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Résumé

La complexité du logiciel augmente tout le temps: les systèmes deviennent plus grands et
plus complexes. La modélisation est un élément central de génie logicielle pour relever les
défis de la complexité. Cependant, un défi majeur auquel est confronté le développement
de logiciels axés sur les modèles est l’évolutivité des outils de modélisation avec une taille
croissante de modèles. Certaines initiatives ont commencé à explorer la modélisation tout
en stockant des modèles dans une base de données de graphes. Dans cette thèse, nous
présentons NMF, un framework pour créer et éditer des modèles dans une base de données
Neo4j élevée à l’abstraction du langage de modélisation.

Mots-clé: Ingénierie dirigée par les modèles, langage dédié, editeur dédié,
base de données de graphes
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Abstract

Software complexity increases all the time: systems become larger and more complex. Mod-
eling is a central part of software engineering to tackle challenges of complexity. However, a
prominent challenge model-driven software development is facing is scalability of modeling
tools with a growing size of models. Some initiatives started exploring modeling while stor-
ing models in a graph database. In this thesis, we present NMF, a framework to create and
edit MDE models in a Neo4j database lifted to the abstraction of the modeling language.

Keywords: Model-Driven Engineering, domain-specific language, domain-
specific editor, graph database
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Chapter 1

Introduction

1.1. Context
Nowadays, software is everywhere. Software programs are ubiquitously used to solve

problems from the real physical world. Most often, software depends on data. A cause of
the continually increasing software complexity [1] is the increasing amount of required data.
A large amount of data causes a new problem: a modern software needs means to handle,
store, and manipulate such amount of data.

Software engineering is a discipline that focuses on building high-quality software. One
of the quality attributes of software is scalability – the ability of software to deal with more
and more data [2]. Nowadays, most software uses databases – specialized software primarily
designed to handle large data. The databases provide data scale as well as data manipulation
operations quite efficiently.

Model-Driven Engineering (MDE) is a software development methodology that aims to
describe (software) systems, as well as a system behavior through models [3]. MDE focuses
on constructing, analyzing, and transforming the models. In MDE terminology, a model is
an abstraction of a software system that can highlight the desired aspect with a particular
level of detail. An abstraction allows to focus more on problem details of a domain rather
than on the platform-specific and implementation details. Thus, MDE serves to facilitate a
software development process rising the level of abstraction through modeling.

1.2. Problematic
Models, which are primarily artifacts in MDE, should be viewed as ordinary data sets.

Therefore, MDE models have common data characteristics, including scalability. The scala-
bility challenges in software engineering are even more present in MDE: with the continuous
growth of models size, MDE is still far from efficient data scaling. Modeling tools fail to
handle large models in terms of time, responsiveness, and crashes. For instance, if we load a



model of size 1GB in Eclipse IDE [4, 5] (the famous MDE modeling environment) – it will
crash [6]. In MDE some work has been done to resolve this problem. For example, there is
an initiative to port modeling into databases (relational [7], and graph databases [8]).

In this thesis we address the problem of scalability in MDE by providing a framework
to perform modeling activities directly in databases. Although the existing solutions resolve
some scalability problems, they are not reusable outside of Eclipse IDE: it is not possible to
integrate them with other technologies. Therefore, we aim to provide a lightweight modeling
framework with minimum dependencies that is able to solve the model scalability problem.

1.3. Contribution
The goal of this thesis is to provide a seamless integration of modeling in memory or in a

database to scale activities to models of arbitrary size. More specifically, we have developed
a modeling framework (NMF) for the Neo4j database [9] with the following contributions:

• a framework to manipulate MDE models directly in the database
• a loader to port an existing model or metamodel from commonly used XMI model

persistence format [10] into the database
• a code generator – to produce a domain-specific API for any domain (i.e., DSL). The

generated code is closer to the abstraction of the problem domain rather then to the
solution domain.

The whole framework is packaged under an easy to use library available at [11].

1.4. Outline
The whole thesis consists of 8 chapters. In Chapter 2, we present an overview of MDE

methodology and existing approaches to interact with large models. Chapter 3 briefly de-
scribes our solution to handle MDE models – Neo Modeling Framework (NMF). Chapters
4, 5, and 6 provide detailed descriptions of the three main modules of NMF. In Chapter 7,
we present the performance testing result of NMF. Finally, we conclude in Chapter 8.
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Chapter 2

Background and Related Work

In this chapter, we introduce a background needed to understand the purpose of NMF. In
Section 2.1, we review the concept of Model-driven engineering (MDE). In Section 2.2, we
overview in detail the Neo4j database – particular storage we use for storing MDE-related
data. In Section 2.3, we overview existing modeling solutions that implement the MDE
concepts.

2.1. Model-driven engineering
Nowadays, software is ubiquitously used to solve problems from the real world. A soft-

ware development process requires developers to map concepts of a particular domain from
the real world into a virtual software world (i.e., software solution). The common way to
perform this task is to build abstractions that match a real world system but are expressed
in common programming technologies such as programming languages. Since software com-
plexity constantly increases all the time, the development process requires more cognitive
effort from the programmer to build those abstractions [3].

Over time, software development technologies have evolved considerably: from low-level
machine-oriented practices (such as assembly language) to modern high-level programming
languages (such as Java or C#). Every new generation of development technologies aims to facili-
tate the development process by augmenting the level of abstraction: from the computer (hardware)
concept up to a concept of a particular application domain. The higher level of abstraction is, the
more a programmer can focus on a solution rather than on solving typical problems imposed by
concrete development tools [1, 12].

2.1.1. MDE principles

Model-driven engineering (MDE) is a software development paradigm that allows to reduce
a software development complexity raising the level of abstraction [3]. MDE relies on models to
describe a system design and different system workflows, abstracting from concrete development
tools and technologies. MDE promotes a concept where a model and model transformations are
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Fig. 2.1. Structure of a modeling language

considered as basic units of development. This means that a software solution can be expressed at
an abstract level: in a model using concepts and notations that directly match the original domain.
Afterwards, the model can be transformed into executable artifacts through model transformation.

A modeler usually operates on domain-specific models (DSM): conceptual models that repre-
sent a particular field of knowledge. DSM highlight a desired aspect of a system for a domain
expert, which is familiar with the domain concepts and notations he usually works with. A model
is a platform-independent artifact that can describe only relevant parts of a system, omitting im-
plementation details. Therefore, it ensures a high level of abstraction.

Model transformations are used to express the behavior of models [13]. Model transformation is
the process of converting one model into another one according to some predefined transformation
rules. The resulting model may represent any software artifact, such as configuration files, data
structure definitions, message schemes, or even a programming code.

2.1.2. Modeling language engineering

To define a model, a modeler needs a modeling language. A modeling language defines a
set of rules to express a precise model. Usually, these rules come from a particular application
domain. To distinguish between languages depending on the specific domain, the concept of domain-
specific languages (DSL) was introduced. DSLs provide concepts, rules, and notations tailored to a
particular field of knowledge. Therefore, a domain expert can use a DSL to define DSMs. Fig. 2.1
shows typical components of a modeling language. It consists of three components: abstract syntax,
concrete syntax, and semantics.

2.1.2.1. Abstract syntax. The abstract syntax of a DSL serves to define the domain. It con-
sists of two components: the structural part and the optional static semantics part. The structural
part is usually specified by a metamodel using UML class diagrams notation [14]. It defines the
allowed types, relationships between them, and attributes for each type. The static semantics is a
set of additional constraints to ensure the well-formedness of DSMs. The common way to define
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LibraryContent

name: String

author: String

Book Magazine

0..500contents

Fig. 2.2. Metamodel of the Library language expressed in UML

the constraints is to use Object Constraints Language (OCL) [15]. For example, constraints may
specify that the value of the name attribute of a class must be unique across all its instances.

Fig. 2.2 shows a metamodel example of Library DSL. Here, a Library may contain up to
one hundred Bookshelves, in turn containing up to five hundred Books or Magazines. The library
must have a name. Also, any book and magazine are generalized in an abstract LibraryContent
entity, which has a title and author name. Here, the abstract syntax comes with no additional
constraints.

2.1.2.2. Concrete syntax. The concrete syntax of a DSL serves to define a visual representa-
tion of a model. A concrete syntax is a set of elements from which a modeler can create a model.
These elements are specified by mapping each entity of a metamodel to a concrete visual represen-
tation. This means that a concrete syntax should be unambiguous. A concrete syntax can be either
textual or graphical. A textual concrete syntax is defined by grammars [16], whereas a graphical
concrete syntax is defined with visual shapes [17].

2.1.2.3. Semantics. The semantics of DSL defines the meaning of the language. Theoretically,
the semantics is a link between the abstract syntax of the DSL and an application domain. The
abstract syntax is typically defined according to the notions and rules of some domain. The seman-
tics can "explain" the meaning of elements of the abstract syntax of a DSL according to the chosen
domain. Every element of the language must have exactly one meaning.

A common task in MDE is to provide a mapping between different domains (i.e., between
different semantics). The mapping is usually done using the concept of model transformations.

2.1.3. Models

A DSM is an instance of the DSL. Hence, a model has all the same properties as the DSL
has: abstract syntax, concrete syntax, and semantics. The abstract syntax of a model is a physical
structure that represents all elements of the model. The syntax defines how a model is represented
in a memory of a computer (hence, it presents a model structure). Fig. 2.3 shows an example
of an abstract syntax of Library model using UML object diagram. This model conforms to the
metamodel defined in Library metamodel Fig. 2.2. In Fig. 2.3, the Library element has a concrete
name. Also, the element has two bookshelves that contain two and three library contents (Book
or Magazine) respectively. The number of library contents of each bookshelf respects the bounds
of the metamodel. Since the abstract syntax of the Library DSL was presented using only a
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:shelveslibrary: Library

name = "National
Library of Canada"

:contents

shelf1: Bookshelf book1: Book

name = "Book 1"

m1: Magazine

name = "magazine 1"

:contents

:contents

:contents

shelf2: Bookshelf:shelves

book2: Book

name = "Book 2"

m2: Magazine

name = "magazine 2"

book3: Book

name = "Book 3"

:contents

Fig. 2.3. Abstract syntax of the model instance of Library DSL

metamodel and no additional constraints were presented, the model in Fig. 2.3 is a valid instance
of the Library DSL.

Fig. 2.3 represents the abstract syntax of the model. A modeler can define a concrete syntax
of the model using this structure of objects. For instance, a concrete graphical colored icon per
each entity. The semantics of a model (the meaning of the elements) is typically the same as the
semantics of a DSL the model conforms to.

2.1.4. Metamodeling

In MDE, a DSL serves to create models, and a model must conform to its metamodel. We recall
that a metamodel is a part of the abstract syntax of a DSL. Therefore, a metamodel and a model
initiate two-level dependency: a DSL metamodel is an upper level which defines a concept, and
a model is a dependent level which uses that concept. A metamodel is also a model that defines
a possible structure (i.e., a modeling space) for its sub-models. Thus, a metamodel defines how a
model can be constructed [1]. The process of development of a metamodel for a specific domain is
called metamodeling.

System

conforms to

represents

Model

conforms to

Metamodel

Meta-metamodel

conforms to

M3

M2

M1

M0

Fig. 2.4. Four-layer architecture of MDE
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Fig. 2.5. Ecore meta-metamodel

MDE is based on the four-layer architecture defined by the Object Management Group (OMG)
[1]. The architecture describes relationships between levels of abstraction that exist above the
modeled system. Fig. 2.4 shows those layers. Here is a brief explanation:

• M0 level - represents a modeled system
• M1 level - represents a model which describes the system from M0

• M2 level - describes a metamodel for M1, a language that serves to create models at M1

level
• M3 layer - meta-metamodel: defines concepts for creating languages. The meta-metamodel

conforms to itself, creating a cyclic dependency. This means that a meta-metamodel is
defined by itself.

According to the four-layer architecture, our example of Library metamodel shown in Fig. 2.2
resides at the level M2. The model presented in Fig. 2.3 is an instance of Library metamodel and
resides at the level M1. The Library metamodel is also a model, and a language is needed to define
it. In our case, we use Ecore specification, which is a meta-metamodel at level M3 [18]. We use
that specification across all this thesis to express metamodels.

Fig. 2.5 shows an Ecore metamodel at M3. To avoid complex figures, only the relevant parts
of the model are presented. Here, a Class instance is used to represent some entity which can be
abstract. For example, a LibraryContent model object in Fig. 2.2 is an instance of the abstract
class. Inheritance may be defined between classes (at the model instance level), which means
that the inherited class has all the properties its parent has. The inheritance is specified by a
superTypes association. The instance of the class can have Attributes of primitive types (integer,
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Fig. 2.6. Library model opened in EMF tree-view

string, boolean, etc.). Also, the instance can have Associations that point to other entities. Both
attributes and associations must have lower and upper bounds – so-called cardinality. An upper
bound greater than 1 means that the feature is a collection. Association which points to some
other entity has a containment attribute. A containment is an equivalent of a composition pattern
in UML [14]. According to the Ecore specification, any element except of a root element must have
a parent, i.e., must be contained by one other element. The containment pattern has a particular
impact at the model edition: removing an element leads to recursively removing all its contained
elements. The shelves is a containment association in the Library example. This means that
Bookshelves are contained by the Library. A non-containment association is called a reference
association. It is the equivalent of a simple association in UML.

The model in Fig. 2.5 is a metamodel for itself. Each element of the model is an instance of
some element of the same model. For instance, Class, Attribute, and Association are instances
of Class.

2.1.5. Tools for model editing

The Eclipse Modeling Framework (EMF) is a set of tools that provide support for modeling
and code generation [5]. EMF implements various generally adopted modeling specifications, so
it has been accepted as a standard for modeling tools. EMF allows modeling at levels M1 and
M2 (according to architecture presented in Fig. 2.4). At level M3 EMF uses Ecore specification
presented in Fig. 2.5. EMF is intended for use within the Eclipse IDE as a plugin. So, it relies
on runtime dependencies of the Eclipse platform. The core components of EMF are: model editor
(including metamodel editor), code generator, and model persistence.
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Fig. 2.7. Library metamodel opened in EMF graphical editor

The model editor component provides the ability to compose, modify, and visualize domain-
specific models. The default editor provides a tree-based view. It allows to visualize a model
structure (entities, attributes, and references of that entities) in terms of an abstract syntax. Fig. 2.6
shows a model from Fig. 2.3 opened in EMF tree-based view. Within the editor a modeler can
modify the model elements. In addition, EMF provides graphical facilities to edit metamodels using
of UML class diagram [17]. Fig. 2.7 presents an example of the Library metamodel from Fig. 2.2
opened in the EMF graphical editor. The modeler can choose the elements from the palette to
construct a desired structure.

The code generator component of EMF provides support for producing a set of Java classes for
a domain-specific model. The produced code represents a domain-specific API that can be used for

Fig. 2.8. Generated API for the Library DSL
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command-based editing of the model at runtime. To produce an API, the code generator requires
an abstract syntax as input. Fig. 2.8 presents the generated Java code for the Library domain.

The model persistence component provides serialization/deserialization support for models. All
the created models can be exported and saved to a file in XML Metadata Interchange (XMI) format.
A model can be imported later from XMI back to the EMF editor.

XMI is a model persistence format standardized by the OMG [10]. XMI is based on Extensible
Markup Language (XML). It consists of a specific set of tags with a specific syntax aimed at
describing a model. Listing 2.1 presents the Library model from Fig. 2.3 serialized into XMI
format. The tag names for the markup come from a particular domain. Therefore, the XMI
model must have a link to its metamodel (line 7) to be valid and open in the EMF editor. The
containment feature is represented through XML tags embedding: contents (which is a name of
a specific association of the metamodel) are embedded into bookshelves (lines 10–16, 19–27). All
these elements are embedded into a Library element which is the root element of the model (line
2).
1 <?xml version="1.0" encoding="UTF-8"?>

2 <mylibrary:Library

3 xmi:version="2.0"

4 xmlns:xmi="http://www.omg.org/XMI"

5 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

6 xmlns:mylibrary="lib"

7 xsi:schemaLocation="lib Library.ecore"

8 name="National library of Canada">

9 <shelves>

10 <contents

11 xsi:type="mylibrary:Magazine"

12 name="magazine 1" />

13 <contents

14 xsi:type="mylibrary:Book"

15 name="book 1" />

16 </shelves>

17 <shelves>

18 <contents

19 xsi:type="mylibrary:Book"

20 name="book 2" />

21 <contents

22 xsi:type="mylibrary:Book"

23 name="book 3" />

24 <contents

25 xsi:type="mylibrary:Magazine"

26 name="magazine 2" />

27 </shelves>

28 </mylibrary:Library>

Listing 2.1. XMI representation of Library model instance
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Fig. 2.9. Metamodel of a data structure in Neo4j database

All the components of EMF rely on the EMF’s API. This is a core API provided in the Java
programming language (since the entire EMF is written in Java). The API provides generic model
manipulation operations. Internally, EMF represents a model as a set of runtime Java objects.
EMF API allows CRUD the elements of that model. In addition, EMF uses this API for internal
interactions between its components. For instance, EMF persistence module deserializes a model
from XMI format into a set of runtime Java objects using this API.

2.2. Neo4j graph database
In this Section, we present an in-depth overview of the Neo4j database.

2.2.1. Graph structure in Neo4j database

Neo4j is a NoSQL database primarily designed to store data in graph structures [9]. Fig. 2.9
presents a metamodel of a data structure in Neo4j database. Neo4j has two types of entities: a
Node and a Relationship. A Node may have zero to many labels. Labels are used to group
nodes into sets where all nodes with a certain label belong to the same set. A relationship connects
two nodes and must have exactly one type – the counterpart of the label for relationships. Both
nodes and relationships may have Properties. Properties are stored as an unordered collection of
key-value pairs. In properties, the key has a string type and the value may have one of following
Neo4j types: Integer, Float, String, Boolean, Point – a spatial type, temporal types: Date, Time,
Null, List – a heterogeneous, ordered collection of values and a Map – a heterogeneous collection
of key-value pairs where the key is a String, and the value may have any type mentioned above. In
Neo4j database, a Null value is handled in a special way: setting a value to null leads to removing
the property from the property list.

2.2.2. Deployment

Neo4j developers offer two ways to deploy the database: as an independent remote server or as
an embedded library in a Java application.

Neo4j DBMS is a software implemented in the Java programming language, so it can be included
(embedded) as a dependency to a Java project. In this case, the application and the database run
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on the same JVM, providing better performance. The embedded database is completely integrated
into the client application and cannot be used outside it. To access the embedded database and
perform read/write operations over the elements, the client must use a low-level serializing API.

The remote form of deployment requires a separate running JVM instance but has better system
scalability. The remote form initiates a web-based architecture and requires a client application
to manage the database. The remotely deployed database can serve multiple client applications
and does not depend on them. Also, the web-based architecture gives the freedom to implement
the client applications in different programming languages. To access the remotely deployed Neo4j
database and perform read/write operations, the client (application) must use Cypher query lan-
guage.

2.2.3. Cypher query language

Cypher is a query language with a textual concrete syntax that was designed to interact with
a remote Neo4j database server. In this section, we shortly overview basic Cypher syntax.

The Cypher syntax consists of two main components: element patterns and keywords. Referring
to the Fig. 2.9, we recall that Neo4j has three types of elements: a node, a relationship, and a
property. Cypher provides specific textual patterns to denote these elements. We present the list
of basic patterns in Listing 2.2.

1 { name: "someName", age: 20 } // map notation

2 [1, 2, 3] // list

3 () // a node

4 (n) // a node with an alias

5 (:Label) // a node with a label

6 (:Label1:Label2) // a node with two labels

7 (n:Label {name: "myProperty"}) // a node with an alias, label, and a property

8 ()-->() // a relationship between two nodes

9 ()-[:refType]->() // relationship with a type

10 ()-[r:refType {name: "myRef"} ]->() // a relationship with an alias, a type, and a property

11 (n)-[:refType]->(n) // a relationship pointing to the same node it starts from

Listing 2.2. Patterns of the Cypher query language

We start from a property pattern. To specify properties, Cypher provides a curly brackets
notation {} . Properties are key-value pairs delimited by a comma and specified inside the curly
brackets (line 1). At the same time, curly brackets denotes a map value. Properties can be presented
as a part of a node pattern or a relationship pattern.

To specify a node, Cypher provides round brackets notation () . This is a basic node pattern
that can be extended to provide additional information about the node. We can provide three
parameters inside the brackets, respecting the order: an alias, labels, and properties (line 7). All
of these components are optional and can be omitted, as shown on line 3. To specify an alias, we
can use any literal as a first parameter (line 4). Usually, the query consists of several commands.
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The alias is used to refer to the element in subsequent commands. The alias is valid only within
the same query.

To specify a label, we can use any literal led by a semicolon delimiter. A semicolon is not a
part of a label (line 5). A label can be specified right after an alias (if present). A node can have
multiple labels (line 6). To specify properties, we can use the property pattern (described above)
as the last parameter.

To specify a relationship, Cypher provides the following notation: -[]-> . Basically, this is
a directed arrow split by square brackets. Inside the brackets, we can specify three parameters: an
alias, a type, and properties (line 9). The logic for these parameters is exactly the same as for nodes.
The only difference is that a relationship can have only one type, while a node can have multiple
labels. If we do not need to specify any additional parameter for a relationship, we can omit the
square brackets and use only a directed arrow notation –> . A relationship in Neo4j connects two
nodes, so usually, we specify the node pattern at the start and the end of the relationship pattern
(lines 8–11).

2.2.3.1. Create query. To create elements, Cypher provides the CREATE keyword. We can
use this keyword in conjunction with the node pattern or the relationship pattern to specify what
element to create.

1 CREATE ()

2 CREATE (n)

3 CREATE (:Book)

4 CREATE (b:Book {name: "myBook"})

5 CREATE (n)-[:ref]->()

Listing 2.3. Example of create operations of Cypher query language

Listing 2.3 demonstrates an example of creating elements with Cypher query language. It is
a consistent query that contains multiple commands. If we execute this query, the database will
have five nodes and one relationship. The first and second nodes are empty with no labels and
properties (lines 1–2). The third node has a label Book. The fourth node has a label Book and a
property name.

To create a node, we combine the CREATE keyword with a node pattern (lines 1–4). Line 2
demonstrates how to create a node with an alias n. The alias is valid only within the same query
and can be used to refer to exactly this node (line 5). In contrast, the node created on line 1 is
not accessible in this query because we did not specify an alias for it. To access exactly that node
(even in the same query), we should explicitly retrieve it from the database. Line 3 demonstrates
how to create a new node with a label. Line 4 illustrates how we can create a node with an alias,
a label, and a property. To create a relationship, we combine CREATE keyword with a relationship
pattern (line 5). The relationship starts from the node, created on line 2. For the target node of the
relationship, we use the empty brackets pattern. This means that the target node will be created
as well.
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2.2.3.2. Read query. To find an existing element in the database, Cypher provides the MATCH
keyword. We can use this keyword in conjunction with the node pattern or the relationship pattern
to specify the element to find. Additionally, Cypher provides the WHERE keyword to filter the found
elements. With this keyword we can specify more information that cannot be presented as a part
of the element pattern. For example, we can filter a node by ID. To retrieve data from the database
and send it back to the client, Cypher provides the RETURN keyword.

1 MATCH (n:Library)

2 WHERE ID(n) = 10

3 MATCH (n)-->(b:Book)

4 RETURN b

Listing 2.4. Read query

Listing 2.4 demonstrates an example of retrieving data from the database. It is a single (consis-
tent) query that contains four commands. For the first command, we combine the MATCH keyword
with a node pattern, providing an alias and a label (line 1). After the first command, the alias n
represents all existing nodes with the label Library in the database. For the second command, we
apply a filter to the nodes using the WHERE keyword (line 2). After the second command, the alias
n represents only a node with a specific ID (or null if that node does not exist in the database).
For the third command, we combine the MATCH keyword with a relationship pattern. We search for
all nodes with a label Book that have an incoming relationship from the specific node the alias n
represents (line 3). Also, we assign a new alias b to those nodes. Finally, we send back the found
Book nodes to the client application, using the RETURN keyword (line 4).

2.2.3.3. Update query. To update node/relationship properties, Cypher provides the SET key-
word. The update operation in Cypher has two syntax variants: one for updating a single property,
another for updating multiple properties of an element at once. Both of these variants require an
alias of the element to update. The alias in Cypher can represent a single element as well as a
group of elements. Accordingly, the SET command updates all the elements the alias represents.

1 MATCH (n) WHERE ID(n) = 10

2 SET n.name = "myBook" // update single property

3 SET n.age = null // remove property ’age’

4 MATCH (lib:Library)

5 SET lib += { capacity: 1000, test: true } // update specific properties

Listing 2.5. Update query

Listing 2.5 demonstrates an example of updating nodes in the database. We get a node by ID,
providing an alias n for that node (line 1). Then, we can update a single property of the node (line
2). If the property does not exist – it will be created; otherwise, only the value will be updated.
Also, we can remove a property by setting its value to null (line 3). Next, we get all nodes with
a label Library (line 4). We do not apply any filter, so the alias lib represents multiple nodes
(or null if they do not exist in the database). Finally, we update a list of properties for all nodes
that alias lib represents (line 5). We use += operator to update only the properties specified in the
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curly brackets and leave unchanged other existing properties. Alternatively, we can use = operator
to replaces all the properties with the new ones specified in the curly brackets.

2.2.3.4. Delete query. To delete elements from the database, Cypher provides the DELETE
keyword. We can use this keyword in conjunction with an alias of an element.

1 MATCH (n)

2 WHERE ID(n) = 10

3 DETACH DELETE n

Listing 2.6. Remove node example

Listing 2.6 demonstrates an example of node removal. We search for a node with a specific ID
(lines 1–2). After the line 1 an alias n represents all existing nodes in the database. After line 2
the alias represents only a single node (or null if it does not exist in the database). We can delete
the nodes the alias n represents using the DELETE n command. But if one of the nodes we want
to delete has incoming/outgoing relationships, the database will throw an exception because we
did not explicitly specify the command to remove those relationships. To prevent this exception,
Cypher provides the DETACH keyword. We use it to remove also all existing adjacent relationships
of the node (line 3).

Listing 2.7 demonstrates an example of relationship removal. We search for a relationship with
a specific ID (lines 1–2). After the line 1 an alias r represents all existing relationships in the
database. After line 2 the alias represents a single relationship (or null if it does not exist in the
database). We delete relationships the alias r represents using DELETE keyword (line 3).

1 MATCH ()-[r]->()

2 WHERE ID(r) = 10

3 DELETE r

Listing 2.7. Remove relationship example

2.2.3.5. Unwind query. The UNWIND keyword is used to transform a list data to a individual
rows data. Listing 2.8 demonstrates the usage of that operation. In the presented query, we use the
UNWIND keyword to expand a list of string literals into individual rows (line 1). Also, we provide
the row alias to the transformed data using AS keyword.

1 UNWIND [’a’, ’b’, ’c’] AS row

2 RETURN row

Listing 2.8. Unwind query

All the remaining commands of the query will be applied for each list element independently, like
inside a four-loop. Listing 2.9 demonstrate the output of the query, presented in Listing 2.8. The
input list as transformed to individual list of records.

1 row

2 ----

3 a
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4 b

5 c

Listing 2.9. Unwind query result

2.2.4. Neo4j query planner

Neo4j database is a highly optimized storage medium. Upon receiving a query, the Neo4j
database decomposes it into operators, each of which performs a specific piece of work. Then,
the operators are combined into a tree-like structure called an execution plan. Decomposing and
understanding a query is a complex task. Therefore, the database keeps in a cache executions plans
for the latest queries. Next time when the same query is received, the database simply finds its
execution plan from the cache and omits the decomposing query process. Reusing the execution
plans leads to faster query execution time. By default, the database can “memoize” the 1000 last
queries.

1 MATCH (n:Library)

2 SET n.name = "lib1"

Listing 2.10. Example 1 of nodes updating

1 MATCH (n:Library)

2 SET n.name = "lib2"

Listing 2.11. Example 2 of nodes updating

Listing 2.10 demonstrates a common example of nodes updating. We search for all the nodes
that have a label Library (line 1), and assign a new name property for all of them (line 2).
Listing 2.11 presents exactly the same logic.

Suppose we run a query presented in Listing 2.11 after the query presented in Listing 2.10.
The query planner will not reuse the execution plan in the second case because the queries are not
identical. In the second query the value of the name property is "lib2", that is different from the
value in the first query "lib1". Thus, Neo4j will rebuild the execution plan for the second query.
We must reuse exactly the same query string to reuse the execution plan. We can achieve this by
using a parameterized query.

2.2.5. Parametrized queries

We recall that the remotely deployed database instance can be accessed from a client application.
Neo4j offers multiple database drivers for different programming languages. Those drivers can be
integrated into a client application to access the database. In particular, the driver can send queries
and receive a response from the database.

Neo4j drivers offer an important feature: they support parametrized Cypher queries. A param-
eterized query is a query that consists of two components: a query string and runtime parameters.
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Hence, we can reuse the same query string but provide different parameters in runtime. For in-
stance, we can optimize queries from Listings 2.10 and 2.11 replacing them by a single parametrized
query (presented in Listing 2.12).

1 MATCH (n:Library)

2 SET n.name = $name

Listing 2.12. Example of a parametrized query

In Cypher, the placeholder for a parameter starts with $ sign. We use a placeholder $name instead
of a constant string literals (line 2). The parameter then must be supplied alongside the query
string via the database driver. Listing 2.13 presents an example of sending a parameterized query
in Kotlin programming language using a Neo4j Java driver [19].

1 val driver = GraphDatabase.driver(uri, user, password)

2 driver.session().writeTransaction { tx ->

3 tx.run(Query("...", parameters( "name", StringValue("lib1"))))

4 }

5 driver.close()

Listing 2.13. A call of a parametrized query fron Kotlin function

After initializing the driver instance and establishing a database connection (line 1), we start a write
transaction (line 2). In the transaction, we provide a query string (omitted for brevity. Assuming
using the query string from Listing ??), and a runtime parameter name with value "lib1" (line 3).
After the execution, we close the database connection (line 5).

The execution plan takes into account and caches only the query string. The runtime parameters
do not affect the execution plan building. Thus, parameterized queries make it possible to reuse a
query string and, therefore, reuse an execution plan for the same queries.

2.2.6. APOC library

APOC library is a set of common procedures and functions for the Neo4j database. This library
aims to provide functionality that cannot be (easily) expressed in Cypher itself. We can invoke it
directly from Cypher using the CALL keyword.

1 CALL apoc.create.node(["MyLabel"], {}) YIELD node

2 CALL apoc.create.relationship(node, node, "rerType", {}) YIELD rel

Listing 2.14. create elements with APOC library

Listing 2.14 demonstrates an example of creating elements with APOC library. We create a
node using apoc.create.node function (line 1). This function takes two parameters: a list of
labels (square brackets notation [ ]) and a map of properties (inside curly brackets notation ).
To return the result from an APOC function we use the YIELD keyword. The node alias then is
available in the remaining Cypher query. We use the same logic to create a relationship (line 2).

Both apoc.create function and Cypher CREATE keyword provide the same functionality: they
create new elements in the database. But, there is an important difference. Using the Cypher
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CREATE keyword requires to specify the node labels and relationship types (i.e., element types) as
constant string literals that cannot be passed as runtime parameters (Cypher limitation). Thus,
this approach imposes the creation of a new query string for each new element. In contrast, the
apoc.create function allows to specify element types as a parameter value. Thus, we can use
APOC functions to create a parameterized query and supply element types as parameters. This
leads to reusing the execution plans, so leads to faster query execution time. We use this approach
for batch element creation and describe it in detail in Chapter 5.

2.3. MDE in databases
We now discuss related work in MDE to store and manipulate models in databases to ensure

scalability with respect to model size.

2.3.1. A model scalability

Over time, MDE models grow larger. Modeling tools have faced a new problem: there is a
need to handle very large models (i.e., with more than 105 elements) and provide an efficient way
to manipulate them. The majority of modeling tools use XMI format to store and import/export
models. Unless XMI representation provides human readability, it is not an efficient way to handle
huge models: the whole model must be loaded into memory and parsed before any model element
can be accessed. Thus, using the most widespread XMI representation format for interchanging
such big models may cause the available memory footprint to exceed. To solve the model scalability
problem, the MDE community started to investigate other persistence types to store models such as
databases [20]. A database management system (DBMS) is a software to organize a large amount
of data and provide quick access to it. DBMS aims to efficiently support all the possible operations
(i.e., create, read, update, and delete – CRUD) over the data. With these capabilities, databases
may be used to store models and manipulate them in place. In this Section, we overview several
optimization approaches across different persistence types to handle large MDE models. Also, we
discuss some features of those approaches in relation with NMF.

First, we overview a partial XMI-based model loading mechanism [21]. The essence of that
approach is to load only the needed elements but not the entire model. The loading process involves
parsing the XMI markup. For that, a new XMI parser was developed since existing XMI parsers do
not allow partial loading. To know in advance what exactly elements of a model should be fetched,
a program that consumes the model may perform static analysis. For instance, by analyzing a
metamodel (which is usually much smaller than the model instance), it is possible to find out a
possible structure of a model itself. The overall presented parsing algorithm works as follows: given
an element, the parser tries to find it in the model. The disadvantage of this approach is that it can
only be used for read-only operations on models, since it has limitations to propagate changes to
partial models. Modifying XMI data requires a strict knowledge of elements order and, hence, the
overall model. Nevertheless, this approach is an interesting extension to NMF-loader (described in
Sections 3.1.1 and 4.2), where we import models from XMI to the database. In this case, if the XMI
model is too large, their technique can solve the scalability problem while reading the entire model.
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However, we currently assume that large models reside in the database and are not serialized in
XMI.

The second approach to optimize an I/O latency for a large amount of data is to use prefetching
and caching techniques for the elements. Caching is the process of “remembering” an element after
an application used it. Prefetching is the process of getting an element in advance before it is
actually requested. These two techniques allow to reduce an access count to the actual storage
and keep the desired data elements in memory with quick access. PrefetchML is a framework
that successfully implements prefetching/caching techniques for MDE models [22]. The framework
allows to specify the rules for prefetching and caching. Rules are triggered when a certain condition
occurs. For instance, when a certain element is loaded or modified, the framework can prefetch
some related elements. PrefetchML supports several persistence types for models: XMI and CDO
[23], through the EMF infrastructure, and graph persistence through the Neo4EMF infrastructure
[8]. In the case of using XMI, the model must be entirely loaded in memory at least for the first
time before any caching, since PrefetchML relies on EMF infrastructure. This framework does
not provide the automatic creation of the rules. Thus, the user should manually specify the rules
according to his needs. In NMF, we use only a caching mechanism to optimize access to model
elements at runtime. All the loaded elements are cached in memory by default, and a user can
unload them after use.

Third, we overview a model indexing approach. Indexing is a process of assigning unique keys
for a collection of data. The key can be used to rapidly access a specific element from that collection.
Hence, there is no need to iterate through the entire collection and search for an element every time
it is accessed. The Hawk framework successfully adapted the indexing technique for MDE models
[24, 25] to provide efficient and scalable model querying. This framework was primarily designed to
provide a version control system (VCS) for MDE models. Hawk keeps track of a collection of models
in file-based formats (such as XMI) and maintains an index for those models into a graph database.
All the tracked models must conform to the same metamodel. Hence, the index is a complex graph
data structure that represents the latest version of tracked models and their metamodel. The Hawk
index actually merges and replicates the contents of the tracked models into a graph database. The
index can be used to efficiently query the tracked models without the need to access the actual
file-based representations. Hawk updates the graph index if any tracked file-based model has been
changed. Hawk handles model scalability in a special way: since the tracked models are merged
into a single index, Hawk considers all the observed models as fragments of a single model. Thus, a
large model can be split into multiple fragments and presented in cross-referenced XMI files. This
would be another solution of the model scalability problem. In NMF, we do not support model
indexing yet.

2.3.2. MDE for relational DB

A relational database stores data in a structure of related tables. Structured Query Language
(SQL) is a standardized declarative programming language used to manage relational databases
(i.e., tables) and perform CRUD operations on the data. SQL serves to construct queries – a set of
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textual commands to manage the database contents. Object Relational Mapping (ORM) is a logical
layer between a database and a concrete object-oriented programming language. ORM allows to
express data management operations in terms of manipulating objects of a programming language
rather than in plain-text queries. Internally, any ORM translates object commands to appropriate
queries for the underlying database. Therefore, ORM augments the database management process
on a higher level of abstraction since it seamlessly integrates the SQL interface into an application
design and does not require a developer to deal with SQL. Nevertheless, SQL can still be used
alongside ORM to express more complex queries that ORM does not support. Hibernate is an
ORM for Java programming language [26]. This framework maps an object-oriented domain model
presented in Java objects to a relational database and back from the database to objects. Thus,
a Java object represents a specific entity (i.e., table row) in the database. A programmer can use
that object to modify the property of the underlying database entity (i.e., column value) to create
or search for related entities.

Next, we overview Connected Data Objects (CDO), a relational-database-based persistence
framework for storing and manipulating MDE models [23]. CDO is part of EMF. Thus, it works
natively with models conforming to the Ecore specification (presented in Fig. 2.5). It is possible
to access a model in CDO storage directly from EMF editors. The CDO framework follows a
client-server architecture where the server manages a database. Thus, the model can be stored
remotely. On the client-side, CDO offers a Java API to manipulate models in a command-based
way. EMF editors internally rely on this API to access the model. Also, the API can be used
directly from an application code to present models as sets of CDO (Java) objects. CDO objects
accessed by the client remain logically attached to their pendant in the database. Hence, the CDO
API seamlessly implements the ORM technique. Since CDO uses database storage, it is possible
to query certain model elements on demand. Only those elements that are loaded from the storage
need to be maintained in the client application. After the elements are no longer needed, they can
be unloaded to free the memory resource. This feature allows working with models larger than
the memory would otherwise allow. This is the main benefit in comparison to XMI-based storage,
where a model must be processed entirely before use. CDO also supports model versioning and
branching. These features allow multiple modelers to collaborate on a model simultaneously.

Finally, we overview the design of relational database schema suitable for storing MDE models.
The general approach, described in [7] looks as follows:

• One table per metamodel class. For instance, our Library model instance would require
tables: Library, Bookshelf, Book, and Magazine.

• One-to-one and one-to-many associations are mapped using foreign keys, which requires an
additional column in a table.

• Many-to-many associations are mapped to separate table in the database with two foreing
keys

Unless relational-databases-based tools (such as CDO) solve the MDE model scalability problem,
relational databases are not the best fit for storing the models. First, the model mapping imposes a
relational database to keep additional structures, such as additional columns in a table and foreign
keys for one-to-many associations, or even separate tables for many-to-many associations. Hence,
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that merged data structure in the database does not provide a natural representation of MDE
models.

Second, to add the data to the relational database, a table with a set of columns must be
predefined. Hence, relational databases have a good vertical scaling (i.e., easily allow to add more
rows to tables), but have poor horizontal scaling (i.e., require additional structure modification
before adding a new column in a table or creation a new table).

Finally, relational databases data traversing and navigating through the tables ubiquitously
requires a join operation. A join operation combines the output from exactly two row sources, such
as tables or views, and returns a combined row source. In the case with more than two join tables,
the result of the first join must be used joined with the third. Internally, the database performs a
for-loop of two tables to match rows by a foreign key. In some cases, the database can optimize
the lookup (for instance, to not repeat the iteration over a table). Thus, in general, the join is a
relatively resource-intensive operation.

2.3.3. MDE for NoSQL DB

NoSQL, which stands for “Not Only SQL”, however is a non-relational database management
system. NoSQL includes a wide range of database, such map-based, document-based (MongoDB),
and graph-based (Neo4j) depending on the underlying data representation. In this thesis, we focus
on graph databases.

Graph databases have several benefits over relational ones in terms of MDE needs. First, a
structure of MDE models can easily be described in terms of graph concepts (i.e., in terms of
vertices, associations, and attributes). Therefore, graph databases suit better for representing such
kind of data. Unlike a relational database, a graph database does not require additional data
structure like foreign keys to store models. This natural model structure translation is the main
motivation that led us to choose a native graph database instead of another NoSQL database.
Especially, we choose the Neo4j database.

Second, graph databases provide better flexibility since they do not require a predefined schema
to add the data.

Finally, Neo4j graph database has no alternative of the join operation. Instead, graph nodes
are linked to its neighbors directly in the storage. This type of referencing is called index-free
adjacency. When Neo4j performs a graph query for retrieving a sub-graph, it simply has to follow
the links in the storage – no index lookups are needed. The cost of each node-to-node traversal is
O(1) [9]. Therefore, NoSQL databases provide better flexibility and performance as they are not
limited by the traditional relational approach to data storage [27].

2.3.3.1. Neo4EMF. Neo4EMF is an MDE model persistence framework that uses NoSQL
databases as an underlying storage [8, 28]. Neo4EMF project is built on top of EMF (described in
Section 2.1.5) and is available in Eclipse IDE as a plugin. Neo4EMF completes EMF project with
different persistence types support, including Neo4j database that we primarily focus on.
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Neo4EMF consists of two main components: model persistence and code generator. The model
persistence component provides access to different databases storage. It contains connectors to mul-
tiple NoSQL databases (the full list of supported storages is enumerated in Section 7.1). Neo4EMF
extends standard EMF API to make it compatible with all the supported storage.

Neo4EMF supports only embedded Neo4j deployment type. Internally, Neo4EMF relies on
the Neo4j-OGM tool to interact with the database. Neo4j-OGM tool adapts the ORM technique
(described in Section 2.3.2) for the Neo4j graph database. This tool uses Java objects to represent
underlying graph elements in the database [29]. While working with embedded Neo4j, Neo4j-OGM
does not use Cypher queries. Instead, it serializes Java objects directly to the storage. Since the
embedded database is always deployed locally, Neo4j-OGM has access to the data through the API.

The code generator component of Neo4EMF provides domain-specific editing operations in the
same way as EMF does.

Neo4EMF uses caching technique to optimize I/O performance. This framework does not
support other optimization techniques such as data indexing or prefetching at the moment of
publication of the thesis.

Neo4EMF has proven better model traversal performance in comparison to CDO (with rela-
tional database storage) and pure EMF (with XMI storage) [8]. NoSQL databases provide better
scalability and performance than relational databases due to the interconnected nature of models.

Neo4EMF stores a model together with its entire metamodel in the database, explicitly con-
necting each model element with by a relationship with its meta-element.
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Chapter 3

Neo Modeling Framework

In this chapter, we present Neo Modeling Framework (NMF) – our solution for efficient modeling in
the Neo4j database. In Section 3.1 we present the overall framework architecture and components.
In Section 3.2 we provide a running example.

3.1. NMF modules
Neo Modeling Framework (NMF) is a set of tools built on top of the Neo4j database. NMF is

designed to achieve the following goals:

callsNMF loader

output
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input
NMF editor
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User code
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Fig. 3.1. Dependency between modules in NMF



• store a model in the Neo4j database
• manipulate (edit) models directly in the database
• provide a domain-specific API to edit any domain-specific model of the DSL

Fig. 3.1 presents the overall architecture of the Neo Modeling Framework. NMF has three main
modules: NMF-loader, NMF-editor and NMF-generator. Also, NMF has a domain-specific API
module that is generated from the metamodel of a given DSL.

3.1.1. NMF-loader

The purpose of NMF-loader is to store an existing model in the graph database. It takes as input
a domain-specific model in Ecore format. NMF-loader also requires a metamodel for that input
model to use specific types of elements and store the input model in a domain-specific manner. The
metamodel must also be provided in Ecore format. NMF-loader outputs the appropriate queries
to store the input model in the Neo4j database.

As an input for NMF-loader, we consider a metamodel as a model as well. Referring to the
architecture of MDE shown in Fig. 2.4, the loader can have as input a model of any Mi level. If
the input is a metamodel (i.e., a model at the M2 level), it is considered an instance of the meta-
metamodel of Ecore (i.e., a model at the M3 level). In the same way, an Ecore meta-metamodel
itself can be passed as an input and stored as such.

3.1.2. NMF-editor

The purpose of NMF-editor is to provide a generic API to interact with a graph directly in the
database. This approach does not require the system to keep entire models in memory and offers
additional scalability. The generic API is independent of any metamodel and provides general
CRUD operations that do not tailor to a specific domain. NMF-editor considers all the graph
elements as instances of the metamodel presented in Fig. 2.9.

The API of NMF-editor can create a model from scratch or operate on a model previously
stored by NMF-loader.

3.1.3. NMF-generator

NMF-generator takes a metamodel of a DSL as an input and synthesizes a domain-specific API
using the model-to-text transformation principle. The input metamodel must be in Ecore format.
The produced API can manipulate any DSM conforming to the input metamodel and stored in the
Neo4j database. The generated API relies on NMF-editor to interact with a graph in the database.
The API aims to provide specific operations tailored to the metamodel of the DSL. This keeps the
semantics of a model unchanged and allows a user to continue working in a familiar domain. For
instance, for our example of the Library metamodel presented in Fig. 2.2, to create a new Book
element, the generated domain-specific API will have the createBook method. Instead, using a
generic API would imply calling the createNode method from NMF-editor and pass the type Book
as parameter.
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Fig. 3.2. The metamodel of the Graf DSL in UML class diagrams

3.2. Running example
In this section, we present the Graf DSL as a running example that will be used in the following

chapters to present the functionality of NMF modules.

3.2.1. Graf DSL

Fig. 3.2 shows a metamodel of our Graf DSL. This metamodel covers all possible spectrum of
elements needed in a metamodel, such as classes, attributes, compositions, associations, inheritance,
and cardinality constraints. Here we have a Graph element, which is the root object of any Graf
model. The Graph can consist of multiple Vertex elements. A vertex has a name, a globally
unique identifier, and can be marked as final. A special kind of vertex is ComposteVertex that
represents hierarchical vertices containing other vertices. Vertices can have multiple edges pointing
to other vertices. A CompositeVertex has a mandatory reference to one of its subvertices to mark it
as default_vertex. Also, the CompositeVertex has a capacity attribute that limits the maximum
number of subvertices it can contain.

Fig. 3.3a shows a possible example of a model instance of the Graf DSL. The model instance has
a container Graph element with a name G1. Graph element has one CompositeVertex element V0.
CompositeVertex contains two Vertices V1 and V2. V1 is a default vertex for the CompositeVertex
element. Also, the vertex V1 has one outgoing edge pointing to the vertex V2.

3.2.2. Storing models and metamodels in the database

Suppose we want to store the model shown in Fig. 3.3a in the database. The input model
is an instance of our Graf DSL. For the NMF-loader, we provide that input model in Ecore
format. Fig. 3.3b shows how it is represented after NMF-loader stores it in the database. The
figure is output from the Neo4j-browser, a standard tool that is usually installed alongside the
Neo4j database. This tool offers the most convenient way for a user to inspect and visualize the
contents of the database.
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id = 1

is_final = false

capacity = 5

:Vertex

name = "V2"

id = 3

is_final = true

:Vertex

name = "V1"

id = 2

is_final = true

:vertices

:sub_vertices

:sub_vertices

:edge 

:default_vertex

(a) Abstract syntax (b) Serialized in the Neo4j database

Fig. 3.3. The model instance of the Graf DSL

Fig. 3.4. The metamodel of the Graf DSL serialized in the Neo4j database

Now suppose we want to store the metamodel itself of our Graf DSL shown in Fig. 3.2 in
the database. For NMF-loader, we provide the input metamodel in Ecore format as well. Fig. 3.4
shows how this second model is stored with NMF-loader. The metamodel is stored as a model
which conforms to the Ecore meta-metamodel presented in Fig. 2.5.

In fact, the model in Fig. 3.2 and the model in Fig. 3.4 are equivalents. The difference is that
Fig. 3.2 shows the model using the UML class diagram, and Fig. 3.4 represents that model serialized
in the Neo4j database. The same thing for model instances of our Graf DSL: Fig. 3.3b represents
the serialized version of the model presented in Fig. 3.3a. Both of these models have the same
abstract syntax, presented in Fig. 3.3a.
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3.2.3. Generic manipulation of models

Instead of loading it, suppose we want to create from scratch the model presented in Fig. 3.3a
using the generic NMF-editor API. Listing 3.1 demonstrates our running example. We have imple-
mented NMF in the Kotlin programming language, so the API is provided for that language.

Listing 3.1 presents a user code that uses the generic NMF-editor API. After establishing a
connection with a database (line 1), we create a graphController object, that gives us access to
the (empty) graph. As we can see on line 2, we can create a new node. We can then use that
node to create new subnodes (line 3–5) or outgoing references (lines 7–8). Also, we can modify
the properties (i.e., attribute values) of that node (line 6). After all the manipulations, we commit
the changes to the database (line 9) and close the connection (line 10). The saveChanges method
propagates accumulated changes to the database and can be called at any time. The resulting
graph in the database is exactly the same as if we used NMF-loader, presented in Fig. 3.3b.

1 val graphController = GraphController(dbUri, username, password) //init a connection to the DB

2 val graph = graphController.createNode("Graph")

3 val v0 = graph.createChild("vertices", "CompositeVertex") // hard-code the type of object to

create

4 val v1 = v0.createChild("sub_vertices", "Vertex")

5 val v2 = v0.createChild("sub_vertices", "Vertex")

6 graph.putProperty("name", "G1")

7 v1.createOutRef("edge", v2) // hard-code the type of reference to create

8 v0.createOutRef("default_vertex", v1)

9 graphController.saveChanges() // commit changes to the database

10 graphController.close() // close the connection to the DB

Listing 3.1. Using the generic model editor

Since the generic API is domain-independent, it implies providing all the types and element
names explicitly. They should be hardcoded in strings manually by a user. Furthermore, there are
no constraint checks performed by NMF-editor with respect to the DSL. For example, it is possible
to also create a default_vertex from v0 to v1, which contradicts the static semantics of the Graf
DSL. To overcome these issues, we use NMF-generator.

3.2.4. Domain-specific manipulation of models

First, we generate a domain-specific API for the Graf DSL with NMF-generator. We use
the metamodel presented in Fig. 3.2 as an input, providing it in Ecore format (see Appendix
B). Listing 3.2 presents the generated API for the Graf DSL. We implemented all of NMF in the
Kotlin programming, which is fully compatible with JVM and can be called from Java programming
language if needed.

NMF-generator generates a separate Kotlin class along with an interface for each class of
the input metamodel. Listing 3.2 presents only the generated interfaces for Graph, Vertex and
CompositeVertex entities. Each interface has getters and setters for each attribute. Setting a
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value performs a write operation to the database, and getting a value performs a read operation
from the database. The generated interfaces contain methods for getting, setting, and removing
objects connected by a composition or an association reference. The setters and removal methods
also satisfy all the cardinality constraints of references and attributes.

Finally, the generated code contains an enumeration of concrete classes (i.e., not abstract classes
and not interfaces) that are part of an inheritance hierarchy (line 29). The setter method for a
containment reference returns a new generalized Vertex object (line 6). The generated enumeration
can be used as a setter parameter to specify the concrete implementation among several possible
subclasses (lines 6, 27). Internally, the API will instantiate and return the appropriate concrete
class.

1 interface Graph : INodeEntity {

2 fun setName(v: String?)

3 fun getName(): String?

4 fun removeVertices(v: Vertex)

5 fun getVertices(limit: Int = 100): List<Vertex>

6 fun addVertices(type: VertexType): Vertex

7 }

8 interface Vertex : INodeEntity {

9 fun setName(v: String?)

10 fun getName(): String?

11 fun setId(v: Int?)

12 fun getId(): Int?

13 fun setIs_initial(v: Boolean?)

14 fun getIs_initial(): Boolean?

15 fun setEdge(v: Vertex)

16 fun removeEdge(v: Vertex)

17 fun getEdge(limit: Int = 100): List<Vertex>

18 }

19 interface CompositeVertex : Vertex {

20 fun setCapacity(v: Int?)

21 fun getCapacity(): Int?

22 fun setDefault_vertex(v: Vertex)

23 fun removeDefault_vertex(v: Vertex)

24 fun getDefault_vertex(): Vertex?

25 fun removeSub_vertices(v: Vertex)

26 fun getSub_vertices(limit: Int = 100): List<Vertex>

27 fun addSub_vertices(type: VertexType): Vertex

28 }

29 enum class VertexType { CompositeVertex, Vertex }

Listing 3.2. Genarated API for the Graf DSL
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The generated API offers a convenient way to edit models directly in the database. Unlike in
the generic API, there is no need to specify names and types for each node explicitly. The generated
code conforms to the static semantics of a the DSL.

Let us now recreate from scratch the model presented in Fig. 3.3a using the generated domain-
specific API presented in Listing 3.2.

Listing 3.3 creates the same model as Listing 3.1. After establishing a connection with a
database (line 1), we have a domain-specific model manager object that gives us access to the
graph. We can create concrete domain classes such as Graph using that manager (line 2). We
assign a name to the Graph object using the appropriate setName setter method (line 3). Line 4
demonstrates how we can create a new CompositeVertex as a containment of the Graph object. We
specify the VertexType parameter for the method addVertices of the Graph object. The method
addVertices returns a generalized Vertex object, so we instantly cast it to the CompositeVertex
as it is. Next, we create two containments for the CompositeVertex (lines 5–6). Also, we create a
default_vertex association (line 7). Finally, we commit all pending changes to the database (line
8) and close the connection to the database (line 9).

1 val manager = GrafModelManager(dbUri, username, password)

2 val graph = manager.createGraph()

3 graph.setName("G1")

4 val v0 = graph.addVertices(VertexType.CompositeVertex) as CompositeVertex

5 val v1 = v0.addSub_vertices(VertexType.Vertex)

6 val v2 = v0.addSub_vertices(VertexType.Vertex)

7 v0.setDefault_vertex(v1)

8 manager.saveChanges()

9 manager.close()

Listing 3.3. Usage of the genarated API for the Graf DSL

In this chapter, we have presented the architecture of NMF and the basic functionality of the
framework modules. In the following chapters, we present the internal implementation of each
module in detail.
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Chapter 4

NMF-Loader

This chapter describes NMF-loader module of NMF. In Section 4.1 we present the data mapping
mechanism used by NMF-loader. Then, in Section 4.2 we present the architecture of the module.

4.1. Data Mapping
Unlike a relational database, the Neo4j graph database is a storage medium that does not

require a strict data schema. However, to efficiently reason and manipulate models in a graph
database, we shall provide a consistent way to encode models in Neo4j. In this section, we describe
the formal mapping from an Ecore model to a Neo4j graph.

To describe the mapping from Ecore model to Neo4j graph, we formally represent each domain.
We consider a Neo4j graph as a structure NGraph = ⟨N, R, l, t, propN , propR⟩, where N are nodes
and R ⊆ N × N are relationships. Nodes are labeled by a string l : N → Σ∗ with an alphabet
Σ. Similarly, relationships are typed with the function t : R → Σ∗. Nodes can hold properties
propN : N → P(Σ∗ × V ) in the form of key/value pairs, where V is a set of values of any primitive
type (string, integer, boolean, etc.). Similarly, propR : R → P(Σ∗ × V ) defines the properties of
relationships. This abstraction of NGraph corresponds to the representation of graphs in a Neo4j
as presented in Fig. 2.9.

We consider an Ecore model as a structure EModel = ⟨O, attr, ref, cont, to, tr, tc⟩, where O is
the set of objects in the model. Objects can hold a set of attributes attr : O → P(Σ∗ × V ) in the
form of key/value pairs. Objects can be related by associations, which can be either containments
or references cont, ref ⊆ O × O. Objects, containment references, and association references are
typed by a string with the functions to : O → Σ∗ and tc, tr : O × O → Σ∗. This abstraction of
EModel corresponds to the representation of models in Ecore as presented in Fig. 2.5.



Given an Ecore model EModel, we construct a Neo4j graph NGraph by a mapping M :
EModel → NGraph as follows:

N = {M(o), ∀o ∈ O} (4.1.1)

∀n ∈ N, l(n) = to(o) where n = M(o) (4.1.2)

∀n ∈ N, propN (M(o)) = M(attr(o)) where n = M(o) (4.1.3)

R = {(M(o1), M(o2)) | o1, o2 ∈ O ∧ ((o1, o2) ∈ ref ∨ (o1, o2) ∈ cont)} (4.1.4)

∀r ∈ R, propR(r) =


(“containment”, true) if (o1, o2) ∈ cont

where (M(o1), M(o2)) ∈ r

(“containment”, false) if (o1, o2) ∈ ref

where (M(o1), M(o2)) ∈ r

(4.1.5)

∀r ∈ R, t(r) =
{

tc((o1, o2)) if (o1, o2) ∈ cont where (M(o1), M(o2)) ∈ r

tr((o1, o2)) if (o1, o2) ∈ ref where (M(o1), M(o2)) ∈ r
(4.1.6)

In this transformation, we represent objects as nodes in Equation (4.1.1). The label of a node
represents the type of its object as defined in Equation (4.1.2). In Equation (4.1.3), we represent the
attributes of an object as properties of the nodes. Containments and references are represented as
relationships in Equation (4.1.4). To distinguish between them, we define a property “containment”
in all relationships as defined in Equation (4.1.5). Finally, the type of the containment or reference
is represented as the type of the relationship Equation (4.1.6).

We have chosen this particular representation of an MDE model in the database because we
focus on providing the best read/write operations performance. With our representation, we can
easily query the graph using the Cypher language. Moreover, the presented mapping approach
provides a natural representation of MDE models. Unlike in relational databases, it does not
require any additional structures to ensure the semantics of MDE models.

In general, our mapping approach is based on the model instantiation principle. Referring to
Fig. 2.4, a model Mi is an instance of a model Mi+1. In our approach, a graph in the database
represents a model at level Mi, where each element of the graph has a logical link with its meta-
element (i.e., with a corresponding element at level Mi+1). Indeed, we need to keep a logical link
between a model instance and its metamodel to use the stored model in the MDE terms. To provide
the link, we set a label of a node and a type of a relationship to a name of a meta-class of the
element. Therefore, in NGraph, there is exactly one label per node.

In NMF, we have a different model mapping approach compared to Neo4EMF. The latter keeps
an entire metamodel alongside a model instance in the database, explicitly connecting each element
of the model by a relationship with its meta-element [8]. Therefore, when the number of model
elements grows, the number of the relationships to the meta-elements also grows. In NMF, we do
not overcharge the database, storing only relevant model elements there. At the same time, we
keep the MDE logic outside of the database – on a client-side in a generated API. To check the
conformance of a model or the type of a specific model element, in NMF we need a “join”, but
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in Neo4EMF we have it directly. So Neo4EMF optimizes conformance checking and the storage
schema while NMF optimizes model manipulations.

4.1.1. Multilevel mapping

We do not distinguish the mapping approach for a model and a metamodel. Referring to
Fig. 2.4, we use the same mapping for a model at any meta-level. The only essential requirement
of our mapping approach is that the input model must come with its metamodel. We use the
metamodel to determine the types of elements presented in the input model correctly.

An input model of level M2 conforms to the model of level M3, presented in Fig. 2.5. For the
input models of level M2, we rely on the metamodel presented in Fig. 2.5 to perform the mapping.
In case when the input model is a model of level M3, we use the same model as its metamodel
because it conforms to itself.

An important thing to note is that according to our mapping approach, attributes and references
of models of M2 and M3 levels are represented as separate nodes because they are defined as
individual classes in the metamodel. Fig. 3.4 illustrates a serialized version of a model at level M2,
presented in Fig. 3.2. Here, the green nodes represent attributes, and the blue nodes represent
associations of the model.

4.1.2. Mapping example

Fig. 3.3a demonstrates the representation of the Graf DSL model instance in the Neo4j data-
base after applying our mapping approach. This figure also shows an enhanced abstract syntax of
the model. The only difference between our model representation and the model’s abstract syntax
is that the associations in the pure abstract syntax cannot have any attributes. In our case, we use
the power of Neo4j to set an additional property for each relationship to distinguish containments
and non-containments. That is what we call a natural representation of an MDE model in a graph
structure: a serialized model looks exactly like its abstract syntax.

Fig. 3.3a shows a model with four objects: a Graph, a CompositeVertex, and two Vertex
objects. They are represented as separate nodes in the database. Each node has a label: the name
of the meta-class of the object. A label appears at the top of each object representation after the
semicolon (semicolon is not a part of the label). The Graph object has a name attribute that handles
a string value G1. After the mapping, the Graph node has a property with the same name and the
corresponding value.

The CompositeVertex object contains two Vertex objects. Since Vertex objects are already
presented as individual nodes, we map the containment associations of the CompositeVertex object
to outgoing relationships of the CompositeVertex node, each pointing to the corresponding Vertex
node in the database. Both relationships have a type sub_vertices that corresponds to the name
of the meta-association in Fig. 3.2. Also, both relationships have a boolean property containment
set to true, highlighting that this is a containment association. Similarly, an outgoing association
of type default_vertex of the CompositeVertex is mapped to the relationship with the same type
and has a property containment set to false.

49



Model
 elements

Neo4j databaseNMF-loaderAn input model

Reader

Parameterized create query

ID binding

Loader

sub-model sub-graph

Mapper

ID binding

Fig. 4.1. NMF-loader data flow

4.2. NMF-loader components
NMF-loader is a tool for importing existing MDE models into the Neo4j database. NMF-loader

offers the following features:
• store in the database any Ecore model at any Mi meta-level
• provide appropriate data mapping, as described in Section 4.1
• interact with a remote database instance
• process large input models by splitting them into smaller partial models

– gradually upload partial models to the database in a transactional way;
– keep consistency between partial models.

To provide these features, we have designed a pipeline architecture, presented in the center
of the Fig. 4.1. NMF-loader consists of three components: reader, mapper, and loader. These
components form a chain of handlers, which consequently process the elements of an input model.

4.2.1. Reader

The reader is the first component that traverses the input model and prepares data for the
other components in the processing chain of NMF-loader. Fig. 4.2 presents the structure of the
reader component. The reader consists of two sub-components: element extractor and a buffer.

4.2.1.1. Extracting the elements from an input model. The extractor sub-component is
responsible for iterating and extracting the elements of an input model. The extracting process
implies selecting and deserialization of the elements.

From a user point of view, NMF-loader treats the input models of any Mi level in the same way.
But internally, we use different extraction strategies for models of level M1 from those at levels M2

and M3.
We use a reflective element extractor for input models of M1 level. The key concept of this

extractor is that it selects all the model elements in a reflective way. This makes the reader
domain-independent meaning that a user can pass any model instance of any DSL as the input.
The reflective extractor automatically inspects the meta-types of the model elements to determine
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1

buffer

Fig. 4.2. The architecture of the reader component of NMF-loader

the type of each object and association. This strategy works independently from the metamodel as
it dynamically retrieves the meta-types.

For metamodels (i.e., for input models of levels M2 or higher) we use an Ecore-specific element
extractor. This extractor selects only the relevant part of an input model. In fact, the metamodel
provided in Ecore format contains the model itself and a piece of serialization information. If we
used the reflective extractor to traverse a metamodel, the output graph would have many unneeded
details, relevant to the specific Ecore implementation. The Ecore extractor selects only the essential
part of the model that we are interested in, omitting unnecessary elements.

To choose the correct extractor, the reader component performs a preprocessing step: it detects
a type (i.e., a level) of an input model. EModels have a structure of a tree with a single root element.
The preprocessor analyses the type of that root element. Metamodels in Ecore format have a root
element of type EPackage. For an input model with that root we use Ecore extractor; otherwise,
NMF-loader uses reflective extractor.

4.2.1.2. Buffering. The reader puts to the buffer the elements selected by the extractor sub-
component. The buffer accumulates the elements and organizes them into batches. The buffer has
a fixed size, and once it is filled, the buffered elements are transmitted to the mapper. The reader
refills the buffer as long as the input model has the remaining elements to process.

With this approach, we can handle large input models, splitting them into sub-models and
processing them successively in multiple iterations. Fig. 4.1 demonstrates one iteration of the
loading process. The dashed rectangle on the left side of the figure represents a sub-model stored in
the buffer. The green rectangle on the right side of the Figure represents the processed sub-model.
The other components of NMF-loader (mapper and loader) process not an entire input model, but
a sub-model from the buffer. This is extremely important for the loader component, where the
connection to a database accepts a limited amount of data in one transaction. In the special case
when the input model can entirely fit within the buffer, NMF-loader processes it in one iteration.

In the loader component, the loading of the elements to the database consists of two steps: the
first one is to load nodes, the second one – to load relationships. This distinction exists because of
the following fact: to create a relationship between nodes in the Neo4j database, we must provide
the source and target node for the relationship. Therefore, we create a relationship only between
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Fig. 4.3. EModel traversal process

existing nodes in the database. For each sub-model, the loader component uploads nodes and
relationships in two different queries, where nodes come before relationships.

In the buffer, we start to form correct data structures for the other components of the processing
chain. Thus, we split associations and objects of the sub-model and hold them separately in the
buffer, so the loader component could use them independently. As shown in Fig. 4.2, the buffer has
separate containers to hold objects, associations, and so-called deferred associations. Each of these
containers have a size. If one of the containers is filled, we consider the entire buffer as filled and
passes the buffered element to the mapper component.

The associations container must contain only those associations whose objects are in the objects
container of the buffer, or are already in the database. This filtering helps to avoid inconsistency
for loading associations to the NGraph, and ensures that the adjacent nodes of relationships are
already presented in the database. The other associations, that have unprocessed source or target
object, are added to the deferred associations container of the buffer.

4.2.1.3. Reading process. The reader iterates over an input model, selects the elements within
the extractor, and puts them into the buffer. While reading the input model we must correctly
fill the elements into the buffer, respecting its three containers: for nodes, for associations, and for
deferred associations.

The structure of any EModel has some particular features:
• EModels have a tree structure with a single root object
• each object of EModel, except the root object, has exactly one incoming containment

association
We use these features to efficiently iterate over an input model. Fig. 4.3 demonstrates a common
structure of EModel. In this figure, the circle specifies an object, the solid arrow specifies a
containment association, and a dashed arrow denotes a reference association. Also, we have specified
the reading order for each object in the figure. We use a depth-first traversal to iterate over the
model elements.

We start to traverse EModel from its root object. The reader immediately puts the root
object to the objects container of the buffer. To move between objects we use only a containment
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association. For each next object of the model (except of the root object) we perform the following
procedure:

(1) put the object (including its type and attributes) to the nodes container of the buffer
(2) put the incoming containment association to the associations container of the buffer (skip

this step for the root object)
(3) check if either the objects or the associations container of the buffer is filled. If so – pass

the buffered elements to the mapper component
(4) for each outgoing reference association:

(a) check if the buffer contains the end object (an object the current association points to).
If so, put the reference association to the association container of the buffer, otherwise
put it to the deferred associations container of the buffer.

(b) check if the associations container of the buffer is filled. If so, pass the buffered elements
to the mapper component

(5) check if the deferred associations container has associations, that points to the current
object. If it has, get them and perform for each:
(a) transfer the reference association from the deferred associations to the associations

container of the buffer
(b) check if the association container of the buffer is filled. If so, pass the buffered elements

to the mapper component
(6) for each outgoing containment association:

(a) get the contained object and repeat for it all operations starting from the step 1. (This
operation ensures the depth-first traversal)

The model presented in Fig. 4.3 has two reference associations. The forward reference associ-
ation (from object1 to object8) is an association, that points to the object, that is not yet reached
by the reader. Therefore, the reader puts that association to the deferred associations container.
A backward reference association (from object4 to object2) points to the object that was already
processed by the reader. Thus, the reader always puts that association to associations container of
the buffer. This is a benefit of a depth-first traversal: we are able to include the backward associa-
tions directly to the associations container of the buffer. The deferred associations container of the
buffer acts as a temporary holder for reference associations. On the last iteration, that container
becomes empty according to the step 5 of the reading procedure.

We process containment associations as an incoming association of each object (assuming that
it always has exactly one incoming containment association). Thus, the object and its incoming
containment association are passed to the buffer, that provides the best sub-model consistency.

4.2.2. Mapper

The mapper component provides a two-way data mapping. First, the mapper takes the sub-
model from the buffer and maps its elements according to the mapping rules defined in Section 4.1.
The mapper preserves the input data structure by passing separate lists of nodes and relationships
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to the loader. Second, the mapper component binds the IDs from the database to objects in the
input model.

The loader component creates the nodes and relationships in two different transactions. The
first transaction is to create nodes and the second to create relationships. To create a relationship,
the loader must use existing nodes. To use an existing node in the second transaction, we must
first match it. Considering that we work with a remote database instance, there are two ways to
match a previously persisted node:

• add a custom parameter for each node. In this case, a client application manages these
parameters and uses them for further node search;

• use internal database IDs that are automatically assigned to each node on creating. To rely
on these internal IDs, we must take them back to the client application from the database.

We use a second approach relying on internal IDs because searching a node by ID is the most
efficient way in Neo4j. For that, the loader component gets the IDs of nodes and passes them back
to the mapper component, as shown in Fig. 4.1.

We may achieve the situation when the source and target objects of the association are processed
in different iterations (sub-models). To correctly create the relationship in the database, we must
know the IDs of both nodes. To be able to get the node ID from past iterations, the mapper
component holds an additional cache map. This map holds an EModel object as a key and
a corresponding ID from the database as a value. We put in this map the objects that have
unprocessed outgoing associations, and we hold them there until the last outgoing association is
stored in the database (so until the loader component does not need it). Managing this map
(adding, getting, and removing IDs to it) is called ID binding.

4.2.3. Loader

The loader component provides the interaction with a remote database instance. It takes the
elements from the mapper component and uploads them to the database.

In the loader component, we use parametrized Cypher queries. We use only two different queries:
one to load nodes, the second to load relationships only. This approach takes into account the query
planner of Neo4j database, described in Section 2.2.4. For that, we have different containers for
nodes and relationships starting from the buffer component.

To create the nodes in the database, we use a Cypher query, presented in Listing 4.1. This is a
parameterized query that takes a list of nodes to create as a parameter. This list comes from the
mapper component. Each element in the list has the following structure:

• alias – a custom parameter that serves to identify the node after we get its ID from the
database. The alias helps to perform ID binding

• label – string literal
• properties – a map of properties where the key is a property name and the value is one

of supported Neo4j types

1 UNWIND $batch AS row

2 CALL apoc.create.node([row.label], row.properties) YIELD node
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3 RETURN row.alias AS alias, ID(node) AS id

Listing 4.1. Batch create nodes query

Listing 4.1 consists of three commands. First, we transform the input list of parameters into
individual rows using the UNWIND keyword (line 1). After that, each following command will be
executed as many times as the size of the input list is. The logic of UNWIND command is very
similar to a simple for-loop. The row variable denotes an individual concrete parameter on each
iteration. Next, we use the apoc.create.node function of the APOC library to create a node from
the parameters (line 2). Here, we cannot use the simple CREATE () command because it does not
support parameters. We should explicitly define labels and properties in the CREATE command.
Finally, we return back to the loader component the IDs of newly created nodes, mapped to
the alias parameter (line 3). This parameter allows to determine on the loader side which ID
corresponds to which node. The loader then passes the response of that query back to the mapper
component to let him perform the ID bindings for nodes.

To create the relationships in the database we use a Cypher query, presented in Listing 4.2.
This is a parametrized query that takes a list of relationships to create as a parameter. Each
element in the list has the following structure:

• type – string literal
• from – the ID of the source node
• to – the ID of the target node
• isContainment – a boolean true or false

1 UNWIND $batch AS row

2 MATCH (from) WHERE ID(from) = row.from

3 MATCH (to) WHERE ID(to) = row.to

4 CALL apoc.create.relationship(from, row.type, {containment:row.isContainment}, to) YIELD rel

Listing 4.2. Batch create relationships query

Listing 4.2 consists of four commands. We use the UNWIND keyword to transform the input list
of parameters into individual rows (line 1). For each parameter, we search for a source node (line
2) and an target node (line 3) by ID. That is why the nodes must be already stored in the database.
We create a relationship using the apoc.create.relationship function from the APOC library
(line 4).

4.2.4. Loader example

We now present the loading process on a concrete example, using the model shown in Fig. 3.3a
as the input for NMF-loader. Suppose we have a buffer size set to two elements for both objects
and associations. The input model is a model of M1 level, so the reader uses the reflective extractor
for it. The reader starts the traversal from the root object Graph. The reader places it in the
object container of the buffer. Graph only contains the CompositeVertex V0 (via containment).
Then, the reader puts V0 with its vertices incoming containment association to the corresponding
containers of the buffer. At this point, the objects container has two elements, the associations
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container has one element, and the deferred associations container is empty. The objects container is
filled, so the buffered elements are passed to the mapper. The mapper converts them into NGraph

parameters and passes them to the loader component. The loader commits the two nodes to the
database, sending a single query presented in Listing 4.1. As a response, the loader gets the IDs of
newly created nodes and passes them back to the mapper component to let it perform ID bindings.
Next, the loader commits the buffered relationships to the database, sending a query, presented in
Listing 4.2. To store relationships, the loader uses the node IDs from the mapper. At this point,
the first iteration is complete. The buffer is cleared and the reader continues to iterate over the
model.

The reader starts the second iteration by putting the default_vertex association of the V0 in
the deferred associations container (because V1 is not yet reached). Next, it will visit the vertex
objects contained in V0. Among two existing Vertex objects, the reader will choose the first one
depending on the serialization order. Suppose the reader passes to the object V1. It puts the object
and its sub_vertex incoming containment association to the buffer. Also, the reader picks up the
incoming default_vertex reference association from the deferred associations container and puts
it to the associations container. At this point, the associations container is filled, so the reader
passes the buffered elements to the mapper. Then the loader and the mapper component repeat
the same operations as they performed on the first iteration. After the loader commits the data,
the second iteration is complete.

Next, the reader continues to iterate through the model from V1. This object has one unpro-
cessed edge association. The reader puts it to the deferred associations. Then, the reader passes to
the Vertex object V2 as the second containment from V0. The reader puts the current object V2 as
well as its incoming containment association to the buffer. Also, the edge association is transferred
from deferred associations to the normal associations container. At this point, the associations con-
tainer is filled. After the mapping, the loader component commits the data to the database. The
third iteration is complete. The input model has no remaining element to process, so NMF-loader
terminates the loading process.

In this chapter, we have presented the implementation details of NMF-loader module – a com-
ponent of NMF to export existing MDE models from XMI format to Neo4j database.
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Chapter 5

NMF-Editor

In this chapter we present NMF-editor module. In Section 5.1 we discuss the editing logic of models
in MDE. In Section 5.2 we describe the architecture of NMF-editor. In Section 5.3 we describe our
partial model editing mechanism. Finally, in Section 5.4 we present a usage example of NMF-editor.

5.1. Model editing logic
In MDE, there are generally four primitive operations that can be applied to the elements of

a model: create, read, update, delete (the so-called CRUD operations). To maintain the well-
formedness of a model, general pragramtic rules govern how to edit models. Given an EModel

(defined in Section 4.1), the editing rules are as follows:
(1) An EModel always consists of a unique root object with no incoming containment associ-

ation. For example, G1 is the root of the model in Fig. 3.3a
(2) All non-root objects must be “contained” in another object. Thus, objects and containment

associations always form a tree rooted at the root object. In the example, G1 contains V0,
which in turn contains V1 and V2.

(3) A non-root object can only be created by containment. For example, when creating the
vertex V1, we must create the sub_vertices containment association from V0.

(4) Deleting an object recursively deletes all objects it contains. Thus, deleting V0 will also
delete V1 and V2. To avoid dangling references, all their adjacent associations are also
deleted.

(5) An object can only access to other objects directly related to it. For instance, in Fig. 3.3a,
the graph G1 can access the composite vertex V0, but not vertices V1 and V2.

(6) All attribute values must conform to the type specified in the metamodel of the EModel

when they are updated.
(7) All references must conform to the upper/lower bounds defined in the metamodel of the

EModel.
Consequently editing an NGraph that represents an EModel in the database must abide to these
rules. Therefore, the API that NMF-editor provides follows the same rules.



5.2. NMF-editor components
NMF-editor is a core module of NMF. It provides an API to edit graphs in a Neo4j database.

Our implementation provides an API developed in Kotlin so that a user can use it from any JVM-
based programming language and is thus compatible and easily integrable with the Eclipse Modeling
Framework.

NMF-editor offers the following features:
• It provides editing operations for graph elements that comply with the editing logic of

EModels, described in Section 5.1
• It relies on the NGraph data serialization schema, described in Section 4.1/
• It can interact with a remote Neo4j database instance.
• It supports on-demand loading to allow working with a sub-graphs and query from the

database only needed elements.
• It supports buffering to accumulate locally a batch of updates in a cache before applying

(i.e., committing) them on the database.
• To reduce communication overloading, all edits are cached locally. A user can apply CRUD

operations to the buffered elements, thus modifying elements right in the cache.
• All elements remain accessible after the operations are committed to the database.

To provide these features, we have designed an architecture, presented in Fig. 5.1. NMF-editor has
six components combined into two architectural layers: controller components and CRUD operation
components. We present the detailed description of these components in the following sections.

5.2.1. Graph controller

Graph controller is the first component of NMF-editor available for a user. A short usage
example of this component was presented in Listing 3.1 (lines 1–2, 9–10). The graph controller has
four goals.

First, it manages a connection to the database. This component establishes a connection to
various resources (e.g., database, buffer) and gives access to the graph. Usually, a user needs to

Database

Creator
Reader

Updater Remover

Client Code

Controller

Buffer

Node controllerGraph controller

Buffer Buffer

Fig. 5.1. The NMF-editor layered architecture and its components
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keep one graph controller per database instance. At the end of the interaction, the graph controller
must close the connection to release the resources.

Second, the graph controller spawns node controllers using the factory pattern [30]. A node
controller represents a particular node and provides editing operations over it. The graph controller
provides an API to create a node controller for either a new node or an existing one in the database.

Third, the graph controller provides an API to manage a cache of node controllers. We use the
cache to have access to the elements after a commit. By default, creating a new node controller
leads to putting it in the cache. A user has complete control over it and can decide which controller
to remove from there. Internally, the cache is organized as an adjacency matrix that also keeps
connections between node controllers. With it, we can query related node controllers from the
cache.

Finally, the graph controller is responsible for initiating a commit of the current changes in the
cache to the database. While editing, NMF-editor accumulates the write operation (i.e., elements to
create, update, and remove) in independent buffers. These buffers form the cache. Node controllers
“control” the elements in these buffers. With a node controller, we can edit elements directly in the
cache, before committing, or in the database, after the commit. Thus, we use controllers to change
the appropriate content of the buffers. The graph controller provides the savechanges function
that flushes the buffers and applies the buffered operations to the database.

5.2.2. Node controller

A node controller gives access to a particular node. This component provides a specific set of
operations and acts as a proxy for a node it represents. Whether the node is in the database or
(and) in one of the buffers, inside Creator, Updater, or Remover components, the node controller
generalizes the access to it. NMF-editor can have multiple node controllers at the same time.

Fig. 5.2 presents the main functionalities of a node controller. We split this component into
two layers: INodeEntity represents an element, NodeController together with PropertyAccessor
represent a logical layer over that element. This layer exposes to a user a specific functionality that
conforms to the EModel editing logic, described in Section 5.1. We split the node controller to
provide domain-specific editing operations support. As such, a domain-specific implementation can
extend the INodeEntity interface providing a different functionality. We describe that approach
in more detail in Chapter 6.

The PropertyAccesor class serves to modify node properties. The class provides common
CRUD operations. The putProperty is a setter method that accepts a value of any JVM type
(i.e., Object), including collections. Also, the PropertyAccessor provides putUniqueProperty
method that ensures the property value uniqueness for nodes with the same label (i.e., objects
of the same type in the EModel). Before putting the property value, we look for it in both the
database and buffers of NMF-editor. If the uniqueness property is violated, the PropertyAccesor
aborts the operation and throws a UniqueValueExeption if the value already exists.
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NodeController

- state: State

+ outRefCount: Map<String, Int>

+ getOutConnectedNodes (rType: String, limit: Int): List<NodeController>

+ removeOutRef (rType: String, endNode: INodeEntity)

+ removeChild (rType: String, child: INodeEntity)

+ createOutRef (rType: String, endNode: INodeEntity)

+ createChild (rType: String, label: String): NodeController

+ unload()

+ remove()

<<Interface>>
INodeEntity

+ id: Int

+ label: String

<<implements>>

PropertyAccessor

+ putProperty(name: String, value: Object)

+ putUniqueProperty(name: String, value: Object)

+ removeProperty(name: String)

+ getProperty(name: String): Object

Logical layer

Fig. 5.2. The structure of a node controller

The NodeController class provides specific editing operations to CRUD related elements. The
createChild method creates a new node together with a new incoming “containment” relation-
ship from a node the current node controller represents. The relationship has a “containment”
property set to true. In terms of the EModel, this means that it creates an object together with
its incoming containment association. The createChild method takes two parameters: a type for
the relationship and a label for the node. The newly created elements are passed to the buffer of
the Creator component. The createChild method also creates and returns a new node controller
that represents that newly created (target) node. That new node controller is then automatically
saved to the adjacency matrix of the graph controller.

In terms of EModel,the removeChild method removes a contained object. It takes a relation-
ship type and a node controller object as parameters. The node controller parameter represents a
target node to remove. The type parameter helps us ensure whether the source and target nodes
are actually connected by a specific relationship (because a source node can have multiple outgoing
relationships of different types). Theoretically, a user can even pass as parameter a node controller
that does not relate to the current one. In this case, the target node will not be removed.

Internally, the removeChild method analyzes the passed node controller object. If it represents
a node in the database, we put it in the buffer of the Remover component. The node will be removed
from the database next time a user invokes the saveChanges method of the graph controller. If the
node controller represents a node in a buffer of the Creator component, we remove it from there, so
it will not be persisted while invoking saveChanges. When the node is in the buffer of the Updater
component, we do both operations: we remove the node from the buffer of the Updater component
and put it to the buffer of the Remover component. In all the cases, we also remove a corresponding
node controller from the adjacency matrix of the graph controller. Also, the removeChild method
initiates a recursive deletion of all the sub-nodes contained in the target node. To find them in the
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cache, we use the adjacency matrix of the graph controller. To remove them from the database, we
use the power of Cypher query language. We describe that approach in more detail in Section 5.3.3.
While removing a node, we also remove all its incoming/outgoing relationships in both database
and cache (including buffers and adjacency matrix).

The getOutConnectedNodes method gets nodes connected by outgoing relationships. This
method takes two parameters: a relationship type and a limit – the maximum allowed number of
nodes to return. First, this method looks for corresponding node controllers inside the adjacency
matrix of the graph controller. If the limit number is not satisfied, the function makes a request
to the database using the reader component. For each returned node, we create a new node
controller and put it in the adjacency matrix. The getOutConnectedNodes method combines the
node controllers from the cache and the database into a single list and returns it to a user. We do
not use a buffer for reading operations. Instead, we return the result to the user immediately.

The createOutRef and removeOutRef methods operate on outgoing relationships of a node
the current node controller represents. In terms of EModel, these functions represent operations
on reference associations. Both methods require a relationship type and a node controller of a
target node as parameters. While creating the relationship, we assign the boolean “containment”
property to false. Then we put the relationship to the buffer of the Creator component and the
graph controller’s adjacency matrix. While removing a relationship, we analyze the target node
controller. If it represents a new node, the node itself and its relationships are added to the buffer
of the Creator component.

A node controller tracks an actual number of outgoing relationships. The outRefCount map
groups a relationship count by the relationship type (a key is a relationship type, and a value
is an actual integer number of the outgoing relationships). While invoking the createChild,
createOutRef, removeChild, removeOutRef methods, we appropriately increment/decrement
the actual number of outgoing relationships in the map. The tracking of outgoing relationships
count allows us to provide a mechanism of checking upper/lower bounds. We describe it in more
detail in Section 6.3.3.

The remove method of the graph controller removes the node the current node controller rep-
resents. Internally, this method acts in the same manner as the removeChild method, respecting a
recursive removing of all the containment sub-nodes. However, unlike the removeChild, the remove
method starts removing from the current node.

The unload method removes the node controller itself from the cache (more precisely, from the
adjacency matrix of the graph controller). After unloading, the node can still exist in the database
or in one of the buffers of NMF-editor. If the node is in a buffer, it will be uploaded to the database
the next time a user invokes the saveChanges method.

5.2.3. Controller states

The node controller uses the state pattern [30] to handle the node transitions between different
components and the database. The node controller acts differently depending on which of the
following states it is in: New, Persisted, Modified, Removed, and Unloaded. Fig. 5.3 illustrates
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New
save_to_DB update_in_buffer
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update_in_DB
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create_new

load_from_DB

Initial

remove
unload

Active

Removed Unloaded

Fig. 5.3. Node controller states

the transitions between them. Initially, a user can create a new node controller either for an
existing node in the database (while reading it) or for a new node. The node controller in state New
represents a new node located in the buffer of the Creator component. State Persisted indicates
that the node controller represents a node from the database. The saveChanges method of the
graph controller triggers the transition from New to Persisted.

State Modified indicates that the node controller represents a node in the database, but the
properties of the node have been modified and not yet committed to the database. The updated
properties are located in the buffer of the Updater component. The node controller goes from
Persisted to Modified when the user invokes putPorperty or putUniqueProperty. It becomes
Persisted when the changes are committed to the database with the saveChanges function.

State Unloaded indicates that the node controller itself was removed from the cache. This state
serves to stop tracking the node and prevent any editing operations over it. We can switch to this
state on invoking the unload function of the node controller. The Unloaded state is final.

State Removed indicates that the node controller represents a node that was removed and does
not physically exist neither in the database nor in the buffer. Simultaneously, the node controller
itself is removed from the cache and cannot be used for any interaction. We can pass to this
state from any active state (i.e., New, Persisted, Modified). Removed is a final state for a node
controller.
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5.3. Partial graph editing
To start interacting with a node, a user must have a node controller for it. We hold node

controllers in the cache (adjacency matrix of the graph controller) of NMF-editor. Because of the
“on-demand loading”, we do not hold the entire database content in the system. Instead, a user
can load in the cache only the node controllers needed. Also, we provide a mechanism to unload
unnecessary controllers (that represent the nodes a user no longer needs to interact with) from the
cache using the unload function. This kind of manipulation may lead to cache fragmentation. This
means that the cache can contain partial graphs, as shown in Fig. 5.4. In the lower part of the
figure, we can see an example of a consistent graph in the database. The upper part of the figure
contains an example of node controllers representing particular nodes in the database. We mark
each controller with the appropriate number that corresponds to a number of a node it represents.
Partial graphs in the cache of NMF-editor do not have to be connected, even if the complete graph
in the database is. Therefore, we should provide CRUD operations that correspond to EModel

editing logic on partial graphs, keeping data consistency in the database.
Let us consider all the CRUD editing operations for partial graphs, following the example

presented in Fig. 5.4. Suppose a user creates a new node #12 that is contained in node #11. Upon
creation, the user immediately gets a node controller with state New for that node. Although the
node is in the buffer and has not yet been stored to the database, he can operate on it as it is a
part of the graph. This means that a user can rely on that controller to create new contained nodes
and relationships.

We use the same logic for the update operation. If a user modifies the properties of a node,
the node controller represents the node with the updated properties, despite the modifications have
not yet been stored in the database.
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Fig. 5.4. NMF-editor cache fragmentation
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We do not use the buffer for the read operation. The node controller is immediately created
with state Persisted and stored in the cache.

The delete operation acts according to the EModel editing rules: it removes the node and all
its containment sub-nodes in-depth recursively. We use the buffer for the delete operation as well
as for the create and update operations. This means that the actual deletion of elements in the
database will not be performed until a user invokes saveChanges function.

Because of the “on-demand loading”, node controllers that are subject to be removed may be
in different partial graphs of the cache. To keep consistency between partial graphs in the cache,
we split the delete operation into four steps that are described below.

(1) Put to the buffer of the Remover component of the target node to remove. This node
represents a root element of a partial graph that should be removed.

(2) Analyze the cache of node controllers using the adjacency matrix. We recursively find all
the available controllers in the cache that correspond to the contained nodes of the target
node to remove. We remove those controllers from the cache and change their status to
Removed. This state prevents any further editing operations over these elements.

(3) Commit the buffer of nodes to remove (when a user invokes the saveChanges function) to
the database. We rely on the database to find and remove all the contained nodes of the
target node.

(4) Return from the database the IDs of all removed nodes. Then, we again analyze the cache
and look there for node controllers with that IDs going back to step (2). The process
terminates when no more IDs are returned.

Suppose a user removes node #6 in the lower part of Fig. 5.4. We consider all relationships in
the figure as containment associations. This means that while removing node #6 we also need to
remove all its contained nodes 7–11. After an invocation of the remove function of node controller
#6, we put a node #6 to the buffer of the Remover component. Also, we remove node controllers #6
and #7 from the cache and switch theirs state to state Removed. However, node controllers #10 and
#11 are still in an active state. Suppose the user then uses node controller #11 and creates for it a
new contained node #12. Although this action is not allowed according to EModel editing rules,
he can still interact with node controllers #10 and #11. If the user then invokes the saveChanges
function, NMF-editor will proceed with the remove operation first. We remove nodes 6–11 in the
database and return to the NMF-editor their IDs. Then, we use these IDs to remove the node
controllers #10, #11, and newly created #12. Additionally, we remove node #12 from the buffer
of the Creator component to not allow committing of the unnecessary elements to the database.
Similarly, we perform the same operation for the buffer of the Updater component if needed (if
the user modifies a node that should be removed). Next, the remove operation is done, so we pass
to the create and update operations. In our case, the two corresponding buffers are empty, so the
entire commit is done. As a result, the database will contain only nodes 1–5 after this commit.

The response we get form the database is to keep consistency between partial graphs in the
cache. The saveChanges function of the graph controller initiates a commit. This commit consists
of three operations: create, delete, and update. This operations are triggered in a specific order:
the delete operation comes first before the create and update operations.
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5.3.1. Element creation

The Creator component has two goals: managing a buffer of new elements and uploading them
to the database. It uses similar logic for uploading elements as the loader component of NMF-loader,
described in Section 4.2.3. To upload elements, we reuse two parametrized queries of NMF-loader,
that were presented in Listings 4.1 and 4.2. The first one to upload nodes and the second one
to upload relationships. Also, we split the buffer to hold the nodes and relationships in separate
containers of the buffer and use them as two independent sets of parameters for the queries. The
parameters of nodes and relationships have the same structure as in the loader component. After
uploading the nodes, the Creator component takes as a response the IDs of newly created nodes
(because we rely on internal database IDs). Then we use these IDs to update the corresponding
field of active node controllers.

There are only two differences between the Creator component and the loader component.
First, the Creator component can manage his buffer (add and remove elements), while NMF-
loader only adds. In NMF-editor, the user can create a new element, then remove it before the
commit. In this case, the manipulation is done in the buffer: the node is removed from it and will
not be uploaded to the database.

The second difference is that the buffer of the Creator component does not have a fixed size.
A user can add as many elements as he wants before invoking the saveChanges function that
triggers the commit. Instead, while uploading the elements, we split the buffer (for both nodes and
relationships) into chunks. For instance, if the container of the relationship of the buffer exceeds
the chunk size, the Creator component will resubmit the query with a new portion of parameters
as long as the container has remaining elements to process. This approach allows to handle large
commits and upload them successively.

5.3.2. Element updates

Updating an element means to modify its properties. In NMF-editor, we only update nodes to
follow the EModel editing rules. The user can initiate a property modification of a node by using
the functionality of the PropertyAccessor class.

In NMF-editor, the updating operation has two different variants. At any point in time, a node
can be either in the database or in the buffer of the Creator component. For a new node, we simply
update a map of properties for a particular node in the buffer of the Creator component. We then
upload the new nodes together with their properties using the query in Listing 4.1. Before uploading,
all the manipulations with properties are performed in the buffer of the Creator component.

To update the properties of an existing node in the database, we use the Updater component
of NMF-loader. This component has two goals: manage a buffer of modified properties and upload
them to the database. We accumulate the updated properties in the buffer until the user invokes
the saveChanges function. This function initiates a commit that contains the update operation
(alongside the create and delete operations).
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To update node properties in the database we use a query presented in Listing 5.1. This is a
parameterized query that takes a list of parameters. We use the buffer to form a set of parameters
for the query. Each element of the buffer has the following structure:

• id – the node id
• properties – a map of new properties for the node (key is a property name, a value is one

of the allowed Neo4j value types)
Thus, the entire buffer has a structure of a map of maps.

1 UNWIND $batch AS row

2 MATCH (node) WHERE ID(node) = row.id

3 SET node += row.properties

Listing 5.1. Cypher query to update nodes in the database

In Listing 5.1, we use the UNWIND command to convert the input list of parameters into individual
rows (line 1). The row variable represents each independent parameter (as counter inside a for-
loop). We look for a node with a specific ID (line 2) and assign properties using SET command
with += operation (line 3). This operation acts as follow:

• any property in the properties map that are not in the node will be added
• any property not in the map that are in the node will be left as is.
• any property that are in both the map and the node or relationship will be replaced in the

node

5.3.3. Element removal

The delete operation has two different variants depending on the actual element location. To
remove a new node or relationship that is in the buffer of the Creator component, we pop the
appropriate parameter from there, excluding it from the commit. To remove an existing element in
the database, we use the Remover component. This component has two goals: accumulate elements
to remove in the buffer and upload them to the database. We accumulate the elements in the
buffer until a user invokes the saveChanges function. The buffer has two separate containers: for
nodes and relationships. We use these containers to form two sets of parameters for parameterized
queries.

5.3.3.1. Nodes removal. To remove nodes in database we use a query, presented in Listing 5.2.
This query takes a list of node IDs as a parameter. Each ID serves to find a node that should be
removed. We remove a node together with all its contained nodes in-depth recursively according to
the EModel editing rules. Each parameter in the buffer denotes a root element of a “containment”
sub-graph to be removed. For each node, we discover the sub-graph in the database and remove
all its elements. The buffer may contain multiple elements, so we are able to remove multiple
sub-graphs within a single commit.

1 UNWIND $batch AS row

2 MATCH (node) WHERE ID(node) = row.id

3 WITH node
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4 MATCH (node)-[*0..{containment:true}]->(d)

5 WITH d, ID(d) AS removedIDs

6 DETACH DELETE d

7 RETURN removedIDs

Listing 5.2. Cypher query to remove containment nodes

In the query, we look for a node with the specified ID (line 2). To refer to this element later in
the same query, we assign it an alias node. The WITH keyword serves to restrict variable use inside
the query. This command forms a new scope where only the node variable is available (line 3).
Variables row and $batch are not visible after line 3.

Next, we look for all the nodes contained in the root node. Inside the relationship notation
(square brackets), we specify a filter to find only containment relationships. The notation *0..
(from 0 to infinity) specifies an arbitrary number of hops between nodes. Thus, the alias d will
represent all the contained nodes along with node. We form a new scope of variables in the query,
propagating variables d and removedIDs (line 5).

Then, we remove the nodes the alias d represents together with all the relationships related
with them (line 6) (because a relationship cannot exist without a source and target node). Finally,
we return the IDs of all the removed nodes. We then use those IDs to set to the Removed state
the node controllers representing nodes in the removed sub-graph and were not affected before the
commit.

5.3.3.2. Relationships removal. To remove relationships from the database we use a query
presented in Listing 5.3. Because we do not use relationship controller in NMF-editor, we cannot
track relationships and rely on their IDs. Thus, to find and remove a relationship in the database
we rely on four parameters:

• source node ID
• target node ID
• relationship type
• limit – a number of relationships with a certain type to remove

Each element of the relationship container of the buffer has exactly the same structure. The last
parameter needs detailed explanation. Suppose we have five relationships between two nodes: three
labeled type1 and two labeled type2. Suppose the user wants to remove two relationships of type
type1. To perform this operation in one query and to not rely on IDs of relationships, we provide
the following parameters: source/target node IDs, relationship type: type1, limit: 2.

1 UNWIND $batch as row

2 MATCH (start) WHERE ID(start)=row.startID

3 CALL apoc.cypher.doIt("

4 MATCH (start)-[r]->(end)

5 WHERE type(r)=rType AND ID(end)=endID

6 WITH r LIMIT $limit

7 DELETE r",

8 {start:start, rType:row.rType, endID:row.endID, limit:row.limit}
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9 ) YIELD value

10 RETURN value

Listing 5.3. Cypher query to remove relationships by source/target node IDs

In the query, we use the UNWIND keyword to transform a list of parameters into individual rows (line
1). Then we look for a source node of the relationship (line 2). We use start alias to represent
this node. Next, we start a sub-query using doIt function of APOC library (lines 3–9). We need a
sub-query to not break the UNWIND process since each subsequent command acts as inside a for-loop.
Hence, a sub-query initiates an “inner loop” with its own parameters scope. Inside the sub-query,
the alias end represents the target node. The alias r represents all the relationships connecting the
source and target nodes. Then, we limit the number of relationships (respecting the case ) the alias
r represents (line 6). Finally, we remove them from the database (line 7).

5.3.4. Reading elements

NMF-editor provides two different reading cases. The function readNodeByID of the graph con-
troller triggers the reading query, presented in Listing 5.4. This query takes a single id parameter.
It returns the node found in the database (or null if a node with the ID does not exist). Based
on the returned result, the Reader component then creates a new node controller with the state
Persisted and puts it to the cache.

1 MATCH (n)

2 WHERE ID(n) = $id

3 RETURN n

Listing 5.4. Cypher query to read a node by ID

The function getOutConnectedNodes of the node controller gets related nodes from the data-
base. It triggers the reading query presented in Listing 5.5.

1 MATCH (start) WHERE ID(start) = $startID

2 CALL apoc.path.subgraphNodes(

3 start, {relationshipFilter: $refType, labelFilter: $label, minLevel:1, maxLevel:1}

4 ) YIELD node

5 WITH node LIMIT $limit

6 OPTIONAL MATCH (node)-[r]->()

7 WITH ID(node) AS id, labels(node)[0] AS label, type(r) AS rType, count(r) AS count

8 RETURN id, label, apoc.map.fromPairs(collect([rType, count])) AS count

Listing 5.5. Cypher query to read related nodes

We look for the source node by ID in database (line 1). To represent this node in the query we use
the start alias. Then, we use a subgraphNodes function from the APOC library to find related
nodes of the source node (lines 2–4). This function takes five parameters:

• start – a source node to find related nodes for
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• relationshipFilter – a type of an outgoing relationship that connects the source node to the
target node (a source node can have multiple outgoing relationships of different types)

• labelFilter – a label of the target node
• maxLevel – the maximum number of hops from the source node
• minLevel – the minimum number of hops in the traversal from the source node

In our case, we explicitly bound the min/max hops in the range [1, 1] to get only the nearest related
nodes to the source node. All the variables in the query that start with $ sign are the runtime
query parameters that come from the Reader component according to the user needs. The alias
node represents all the found related nodes that correspond to the provided filters (line 4). Then,
we limit the number of the returned nodes (line 5).

For each node we look for outgoing relationships and group them into the map by a relationship
type (lines 6–7). This map help us to respect the upper/lower bounds and to construct a valid
node controller object (to initialize outRefBound variable in the NodeController class). Finally,
we return from the database the related node ID, label, and the map of outgoing relationships to
properly initialize node controller objects (line 8).

5.4. Editor example
We now present an editing example in Listing 5.6. In this example we use a graph structure,

presented in the lower part of Fig. 5.4. For that graph we use the concept of the Graf DSL,
presented in Fig. 3.2.

1 val graphController = GraphController(dbUri, username, password)

2 val v1 = graphController.createNode("Graph")

3 val v2 = v1.createChild("sub_vertices", "CompositeVertex")

4 val v3 = v1.createChild("sub_vertices", "CompositeVertex")

5 val v4 = v1.createChild("sub_vertices", "CompositeVertex")

6 val v5 = v4.createChild("sub_vertices", "CompositeVertex")

7 val v6 = v4.createChild("sub_vertices", "CompositeVertex")

8 val v7 = v6.createChild("sub_vertices", "CompositeVertex")

9 val v8 = v6.createChild("sub_vertices", "CompositeVertex")

10 val v9 = v6.createChild("sub_vertices", "CompositeVertex")

11 val v10 = v9.createChild("sub_vertices", "CompositeVertex")

12 val v11 = v10.createChild("sub_vertices", "CompositeVertex")

13 graphController.saveChanges() // commit #1

14 v9.putProperty("name", "V9")

15 graphController.saveChanges() // commit #2

16 graphController.unload(v2)

17 graphController.unload(v3)

18 graphController.unload(v9)

19 println(v9.getProperty("name")) // throws exception -- controller v9 is in state Unloaded

20 val vertices = v1.getOutConnectedRef("sub_vertices", 3) // read operation

21 for (v in vertices) {

22 println(v.id)
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23 }

24 v6.remove()

25 v7.createChild("sub_vertices", "Vertex") // throws exception -- controller v7 is in state

Removed

26 val v12 = v11.createChild("sub_vertices", "Vertex")

27 graphController.saveChanges() // commit #3

28 graphController.close()

Listing 5.6. NMF-editor example

We create a graphController object that establishes a connection to the database (line 1). Then,
we recreate a graph structure presented in the lower part of the Fig. 5.4 (lines 2–12). Each variable
vX, where X is a number that corresponds to the node in the figure, represents a node controller
with state New. These node controllers are added to the cache (adjacency matrix of the graph
controller), and the corresponding parameters are added to the buffer of the Creator component.
Then, we invoke the saveChanges function and start a the commit to the database (line 13). At
this point, the buffers of the Remover and Updater components are empty, so the commit contains
only the create operation. After the commit, the buffer of the Creator component is flushed, node
controllers v1–v11 switch their state from New to Persisted.

Next, we demonstrate the update operation by assigning a property name to the node #9 (line
14). The node controller changes its state from Persisted to Modified. The buffer of the Updater
component now contains that property. We upload the modifications to the database in a new
commit (line 15).

Next, we demonstrate the on-demand loading feature of NMF-loader. We unload the node
controllers v2, v3 and v9 from the cache (lines 16–18). After this action, appropriate node con-
trollers change their states to Unloaded. Any interaction with an unloaded node controller throws
an exception (line 19). Internally, we also remove these controllers from the cache that leads to
cache fragmentation. At this point, controllers v10–v11 are detached from other controllers in the
cache.

Now we demonstrate the reading operation. We use node controller v1 to load from the
database related nodes, connected by the sub_vertices relationship (line 20). The function
getOutConnectedNodes returns a list of node controllers with state Persisted. We have spec-
ified the desired number of nodes to read (3) as a parameter for the function. At this point, the
cache contains only node controller v4. Also, the function initiates a read operation to the database
and constructs new controllers for nodes #2 and #3. These new controllers update the cache and
make available editing operations on appropriate nodes. So, the list vertices contains controllers
for nodes #2, #3 and #4. To demonstrate the usage of these controllers, we output the IDs of
nodes they represent (lines 21–23).

Next, we demonstrate the delete operation. We remove node #6 (line 23). We have already
explained the overall removal process of node #6 in Section 5.3. Node controllers v6–v7 (because v7
represents a contained node) change their state to state Removed. Any further editing operations
with that node controller v7 are not allowed (line 24). However, controllers v10–v11 are not
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reachable in the cache (because we have previously unloaded the controller v9 on line 18), so
their states are unchanged at this moment. A user can still interact with those controllers (line
25), but that interaction will not affect the graph in the database. Finally, we perform the third
commit (line 26). At this point, the buffer of the Updater component is empty, the buffer of the
Creator component has one element (node #12), and the buffer of the Remover component also
has one element (node #6). Recall that the saveChanges function performs the delete operation
first. Nodes 6–11 are removed from the database, and NMF-editor gets their IDs as a response.
Then, in the cache, we find node controllers v10, v11, v12 and change their state to Removed.
The removal of the node controller v12 leads to the popping of the node #12 from the buffer of
the Creator component. So, the buffer of the creator component becomes empty, and the entire
commit is done. The database now contains only nodes 1–5.

NMF-editor acts like a continuously running service. In the presented example, the variables
of inactive node controllers remain available for a user. Indeed, the JVM garbage collector will
destroy them once the end of scope is reached.

71





Chapter 6

NMF Generator

In this chapter we present NMF-generator. It produces an abstraction layer on top of NMF-editor
closer to the domain of the metamodel. In Section 6.1 we present the architecture of the generated
abstraction layer. In Section 6.2 we describe the generation process of the abstraction layer. In
Section 6.3 we provide a usage example of the generated API.

6.1. Domain-specific editor components
NMF-generator serves to create a domain-specific API to edit graphs in the Neo4j database.

Like NMF-editor, the generated API abides to the EModel editing logic, presented in Section 5.1.
Also, the generated domain-specific API provides editing operations tailored to a specific domain.
Thus, a domain expert can use the API to edit a domain-specific EModel, even if the model is
stored as a graph. Therefore, we consider the generated API as a domain-specific model editor.

Fig. 6.1 presents the architecture of a domain-specific (generated) editor. It has three compo-
nents: the domain-specific object controller, the domain-specific model manager, and the domain-
specific utilities. These components completely rely on NMF-editor. Therefore, the domain-specific
editor provides the same features, as enumerated in Section 5.2. We provide a detailed description
of each component in what follows.

Client Code

NMF-editor

Database

Domain-specific
object controller

Domain-specific
model manager

Domain-specific
utilities

Fig. 6.1. Domain-specific editor architecture



6.1.1. Domain-specific model manager

The domain-specific model manager is a domain-specific wrapper of the graph controller com-
ponent (presented in Section 5.2.1). This component gives access to a model stored as a graph.
Internally, the model manager is implemented using the adapter design pattern [30]. The model
manager encapsulates the graph controller object (see Sectio 5.2.1) and propagates function invo-
cations to it. This approach allows to hide the generic API of NMF-editor and expose to the user
domain-specific functions with appropriate naming and restrictions. Thus, the model manager has
the same four goals as the graph controller has.

First, it gives the initial access to the model. It manages a connection with database using the
underlying graph controller object.

Second, the model manager spawns domain-specific object controllers. For each non-abstract
class of the domain (i.e., concrete class of the metamodel) the model manager provides two functions:
createX and getXByID where X is a name of the corresponding class. For example, the model
manager class generated for the Graf DSL (presented in Fig. 3.2) provides createVertex and
getVertexByID functions for the Vertex class of the metamodel. These two functions return
domain-specific object controller of type Vertex. Inside the createVertex function, we invoke
createNode("Vertex") of the graph controller with the predefined parameter. Recall that the
function of the graph controller creates and returns a node controller. Hence, for each domain-
specific object controller, a new node controller with an appropriate state is created.

Third, the model manager provides the unload function for each non abstract class of the
metamodel to manage the cache of the underlying graph controller. For instance, the model manager
provides unload(v: Vertex) function for the Vertex class of the metamodel.

Finally, the domain-specific model manager component is responsible for initiating a commit:
it exposes to the user the saveChanges function. Internally, this function invokes the same function
of the underlying graph controller.

6.1.2. Domain-specific object controller

This component is the domain-specific counterpart of the node controller component (presented
in Section 5.2.2). It gives access to a particular object of EModel.

Fig. 6.2 presents the design of the domain-specific object controller. This component consists
of two artifacts: an interface (corresponding to a DomainClass) and a class that implements that
interface (corresponding to a DomainClassImpl). This approach decouples the abstraction from
its implementation, following the Dependency Inversion Principle [31]. Hence, the user can rely
only on abstractions (interfaces), not on concrete implementations to operate on model elements,
to favor modularity.

A DomainClassImpl (i.e., a domain-specific object implementation class) is implemented using
the adapter pattern [14] (in the same manner as the domain-specific model manager). The domain-
specific controller encapsulates a node controller and propagates function invocations to it using
predefined parameters. Hence, the implementation class adapts a node controller to domain specific
object controller. For instance, to update the name attribute of a Vertex object, the object controller
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Fig. 6.2. Domain-specific object controller

provides the setName function. Inside this function, we invoke putProperty("name", "value")
on the underlying node controller. Thus, a domain-specific object controller entirely relies on the
underlying node controller.

6.1.3. Domain-specific utilities

This component generalizes various generated helpers for model editing. They are used to
correctly express the editing logic of EModel in a generated API. The domain-specific utilities
consist of two types of helpers:

• Additional data types that are defined in a metamodel (such as enumerations).
• Type-specifiers to correctly handle inheritance while creating object controllers. With the

type-specifier a user can explicitly specify a concrete type of an object controller to create
a hierarchy of several inherited types.

We provide a more detailed description of this component in Section 6.2.

6.2. Generation process
NMF-generator automatically generates the domain-specific API so the client code can seam-

lessly use the API to edit models. The resulting API (i.e., the output of NMF-generator) is a code
in the Kotlin programming language.

The generation is mainly an iterative process which looks as follows. NMF-generator gets a
metamodel in Ecore format and iterates over its contents, translating elements into Kotlin code
artifacts (i.e., classes, interfaces, and enumerations) according to predefined textual templates. An
input metamodel must conform to the M3 meta-metamodel presented in Fig. 2.5. Therefore, we
can extract from it concrete Classes, Attributes, Associations, and Enumerations including
theirs related information (such as name or upperBound of an association).

NMF-generator produces Kotlin artifacts corresponding to the domain specific editor compo-
nents described in Section 6.1. The generator starts to iterate over the metamodel from Classifier
elements (that can be either a class or an enumeration). For each Enumeration of the meta-
model, NMF-generator produces a corresponding Kotlin enumeration class that includes all the
EnumLiterals. This generated artifact is a part of the domain-specific utilities component (de-
scribed in Section 6.1.3).
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For each Class of the input metamodel, NMF-generator produces an interface and a class
implementing that interface. These two artifacts together represent a domain-specific object con-
troller (described in Section 6.1.2). Next, for each metamodel class, we discover attributes and
associations to generate Kotlin interface/class members.

Also, while iterating over the metamodel classes, NMF-generator simultaneously fills members
of a model manager Kotlin class (described in Section 6.1.1). This class is completely produced
after the overall iteration is completed because it requires information about all the metamodel
classes.

Finally, NMF-generator produces a helper Kotlin enumeration class for each inheritance hier-
archy present in the metamodel. Classes of a metamodel that directly or indirectly extend the
current class are part of a hierarchy. The generated artifact enumerates all the non-abstract classes
of the hierarchy. For instance, in our Graf DSL the CompositeVertex extends Vertex. Therefore,
NMF-generator produces the VertexType Kotlin enumeration (listed in Listing 3.2 line 29). The
generated enumeration contains both Vertex and CompositeVertex. We discuss in detail the usage
of this artifact in Section 6.4.

We implemented this code generator using Kotlin templates. We explain in details each com-
ponent generation in the following sections.

6.3. Object controller generation
An object controller consists of an interface and its implementation class (Fig. 6.2). NMF-

generator produces code artifacts considering Kotlin syntax. Therefore, to assemble a single object
controller NMF-generator relies on the classes of the metamodel to produce Kotlin interface/class
header, and the attributes and associations of the class to generate methods of the interface/class
body.

6.3.1. Header generation

NMF-generator synthesizes a Class of a metamodel into headers of the class and interface of
an object controller. To declare the header of an interface, we use the following template:

1 interface $className : $superTypes {

Listing 6.1. Template of the interface header of an object controller

The variable className denotes a capitalized name of the current class of the input metamodel.
The variable supertypes is a string of names of direct supertypes separated by commas. If the
metamodel class has no supertypes, the supertypes variable denotes a string INodeEntity. We ex-
tend the INodeEntity interface of NMF-editor to have access to specific methods of the underlying
node controller. For instance, the Vertex class in Graph DSL (defined in Fig. 3.2) does not have
any supertype. Thus, the Vertex interface in Listing 3.2 extends INodeEntity interface (line 8). In
contrast, the Vertex class is a supertype of the CompositeVertex. Therefore, the CompositeVertex
interface in Listing 3.2 extends Vertex interface, implicitly extending INodeEntity (line 19).

We use the following template to declare the header of an implementation class:
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1 $abstract class ${className}Impl(private val controller: INodeController) : $className {

Listing 6.2. Implementation class header template of a domain-specific object controller

If a metamodel class is abstract, we put the corresponding abstract Kotlin keyword before the
class name. If the class of the metamodel is an interface, we do not generate an implementation
class for it. In this special case the object controller consists only of a Kotlin interface. The class
name contains an Impl suffix to distinguish between the interface and the implementation class.
Also, we generate a constructor that takes a node controller object. Finally, we extend the interface
defined in Listing 6.1 using the className variable.

6.3.2. Attributes setter/getter generation

NMF-generator synthesizes an Attribute of the metamodel class into Kotlin getter and setter
methods for both the interface and the implementation class of the object controller. All the
templates for attribute generation rely on the eAttr variable, that represents the Attribute object
of a metamodel. We use two different templates depending on upperBound of the attribute. An
upperBound cardinality of 1 specifies single-valued attribute. Otherwise, for multi-valued attributes
(upperBound > 1), the attribute specifies a collection.

We present a template for single-valued attribute in Listing 6.3. This code is generated into
the body of the interface of an object controller.

1 fun set$attrName(v: $type?)

2 fun get$attrName(): $type?

Listing 6.3. Interface template for the single-valued attribute

In Listing 6.3 the getter/setter methods start with get and set prefix respectively. The variable
attrName denotes a capitalized name of the eAttr object. The variable type specifies the type of
the attribute. The ? (question mark) indicates a nullable type in Kotlin. Thus, a setter/getter
function can accept/return a null value.

Listing 6.4 presents the implementation for getter and setter. We use this template to generate
the code in the implementation class of the object controller.

1 override fun set$attrName(value: $type?) {

2 if (value == null) controller.removeProperty("${eAttr.name}")

3 else controller.putProperty("${eAttr.name}", value)

4 }

5 override fun get$attrName(): $type? {

6 return controller.getProperty("${eAttr.name}", $mapFunc)

7 }

Listing 6.4. Implementation template for the single-valued attribute

In Listing 6.4, the attrName variable denotes the capitalized name of the Attribute as explained
earlier. In contrast, the eAttr.name variable specifies the actual name (not capitalized) of the
attribute. If the value is set to null, we remove the property of the corresponding node in Neo4j
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(line 2). As you can see, inside the implementation class we invoke functions of the underlying node
controller with predefined parameters (lines 2, 3, and 6). To correctly transform a value type from
Neo4j to Kotlin type inside the getter method, we use the mapFunc variable (line 6). For instance,
for a metamodel attribute of type Float we use AsFloat map function.

For multi-valued attributes, we use the template presented in Listing 6.5 for interface code
generation. The only difference between the template in Listing 6.3 is that we use the List Kotlin
type to specify a collection.

1 fun set$attrName(v: List<$type>?)

2 fun get$attrName(): List<$type>?

Listing 6.5. Interface template for the multi-valued attribute

Listing 6.6 presents the template for the implementation of setter and getter for multi-valued
attributes. In this case, we generate code that provides a List parameter type and allows the
user to get/set the entire collection. In the setter method, we check if the list satisfies the allowed
bounds (lines 4–5). If the bounds of the Attribute are not specified explicitly in the metamodel,
we omit the bounds check generation. This allows to set a list of any size.

1 override fun set$attrName(value: List<$type>?) {

2 when {

3 value == null || v.isEmpty() -> removeProperty("${eAttr.name}")

4 value.size in ${eAttr.lowerBound}..${eAttr.upperBound} -> putProperty("${eAttr.name}", v)

5 else -> throw Exception("Bound limits: list size must be in ${eAttr.lowerBound}..${eAttr.

upperBound}")

6 }

7 }

8 override fun get$attrName(): List<$type>? {

9 return controller.getProperty("${eAttr.name}", $mapFunc)

10 }

Listing 6.6. Implementation template for the multi-valued attribute

6.3.3. Associations getter/setter generation

NMF-generator synthesizes an Association of the metamodel class into Kotlin getter, setter,
and remover methods. All the templates for association generation rely on the eRef variable, that
represents a concrete Association object of the metamodel. From that variable, we derive two
more common variables that are used in all further templates for association generation:

• refName is the capitalized name of the association. In contrast, a eRef.name denotes the
actual (not capitalized) name of the association.

• type denotes the type of the target element of the association. Also, in terms of NMF-
generator, the type variable denotes an interface of the node controller (see Section 6.3.1).
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According to the Ecore specification, associations can be either containment or reference. Also,
an association can have different cardinalities like attributes. To distinguish between these cases,
we use four different templates for code generation.

6.3.3.1. Reference association generation. Like for attributes, associations can be either
single-valued or multi-valued (upperBound = 1 or > 1 respectively). For single-valued reference
associations, we generate the three following methods that we put into interface of an object con-
troller:

1 fun set$refName(v: $type)

2 fun unset$refName(v: $type)

3 fun get$refName(): $type?

Listing 6.7. Interface template for the single-valued association reference

The upperBound 1 means that an element can have maximum one outgoing association. Thus,
adding a reference means to set a value. The user creates an association from a source element to a
target element by providing an object controller that represents the target element as a parameter
for the setter method (line 1). We use the same logic for association removal with the unset function
(line 2). The getter method returns the target object controller of the association (line 3). If there
is no association set the get method returns null.

According to our naming approach, the names of methods for association manipulation depends
on a name of the association of the metamodel. Therefore, in case when an association has a name
in plural form (such as vertices association of Graph element of our Graf DSL) we get a naming
ambiguity in the generated code, such as removeVertices(v: Vertex) despite that we remove
only a single association. To eliminate this mismatch in future we plan to provide a lexical analyzer
for those cases. Then, NMF-generator would be able to transform a plural form of a noun into a
singular one.

Listing 6.8 presents the template for generating the implementation for those three methods
from Listing 6.7. We put the generated code into the implementation class of the object controller.
So, the generated code can rely on the available controller field.

1 override fun set$refName(v: $type) {

2 if (controller.outRefCount.getOrDefault("${eRef.name}", 0) < $upperBound) {

3 controller.createOutRef("${eRef.name}", v)

4 } else throw Exception("UpperBound exceeded")

5 }

6 override fun unset$refName(v: $type) {

7 if (controller.outRefCount.getOrDefault("default_vertex", 0) > $lowerBound) {

8 controller.removeOutRef("${eRef.name}", v)

9 } else throw Exception("LowerBound exceeded")

10 }

11 override fun get$refName(): $type? {

12 val data = getOutConnectedNodes("${eRef.name}", 1) {

13 ${type}Neo4jImpl(it)
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14 }

15 return if (data.isEmpty()) null else data[0]

16 }

Listing 6.8. Implementation template for the single-valued association reference

The setter and remover methods (lines 1–10) rely on createOutRef and removeOutRef methods
of the underlying node controller respectively (the specification of the node controller is described
in Section 5.2.2). The generated setter and remover methods take a target object controller (to
create/remove the association with) as a parameter. Since each object controller implements an
INodeController interface, it is a compatible parameter for the node controller functions (lines 3,
8). Also, we wrap the invocation of the underlying node controller method with a bounds check
(lines 2–4, 7–9). As shown in Listing 6.8, setting more association references than the upperBound
or removing fewer association referenes than the lowerBound rises an exception. Therefore, to reset
an existing association the user must first remove it and then create a new one.

The getter method (lines 11–16) relies on getOutConnectedNodes of the underlying node con-
troller. According to the specification (Fig. 5.2), this method returns a list of node controllers.
Inside the implementation method, we map the returned node controller to a domain-specific ob-
ject controller (line 13) and return the first element of the list or null if the list is empty (line
15). To perform the mapping we simply create a runtime domain-specific object by passing a node
controller as a constructor parameter.

For multi-valued reference associations, we generate the three following methods that we put
into an interface of the object controller:

1 fun add$refName(v: $type)

2 fun unset$refName(v: $type)

3 fun get$refName(limit: Int = 100): List<$type>

Listing 6.9. Interface template for the multi-valued association reference

The setter method starts with add prefix to highlight the possibility of creating multiple asso-
ciations (line 1). Implementation of the remover method is exactly the same as in Listing 6.7. The
getter method returns a list of object controllers instead of a single one (line 3).

1 override fun get$refName(limit: Int): List<$type> {

2 return controller.getOutConnectedNodes("${eRef.name}", limit) { controller ->

3 when (controller.label) {

4 for (t in allTypes) {

5 "$t" -> ${t}Neo4jImpl(controller)

6 }

7 else -> throw Exception("Cannot cast to INodeController)

8 }

9 }

10 }

Listing 6.10. Implementation template for the multi-valued association reference
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6.3.3.2. Containment association generation. For single-valued containment association,
we generate the following methods:

1 fun insert$refName(): $type

2 fun remove$refName(v: $type)

3 fun get$refName(): $type?

Listing 6.11. Interface template for single-valued containment association

The key differences between a generated code for a reference and a containment association is that
the setter method for the containment association creates and returns a target object controller
(line 1). This way, the target object is always contained, by constructing in a source object. The
implementation of the getter and remover methods remain the same as in Listing 6.8.

The insert$refName method relies on createChild function of a node controller. It re-
turns a controller for the contained object. The remove$refName (i.e., remover) method relies
on removeChild of a node controller. The method get$refName invokes getConnectedNodes. We
recall that the specification of the node controller was described in Section 5.2.2.

For multi-valued containment association, we generate the following methods:

1 override fun set$refName(): $type {

2 return controller.createChild("${eRef.name}")

3 }

4 override fun remove$refName(v: $type) {

5 controller.removeOutRef("${eRef.name}", v)

6 }

7 override fun get$refName(): $type? {

8 val data = loadOutConnectedNodes("${eRef.name}", 1) {

9 ${type}Neo4jImpl(it)

10 }

11 return if (data.isEmpty()) null else data[0]

12 }

Listing 6.12. Implementation template for single-valued containment association

6.4. Inheritance handling
Special case must be taken into account when generating a class inheriting the other classes.

In particular, the generated header and containment association pointing to it must be revised.

6.4.1. Header generating

If a metamodel presents a case of inheritance between classes, the generated API must conform
to this situation. According to Ecore specification (Fig. 2.5), a metamodel class can have multiple
supertypes. A supertype can be either interfaces, abstract, or even concrete classes. In Kotlin, an
interface can extend multiple interfaces, but a class can extend at most one class. Therefore, our
approach of splitting an object controller into the interface and the class implementing that interface

81



1
aImpl

<<interface>>

A

AImpl

<<implements>>

<<interface>>

X

XImpl

<<implements>>

<<implements>>
<<interface>>


B

BImpl

<<implements>>

1
bImpl

<<implements>>

Fig. 6.3. Mapping multiple inheritance to object controller

allows us to correctly translate a case of multiple inheritance in the metamodel into Kotlin code.
That separation allows us to provide an inheritance over composition using the interface segregation
principle [31].

We now consider the code generation for the following example. Given a metamodel with
three classes: the classes A and B are supertypes for the class X. Fig. 6.3 presents a structure of a
generated code for a metamodel in UML class diagram. Here, we have three domain-specific object
controllers. Interface X and class XImpl together presents an X class of the metamodel. Hence, the
object controllers abide the target schema presented in Fig. 6.2. But, in Fig. 6.3 we omit the node
controller related elements (such as INodeEntity interface and NodeController class) for brevity.
According to the metamodel, X class extends class A and B. Therefore, interface X implements
interfaces A and B. The implementation class XImpl also implements all the three interfaces. But, it
delegates the functionality of A and B interfaces to the corresponding implementation classes using
the composite reuse principle [31].

Hence, for generation purposes, a single inheritance is a special case of multiple inheritance.
NMF-generator uses the same transformation to translate it into a Kotlin code. Therefore, following
the example of the generated code for Graf DSL presented in Listing 3.2, CompositeVertex
interface extends Vertex interface (line 19). This ensures a direct semantics translation from
a metamodel to a generated code. As a result, the user can pass object of either Vertex or
CompositeVertex type as a parameter in the setDefault_vertex method (line 22) and respect
the Liskov substitution principle [31].

6.4.2. Containment association generation

Inheritance in the metamodel also affects the code generation for containment associa-
tions. In Section 6.3.3 we described that a setter for an containment association also creates
a target object controller. Let us consider the example of a metamodel in Fig. 6.4. The
“child” of the SourceClass element is generalized under TargetClass type. The getter method
getAssociation(): TargetClass of the SourceClass needs to create a concrete implementation
class of an object controller which can be A, B, C, or TargetClass. Therefore, we provide a
selection option for a user: it is possible to explicitly specify a desired type of the containment
element providing an enum parameter to the function.
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Fig. 6.4. Inheritance hierarchy example

For that, we additionally generate an enumeration that contains non-abstract classes of the
inheritance chain. (in this case: TargetClass, A, B, and C). We then use this enumeration as a
parameter for add function to explicitly specify what type of controller to create.

NMF-generator discover a list of subclasses for each class from the input metamodel and uses
the following template to produce the enumerations:

1 enum class ${className}Type { ${subClasses} }

Listing 6.13. Template of the subtypes enumeration

6.5. Model manager generation
We generate a single Kotlin class that represents the model manager component of NMF-

generator. Like other Kotlin classes, it consists of a header and a body.

6.5.1. Header generation

The header of the class consists of a constructor and methods whose naming do not depend on
a concrete metamodel class. Listing 6.14 presents a template for generating a header of a domain
specific model manager.

1 class ${modelName}ModelManager(dbUri: String, username: String, password: String) {

2 private val manager = IGraphManager.getDefaultManager(dbUri, username, password)

3 fun saveChanges() {

4 manager.saveChanges()

5 }

6 fun clearCache() {

7 manager.clearCache()

8 }

9 fun close() {

10 manager.close()

11 }

Listing 6.14. Template of the header of a model manager
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The name of the model manager class consists of a capitalized modelName (that comes from the
EPackage element of the metamodel) and a ModelManager suffix (line 1). For example, a model
manager for our Graf DSL has name GraphModelManager. We declare the class and provide a
constructor that takes three parameters (line 1). Constructor parameters serve to instantiate an
underlying graph controller (line 2). Functions saveChanges, clearCache, and close invoke their
respective counterparts in the graph controller (lines 3–11).

6.5.2. Contents generation

The model manager class provides a set of methods for each non abstract class of the metamodel.
We provided a detailed description for those methods in Section 6.1.2. To produce those methods,
we use the following template:

1 fun create$className(): $className {

2 return ${className}Neo4jImpl(manager.createNode("$className"))

3 }

4 fun get${className}ById(id: Long): $className {

5 return ${className}Neo4jImpl(manager.loadNode(id, "$className"))

6 }

7 fun get${className}List(limit: Int = 100): List<$className> {

8 return manager.loadNodes("$className", limit) { ${className}Impl(it) }

9 }

10 fun unload(node: $className) {

11 manager.unload(node)

12 }

13 fun remove(node: $className) {

14 manager.remove(node)

15 }

Listing 6.15. Template of the contents of a model manager

The className is a capitalized name of the current metamodel class. The manager field was defined
in Listing 6.14 and determines an underlying graph controller.

6.6. Domain specific editing with NMF
We now discuss the benefits and limitations of using the generated domain-specific API. In

Listing 3.3 we have presented the example of using the Graf API. This example demonstrated
basic editing operations such as attribute modification (line 3), containment creation (lines 4–6),
and reference association creation (line 7). In this example, we have a special case of a containment
association in the metamodel: both sub_vertices and vertices containment associations point to
the generalized Vertex class. Therefore, the content of a Vertex may be either CompositeVertex
or another Vertex. The user must explicitly specify the concrete type of the contained object
within the enum (lines 4–6). The enum was presented in Listing 3.2 (line 29).
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The API calls can be easily integrated into a custom code within arbitrary workflows. For
instance, the user can place the API calls into loops, if-else statements, or in custom functions.
The API can be used in any JVM-based programming languages such as Java, Kotlin, or Scala.

The advantage of the domain-specific API is the rising level of abstraction. The user can focus
more on editing the structure of his model rather than on the details provided by an editing tool.
The generated API respects the domain rules within its constraints. At the moment of publication,
NMF API supports only basic constraints supports (such as the lower and upper bounds). Advanced
OCL constraints are not yet supported.

The essence of NMF is to provide storage and a manipulation facility for MDE models. This
makes NMF compatible with the model transformations principle of MDE. Since NMF API provides
CRUD operations, future model transformations could be built on top of them. Thus, the user can
encode the transformations workflows using the API.
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Chapter 7

Evaluation

In this Chapter, we evaluate NMF in two ways: brief feature comparision with Neo4EMF and
preliminary performance analysis of NMF with respect to CRUD operations.

7.1. Comparing features of Neo4EMF and NMF
Since NMF and Neo4EMF provide similar functionality, we provide a comparison Table 7.1 to

distinguish the features of these tools. The first major difference between these frameworks is the
way to interact with the database. Since Neo4EMF supports multiple NoSQL databases, we focus
on Neo4j to show the difference in commonly used technologies. NMF supports only remote Neo4j
database via Cypher queries, while Neo4EMF works only with embedded database variant using
Neo4j-ogm tool (low-level Java API) [29]. Theoretically, the remote database deployment allows
configuring a distributed database (one database on multiple servers) to provide even more data
scalability. Secondly, Neo4EMF is highly coupled with EMF API and Eclipse IDE. In contrast,
NMF provides a modular utility with minimum dependencies. NMF is compatible with XMI model
persistence format. NMF can import the models produced by EMF and Neo4EMF tools using
NMF-loader.

7.2. Performance analysis
7.2.1. Experiments setup

In this Section, we test the performance of domain-specific editing operations. For that, we
determine test scenarios for each of CRUD operations using the generated code of Graf DSL
(presented in Listing 3.2). Therefore, we test domain-specific API and implicitly the underlying
NMF-editor module. We do not provide the testing of NMF-loader and NMF-generator modules.
In this Section, we present an evaluation of a time performance and do not evaluate memory usage.

Experiments are executed on a 64 bits computer running Linux Ubuntu 18.04. Hardware
elements are: Intel Xeon CPU E5-2620 v2 (2.10GHz), 64 GB RAM of DDR4 (1600 MHz). Software



Neo4EMF NMF

Run platform
Highly integrated in Eclipse IDE.
Available to install as Eclipse plug-
ins

Depends only on JVM

Code generation Produces an API that transpar-
ently extends EMF’s API

Produce a dedicated independent
Kotlin API

Graphical modeling
environment - -

MDE metamodel
specification Xcore Ecore

Import models from
XMI + + (NMF-loader module)

Export models to
XMI + -

OCL support + -
On-demand elements
loading & caching + +

Data storage schema

Keeps a model alongside with its
metamodel in the database, explic-
itly connecting each element of the
model by a relationship with its
meta-element

Keeps only a relevant model in the
database

Supported back-ends

Default in-memory, MapDB,
HBase, BerkeleyDB, Blueprints,
Neo4j (through the Blueprints
interface)

Neo4j

Neo4j deployment
type Embedded Remote

Neo4j access interface Neo4j-OGM tool Cypher queries

Table 7.1. Features comparision of NMF and Neo4EMF

used: Java 11, Neo4j database 4.3, Gradle 6.4. The database, as well as NMF modules, are installed
on the same computer.

7.2.2. Experiment results

For each test case, we gather the results of the experiments and present them in charts. For
all the charts, the Y axis specifies the time in seconds, the X axis specifies the number of elements
(specific for each chart).

7.2.2.1. Create operation. In this experiment, we evaluate the performance of the Create
operation. We present the performance results for two cases: the creation of single (unconnected)
objects and the creation of associations (connecting existing objects in the database).

We start by explaining the experiment setup for evaluating the performance of objects creation.
In this experiment, we measure the time of creating a set of objects via domain-specific API and
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Fig. 7.1. Create model objects performance

uploading them to the database. The size of a set (i.e., count of objects to create) is the variable
parameter for this experiment. We determine the first set as 1000 objects, increasing each next set
by 1000 elements. The final set in this experiment is 400000 objects. We repeat the evaluation
30 times for each test set, calculate the average, and put it in the chart. This technique allows to
calibrate the result.

The detailed workflow of elements creation was described in Section 5.3.1. We recall that
NMF-editor keeps all the created elements in memory (in buffer) before committing them to the
database. While performing the commit, NMF-editor can split all the buffered elements into chunks
and upload them in several transactions to respect the bandwidth. The default size of the chunk
for nodes creation is 20000 elements. Therefore, NMF-editor uploads the final set of 400000 objects
in 20 transactions.

Fig. 7.1 demonstrates the performance of objects creation. We can see the linear time complexity
(the blue line) that increases with the input size. We also put in the chart the trend-line to prove
the trend. The chart demonstrates that NMF can create more than 300000 objects in just 10
seconds. We achieved this result by using the APOC library in conjunction with parameterized
queries.

Also, we conduct the second experiment to measure the creation time of the domain-specific
associations and uploading them to the database. Before the experiment, we pre-create two objects
and load them into the database. Next, we create a certain number of associations between the
objects using the corresponding domain-specific object controllers. As well as for objects creation
testing, we form test sets from 1000 to 400000 associations (with step of 1000) and upload the sets
to the database. Also, we repeat the evaluation of each test set 30 times to calibrate the result. The
Creator component of NMF-editor provides the bandwidth parameter by default set to 10000: the
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Fig. 7.2. Create reference associations performance

number of associations to create in a single transaction. Hence, the last set of 400000 associations
will be uploaded in 40 transactions.

Fig. 7.2 presents a performance of association creation. The chart demonstrates linear time
increasing.

7.2.2.2. Update operation. In this experiment, we measure a time of Update operation of
attributes of the model objects in the database. Before the experiment, we create in the database
400000 objects. Also, we keep tracking the corresponding controllers for those objects on the client-
side. Next, we determine sets of objects to update (the first set is 1000 up to 400000 with a step of
1000). For each object of the set, we update one attribute using the corresponding object controller
and then upload the entire set of updates to the database. Therefore, the set size (i.e., the count
of objects to update) is the variable parameter for this experiment.

The detailed workflow of elements update operation was described in Section 5.3.2 We recall
that NMF-editor accumulates the updates in the cache before a client explicitly commits them to
the database. While performing the commit, NMF-editor can split all the buffered elements into
chunks and upload them in multiple transactions. This logic is the same as Creator component
provides. The default size of a chunk is 20000 elements. Hence, the last set of 400000 elements will
be uploaded in 20 transactions.

Fig. 7.3 presents the experiment result. The chart demonstrates constant time complexity (with
weak increasing trend). Updating 400000 objects in the database take about 1.05 seconds. When
NMF keeps tracking the object controllers of persisted nodes in the cache, this guarantees instant
nodes lookup by internal database IDs. Hence, a relatively small amount of objects does not affect
the updating performance in terms of time. In the future, we plan to redo this experiment with
even bigger data sets (at least 105+ objects to update).
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Fig. 7.3. Update objects performance

7.2.2.3. Remove operation. In this experiment, we evaluate the performance of the Remove
operation of model objects in the database. We present the performance results for two cases:
removing contained objects (i.e., in-depth cascade delete) and removing reference associations.

We start by explaining the experiment setup for objects removal. First, we create the model in
the database with the following structure: a root object contains one other object, which also has
one contained object, and so on. Thus, our structure has a view of a chain where all the objects are
connected by a containment association. We keep only the root object controller in the NMF cache.
In this experiment, we remove the root object from the NMF client, expecting the entire chain to
be removed from the database. Therefore, we delegate to the database discovering and removing
all the contained objects together with the containment associations. The number of objects in the
chain (i.e., depth) is a variable parameter in this experiment. We form the chains of 1000 objects
up to 300000 (each next chain has 1000 more objects than the previous). Since we repeat each test
set 30 times to get the average and calibrate the result, we create 30 same chains in the database
to evaluate a single test case. Then we successively remove the root objects, measure the removal
time of each chain, and calculate the average.

Fig. 7.4 presents the experiment results. We can see the constant time complexity. This is due
to our mapping schema, which allows the overall algorithm of nodes discovering and removing to
be performed directly in the database. The detailed workflow of elements removal operation was
described in Section 5.3.3. We recall, that internally NMF-editor passes to the database only one
parameter: the ID of the root object. In this thesis, we present only in-depth objects removal, but
in the future, we plan to perform also an evaluation of in-breadth placed objects removal.

Also, we conduct the second experiment to measure the time of associations removal. Before
the experiment, we create in the database two objects, keeping in the cache their controllers. Next,
we prepare the data to be removed: we create a certain number of reference associations between
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Fig. 7.4. Performance of removing objects in depth

the objects in the database. The number of associations to remove is a variable parameter in this
experiment. We determine association sets as usual: the first set has 1000 associations to remove,
the last one has 400000 (with the step of 1000 associations). Also, we repeat the evaluation 30 times
to calculate an average. Therefore, before the first test set, we create 1000∗30 = 30000 associations.
Then, we perform 30 removings (each time 1000 associations), calculate the average, and put the
result in the chart. Next, before the second test set of 2000 elements, we create 2000 ∗ 30 = 60000
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Fig. 7.5. Performance of reference associations removal
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Fig. 7.6. Performance of reading related objects

elements. Before the final test set of 400000 elements, we must create 400000 ∗ 30 = 12000000
associations.Fig. 7.5 presents the experiment results. We can see the linear time complexity.

7.2.2.4. Read operation. In this experiment, we measure the time of Read operation of objects
from the database. Before the experiment, we create in the database one root Graph object that
contains 400000 Vertex objects. Then, we keep tracking only the root object controller on the
client-side and use it to load the related objects from the database. The variable parameter in
this experiment is the number of objects to load that we explicitly indicate on each iteration (from
1000 to 400000 with step pf 1000). The measured workflow includes loading a certain number
of nodes from the database and mapping them to domain-specific object controllers. Also, we
repeat each iteration 30 times to calibrate the result. The reading process was presented in detail
in Section 5.3.4. We recall that the Reader component of NMF-editor does not use buffering or
delaying: it returns the result instantly.

Fig. 7.6 presents the experiment result. The chart demonstrates linear time increasing. This
means that the reading performance of related objects depends on the number of objects to load.
In the chart, we can see that NMF is able to lookup and load 400000 objects in about 5 seconds.

7.3. Discussion
In this thesis, we have presented NMF – a modeling framework to operate on ultra-large MDE

models. NMF aims to solve the MDE model scalability problem. This framework adapts the Neo4j
database for modeling needs and provide for a modeler common MDE functionality. We have
explained the benefits of each NMF module across the Chapters of this thesis. But, at the moment
of publication, NMF has some incomplete and missing features.
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• NMF-loader relies on standard EMF API to read an input model in XMI format. Therefore,
this module does not use a partial model loading technique since the EMF API parses the
whole input model before proceeding.

• NMF supports only one working client at the time. There is no possibility to collaborate
for multiple clients simultaneously on a single model.

• NMF does not provide a graphical modeling environment, so the client could visualize
models and results of the editing operations.

• NMF does not provide an advanced OCL support in the generated code.
• NMF does not provide a possibility to export a model into XMI format.

All the implemented features together with our plans allow NMF to improve the state of the art of
existing tools in MDE.
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Chapter 8

Conclusion

8.1. Summary
In this thesis, we have presented a new modeling framework to manipulate MDE models on

graph databases. The framework includes a loader module to load existing models and metamodels
in Neo4j database. Also, the framework includes a library to edit models seamlessly located locally
in memory and in the database. Finally, we provide a domain-specific API generated for a given
metamodel to facilitate interaction for a domain expert.

8.2. Outlook
In the future, we plan to make an in-depth performance comparison with existing frameworks

such as Neo4EMF [8, 28]. Also, we would like to conduct more experiments to prove the scalability
of NMF. Finally, we hope such a framework can be extensively applied in industrial cases.





References

[1] V. García Díaz, E. Núñez Valdez, J. Espada, B. Pelayo García-Bustelo, J. Cueva Lovelle, and C. Marín,
“A brief introduction to model-driven engineering,” vol. 18, pp. 127–142, 04 2014.

[2] I. O. F. STANDARDIZATION, “Iso/iec 25010: Systems and software engineering-systems and software
quality requirements and evaluation (square),” 2011.

[3] R. France and B. Rumpe, “Model-driven development of complex software: A research roadmap,” in
Future of Software Engineering (FOSE ’07), pp. 37–54, 2007.

[4] Eclipse Foundation, “Eclipse modeling project.” https://www.eclipse.org/modeling. Last access:
2021-12-10.

[5] Eclipse Foundation, “Eclipse modeling framework.” https://www.eclipse.org/modeling/emf. Last
access: 2021-12-10.

[6] V. Sousa, E. Syriani, and M. Paquin, “Feedback on how mde tools are used prior to academic collabo-
ration,” in Symposium On Applied Computing, (Marrakesh), pp. 1190–1197, ACM, apr 2017.

[7] G. Varró, K. Friedl, and D. Varro, “Implementing a graph transformation engine in relational databases,”
Software and Systems Modeling, vol. 5, pp. 313–341, 09 2006.

[8] A. Benelallam, A. Gómez, G. Sunyé, M. Tisi, and D. Launay, “Neo4emf, a scalable persistence layer
for emf models,” in Modelling Foundations and Applications (J. Cabot and J. Rubin, eds.), (Cham),
pp. 230–241, Springer International Publishing, 2014.

[9] A. Vukotic, N. Watt, T. Abedrabbo, D. Fox, and J. Partner, Neo4j in Action. USA: Manning Publica-
tions Co., 1st ed., 2014.

[10] OGM, “Mof 2 xmi mapping specification version 2.5.1.” https://www.omg.org/spec/XMI/2.5.1, 2015.
[11] “Neo modeling framework github repository.” https://github.com/geodes-sms/NeoModelingFramework.

Last access: 2021-12-13.
[12] A. Kheir, H. Naja, M. C. Oussalah, and K. Tout, “From Viewpoints and Abstraction Levels in Soft-

ware Engineering Towards Multi-Viewpoints/Multi-Hierarchy in Software Architecture.,” in The Eighth
International Conference on Software Engineering Advances, (Venice, Italy), p. 478, Oct. 2013.

[13] D. Di Ruscio, R. Eramo, and A. Pierantonio, “Model transformations,” in Formal Methods for Model-
Driven Engineering, vol. 7320 of LNCS, pp. 91–136, Springer Berlin Heidelberg, 2012.

[14] H. C. Purchase, L. Colpoys, D. Carrington, and M. McGill, UML Class Diagrams: An Empirical Study
of Comprehension, pp. 149–178. Boston, MA: Springer US, 2003.

[15] M. Richters and M. Gogolla, OCL: Syntax, Semantics, and Tools, pp. 42–68. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2002.

[16] L. Bettini, Implementing Domain Specific Languages with Xtext and Xtend - Second Edition. Packt
Publishing, 2nd ed., 2016.

https://www.eclipse.org/modeling
https://www.eclipse.org/modeling/emf
https://www.omg.org/spec/XMI/2.5.1
https://github.com/geodes-sms/NeoModelingFramework


[17] Eclipse Foundation, “Graphical modeling framework.” https://www.eclipse.org/gmf-tooling. Last
access: 2021-12-11.

[18] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks, EMF: Eclipse Modeling Framework. Assison-
Wesley Professional, 2nd ed., 2009.

[19] “Neo4j java driver.” https://neo4j.com/developer/java. Last access: 2021-12-13.
[20] A. Mazak, S. Wolny, and M. Wimmer, On the Need for Data-Based Model-Driven Engineering, pp. 103–

127. Cham: Springer International Publishing, 2019.
[21] R. Wei, D. Kolovos, A. García-Domínguez, K. Barmpis, and R. Paige, “Partial loading of xmi models,”

pp. 329–339, 10 2016.
[22] G. Daniel, G. Sunyé, and J. Cabot, “Prefetchml: A framework for prefetching and caching models,” in

Proceedings of the ACM/IEEE 19th International Conference on Model Driven Engineering Languages
and Systems, MODELS ’16, (New York, NY, USA), p. 318–328, Association for Computing Machinery,
2016.

[23] D. Seybold, J. Domaschka, A. Rossini, C. B. Hauser, F. Griesinger, and A. Tsitsipas, “Experiences of
models@run-time with emf and cdo,” in Proceedings of the 2016 ACM SIGPLAN International Confer-
ence on Software Language Engineering, SLE 2016, (New York, NY, USA), p. 46–56, Association for
Computing Machinery, 2016.

[24] K. Barmpis and D. Kolovos, “Hawk: Towards a scalable model indexing architecture,” in Proceedings
of the Workshop on Scalability in Model Driven Engineering, BigMDE ’13, (New York, NY, USA),
Association for Computing Machinery, 2013.

[25] A. Garcia-Dominguez, K. Barmpis, D. S. Kolovos, M. A. A. da Silva, A. Abherve, and A. Bagnato, “Inte-
gration of a graph-based model indexer in commercial modelling tools,” in Proceedings of the ACM/IEEE
19th International Conference on Model Driven Engineering Languages and Systems, MODELS ’16,
(New York, NY, USA), p. 340–350, Association for Computing Machinery, 2016.

[26] “Hibernate orm.” https://hibernate.org/orm. Last access: 2021-12-10.
[27] R. Wang, Z. Yang, W. Zhang, and X. Lin, “An empirical study on recent graph database systems,” in

Knowledge Science, Engineering and Management (G. Li, H. T. Shen, Y. Yuan, X. Wang, H. Liu, and
X. Zhao, eds.), (Cham), pp. 328–340, Springer International Publishing, 2020.

[28] G. Daniel, G. Sunyé, A. Benelallam, M. Tisi, Y. Vernageau, A. Gómez, and J. Cabot, “Neoemf: A
multi-database model persistence framework for very large models,” Science of Computer Programming,
vol. 149, pp. 9–14, 2017. Special Issue on MODELS’16.

[29] “Neo4j - ogm (object graph mapper).” https://neo4j.com/developer/neo4j-ogm. Last access: 2021-
12-13.

[30] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of Reusable Object-
Oriented Software. Addison Wesley Professional, 1994.

[31] R. C. Martin, Clean Architecture: A Craftsman’s Guide to Software Structure and Design. Robert C.
Martin Series, Boston, MA: Prentice Hall, 2017.

98

https://www.eclipse.org/gmf-tooling
https://neo4j.com/developer/java
https://hibernate.org/orm
https://neo4j.com/developer/neo4j-ogm


Appendix A

NMF Manual

Neo Modeling Framework (NMF) is an open-source set of tools primarily designed to manipulate
ultra-large datasets in the Neo4j database. NMF implements Object Graph Mapping (OGM)
technique that allows a remote client to operate on data directly in the graph database. Hence,
a client application can delegate to the database handling of a large amount of data that exceeds
the client’s RAM capacity through NMF. Therefore, the client can select and load to memory only
needed elements but not load an entire dataset from the storage. Also, NMF optimizes writing
operations (i.e., CREATE, UPDATE, and DELETE), previously grouping the changes in the cache
and performing them later in a transactional way. These features optimize I/O performance for
editing large datasets in the Neo4j database providing better efficiency and scalability.

Inspired by Eclipse Modeling Framework (EMF), NMF treats any dataset in terms of EMF
model. EMF is the famous modeling tool for Model-Driven Engineering (MDE) software develop-
ment methodology. To find out more about EMF and MDE, please refer to:

• An introduction to MDE: http://www.scielo.org.co/pdf/tecn/v18n40/v18n40a11.
pdf

• https://www.eclipse.org/modeling/emf
• https://eclipsesource.com/blogs/tutorials/emf-tutorial

NMF endows the datasets with modeling concepts of EMF models. NMF editing operations follow
the editing logic of EMF models. In NMF, any model (i.e., dataset) must conform to some meta-
model – the structure that describes a model itself. In particular, NMF relies on Ecore metamodel
presented in Fig. 2.5.

NMF aims to resolve the EMF model scalability problem by using the graph database as an
underlying storage. We use Neo4j graph database because the structure of EMF model has a nature
of a graph.

A.1. Prerequisites
Before using NMF modules a user must have:

• A running Neo4j database instance (either local or remote) with APOC plugin installed. We
recommend using Neo4j Desktop to set up the database environment.

https://neo4j.com
http://www.scielo.org.co/pdf/tecn/v18n40/v18n40a11.pdf
http://www.scielo.org.co/pdf/tecn/v18n40/v18n40a11.pdf
https://www.eclipse.org/modeling/emf
https://eclipsesource.com/blogs/tutorials/emf-tutorial
https://github.com/neo4j-contrib/neo4j-apoc-procedures
https://neo4j.com/download


• JRE (8+) installed. Run in terminal: java –version to check the JRE installation.
• Gradle (6+) build tool installed (only for manual building)

We recommend using Intellij IDE since it provides integration for Gradle and JRE.

A.2. NMF architecture
NMF consists of three modules: NMF-editor, NMF-loader, and NMF-generator. These modules

are designed to achieve the following goals:
• NMF-loader: stores existing EMF models in the Neo4j database
• NMF-editor: performs editing operations (i.e., CREATE, UPDATE, REMOVE, READ)

over the models directly in the database
• NMF-generator: provides a domain-specific API to edit the models

The overall NMF architecture within dependencies between the modules are presented in Fig. 3.1.

A.2.1. NMF-editor

NMF-editor is a core module that provides an interaction with the Neo4j database. NMF-loader
is packaged as an executable jar file and can be used as runtime dependency. The jar can be found
in the Github release section. The test sandbox can be found in NMF-editor test file.

1 val dbUri = "bolt://localhost:7687"

2 val username = "neo4j"

3 val password = "admin"

4 val graphManager = GraphManager(dbUri, username, password) // init a connection with the DB

5 val n1 = graphManager.createNode("Node1") // n1 is a node controller

6 val n2 = graphManager.createNode("Node2")

7 val n3 = n1.reateChild("ref2", "Node3")

8 graphManager.saveChanges() // commit updates to the storage

9 n1.createOutRef("ref1", n2) // controllers remain interactable after the commit

10 n1.putProperty("property", "Test property")

11 graphManager.saveChanges() // commit new changes

12 n1.remove() // remove the node ’n1’ within its child ’n3’ (cascade delete)

13 graphManager.saveChanges()

14 graphManager.close()

Listing A.1. NMF-editor API usage example

The modification operations are applied in a transactional way on graphManager.saveChanges()
function invocation.

A.2.2. NMF-loader

This module provides a model storing facility. NMF-loader can export an existing EMF model
provided in XMI format into the Neo4j database. The input model must be provided in a file. Only
*.xmi and *.ecore file extensions are supported.
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NMF-loader is packaged as an executable jar file and can be used from a command line. Down-
load the latest [NMF-loader](https://github.com/geodes-sms/NeoModelingFramework/releases/tag/v1.0)
release and run the following command in terminal: java -jar <NMF_LOADER_PATH> –help.
The output should be as follows:

1 java -jar <NMF_LOADER_PATH> --help

2 -h,--host <HOST:PORT> Database host address with port used to create bolt connection. Example:

-h 127.0.0.1:7687

3 -m,--model <PATH> path to model file to be loaded

4 -u,--user <arg> Database auth: username

5 -p,--password <arg> Database auth: password

Listing A.2. NMF-loader usage example

NMF-loader requires 4 parameters:
• Database host (-h) address of Neo4j database to establish a connection with. Both

local and remote addresses are supported. By default, Neo4j local installation is on
http://127.0.0.1:7687

• Database credentials: a username (-u) and a password (-p)
• Model path (-m): an actual location of the model to load

NMF-loader can proceed both model instances and metamodels (a model of any level Mi ac-
cording to Fig. 2.4. To correctly process a model of level M1, NMF-loader requires a metamodel
the model conforms to. For that, a model instance stored in XMI format must have linked its
metamodel location in the xmi header as follows:

1 ...

2 xsi:schemaLocation="EPACKAGE_NAME PATH_TO_METAMODEL"

3 ...

Listing A.3. NMF-loader usage example

We list Graf model instance with a valid xsi:schemaLocation attribute in Appendix C. An
example of valid models as well as metamodels can be found in Models directory in NMF github
repository [11].

A.2.3. NMF-generator

NMF-generator is a code generation facility. It produces a set of Kotlin classes (domain-specific
API) for editing a specific model. Unlike a generic API of NMF-editor, the produced API is
conceptually closer to the domain rather than to data. The generated API relies on NMF-editor
to interact with data in the Neo4j database.

NMF-loader is packaged as an executable jar file and can be used as runtime dependency. NMF-
generator takes a metamodel in Ecore format as an input and produces a set of files with Kotlin
code. By default, NMF-generator outputs the result API in domain-specific editor directory
which represents a module with preconfigured dependencies.
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1 java -jar <NMF_LOADER_PATH> --help

2 -mm Path of the input metamodel

3 -o,--output Output dirrectory

Listing A.4. NMF-generator usage example

Example of the generated domain-specific API for Graf DSL: https://github.com/
geodes-sms/NeoModelingFramework/tree/master/modelEditor/src/main/kotlin/geodes/
sms/nmf/editor/graph

Metamodel examples: https://github.com/geodes-sms/NeoModelingFramework/tree/
master/EmfModel/metamodel
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Appendix B

Graf metamodel in Ecore format

1 <?xml version="1.0" encoding="UTF-8"?>

2 <ecore:EPackage xmlns:ecore="http://www.eclipse.org/emf/2002/Ecore"

3 xmlns:xmi="http://www.omg.org/XMI"

4 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

5 xmi:version="2.0" name="graph" nsURI="graph" nsPrefix="graph">

6 <eClassifiers xsi:type="ecore:EClass" name="Graph">

7 <eStructuralFeatures xsi:type="ecore:EAttribute" name="name"

8 eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString" />

9 <eStructuralFeatures xsi:type="ecore:EReference" name="vertices"

10 eType="#//Vertex" upperBound="-1" containment="true" />

11 </eClassifiers>

12 <eClassifiers xsi:type="ecore:EClass" name="Vertex">

13 <eStructuralFeatures xsi:type="ecore:EAttribute" name="name"

14 eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString" />

15 <eStructuralFeatures xsi:type="ecore:EAttribute" name="id"

16 eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EInt" iD="true" />

17 <eStructuralFeatures xsi:type="ecore:EAttribute" name="is_initial"

18 eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EBoolean" />

19 <eStructuralFeatures xsi:type="ecore:EReference" name="edge"

20 eType="#//Vertex" lowerBound="0" upperBound="5" containment="false" />

21 </eClassifiers>

22 <eClassifiers xsi:type="ecore:EClass" name="CompositeVertex" eSuperTypes="#//Vertex">

23 <eStructuralFeatures xsi:type="ecore:EAttribute" name="capacity"

24 eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EInt" />

25 <eStructuralFeatures xsi:type="ecore:EReference" name="default_vertex"

26 eType="#//Vertex" upperBound="1" />

27 <eStructuralFeatures xsi:type="ecore:EReference" name="sub_vertices"

28 eType="#//Vertex" upperBound="-1" containment="true" />

29 </eClassifiers>

30 </ecore:EPackage>





Appendix C

Graf model instance serialized in XMI format

1 <?xml version="1.0" encoding="UTF-8"?>

2 <graph:Graph

3 xmlns:graph="graph"

4 xmlns:xmi="http://www.omg.org/XMI"

5 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

6 xmi:version="2.0"

7 xsi:schemaLocation="graph ./Graph.ecore"

8 name="G1">

9 <vertices xsi:type="graph:CompositeVertex" id="1" name="V0" default_vertex="2">

10 <sub_vertices name="V1" id="2" edge="3" />

11 <sub_vertices name="V2" id="3" />

12 </vertices>

13 </graph:Graph>

The listing presents a model from Fig. 3.3a. Line 7 specifies that a metamodel file Graph.ecore
(that provides xml namespace graph) is located in the same directory alongside the original model
instance file. This attribute must be specified to allow parsers automatically link the metamodel.
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