideal world, we can
get as close as possible to equal probability. It is important to mention that the set S here
refers to optimal solutions in terms of maximizing the number of transplants, but this set
could be enlarged with other less efficient (again, with respect to maximizing the number of
transplants) solutions. The tradeoff between the utilitarian and fairness approaches will be
explored further down the road.

3.2. Various metrics
We previously introduced the concept of a metric over a distribution in P(S). Next, we

will define some of these metrics that will prove useful in the rest of this thesis.
Definition 3.2.1. The Lp loss is given by

Lp(δ) =
 ∑

v∈P ′
(δv − δ̄)p

 1
p

,

where δ̄ = 1
|P ′|

∑
v∈P ′ δv is the average probability of receiving a kidney.

When using these metrics, we will seek to minimize their value, thus minimizing the
discrepancy between the different pairs’ probabilities of being selected as part of an exchange
plan. We will make heavy use of the L1 and L2 losses in the sections that will follow. We
can now introduce another natural metric.
Definition 3.2.2. The minprob metric is given by

minprob(δ) = min
v∈P ′

δv.

This metric has been proposed in García-Soriano and Bonchi [21] in the context of fair
matchings. Remark that when using this metric, we will seek to find the distribution that
maximizes its value. In other words, minprob maximizes the probability of the patient with
the least chance of receiving a kidney.

3.3. Evaluating the various metrics
It is interesting to see how the metrics introduced previously affect the distribution over

exchange plans that will be selected. In order to see this effect, we optimize for the optimal
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distribution corresponding to each metric and then test it against the other metrics to see
how it performs. Nevertheless, we will introduce the problem that we seek to optimize:

optimize L(δ) subject to

δ ∈
{
R|S|

+

∣∣∣∣ ∑
s

δs = 1 ∧ S is the set of optimal solutions
}

where L is our metric.
Proposition 3.3.1. All the metrics described in Section 3.2 are either convex (L1, L2) or
concave (minprob).

Because all the resulting mathematical formulations are either linear of convex quadratic
problems, we can use standard solvers like Gurobi or Mosek.

We look at the following distributions over solutions for instances created with the Said-
man generator [19], namely the INESC TEC dataset:

• Optimize over L1, L2 and minprob;
• Greedy versions of the metrics L1, L2 and minprob (i.e. we find a greedy cover during

the enumeration of solutions);
• Uniform distribution, where each s ∈ S has an equal probability of being selected;
• A baseline, First-best, that attributes probability 1 to the first enumerated solution

(i.e. working with only one exchange plan; e.g. solution to (CF) or (PIEF)).
The solution set was enumerated using the CP solver as it was the most efficient alternative
(see Figure 2.1). From Figure 3.1, we can see that all of the distributions corresponding
to the metrics, outperform the baseline. An interesting aspect to observe is that Uniform
seems to perform well across all metrics. As the results are averaged over all the instances,
however, this might not necessarily be the case for special worst-case scenarios. In Figure
3.2, the uniform distribution over all possible exchange plans implies that some vertices
will have a chance of being selected close to 1, while for other vertices (those exclusively
in the cycle), this probability will be close to 0. Meanwhile, using the L1 norm will result
in the cycle CL being selected with probability δCL

= L
5L
2 −1 , while the yellow and green

paths are each selected with probability 1
2 −

δCL

2 (see Appendix A). In effect, this means that
all vertices will have a chance of being in an exchange plan closer to 1

2 . While the uniform
distribution does well in general, one can observe that the greedy versions of the distributions
are worse than their basic version. However, this was expected as we are trading optimality
for computability (finding a cover is easy).

3.4. Comparison of IF and GF
After introducing IF, it becomes relevant to compare to GF. Since both methods take

completely different approaches to tackle and define fairness, we perform three measurements
over the INESC TEC instances:
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Fig. 3.1. Comparison of the optimal distributions corresponding to our metrics and first-
best

(1) Group fairness measure using the α value. The α value is the number of hard-to-
match patients (PRA ≥ 80%) that are included after selecting an exchange plan (or
the expectation of this number). As a reference point, First-best is provided as a
baseline to see how IF performs since GF will be the highest value (it maximizes the
α value);
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CL

B

A

L − 5 repetitions of 4-vertices graphs

Fig. 3.2. Worst-case scenario for uniform distribution when compared to Lp-norm

(2) Optimality measure using the number of transplants;
(3) Individual fairness measure using the log L2 value. First-best is provided as a baseline

to see how GF performs since IF will be the lowest value (it minimizes that value).
The standard deviation was also computed for each mean value. The results can be found in
Table 3.1. It can be observed that IF is comparable to First-best in terms of the GF measure

Graph size 20 30 40 50 60 70
Group fairness measure: α value

First-best 0.30±0.31 0.29±0.24 0.43±0.18 0.46±0.16 0.44±0.16 0.46±0.17
IF 0.31±0.30 0.29±0.23 0.42±0.17 0.45±0.17 0.44±0.15 0.49±0.18
GF 0.37±0.32 0.34±0.23 0.52±0.17 0.54±0.16 0.49±0.15 0.58±0.17

Optimality measure: number of transplants
IF 8.05±4.02 11.81±3.46 16.03 ±5.36 21.16±5.02 24.08±6.51 24.33±2.50
GF 7.90±3.97 11.69±3.41 15.69±5.36 20.84±4.83 24.08±6.51 23.67±2.66

Individual fairness measure: Log L2

First-best 4.02±0.95 6.77±0.90 8.91±1.34 11.73±1.06 13.76±1.48 15.80±0.78
IF 2.86±0.97 5.18±1.04 6.50±1.34 9.22±1.67 10.38±1.52 12.11±1.40
GF 4.01±0.95 6.76±0.89 8.84±1.41 11.71±1.09 13.76±1.48 15.58±0.85

Table 3.1. Comparing group fairness (GF) with individual fairness (IF) over the INESC
TEC dataset

(i.e. α value in the table). It also has a higher number of transplants than GF.
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3.5. Scaling methodology
Now that we have introduced the concept of distributions over a set of solutions S, we

can discuss a more efficient way of enumerating solutions. Because we now have a metric
over the set P(S), we will see that in certain instances, optimizing with respect to this metric
lends itself to the method of column generation. For example, suppose that we are working
with the L1 metric. The problem of finding the distribution δ that minimizes L1(δ) can be
formulated as:

min
∑

v∈P ′
dv

s.t.
∑
s∈S

δs = 1

yv =
∑

s∈S|v∈π(s)
δs ∀v ∈ P ′

z = 1
|P ′|

∑
v∈P ′

yv

dv ≥
∑

s∈S|v∈π(s)
(δs − z) ∀v ∈ P ′

dv ≥
∑

s∈S|v∈π(s)
(z − δs) ∀v ∈ P ′

δs ∈ [0,1].

(δ-LP)

This is a linear program, so one is able to use column generation [25]. Nevertheless, we need
to broadly describe what is meant by column generation. We will do this for the L1 metric
as in the experiments of Section 3.3, the metric lead to a good improvement over First-best.
Suppose that we have an LP given by the program (δ-LP). We observe that the constraints
of (CF) form a polytope since they constitute a bounded polyhedron. Hence, finding extreme
points of this polytope is sufficient since every solution will be a convex combination of these
extreme points xs.

min
∑

v∈P ′
dv

s.t.
∑
s∈S

δs = 1 (µ0)

y =
∑
s∈S

(Axs)δs (µ)

z = 1
|P ′|

∑
v∈P ′

yv

δs ∈ {0,1} ∀s ∈ S

yv ∈ {0,1} ∀v ∈ P ′,

(M)
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where A is the |P | × |C| matrix defined by

A =

1 if v ∈ c

0 otherwise

The restricted version of (M) is nearly identical: it uses a subset of the set of solutions S.
Any subset will do, but experimentally, one usually starts with a single solution to (δ-LP).
Using the previous result, one obtains the subproblem

min−µAx− µ0

Ax ≤ 1∑
c∈C

xc ≥ OPT

xc ∈ {0,1},

(SP)

where the last constraint essentially ensures that only optimal solutions are enumerated
(OPT being a constant found after solving the initial problem (CF)). If the objective of
(SP) is greater or equal than 0, the algorithm terminates since there is no new solution s

that will improve the objective of the restricted version of (M). Otherwise, the column Axs

is added to the restricted version of (M). Each column that is generated will correspond to
a solution s. We do not have to enumerate all the solutions to find the optimal distribution:
simply the ones that will have non-zero probability (and maybe a few more that do have
zero probability). The (full) solution vector δ will also tend to be sparse, which further
strengthens the need for such an approach. As a remark, it can be said that this column
generation method can be used with any KEP formulation, even (PIEF) [10].

Experimentally, we evaluated this column generation approach over the UNOS dataset.
The goal was to determine if the approach could scale well to larger graphs than those
found in the INESC TEC dataset. Again, the results were averaged over all instances of the
UNOS dataset over each particular graph size. Figure 3.3 tells the same story as previously
observed: the fair L1 and L2 optimizations of IF give a noticeable improvement over First-
best. The trend thus seems to grow larger as the size of the graphs increases. Because column
generation only makes use of relevant solutions to the final optimal distribution over S, the
enumeration of solutions is limited to those. The sparsity of the L1 metric is highlighted
here as there is only a need to enumerate very few solutions out of the large pool of feasible
solutions. In fact, we can see from Figure 3.4 that the column generation approach solves
instances relatively quickly on average. It can be observed that for smaller graph sizes, the
running time is significantly low (less than 100 seconds on average) and there is a cusp at the
256 mark. The fact that we were not able to complete enumerating solutions for such large
graphs indicates that the column generation approach can indeed be very useful to scale IF
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Fig. 3.3. Evaluating the L1-optimal distribution over the L1 and L2 metrics against First-
best

to large graphs. It is possible to improve on these results by using the (PIEF) instead of the
(CF).
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Fig. 3.4. Average time to solve (CF) using column generation as a function of graph sizes
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Chapter 4

Price of fairness

In KEPs, we are faced with a limited amount of resources (the donors’ kidneys) and con-
flicting preferences or desires (the individual agents). How do we distribute the kidneys?
One obvious suggestion would be to look at a utilitarian mechanism where we maximize
the expected number of successful transplants. However, it is easy to imagine that certain
patients are going to be heavily favoured by such an approach. Just imagine a person that
is highly compatible to others. We can think of a universal recipient blood type patient (i.e.
AB-positive) with low PRA. If in addition, the patient is young and otherwise healthy, most
donations will tend to be successful with that patient in terms of longevity of the graft. This
will not be the case for highly sensitized patients like those with O-negative blood type. We
can consider Figure 4.1. Patient A is in many solutions but not patient B. Therefore, de-

CL

B

A

L − 5 repetitions of 4-vertices graphs

Fig. 4.1. Many maximal exchanges involving patient A, but few involving patient B

pending on the method used to obtain a maximal exchange plan, we might end up choosing
patient A more often. This cannot be considered fair for patient B, especially when picking



that patient does not sacrifice maximal utility. The method that we devised earlier takes
care of this problem by balancing the probabilities of each patient. However, we were dealing
with only optimal exchanges. What if a patient is never in an optimal exchange plan (in
the utilitarian sense)? One obvious answer is to simply relax the notion of optimality when
looking for a suitable exchange plan (see Figure 2.2). In other words, we sacrifice optimality
to allow for a fairer scheme. But how do we select the allowed relaxation threshold? Is
there an alternative that takes care of balancing utility and fairness? In fact, we can often
view fairness and utility as two competing objectives. If we have a measure or metric that
is associated to both objectives, we can examine the cost of prioritizing one over the other
(and vice versa). In Bertsimas et al. [7], this is referred to as price of fairness.
Definition 4.0.1. A utility set U given by a vector-valued function f is defined as

U =

u ∈ R|P |
+

∣∣∣∣∣∣ ∃x ∈ X : uj = fj(x), j ∈ P


where X ∈ Rm

+ is the resource set (i.e. the constraints) and fjis the utility function of
patient j.
Definition 4.0.2. A fairness scheme L : 2R|P |

+ → R|P |
+ is defined by

L(U) 7→ u

for some u ∈ U for each utility set U .
Defintion 4.0.2 can be thought of as assigning a fair outcome to each set of attainable

utilities. We introduce the two following definitions before formalizing the price of fairness:
Definition 4.0.3. The system score with utility set U (or SY STEM(U)) is given by

SY STEM(U) = sup
u∈U

eT u,

where e is a vector of ones of the appropriate dimension.
Definition 4.0.4. The fairness score of utility set U with loss L (or FAIR(U,L)) is given
by

FAIR(U,L) = eTL(U)

The Price of Fairness is then defined as
Definition 4.0.5. Price of Fairness

POF (U,L) = SY STEM(U)− FAIR(U,L)
SY STEM(U)

We now possess the vocabulary necessary to discuss the tradeoff between a fairness scheme
and the utilitarian objective. In order to do so, we must examine various fairness schemes.
The most well-known are due to Aristotle, Rawls [12], Nash and Shapley [8]. We will discuss
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their nature and how they apply to KEPs, as well as how these principles can be formally
described mathematically.

4.1. Aristotle’s equity principle
Aristotle’s equity principle [7] is based on the idea of individuals having pre-existing rights

to the resources. People should then receive what is rightfully theirs based on these claims.
We can simply think of a person holding stocks that pay dividends. The share of dividends
that are paid back to its stockholders will be distributed proportionally according to the
share of the stocks that each person owns. When transposing this idea to KEPs, however,
we immediately see an obstacle in the competing claims to access the limited amount of
resources (i.e. kidneys). How should we prioritize a person over the other? Should an
individual really have priority over another one and if so, when? What constitutes a stronger
claim for a transplantation over another one? These are questions that naturally arise in this
context. We can try to answer some of them by giving a ranking to the patients according to
their need, or even the time they spent waiting in the program to obtain a kidney. Indeed,
it intuitively makes sense to fill a patient’s need for a compatible kidney over another if the
first has waited multiple rounds to receive one. However, we cannot also ignore the potential
urgency of this kidney transplantation for the second patient. Hospitals are confronted
every day with this problem, ranking patients according to their need for medical treatment
through a system called triage [26, 27]. The main objective being to save lives, the severity
of the illness justifies prioritizing some patients over others. Secondly, this is balanced with
the goal of maximizing total utility: if a doctor spends too much time treating a person
whose chances of survival are very low at the cost of losing many other patients whose life
could easily have been saved, then the doctors are faced with the crucial dilemma of treating
patients according to their individual need versus maximizing the overall well-being of the
patients.

To describe Aristotle’s principle of fairness mathematically, we would need some sort
of scoring mechanism to determine how to rank or order patients. Ideally, this scoring
mechanism would be time-dependent: the longer a patient waits to obtain a kidney in the
program, the higher this score becomes. Formally, we have a function ρ(yv, t) where yv is a
feature vector for patient v ∈ P and t ∈ R, with the following property:

∀v ∈ P, t2 ≥ t1 =⇒ ρ(yv, t2) ≥ ρ(yv, t1) (4.1.1)

One can observe that through the dependence on v ∈ P , the function ρ allows for each
patient’s characteristics to influence their priority score. One can now maximize the total
score over all patients in a selected KEP exchange. Mathematically adapting (CF), this is
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given by
max

x,z

∑
v∈P

ρ(yv,t)zv

s.t zv ≤
∑

c∈C:v∈c

xc ≤ 1 ∀v ∈ P

zv ∈ {0,1} ∀v ∈ P

xc ∈ {0,1} ∀c ∈ C
Similarly, one can rate the patient’s health status and give priority to patients whose health
is declining the most and hence, would highly benefit from a transplant. This takes care
of the resource claim argument: the higher a patient’s need for a kidney, the higher their
claim on it. With this in mind, the goal is to maximize the total gain in the patients’ health
status. In this particular context, we have another function ρ′(yv, t) that is real-valued but
is not required to have the defining property 4.1.1 of ρ. We now solve the following problem:

max
x,z

∑
v∈P

|ρ′(yv, t2)−ρ′(yv, t1)|zv

s.t zv ≤
∑

c∈C:v∈c

xc ≤ 1 ∀v ∈ P

zv ∈ {0,1} ∀v ∈ P

xc ∈ {0,1} ∀c ∈ C,

where t2 is the current time and t1 precedes it. With this approach, we still seek to maximize
the total score but we still give precedence to patients whose health is increasingly at risk
if no transplantation is performed. At the same time, we are not giving complete priority
to individuals that are in poor health but whose chance of survival is close to 0. This is in
accordance with doctors’ behaviour, under limited amounts of resources. Nevertheless, we
are faced with a very tough ethical and moral dilemma: how can one select the patients to
operate on and will this choice be unbiased? When dealing with life or death situations,
the lines become blurred between what is optimal and what is socially acceptable. Maybe
other approaches are better suited than Aristotle’s fairness principle at finding the right
distribution of resources. No matter how confident one might be in their ability to properly
determine people’s claims on the resource, the very individuals that are excluded under this
principle will certainly disagree with it. It then becomes a question of how we can achieve
some form of consensus where even the excluded individuals would agree with the underlying
principles. This is what John Rawls and the veil of ignorance attempt to achieve.

4.2. Rawls and the Veil of Ignorance
In Rawls [12], the author introduces the concept of the veil of ignorance. With this veil,

every individual is not made aware of their situation, biases, view on the world. The only
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thing that remains is knowledge about the world and their rational mind. Rawls argues that
under this veil of ignorance, individuals can negotiate the terms of a social contract that
seems inherently fair.

One way of approaching such a decision is to consider that individuals will then maximize
the utility of the least well-off person. Since there would be no way for them to know whether
or not they would be that person under the veil of ignorance, it would seem to be the rational
solution to adopt. In mathematical terms, this would correspond to maximizing the minprob
metric that we introduced previously in section 3.2. Doing so guarantees some form of
robustness to our solution selection mechanism. A natural question to consider is then:
“what is the price that we have to pay with respect to utility?” The Rawlsian approach
does not care about that cost because it is the only rational strategy to adopt under the veil
of ignorance. However, for every policy maker interested in maximizing utility as much as
possible, the minprob optimization might prove too costly in some instances. We can see this
in Figure 4.2. Vertex A is found in (n + 1)! feasible solutions, while vertex B is only found

Kn

A

B

E

E := {a | a = (A, v) ∨ a = (v, A) ∀v ∈ Kn}

Fig. 4.2. Worst-case scenario for Rawlsian fairness. Kn is a clique of size n

in 1 feasible solution. Thus, under an optimal distribution for this graph (with the minprob
metric), we would see the vertices in the large cycle (except for A) have a probability of 1

2 of
being selected and vertex B would also have a probability of 1

2 of being selected. Under this
optimal that optimal distribution, we get n+3

2 expected transplants. However, if we were to
sacrifice patient B’s probability of receiving a transplant, we would get a maximal number of
transplants of n + 1. In that case, we can sacrifice a significant number of transplants when
the value of n is large. Indeed,

POF =
n + 1− n+3

2
n + 1

=n− 1
n + 1

lim
n→∞

n− 1
n + 1 = 1,
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and in that case the POF is close to 1 for large values of n. We therefore need to consider
whether this is something that is acceptable, and whether we can justify “sacrificing” the
chance of one patient to the advantage of others.

Using a similar approach to fairness in KEPs, another rational action to consider is to
prioritize patients that have a greater need for a transplant. Here, the need would be defined
by how much could be gained in terms of one’s health when receiving a transplant. This
seems to go in the same direction as the general approach to triage in hospitals: patients
that are in a critical state but that can be saved by being treated usually are prioritized
over others. If a patient is unlikely to survive even after treatment, that person will not
be prioritized over someone that has a better chance of recovery. Inherently, this does not
take into account the characteristics of the person, just their potential health gain. This
is the key difference from the previous section: while Aristotle’s principle would allow for
characteristics of individuals to guide the prioritization of patients, Rawlsian fairness forbids
this. The veil of ignorance would act as an ideological barrier to such an approach. On the
contrary, it would seem reasonable and in everyone’s best interest to agree with the premise
that the resources should go to individuals with the greatest need.

We would therefore need to evaluate the potential health benefit to a person. This can
be achieved through a score of the person’s health. For each patient, we could have a score
α ∈ [0,1] that corresponds to the probability of death from kidney failure. If a person receives
a kidney and the transplant is successful, then their α value would now be equal to 1. Each
person’s score depends on whether or not they receive a kidney.

4.3. Nash standard of comparison
John Nash, in his paper on cooperative bargaining games [11], introduces his concept of

fairness. For a two-player game, it measures the relative change in a player’s utility when
receiving a small amount of resources. If that amount is greater than the relative loss of
utility of the other player, then this transfer of resources is justified. This fairness scheme
satisfies the four important axioms of Pareto optimality, symmetry, affine invariance, and
independence of irrelevant alternatives. It can be generalized to more than two players.
Definition 4.3.1. Under proportional fairness, an allocation L(U) is fair if

∑
j∈P

uj − L(U)j

L(U)j

≤ 0,

for any u ∈ U , where P is the set of players.
In simpler terms, for an allocation L(U) to be fair, any other allocation decreases in

proportional utility (with respect to proportional fairness) when aggregated over all players.
One consequence of proportional fairness is that a loss of utility to one player is acceptable
when that player already has accumulated a lot of resources that would suit another player
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whose utility is much smaller. Intuitively, this corresponds vaguely to the redistribution of
wealth by taxing high income and redistributing it among the lower end of the spectrum.
This income analogy will be useful to describe Nash’s principle by fixing utility to a tangible
concept for the reader. While this might seem unfair or unreasonable to do, it can be
justified using a utilitarian argument. It can be argued that individual’s utility functions are
not linear as a function of their income but rather concave. Thus, higher-income individuals
have a smaller marginal utility gain for a fixed amount of x $ that they earn when compared
to lower income individuals. As a sidenote, it can be observed that this is common way of
resolving the St. Petersburg paradox [28, 29].

Since utility functions that are linear in terms of the money earned lead to the paradox,
it would seem rather undesirable to use such functions. This fact can thus be seen as a
starting point or basis to justify the use of concave utility functions. In KEPs, individuals
that have a high survival chance or are otherwise in good health can be seen as the rough
equivalent to higher-income individuals: they will benefit less by obtaining a kidney than a
person dangerously at risk of dying if a transplant is not performed immediately. This does
not mean they should not be operated on, simply that the marginal gain in utility is less
and thus it would be entirely justifiable under Nash’s principle to favour those that would
obtain a higher marginal utility gain. Fairness, according to Nash, can be justified simply
as a matter of marginal utility maximization.

When we are looking to apply this fairness scheme to KEPs, the major issue that arises is
definitely related to the utility functions of patients. We could take the simplest form, which
is indeed the one used in the basic formulation of a KEP, and define the utility of a patient
as 1 if they get a compatible kidney and an arbitrarily small ϵ > 0 otherwise. We use ϵ

simply to take care of the fact that in this section, we assume the utilities are always strictly
positive. However, we can see that under this choice of utility function, whenever we obtain
a proportionally fair allocation, it corresponds to an allocation that maximizes total utility.
This signifies that the POF is equal to 0, but we are left with the common issues related
to the utilitarian approach, which will be discussed later in Section 4.7. We could therefore
try to have utility functions that do not exhibit such symmetry over players (i.e. being all
equivalent). Having a score for the quality of the kidney that a patient receives would help
break this symmetry by providing more granularity to the utilities. This also seems more
realistic because it will probably hardly be the case that two different patients receive two
kidneys of the exact same quality relative to their needs. If it is the case, it is probably
because the analysis of the quality of the organ is not fine-grained enough. Nevertheless,
considering this symmetric case as valid certainly makes for interesting research questions.
By inspection, we might be able to abstract and generalize Nash’s concept of fairness for all
cases (even symmetric ones) with the same goal of always maximizing the marginal utility
under the allocation of resources.
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4.4. Shapley values
Another natural approach would be to use Shapley values [8], which have been applied

previously in KEPs [30]. In the context of a cooperative game theory, Shapley values provide
a measure of agents’ contribution to a coalition. A coalition is simply a subset of players
that decide to cooperate between themselves. For an n-player game and a set function
ν : 2N → R where N = {1, . . . ,n}, the value ν(S) of a coalition S ⊆ N represents the
total utility achieved by the coalition S. Shapley’s function is the unique (n-)vector-valued
function ϕ that satisfies the following three axioms [8]:

(i) Efficiency: ∑i∈S ϕi(ν) = ν(S) for any carrier S of ν. A carrier of ν is a coalition T

such that ν(T ∩ S) = ν(S).
(ii) Symmetry: ϕπ(i)(πν) = π(ν) for any permutation π of the set N . The game πν is taken

to be the game u defined by u({π(i1), . . . , π(is)}) = ν(S) for all S = {i1, . . . ,is} ⊆ N .
(iii) Linearity: ϕi(u + ν) = ϕi(u) + ϕi(ν) for all i ∈ N and any games u and ν.
Definition 4.4.1. The unique function ϕ that satisfying axioms (i) to (iii) is defined by

ϕi(ν) =
∑

T ⊆N |i∈T

(|T | − 1)!(n− |T |)!
n! (ν(T )− ν(T \ {i}))

The logical interpretation behind the definition of Shapley values is associated with the
marginal contribution of each player under a random arrival process to the coalition. Thus,
if the arrival of each player to the coalition is uniformly random, one is able to evaluate the
marginal contribution of player i for each possible case. Supposing that there is a coalition
S such that i /∈ S, player i contributes ν(S ∪ {i}) − ν(S) to the newly formed coalition.
Averaging over all possible orderings, one gets the expected marginal contribution of each
player to each possible coalition including that player. When transposing this to KEPs, one
can think of a player as a patient-donor pair and the coalition as the set of pairs that choose
to enter the KEP. If a pair has a high Shapley value, then their inclusion in a KEP exchange
plan contributes to a marked increase in the number of transplants that can be performed.
Using this idea, one can seek to fairly reward patient-donor pairs for their contribution to
the KEP pool. This can take the form of the addition of a second weighted objective to
(CF):

max
∑
c∈C

wcxc + λ
∑
i∈P

∑
c∈C|i∈c

ϕixc

s.t.
∑

c∈C|v∈c

xc ≤ 1 ∀v ∈ V

xc ∈ {0,1} ∀c ∈ C,

where λ > 0 is a weight that is chosen beforehand for the KEP. This method intuitively
combines the objective of transplant maximization, as well as maximizing the Shapley values
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of the selected individuals. The latter objective seeks to reward the pairs that contribute
the most to the overall utility of the system. This method, however, runs into a few hurdles.
First, there is the issue of selecting the appropriate weight λ. Is there an obvious candidate?
Does it have to be selected experimentally? And then, there is the issue related to the
Shapley values themselves: they are hard to compute. Indeed, the sum involved in their
definition is over all subsets S of P that contain a particular player i. Hence, there are 2|P |−1

candidates subsets to consider for each player. This is why applications of Shapley values to
KEPs have mostly been concerned with specific cases where the number of players is small,
such as in multi-country KEPs [30] (the players are the countries).

4.5. Discussion of fairness schemes
By discussing these various fairness schemes, it is possible to see which ones would be

more easily adaptable to KEPs. While both Rawls and Nash’s approaches can be useful, they
possess flaws. Rawlsian fairness could potentially lead to a massive POF, which would render
its application undesirable (see Figure 4.2). Nash’s fairness principle, on the other hand, has
some very desirable properties (see Section 4.3) but its utilitarian approach fundamentally
still implies that some patients could suffer greatly under that principle. Only by considering
distributions over solutions is it possible to give a chance to patients not included in utility-
maximizing solutions. This is exactly what motivates IF. Then, it might be interesting to
ask how one can add this added fairness component without paying too high a price in terms
of utility (i.e. having a low POF). In Chapter 5, we will introduce an interesting concept to
tackle fairness in KEPs: the Nash Social Welfare Program. It provides the ability to balance
multiple objectives and thus, it can be applied to fair procedures in KEPs to restrict their
POF. It will become useful to compare this method to the various fairness schemes discussed
in this section.

4.6. Comparison between fair procedure and fair out-
come

In Bolton et al. [31], the authors compare two fairness schemes that arise naturally in
the context of games: fair procedures and fair outcomes. Three types of simple games are
played between pairs of individuals. These games are referred to as Sequential Battle of the
Sexes (BOS), Ultimatum Game (UG) and Sequential Battle of the Sexes with Fair Procedure
(BOSFP).

1Figure taken from Bolton et al. [31].
2Idem.
3Idem.
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Fig. 4.3. Sequential Battle-of-the Sexes Game (BOS)1
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Fig. 4.4. Ultimatum Game (UG)2
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Fig. 4.5. Sequential Battle-of-the Sexes Game with Fair Procedure (BOSFP)3

In BOS (see Figure 4.3), player 1 is asked to make 3 offers to player 2: option A benefits
player 2 and option C is beneficial to player 1. In each case, player 2 can refuse and both
get no payoff. Naturally, player 1 will be tempted to offer choice C to player 2. The authors
experimentally show that player 2 refuses offer C in 6% of the time.
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In UG (see Figure 4.4), the game setting is similar to BOS, but there is another offer B
available: both players equally benefit if this offer is accepted by player 2. The authors show
that in this setting, the rejection of offer C (i.e. beneficial to player 1) is higher ( 40%) since
there is a “fair” alternative where both players get equal payoffs. It can be assumed that
offer C is now seen as unnecessarily selfish and therefore player 2 prefers to refuse it. For
BOS, since that option is not available, player 2 will accept more readily option C, probably
because there is no scenario of a fair outcome. The authors conclude that an unfair offer is
more tolerable to the subjects of the study if no fair outcome is available.

The last game, BOSFP (see Figure 4.5), is similar to UG, but the offer B is rather a
lottery, where players get the payoffs of offer A and B with equal probabilities. Again the
rejection rate for offer C (i.e. beneficial to player 1) is similar to UG.

The authors conclude that a fair procedure can thus be thought of as substitute to a fair
outcome. It becomes harder to tolerate an unfair offer when either a fair procedure or a fair
outcome is available. A fair procedure can better be described as a procedure or a set of
rules such that when followed, every player (or most of them) are satisfied with the “fairness”
property of the game. A fair outcome rather focuses on whether the players are satisfied
with the outcome or result of the game. The discussion can thus be framed in terms of the
dichotomy between a fair procedure and a fair outcome. The former can generate situations
where the payoff of each individual (when framed in the language of games) is not equal.
However, in expectation these payoffs will be the same, which makes it seem acceptable to
individuals. This is what IF attempts to achieve. Not every exchange plan will satisfy every
patient, but at least, they will have a somewhat comparable chance of receiving a kidney.
The optimization process makes this probability as evenly distributed as possible when using
Lp metrics. On the other hand, a fair outcome approach will rather focus on generating a
set of payoffs that will be uniformly distributed. In KEPs, this would take the form of an
exchange plan that is acceptable to all the participating parties because it satisfies desirable
characteristics and is thus a fair alternative (or middle ground). If we think of it in terms of
the utility of agents, both approaches try to balance the utilities of the agents; the distinction
being that a fair procedure deals with the expected utility.

In the context of the games played in Bolton et al. [31], the “risk” of getting a lower
payoff under a fair procedure is counterbalanced by the chance of receiving a higher payoff.
We can imagine that this means the agents are totally risk neutral, since this procedure is as
acceptable as the fair outcome approach. It is worth mentioning that in Bolton et al. [31],
the expected payoffs for both games (UG and BOFSP) were set to be the same. However,
things can get a little bit murky when we transpose this discussion in the context of KEPs.
We are ultimately dealing with the selection of patients for an exchange plan. It must be
stressed that this is often a question of life or death. Therefore, does it seem plausible that
patients would be risk neutral under a fair procedure? Even if it is not the case, how do we
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deal with the issue of limited resources, here being compatible kidneys for each patient? We
will have to prioritize certain patients, while leaving out others, even if this is done through
a lottery. On the other hand, if we completely reject the notion of using a fair procedure,
and simply focus on a fair outcome, we might sacrifice greatly the total utility of the system.
Just imagine a scenario where no one gets a kidney: it is surely not unfair in the sense that
no one is prioritized over the other, but then it does not make a lot of sense to simply refuse
to perform any transplant at all. Finding a good balance between the utility of a solution
and some measure of fairness of that solution will be explored later in Chapter 5.

4.7. Limitations of the utilitarian approach
In addition to the discussion surrounding fair procedures and outcomes, another impor-

tant detail to explore concerns the objective function that is optimized in a KEP. Before
we define a metric that must be optimized, we must first consider the drawbacks of the
utilitarian approach. Let us consider the following thought experiment: person A, who is
very sick, can swap donors with person B to receive a kidney and is expected to recover fully.
However, person B can instead enter in an N -way exchange with N − 1 other pairs; the
total utility would be N instead of 2. Suppose that person B and the other N − 1 pairs are
relatively healthy: their condition is in the early stages and they are otherwise very healthy
individuals. Would it make sense to sacrifice person A so that the rest of the group benefits?
Probably not.

Each individual has a utility function that is dependent on their personal characteristics.
Whether we can guess a “true” utility function when disregarding everyone’s biases and
particular circumstance is an interesting question. If this was possible, we could have an
unbiased method to evaluate the priority of patients when assigning exchange plans. This
would fall under Aristotle’s fairness principle as discussed in Section 4.1. Nevertheless, we
can still implement a system where patients with a higher priority are indeed prioritized at
fair value. By using this system of prioritization, we can now combine both the utilitarian
approach and the aforementioned prioritization to balance utility with fairness. To do so,
Chapter 5 will introduce an important concept in multi-objective optimization (MOOP): the
Nash Social Welfare Program (or NSWP).
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Chapter 5

The Nash Social Welfare Program (NSWP)

In Section 5.1, we discuss the terminology associated with MOOPs and how we can balance
fairness and utility. Section 5.2 discusses the Social Welfare Program and its various flaws.
Next, the Nash Social Welfare Program is introduced in Section 5.3 to address the weaknesses
of the SWP. Some properties of the NSWP are also discussed and we apply the NSWP to
KEPs, combining it with the concept of IF. In Section 5.4, we extend the formulation of
Section 5.3 to scale to larger graphs. Finally, Section 5.5 presents multiple experiments that
were realized in order to evaluate the effectiveness of the NSWP in balancing IF and utility.

5.1. Competing objectives
The main issue that arises when discussing fairness in the context of KEPs is the opposi-

tion of the two main objectives that we aim to optimize: maximization of the total efficiency
of an exchange plan and maximization of the benefit for the least advantaged patients. It is
easy to find instances where these two objectives are competing against one another. There
is generally no ideal solution capable of maximizing both of these objectives simultaneously.

Hence, we enter in the field of multi-objective optimization (MOOP), where we search
for Pareto efficient solutions. The set of all Pareto efficient solutions is called the Pareto
frontier, Pareto front or Pareto set. We introduce these concepts in the following definitions.
Definition 5.1.1. Consider a vector-valued objective function f : X → Rk. A solution
vector x (Pareto) dominates another solution y (for a maximization problem) if

(1) fi(x) ≥ fi(y) ∀i ∈ {1, . . . ,k};
(2) ∃j ∈ {1, . . . ,k} s.t. fj(x) > fj(y).

We denote this dominance as x ≻ y.
Definition 5.1.2. A Pareto optimal solution is a solution x that is not dominated by any
other solution y. In other words, ∄y such that y ≻ x.



Definition 5.1.3. The set of Pareto optimal solutions is called the Pareto frontier (or Pareto
front, Pareto set). It can also be written as

P ∗ := {y : ∄z s.t. z ≻ y}.

With these useful definitions, we can introduce the concept of ideal vector. Each com-
ponent of this vector corresponds to the best value that can be attained by the different
components fi’s of the objective function f .
Definition 5.1.4. The ideal vector zideal is defined as

zideal
i = sup

x∈P ∗
{fi(x)} ∀i ∈ {1, . . . ,k}.

Definition 5.1.5. The nadir vector znadir is defined as

znadir
i = inf

x∈P ∗
{fi(x)} ∀i ∈ {1, . . . ,k}.

Now, we possess the language to discuss solutions methods to MOOPs.

5.2. The Social Welfare Program (SWP)
As mentioned in the previous section, if we have multiple objectives fi that we aim

to maximize subject to a set of constraints, we are faced with the problem of computing
the Pareto frontier. A common workaround is to attribute weights to each objective and
then maximize the single (aggregate) objective. A solution is then guaranteed to be Pareto
optimal. While this is a reasonable idea, we will see that it has important pitfalls associated
with it. To this end, we first introduce the Social Welfare Program formally:
Definition 5.2.1. The Social Welfare Program is any optimization problem of the form

max
k∑

i=1
wifi(x)

s.t. x ∈ X

where X is the feasible region (can be defined by a set of constraints) {f1, . . . ,fk} is the
set of objectives to be maximized. The wi > 0 are the positive weights associated with each
objective.

We will later see a value of 1 for each wi being used in the SWP for KEPs. There are
inherent weaknesses that come with this approach. As discussed in [9];

• Weakness 1: Computing a Pareto solution is often hard to do or simply intractable.
• Weakness 2: In some cases, there is no decision-maker or it is not obvious how to

select a (Pareto-optimal) solution from the Pareto frontier.
• Weakness 3: There can be multiple Pareto-optimal solutions that cannot

be obtained by the SWP. These points are called unsupported Pareto-optimal
points/solutions.
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When applying this framework to KEPs, the two objectives that arise naturally are:
(1) maximizing the number of transplants;
(2) optimizing a fairness criterion to minimize biases in the selection of an exchange plan

and their negative impact on some patients.
Computing a Pareto solution is therefore not hard (though still NP-hard for IPs): we can
simply find a solution that satisfies either objective to optimality and then, we can add a
constraint to enforce this optimality while optimizing for the second objective. Thus, we
shall not be too concerned with weakness 1 in this case. It is important to note, however,
that if we have a fairness criterion, we can use SWP to find a Pareto-optimal solution, since
it simply reduces to finding an optimal solution to the SWP.

With respect to weakness 2, we have a major issue. It is indeed the crux of the problem.
While we do have a decision-maker that will validate the selected exchange plan and start
the process of realizing the transplantations, it is not immediately obvious how to select a
Pareto-optimal solution. Given two Pareto-optimal solutions x1 and x2, how do we determine
the “best” one? We know that none of them dominates the other, so we are faced with a
non-trivial problem. Usually, the intuitive idea is to try to balance the objectives in a way
that satisfies all of them as close as possible to optimality. While we might sacrifice true
optimality for one or both, closeness usually seems good enough. This is what the Nash
Social Welfare Program (NSWP) will attempt to solve, as we will see later.

Finally, weakness 3 is another inherent problem of the SWP. Some solutions from the
Pareto frontier might never be selected by a method based on weighting the objectives. This
can be best illustrated by looking at a Figure 5.1. In this figure, the Pareto frontier is given

f2

f1

(2,5)

(3,3)

(5,2)
w

1 f1 +
w

2 f2 =
c
>

0

Fig. 5.1. Illustrating Weakness 3 of the SWP. The points in blue form the Pareto frontier1.

1Inspired by figure in [9].
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by the three points that are labelled with their Cartesian coordinates. Given any weights
wi, only the two extreme points, namely (2,5) and (5,2) will be obtained. The third point
(3,3) cannot be achieved with this method. This can be observed by looking at the line that
is drawn in the figure. Its slope is the same as the vector (w1,w2). The arrows indicate the
direction to increase the objective value of the SWP. Even if the angle of the slope changes
slightly, the SWP will still choose one of (2,5) or (5,2) as the best value from the Pareto
front.

5.3. The Nash Social Welfare Program
In [9], the authors discuss the concept of Nash Social Welfare Program (NSWP). This is

mathematically represented as:

max
k∏

i=1
(fi(x)− di)wi

s.t. x ∈ X

fi(x) ≥ di ∀i = 1, . . . ,k,

where vector d is a reference point in Rk.
Concretely, it is simpler to explain what the NSWP does if one restricts themselves to two

objectives and unitary weights wi. The NSWP attempts to maximize the total rectangular
area defined by the two corners given by the reference point d and the solution picked from
the Pareto front (see Figure 5.2). We can now apply the NSWP to KEPs. Note that the

d

f1

f2

Area

P ∗

Fig. 5.2. Pareto front and the NSWP2

powers wi can all be set to 1, to ensure that all objectives have the same order of precedence.
2Inspired by figure in [9].
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The ultimate goal of applying NSWP to KEPs is to be able to select an exchange that will
be both efficient in terms of the number of transplants, while also taking into account a
fairness component. There might be multiple optimal solutions that can fit this description
and this is why we again apply distributions over these exchanges. Therefore, the NSWP
needs to be modified slightly.

The reference point d can be chosen to be the nadir point. We get the following program:

max Ep [(f1(x)− d1)× (f2(x)− d2)]

s.t. p ∈
{

δ : X → [0,1]
∣∣∣∣∣ ∑

x∈X

δ(x) = 1
}

.

Finally, this can be rewritten as:

max
∑
s∈S

δs(f1(s)− d1)× (f2(s)− d2)

s.t.
∑
s∈S

δs = 1

δs ≥ 0 ∀s ∈ S,

(P)

where S is the set of solutions that maximize the objective (f1(x)− d1)× (f2(x)− d2).
Remark 5.3.1. Note that because the expectation is a linear function, the set S is sufficient
to find the optimal value of Ep [(f1(s)− d1)× (f2(s)− d2)].

This way, any feasible δ is optimal to P and hence, given S, one needs to decide the
distribution to use. The challenge is thus to obtain S. It is not surprising that the cardinality
of S can be very large. Therefore, we must enumerate elements of S and draw from the
returned solutions according to some distribution. Alternatively, we can derive solutions
directly from samples (without full enumeration), which approximate some distribution. For
the latter approach, various ways to do this that have been proposed. In [32], the authors
achieve near-uniform sampling of combinatorial spaces using ⊕ (XOR) constraints.

The NSWP exhibits certain interesting properties. It returns a Pareto-optimal solution
and is both global-power-scale-free and local-benefit-scale-free [9]:
Proposition 5.3.2. [9] The NSWP is global-power-scale-free: the NSWP with powers wi is
equivalent to the one with powers/weights αwi for some α > 0.
Proposition 5.3.3. [9] The NSWP is local-benefit-scale-free, i.e., if the objective is replaced
with

max
k∏

i=1
(αifi(x)− αidi)wi ,

there is an equivalent problem to the original, up to a multiplication constant in the objective
that is equal to

k∏
i=1

αwi
i .
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Proposition 5.3.3 is interesting because it tells us that no matter what the scale of the
objective functions is, we obtain an equivalent problem. Thus, we do not have to care about
rescaling them or even comparing their scales to make sure they are comparable. The only
relevant factor is the instantaneous change in one objective over the others. For example,
we can suppose that the objective is a linear function in terms of the variable x, while the
second objective is quadratic. This will not be equivalent to a problem where the second
objective is linear too. Note that we can always play with the weights wi to change this.
The weights can be thought of as the “bargaining” power of each objective. We could have
instances where each objective is the utility function of an agent and thus, each has a given
bargaining power. Also, we could have two optimization criteria to be balanced like the
utilitarian and fairness objectives.

The authors of [9] proceed to analyze the effectiveness of the NSWP when dealing with
the issues of the SWP. For weakness 2, the NSWP does well since it balances the multiple
objectives. Indeed, since we are maximizing the rectangular area defined by the two corners
given the nadir point and the solution point, we will tend to pick solutions that do well with
respect to each objective. For weakness 3, the NSWP provides a great workaround since it
can return unsupported Pareto-optimal solutions. Therefore, NSWP is not disregarding such
solutions of the Pareto frontier. It is important to note that we still might have multiple
optimal solutions for the NSWP. Moreover, it does not tell us how to select from these
equivalent solutions (equivalent in terms of their objective value). Since they are equivalent,
we should be indifferent among them. Additionally, since we can allow for one or more of
the objectives to take care of the fairness component of the problem, we can reassure the
decision-maker by guaranteeing a certain level of fairness in the returned solution. But there
is the lingering question of individual fairness in the context of the NSWP. Is it still an issue?
How do we circumvent it? Can we integrate individual fairness inside this method?

To address the question of individual fairness, we can build on the method we described
previously in this text. In other words, using the enumerated set of solutions for a particular
instance, we balance the two objectives using the NSWP. Under this setting, the functions
f1,f2 take a distribution δ over solutions to the KEP instance as an argument. We can think
of f1 as the utilitarian objective: the expected number of transplants under the distribution
δ. The objective f2 can simply be an individual fairness metric like L1 or L2-norm. In this
way, the problem can be represented mathematically in the following manner:

max
∑

s∈S
δs

∑
c∈C

wcsc − d1

×
−∑

v∈P

∣∣∣∣∣∣
∑

s∈S|v∈s

δs −
1
|P |

∑
v∈P

∑
s∈S|v∈s

δs

∣∣∣∣∣∣− d2


s.t.

∑
s∈S

δs = 1

δs ≥ 0 s ∈ S,

(PIF )
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where the first multiplicative term in the objective is f1 and the second is f2, representing the
L1-norm. S is the set of feasible exchange plans. The changes that must be performed when
using L2-norm are immediate. The optimal distribution under this setting will be expected
to perform well under the utilitarian and fairness criteria. The key aspect to highlight here
is that we were previously dealing with exchange plans that sought to maximize both the
total utility and the balance of the distribution of the utilities among the patients involved.
The latter approach rather seeks to find a distribution and this is exactly why we are able
to apply our concept of individual fairness to it.

In order to tackle (PIF ), we are again forced to enumerate solutions. This is not a trivial
task, especially when the objectives are complex functions that might not even be concave
(maximization) or convex (minimization). Fortunately, when dealing with functions that can
be described using Linear Programming, we are able to lift the tools from column generation.
The various ways to such a more efficient enumeration will be described in the next section.

5.4. Algorithmic enhancement
Remark that the set of S in (PIF ) is potentially much larger than the set of optimal

solutions to f1 used in Chapter 3. We can use column generation to find the optimal distri-
bution. First, we define P ′ ⊆ P to be the set of pairs that are at least in one solution of the
KEP (i.e. one solution of (PIEF)). By inspection of the Program (PIF ), we can write it in
the following way:

max y1 × y2

s.t.
∑
s∈S

δs = 1

y1 =
∑
s∈S

∑
v∈π(s)

δs − d1

y2 = −
∑

v∈P ′
zv − d2

|P ′|z =
∑
s∈S

∑
v∈π(s)

δs

zv ≥
∑

s∈S|v∈π(s)
δs − z ∀v ∈ P ′

zv ≥ z −
∑

s∈S|v∈π(s)
δs ∀v ∈ P ′

δs ≥ 0 ∀s ∈ S,

(PIF )

where π(s) is the set of patients that receive a transplant in solution s. We can use the
following results to modify the Problem (PIF ) and make the objective linear:
Lemma 5.4.1. For any y∗

1, y∗
2, y1, y2 ≥ 0, it holds that

y∗
1 × y∗

2 ≥ y1 × y2 ⇐⇒
√

2y∗
1 × y∗

2 ≥
√

2y1 × y2
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Lemma 5.4.2. The feasible region of the problem

max r

s.t. 0 ≤ r ≤
√

2y1 × y2

y1, y2 ≥ 0

is a rotated second-order cone (y1,y2,r) ∈ Q3
r = {α ∈ R3 | 2α1α2 ≥ α2

3, α1 ≥ 0, α2 ≥ 0}.
Lemma 5.4.3. In an optimal solution,

tv =
∣∣∣∣∣∑
s∈S

δs − z

∣∣∣∣∣ ⇐⇒ (tv, z) ∈ Q2 =
{
α ∈ R2

∣∣∣α1 ≥ |α2|
}

.

The interested reader can find out more about Q3
r, Q2 and second-order conic program-

ming in the article by Lobo et al. [33]. By having a linear objective, it can be observed that
the optimum is an extreme point of the feasible region. From these lemmas, we obtain the
following Master Problem, which is equivalent to (PIF ):

min−r

s.t. (π0)
∑
s∈S

δs = 1

(π1) y1 =
∑
s∈S

∑
v∈π(s)

δs − d1

(π2) y2 = −T − d2

(π3) |P ′|z =
∑
s∈S

∑
v∈π(s)

δs

(βv) zv =
∑

s∈S|v∈π(s)
δs − z ∀v ∈ P ′

(λs) δs ≥ 0 ∀s ∈ S

(u ∈ Q3
r) (y1, y2, r) ∈ Q3

r

(wv ∈ Q2) (tv, zv) ∈ Q2 ∀v ∈ P ′

(η)
∑

v∈P ′
tv = T.

(MP)

Note that only the objective changed to
√

2y1 × y2 which means that the optimal value of
MP does not coincide with the optimal value of P. However, their optimal solutions coincide
since

√
2y1y2 is an increasing function in the domain where y1 and y2 are defined. Indeed,

the reformulation of (MP) is the application of the second-order cone transformation for
geometric mean constraints given in Ben-Tal and Nemirovski [34].
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From this, we can deduce the dual of (MP):

max−π0 + π1d1 + π2d2

s.t.


π1

π2

−1

− u = 0

 η

βv

− wv = 0 ∀v ∈ P ′

π2 − η = 0∑
v∈P ′

βv + |P ′|π3 = 0

(†s) π0 −
∑

v∈π(s)
(π1 + π3 + βv)− λs = 0 ∀s ∈ S

u ∈ Q3
r

wv ∈ Q2 ∀v ∈ P ′

π ∈ R3, β ∈ R|P ′|, η ∈ R, λ ≥ 0.

(DM)

Since the only constraint on λ is λs ≥ 0, we note that the constraints (†) can instead be
written as

(†s) π0 −
∑

v∈π(s)
(π1 + π3 + βv) ≥ 0.

Finally, we get the subproblem:

min
s

π∗
0 −

∑
v∈π(s)

(π∗
1 + π∗

3 + β∗
v) (SP)

s.t.
∑

c∈C|v∈c

sc ≤ 1 ∀v ∈ V

sc ∈ {0,1} ∀c ∈ C.

The set S used in (MP) is defined in (SP) here by the constraints of the cycle formulation.
We remark that many alternatives to define S can be used instead such as PIEF. We start
by solving (MP) for a subset of S. Then, we take the dual variables of the restricted (MP)
and solve (SP). If the objective of the subproblem is negative, then we add the column
corresponding to s. Otherwise, we already have an optimal subset of columns and we do
not need more. The key idea here is that under an optimal solution (π∗, β∗, η∗, λ∗) for the
relaxed dual, if we can find a deterministic exchange s ∈ S that violates the constraint (†s),
then the restricted dual solution is not feasible in the (complete) dual program. We then
need to add that row (corresp., column in (MP)). If all the constraints (†) are satisfied, then
the relaxed dual solution is in fact a solution to (DM). By strong duality, the optimal value
will be the same as for (MP) and we will have our optimal subset of columns and rows. Note
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that the subproblem (SP) is an IP and (MP) and (DM) are SOCPs. This allows us to use
conventional solvers to effectively solve them.

5.5. Experimental results
In the first set of experiments, we start by analyzing the relationship between the clinical

definition of hard-to-match patients and its mathematical counterpart. Explicitly, we eval-
uate the correlation between hard-to-match patients and proxies to the number of solutions
containing them. This allows us to question group fairness and motivate individual fairness.

The second set of experiments is concerned with evaluating the effectiveness of the NSWP
in terms of its running time over large graphs, as well as its efficiency with respect to the
two objectives that are simultaneously optimized. The efficiency is measured in terms of the
POF. This allows us to experimentally validate the use of this method and also provide new
research questions regarding its potential flaws, as well as solutions to them.

5.5.1. Hard-to-match patients

In our application of NSWP to KEPs, we can have various candidates for both the
utilitarian and fairness criteria. To begin with, we considered maximizing the number of
highly sensitized patients, defined by a PRA percentage above 80%. Since these patients
should be harder to match when drawing a donor at random, we would expect these patients
to be in fewer cycles and chains. Thus, we can think of the number of cycles and chains as
a proxy for the number of exchange plans containing a patient. From the UNOS dataset
used in Dickerson et al. [10], we computed the number of highly sensitized vertices that
were contained in every possible cycle. Looking at all instances for which every solution
containing the maximum number of hard-to-match patients could be enumerated, we obtain
the histogram depicted in Figure 5.3. From Figure 5.3, we can directly conclude that many
vertices are in few cycles or no cycles, while very few are in many cycles. However, the same
shape of distribution can be found when looking at vertices with a PRA below 80%. It thus
raises the question of whether this proxy is a good one. The results seem to indicate that it is
not the case. In fact, we should instead focus our attention on the actual number of exchange
plans containing each vertex because this is what captures the true advantage that a patient
might have compared to another. The fact that we are using the structural properties of the
graph instead of relying on distributional assumptions simply based on blood type and PRA
will give us a better notion of compatibility between donors and patients under a random
population. This way, we can know which patients will be hard-to-match to a donor and
prioritize those under our exchange plan. Of course, we are completely disregarding the
sequential notion of KEPs over time: indeed, it might be advantageous to opt for a different
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Fig. 5.3. How often does a vertex appear in cycles?

strategy than the one maximizing the number of hard-to-match patients given a particular
graph instance at time t. This will be touched upon briefly in the following chapter.

Another interesting aspect to analyze is the correlation between the number of solutions
containing a vertex and the number of cycles containing a vertex. Over the same instances
that were solved, we obtain a correlation value of ∼ 0.4. Therefore, we can conclude that
this proxy is not a good one. Again, we should look at better proxies or find the true number
of solutions containing each vertex (i.e. through enumeration). This also casts some doubt
over the concept of group fairness introduced earlier in this text. The whole point of this
approach is to give individuals that are marginalized in terms of their ability to obtain a
compatible donor a better chance of getting one. Of course this comes at the expense of
patients in a better position but altogether, the aim is to achieve some acceptable balance.
From our results, it seems labelling patients as hard-to-match according to group notions
such as PRA or number of cycles is not representative of the true capacity of the Program
to find a compatible donor for these patients. Only by having a grasp on the number of
solutions (i.e. exchange plans) containing each patient, are we able to truly determine how
difficult it is for that patient to obtain a kidney. Whether we are relying on a fair procedure
or a fair outcome, both should take this notion of individual fairness into account.

5.5.2. NSWP solution

We can also look at the efficiency of the NSWP method in terms of the utilitarian
criterion. It would not be worthwhile considering such an optimization paradigm if we were
not able to perform a large number of transplants. In order to do this, we can evaluate the
efficiency of the NSWP as a percentage of the maximal number of transplants that can be
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performed when we completely disregard the fairness component of the optimization. The
results can be observed in Table 5.1. We see that we do reasonably well in terms of the

|P | 16 32 64 128 256
POF 0.3399± 0.1422 0.3334± 0.0889 0.3640± 0.0597 0.3372± 0.0700 0.4173± 0.0173
POU 0.4252± 0.1537 0.5120± 0.0738 0.5620± 0.0565 0.5779± 0.0410 0.6304± 0.0149

Table 5.1. Efficiency of the NSWP compared to Utilitarian approach

number of transplants. However, we are still far from the optimal value since the POF varies
between 0.3 and 0.4. The reason for this has nothing to do with the NSWP per se, but rather
with the choice of metric and reference point (i.e. the nadir point). The particular nature
of the IF metric signifies that when dealing with exchange plans of differing sizes (in the
number of transplants), we must be careful in assigning a fairness value to such an exchange
plan (see Section 6.2). There is also a considerable improvement in the f2 objective. In the
table, we list a measure that is related to POF, which we will call price of utility (or POU).
It is exactly equivalent to the definition of POF but instead of evaluating the f1 score of the
fairness scheme, we evaluate the f2 of the utility-maximizing scheme. Its values can range
from 0 to 1 and a small value implies that one does not pay a high cost to fairness when
maximizing utility (i.e. f1). The purpose of these values is to show that maximizing utility
results in noticeable degradation to the fairness score when compared with the NSWP. The
improvement of the NSWP is even more significant as we increase the size of the graphs
(smaller values are better).

Finally, we evaluate the efficiency of the column generation method by looking at the
average time to find the optimal distribution over solutions of S. These results are presented
in Figure 5.4. We can see that the optimization terminates rather quickly on average. It is
worth pointing out that scaling to very large instances will most likely encounter a bottleneck
in the number of enumerated cycles and chains when using the cycle formulation. Thus,
for these instances, (PIEF) [10] is the most obvious candidate formulation to use in (SP).
This formulation has polynomial size, making the subproblem (SP) more compact and, one
surmises, more easily solvable. By employing the column generation approach described in
the previous section with the (PIEF) formulation, we were able to solve many large instances
(graphs with 256 vertices) relatively quickly. Some instances, however, were harder to solve,
and could not be terminated in the 1-hour time limit. This issue was encountered for a small
subset of the KEP instances: even smaller sizes featured some of these difficult instances to
solve. By extending the time limit to four hours for example, we were able to solve some
of these instances. Some instances could take close to twenty-four hours to solve. The fact
that there are special cases that are hard to solve is not surprising given that (SP) is NP-
hard. From the sparsity of the L1-norm, it is likely that most of the difficulty in solving
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Fig. 5.4. Average time to solve (PIF ) using column generation as a function of graph sizes

the NSWP is related to the size of the mathematical formulation for (SP) and not to the
enumeration itself as this difficulty was present even when simply solving (CF) or (PIEF).
Further investigation needs to be done before concluding as such.
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Chapter 6

Conclusion

Over the course of this thesis, we explored extensively the concept of fairness as it relates
to KEPs. We first motivated the importance of KEPs in helping patients find a compat-
ible donor. The use of KEPs in multiple countries, combined with ever-increasing pools
of incompatible patient-donor pairs, implies that we must do everything we can to ensure
a fair selection process when determining an exchange plan. We then proceed to describe
KEPs mathematically and highlight the fact that many solutions often exist. Because of
this, we motivated the need to enumerate multiple solutions. By having more flexibility in
the choice of exchange plan, decision-makers are better equipped to combat biases against
certain groups or individuals. Chapter 3 introduces the concept of individual fairness as an
alternative to group fairness. By balancing the probabilities for each pair of being selected
as part of an exchange plan, we ensure that no pair is unjustly treated and disregarded.
We also suggest a column generation to ease the search of an optimal distribution for IF.
Because not every solution is enumerated, we are able to solve many instances for which
enumeration would be too lengthy or even infeasible. Chapter 4 discusses various fairness
schemes and their benefits and costs. We provide mathematical descriptions of these schemes
and recommend an alternative mechanism that can balance both fairness and utility. This
leads to Chapter 5, which introduces the Nash Social Welfare Program as an improvement
over the SWP. This framework allows us to optimize for two objectives at the same time and
thus strike a balance between fairness and utility. The method is applied to KEPs and we
extend the mathematical formulations to scale the method to larger graphs. We also provide
an analysis of the effectiveness of the NSWP with respect to its two objectives.

6.1. Extended literature
As mentioned before in this thesis, the main goal of KEPs is to maximize the benefit of

the patients. In an attempt to achieve this goal, the practiced trend assigns weights that
allow to maximize the number of transplants while prioritizing certain groups of patients



(See for example Biró et al. [17] for a description of the disadvantaged groups receiving
special weight in European KEPs). A group that has received particular attention is the set
of highly-sensitized patients, who have a low probability of being compatible with a random
kidney. In this context, Dickerson et al. [23] concentrate on the tradeoff of moving from
maximizing the number of transplants (utilitarian objective function) towards maximizing
the number of highly-sensitized patients receiving a kidney. However, McElfresh et al. [35]
show that such an approach can sacrifice efficiency significantly and thus propose the use of
a threshold to balance group fairness and the number of transplants. Freedman et al. [36]
focus on the fact that such prioritization can depend on human values and use it to break
ties between solutions achieving the maximum number of transplants.

The works mentioned above consider static KEPs, as it was the case in this text. An-
ticipation of future kidney exchanges is taken into account in Dickerson and Sandholm [37]
by assigning weights to certain exchanges, such as the ones involving highly-sensitized pa-
tients, and also assigning a chance of failure to arcs in a matching. Gao [38] also argues
that instead of focusing solely on highly-sensitized patients, a dynamic KEP should take
into account time-critical pairs, i.e. pairs whose patients are in critical condition.

In Klimentova et al. [39], Biro et al. [30], cross-border programs are considered. Instead
of patient fairness, these works concentrate on fairness between countries, namely in terms
of the contribution of each country to an international KEP pool. Likewise, e.g. Sönmez and
Ünver [40], Ashlagi and Roth [41], Carvalho and Lodi [20] investigate multi-agent programs
but through the lens of non-cooperative game theory.

The majority of current studies on fairness in KEPs focus on group fairness. The clos-
est work to individual fairness is on egalitarian mechanisms seeking the so-called Lorenz-
dominance1(e.g. [42, 43]), which, simply put, focuses on equalizing the patients’ individual
matching probabilities. Our work is more general since it is not particularly tailored for ex-
ploring the mathematical structure of pairwise exchanges and we present a variety of fairness
selection policies.

6.2. Future work
The algorithmic enhancement that was developed in Section 5.4 made use of the L1-norm

for the fairness objective. However, it can be observed that a limitation arises when using
this fairness criterion. Farnadi et al. [6] use the L1-norm to balance the patient probabilities
(Chapters 2 and 5). Nonetheless, we do so by first restricting the set of solutions to be the
ones maximizing the number of transplants. The goal of the NSWP, on the other hand, is
to determine how and if it is possible to relax that optimality constraint in order to achieve
a fairer distribution in terms of the L1 score. But what happens under the empty exchange

1A Lorenz-dominant policy is not guaranteed to exist for KEPs considering exchanges larger than 2.
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plan, i.e. when no transplant is performed? Obviously, this solution is far from optimal in
the number of transplants performed. However, its L1 measure is 0, which is the best value
obtainable. We can observe that depending on how we choose the reference point d, this can
cause undesirable solutions. Let us consider the nadir point to be the reference point. Using
the same function f1 and f2 as in Section 5.4, we get the following nadir point:

d1 = inf
δ|δ∈arg max f2(δ)

f1(δ)

= 0

d2 = inf
s|s∈arg max f1(s)

f2(s)2

= −
∑

v∈P ′∩π(s∗)
(1− 1

|P ′|
|π(s∗)|)−

∑
v∈P ′\π(s∗)

1
|P ′|
|π(s∗)|

= −|P ′ ∩ π(s∗)| − (|P ′ \ π(s∗)| − |P ′ ∩ π(s∗)|)|π(s∗)|
|P ′|

.

Thus, a deterministic exchange plan that maximizes the number of transplants could be
considered worse than a nearly empty exchange plan. For the sake of clarity, if we suppose
that s is an exchange plan with |π(s)| = |P ′|

2 and K = 2, we could take the nearly empty
exchange plan s′ to be any two vertices forming a pairwise exchange under s. It can be
observed that s′ has a L1 score converging to 3:

lim
|P ′|→∞

2×
(

1− 2
|P ′|

)
+ (|P ′| − 2)× 2

|P ′|
= lim

|P ′|→∞
3− 8
|P ′|

= 3.

This is much less than the score for s, which is equal to |P ′|
2 . Therefore, by using the nadir

point as defined above, the exchange plan s′ scores better than s: the NSWP value for s

is |P ′|
2 × (d2 − d2) = 0, while it is strictly greater than 0 for s′. This is a problem since

under no circumstance, does it not make sense to consider s′ to be better than an exchange
plan containing it (s in the discussion). The issue can be remedied by simply changing the
reference d2 to be a higher value such as the theoretically highest value of L1 possible for any
graph of the same size (i.e. when half of the vertices are in an exchange plan). Nevertheless,
it might not be immediately obvious if this is a good idea or not. The fact that we would have
to try the optimization process and then adjust the reference point (or indeed the powers
wi) subsequently seems undesirable.

The main objective of a good IF criterion is to penalize distributions that do not involve
as many pairs as possible and that favour some pairs disproportionately over others. Thus,
from the above discussion, we propose a new definition of an individual fairness criterion.
It is worth to point out that this was not an issue when considering only optimal solutions
in terms of the number of transplants (in Section 3.1). However, because we now seek to

2Abuse of notation for f2.
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include solutions that might not be optimal under f1, we must adjust the definition of the
IF metric. To resolve the issue described in the previous paragraph, we can simply compute
the metric on distributions over exchange plans that cannot be extended. In other words,
we do not consider an exchange plan s if there exists another exchange plan s′ such that
π(s) ⊊ π(s′). This way, the only suboptimal exchange plans (with respect to f1) considered
are those that feature at least one new pair. This idea is somewhat related to the greedy
cover enumeration of Section 2.2. In turn, we must adapt (SP) in the column generation
approach. The new formulation is now a bilevel optimization program.

min
s,s′

π∗
0 −

∑
v∈π(s)

(π∗
1 + π∗

3 + β∗
v) (SP’)

s.t. f1(s′) ≤ f1(s)

s′ ∈ arg max

f1(t) :
∑

c∈C|v∈c

sc ≤
∑

c∈C|v∈c

tc ≤ 1 ∀v ∈ V ∧ tc ∈ {0,1} ∀c ∈ C

∑
c∈C|v∈c

sc ≤ 1 ∀v ∈ V

sc ∈ {0,1} ∀c ∈ C

In other words, the subproblem still minimizes the same objective, but now there must be
a certificate that no other exchange plan s′ is such that π(s) ⊆ π(s′), i.e. no other exchange
plan strictly contains the set of pairs included in s.

One interesting future research direction is the evaluation of patient utility function.
Specifically, we are interested in learning their utility functions using machine learning. This
can be useful for multiple reasons. In this thesis, it was assumed for the most part that all
patients are equally satisfied with being part of an exchange plan. This was modeled using
an indicator function: 0 utility is derived when the patient is not selected and a utility score
of 1 otherwise. In reality, it is expected that different patients have different preferences.
Many factors can influence the level of satisfaction of a patient in a KEP. For instance, the
quality of the graft and its level of compatibility with the patient certainly influence the
latter’s satisfaction [44]. There is also the time spent waiting in the KEP pool and how it
affects the deterioration of the patient’s health. An immediate difficulty with learning the
patient utilities is to control for the bias that each individual possesses. In other words, the
utilities should be invariant to the choice of patient when the parameters (i.e. characteristics
of the patient, graft, time spent in the KEP pool, etc.) are unchanged. This is an important
property to strive for as we must be able to understand the tradeoff between the utilities of
different patients, since they would be hard to compare otherwise.
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Another area of investigation is related to uniform sampling of a set of optimal solution
in a mathematical programming problem. This work proposes simple enumeration method-
ologies through IP and CP to find a distribution over the set of solutions that minimizes
some fairness loss. An interesting research direction consists in uniformly (or near-uniformly)
sampling the set of optimal solutions of a mathematical program. This is what Gomes et al.
[32] introduce. However, the method still involves an exponential number of constraints
to be able to sample near-uniformly the set of optimal solutions. Being able to sample it
efficiently could potentially lead to useful fairness applications whenever there are limited
resources that must be distributed amongst a population. Diversity of solutions can also
leave decision-makers in better positions if other constraints arise.

In the same vein as the previous idea, building neural networks that can learn distribu-
tions over discrete solutions without having to fully enumerate the set of optimal solutions
would facilitate the adoption of IF methods to KEPs. This would scale better to large graphs
and could translate to a wider adoption in large KEP pools, ultimately helping more patients
to find a compatible donor. Also, applications such as large barter exchange systems could
prove to be interesting from an economic point of view.

Finally, the work presented in this thesis only focuses on static KEP pools: time is not
taken into account when optimizing an objective. It is of interest to explore the behaviour
of KEP in a dynamic setting. In fact, a dynamic KEP enables more flexibility in terms
of fairness since it can be optimized over multiple time steps. As the horizon is infinite,
some approaches of reinforcement learning can be useful in understanding and modeling the
problem. In fact, it might be necessary to focus on a more general description than simply
KEPs since the general problem of optimization over an infinite horizon with constraints is
not currently well understood.

77





References

[1] CDC. Chronic kidney disease basics, Feb 2020. URL https://www.cdc.gov/
kidneydisease/basics.html.

[2] K Park, JH Lee, KH Huh, SI Kim, and YS Kim. Exchange living-donor kidney trans-
plantation: diminution of donor organ shortage. Transplantation proceedings, 36(10):
2949–295, 2004.

[3] David Manlove and Gregg O’Malley. Paired and altruistic kidney donation in the UK:
algorithms and experimentation. In SEA, volume 7276 of Lecture Notes in Computer
Science, pages 271–282. Springer, 2012.

[4] Shafi Malik and Edward Cole. Foundations and principles of the canadian living donor
paired exchange program. Canadian journal of kidney health and disease, 1(6), 2014.

[5] Marry De Klerk, Karin M Keizer, Frans HJ Claas, Marian Witvliet, Bernadette JJM
Haase-Kromwijk, and Willem Weimar. The dutch national living donor kidney exchange
program. American Journal of Transplantation, 5(9):2302–2305, 2005.

[6] Golnoosh Farnadi, William St-Arnaud, Behrouz Babaki, and Margarida Carvalho. In-
dividual fairness in kidney exchange programs. Proceedings of the AAAI Conference on
Artificial Intelligence, 35(13):11496–11505, May 2021. URL https://ojs.aaai.org/
index.php/AAAI/article/view/17369.

[7] Dimitris Bertsimas, Vivek Farias, and Nikolaos Trichakis. The price of fairness. Opera-
tions Research, 59:17–31, 02 2011. doi: 10.1287/opre.1100.0865.

[8] G. Owen. Game Theory, volume Fourth edition of 0. Emerald Group Publishing
Limited, 2013. ISBN 9781781905081. URL https://books.google.fr/books?id=
yeVbAAAAQBAJ.

[9] Hadi Charkhgarda, Kimia Keshanianb, Rasul Esmaeilbeigic, and Parisa Charkhgardc.
The magic of nash social welfare in optimization: Do not sum, just multiply! Optimiza-
tion Online, 2020.

[10] John P. Dickerson, David F. Manlove, Benjamin Plaut, Tuomas Sandholm, and James
Trimble. Position-indexed formulations for kidney exchange. In Proceedings of the
2016 ACM Conference on Economics and Computation, EC ’16, page 25–42, New York,
NY, USA, 2016. Association for Computing Machinery. ISBN 9781450339360. doi:

https://www.cdc.gov/kidneydisease/basics.html
https://www.cdc.gov/kidneydisease/basics.html
https://ojs.aaai.org/index.php/AAAI/article/view/17369
https://ojs.aaai.org/index.php/AAAI/article/view/17369
https://books.google.fr/books?id=yeVbAAAAQBAJ
https://books.google.fr/books?id=yeVbAAAAQBAJ


10.1145/2940716.2940759. URL https://doi.org/10.1145/2940716.2940759.
[11] John F. Nash. The bargaining problem. Econometrica, 18(2):155–162, 1950. ISSN

00129682, 14680262. URL http://www.jstor.org/stable/1907266.
[12] John Rawls. A theory of justice. Oxford University Press, 1973.
[13] David J. Abraham, Avrim Blum, and Tuomas Sandholm. Clearing algorithms for barter

exchange markets: Enabling nationwide kidney exchanges. In Proceedings of the 8th
ACM Conference on Electronic Commerce, EC ’07, pages 295–304, New York, NY,
USA, 2007. ACM. ISBN 978-1-59593-653-0. doi: 10.1145/1250910.1250954. URL http:
//doi.acm.org/10.1145/1250910.1250954.

[14] Alvin E. Roth, Tayfun Sönmez, and M. Utku Ünver. Efficient kidney exchange: Co-
incidence of wants in markets with compatibility-based preferences. American Eco-
nomic Review, 97(3):828–851, June 2007. doi: 10.1257/aer.97.3.828. URL https:
//www.aeaweb.org/articles?id=10.1257/aer.97.3.828.

[15] Miguel Constantino, Xenia Klimentova, Ana Viana, and Abdur Rais. New insights on
integer-programming models for the kidney exchange problem. European Journal of
Operational Research, 231(1):57–68, 2013. ISSN 0377-2217. doi: https://doi.org/10.
1016/j.ejor.2013.05.025. URL https://www.sciencedirect.com/science/article/
pii/S0377221713004244.

[16] Ross Anderson, Itai Ashlagi, David Gamarnik, and Alvin E. Roth. Finding long chains in
kidney exchange using the traveling salesman problem. Proceedings of the National Acad-
emy of Sciences, 112(3):663–668, 2015. ISSN 0027-8424. doi: 10.1073/pnas.1421853112.
URL https://www.pnas.org/content/112/3/663.

[17] Péter Biró, Joris van de Klundert, David Manlove, William Pettersson, Tommy Ander-
sson, Lisa Burnapp, Pavel Chromy, Pablo Delgado, Piotr Dworczak, Bernadette Haase,
Aline Hemke, Rachel Johnson, Xenia Klimentova, Dirk Kuypers, Alessandro Nanni
Costa, Bart Smeulders, Frits Spieksma, María O. Valentín, and Ana Viana. Modelling
and optimisation in european kidney exchange programmes. European Journal of Opera-
tional Research, 2019. ISSN 0377-2217. doi: https://doi.org/10.1016/j.ejor.2019.09.006.
URL http://www.sciencedirect.com/science/article/pii/S0377221719307441.

[18] P. Biró, L. Burnapp, B. J. Haase, A. Hemke, R. Johnson, J. van de Klundert, and
D. Manlove. Kidney exchange practices in Europe. First Handbook of the COST Ac-
tion CA15210: European Network for Collaboration on Kidney Exchange Programmes
(ENCKEP), 2017.

[19] Susan Saidman, Alvin Roth, Tayfun Sönmez, Utku Unver, and Francis Delmonico.
Increasing the opportunity of live kidney donation by matching for two- and three-way
exchanges. Transplantation, 81:773–82, 04 2006. doi: 10.1097/01.tp.0000195775.77081.
25.

80

https://doi.org/10.1145/2940716.2940759
http://www.jstor.org/stable/1907266
http://doi.acm.org/10.1145/1250910.1250954
http://doi.acm.org/10.1145/1250910.1250954
https://www.aeaweb.org/articles?id=10.1257/aer.97.3.828
https://www.aeaweb.org/articles?id=10.1257/aer.97.3.828
https://www.sciencedirect.com/science/article/pii/S0377221713004244
https://www.sciencedirect.com/science/article/pii/S0377221713004244
https://www.pnas.org/content/112/3/663
http://www.sciencedirect.com/science/article/pii/S0377221719307441


[20] Margarida Carvalho and Andrea Lodi. Game theoretical analysis of kidney exchange
programs. arXiv preprint arXiv:1911.09207, 2019.

[21] David García-Soriano and Francesco Bonchi. Fair-by-design algorithms: matching prob-
lems and beyond. CoRR, abs/1802.02562, 2018. URL http://arxiv.org/abs/1802.
02562.

[22] Francesca Rossi, Peter van Beek, and Toby Walsh, editors. Handbook of Constraint Pro-
gramming, volume 2 of Foundations of Artificial Intelligence. Elsevier, 2006. ISBN 978-0-
444-52726-4. URL http://www.sciencedirect.com/science/bookseries/15746526/
2.

[23] John P Dickerson, Ariel D Procaccia, and Tuomas Sandholm. Price of fairness in kidney
exchange. In Proceedings of the 2014 international conference on Autonomous agents
and multi-agent systems, pages 1013–1020. International Foundation for Autonomous
Agents and Multiagent Systems, 2014.

[24] M. B. Zafar, Isabel Valera, M. Gomez-Rodriguez, and K. Gummadi. Fairness con-
straints: Mechanisms for fair classification. In AISTATS, 2017.

[25] Laurence Wolsey. Column (and Row) Generation Algorithms, chapter 11, pages 213–
233. John Wiley & Sons, Ltd, 2020. ISBN 9781119606475. doi: https://doi.org/
10.1002/9781119606475.ch11. URL https://onlinelibrary.wiley.com/doi/abs/10.
1002/9781119606475.ch11.

[26] Ken Kipnis. Triage and ethics, Jan 2002. URL https://journalofethics.ama-assn.
org/article/triage-and-ethics/2002-01.

[27] Alexander F. C. Hulsbergen, Marleen M. Eijkholt, Naci Balak, Jannick Brennum, Cia-
rán Bolger, Anna-Margarete Bohrer, Zeev Feldman, Daniel Holsgrove, Neil Kitchen,
Tiit I. Mathiesen, Wouter A. Moojen, Nicolás Samprón, Martin Sames, Ulrika Sand-
vik, Magnus Tisell, and Marike L. D. Broekman. Ethical triage during the COVID-19
pandemic: a toolkit for neurosurgical resource allocation. Acta Neurochirurgica, 162(7):
1485–1490, July 2020. ISSN 0001-6268, 0942-0940. doi: 10.1007/s00701-020-04375-w.
URL https://link.springer.com/10.1007/s00701-020-04375-w.

[28] M.T.L.B. An introduction to probability theory and its applications, vol. i. by william
feller. [pp. xii 419. new york: John wiley and sons inc.; london: Chapman and hall ltd.
1950. price 48s.]. Journal of the Staple Inn Actuarial Students’ Society, 10(4):316–318,
1951. doi: 10.1017/S0020269X00004679.

[29] Daniel Bernoulli. Exposition of a new theory on the measurement of risk. Econometrica,
22(1):23–36, 1954. ISSN 00129682, 14680262. URL http://www.jstor.org/stable/
1909829.

[30] Peter Biro, Márton Gyetvai, Xenia Klimentova, Joao Pedro Pedroso, William Petters-
son, and Ana Viana. Compensation scheme with shapley value for multi-country kidney
exchange programmes. In Proceedings of the 34th International ECMS Conference on

81

http://arxiv.org/abs/1802.02562
http://arxiv.org/abs/1802.02562
http://www.sciencedirect.com/science/bookseries/15746526/2
http://www.sciencedirect.com/science/bookseries/15746526/2
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119606475.ch11
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119606475.ch11
https://journalofethics.ama-assn.org/article/triage-and-ethics/2002-01
https://journalofethics.ama-assn.org/article/triage-and-ethics/2002-01
https://link.springer.com/10.1007/s00701-020-04375-w
http://www.jstor.org/stable/1909829
http://www.jstor.org/stable/1909829


Modelling and SimulationECMS 2020, pages 129–136, 06 2020. doi: 10.7148/2020-0129.
[31] Gary E Bolton, Jordi Brandts, and Axel Ockenfels. Fair procedures: Evidence

from games involving lotteries*. The Economic Journal, 115(506):1054–1076,
2005. doi: https://doi.org/10.1111/j.1468-0297.2005.01032.x. URL https:
//onlinelibrary.wiley.com/doi/abs/10.1111/j.1468-0297.2005.01032.x.

[32] Carla P Gomes, Ashish Sabharwal, and Bart Selman. Near-uniform sampling of
combinatorial spaces using xor constraints. In B. Schölkopf, J. Platt, and T. Hoff-
man, editors, Advances in Neural Information Processing Systems, volume 19.
MIT Press, 2007. URL https://proceedings.neurips.cc/paper/2006/file/
4110a1994471c595f7583ef1b74ba4cb-Paper.pdf.

[33] Miguel Sousa Lobo, Lieven Vandenberghe, Stephen Boyd, and Hervé Lebret. Applica-
tions of second-order cone programming. Linear Algebra and its Applications, 284(1):
193–228, 1998. ISSN 0024-3795. doi: https://doi.org/10.1016/S0024-3795(98)10032-0.
URL https://www.sciencedirect.com/science/article/pii/S0024379598100320.
International Linear Algebra Society (ILAS) Symposium on Fast Algorithms for Con-
trol, Signals and Image Processing.

[34] A. Ben-Tal and A. Nemirovski. Lectures on Modern Convex Optimization: Analysis,
Algorithms, and Engineering Applications. MPS-SIAM Series on Optimization. Society
for Industrial and Applied Mathematics, 2001. ISBN 9780898718829. URL https:
//books.google.ca/books?id=CENjbXz2SDQC.

[35] Duncan C. McElfresh, Hoda Bidkhori, and John P. Dickerson. Scalable robust kidney
exchange. CoRR, abs/1811.03532, 2018. URL http://arxiv.org/abs/1811.03532.

[36] Rachel Freedman, Jana Schaich Borg, Walter Sinnott-Armstrong, John P. Dickerson,
and Vincent Conitzer. Adapting a kidney exchange algorithm to align with human
values. In AIES, page 115, 2018.

[37] John Paul Dickerson and Tuomas Sandholm. Balancing efficiency and fairness in dy-
namic kidney exchange. In AAAI Workshop: Modern Artificial Intelligence for Health
Analytics, volume WS-14-08 of AAAI Workshops. AAAI, 2014.

[38] Irena Gao. Fair matching in dynamic kidney exchange. CoRR, abs/1912.10563, 2019.
URL http://arxiv.org/abs/1912.10563.

[39] Xenia Klimentova, Ana Viana, Jo ao Pedro Pedroso, and Nicolau Santos. Fair-
ness models for multi-agent kidney exchange programmes. Omega, 2020. ISSN
0305-0483. doi: https://doi.org/10.1016/j.omega.2020.102333. URL https://www.
sciencedirect.com/science/article/pii/S0305048320306873.

[40] Tayfun Sönmez and M. Utku Ünver. Market design for kidney exchange. In The Hand-
book of Market Design. Oxford University Press, 2013.

[41] Itai Ashlagi and Alvin E. Roth. Free riding and participation in large scale, multi-
hospital kidney exchange. Theoretical Economics, 9(3):817–863, 2014. ISSN 1555-7561.

82

https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1468-0297.2005.01032.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1468-0297.2005.01032.x
https://proceedings.neurips.cc/paper/2006/file/4110a1994471c595f7583ef1b74ba4cb-Paper.pdf
https://proceedings.neurips.cc/paper/2006/file/4110a1994471c595f7583ef1b74ba4cb-Paper.pdf
https://www.sciencedirect.com/science/article/pii/S0024379598100320
https://books.google.ca/books?id=CENjbXz2SDQC
https://books.google.ca/books?id=CENjbXz2SDQC
http://arxiv.org/abs/1811.03532
http://arxiv.org/abs/1912.10563
https://www.sciencedirect.com/science/article/pii/S0305048320306873
https://www.sciencedirect.com/science/article/pii/S0305048320306873


doi: 10.3982/TE1357.
[42] Alvin E. Roth, Tayfun Sönmez, and M. Utku Ünver. Pairwise kidney exchange. Journal

of Economic Theory, 125(2):151 – 188, 2005. ISSN 0022-0531. doi: https://doi.org/
10.1016/j.jet.2005.04.004. URL http://www.sciencedirect.com/science/article/
pii/S0022053105001055.

[43] Jian Li, Yicheng Liu, Lingxiao Huang, and Pingzhong Tang. Egalitarian pairwise kid-
ney exchange: Fast algorithms vialinear programming and parametric flow. In Pro-
ceedings of the 2014 International Conference on Autonomous Agents and Multi-Agent
Systems, AAMAS ’14, page 445–452, Richland, SC, 2014. International Foundation for
Autonomous Agents and Multiagent Systems. ISBN 9781450327381.

[44] Margaux Luck, Tristan Sylvain, Héloïse Cardinal, Andrea Lodi, and Yoshua Bengio.
Deep learning for patient-specific kidney graft survival analysis. CoRR, abs/1705.10245,
2017. URL http://arxiv.org/abs/1705.10245.

83

http://www.sciencedirect.com/science/article/pii/S0022053105001055
http://www.sciencedirect.com/science/article/pii/S0022053105001055
http://arxiv.org/abs/1705.10245




Appendix A

Optimal L1 distribution for Figure 3.2

First, we denote the set of vertices of the yellow and green paths by P1 and P2, respectively.
We begin with the followin lemma:
Lemma A.0.1. The mean vertex probability δ̄ is a function of the graph G and is independent
of the choice of distribution δ when S only contains solutions that maximize the number of
transplants.

Proof. We write the mean vertex probability:

δ̄ = 1
|P ′|

∑
v∈P ′

∑
s∈S|v∈π(s)

δs

= 1
|P ′|

∑
s∈S

∑
v∈P ′|v∈π(s)

δs

= 1
|P ′|

∑
s∈S

|π(s)|δs

= OPT

|P ′|
∑
s∈S

δs

= OPT

|P ′|
.

□

Using this result, we suppose that we have the following distribution δ for Figure 3.2:
• The cycle CL is selected with a probability of δ̄. We will abuse notation and denote

the probability associated with selecting CL as δCL
;

• The yellow and green paths are each selected with a probability of 1
2 − δ̄; we will

abuse notation and denote this as δPi
.

We now prove the main result.
Proposition A.0.2. The distribution δ introduced above for is an optimum for the L1-norm
of Figure 3.2.



Proof. We begin with our initial distribution δ with mean vertex probabillity δ̄. We deviate
from it with an arbitrary small vector ϵ (same dimension as δ). We write out the L1-norm
explicitly:

L1(δ + ϵ) =
∑

v∈P1∆P2

δ̄ −
(

δPi
−

∑
s|v∈π(s)

ϵs

)+
∑

v∈P1∩P2\CL

2δPi
+

∑
s|v∈π(s)

ϵs − δ̄


+

∑
v∈CL∩P1∩P2

[1 +
∑

s|v∈π(s)
ϵs − δ̄] +

∑
v∈CL\(P1∪P2)

∣∣∣∣∣∣δ̄ −
(

δCL
+ ϵCL

)∣∣∣∣∣∣
= L1(δ)−

∑
v∈P1∆P2

∑
s|v∈π(s)

ϵs +
∑

v∈P1∩P2

∑
s|v∈π(s)

ϵs +
∑

v∈CL\(P1∪P2)
|ϵCL
|

= L1(δ)−
∑

s

∑
v∈P1∆P2|v∈π(s)

ϵs +
∑

s

∑
v∈P1∩P2|v∈π(s)

ϵs +
∑

v∈CL\(P1∪P2)
|ϵCL
|

= L1(δ)−
∑

s ̸=CL

|P1∆P2|ϵs +
∑

s ̸=CL

|P1 ∩ P2|ϵs +
∑

v∈CL\(P1∪P2)
|ϵCL
|+ ϵCL

= L1(δ) +
∑

v∈CL\(P1∪P2)
|ϵCL
|+ ϵCL

≥ L1(δ).

We get the last equality since |P1∆P2| = |P1 ∩ P2| = L
2 . Because ϵ is arbitrarily small,

we conclude that δ is locally optimal. Because L1 is convex, this implies that δ is a global
optimum. □
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