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Résumé

Les relations entre la structure des composés chimiques et leurs propriétés sont complexes et
à haute dimension. Dans le processus de développement de médicaments, plusieurs proprié-
tés d’un composé doivent souvent être optimisées simultanément, ce qui complique encore
la tâche. Ce travail explore deux représentations des composés chimiques pour les tâches
de prédiction des propriétés. L’objectif de ces représentations proposées est d’améliorer
l’explicabilité afin de faciliter le processus d’optimisation des propriétés des composés. Pre-
mièrement, nous décomposons l’algorithme ECFP (Extended connectivity Fingerprint) et
le rendons plus simple pour la compréhension humaine. Nous remplaçons une fonction de
hachage sujet aux collisions par une relation univoque de sous structure à bit. Nous consta-
tons que ce changement ne se traduit pas par une meilleure performance prédictive d’un
perceptron multicouche par rapport à l’ECFP. Toutefois, si la capacité du prédicteur est ra-
menée à celle d’un prédicteur linéaire, ses performances sont meilleures que celles de l’ECFP.
Deuxièmement, nous appliquons l’apprentissage automatique à l’analyse des paires molécu-
laires appariées (MMPA), un paradigme de conception du développement de médicaments.
La MMPA compare des paires de composés très similaires, dont la structure diffère par une
modification sur un site. Nous formons des modèles de prédiction sur des paires de com-
posés afin de prédire les différences d’activité. Nous utilisons des contraintes de similarité
par paires comme MMPA, mais nous utilisons également des paires échantillonnées de façon
aléatoire pour entraîner les modèles. Nous constatons que les modèles sont plus performants
sur des paires choisies au hasard que sur des paires avec des contraintes de similarité strictes.
Cependant, les meilleurs modèles par paires ne sont pas capables de battre les performances
de prédiction du modèle simple de base. Ces deux études, RCFP et comparaisons par paires,
visent à aborder la prédiction des propriétés d’une manière plus compréhensible. En utili-
sant l’intuition et l’expérience des chimistes médicinaux dans le cadre de la modélisation
prédictive, nous espérons encourager l’explicabilité en tant que composante nécessaire des
modèles cheminformatiques prédictifs.

Mots Clés: Chimie Médicinale, Développement de médicaments, Apprentissage automa-
tique, Chimie-informatique, Apprentissage profond, Prédiction de la bioactivité, Représen-
tations chimiques
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Abstract

The relationships between the structure of chemical compounds and their properties are
complex and high dimensional. In the drug development process, multiple properties of a
compound often need to be optimized simultaneously, further complicating the task. This
work explores two representations of chemical compounds for property prediction tasks. The
goal of these suggested representations is improved explainability to better understand the
compound property optimization process. First, we decompose the Extended Connectivity
Fingerprint (ECFP) algorithm and make it more straightforward for human understanding.
We replace a collision-prone hash function with a one-to-one substructure-to-bit relationship.
We find that this change which does not translate to higher predictive performance of a multi-
layer perceptron compared to ECFP. However, if the capacity of the predictor is lowered
to that of a linear predictor, it does perform better than ECFP. Second, we apply machine
learning to Matched Molecular Pair Analysis (MMPA), a drug development design paradigm.
MMPA compares pairs of highly similar compounds, differing in structure by modification at
one site. We train prediction models on pairs of compounds to predict differences in activity.
We use pairwise similarity constraints like MMPA, but also use randomly sampled pairs to
train the models. We find that models perform better on randomly chosen pairs than on pairs
with strict similarity constraints. However, the best pairwise models are not able to beat the
prediction performance of the simpler baseline single model. Both of these investigations,
RCFP and pairwise comparisons, aim to approach property prediction in a more explainable
way. By using intuition and experience of medicinal chemists within predictive modelling,
we hope to encourage explainability as a necessary component of predictive cheminformatic
models.

Keywords: Medicinal Chemistry, Drug Development, Cheminformatics, Machine Learn-
ing, Deep Learning, Graph Convolutional Neural Networks, Bioactivity Prediction, Chemical
Representations, Extended Connectivity Fingerprints, Matched Molecular Pair Analysis
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Chapter 1

Introduction

1.1. Predictive Cheminformatics
1.1.1. Structure-Activity Relationships

Property prediction from molecular structure is an important task in drug discovery,
quantum chemistry and material design. For drug discovery specifically, computationally
identifying potent compounds from huge libraries or quickly estimating the potency of hy-
pothesized compounds can cut down on the development cost of therapeutics in both time
and resources [14, 36]. The fundamental basis for the prediction of compound properties is
the understanding that changes in a molecule’s composition and structure result in changes
in the properties of that molecule [9]. This is because the composition and structure of
a molecule dictate how it interacts with other molecules in its environment, which is the
basis of molecular activity and most molecular properties [11]. There are other intrinsic
properties of molecules, most relating in some way to electronic structure, which again is
dictated by chemical structure [72]. The detection and characterization of these structure
activity/property relationships (SAR/SPR) is the backbone of predictive cheminformatics.

The earliest examples of such analysis dates back to the late 19th century with the
observation that an increase in the aqueous solubility of aliphatic alcohols results in a lower
toxicity of those same alcohols [68]. An investigation into a very similar trend by Meyer
and Overton reveals a similar relationship between solubility in olive oil and relative efficacy
of anesthetics [61]. Going beyond just a property-property correlation, the authors observe
the trend in the aliphatic carbon chain length of the molecules. This correlation between
structure and activity is shown in figure 1.1.

Recognizing SAR and SPR remains a key part of drug and material development [96,
1, 45]. From the drug/biological side, whenever there is a target of interest, SAR tables
are often constructed to better understand the structural source of activity. Figure 1.2 is
an example of such a table and shows that for a small number of similar compounds, these
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Fig. 1.1. Moderate correlation between the aqueous concentration required for narcosis in
tadpoles and the solubility in olive oil. Also a noted correlation in the length of the aliphatic
chain or the alcohols, as reported in [61].

tables can be parsed quite easily by human chemists. Chemists can intuitively map out
which substructures result in increases or decreases in activity. However, when the number
of compounds in a SAR study becomes too large to quickly digest the underlying trends by
simple observation, computational methods can be used to automate the process.

1.1.2. Properties and Activities

The above section makes reference to several kinds of molecular properties that can be
predicted from chemical structure. Properties of molecules can range from intrinsic features
of the compounds themselves, like molecular weight and melting point, to properties of the
compound in a bulk medium, like solubility in water, up to even more complex properties
that involve the compound’s interactions with specific proteins. Properties of compounds
can often be intertwined and correlate with each other, because on some level they all find
their basis in structure [86]. It is for this reason that the earliest prediction methods for
properties were directly based off of other properties, as shown in figure 1.1.

The ability of a molecule to affect the function of a biological entity, such as a protein,
cell line or even multi-cellular organism, is called a "biological activity" or a "bioactivity".
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Fig. 1.2. A Structure-Activity Relationship table from [33]. The R1 group on the parent
structure (top) is replaced with the substituent in the corresponding column, and the result-
ing biological activity is listed in the IC50 column. Lower values indicate a stronger activity,
as discussed in section 1.1.2.

The term activity differentiates these properties from the more intrinsic molecular properties
like solubility and melting point [65]. In this way, bioactivity prediction is a subset of the
larger problem of property prediction.
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A compound is "biologically active" for a protein, cell line or organism if it has a negative
or positive effect on the function or processes of the protein, cell or organism. Within these
activities, so-called "inhibition activity" is most common and it quantifies how effectively
a compound inhibits the function of a protein or the growth of a cell line or organism.
Inhibition activity is normally expressed in terms of the concentration necessary to inhibit
50% of the function or growth of a given entity. This value is called IC50, and is the target
property in figure 1.2 [90]. IC50 is expressed as a concentration which can span several
orders of magnitude, depending the compounds, so pIC50 is its practical form [76]. pIC50
is a log-adjusted measure of concentration similar to pH, showed in equation 1.1.1.

pIC50 = − log (IC50) (1.1.1)

pIC50 = log(1)− log (IC50) (1.1.2)

pIC50 = log
( 1

IC50

)
(1.1.3)

pIC50 is equivalent to the log(1/C) in figure 1.1 if C is taken to be the concentration
of 50% inhibition. Of the three datasets used in this work, two of the three predicted
properties are pIC50 activity values. The other is an electronic property related to the use
of the compound in an organic solar cell, called power conversion efficiency (PCE).

1.1.3. Quantitative Structure-Activity Relationships

SAR trends were first quantified into mathematical models in 1964 by the concurrent
works of Hansch and Fujita [40] and Free and Wilson [28]. These analyses correlate the con-
centration of desired biological response to many different identifiers of chemical structure
in a multi-variate regression analysis. The structure of a compound of interest is decom-
posed into substituents (sub-structures) which have independent solubility π and electronic
σ properties. Figure 1.3 shows several substituents and their parameters. σ is the Hammett
constant, which is a measure of the electron-withdrawing ability [39]. π is the partition
coefficient, similar to the solubility in oil mentioned above in section 1.1.1 [29]. The σ and
π parameters are determined for each substituent by experiment on the substituent alone.
Equation 1.1.4 shows the linear model used to predict "concentration of desired response" (C
in the equation) from these substructure parameters. The inverse of concentration of desired
response is a value analogous to IC50, discussed above in section 1.1.2. The constants k, k′

and k′′ are fitted to known data and have some biological meaning relating to the free energy
of the compounds moving in biological media and interacting with biological constructs like
traversing cell membranes.
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log 1
C

= −kπ2 + k′π + ρσ + k′′ (1.1.4)

These methods are collectively referred to as Quantitative Structure Activity/Property
Relationships (QSAR/QSPR) and are a significant portion of cheminformatics. In the years
since the development of these early models, computing power has increased by many
orders of magnitude and structural chemistry knowledge has matured, vastly improving
QSAR/QSPR.

1.1.4. Ligand-based and Structure-Based Drug Design

Bioactivity prediction is a prominent subset of property prediction, and is a main moti-
vation for this work. Therefore, an introduction to bioactivity-specific prediction methods is
warranted. There are several approaches to bioactivity prediction, depending on the level of
known information about the biological target. The early QSAR methods mentioned above
in section 1.1.3 focus on predicting biological properties using compound structure alone,
which makes it a Ligand-Based Drug Design (LBDD) approach [3]. If the desired activity
involves a single protein, and the structure of that protein is known, then the structural
information of the protein is certainly useful to understanding the compound-protein inter-
action. Using this structural info to aid in understanding/predicting activities is referred to
as Structure Based Drug Design (SBDD) [48].

SBDD is obviously more information-rich than LBDD, but carries with it some specific
challenges. For example, the placement of the ligand molecule in interaction with the protein.
A binding site needs to be identified, then a correct binding pose of the ligand within that
binding site. This adds multiple layers of computational complexity which results in the
scope of application of SBDD being limited however if structural information regarding a
target is known, there is a large advantage to incorporating it [53].
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When structural information is not known, it can be due to factors such as difficulties
with structure determination. However, SBDD is only applicable in the specific case of
single-protein activity prediction, and thus for other prediction tasks, something akin to
ligand-based design is used. Non-biological properties like solubility, melting point and PCE
are examples of these [38]. This work focuses on developing new QSAR models and therefore
describes LBDD, with no included protein information. This is for ease of portability between
bioactivity datasets and to other non-biological property targets.

1.1.5. Virtual Screening

Another term that gets mentioned quite often in the area of predictive cheminformatics
is that of "Virtual Screening". This is an umbrella term which means any computation
method that serves as a surrogate for an in-laboratory High Throughput Screening (HTS)
experiment. HTS experiments are large scale screens to evaluate the properties or activities
of entire libraries of compounds [4]. These screens are typically part of the early steps in
drug discovery, focusing on identifying "hits" (compounds of above-average activity) to be
further investigated in other experiments, or to be pushed through to the next steps of the
drug discovery pipeline. A further introduction to the various steps of the drug discovery
process is described in section 1.4.1. The appeal of computationally replacing an HTS is
to save the time and resources spent performing the screen, synthesizing the compounds or
purchasing them from a supplier [15].

The predictive models underlying a Virtual Screen can follow different approaches, de-
pending on the level of accuracy desired, the knowledge of the target and the compound
dataset that is being screened. "QSAR virtual screens", for example, use QSAR methods
like the ones mentioned above. They take a training set of known compounds along with
a set of new compounds to make predictions about possible hits [63]. SBDD or "docking"
virtual screens rely on known protein structures and make decisions on which compounds are
hits by using scoring functions or simulated docking of ligands and protein structures [42].
For these methods, a training set is not required, but the protein structure is required, as
well as a general knowledge of how the protein behaves in a biological context. Because the
goal of virtual screening is to approximate HTS experiments, it is a broad class of methods.
The approaches described in this thesis do not align very well with virtual screening as a
field, because we are concerned with exact activity prediction over hit/not-hit identification.
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1.2. Chemical Representations
1.2.1. Making Good Chemical Representations

The natural form of chemical compounds in a biological setting (dissolved in aqueous
solution) are ensembles of many different interchanging three dimensional conformers. Their
representations can be simplified beyond this to the most common representation for human
interpretation, the two dimensional molecular graph. The chemical graph encodes all the
necessary connectivity information between the atoms. Three dimensional conformer shapes
can be derived from these graphs using a chemist’s geometric intuition and tools like Valence
Shell Electron Pair Repulsion (VESPR) theory [31]. Although three dimensional shapes may
be a more correct idea of compounds in nature, they can be transient forms and the molecule
may exchange between several of them. Atomic connectivity, however, is unchangeable
without altering the identity of the molecule through a chemical reaction, so it remains
the paramount chemical representation and therefore graphs are the way compounds are
represented in this work.

Interpreting graphs is a difficult problem in computer science. Variable size and connec-
tivity make the space of possible graphs quite large and difficult to quantify. The computa-
tional complexity of important graph tasks varies wildly. For example, searching the nodes
in a graph by traversing it is NP-complete [50], confirming the equivalency of two identical
but differently labeled graphs is of unknown complexity but is likely NP-intermediate [62],
and finally searching for subgraphs within a graph is NP-hard [98]. These are all tasks that
are useful in molecular manipulation and chemical informatics and are made difficult by the
nature of the data.

The International Union of Pure and Applied Chemistry (IUPAC) has listed several de-
sired traits for good chemical representations, such a uniqueness and ease of manipulation
with computer systems [19]. For a chemical representation to be suited to a predictive task,
there are also desired traits, some of which overlap with the IUPAC list. For example - it is
preferable if molecules are represented outside of any coordinate system and instead focuses
on the atomic connectivity alone. This makes the representation of the molecule invariant to
translations, rotations and node-relabelling. Also, chemical similarity should be preserved
in the representation. This means that chemically similar molecules with similar structures,
compositions and sizes should exhibit a similar level of similarity in the representation. This
would mean that the representation captures the scope of chemical space well. Another
facet of a good representation would be that the representation of a molecule contains the
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Fig. 1.4. A molecule encoded as several different SMILES strings, demonstrating the one-
to-many relationship.

representations of portions of that molecule. Graphs obey this property through their sub-
structures, but other representations do not always obey this property, such as canonical
SMILES strings which are discussed below.

1.2.2. SMILES

Simplified Molecular-Input Line Entry System (SMILES) is a relatively simple grammar
for representing compounds in a human-readable single line format, and for the input of
molecules using a keyboard [91]. Special characters and symbols represent chemically rel-
evant structures and configurations such as different bonds, molecular rings, branches and
stereoisomers. SMILES is a general set of rules, therefore many valid SMILES strings exist
for a given compound. Figure 1.4 shows several SMILES strings that are valid for an example
compound.

This one-to-many relationship makes using SMILES strings a challenge for predictive
cheminformatics. In addition, SMILES string length varying with the size of the molecule
can cause problems as some predictive models struggle with varying input size. The many-
to-one relationship is made a one-to-one relationship through a canonical generation process
that makes the general set of rules much stricter to produce a single string for each molecule.
Possibly the largest drawback of SMILES is that it is a representation that does not seek
to preserve similarity, so physical similarity/structural overlap in the compound space is
not preserved in their canonical SMILES strings [47]. However, SMILES has seen some
recent successes in the predictive space, as well as successes in molecular generation, mainly
using machine learning methods developed from Natural Language Processing (NLP) and
translation methods [37, 74]. In this work however, SMILES strings are only used as a
means to store the chemical structures in files before converting them to a more powerful
and expressive representation for prediction.
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1.2.3. Chemical Descriptors

In section 1.1.3, compounds were represented as a collection of specific sub-structures
with specific π and σ parameter values. Although this representation is physically meaningful
(those parameters have a physical meaning regarding the electronic or solubility properties of
those substructures), its representation power is limited. Primarily, the substructure space is
large and substructures cannot possibly all be enumerated and tested for π and σ values, like
the ones in figure 1.3. Secondly, the π and σ parameter approach relies on linear additivity
of the parameters for the various substructures in a molecule, which is not always guaranteed
especially for overlapping substructures.

The structure-parameter based chemical representations are an example of "Chemical
Descriptors", which are small units of chemical information you can assign to molecules, so
as to quantify their structure. Mauri et al. 2017 lists several requirements for molecular
descriptors, which match the above-mentioned requirements for molecular representations.
First, descriptors must be invariant to atom relabelling and numbering. They must be in-
variant to molecular roto-translation. They must be defined by an unambiguous algorithm
and finally they must have a well-defined applicability on molecular structures [60]. Exam-
ples of single-value chemical descriptors include solubility, number of rings, solvent accessible
surface area, number of rotatable bonds, number of hydrogen bond donors, and many others.
They are sometimes referred to as "zero dimensional" chemical descriptors to contrast against
fingerprint vectors, which are called "one dimensional" descriptors. Tensor rank would be a
more appropriate term to describe their difference instead of dimensionality, but the term
dimension is commonly used. Figure 1.5 shows several of these descriptors.

Grouping several of these single-value descriptors produces a crude version of a molecular
fingerprint. A fingerprint, or a one dimensional chemical descriptor, is an information-dense
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and explainable representations of an entire compound. A one dimensional vector of the same
descriptors in the same order for two difference molecules will provide a representation that
is comparable between them. However, there are not enough simple single-value structural
descriptors to fully capture the massive space of different chemical compounds, so better
representations are needed for most tasks.

1.2.4. Fingerprints

Fixed-length vectorial representations of entire molecules, called fingerprints (FP’s) and
sometimes one dimensional descriptors [60], were developed to solve several of the problems
in chemical representations. Primarily, for predictive systems, as well as for tasks such as
quick database similarity searching, a fixed-length fingerprint representation is desired [13].
Secondly, by involving the entire molecule, fingerprints can capture information about the
whole structure, not just a handful of select features, like what is available through single
value descriptors.

Molecular ACCess System (MACCS) keys [25], developed by MDL Information Systems,
are a fixed binary vector of either length 166 or 960 with each bit corresponding to whether
a pre-defined substructure is present or absent in a given compound structure. For example,
the presence of an amino group, "-NH2", on a molecule causes bit number 84 to be turned
on.

Atom Pair fingerprints [12] aggregate the identities and distances of each pair of atoms
within the molecule. For example the structural feature "-CH2-CH2-", two adjacent methy-
lene carbons, form a pair of atoms and would be encoded as "CX2-(2)-CX2". These encodings
are then counted for different molecules and the counts are used directly in a similarity met-
ric, or are hashed into a fixed length vector.

1.2.5. Extended Connectivity Fingerprints (ECFP)

Extended Connectivity Fingerprints (EFCP) [69] are the most popular fixed-length vec-
torial representation of molecular graphs and serve as a baseline molecular representation
for the predictions in this work. They are based on the Morgan algorithm and for this
reason are sometimes called "Morgan Fingerprints". ECFP was created by Accelrys inc.
for their "Pipeline Pilot" product [41], but the generation process was published. However,
unknown algorithmic specifics (such as hash functions) make an exact re-implementation of
Accelrys’s version of ECFP technically impossible. So generally, the Pipeline Pilot version
of the fingerprints are called ECFP and any open source re-implementations are referred to
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as "Morgan Fingerprints". That being said, the names are essentially interchangeable and
the term ECFP is not a trademark so it is used in this work to refer to ECFP/Morgan
Fingerprints.

As mentioned above, ECFP/Morgan fingerprints are based on (but not equivalent to) the
Morgan algorithm. This algorithm was developed to solve the graph isomorphism problem
[62]. This task is to determine if two differently labeled graphs are the same, which is
important for cheminformatics. The Morgan algorithm is described in algorithm 1.2.1, where
the "special_recoding_function" updates atom IDs in a strictly increasing way based on the
ID’s of an atom’s neighbours to prevent overlapping labels. The Morgan algorithm is also
shown graphically along with the ECFP algorithm in figure 1.6. It first assigns a descriptor
or "ID" to each atom according to its element, valence, number of hydrogens and other
features. Then, the features of its neighbouring atoms are incorporated into its own ID in
a pre-defined order. This neighbour aggregation process is repeated until each atom has a
unique identifier (or as unique as symmetry will allow). The identifiers can then be used as
node labels to compare two graphs. Since the labels were generated solely based on node
identities and connectivity, no prior node labelling is needed to determine the isomorphism
of two differently labelled graphs.

Algorithm 1.2.1. Morgan Canonical Atom Labels

Input: Molecule m
For atom a in m

xa ← atom_ID_lookup(a)
end For
While x1 . . . xn are not unique

For atom a in m
x1 . . . xn ← neighbours(a)
xa ← special_recoding_function(xa,x1 . . . xn)

end For
end While
Return x1 . . . xn % For comparing to other molecules

The ECFP generation process is similar and described in algorithm 1.2.2 and shown
graphically in figure 1.6 alongside the Morgan algorithm. The identifiers for each atom
(node) are assigned, and the neighbour aggregation step passes and incorporates the value of
these identifiers between neighbours. This aggregation/incorporation step happens a fixed
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Fig. 1.6. Visualization of the steps of both the Morgan molecular isomorphism testing
algorithm and the ECFP generation algorithm, showing overlapping steps.

number of times, which is referred to as the number of fingerprint layers, or the fingerprint
radius r. It is called the radius because it corresponds to half of the maximum substructure
bond width that the fingerprint can represent. During the aggregation step, each atom
identifier incorporates information from 1 more bond length away. After each iteration, the
current identifiers for each atom are hashed to a 32-bit integer space and then folded down
to a more usable size, usually 2048 bits, corresponding to an 11-bit integer space.
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Algorithm 1.2.2. ECFP Generation

Input: Molecule m, radius R, fingerprint_size S
For atom a in m

xa ← atom_features(a)
end For
f ← 0S

For layer l in R
For atom a in m

x1 . . . xn ← neighbours(a)
v← [xa,x1 . . . xn] % Concatenation
xa ← hash(v)
i← mod(xa, S)
fi ← 1

end For
end For
Return f

When ECFP iterates for multiple fingerprint layers, atomic representation become sub-
structure representations for the local neighbourhood around the central atoms. Figure
1.7 shows several of these local atom environments for two similar molecules. Where the
molecules overlap, they share multiple atom environments and where they differ, they have
vastly different atom environments. In ECFP, each of these atom environments would be
represented by a hashed atom ID for the centre atom, and they would all be added to the
fingerprint. Although some atom environments may share some overlapping structure, unless
they are identical, they have completely different IDs and therefore are treated completely
different.

One of the main advantages is that ECFP takes a graph of any size and any connectivity
and produces a fixed-length feature vector for that graph. It does this based on substructures,
which have been shown throughout cheminformatics as being a significant contributor to
overall compound activity. One of the main disadvantages is that the hashing and folding
process can produce hash collisions, where multiple different substructures end up activating
the same bit in the final fingerprint. These collisions are expected to be random across the
different possible substructures and therefore colliding bits are not expected to be chemically
similar at all, which may be confusing to predictive models.
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Fig. 1.7. Several local atom environments that would be assigned an atom ID by the ECFP
algorithm.

1.3. Machine Learning in Chemistry
1.3.1. Machine Learning (ML)

Machine Learning (ML) is a subset of the field of Artificial Intelligence (AI) that focuses
on understanding and gaining insights about data in an automatic way. Building on a
collection of known data, ML systems can be "trained" to recognize complex relationships
between data points and their corresponding labels. Trained models can then be used to
make predictions about data points with unknown labels. This training/testing paradigm is
also sometimes referred to as discriminative machine learning [64].

Consider a dataset D, which is composed of paired input-output datapoints (xi, yi) where
xi are features and yi are their corresponding labels. The points of data xi can be any kind
of observations for a prediction task, like the molecules in QSAR. The labels yi are the
properties of the molecules that we are predicting and are either real values for a regression
task, or categorical ones for a classification task. In the prediction scenario, we have some
data points xi for which we know the labels yi, called the training set, and some more data
points for which we withhold the labels to simulate datapoints with unknown labels, called
the test set. For our purposes, all the datapoints come from the same dataset source so we
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divide the dataset into a training set and a validation set, where we withhold the labels of
the validation datapoints to evaluate the performance of the trained model. This dataset
splitting strategy is discussed further in section 2.1.

The goal of the learning process is to produce a function f that can make accurate
predictions of yi for any given xi. To do this, a family of functions F is selected that is
parameterized by θ, meaning we have access to many functions fθ ∈ F that differ by their
parameters θ. F is chosen so that the parameters θ can be easily optimized to achieve good
predictions on the training set. The optimized fθ is then used to make predictions for the xi

values in the validation/test set.
To optimize the predictor fθ, its performance is first measured using L(fθ(xi), yi), where

L is a function called the loss. The loss is a measurement of the correctness of the predictions,
similar to accuracy, but preferably a smooth function. The loss is averaged over all points in
the training dataset D. This value is called the Empirical Risk and is shown in equation 1.3.1.
This general framework describing the learning process is called Empirical Risk Minimization
(ERM) [85].

R̂(f, D) = 1
|D|

∑
x,y∈D

L(f(x),y) (1.3.1)

The most common way to optimize θ is to evaluate ∂R̂
∂θ

and use it to adjust θ to reduce
the loss [35]. This requires organizing the prediction models so that for every parameter
p ∈ θ, the partial derivative ∂L

∂p
is defined and accessible. The chain rule is applied to break

the derivative up and dynamic programming [5] is employed to re-use the partial solutions
for an efficiency gain. Applying these two efficiency-boosting approaches to access ∂L

∂θ
is the

backbone of modern neural network training, a process called automatic differentiation or
backpropagation [70].

All of the fundamental prediction models used in this work are Feed-Forward Neural
Networks, also called Deep Feed-Forward Neural Networks, Deep Neural Networks (DNN)
or Multi-Layered Perceptrons (MLP) [35]. Put simply, MLP’s are functions that non-linearly
transform fixed-length vectors into different vector shapes. For this work, the output of the
MLP’s are property predictions and are therefore always a single scalar value.

The structure of an MLP is a series of linear transformations interspersed with element-
wise non-linearities. The prediction process, or "forward pass", involves iteratively updating
a hidden representation h that begins as the input x as shown in equation 1.3.2. This
hidden representation is updated L times, which is the number of layers specified in the
neural network. The length of h may or may not change size as its being updated. A single
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one of these updates is shown in equation 1.3.3. τ is the element-wise non-linearity and can
be functions such as tanh() or ReLU()/max(x,0). Finally, the output of the model is shown
in equation 1.3.4. An output non-linearity o is a applied which can be functions such as
Sigmoid() or Softmax() for probabilistic/categorical outputs or Identity() for regressions
outputs.

h(0) = x (1.3.2)

h(k) = τ
(
b(k) + W(k)h(k−1)

)
(1.3.3)

f(x) = h(L+1) = o
(
b(L+1) + W(L+1)h(L)

)
(1.3.4)

A graphical representation of the steps described in equations 1.3.2 to 1.3.4 is shown
on the left side of figure 1.8. The right side of the same figure shows the typical simplified
representation of an MLP that distills its function down to a black box that produces single
scalar predictions from fixed-length input vectors. This pyramid-shaped cartoon is used in
this work and others as shorthand for the predictor.
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1.3.2. Early ML in Chemistry

QSAR models, such as the basic ones described above in section 1.1.3, fit well into the
the paradigm of discriminative machine learning. There is a set of known training data and
the task for the model is to use insights discovered in the training set to make predictions
about the validation/test set. The first QSAR prediction models mentioned in section 1.1.3
were linear regression models which, while not often considered a machine learning method
due to simplicity, is a parameterized prediction method that is trained on known data and
makes predictions on unknown data, like most ML models.

As mentioned in section 1.2.3, the nonadditivity of descriptors means the problem of
QSAR quickly outpaced the capabilities of linear regression models such as σ-π analysis
[40]. The relationship between structure and activity is intrinsically non-linear because the
structure space is so complex, so the shift to non-linear models was a natural one that
resulted in higher performance [34].

Very simple MLPs were first applied to QSAR modelling tasks [2, 22], which were suit-
able for analyses with dozens of compounds and only a few descriptor features due to the
low computational power available at the time. An explosion in possible descriptors and
fingerprints meant that the total number of features in typical QSAR investigations quickly
became insurmountable for the neural networks of the time without dimensionality reduction
or feature pre-selection [79]. This opened the field to other prediction methods for more than
a decade from the late 1990’s to the early 2010’s before the re-emergence of neural networks
to prominence in QSAR with the development of deep learning.

During this gap in the prominence of neural networks, Support Vector Machines (SVM)
[16] were a prevalent QSAR method and were considered to be among the state-of-the-art
[10]. SVMs classify compounds by deciding a max margin hyperplane in the descriptor space
to separate compounds of different labels. The label of a datapoint is predicted based on what
side of the hyperplane it lies on. In addition to this, SVMs employ what is called the "Kernel
Trick" [82], where the distance between the datapoints and the hyperplane are measured
using a non-linear distance measurement or "Kernel", which allows for a non-linear decision
surface. Random Forests (RF) [8] also became a prevalent method for QSAR prediction
around this time. RF’s are ensemble models of decisions trees that make several decisions
regarding the input feature vector so as to classify or regress on its label values. Their high
performance, ease of training, few adjustable parameters and speed of training made them
a easy choice for many QSAR applications [79, 59].
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All of these predictor types rely on fixed-length vectorial representations of arbitrary
chemical graphs, further underlining the importance of good chemical representations for
machine learning QSAR prediction models.

1.3.3. Early Deep Learning in Chemistry

Deep Learning is a recent direction of the field of ML that focuses on models with an
extremely high number of parameters. The term normally applies to MLP’s with many
hidden layers, making them deep, and usually many hidden nodes per layer, making them
wide as well. They are often referred to as DNNs but they are fundamentally the same
predictor. DNNs joined the mainstream of QSAR prediction in the wake of the Merck
bioactivity Kaggle challenge from 2012 [59].

As an open-source contest, contestants attempted to train a QSAR prediction model
with the highest overall accuracy on a hidden dataset. The contest participants were given a
training dataset consisting of descriptor vectors representing compounds. These descriptor
vectors varied in length across the different targets of the competition from 4306 descriptors
up to 12508. The compound structures themselves remained proprietary to Merck, as did
the exact descriptors or fingerprints that were used, which makes for a very uninterpretable
predictor.

The winning team used DNNs, ensembled with some other machine learning approaches,
but it was suspected that DNNs were what was imparting the majority of the prediction
power [59]. The DNN prediction framework for this problem is shown in figure 1.9, showing
the obfuscated nature of the predictor. Merck as an organization remained intrigued by
the positive results and the ability of DNNs to out-perform their most advanced internal
methods. The winning submission was followed with efforts from the same group at Merck
to demystify the black-box nature of the neural network predictions [95].

In the aftermath of this competition, there was a new renaissance for neural networks in
predictive chemoinformatic models. The multi-task deep neural network models developed
during the competition outperformed some of the industry standard commercial predictive
software. This attracted the large pharmaceutical companies towards the new field of Deep
Learning [83]. DNNs operating on fixed-length descriptors/fingerprints remained the promi-
nent predictive cheminformatic models until the development of Message Passing Neural
Networks, discussed below in section 1.3.5.
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Fig. 1.9. Layout of the DNN predictor for the Merck Kaggle challenge showing the parts
that were obfuscated. A training set of vectors was provided based on unknown descriptors.

1.3.4. Deep Learning in Other Fields

MLP’s like the ones described in section 1.3.1 treat all inputs as being of equal impor-
tance and have no prior assumptions over the relation between any subset of input variables
relative to each other. This lack of special consideration is appropriate for chemical de-
scriptors and fingerprints where hash functions ensure that substructures are represented
essentially randomly and uncorrelated across the input vector positions. However, few areas
of application offer raw data of this type, so specialized neural networks have been developed
that cater to specific input data scenarios.

In the the field of NLP and machine translation, the raw data is strings of words which
are members of a vocabulary of possible words, arranged in very specific orders [99]. For
the most part, adjacent words tend to depend on each other much more than distant words.
So, for data with this kind of temporal structure, the Recurrent Neural Network (RNN)
was developed [71]. RNN’s incorporate a hidden state containing information on the series
of data up to that point. This way, additional information for each time step or word is
incorporated into the hidden representation of the input as a whole.

In the field of computer vision and image processing, the raw data is a two dimensional
grid of pixels, sometimes with multiple colour channels [89]. In an image, adjacent pixels are
much more correlated to each other than pixels from opposite corners of the image. This,
plus the very large dimensionality of the input, has led to the development of the Convo-
lutional Neural Network (CNN) [57]. By employing "convolutional kernels", which are two
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dimensional weight matrices that are translated across the image and trained using gradient
methods, information about the neighbourhood surrounding a pixel can be recognized, such
as edges, curves and other elementary features in a translation-invariant way.

Predictive cheminformatics also has a more complicated kind of raw data, the chemical
graph. As described in section 1.2, graphs can be algorithmically transformed into fixed
length vectors (fingerprints) with uncorrelated bit positions, but the translation to this form
is still a loss of information when coming from the 2D graph. To better represent graphs for
machine interpretation, the convolution operation from CNNs was expanded to operate on
arbitrary graph structures instead of the pixel grids of images [26, 49]. This advancement
has applications in all fields with graph data, such as social networks, financial transaction
records and of course, chemistry and chemical graphs [101].

1.3.5. Message Passing Neural Networks (MPNNs) in Chemistry

The next truly paradigm-altering development in the field of predictive cheminformatics
were attempts to learn directly from the chemical graphs, instead of through fingerprints or
descriptor vectors which are a lossy approximation of the real graph data. Learning directly
from the molecules allows the learning system to access more structural information that may
be missed by the fingerprinting process. The generalization of the convolution operation to
generic graphs was a major contribution towards creating a fully learnable fingerprinting
process.

When a "same"-type convolution operation (the size of the input and output are the same)
is applied to an image, the operation can be viewed as "updating" the pixel values in the
image with the results of the convolution. A convolution is essentially a two dimensional dot
product between a weight matrix (filter) and an equivalently sized patch of input pixels. The
convolution results will "update" that pixel which now contains information not only form
itself but also from its neighbours. The Graph Convolutional (Neural) Network approach
(GCN/GCNN) see this operation generalized to arbitrary graph structures [94]. Figure 1.10
shows the analogous grid and graph approaches as they may be applied to image grids and
molecules.

One major difference between the two approaches is that in a graph there is no concept of
relative direction between a node and its neighbours. Without this, a two dimensional weight
filter is not viable as the position of a node’s neighbours is meaningless and the connectivity
alone is what matters. To mitigate this, the convolution is conducted with a common weight
for all the neighbours of a node, sometimes adjusted based on edge information.
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Fig. 1.10. Comparison of Convolutional Neural Network and the Graph Convolutional
Network, showing the adaptation of convolution to non-pixel grids.

The GCN approach was first applied to chemical graphs in Duvenaud et al. [26] and
Kearnes et al. [49]. The so-called "neural" or "learned" fingerprints are very similar in
concept to the ECFP approach, with node receiving information from neighbouring nodes.
The learnable weight matrices, however, mean that the fingerprinting process has the ability
to learn which substructures are important for a given prediction task. This contrasts with
ECFP, which algorithmically represents every substructure (up to a certain radius) in the
final fingerprint regardless of its importance for the task. A subsequent work by Gilmer et al.
[32] proposes the Message Passing Neural Network (MPNN) framework, which consolidates
the theory behind the flow of information in many different graph convolutional networks
into three ubiquitous processing steps; the message step, the update step and the readout
step.

In preparation for MPNN processing, node representations are generated for each atom
in the molecule. Their representations are based on the node’s identity and immediate
connectivity, but not on its position or label in the molecule. Figure 1.11 symbolizes these

21



O
Fig. 1.11. Diethyl ether molecule with symbolic column vector atom representations.

O
Fig. 1.12. Message aggregation phase for the Oxygen atom in Diethyl ether.

node representations as column vectors for each of the atoms in a Diethyl ether molecule,
which will be used to describe each of the steps.

The message function gathers the vectors of all of a node’s neighbours and combines
them into a single message vector. This is shown graphically in figure 1.12 by focusing on
one node, the "target node". In practice this operation is applied simultaneously for all nodes
in the graph. The message function uses the source node representation, the target node
representation and the representation of the edge that connects them to make a message. It
then aggregates all these messages from the various source nodes to a single target node. A
general equation for this step is shown in equation 1.3.5.

mt+1
v =

∑
w∈N(v)

Mt(ht
v, ht

w, evw) (1.3.5)

The update function takes a node representation and the aggregated message from the
previous step and updates the node’s representation. Focusing on a single node again, this is
shown graphically in figure 1.13 and a general equation for this step is shown in 1.3.6. Some
success has been seen in using methods developed for NLP as the update function, such as
the Gated Recurrent Unit (GRU), a type of RNN [58].

ht+1
v = Ut(ht

v, mt+1
v ) (1.3.6)

The readout function aggregates the node representations to compute a representation
for the whole graph. Figure 1.14 shows a general graphical representation of this. Because
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Fig. 1.13. Update phase for the Oxygen atom in Diethyl ether.

O
Fig. 1.14. Readout phase for Diethyl ether.

there is no concept of node ordering in a chemical graph, the aggregation process must be
completely invariant to ordering. A general equation for this is shown in 1.3.7. Examples of
suitable aggregation functions include sum and attention functions [87].

ŷ = R({hT
v |v ∈ G}) (1.3.7)

This general MPNN framework of message, update and readout phases is used to intro-
duce the two GCN fingerprinting approaches used in this work. The first of these is one
of the first GCN approaches developed for chemistry, Neural Fingerprints as described in
Duvenaud et al. 2015. The second is a more recent GCN approach, Chemprop Fingerprints
from Yang et al. 2019. The specific message, update and readout phases of both of these
approaches are discussed later in section 4.2.

1.4. Medicinal Chemistry Intuition
This work attempts to maintain a general position when it comes to the molecular prop-

erty being predicted, for ease of application to many different kinds of properties. However,
bioactivity targets remain a core motivation for this work. One of the central contributions
of this work, the pairwise comparison approach, section 4, relies on Matched Molecule Pair
Analysis (MMPA) which is a design tool developed for the drug development process. The
drug development pipeline is introduced in this section to give a complete introduction to
the field before introducing MMPA. As such, this section deviates from general property
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prediction to mostly bioactivity prediction. In addition, two of the three datasets used in
this work, described in 2.1, use bioactivity targets.

1.4.1. The Drug Development Pipeline

The drug development process seeks to create new therapeutics that are both safe and
effective at treating diseases. The drug development "Pipeline" is a sequential order of
developments steps leading to a new drug for a particular disease, and it is generally divided
into four specific phases [100].

1.4.1.1. The Discovery Phase. Consists of selection of the disease and identification of the
target, among other things. Disease selection is decided both on scientific and commercial
grounds, which can be based on things like the severity of the disease, the number of people
currently afflicted, and the number projected to be afflicted. Upon selecting a disease, target
identification is a more extensive process that may require biological experiments, depending
on how well the chosen disease is understood. With the disease and target selected, the search
for active compounds for the target can begin. As mentioned briefly in section 1.1.5, a "hit"
compound is one found to have above average activity for a target and serves as a basis for
further investigation. Libraries of compounds are often screened in the discovery phase to
identify hits [52].

1.4.1.2. The Preclinical Development Phase. Begins with the discovered hit compounds,
which are then optimized to improve efficacy and pharmacokinetics. Pharmacokinetics are
properties of a potential drug that include the ADME properties; absorption, distribution,
metabolism, and excretion. Referred to as the hit-to-lead and lead development processes
[52, 20], these investigations ensure a new drug must be safe, easily absorbed into the body,
present in the body long enough without being metabolized or excreted, and effective against
its target. Medicinal chemists optimize for these various properties to produce a molecule
suitable for application as a clinical candidate. Also in this phase, processes for industrial
synthesis and administration formulations are specified.

1.4.1.3. The Clinical Development Phase. The clinical development phase is divided into
3 phases of clinical trials to evaluate safety and efficacy. The first sets safe maximum dosage
levels on a small group of healthy participants. The second tests for efficacy in a small group
to help plan the third. Finally, the third phase is a large scale efficacy test conducted over
a long period of time.
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1.4.1.4. The Product Approval and Launch Phase. The drug candidate is evaluated by
regulatory agencies for approval. Upon successful approval, the drug is marketed and ad-
ditional clinical trials may be conducted for long-term side effects and alterations to the
approved specifics of the drug.

1.4.2. Computational Methods In The Pipeline

Although every step could likely be augmented with computational approaches, this work
focuses on the the medicinal chemistry portion of the development process. This portion is
divided into several tasks; hit identification, hit-to-lead development and lead optimization.
These tasks are at the interface of the discovery and preclinical phases of the pipeline [100].
Generally, the first of the tasks identifies a compound or class of compounds with some
activity towards a desired target. These hits can be selected from libraries or repositories
of compounds with unknown activities. The second and third part part refines the chosen
structures (hits) iteratively, progressing towards compounds that will seek approval from
regulatory bodies [48].

Identifying hits for a given target is a difficult task owing to the size of the chemical space.
The number of possible drug-like compounds is truly massive, with a wide range of estimates
but a commonly quoted number is in the neighbourhood of 1060 [67]. The advantage of
computational methods for this task is to rapidly and cheaply search this extensive space,
starting with many thousands of compounds in libraries or commercial catalogues like ZINC
[44] and narrowing in on only a few compounds for further development. Virtual Screening,
mentioned in section 1.1.5, is the common name for computational methods applied to this
task.

In the second and third tasks, hit-to-lead optimization and lead development, the problem
becomes an interesting multi-parameter optimization problem with many different individual
directions to explore. As a structure is being iteratively changed and optimized syntheti-
cally, having reliable estimations of the properties of hypothetical compounds allow for bad
structural avenues to be pruned off more quickly. To aid in these tasks, a common tool is
Matched Molecular Pair Analysis.

1.4.3. Molecular Matched Pair Analysis

MMPA is a design paradigm to rationalize and better understand the high dimensional
optimization problem that is hit-to-lead and lead optimization. The term was first coined
by Kenny and Sadowski in 2005 [51]. The idea is to compare compounds that differ in
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Fig. 1.15. An example of a Matched Molecular Pair. A small localized change has a direct
impart on a property value. The property in this case is solubility. using data from [17].

structure only at a specific site, and observing the difference in their properties due to the
structural change. Figure 1.15 shows an example of a Matched Molecular Pair, with the
target property being solubility. The overlapping structure makes the change in activity
more easily understood and explained by a human chemist. MMPA fits the way medicinal
chemists may naturally go about explaining a structure activity relationship [23].

In a typical workflow involving MMPA, a database of compounds with known activities is
broken down into MMP’s. These MMP’s are organized into MMP "rules", which are specific
structural changes and their resulting property changes. They can be aggregated from the
different times the same transformation has occurred across a database and include statistics
such as average property change and standard deviation [18]. The ensemble rules can then be
stored in a database and referred to for new compound pairs. Traditionally, MMPA actually
features no modelling or extrapolation beyond these average property change statistics, it
simply consists of a database of rules that are collected and presented in a way to help guide
the useful decisions of a chemist [56].

QSAR and machine learning approaches have been applied to MMPA, predicting the
difference in activity between two compounds in a matched molecular pair [73]. In that
work, a dataset of pairs is carefully selected on the basis of substructure overlap and their
membership as part of either the training or validation sets. Pairs are pre-computed using
the Breaking Retrosynthetically Interesting Chemical Substructures (BRICS) algorithm [21]
before being used to train the model. Compounds are broken down and regarded as being
composed of one or more fragments attached to a central core.

As the pairs are being generated, they are also carefully divided into different training
and validation sets on the basis of two different validation scenarios. The first involving
compound fragments unseen in the training set, the second involving central cores unseen
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in the training set. The pairs are represented as three Morgan fingerprints, two for the two
different fragments and one for their overlapping central core, all concatenated together.
This described ML/MMPA work mainly serves as a comparison between three different ML
models on this task; an MLP, a Random Forest, and a Gradient-Boosted Machine, of which
it finds the MLP the most performant in the prediction task [73].

1.5. Project Goals and Approaches
The goal of this work is to explore common representations of chemical compounds and

to propose more powerful and explainable representations. This goal is achieved through
the two different efforts, Reduced Collision Fingerprints and Pairwise Compound Compar-
isons. Within the scope of the drug development pipeline, we want to develop QSAR tools
for a specific phase of medicinal chemistry development. The hit-to-lead optimization and
lead development phases, where optimization becomes a complex task balancing multiple
properties, and datasets are of modest size.

The rest of this work is structured as follows: The datasets that were used to validate the
models, as well as implementation details, and the description of the baseline approaches are
found in section 2. Following that, Reduced Collisions Fingerprints are proposed, which are
a new molecular fingerprint type to remove the ambiguity resulting from fingerprint hashing
collisions. The motivation, methodology and performance of these fingerprints are found
in section 3. Finally, the Pairwise Compound Comparison approach is proposed, which is
an ML prediction method similar to MMPA, but generalized in certain ways compared to
MMPA. The strict pair requirements are relaxed, different pair sources are used, and several
kinds of fingerprints are used. The motivations, methodology and implementation of the
pairwise comparison approach are described in section 4.
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Chapter 2

Datasets and Implementation

2.1. Datasets
Table 2.1 shows properties of the various datasets used for testing and validation of the

described methods. Our attempt was to select datasets that have been used to benchmark
other property prediction methods and also span different molecular prediction tasks. Across
each dataset, identical compounds with differing properties were averaged. For the dataset
splits, we used a binary training/validation split throughout this work, with 80% of the data
being training and 20% being validation to allow for five-fold cross validation. Although a
three-way train/validation/test data split is common through the machine learning literature,
in this work a binary split is used for simplicity. We felt that with cross validation and the
binary split, a good estimation of performance is obtained without the need for a test set.
Perhaps if we had a dataset of particular importance or interest and were researching an
underlying phenomenon in the data, the inclusion of a test set with stringently withheld
labels would be more appropriate.

2.1.1. AurA

2430 compounds that are inhibitors of the human aurora A (AurA) tyrosine kinase.
All activity values were sourced from CHEMBL [30], where the AurA kinase is targetID
CHEMBL4722. All compounds with listed activities against this target were collected. These
compounds were filtered to leave only those with IC50 values. IC50 values were log trans-
formed to pIC50 values for prediction. This target was also used in Turk et al. 2017 [73],
the work introduced in section 1.4.3 with a similar MMPA/ML approach to the pairwise
approach described in section 4. This final dataset contains activities coming from different
experimental assays, which may introduce experimental noise into the dataset.
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Name Size Data Reference As Seen In
AurA 2430 [30] [73]
BACE 1513 [78] [97]
CEP 29978 [38] [26]

Table 2.1. Examined datasets, their sizes and their sources.

2.1.2. BACE

1513 compounds that are inhibitors of the human β-secretase 1 enzyme. The dataset is
available through the MolNet molecular prediction benchmarking package, part of the larger
DeepChem cheminformatics package, and therefore has performance as reported by many
different methods [93].

2.1.3. CEP

29978 compounds poised as potential substrates for organic photo-voltaic solar cells,
curated by the Harvard Clean Energy Project. The target property is PCE, which is cal-
culated from density functional theory (DFT) calculations, using the band gap and lowest
unoccupied molecular orbital (LUMO). Although this value is technically a percentage, and
is bounded by 0 and 100, no special consideration is taken for this prediction beyond stan-
dardizing the database prior to training. Other works predicting this value also make no
special considerations for the bounded percentage aspect of the value [26]

2.2. Implementation Details
The methods described in this work were implemented in the Python programming lan-

guage [84] using the PyTorch deep learning library [66] along with the PyTorch-geometric
extension for graph convolutional operations [27]. RDKit [55] was used to manage chemistry
and cheminformatics tasks such as SMILES canonization, scaffold fragmentation according
to the Bemis Murcko algorithm [6] and generation of matched molecular pairs according to
a common fragment-indexing algorithm [43].

The majority of all the models were trained on either a workstation featuring an AMD
32 core 3970X processor, 197 GB of memory and an Nvidia RTX 2080Ti with 11GB of
video memory, or on a server featuring 2 Intel Xeon Gold 6130 16 core processors, 395 GB
of memory and four Nvidia Tesla V100s each with 32GB of video memory. Depending the
hardware and the model architecture, models took anywhere from minutes to train for small
models, up to 10+ hours to train for the largest ones.
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Fig. 2.1. General flow of information for QSAR property predicting using an MLP. Item in
red is the true activity, unknown at validation time but known at training time to train the
model.

2.3. Baseline Predictor
The main prediction method used in this work is the multilayered perceptron, described

in detail in section 1.3.1. The general flow of information for all predictions throughout
this entire work is the following; a compounds passes through a fingerprinting mechanism to
make a fixed length vector that is passed through an MLP to give a single prediction. This
prediction is compared against the ground truth and the network learns from the resulting
loss. Figure 2.1 shows this flow of information graphically, which is expanded on in future
chapters. This is referred to as the "baseline predictor", "single predictor" or "single approach"
because it is used for comparison when the pairwise approach is introduced in chapter 4.
However it serves as the only predictor used in the following chapter 3.

2.4. Metrics
All tasks reported in this work are regression tasks and the Pearson correlation R2,

averaged across 5 cross validation folds, is reported throughout the experiments as the main
prediction performance metric. The models are trained with Mean Squared Error (MSE)
as the loss function. Mean Average Error (MAE) is also used occasionally to report results
alongside Pearson correlation R2. Classification tasks and their corresponding metrics are
starkly absent from this work because, as will be discussed in section 4, the pairwise approach
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is incompatible with typical property classification datasets. These dataset do not have
numeric property data for each compound but instead report "hit or not-hit" for bioactivities.
Datasets like these represent a large portion of all chemical activity datasets, but are not
used in this work.

2.5. Hyperparameters
HyperOpt [7] was used to perform the Hyper-Parameter Optimizations (HPO) for each

experiment. Pearson R2 was used as the target of the meta-optimization. For each fingerprint
type and dataset, the optimum value for the remaining hyperparameters were found and used
for a final five-fold cross validation (occasionally reduced to three or two fold for large and
slow-to-train models). Fingerprint size, number of fingerprint layers (fingerprint radius r),
number of MLP layers, size of MLP hidden layers, number of gradient steps and dropout
were optimized over the course of 10 runs for each model. Hyperopt was generally needed
only for the two graph convolutional network fingerprints, as they are significantly more
computationally costly and require a sequential hyperparameter optimization process as a
parallel approach is not viable due to memory constraints.
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Chapter 3

Reduced Collision Fingerprints (RCFP)

3.1. Motivation
The first contribution of this work is a new kind of fingerprint, based on ECFP, but that

seeks to investigate and reduce the influence of bit collisions. Fingerprint bit collisions occur
when the hashing process of fingerprint generation produces the same fingerprint bit for
different atom IDs. This can conceivably lead to confusion for a predictor. In the generation
process, discussed in section 1.2.5 and shown in figure 1.6, atom identifiers are hashed to a
32 bit integer space (232). It is generally assumed that there would be few collisions in this
rather large space for most values of the fingerprint radius r [69, 24]. Some applications
can make use of the fingerprints directly in this large space, typically represented as lists or
dictionaries of IDs. These applications include measuring similarity and chemical retrieval
tasks [80]. For QSAR modelling using predictors like MLP’s, a fix-length vector of reasonable
length is needed.

For these tasks, the 32 bit identifier of each atom is then "folded" with modulo arithmetic
to activate a single bit in the fingerprint space (commonly 2048 bits, or 211). This massive
compression of the possible bits results in the majority of these potentially confusing bit
collisions. To make a more information-rich and useful fingerprint, we propose a modification
to ECFP referred to as Reduced-Collision ECFP (RCFP) which alleviates these collisions.
Therefore, RCFP remains exposed to collisions from the hashing process itself but given
the large 32 bit space, these are considered to be unlikely for modest fingerprint radii and
databases sizes.

Figure 3.1 shows the effect of bit collisions on fingerprint diversity for standard ECFP
on the AurA dataset. We can see that as the fingerprint size is increased along the x axis,
the number of unique bits across the entire dataset increases. Every increase in the number
of unique bits (y axis) as the fingerprint increases in size (x axis) is a fingerprint collision
being resolved. The plateau that these curves reach is when every possible substructure (up
to the specified radius) for each of the molecules in the dataset is represented by its own
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Fig. 3.1. Number of active ECFP bits across the AurA dataset for different values of finger-
print radius r. Increases active bits as the fingerprint grows are fingerprint collisions being
resolved.

fingerprint bit. Achieving this level of collision reduction takes very large fingerprint sizes
for traditional ECFP, but the number of active bits across an entire given dataset is quite
reasonable in comparison to the ECFP size. For example, for radius 4, it takes a fingerprint
of around 220 bits to represent around 35,000 unique substructures. This means that 96% of
fingerprint bits are never turned on for any compounds in the entire dataset.

RCFP builds a fingerprint based on the unique active bits only. This is done by assigning
a fingerprint bit to each unique substructure present across the entire dataset. Therefore,
the fingerprint size will be the number of active bits at the "plateaus" shown in figure 3.1.
So for the radius 4 example from above, the fingerprint length would be around 35,000. Still
quite large, but much smaller than the 220 bit ECFP and representing the same information.

On top of this, not all active fingerprint bits are equally useful. For example, from a
learning perspective, a bit has to appear at least twice to be useful in a dataset. It must
appear at least once in the training set for the predictor to be aware of it and it must appear
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Fig. 3.2. Distribution of Fingerprint uniqueness across the AurA dataset.

again in the validation set to be used for a prediction. It follows that bits appearing more
rarely across the dataset are not as useful as bits that are more common. Figure 3.2 shows
the distribution of fingerprint bits and their uniqueness in the AurA dataset with various
fingerprint radii. We can see that a large population of the unique fingerprint bits appear
very few times across the whole dataset.

RCFP also uses this assumption to reduce the length of the fingerprints. As mentioned
above, the fingerprint length of RCFP is initially equal to the number of unique bits across
the whole dataset. These fingerprints are then "trimmed" based on how many times each bit
appears across the dataset. The generation process is explained in detail in the next section.

3.2. Methodology
The RCFP generation process is split into 3 consecutive phases; compiling a fingerprint

for the whole dataset, trimming this dataset fingerprint, and using it to make individual
compound fingerprints.
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For phase one, the database fingerprint is essentially a list of all unique IDs encountered,
up to a given radius, across all the compounds in a dataset. This is very similar to the
ECFP generation process, except all IDs from different compounds are stored together,
along with how many times each ID has appeared. This is shown graphically in figure 3.3
and algorithmically in algorithm 3.2.1. The IDs generated are in the full 32 bit space, and
although a hashing algorithm is still applied to concatenated neighbour atom representations,
this space is considered so large that collisions will be rare, because the modulo folding step
is removed [24].

Algorithm 3.2.1. Dataset FP Generation

Input: Dataset D, radius R
For molecule m in D

For atom a in m
xa ← atom_features(a)

end For
For layer l in R

For atom a in m
x1 . . . xn ← neighbours(a)
v← [xa,x1 . . . xn] % Concatenation
xa ← hash(v)
ds_ids[xa] = ds_ids[xa] + 1

end For
end For

end For
Return ds_ids

The second phase, trimming this database fingerprint, is the process whereby an ID in
the dataset ID list is discarded if it has not appeared a required number of times m across the
dataset, called the m-cutoff value. This is shown graphically in figure 3.4 and algorithmically
in algorithm 3.2.2. This is not to say that the most common bits are the most useful, but
that bits appearing more often may be easier to learn from. This is because it will be easier
for the predictor to form a general representation based on these bits. This reasoning also
applies to IDs that appear in almost every single compound, as there is also not much to be
learned from those. The count of each ID is also replaced with its corresponding bit in the
final fingerprint. The order of these ids is not important.
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Fig. 3.3. Whole-Dataset or "Master" Fingerprint Generation.

Algorithm 3.2.2. Trim Dataset FP

Input: Dataset IDs Dictionary ds_ids, cutoff m
counter ← 0
For id in keys of ds_ids

if ds_ids[id] ≤ m

remove ds_ids[id]
else

ds_ids[id] = counter
counter = counter + 1

end if
end For
Return ds_ids

The final phase generates individual RCFP’s for each molecule. The trimmed database
ID list is used as a key to assign bits in the final fingerprint for each compound. This is
shown graphically in figure 3.5 and algorithmically in algorithm 3.2.3.
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Fig. 3.4. Database Fingerprint Trimming Process.

Algorithm 3.2.3. RCFP Generation

Input: molecule m, radius R, Dataset IDs Dictionary ds_ids
For atom a in m

xa ← atom_features(a)
end For
f ← 0|ds_ids|

For layer l in R
For atom a in m

x1 . . . xn ← neighbours(a)
v← [xa,x1 . . . xn] % Concatenation
xa ← hash(v)
if xa in keys of ds_ids

fds_ids[xa] ← 1
end For

end For
Return f

The overall size of the fingerprint is dictated by 1) the number of substructures counted
per compound, which is the number of fingerprint layers 2) the number of compounds in the
dataset, 3) the diversity of the compounds in the dataset, and 4) the m-cutoff value, the
required number of occurrences of a given substructure for it to be included in the fingerprint.
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Fig. 3.5. Individual RC-ECFP generation.

m is the only source of control over the length of the fingerprint, so for larger datasets m

must be increased to keep the length of the fingerprints reasonable.

3.3. Results and Discussion
3.3.1. Similarity Metrics

Chemical similarity is difficult to quantify because chemicals are amorphous graphs with
variable size and connectivity. Because of this, there is no concept of a "ground-truth" for
chemical similarity, and every measure is imperfect to some degree. A very common measure
of chemical similarity in literature is the Tanimoto similarity of compound fingerprints. Other
measures of similarity exist, such as 3D structural alignment of molecules, but Tanimoto
distance is more common [54]. The equation for Tanimoto similarity of two bit vectors
is shown in equation 3.3.1 and can be generally referred to as the "intersection divided by
union", which in the case of binary vectors is the sum of a bit-wise "and" operation divided
by the sum of a bit-wise "or" operation. The metric was originally formulated by Jaccard in
1912 [46] and independently by Tanimoto in 1958 [81]. Different fields refer to this metric
as either Tanimoto similarity or Jaccard similarity, with cheminformatics tending to refer to
it as Tanimoto similarity. In this section, the Tanimoto similarities of ECFP and RCFP for
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pairs of compounds randomly sampled from the AurA dataset were examined for fingerprints
of the same length.

T (A,B) = |A ∩B|
|A ∪B|

= |A and B|
|A or B|

(3.3.1)

Figure 3.6 shows the pairwise fingerprint similarity investigation. We can see that RCFP
has a higher tendency to identify compounds as being more similar (as measured by Tani-
moto similarity) than ECFP will determine for the same pair. This is shown by the higher
population above the unity line. This makes sense given that RCFP tends to be slightly
denser. This could be due to collisions existing in ECFP but being resolved in RCFP, and if
this is the case, then a single bit will become two. If more of the new bits are present in the
same two compounds, they now share multiple bits of similarity instead of just one, which is
an increase in similarity for the same sized fingerprint. The compound pairs showing 100%
similarity in both fingerprints are likely stereoisomers, as neither fingerprinting method takes
compound chirality into account. This means that distinct compounds may have the same
connectivity and therefore fingerprint.

For the population that exists below the unity line, there is higher similarity in ECFP
than in RCFP for a given pair of compounds. This could be because the RCFP fingerprints,
which used an m cut-off threshold of 7, happened to remove bits that the compounds shared.
In cases where useful bits that contribute to similarity are discarded due to the threshold,
ECFP may show higher similarity.

In figures 3.7 and 3.8 we can see that sampled pairs are already unlikely to be similar to
each other in the first place, as shown by the density of points in the low-similarity region.
Since pairs of compounds tend to be more similar when measured by Tanimoto distance in
RCFP, and because the similarity spectrum is bounded, perhaps it can be better utilized
with RCFP than with ECFP. Comparing the density of fingerprint differences between the
two different fingerprints in the two figures, we can see that going from ECFP to RCFP
noticeably shifts the density for the more similar pairs but imperceptibility shifts the density
for the less similar pairs. This is a qualitative observations and it is possible that all pairs have
simply moved an equal, imperceptible amount so further investigations would be required to
confirm or deny this. With more pairs in the "high similarity" area (traditionally defined as
similarity of 0.5-0.6 and up) of the difference/activity plots, activity cliffs can be identified
more easily. Activity cliffs are pairs of compounds where small changes in structure result
in large changes in activity and are important features to discovery [77].
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Fig. 3.6. Randomly sampled pairwise similarities from ECFP and RCFP. RCFP of radius
3 with an m-cutoff of 7 was used to make fingerprints of length 3101. ECFP of the same
length were made and 10,000 pairs of compounds were randomly sampled.

3.3.2. m-Cutoff

The "necessary number of occurrences" m cutoff value from step two of the RCFP gen-
eration process, algorithm 3.2.2 and figure 3.4, is important for controlling the size of the
fingerprint. Figure 3.9 shows the size of the fingerprint as a function of the m cutoff value
for the three datasets featured in this work. As mentioned above in section 3.2, 4 factors
control fingerprint length; fingerprint radius, dataset size, dataset diversity and the m values
which trims the least occurring bits. We can see in the figure that fingerprint size is reduced
as m increases, especially for the largest of the datasets, CEP. Higher m values result in a
larger loss of information, however the hope is that by discarding rarely occurring bits, the
information loss is kept to a minimum.

We can see that with the larger CEP dataset, the number of compounds and their diver-
sity make for a very large number of unique substructures and thus very large fingerprints.
This makes it clear that there is an upper bound to the utility of RCFP that is based on
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Fig. 3.7. Randomly sampled pairwise ECFP similarities and their activity differences,
10,000 random pairs of compounds. A scatter plot is shown on the left and a 2d histogram
on the right.

dataset size/diversity, after which the RCFP approach is simple too cumbersome. Perhaps a
dimensionality reduction process like Principal Component Analysis (PCA) would be useful
to reduce fingerprint sizes when a very large/diverse dataset is used.

3.3.3. Prediction Performance

The performance of these reduced collision fingerprints as the input to learning models is
compared with ECFP in figure 3.10, shown with the circular plot points. The figure shows
the prediction performance on the AurA dataset, in R2 value on the top and in MAE on
the bottom. To determine fingerprint sizes, the m-cutoff value for RCFP is varied from 0
to 150 and the resulting fingerprint size of RCFP is also used to make the ECFP values
for that point. For example, using an m-cutoff value of 5 results in an RCFP size of 3719
bits, so that RCFP size is compared to ECFP of equivalent size. For these experiments, the
number of fingerprint layers is fixed at 3, batch size 1024 and independent hyperparameter
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Fig. 3.8. Randomly sampled pairwise RCFP similarities and their activity differences,
10,000 random pairs of compounds. A scatter plot is shown on the left and a 2d histogram
on the right.

optimizations were done for each fingerprint type and size to determine the best values for
number of MLP layers, MLP layer sizes and MLP network dropout.

We can see that despite arguments for the potentially more informative nature of RCFP,
this does not translate to a higher predictive power in an MLP predictor, save for some
seemingly arbitrary fingerprint sizes. The reason for this is possibly the ability of the MLP
to resolve complicated relationships between input bits means that fingerprint bit collisions
are simply not confusing to the MLP predictor. The high capacity, many parameter nature of
the method can sort through the confusing bit contributions. On top of this, RCFP removes
information from the fingerprint when an m-cutoff value of greater than 0 is used. This loss
of information is likely detrimental to the prediction performance and is not made up for by
the collision-free nature of RCFP.

If we reduce the capacity of the models, we can remove the predictor’s ability to sort
through the confusing bit collisions. To explore this, we use a linear model, as it is simply
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Fig. 3.9. Fingerprint size after trimming with progressively larger m cutoff value for different
datasets.

an MLP with no hidden layers and significantly lower predictive capacity. The results are
shown on the same figure, 3.10, with the square plot points. The fingerprint size varies as
before, but with 0 hidden MLP layers and 0 network dropout to make it a linear model.
Early stopping is used to prevent overfitting and the optimal number of training steps varied
widely between fingerprint sizes, from 140 steps up to over 1,000 depending the fingerprint
type and size.

We can see that when using a predictive model with a weaker representation capacity,
RCFP performs better than ECFP at most fingerprint sizes. This could be due to the removal
of collisions making up for the loss of information from the m-cutoff trimming process. One
potential advantage of using linear regression over a higher-capacity MLP predictor could
be explainability. In a linear model, each weight corresponds to the relative importance of
that bit to the prediction. For RCFP, these bits are also unique substructures through the
established one-to-one fingerprint bit to substructure relationship described in section 3.2.
This one-to-one relationship is one directional due to being a hash function. However, in a
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Fig. 3.10. Performance of both RCFP and ECFP in MLP and Linear predictors, for differ-
ent fingerprint sizes (determined by varying m-cutoff values) on the AurA validation dataset.
Higher is better for R2 and lower is better for MAE.

situation with the entire training set available, the hash function can be reverse engineered via
process of elimination to map the reverse relationship from bits to substructures. Therefore,
using RCFP in this way can make a better direct link between compound substructures and
their importance to the predictions. This is the idea of intrinsic explainability in RCFP, that
the identity of each substructure could be deduced from maintaining the trimmed database
ID list obtained from phase 2 and using it in reverse.

A possible concern for RCFP generation is the idea of increasing the size of the dataset
after the fingerprints have been generated. If a given dataset were to be expanded in the
future, RCFP can deal with this in several ways. First off, in the case of inference, there is
no need to account for new unique substructures of the inference compounds because their
new unique bits will not be present in the training set, so the model will not be trained on
this information anyway.

For new training compounds it is evidently more complicated. All RFCP’s are changed
if even a single compound with a single new unique substructure is added to the training
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set. However, every unique structure is accounted for with a bit in the previous (pre-new
compound) fingerprint. This means whatever new bits are assigned for the new training
compounds, they will not be present in the old compounds. Although the fingerprints of
the old training compounds will technically become larger, they will only be padded with
zeroes. The new fingerprints will have bits occupying both the old space and a number of
new bits that represent structures unaccounted for by the old fingerprints. These new bits
could be accounted for separately. The models trained on these fingerprints will need to be
retrained as the fingerprint size has changed. A possible solution to this could be using the
already-trained "old model" in tandem with a new model trained on the "new fingerprint"
and aggregating the results of the two models, but this was not investigated in this work.

Our motivation for developing RCFP was the possible confusion brought on by the
collision-prone ECFP fingerprinting method. RCFP was built around avoiding collisions
as much as possible and to facilitate this goal, some information had to be removed from
the representation. The prediction performance investigations revealed that for an MLP
predictor, this trade-off is not a worthwhile one, whereas for it does appear to be for a linear
predictor.
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Chapter 4

Pairwise Compound Comparisons

4.1. Predictor Descriptions
The final contribution of this work is the pairwise compound comparison approach to

property prediction. The motivation for this approach lies in MMPA, which is common
in drug discovery and is introduced in section 1.4.3. The fundamental unit of data for
the pairwise approach is a pair of molecules, which contrasts with standard QSAR models
where each data point is a single molecule, referred to as the single approach. The prediction
performance of the two approaches is compared in this chapter. The fundamental predictions
made by models of the pairwise approach concern the relative property values of the pair. For
the regression task, the predicted value is the property difference between the two compounds
(can be positive or negative). For the classification task, the prediction is the probability
that one compound has a higher property value than the other. The regression task is the
main focus of this work and the classification task is mentioned but not examined.

Because the predictors are multi-layer perceptrons, each pair of molecules needs to be
represented as a fixed-length vector as discussed in section 1.3.1. Each compound in a pair
is represented by one of several molecular fingerprints, and their resulting fingerprints are
concatenated to form a single vector that is passed to the MLP that makes the prediction.
Figure 4.1 graphically shows the flow of information for the pairwise compound comparison
predictions.

The predictions that are made are directional, either the difference in property (positive
or negative) when moving from compound A to compound B for the regression task, or the
probability that compound B will have a higher property value than compound A, for the
classification task. The prediction is compared to the ground truth in a loss function and the
gradient of the loss value with respect to the model weights is used to update the predictor.
The general framework for this optimization is described in detail in section 1.3.1.

For a dataset of N compounds, there are N2 possible directional compound pairs that
exist. If self-similar pairs are removed this drops to N(N− 1). This number is cut in
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Fig. 4.1. Basic flow of information from a pair of compounds to a pairwise prediction. The
final prediction is either the difference in activity (∆) or the probability of a higher property
value (p).

half for non-directional pairs. The underlying dataset is split into two sets, a training set
and a validation set, as is typical for machine learning tasks and discussed in section 1.3.1.
This divides the pair space into 4 different kinds of pairs as shown in figure 4.2. The first
type is pairs of two training compounds, the second and third types are composed of one
training compound and one validation compound, and the final type is pairs of two validation
compounds. As discussed in section 2.1, some machine learning methods split the dataset
into three parts; a training set, a validation set and a test set. In this situation, there would
be a more complicated pair landscape but it would still be a natural extension of what is
described in the two part split.

The different pair types in figure 4.2 allow for two different validation scenarios. First,
models must always be trained on training-training pairs, since both activities must be known
to get a proper ground truth for the learning process. For validation, however, the model
can use either training-validation pairs (referred to as the TV validation type) or validation-
validation pairs (referred to as the VV validation type). The difference between these two
validation types results in a different kind of prediction. For the VV validation type, the
prediction is the difference in activity, with the model knowing neither of the true activities
at validation time. These predictions have a mean of 0 and can be positive or negative, based
on which compound is higher in activity. For the TV validation type, the model always has
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Fig. 4.2. Possible pair types for a dataset split into training and validation compounds.

access to the activity of one compound (the training compound) at both training and test
time, so it makes sense to incorporate this activity into the final prediction. The fundamental
prediction is the same, a directional difference in activity, but this is directly added to the
known activity of the training compound, which makes the value a prediction regarding
the activity of the validation compound. The combination of prediction task (regression
or classification) and validation type (training/validation or validation/validation) produces
the four different scenarios, three of which are shown in figure 4.3.

The fourth option is not shown, the classification task with TV validation type. This
approach is not as easy to formulate as the others and was thus not explored. One possible
approach would be to make a classification prediction, then incorporate the known property
value into the probability, producing a hybrid prediction along the lines of "the probability
p that the property value will be higher than x", where x is the training compound activity.
This probability-activity hybrid value could be compared against the ground truth activity
for the validation compound and a specially crafted loss function would be needed to calculate
the loss.

49



MSELoss( , )

+

MSELoss( , )

-

( , )

- >

NLLLoss( , {0,1})p

p

TaskRegression Classification

Validation/
Validation

Training/
Validation

Not as straightforward
as the other three

Pair Type

Fig. 4.3. Predictor structures for different tasks and validation types. Items in red are
known at training time and used to train the model, but are unknown at validation/inference
time. Compounds are represented as vectors by fingerprinting.

4.2. Fingerprint Types
The fingerprinting step in the pairwise predictor (figure 4.1) has the simple requirement

of needing a fixed length vector for each molecule. This means it is invariant to the method
used to vectorize the molecules. Because of this, several fingerprints types are used; ECFP
[69], RCFP, Neural Fingerprints [26] and Chemprop Fingerprints [97].

4.2.1. Fingerprint Type Descriptions

4.2.1.1. Extended Connectivity Fingerprints (ECFP). The first fingerprint approach used
is the baseline, the Extended Connectivity Fingerprint described in section 1.2.5. This
fingerprint type has seen very widespread use across cheminformatics and is excellent for
representing diverse graph structures in a finite fingerprint vector.
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4.2.1.2. Reduced Collision Fingerprints (RCFP). The fingerprints described in chapter 3
are used. The m-cutoff value was varied based on the dataset, using 20 for AurA and BACE
and 60 for CEP. Figure 3.9 shows the corresponding fingerprint lengths for these values of
m. The aim was to select a value for m that results in fingerprints with lengths in the
allowed ranges for the other approaches, which use the hyperparameter optimizer to select
a fingerprint size between 512 and 4096 bits.

4.2.1.3. Neural Fingerprints. The first of the two learnable/GCN fingerprints used are
Neural Fingerprints, re-implemented according to Duvenaud et al. 2015 [26]. Neural fin-
gerprints are meant to be an analogous replication of ECFP, but substituting the non-
differentiable functions for differentiable ones and learning the entire process. The process
follows the general Message Passing Neural Network framework described in section 1.3.5
and consists of a message phase, an update phase and a readout phase.

The message function, shown in equation 4.2.1, is a simple concatenation of the incoming
atom and bond features. The update function, shown in 4.2.2, multiplies the incoming
messages from the message function by a certain weight matrix according to the current
timestep t and the degree (number of neighbours) of the atom to be updated. The readout
function, shown in 4.2.3, takes each node representation, at each timestep, and multiplies
it by an output weight matrix that transforms the node representation size to the final
fingerprint size.

There are different output matrices for each time step. The result from multiplication
with these matrices is passed through a softmax function to ensure that each node at each
timestep contributes a total mass of 1 to the final fingerprint, similar to the hash function
of ECFP which turns on a single bit for each node representation. The softmaxed values
of all the node representations across all the different timesteps are added to form the final
fingerprint representation. The form of the message, update and readout functions is shown
in equations 4.2.1, 4.2.2 and 4.2.3

M(ht
v, ht

w, evw) = (hw, evw) (4.2.1)

Ut(ht
v, mt+1

v ) = σ(Hdeg(v)
t mt+1

v ) (4.2.2)

R({hT
v |v ∈ G}) =

∑
v,t

softmax(Wth
t
v) (4.2.3)

4.2.1.4. Chemprop Fingerprints. The last fingerprint type and second GCN fingerprint
used in this work are Chemprop fingerprints, re-implemented according to Yang et al. 2019
[97]. Chemprop fingerprints are a more recent, state of the art prediction method that
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were developed to alleviate several problems with message passing frameworks. The main
difference is that Chemprop propagates edge information between edge labels in a graph,
instead of strictly node information. This solves a specific GCN problem where, for node-
based message propagation, if in one step a message is passed from node A to its neighbour
node B, then in the next step, information will be passed right back from node B to node A
again. In a way, A will be updated with information as if it is connected 2 bonds away from
itself, which is unnecessary and confusing. Edge propagation removes this problem.

The message function, shown in equation 4.2.4, shows how the messages destined for
each edge representation are aggregated. The update function, shown in 4.2.5, is a simple
weight matrix multiplied by the message, then added to the original representation of the
edge. The readout function, shown in 4.2.6, is a sum of all of the node representations.

M(ht
v, ht

w, evw) =
∑

k∈{N(v)−w}
kt

kv (4.2.4)

Ut(ht
v, mt+1

v ) = τ
(
h0

vw + Wmmt+1
vw

)
(4.2.5)

R({hT
v |v ∈ G}) =

∑
v∈G

hv (4.2.6)

Because this method updates and propagates edge representations, and the readout func-
tion relies on node information, two steps are applied to get the final node representation,
ahead of the readout phase. First, for every node, its adjacent edge representations are
summed to make a node message vector, shown in equation 4.2.7. Second, this node mes-
sage vector is concatenated with the original node representation and multiplied by a weight
matrix, giving the final node representations, shown in 4.2.8.

mv =
∑

w∈N(v)
hT

vw (4.2.7)

hv = τ(Wacat(xv,mv)) (4.2.8)

4.3. Train-Validation (TV) Pairs
For the TV validation type, one compound in the pair always has a known property

value, even at validation time. This is because one of the compounds in the pair is a training
compound. The other compound is a validation compound with unknown property value,
referred to as the "query compound". The output of the predictor is a direct prediction of
the property of the query compound through addition, as shown in the bottom left panel of
figure 4.3. For a given query compound, multiple unique predictions regarding its property
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Fig. 4.4. Averaging training compounds to make a final activity prediction from multiple
pairs in the TV validation case.

value can be made, as many as there are pairs between the query compound and different
training compounds. The final prediction for the property of a query compound can then be
a consensus of these unique predictions as is shown in figure 4.4.

When the number of pairs a compound has is very large, the mean of a subset of its pairs
can provide a good average prediction for the query compound’s property. The number of
pairs used is whichever is smaller between all of the possible pairs for a query compound and
150, which provides a good estimation in cases where a query compound has many possible
pairs.

4.3.1. Prediction Distributions

Because there are many possible predictions to be made for each compound, the mean is
used to access a simple consensus between all the available predictions, as mentioned above.
Figure 4.5 shows the full distribution of predictions for both the best (top rows) and worst
(bottom rows) predicted compounds, as predicted by a fully trained model on the AurA
dataset. The model used ECFP fingerprints of length 3584 with 3 fingerprint layers. The
MLP is one hidden layer with 1024 hidden nodes and dropout probability of 0.159, all found
by hyperparameter optimization.

We can see for good as well as for poor predictions, the group of predictions is roughly
normally distributed. We can infer from this that in both cases, the mean appears to be a
good aggregation of the individual predictions. It appears as though no added information
can be obtained from examining the distribution of individual predictions, so the mean is
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reported as the final prediction going forward. These final predictions are what is reported
and discussed in the following sections for each of the TV models. Therefore, for TV exper-
iments, aggregate metrics such as R2 represent an aggregate over all compounds, where the
value for each compound is a compound-wise mean prediction.

4.3.2. Repeated Query Compounds

Since the final prediction for a query compound is the mean of many predictions, it makes
sense to train the model in a similar fashion. To match the idea of query compound averaging
with the training scenario, we consider instead of training on randomly sampled single pairs of
compounds (training, query), we train on groups/clusters of pairs of compounds (training_1,
training_2, ... , training_n, query). This approach necessitates building a loss function that
works on groups of training compounds being paired with a single query compound. First,
we consider the loss function for a single pair in equation 4.3.1. Subscript tr is the training
compound, subscript q is the query compound. The query compound in this case is of course
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just another training compound because we are discussing the training process, but it mimics
the eventual query compound in the validation phase, which will be a validation compound.

Loss(xtr, ytr, xq, yq) = ((∆pred + ytr)− yq)2 (4.3.1)

Expanding this loss function to a group of training compounds all paired with a single
query compound, we get the form shown in equation 4.3.2. The mean is used to aggregate
the many different pairs because that is what is used at validation time, as seen in figures
4.4 and 4.5.

Loss(xtr 1, ytr 1, ..., xtr N , ytr N , xq, yq) = 1
N

N∑
i

Loss (xtr i, ytr i, xq, yq) (4.3.2)

Stepping back to equation 4.3.1, we apply this loss to an entire batch of pairs at a time.
This is how the method is implemented and is more efficient and practical. This batch-version
of equation 4.3.1 is shown in equation 4.3.3, where BS is the batch size.

Loss([xtr 1, xq 1, ytr 1, yq 1], ..., [xtr BS, xq BS, ytr BS, yq BS]) =

1
BS

BS∑
j

Loss(xtr j, ytr j, xq j, yq j) (4.3.3)

Applying this same idea to the "group of pairs" loss function, equation 4.3.2, the following
is obtained. Batch size in this case becomes the number of training groups in the batch, so
the compound level batch size is now (BS)(N)

Loss([xtr 1, ytr 1, ..., xtr N , xtr N , xq, yq]1, ...[xtr 1, ytr 1, ..., xtr N , xtr N , xq, yq]BS) =

1
BS

BS∑
j

[
1
N

N∑
i

Loss(xtr i, ytr i, xq, yq)
]

j

 (4.3.4)

Now we can slightly simplify the double mean, if we keep in mind that i refers to the
index within a training group and j refers to the index of that training group within the
training batch.
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Loss([xtr 1, ytr 1, ..., xtr N , xtr N , xq, yq]1, ...[xtr 1, ytr 1, ..., xtr N , xtr N , xq, yq]BS) =

1
(BS)(N)

BS∑
j

N∑
i

Loss(xtr ij, ytr ij, xq j, yq j) (4.3.5)

Using this loss function we can train the model on mini-batches composed of groups
of training compounds each with a query compound. In practice, we can use the single
pair loss function 4.3.1 and its batch-wise counterpart 4.3.3, but simply repeat the query
compound several times in different pairs. This is done for each training compound of that
query compound’s group. Since the loss is already being averaged over the mini-batch, this
also averages over a query compound’s training group members.

The number of training compounds in each query compound’s group was varied and the
performance differences are reported in figure 4.6. This number of training compounds is
referred to as the "training repeat" number due to how in practice, as mentioned above,
the query compound is repeated within the batch for different training compounds. For
this experiment, the number of query compounds per batch is fixed, meaning the batch size
changes with each number of repeats. Each network was trained to a stable minimum, using
early stopping when necessary to compensate for the different batch sizes.

We can see that there is an immediate gain in performance as the number of training
repeats increases, but no large gains after increasing to 10-15 repeats. From these results,
we set the training repeat number to 16 going forward for all TV experiments. Occasionally,
it is lowered to 8 when the model being trained is very large and the batch size needs to be
lowered to stop Out of Memory Errors.

4.3.3. Performance Compared to Single Prediction

The performance of the pairwise TV approach is compared to the single approach, with
results shown in figure 4.7. Performance is presented in R2 for the three datasets and all four
of the discussed fingerprints. Each bar represents an individual hyperparameter optimization
for that fingerprint type, dataset and approach (pairwise vs single) as described in section
2.5. Each HPO step was conducted for 15,000 training gradient steps for the single approach
and 25,000 steps for the pairwise TV approach.

We can see that there appears to be no improvement in prediction performance when
using the pairwise TV approach compared to the single approach. Regardless of what fin-
gerprint is used, the paired input and prediction averaging approach discussed above does
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Fig. 4.6. Performance in R2 and MAE resulting from modifying the number of compounds
in the training group of each query compound, called its "training repeat" number. For R2

higher is better and for MAE lower is better.

not provide consistently better performance on any dataset by a noticeable margin. This
raises the question of whether the model is actually learning any pairwise information or just
focusing on the query half of the input, which is discussed below in section 4.3.4.

For the CEP dataset with the GCN fingerprints (Neural FPs and Chemprop FPs) we
see the largest difference in performance between the pairwise and single approaches, with
the single approach performing better. This could be because these models are among the
largest in terms of parameters and are trained on the largest dataset. Perhaps they need
special consideration or a higher number of iterations than the rest.

Also worth noting is the comparison between the performance of the two GCN fingerprints
(Neural FPs and Chemprop FPs) compared to the two algorithmic ones (ECFP and RCFP)
across the datasets. The GCN fingerprinting approaches are expected to be more performant,
but here we see that is not always the case, particularly for smaller datasets such as AurA
and BACE. We see the largest gains from GCN fingerprints for CEP, which is the largest
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Fig. 4.7. Performance comparison between the pairwise TV approach and the single ap-
proach. Measured in R2 for several fingerprint types and datasets.

dataset. This is understandable given that models with more parameters will train better
on larger datasets.

4.3.4. Query-Only Prediction

There seems to be no improvement in performance of the Training/Validation pairwise
approach in comparison to the single approach, which begs the question of whether the model
gains anything from having pairs as input. One could imagine a situation where the MLP
model learns to focus on only the right half of the input, the query compound, to make its
prediction and ignores the training compound half of the input.

To test for this behaviour, we devised a query-only experiment, where the performance
of the Training/Validation pairwise model is evaluated using only the query compound in-
formation. The training compound is replaced with a random vector of the same size that is
sampled from a bit-wise Bernoulli distribution. The parameters of the Bernoulli distribution
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are the bit-wise average density of the fingerprints. This model is shown graphically in figure
4.8. In this case, the model is still trained on complete pairs and is simply validated on pairs
with the training compound replaced in this way.

The results of the query-only experiments are shown in figure 4.9, with density colouring
added because the outline of the scattered points alone does not adequately show the sig-
nificant performance difference. The AurA dataset and the ECFP fingerprint type are used
for the example. We can see that the performance drops off when the model loses access to
the true training compounds. This seems to indicate that both the training and validation
compounds are important to prediction. This may indicate whether the model is learning
some kind of pairwise interactions between training and query compounds, however it does
not prove this. Under the described conditions, these models could still be learning to predict
each compound’s activity independently and learning to internally compute the difference.
When the training compound is replaced by a random vector, the prediction for that half of
the input would become worse, making the overall difference prediction worse. Another way
to possibly test for learning pairwise interactions would be to do an ablation study masking
out various sets of input bits that span both input compounds, looking for combinations of
bits or features that indicate "high difference" in activity when present together, but do not
indicate either high or low activity when present alone.
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Fig. 4.9. Scatter plots showing A) The performance of a trained model on complete Train-
ing/Validation pairs and B) The performance of a trained model on query-only pairs with
random vectors as training compounds. These results are for the AurA dataset and ECFP
fingerprint type, with a trained predictor network architecture optimized by HPO.

We can see that there is some general prediction performance provided by the query
compound alone, but a more refined prediction is possible when training compounds are
used. This process was repeated for each of the three datasets and for the two algorithmic
fingerprints, ECFP and RCFP. The results of these experiments are shown in figure 4.10.
The GCN fingerprints were excluded because their final fingerprints are not binary bit vectors
like ECFP and RCFP, so the Bernoulli sampling is not possible.

We can see from these results that across both fingerprints and all datasets, the predic-
tion performance on full pairs is much better. The performance difference varies between
the datasets, which could be due to several things. It could possibly indicate which datasets
need predictors that recognize pairwise information and which do not. For example, perfor-
mance of ECFP on the CEP dataset suffers significantly when the query-only situation is
applied, which may indicate how important pairs are to that specific model. Alternatively,
if the model is only predicting independent properties and computing their differences, the
performance difference between datasets could be related to the average property difference
between pairs of compounds in each of the datasets. Consider if one compound in a pair
is replaced with a random vector, then the difference prediction would be based on the re-
maining compound alone and the accuracy of that prediction may depend on the average
pairwise property difference in the dataset.
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Fig. 4.10. R2 performance of various pairwise models trained on random pairs from various
dataset in the standard "full pair" validation situations and also in the query-only situation.

4.4. Validation-Validation (VV) Pairs
For the VV validation type, both compounds are validation compounds and have un-

known activity. The output of the predictor is then difference in activity, and unlike the TV
validation type, the individual activities of either compound cannot be isolated from this
prediction. There is also no averaging component or predictions distributions as in the TV
validation case. The predictor structure is shown in the top left panel of figure 4.3.

To compare the single prediction approach to pairwise VV, pair predictions are sampled
from the single predictions. Single predictions are made for all validation compounds and
from these, pairs are sampled to obtain pairwise predicted values of the same form as the
pairwise VV predictions, this process is shown in figure 4.11.

4.4.1. Performance Compared to Single Prediction

The performance of the pairwise VV approach is compared to the single approach, with
results shown in figure 4.12. Performance is presented in R2 for the three datasets and all four
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Fig. 4.11. Architecture of the single approach with pairwise sampling, which serves as the
comparison baseline for the VV validation type. The predictors on the left and right are the
same single predictor, which was trained on single properties.

of the discussed fingerprints. Each bar represents an individual hyperparameter optimization
for that fingerprint type, dataset and approach (pairwise vs single) as described in section
2.5. Each HPO optimization step was conducted for 15,000 training gradient steps for the
single approach and 25,000 steps for the pairwise VV approach.

Similar to the TV case, there appears to be no consistent performance improvement from
using the pairwise approach over the single approach. A possible reason for this could be
that the pairwise MLP network has to memorize so much more than the single approach. In
the single approach with pairwise sampling, the network and input are half the size, and the
scope of possible recognizable features only spans the compound space and not the entire
pair space.

The single approach may perform so well because the subtraction operation needed to
turn single predictions into pairwise ones may be a good approximation of how the MLP
learns to treat different compounds. One could imagine the model learning a latent activity
for each compound then calculating the difference internally. This would be advantageous
because each pair occurs infrequently, but the constituent compounds occur much more
frequently so having a go-to latent activity prediction for each one may be how the model
learns to do this.

In addition to this, the single approach with pairwise sampling shown in figure 4.11
is a tied structure where each half of the input is dealt with in an identical way. In the
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Fig. 4.12. The performance as measured by R2 on validation/validation pairs for several
fingerprint types and datasets. Compared with the performance obtained from pairwise
sampling predicted values from the corresponding single approach.

pairwise VV approach, each half of the input is treated differently, which may be detrimental.
For example, the single approach with pairwise sampling ensures the mean of all predicted
property differences is centered at 0. This is the reality but it is not guaranteed in the pairwise
VV case, perhaps if this was enforced in the predictor it could improve performance.

Property difference predictions on their own have limited utility in medicinal chemistry,
as most of the time pairs are examined, one of the two activities is known. This is especially
true when methods like MMPA are used to suggest new compounds or suggest the activity
of a compound with unknown activity. A possible use of property differences alone could
be to compile a more intelligent pair rule database that does not rely on strict substructure
definitions.
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4.5. Training/Validation Split Types
Up to this point we have only considered randomly splitting compounds into the training

and validation sets, as was discussed in section 1.3.1. Common in many machine learning
fields, with random split, the dataset is randomly shuffled and split into equal portions
according to the number of training folds. In this work, 5-fold cross validation split was
used.

Although this is the more common approach for general machine learning, there is evi-
dence that it is a poor choice for QSAR applications [75, 92]. The arguments against random
splitting for QSAR are based on how predictive models are applied in medicinal chemistry
projects. In the iterative drug development process described in section 1.4.1, particularly
in hit-to-lead development and lead optimization, new compounds are developed iteratively
based on structural changes to previous compounds. This means that a compound is likely
to be more structurally similar to compounds that were synthesized around the same time
as it. This is the motivation behind a time-based training/validation split.

In time-based training/validation split, QSAR models are trained on structures with
known properties, that were synthesized and tested in the past. The models are then used
to predict the unknown properties of structures that will be synthesized and tested in the
future. There is a tendency for those unknown structures to be the result of pushing a medic-
inal chemistry investigation into new structural areas, meaning that a time-split approach
results in a different structural populations of compounds between training and validation.
This means that the exact task of prediction under time-split conditions is a soft transfer-
learning problem where a small difference between training and validation data distributions
is expected.

4.5.1. Scaffold Splitting

As mentioned above, a hypothetical gold-standard for training/validation split for QSAR
tasks would be a time split. However this is not practical due to datasets often not having
timestamps for the testing of various properties and if they did, this method would still
remain unsuitable for multi-fold cross validation and would only give one possible validation
fold (the most recently tested compounds).

Sheridan 2013 [75] proposes a surrogate split type meant to approximate a time-split
to provide a better real-world evaluation of model performance. Since the tendency for
medicinal chemistry programs is for the structure to change and progress over time, there
are natural divisions within the dataset based on structural grounds. Dividing the dataset
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along these structural lines can approximate different eras of the investigation and provide
a split type that is similar to time-split, referred to as scaffold split.

The scaffold split performed in this work follows the implementation of scaffold splitting
in the Deepchem/Moleculenet software package [93]. The datasets were first divided into
"scaffold groups" according to their scaffolds determined by the Bemis-Murcko scaffolding
algorithm [6], then the resulting clusters are randomly sorted into the different validation
folds. During this random sorting process, one scaffold group was added to each validation
fold before adding to a second to any of the folds, to keep the assignment process random
but also balanced in size.

4.5.2. Performance Comparison Between Split Types

Figures 4.13 to 4.15 show the performance measured by R2 on the different datasets split
randomly and split according to their scaffolds, also under pairwise and single approaches.
Each bar represents an individual hyperparameter optimization for that fingerprint type,
dataset and approach (pairwise vs single) as described in section 2.5. Each HPO optimization
step was conducted for 15,000 training gradient steps for the single approach and 25,000 steps
for the pairwise TV approach.

We can see that random split results are better than scaffold splitting for most datasets
and fingerprints. This is expected, as prediction under scaffold split conditions is funda-
mentally a more difficult task. The performance difference between random and scaffold is
biggest in the AurA dataset and relatively mild in the BACE and CEP datasets. Scaffold
splitting even has a higher performance compared to random split for the single approach
with ECFP on the CEP dataset.

The higher relative performance of scaffold splitting on certain datasets could be due
to the structure of the dataset. If most compounds in the dataset are not very similar to
each other, there will not be many compounds sharing the same scaffolds and therefore
the "scaffold groups" could contain as few as one compound. In this case, scaffold split is
essentially just random split.

The performance difference between scaffold split and random split is roughly the same
for both the pairwise and single approaches, meaning that the additional difficulty of the
scaffold splitting task is consistent across the two approaches. In addition, the pairwise
approach also does not appear to add any performance to the scaffold splitting scenario,
when compared to pairwise TV, random split.
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Fig. 4.13. The performance as measured by R2 on training/validation pairs compared be-
tween random and scaffold dataset split for several fingerprint types, on the AurA dataset.

4.6. Pair Types
The possible pair space, as mentioned above, is N×N if self-similar pairs are included

or N× (N− 1) if they are not. When sampling pairs randomly from this space, there is no
guarantee that two compounds will form a meaningful pair. A "meaningful pair" is loosely
defined, but we can consider it meaning that there is enough similarity between the com-
pounds for the predictor to learn something about the pair as a whole. For example, if there
is absolutely no similarity at all between two compounds, we can imagine the predictor must
predict each compound’s activity independently, then subtract them to predict a difference.
This would be the predictor doing single-compound predictions, and any potentially useful
pairwise information is unused.

Predictions in this section are the TV validation type, where multiple predictions are
made for each validation compound and the results are averaged to make the final prediction,
as described in section 4.3. In the random pairs case, a fixed number of compounds are
randomly sampled to make a query compound’s prediction distribution. For the following
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Fig. 4.14. The performance as measured by R2 on training/validation pairs compared be-
tween random and scaffold dataset split for several fingerprint types, on the BACE dataset.

strict pair types, the prediction distributions come from all of the pairs allowed for a query
compound, which can range from 1 pair to over 100 pairs.

4.6.1. Different Pair Type Descriptions

The three different pair types/sources are Random Pairs, MMPA pairs and Threshold
Pairs. Each pair type has different requirements that are outlined below. In addition to
these definitions, in order for a pair to be valid its members must still belong to the proper
training/validation set. For example, TV pairs must feature one training and one validation
compound as well as obeying the following requirements for the strict pair types.

4.6.1.1. Random Pairs. For this type, a pair is simply a pairing of any two compounds in
the data set. These are the type of pairs used in all of the above experiments. This results
in N×N possible pairs where N is the number of compounds in the dataset. The pairs are
sampled from all possible pairs as the mini-batches are being made.
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Fig. 4.15. The performance as measured by R2 on training/validation pairs compared be-
tween random and scaffold dataset split for several fingerprint types, on the CEP dataset.

4.6.1.2. Matched Molecular Pairs. This pair type ensures that the pairs of compounds
are sufficiently similar so as to represent a meaningful chemical difference. The definition of
"meaningful chemical difference" is certainly subjective, but substructure overlap is a possible
interpretation. With overlapping sub-structures, we know that in a biological setting at
least portions of the molecule may interact with their environment in the same way for both
compounds. The pairs are generated using the method outlined in Hussain et al. 2010 [43]
and implemented in RDKit. This is an example of a fragment-indexing method of MMP
generation and scales well to large datasets.

This is similar to the pair generation approach found in Turk et al. [73]. In that work,
MMP’s are generated according to the BRICS decomposition algorithm, which are used as
the pair source.

4.6.1.3. Similarity Threshold. This approach is similar in principle to the random pairs
described above, but pairs are not used if their similarity does not meet a threshold. The
chosen threshold for this whole work was 0.6 in Tanimoto fingerprint similarity for 2048
bit ECFP with radius 3. Pairs satisfying this requirement are a very small portion of all
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possible pairs. In practice, compiling a list of the pairs ahead of time is more efficient than
random sampling and discarding, due to the low proportion of pairs that actually satisfy the
requirement. The algorithm for finding all the pairs of a given similarity is O(N2) where N is
the number of compounds, so it is unsuitable for very large datasets. The pair enumeration
for the CEP dataset took upwards of 10 hours to complete, compared to minutes for the
smaller AurA and BACE datasets.

4.6.2. Comparison of Pair Types

Figure 4.16 shows the similarity distribution of the three pair types for the AurA dataset.
Similarity in this case is defined as Tanimoto distance between ECFP of size 2048 and
radius 3. ECFP is used instead of RCFP in this demonstration because ECFP similarity
is a standard measure of chemical similarity in the literature. Random pairs are the most
numerous (N2 total pairs), so a random subset of them were sampled for the histogram. We
can see that the majority of random pairs share very little similarity, with most pairs having
less than 0.2 in Tanimoto similarity. MMPA and threshold pairs have significant populations
in much higher areas of the similarity spectrum, both having their highest populations around
0.6 in Tanimoto similarity. Several compounds show 100% similarity, this is likely due to
pairs of stereoisomers in the dataset, which are different molecules possessing the same
connectivity and therefore fingerprint.

Figure 4.17 expands on the idea of figure 4.16 by scattering the pairwise similarity against
property difference for the same pairs. For random pairs, there is again a high population
in the low similarity section of the chart. These dissimilar pairs appear to often also have
both high property and low property differences.

Both MMPA and threshold pairs are concentrated in the higher similarity region. There
is a larger population in the high similarity and high property difference region of the chart,
which is indicative of activity cliffs. If a predictor is exposed to more activity cliffs, this may
result in understanding what makes an activity cliff for a given dataset. Activity cliffs are
an example of pairs sharing "meaningful chemical information" because high similarity and
high property difference mean that the small structural differences may be very important
to the property of the compounds.

Figure 4.18 shows the distribution of how many pairs each compound makes with other
compounds in the dataset, according to pair type. Random pairs are excluded from this
graph because the number of pairs is N − 1 for each of the compounds. For MMPA and
threshold pairs, the more restrictive pair requirements mean that most compounds actually
have fewer than 20 pairs in the dataset, with a large number of compounds actually having no

69



Random Pairs

MMPA Pairs

Threshold Pairs

0.0 0.2 0.4 0.6 0.8 1.0
Fingerprint Similarity

0

500

1000

1500

2000

2500

3000

3500

N
um

be
r
of
Pa
irs

0

200

400

600

800

1000

1200

1400

1600

N
um

be
r
of
Pa
irs

1000

2000

3000

4000

5000

N
um

be
r
of
Pa
irs

Fig. 4.16. Pairwise similarity distributions of the different pair types for the AurA dataset.
A sampled subset is used for random pairs, whereas MMPA and Threshold use all available
pairs of the given type. Similarity is Tanimoto distance between ECFP of size 2048 and
radius 3. Chosen threshold was 0.6.
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was 0.6.

pairs. This complicates the prediction even further because a pairwise predictor cannot use
compounds without any valid pairs, so all of those compounds are left out of the prediction.

The number of useful pairs is reduced even further because even though a compound may
form a pair with another compound somewhere in the dataset, depending on the validation
type (TV or VV) and the training/validation split, that pair may not be eligible. For example
in the TV case, if a query compound has only one pair, which happens to also be in the
validation set, then no training/validation pairs exist for that query compound.

4.6.3. Performance Comparison Between Pair Types

Figure 4.19 shows the performance measured by R2 on the different datasets and fin-
gerprints using the different pair types. Each bar represents an individual hyperparameter
optimization for that fingerprint type, dataset and pair type as described in section 2.5. Each
hyperparameter optimization step was conducted for 25,000 gradient steps.

We can see from these efforts that for the most part, random pairs appear to perform
better as a training dataset than the so-called "curated" datasets of MMPA or threshold pairs
do. This could be because the random pairs, although they contain many dissimilar pairs,
also contain the whole host of MMPA and threshold pairs. In the MMPA and threshold pair
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in the dataset.

types, the smaller datasets of pairs may be too restrictive in the diversity of compounds and
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Fig. 4.19. The performance as measured by R2 on training/validation pairs compared be-
tween random, MMPA and threshold pairs for several fingerprint types and datasets.

pairs that the network suffers from this. The curated pair types are also trained sequentially
through the same random order of possible pairs over and over again instead of randomly
sampling across a large spectrum.

The random pair source has access to all of the other pairs from both of the other pair
types, they are just surrounded by an ocean of other less similar pairs. Training on these less
similar random pairs may not be detrimental to the performance of the method considering
the very long training timescales that were used where all pairs, similar or dissimilar, were
seen by the model.

Experimenting with different thresholds may yield more interesting results. The threshold
of 0.6 was chosen so the number of threshold pairs would roughly match the number of
total MMPA pairs for the AurA dataset. Maybe if the threshold was lowered to allow for
substantially more pairs, the model would train as well as it does on random pairs and still
have a bias in the dataset towards more similar pairs. Perhaps a compromise would be to
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Pair Type Split Type TV pairs VV pairs
Random Random 944784 236196
Random Scaffold 944784 236196
MMPA Random 5558 1276
MMPA Scaffold 4254 4676

Threshold 0.6 Random 3628 880
Threshold 0.6 Scaffold 3375 720

Table 4.1. Number of pairs of each validation type under the different pair types and
validation splits, for the AurA dataset with 0.2/0.8 valid compound/train compound split.

train on the most similar 50% of all possible pairs which from the distribution in figure 4.16
would be around 0.1.

4.6.4. Pair Types with Scaffold Split

Notably absent from the above results is the scenario where we combine a non-random
pair type with a scaffold dataset split. This was excluded because the pair type results reveal
that the random pairs perform just as well or better than the MMPA or threshold pairs.
However, using MMPA or threshold pairs with a scaffold dataset split does introduce an
interesting situation that we will discuss in this section.

With a scaffold split, both the training and validation sets are composed of multiple
groups of compounds, each with a common scaffold. On top of this, MMPA or threshold
pairs will restrict the allowed pairs to only compounds that are similar. In this situation, we
are far more likely to find allowed pairs for a compound within the same validation fold as
that compound since that is where its scaffold group is. This means a higher population of
VV pairs over TV pairs, and brings into question the validity of the TV validation type in
this situation.

More fundamentally, the TV validation type requires that allowed pairs exist between
training and validation compounds. We would then expect them to be similar if those
pairs are MMPA or scaffold pairs. For the scaffold split, we would expect the training and
validation sets of compounds to be structurally different. These are conflicting expectations
and shed doubt on the combination of these two approaches. See table 4.1 for the number
of pairs of various types under the different training/validation splits for the AurA dataset.

There is a case to be made for a combined training/validation split and pair type gen-
eration algorithm to simultaneously find pairs and divide the dataset into training and val-
idation. This way the conflicting expectation mentioned above could be avoided. This is
similar to the approach taken in Turk et al 2017 [73]. In that work, the authors consider
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Fig. 4.20. Comparison of prediction scatter plots for datasets masked by how many pairs
each compound has. Predictions are from a pairwise TV model trained on random pairs and
ECFP fingerprints.

two training/validation "tasks" where the pair types are created alongside the splitting of
the dataset. Both tasks are specific cases of Validation/Validation pairs, where the pairs
are selected based on very specific structural grounds (using 3D protein structure). A com-
bined method was not explored in our work, to keep the investigation as comparable to the
single approach as possible by first performing the training/validation split separately from
curating dataset of pairs.

4.7. Pairwise Dataset Masking
Although the pairwise model appears to have worse performance on the curated pair

datasets, we can use the MMPs in these datasets to improve the prediction performance of
other models. By counting the number of MMPA pairs each compound has in the dataset,
and masking the dataset based on those numbers, we can see a relationship between the num-
ber of pairs a compound has and the prediction performance of a model on that compound.
Figure 4.20 shows an example of this relationship. The predictions from a TV pairwise
model trained on random pairs were collected. Then the performance of these predictions
was evaluated, after masking the dataset to remove compounds that do not have MMPs in
the dataset.

We can see in the figure 4.20 that the overall performance on the predictions is improved
when the compounds with no MMPA pairs are removed from the calculation, comparing the
panel on the far right to the one on the far left. The middle panel shows the performance on
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only the compounds with no MMP’s, which is actually low in comparison to those compounds
with MMP’s. This result makes sense in the context of a learning problem, ML systems tend
to perform better when they are tested on data that is similar to what they have seen
in training. When a compound has MMPs, it has guaranteed structural overlap with some
other compounds in the dataset, which means that the model has seen parts of that structure
before, and we see this results in higher performance of the model.

Expanding on this idea, we make the masking threshold (how many pairs are needed for
that compound to be included) a sliding one and plot the resulting performance R2 value in
figure 4.21. In this figure, the TV pairwise model trained on random pairs is compared to
the single model, as well as masking based on either threshold pairs or MMPA pairs. The
top row of plots in the figure are the performances when only compounds with at least a
number of pairs are included. The bottom row are the performances when only compounds
with exactly a number of pairs are included.

For example, the top left panel is the same predictor situation as figure 4.20. For x=0
of the top left panel of figure 4.21, we get the situation in the leftmost panel of figure 4.20
where all compounds are included for this predictor. Moving to x=1, we get the situation in
the rightmost panel, where the performance is reported on all compounds with at least one
pair. The middle panel of figure 4.20 is reflected in the bottom left panel of 4.21 when x=0.
At this point, the compounds included in the performance calculation are only those with
exactly zero MMPs.

Figure 4.21 shows us the same effect as seen in 4.20, which is that predictors tend to
perform worse when predicting the properties of compounds that have no MMP pairs in the
dataset. We can see that the same is true for threshold pairs as well, with the compounds
with no pairs.

This result is particularly interesting because the pairwise model has no knowledge of
these curated pairs and despite this, the number of MMPA pairs is still a telltale sign of
predictive performance. Going beyond this, even the single compound approach also shows
the same effect. The single approach has no knowledge of pairwise information at all, let
alone being trained on specific kinds of pairs like the MMPA models.

This suggests that what’s shown here is more a property of the dataset and how similarity
in structure (and therefore number of pairs) relates to similar property values. This is a
central axiom of SAR and molecular biology, which is that similar compounds result in
similar activities. Specifically in these results, we see this notion alongside the notion of
generalization in neural networks, how predictors perform better on data they have seen
before.
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Fig. 4.21. Prediction performance as a function of number of either MMPA pairs or Thresh-
old pairs that each compound has in the AurA dataset. The dataset is masked for each
performance value, evaluating performance only on pairs with either at least (top) or exactly
(bottom) a certain number of pairs in the training set.

From this investigation, we chose to use MMPA pairs over threshold pairs for further
investigations because MMPs are more common in practice for medicinal chemistry efforts
and are more familiar to chemists. For the predictor, we chose the single predictor because
it is more common and simpler. We see the same performance between both the single and
pairwise so we chose the more common one. Figure 4.22 explores similar results for the single
predictor using MMPA pair masking but for the other datasets.

The results for AurA and BACE are quite similar, observing the same effect as seen on
AurA. The results for CEP are unlike the other two. First off, this dataset is mcuh larger
than the other two. In addition to this, it also appears to have a very high diversity, shown
by the fact that there are no compounds that have more than 8 matched molecular pairs in
the entirety of the 30,000 compounds dataset. A similar effect is still observed where more
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Fig. 4.22. Prediction performance of a single predictor as a function of number of MMPA
pairs each compound has in each of the datasets. The datasets are masked for each per-
formance value, evaluating performance only on pairs with either at least (top) or exactly
(bottom) a certain number of pairs in the training set.

MMPs means higher predictive performance, with a peak in predictive performance when
compounds that have 6 or 7 MMPs.

In all of these results, there appears to be a drop in performance at a high number of
MMPA pairs. This may indicate that for compounds with exceptionally many MMPA pairs,
those compounds may be significantly different than the rest, e.g. much smaller, which may
negatively affect prediction performance.

The results from these database masking experiments have interesting implications for
predictive QSAR models. For example, this can be used as a rough measurement of prediction
uncertainty. Simply count the number of pairs that a compound has within the training set
and understand that the predictive model will likely have a more difficult time predicting
the properties of compounds with no MMPs.
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These results can also provide motivations in library design and selection. If a library is
being created to train a model for predictions, there appears to be an advantage to ensuring
that MMPs exist within the dataset and between the predicted compounds and the dataset.
This suggestion forms an interesting problem when compared to the traditional notion that
a chemical library for tasks such as screening should be exceedingly diverse so as to cover
as much of the chemical space as possible [88]. Further investigations may find a balance
between chemical space coverage and number of MMPs.
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Chapter 5

Conclusion

Our goal was to propose more interesting, powerful and explainable representations of chem-
ical compounds to improve predictive models. Predictive QSAR models are intrinsically tied
to the practical medicinal chemistry projects they are used in, and we wanted to deepen this
connection. Within predictive QSAR, we chose to direct our interest towards the hit-to-lead
and lead development stages of the drug develop pipeline. These steps are marked by the
complex multi-property optimization that is faced by medicinal chemists as they balance op-
timizing activity alongside pharmacokinetic properties, all under modest dataset sizes. We
believe these development stages need more explainable methods in order to deeply impact
the process.

Our investigations took two angles, first we examined a possible improvement to a molec-
ular fingerprinting method that has an intrinsic source of confusion, which is collision-prone
hashing. This was the done by RCFP which was investigated in section 3. Fingerprint colli-
sions are a known problem with ECFP and intuitively, they seem to be a potential source of
confusion for a predictor. Our results from RCFP show that bit collisions are not as confus-
ing to an MLP predictor as may be expected. Although this fact may not be surprising to
data scientists who understands the model capacity of an MLP and the associated predictive
ability, it may come as a surprise to a chemist with little experience of machine learning.
We also showed that when the capacity of the predictor is intentionally reduced to that of
a linear model, using RCFP results in higher predictive performance than ECFP. This has
applications in the explainability of the predictors, as RCFP with a linear predictor presents
a much more direct substructure-to-prediction signal than using collision-prone fingerprints
with high capacity but ambiguous models. This is because although a one-way hash function
is used in RCFP, with the dataset available, the hash function can be reversed-engineered
by process of elimination as discussed in section 3.3.3

Possible new avenues to push this work further may include a hybrid collision-
free/collision-prone fingerprint where a portion of the fingerprint with the most common
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bits is designated collision-free and another portion with less common bits designated
collision-prone. Another interesting investigation would be to build the explainability
system that can trace importance in a prediction model back to individual RCFP bits to
identify the substructures that are important to prediction.

In our second investigation, we took a medicinal chemistry tool and applied machine
learning to it. This was done in the pairwise comparison approach in section 4. Matched
Molecular Pair Analysis is a useful tool for medicinal chemistry and intuitively allows a
better grasp on the relationship between structure and properties. Our results with the
pairwise comparison approach appear to show that these comparisons add nothing to the
system’s prediction performance. This is another fact that may seem counter-intuitive to
medicinal chemists working in this field. Although pairwise rules are incredibly helpful to
human understanding, the MLP does not easily gain additional knowledge from it. We also
observed that a model trained on enough random pairs outperforms models trained on pairs
with guaranteed similarity, such as MMPA pairs. However if those MMPA pairs are found,
we can use the number of pairs that each compound has a rough estimate of how performant
the trained model will be on those compounds. In addition to this, we found that there are
only marginal improvements to using GCN based fingerprints over algorithmic ones for the
two smaller datasets that were examined (AurA and BACE). In the largest CEP dataset,
GCN fingerprints performed better than the algorithmic ones, possibly due to more data to
train on.

The pairwise efforts could be further developed by devising a more intelligent way to
combine the representations of two compounds. Concatenation of fingerprints is the most
simple, but perhaps if the compounds are more effectively compared and contrasted, we may
see improvements in the pairwise performance. Maximum common substructure information
would be interesting but likely too computationally costly to compute for every pair. Perhaps
a short list of common structural features (similar to a fingerprint) could be used to represent
substructures in common.

The pairwise comparison investigation could also benefit from neural network architec-
tures that better account for the pairwise nature of the input, such as the Siamese neural
network, which shares the weight parameters between two input streams. Using this kind of
network alongside a difference-oriented input encoding to intelligently combine the encoded
representations could allow for a more powerful combination of the pairs of compounds than
simple concatenation. On the theme of more complicated representations, larger and more
expressive neural networks could be used instead of relatively shallow DNNs. An example
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of this could be an MPNN featuring a soft cross-attention mechanism, where information in
one compound causes the network to attend to certain information in the other compound.

The pairwise dataset masking efforts of this work could also be used to motivate chemical
library design. If a dataset is being compiled that will be used to train a predictor, our work
suggests maximizing the number of MMPA pairs that each compound has. Such decisions
would be a balancing act between choosing diverse compounds to cover a large chemical
space and choosing less diverse compounds to ensure many MMPA pairs.

Both of our investigations attempt to incorporate some degree of explainability to predic-
tive cheminformatic models. Reduced-Collision fingerprints do this through explainability
of the model, in the form of fingerprint bits that directly represent substructures. Pairwise
comparisons do this through explainability of the input data, by looking at chemically mean-
ingful paired comparisons. Our hope with this work is that explainability will remain an
important consideration in predictive QSAR models, which will help stop the fields of medic-
inal chemistry and predictive cheminformatics from diverging any further. As more complex
ML and GCN methods and predictors are developed for cheminformatics, this distances
the field from the vast expertise of existing medicinal chemistry platforms and personnel.
Fostering communication between data scientists and chemists is critical for the symbiotic
advancement of machine learning in medicinal chemistry. Both of the investigations of this
work hope to be accessible to synthetic chemists who may question the utility of fingerprints
that are prone to collisions, or may be familiar with matched molecular pair analysis. These
points are part of a larger conversation of explainability in predictive cheminformatics that
we hope to contribute to.
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