
Université de Montréal

Gentleman: A Lightweight Web-based Projectional
Editor

par

Louis-Edouard Lafontant

Département d’informatique et recherche opérationnelle
Faculté des arts et des sciences

Mémoire présenté en vue de l’obtention du grade de
Maître ès sciences (M.Sc.)

en Informatique

November 26, 2021

© Louis-Edouard Lafontant, 2021

Université de Montréal
Faculté des arts et des sciences

Ce mémoire intitulé

Gentleman: A Lightweight Web-based Projectional Editor

présenté par

Louis-Edouard Lafontant

a été évalué par un jury composé des personnes suivantes :

Houari Sahraoui
(président-rapporteur)

Eugene Syriani
(directeur de recherche)

Marc Feeley
(membre du jury)

Résumé

Lors de la conception et la manipulation de logiciel par modélisation, il est avantageux
de bénéficier d’un grand degré de liberté au niveau de la présentation afin de comprendre
l’information et prendre une action en exerçant peu d’effort cognitif et physique. Cette ca-
ractéristique doit aussi s’étendre aux outils que nous employons afin que ceux-ci augmentent
nos capacités, plutôt que les restreindre. En génie logiciel, nous travaillons présentement à
rehausser encore le niveau d’abstraction afin de réduire le rôle central du code décrit avec
un langage de programmation à usage général. Ceci permettrait d’inclure les experts non
techniques dans les activités de développement de logiciel. Cette approche, centralisée sur le
domaine et l’expert, s’inscrit dans l’ingénierie dirigée par les modèles (IDM), où un modèle
est produit et manipulé par divers experts et utilisateurs. Le modèle est alors décrit avec
un langage créé spécifiquement pour un domaine d’application ou une tache, appelé langage
dédié (DSL). Une technique utilisée pour créer ces modèles et leurs DSL est le projectional
editing, qui permet d’utiliser des notations diverses interchangeables et d’étendre et compo-
ser facilement un langage. Toutefois, les solutions actuelles sont lourdes, spécifiques à une
plateforme, et manquent considérablement d’utilisabilité, limitant ainsi l’usage et l’exploita-
tion de cette approche. Pour mieux refléter les avantages du paradigme IDM avec le style
projectionnel, nous introduisons dans cette thèse Gentleman, un éditeur projectionnel léger
sur le web. Avec Gentleman, le développeur crée un modèle en combinant des concepts utili-
sés pour définir la structure du modèle et des projections pour les manipuler dans l’éditeur.
Nous avons évalué Gentleman à travers une étude basée sur un groupe d’utilisateur. L’étude
a confirmé sa capacité à créer et manipuler des modèles efficacement. Les participants ont
noté qu’il est facile de prendre en main Gentleman et que l’interface est très intuitive com-
parativement aux éditeurs existants. Nous avons aussi intégré Gentleman avec succès à une
plateforme web, démontrant ainsi ses capacités d’interopérabilité et l’avantage d’une solution
web.

Keyword: Ingénierie dirigée par les modèles, édition projectionnelle, applica-
tion de langage, langage dédié

5

Abstract

In software activities and, more specifically, when modeling, the modeler should benefit
from as much freedom as possible to understand the presented information and take action
with minimal cognitive and mechanical effort. This characteristic should also apply to the
tools used in the process so that they extend our capabilities rather than limit them. In
the field of software engineering, current work aims to push the level of abstraction past
general-purpose programming language into domain-specific modeling. This enables domain
experts with various backgrounds to participate in software development activities. This
vision is central to model-driven engineering (MDE) where, instead of code, various experts
and users produce and manipulate domain-specific language (DSL). In recent years, projec-
tional editing has proven to be a valid approach to creating and manipulating DSLs, as it
supports various easily interchangeable notations and enables language extension and com-
position. However, current solutions are heavyweight, platform-specific, and suffer from poor
usability. To better support this paradigm and minimize the risk of accidental complexity
in terms of expressiveness, in this thesis, we introduce Gentleman, a lightweight web-based
projectional editor. With Gentleman, a developer creates a model by combining concepts
used to define its structure and projections to interact and manipulate them in the editor.
We have evaluated Gentleman through a user study. The evaluation confirmed its capacity
to create and manipulate models effectively. Most participants noted that the editor is very
user-friendly and intuitive compared to existing editors. We have also successfully integrated
Gentleman into a web application, demonstrating its interoperability and the benefit of a
web solution.

Keyword: Model-driven enginneering, projection editing, language work-
bench, domain-specific language

7

Contents

Résumé . 5

Abstract . 7

List of tables . 15

List of figures . 17

List of abbreviations and acronyms . 19

Aknowledgements . 21

Chapter 1. Introduction. 23

1.1. Context. 23

1.2. Problematic and thesis proposition . 24

1.3. Contribution . 26

1.4. Outline . 26

Chapter 2. Background and State of the art . 29

2.1. Model-Driven Enginneering . 29
2.1.1. Modeling . 29
2.1.2. Domain-Specific Language . 29
2.1.3. Metamodeling . 31
2.1.4. Concrete syntax definition . 32
2.1.5. Editor generation . 35

2.2. Language workbench . 35
2.2.1. Free-form editors. 36
2.2.2. Syntax-directed editors . 36
2.2.3. Projectional editors . 37

2.3. Projectional editing . 38

9

2.3.1. MPS. 38
2.3.1.1. Structure . 38
2.3.1.2. Editor . 39
2.3.1.3. Type System . 40
2.3.1.4. Code generation . 40

2.3.2. The Whole Platform . 40
2.3.3. Scratch . 41
2.3.4. Literature review . 41
2.3.5. Motivation for Gentleman. 44

Chapter 3. Gentleman . 45

3.1. Rationale . 45

3.2. Running example . 46

3.3. Architecture . 47
3.3.1. Editor module . 48
3.3.2. Concept module . 51
3.3.3. Projection module . 52

3.4. Implementation . 52
3.4.1. Integration. 53
3.4.2. Configuration . 54

3.5. Editor services . 55
3.5.1. Instantiation . 55
3.5.2. Navigation . 55
3.5.3. Reusing values . 55
3.5.4. Undo/Redo . 56
3.5.5. Code assistance . 56
3.5.6. Search and filter . 56
3.5.7. State . 56
3.5.8. Import/Export . 57
3.5.9. Bootstrapping . 57

Chapter 4. Concept . 59

4.1. Structure . 60
4.1.1. Attribute . 60

10

4.1.2. Property . 61

4.2. Primitive . 61
4.2.1. String . 61
4.2.2. Number. 63
4.2.3. Boolean. 63
4.2.4. Set . 64
4.2.5. Reference . 64

4.3. Complex . 65
4.3.1. Concrete . 65
4.3.2. Prototype. 65
4.3.3. Derivative . 66

4.4. Comparison with OO . 66
4.4.1. Modelling in EMF . 66
4.4.2. Mapping . 67
4.4.3. Transformation . 67

Chapter 5. Projection . 69

5.1. Structure . 69

5.2. Layout . 70
5.2.1. Flex Layout. 71
5.2.2. Table Layout . 71

5.3. Interaction points . 71
5.3.1. TextField . 72
5.3.2. BinaryField . 72
5.3.3. ChoiceField . 72
5.3.4. ListField . 73

5.4. Static element . 73
5.4.1. Text . 73
5.4.2. Image. 73
5.4.3. Link . 74
5.4.4. ViewSwitch . 74
5.4.5. Button. 74

5.5. Relation function . 75

11

5.6. Template . 75

5.7. Styling. 75

Chapter 6. Evaluation . 77

6.1. User study . 77

6.2. Objectives . 77

6.3. Study design . 78
6.3.1. Setup . 78
6.3.2. Participant . 78
6.3.3. Experiment process . 79
6.3.4. Feedback survey . 83

6.4. Metrics . 83
6.4.1. Independant variables . 83
6.4.2. Dependant variables . 84
6.4.3. Survey variables . 85
6.4.4. Null hypothesis formulation . 85
6.4.5. Data collection. 85

6.5. Results . 86
6.5.1. Descriptive statistics . 86
6.5.2. Statistical signifiance. 87
6.5.3. Hypothesis validation . 90

6.6. Discussion . 92

6.7. Threats to validity . 93

6.8. Integration with ReLiS. 94

Chapter 7. Conclusion . 97

7.1. Summary . 97

7.2. Outlook . 98

References . 101

Appendix A. Ecore to Gentleman transformation . 109

A.1. Ecore models . 109

12

A.2. ATL transformation . 109

A.3. EGL transformation . 113

Appendix B. Gentleman TodoList artefacts . 115

B.1. Concept schema . 115

B.2. Projection schema . 120

Appendix C. User study data . 123

C.1. Participant profile . 123

C.2. Survey . 129

C.3. Results . 139
C.3.1. Task 1 results . 139
C.3.2. Task 2 results . 145
C.3.3. Task 3 results . 151
C.3.4. Survey results . 157

13

List of tables

4.1 Mapping between Ecore and Gentleman concepts . 67

6.1 Requirements for the TL model of task 1. 80
6.2 Requirements for the TL model of task 2. 82
6.3 Requirements for the TL model of task 3. 83
6.4 Task 1 ANOVA results. 88
6.5 Task 2 ANOVA results. 89
6.6 Survey ANOVA results . 90

15

List of figures

2.1 Language Features (from [57]) . 30

2.2 Four-layered architecture. 32

2.3 Mind map metamodel using UML class diagram . 33

2.4 Editor services for a web language (from [46]) . 36

2.5 AToMPM user interface showing a domain-specific environment for modeling Mind
Maps (from [28]) . 37

2.6 MPS environment overview . 39

2.7 WholePlatform environment overview . 41

2.8 Scratch environment overview. 42

3.1 TodoList metamodel . 47

3.2 TodoList model in Gentleman. 48

3.3 Gentleman architecture showing some key interactions . 49

3.4 Gentleman editor menu giving access to the loaded concepts and projections 58

4.1 Gentleman concept metamodel. 59

4.2 TodoList concept in Gentleman . 62

5.1 Gentleman projection metamodel . 69

5.2 TodoList projection in Gentleman. 70

6.1 Traffic Light metamodel . 80

6.2 Gentleman Traffic Light editor . 81

6.3 MPS Traffic Light editor . 81

6.4 Traffic Light initial metamodel: task 1 . 82

6.5 ReLiS DSL Forge editor . 94

6.6 ReLiS editor: initialization . 95

17

6.7 ReLiS editor: Screening . 95

A.1 Ecore metamodel . 110
A.2 Gentleman Ecore model . 111

18

List of abbreviations and acronyms

AST Abstract syntax tree

DSL Domain-specific language

EMF Eclipse Modeling Framework

GUI Graphical user interface

IDE Integrated developement environment

JS Javascript

LW Language workbench

MDE Model-driven engineering

OCL Object Constraint Language

OO Object-oriented

19

UML Unified Modeling Language

UI User Interface

UX User Experience

20

Aknowledgements

I want to express my deepest gratitude to my supervisor and mentor Prof Eugene SYRIANI.
Since our first meeting, I have discovered and learned so much with him and from him. In
a way, he opened the path I am walking today. I would also like to take this opportunity to
thank my colleagues and friends at the GEODES lab for their great support, shared insights,
and the energy that is nurtured in the lab, which makes our activities more pleasant. I
dedicate this thesis to my family, who gave me unyielding support and love throughout my
life. The fire is burning strong today thanks to the warmth which you have embraced me
with, “un grand Merci à chacun d’entre vous ”. Lastly but surely to all my friends I have
met traveling this life, I am grateful to have crossed your path. You made this adventure
much richer and interesting.

21

Chapter 1

Introduction

This chapter introduces the context of the work presented in this thesis and the tackled
problems. We also outline our contribution and the structure of the thesis.

1.1. Context
We create and use programs to interact with computers as a software layer of instructions

compiled and executed by the computer. To create those programs, technical experts, such
as software engineers and developers, have developed tools to organize their work and assist
them in their tasks. As most programs are expressed using a text-based language, the essen-
tial tool used by developers is the editor to read and write the source code in a programming
language. Most editors, such as Vim [88] and Visual Studio Code [18] manipulate general-
purpose programming languages (GPL) such as C++, Python, Java, and Javascript. These
languages offer a textual syntax with keywords and constructs that make programming more
approachable to software developers. Most editors offer features such as syntax highlighting,
indentation, code assistance, and the ability to select the characters to copy, cut, and paste.
However, when creating a program, additional tools are needed to compile, execute and de-
bug the program, ensure configuration management project, and manage all the files involved
in the program. Therefore, most developers rely on an integrated development environment
(IDE), such as Eclipse [70] and Visual Studio [42], that groups all these tools in a uniform
and standard user interface, integrating them in a centralized environment.

Raising the level of abstraction to GPLs has been highly beneficial to software engineers
and developers, as it reduced the cognitive effort needed to describe the solution. However,
GPLs still impose a language gap between the problem domain (known by domain experts)
and the solution domain (known by technical experts). This gap has motivated the creation
of domain-specific languages (DSL) to capture precisely the semantics of an application
domain [37]. However, those tools built with a generic approach for software engineers to
exploit GPLs, are inadequate for DSLs used by domain experts of diverse backgrounds, such

as banking, insurance, or healthcare. The domain may be restricted to a device (embedded
system), a specific project such as a “meeting scheduler application” or it may be common
to a larger group of experts and practitioners, such as the hardware description language
VHDL [5] or the web languages CSS and HTML [20]. DSLs are central to model-driven
engineering (MDE) [48], a software engineering methodology that relies heavily on the use
of models, a high-level abstraction, designed using a DSL as the building artifact. This
modeling practice characterized as domain-specific modeling (DSM), allows the solution to
be specified directly using problem domain concepts, with the final products generated from
these high-level specifications [47]. This approach makes it possible to leverage the expertise
and knowledge of domain experts of various backgrounds instead of relying solely on technical
experts, thus making software development more accessible and inclusive.

Language workbenches were created to support these modeling and language engineering
activities. They are tools that support the efficient definition, reuse, and composition of
languages and their IDEs [21]. Language workbenches offer a modeling language used by
language engineers to create DSLs. In this process, the engineer works closely with the
domain experts, as the language is an abstraction of their own domain. This promotes agility
where the domain experts express the solution with concepts from their domain and also more
clearly identify the changes that are needed for their use, which is propagated more quickly
with code generation [27]. By working at a higher level of abstraction and using generators
to create the executable code, the application of DSM results in significant productivity
and quality improvement, reported by numerous companies [118]. However, the current
state of tooling and practices have some limitations that slow down its adoption [38, 119].
Many challenges revolve around the modeling languages [109] and the tools used in the
process. The vast majority of modeling approaches are developed without an appreciation
for how people and organizations work. As a result, developers and organizations are forced
to operate in a way that fits the approach instead of the approach fitting their process.

1.2. Problematic and thesis proposition
In the following, we identify four key issues regarding how current modeling editors are

constructed in MDE and what this entails to domain experts using them.
The main modeling language used in the practice of MDE is the Unified Modeling Lan-

guage (UML), considered the de facto standard in software engineering. It proposes several
diagrams to describe different aspects of the software and enables actors of different areas to
communicate cohesively. However, a recent study surveyed 50 software designers and found
that these designers either did not use UML at all or used it only selectively and informally
[78]. Yet, popular frameworks, such as the Eclipse Modeling Framework (EMF) [30], consid-
ered the de facto standard in the MDE community [52], describe model concepts using UML

24

notations. This suggests that a universal modeling language such as UML is inadequate for
the task or the target audience. A key characteristic of UML is its root in object-oriented
programming (OOP). It facilitates code generation by presenting an abstraction of the code.
However, this introduces considerable friction when a domain expert, such as an accountant
or a healthcare practitioner, attempts to describe the concepts of his domain, which is usu-
ally unrelated to OOP concepts. Therefore, the modeling language used in current language
workbenches hinders the modeling process and restricts the expression of a concept to the
scope and principles of OOP.

Regarding the modeling IDEs, they have been repetitively noted to suffer in terms of
usability [24, 66]. Modeling tools are typically designed and implemented by software en-
gineers with little input from end-users. This has worked well with previous tools, such as
IDEs and text editors since the end-user is also a technical expert. However, this approach
fails in the context of DSM, where the domain expert (end-user) is left with an unfamiliar
environment, leading to a poor user experience. Every aspect of the tool must be designed
with the user in mind to ensure a good user experience. This requires doing a considerable
amount of research on the users, using techniques such as personas [1], and giving them
a central focus in the development of the IDE. In this mindset, operations such as code
generation are considered as a support to the activity instead of driving it.

Most language workbenches use a parser-based approach, where an abstract syntax tree
(AST) is progressively built by scanning the input and validated against a grammar. They
either support a textual syntax, such as Xtext [23], or a graphical syntax, such as MetaEdit+
[96]. Since various experts may use a model with different needs, it should be possible to
present the model in different forms, equivalent to one another. In contrast, with projec-
tional editing the AST is modified directly; thus enabling support for multiple notations
easily interchangeable and recomposable. It is an evolution of the structural editor where
following each interaction with the program, the editor incrementally compiles and executes
the resulting AST. Presently, the most promising projectional editor in the MDE community
is Jetbrains MPS [15]. However, it is a heavy-weight language workbench that cannot be
easily integrated with other tools and suffers from usability [113].

Lastly, a much-requested feature by practitioners, according to Agner and Lethbridge [2],
is to have a web-based solution. It enables ease of distribution as no installation is required
from the user, ease of integration with other tools, and greater cross-platform compatibility
between operating systems and devices [41, 49]. The attraction of the web has led most
tool builders to develop their new tools to run directly on the web or by leveraging web
technologies through a platform such as Electron [50]. Currently being developed in the
Eclipse community is the IDE Eclipse Theia and the diagramming framework Eclipse Sprotty
[90], both with web technologies. However, none of the web-based language workbenches,

25

such as AToMPM [105] and WebGME [65], support projectional editing. The only attempt
at web-based projectional editor was Màs [17], which has been abandoned since 2014 [9].

To address these four issues, this thesis proposes a web-based modeling editor that
offers a user-friendly environment, easily integrable through projectional editing.
In our approach, the domain concepts are defined with structures and languages unrelated
to any programming paradigm, considering modeling as an activity of its own. Every func-
tionality and action reachable through the user interface is justified and conceived to ease
the user in his task. We are not aiming for a fully-featured solution, such as a framework or
an IDE. Instead, we propose a small library that can easily be integrated into a larger web
application. This proposition is materialized in Gentleman, a lightweight web-based
projectional editor, detailed in this thesis.

1.3. Contribution
The work presented in this thesis aims to provide a solution to make modeling more ac-

cessible to domain experts and practitioners by providing them with a user-friendly modeling
tool using projectional editing. It builds on the work presented at the MODELS 2020 confer-
ence [55], where Gentleman was first showcased. Gentleman is developed as an open-source
project available on GitHub1. The contributions of this thesis are:

• A concept-based approach, unrelated to any programming paradigm, to define the
model structure. The approach aims to reduce accidental constraints induced by
depending on a programming paradigm.

• A component-based approach to create projections, which offers specialized elements
that help the user understand the content and manipulate the model.

• Gentleman, the implementation of our solution, as the proof of concept.
• A user study that evaluates the effectiveness of our approach in comparison with a
state-of-the-art tool, Jetbrains MPS.

1.4. Outline
This thesis is structured as follows. First, in Chapter 2, we introduce the core notions used

throughout the thesis with an emphasis on projectional editors. Following that, in Chapter 3,
we present Gentleman, its design philosophy, architecture, and some implementation details.
Having covered the high-level notions and the design of Gentleman, Chapter 4 and Chapter 5,
explore in-depth the two main components of Gentleman, namely concept and projection
respectively. In Chapter 6, we show the effectiveness, usefulness, and applicability of our
approach based on a user study, and its interoperability demonstrated with its integration

1https://github.com/geodes-sms/gentleman

26

https://github.com/geodes-sms/gentleman

into the web application ReLiS. Finally, we conclude in Chapter 7 and present an outlook
of areas that could be explored following the work presented in this thesis.

27

Chapter 2

Background and State of the art

In this chapter, we expose and familiarize ourselves with the key notions of MDE relevant
to the work developed in this thesis, namely modeling languages and modeling editors.
Particular attention is given to projectional editors and the core concepts of projectional
editing, which is central to our solution. We end the chapter by reviewing some related
work.

2.1. Model-Driven Enginneering
The practice of MDE relies heavily on the use of models and DSLs [118]. A model can

be defined as an abstraction of an aspect of a system with respect to a specific intention
[69]. A DSL can be defined as a programming language or executable specification language
that offers, through appropriate notations and abstractions, expressive power focused on,
and usually restricted to, a particular problem domain [110].

2.1.1. Modeling

As the systems that we develop get more complex [75], we use models to analyze them
at different levels of abstraction. However, to provide an accurate picture of the system,
diverse models aimed at different tasks and used by people of different backgrounds will be
combined. Therefore, an essential activity of software engineering is to work on notations
and methods for developing such concrete models [60]. A standard in that regard is UML,
a family of graphical notations that help in describing and designing software systems [26].

2.1.2. Domain-Specific Language

A DSL provides a notation tailored towards an application domain and is based on the
relevant concepts and features of that domain [111]. It is useful for a limited set of tasks,
in contrast with GPLs that are supposed to be useful for much more generic tasks [44].
Being small in scope, hundreds of DSLs exist today, with a subset prescribed to software

Fig. 2.1. Language Features (from [57])

engineering activities. On the programming side, we have classic examples like PIC, CHEM,
LEX, YACC, and Make, described in [6]. At a higher level, well-known examples include
SQL used to query databases [68], ATL used to define a model transformation [45], and
HTML used to publish information on the web [83]. As with any formal language, void of
ambiguities, defining a DSL requires a formal syntax, maintained by an abstract syntax and
a concrete syntax as presented in Fig. 2.1. Semantics will be associated with that syntax
but are left out of the diagram as only static semantic, included in the abstract syntax, are
considered for the work presented in this thesis.
Abstract syntax. The abstract syntax is a data structure that can hold the semantically
relevant information expressed by a model [114]. It defines the concepts of the DSL and
their relations and may define constraints of the domain. It can be expressed either by a
context-free grammar [51] or with a metamodel as described in the following section.
Concrete syntax. The concrete syntax defines the notation with which we can express
models in a human-usable form [57]. It is only concerned with the appearance (represen-
tation) of the syntax, such as textual and graphical, as seen in Fig. 2.1. As an example,
Listing 2.1 and Listing 2.2 represent the encoding of the same phonebook instance, with
the first presenting it using XML and the second using an easily readable custom notation.
However, although they have different concrete syntax, they both share the same abstract
syntax to describe an address book. Thus, we have a one-to-many relationship between
abstract syntax and concrete syntax, such that multiple concrete syntaxes may be defined
using the same abstract syntax.

<Phonebook >

<Group name="Favorite">

<Person name="Renault" number="3430993253" />

<Person name="Anne" number="7492450903" />

</Group >

<Group name="Recent">

30

<Person name="Pierre" number="5323130950" />

<Person name="Bob" number="5723456902" />

</Group >

</Phonebook >

Listing 2.1. XML notation of an address book

Phonebook

Group - Favorite:

- Renault: 3430993253

- Anne: 7492450903

Group - Recent:

- Pierre: 5323130950

- Bob: 5723456902

Listing 2.2. Custom notation of an address book

2.1.3. Metamodeling

The abstract syntax is usually specified by a metamodel, which may be defined as a
model of a model [54]. To understand this relationship, we present in Fig. 2.2 the four-
layered architecture defined by the OMG. The layers in the four-layered architecture are
called M0, M1, M2, and M3. Every layer is an instance of the layer above except for layer
M3. M3 is specified reflexively and, therefore, does not need layers above. At the lowest
level, M0, we have the element that is manipulated by the end-user, such as a Mind map
instance open on the screen, to brainstorm some ideas. Above this level, at M1, we have the
model representing the objects of the program. It may be presented as an Object diagram.
Above this level, we have the model labeled as M2, which is very often represented using
UML class diagrams notations [82, 4]. Lastly, at the top, at M3, we have the self-defined
model, which is used to create M1 models, such as the UML language. It is to be noted that
this architecture may be generalized to n-level, such as Mi, Mi+1, ... Mn.
Example. To illustrate this process, let us consider a Mind map example. A mind map
is a structure used to organize information topics linked to and arranged around a central
topic. The metamodel depicts a tree-like organization of main topics and sub-topics. Any
topic can be assigned a marker. If we are to create a metamodel, we would usually employ
the UML notation, as seen in the Mind map metamodel presented in Fig. 2.3. There, we
define types, relations, and static semantics of the language (encoding well-formedness rules).
Classes represent the entities of the language such as Mindmap or Topic. They can contain
attributes to retain relevant characteristics of the class, such as the title of the mind map

31

Fig. 2.2. Four-layered architecture

or the name of a topic. Classes can be related using different kinds of relations to indicate
the nature of the relationship. It might be a simple association, such as the one between a
topic and a marker, a composition to indicate a containment, such as between central topic
and main topic, and it might be a generalization, such as the relation between topic and all
three other specific topics.

Class diagrams present the structure of the metamodel and restrict the allowed types,
but complex constraints are typically expressed as Object Constraint Language (OCL) con-
straints [13]. For example, constraints may specify that the symbol of a marker must contain
at least two characters, or that a topic cannot refer to a marker used by its parent. Alter-
natives to UML include Ecore [102] and KM3 [44]. Ecore, used in EMF, uses a standard
textual notation: emfatic. KM3 offers a lightweight textual metamodel definition language
that makes it easy to create and modify metamodels.

2.1.4. Concrete syntax definition

As seen in Fig. 2.1, the concrete syntax may be defined using various visuals, such as
text or graphic. In all cases, it is built in relation with the abstract syntax.
Textual syntax. A textual syntax is defined using a grammar. It is the formal definition for
a concrete syntax. A grammar is composed of production rules that define how valid textual

32

Fig. 2.3. Mind map metamodel using UML class diagram

input look like. The grammar may then be used to create or generate the parser, which will
validate the entry of the end-user against the grammar, using a framework such as ANTLR
[76]. To build such a concrete syntax, we could use Xtext, a framework that makes it possible
to quickly develop tooling for a textual language [23]. As an example, Listing 2.3 presents a
grammar developed in Xtext to represent the Mind map metamodel described in the previous
paragraph. With Xtext, terminal rules are described using Extended Backus-Naur Form-like
(EBNF) expressions.

grammar org.udem.mmap.MMap with org.eclipse.xtext.common.Terminals

generate mMap "http :// www.udem.org/mmap/MMap"

MindMap:

’Mindmap ’ title=STRING

(’(’ markers += Marker (’,’ markers += Marker)* ’)’)?

’Topic’ topic=CentralTopic

;

Marker:

’marker ’ name=ID

;

Topic:

33

(marker =[Marker])?

subject=STRING

;

CentralTopic:

topic=Topic

(’includes ’ ’{’

maintopics += MainTopic+

’}’)?

;

MainTopic:

’-’ topic=Topic

(’includes ’ ’{’

subtopics += SubTopic+

’}’)?

;

SubTopic:

’-’ topic=Topic

(’includes ’ ’{’

subsubtopics += SubTopic+

’}’)?

;

Listing 2.3. Textual concrete syntax for creating Mind map using Xtext

Each production rule target a class define in the metamodel. Keywords are presented
as terminal symbols distinguished by a quotation mark. The attributes declared in the
underlying class are accessible in the production rule and presented as non-terminals. The
containment reference is expressed using the notation « variable+=ClassName ».
Graphical syntax. A graphical concrete syntax (GCS) is defined with three elements:
graphical symbols (e.g., rectangles, circles), composition rules (e.g., nesting of elements)
and the mapping of the graphical symbols to the elements of the abstract syntax [10].
Current graphical modeling editors use modeling canvas, which allows the positioning of
model elements in a two-dimensional raster. There are three approaches to develop a GCS:
mapping-based, annotation-based, API-based.

Amapping-based approach defines an explicit mapping model between abstract syntax,
and concrete syntax. This approach is followed by the Graphical Modeling Framework
(GMF) [31], where the language engineer has to define: a .gmfgraph model which defines the
graphical symbols, a .gmftool model which specifies the tool palette, showing which icons are

34

used to produce which model elements; and finally, a .gmfmap model which actually defines
the mapping.

In an annotation-based approach, the metamodel is annoatated with concrete syntax
information. This approach is supported by EuGENia [53], which allows us to annotate
an Ecore-based metamodel with GCS information by providing a high-level textual DSML.
This annotated information is used by a dedicated transformation component to generate
the aforementioned GMF models.

An API-based approach describes the concrete syntax using a programming language,
which uses a dedicated API for graphical modeling editors. This approach is taken by
Graphiti [100], which provides a powerful programming framework for building graphical
modeling editors. A language engineer has to extend the provided base classes of Graphiti
to define the concrete syntax of a modeling language.

2.1.5. Editor generation

Having now fully defined a DSL, we need an editing environment to exploit it. For this
purpose several tool have been introduced. The model editor is generated from the abstract
and concrete syntax, with all the necessary artefacts to validate the entry of the user. As an
exmaple, it could generate an analyzer that tokenizes the elements, a parser that exposes the
underlying structure in a form of an abstract syntax tree (AST), a serializer that converts
the model into a persistent format, an API that describes the language, and code generators
to transform the model in a target language.

2.2. Language workbench
The activities described in the previous section have inspired a category of tools, com-

monly labeled as language workbench [25]. They are tools that support the efficient defini-
tion, reuse, and composition of languages and their IDEs [21]. A language workbench should
present the following characteristics:

• Users can define languages, which are fully integrated with each other.
• The primary source of information is a persistent abstract representation.
• Language designers define a DSL in three main parts: schema, editor(s), and gener-
ator(s)

• Language users manipulate a DSL through a projectional editor.
• A language workbench can persist incomplete or contradictory information in its
abstract representation

One key aspect of their differences lies in their modeling editors, which may support a
subset of concrete syntax types. We distinguish the following three types of editors: free-
form, syntax-directed and projectional.

35

Fig. 2.4. Editor services for a web language (from [46])

2.2.1. Free-form editors

A free-form editor uses a parser-based approach that comes with no perceived restriction
when editing the program. Users can edit their programs on a blank canvas freely. However,
without any restriction, or guidance, the user must be familiar with the grammar and will
likely introduce syntactic and semantic errors. Most free-form editors are designed for mod-
eling languages with a textual concrete syntax, though some graphical editors also permit
it. In these (textual) editors, users enter sequences of characters into a text buffer, which
is parsed to check whether the sequence conforms to the associated grammar. The parser
ultimately builds an abstract syntax tree (AST), updated after each input [112]. Elements
that do not conform to the AST are signaled to the user with visual cues, such as underlining
the point of failure in red. Throughout the years, free-form editors have been greatly im-
proved and have been augmented with helpful services. This approach has been successfully
implemented in many IDEs for programming, and modeling editors, such as Xtext presented
in the previous section, and Spoofax [46], which is shown in Fig. 2.4. The figure presents
many common editor services, such as syntax coloring, error markers, content completion,
as well as the general organization of the environment.

2.2.2. Syntax-directed editors

A syntax-directed editor is language-dependent and can perform syntax analysis during
editing [16]. It is an improvement upon the free-form editor, where the syntax analysis
comes late after the input. While the user is editing the program (or model), the editor can
detect invalid edits that violate the AST and semantical constraints instantly, which makes
it less likely to have syntactic errors. Typically, syntax-directed editors rely on incremental

36

Fig. 2.5. AToMPM user interface showing a domain-specific environment for modeling Mind
Maps (from [28])

parsing to only parse the modified portion of the program or model. This approach has been
successfully implemented in many graphical editors, such as MetaEdit+ [96] and AToMPM
[105], shown in Fig. 2.5. As this is a graphical editor, there is a panel at the top, exposing
the different forms and shapes used in the syntax.

2.2.3. Projectional editors

Both of the previously mentioned approach are parser-based, differing mostly on the
parsing technique. However, as long as there is a strong concrete syntax that requires
parsing, there will always be room for errors (although small) and it will be difficult to
evolve the language as the concrete syntax has value in this approach. A projectional editor,
on the opposite side, does not rely on parsers. As a user edits a program, the AST is
modified directly. Projection rules are used to create a representation of the AST with
which the user interacts, reflecting the resulting changes. [112, 113]. Therefore, defining a
projectional editor invovles the definition of projection rules that map language concepts to a
notation. Without a parser, it enables the support of notations that cannot be easily parsed,
such as tables or mathematical formulas, and the composition of any language without
introducing syntactic ambiguities. As demonstrated in [7], this is much harder to achieve
with parser-based tools. In projectional editors, every program element is stored as a node
with a unique ID (UID). Since the model is stored independent of its concrete notation,
it is possible to represent the same model in different ways simply by providing several
projections. Different viewpoints of the overall program can be stored in one model, but
editing can still be viewpoint-specific. References are established during program editing by
directly selecting reference targets from the code completion menu. This is in contrast to

37

parser-based environments in which a reference is expressed as a string in the source text
and a separate name resolution phase resolves the target AST element.

2.3. Projectional editing
Projectional editing is perceived today as a novel idea, bringing new attractive solutions

to modeling editors. However, it was conceived in the 1980s, and initially introduced with
the Incremental Programming Environment (IPE) [67]. IPE used a structural editor for
programmers to interact with the program and then incrementally compiled and executed
the resulting AST. The programmer communicated with the editor in terms of language
constructs, like an “if” statement, which would add a (fillable) template to the code. How-
ever, as a text-based approach, it suffered in performance and usability. Other early works,
such as the GANDALF project [73] and the Synthesizer Generator [85], improved slightly
on the approach by generating projectional editors, but either had the same usability prob-
lems as IPE or avoided the use of projectional editing at the fine-grained expression level
[7]. The idea was revisited with intentional programming [94], implemented in Intentional
Domain Workbench, which inspired the rise of language workbenches where projectional
editing resurfaced. Current solutions include Jetbrains MPS [15], the Whole Platform [97],
and Scratch [86], which are explored in the following sections.

2.3.1. MPS

The Meta Programming System is a projectional language workbench developed by Jet-
brains and available as an open-source software under the Apache 2.0 license. It has accu-
mulated a fair share of success and is considered, in recent times, as the prime example of
projectional editing. As a complete language workbench, it is possible to define and use a
DSL, with the behavior added programmatically through a Java-based language. However,
both the language definition and its manipulation is closed within MPS. Fig. 2.6 gives us
an overview of the editing environment of MPS, in this case, to create a DSL to manipulate
Mind maps. In the left panel, the IDE presents the organization of the project and gives
the user access to the different aspects of the DSL, such as the structure, the editor and the
constraints. In the right panel is a sandbox editor, which allows the language engineer to
test the language as he is building it. The four central panels show the structure of some of
the language concepts and the definition of their corresponding editor. To define a language,
MPS divides a language into distinct aspects, with some aspects detailed below.

2.3.1.1. Structure. The definition of a language concept starts with its structure, as all
other aspects refer to the structure of concepts. In MPS, the structure is equivalent to
the metamodel of the language. A language concept consists of a name, child concepts,
references to other concepts and primitive properties, such as integer, boolean, string, or

38

Fig. 2.6. MPS environment overview

enumeration. A concept may also extend another concept and implement any number of
concept interfaces, like in OO. Similar to UML, external relations, such as children and
references, are defined with a multiplicity to signify whether they are optional or represent a
collection, in which case the multiplicity can act as a cardinality constraint. In the mind map
example presented in Fig. 2.6, a Mind map concept implements the interface INamedConcept,
which defines a name property. Therefore any Mindmap instance will possess an assignable
name property. The concept also has two children: markers which may hold multiple Marker
and centralTopic which must possess a CentralTopic. Like the concept MainTopic, it extends
the abstract concept Topic, and therefore inherits its structure, which defines the optional
marker reference.

2.3.1.2. Editor. In MPS, projections, which play the role of the concrete syntax, are called
editors. They define how an instance of a concept is visually represented and how to interact
with it. Each concept has exactly one editor unless a concept inherits the editor from a
parent concept. An editor is organized as a collection of editor cells, which may contain
static textual elements, fields linked to the underlying concept properties, and children cells.
The editor aspect also defines some actions and keymaps, which overrides the IDE behavior
when a specific key is pressed in a given cell or when a node is deleted. The example presented
in Fig. 2.6 shows the definition of the editor for the CentralTopic and Maker concepts. Each
element, such as the text “Brainstorm about”, the character “{” or the property name occupy

39

a single cell. We note that the environment and the notation strongly encourage the creation
of a textual syntax, which hides the potential of projections, as a syntax agnostic approach.

2.3.1.3. Type System. In MPS, the type system is used to specify typing rules for con-
cepts. These include inference rules (the type of a variable reference is the type of the
variable referenced by it), subtyping rules (int is a subtype of float), and checking rules. The
latter are essentially Boolean expressions that evaluate any part of the model. The type
system aspect may also contain quick fixes that can be used to resolve errors reported by
type system rules.

2.3.1.4. Code generation. Languages in MPS also define transformation rules to lower-
level languages or plain text. The generation process in MPS consists of two phases. Phase
one uses a template-based model-to-model transformation engine to reduce the program
code into the target language, based on reduction rules specified in the generator. The
target language may be further reduced based on its own reduction rules, and so on. When
no further transformation is applicable to a model, the second phase uses text generators
to convert that final model into a textual program text that can then be fed to a compiler.
[77].

2.3.2. The Whole Platform

The Whole Platform is a mature projectional language workbench distributed as Eclipse
Plugin under the GPL license. It is mostly used to engineer software product lines in the
financial domain due to its ability to define and manage both data formats and pipelines
of model transformations over big data. The Whole Platform aims to reduce the use of
monolithic languages and leverages grammar-based data formats for integrating with legacy
systems. In the Whole Platform, both the built-in meta-language and newly created lan-
guages can be debugged using the same infrastructure, which has support for conditional
breakpoints and variable views [21]. Fig. 2.7 gives us an overview of the editing environment
of WholePlatform. Panels on the left show the definition of a grammar, which is used to
parse the text files to create the AST and serialize the AST back into the text format. This
allows a user to import an existing document by only defining the corresponding grammar.
However, it also suggests that the platform only supports textual projections, more so than
MPS. Panels on the right show the definition of actions, a set of model operations that can
be invoked by the user, in the generated editor. They will be displayed on the editor toolbar
or available in contextual menus. The central panels show examples of the generated editors.

Unfortunately, due to a lack of documentation, we cannot dive deeper into the Whole
Platform.

40

Fig. 2.7. WholePlatform environment overview

2.3.3. Scratch

Projectional editing presents an opportunity to make programming more approachable
as the language no longer needs to present a cryptic syntax mostly familiar to program-
mers. This has tremendous educational value, notably introducing programming to a young
audience. This opportunity is captured in the language workbench Scratch, a visual pro-
gramming environment, which has achieved success as a tool for teaching children how to
program. With Scratch, youngsters can design their own interactive media, including stories,
games, animations, and simulations, by snapping together programming-instruction blocks
[11]. Fig. 2.8 gives an overview of the editing environment of Scratch. In the left panel,
the editor presents the palette and blocks that can be used to create a script, as seen in
the central area. The execution of the script can be previewed and staged, as shown on the
right. Multiple scripts may be created and assembled to create a more elaborate program.

As it is intended for learning programming and targets children, we will not go into the
details.

2.3.4. Literature review

As an ongoing solution with over ten years of development, MPS is often discussed in
the literature. To gain further insights into current projectional editing implementations, we
review some of the literature around MPS.

41

Fig. 2.8. Scratch environment overview

mbeddr. The most prominent application of MPS is mbeddr, a set of integrated languages
for embedded software engineering [116], developed with MPS. Embedded software presents
several challenges, such as runtime efficiency while using adequate abstractions to provide
higher expressive and reliable construction mechanism to provide safety in the program.
These challenges are addressed by mbeddr which provides an extensible version of the C
programming language (C99). In mbeddr, different abstractions and notations can be used
in the same program. Since extensions are embedded in C programs, users can mix higher-
level abstractions, using tabular or graphical notations, with low-level C code, which help
significantly with managing the complexity of the developed software. However, it suffers
from usability, as to end users MPS “looks” complicated, especially when we consider that
many are not language engineers. It also lacks integration with legacy tools such as Eclipse
EMF and MS Excel [115].
Notation. As a projectional editor, MPS supports multiple notations discussed in [112].
The first notation support is the textual notation. This allows MPS to support the syntax
used by programming languages such as Java, C, or HTML. However, the textual notation
causes some confusion for end-users who expect the editor to behave as a free-form editor but
find themselves restricted because a projectional editor is less permissive. MPS also supports
mathematical symbols, such as fraction bars and square roots, using a plugin that adds a
set of new layout primitives. The plugin contributes only to the editor cells, explained in
Section 2.3.1.2, so they can be integrated into arbitrary languages. Similarly, MPS supports

42

tabular notations to represent collections of structured data or to represent two-dimensional
concerns. Tables come in several flavors, such as row-oriented, where a table is built with
a fixed set of columns and a variable list of rows. mbeddr makes great use of the tabular
notation to produce decision tables. Lastly, MPS also supports customs cells, allowing users
to create and use their own cell implementation.
Bootstrap. Bootstrapping is connected to a circularity in definition. In the context of
language workbenches, this means that one language is defined using itself, or a set of
languages is defined using that same set [81]. MPS has several meta-languages to define
different aspects of a concept, and they are defined using MPS itself, making the platform
bootstrapped. Many MDE language workbenches rely on bootstrapping to generate editors
like eMOFLON [58] and AToMPM.
Efficiency. The authors of [7] have evaluated the efficiency of MPS with a user study. They
conducted a controlled experiment with 19 graduate computer science students and indus-
trial developers. The participants performed various code-editing activities, based on C, in
the projectional editor MPS and the parser-based editor Eclipse CDT. To evaluate whether
the observed differences are significant, they conducted an ANOVA or, if its preconditions
were violated, a non-parametric Kruskal-Wallis test for each task. For basic editing, mea-
sured with editing operations, such as insertion and deletion, and editing errors, it is possible
to be as efficient with a projectional editor as with a parser-based editor. As a note, projec-
tional editing relied much more on code completion and yielded fewer mistakes and typos.
However, experience played a factor in performing editing operations, such as selecting code.
Advance editing, segmented between AST conformance and code modification and refactor-
ing, required the user to be aware of the AST in the case of a projectional editor. When
refactoring, as the participants could not rely on the visuals, they had to conceive new edit-
ing strategies, such as moving instead of copy-pasting. As a result, with MPS, advanced
tasks require significantly more experience and understanding of the underlying concepts.
Usability. In terms of usability, MPS has been thoughtfully analyzed in [113], as a case
study. The study centered around efficiently entering (textual) code, selecting and modifying
code, as well as infrastructure integration. Regarding the editing experience, most of the
usability issues, such as making references to non-existing nodes, selecting a block of code,
copy-pasting and commenting, come from the use of a textual notation, which a user expects
to behave like free-form editors. When selecting, the user usually feels misled, as the selec-
tion is not based on the visible elements but rather on the tree structure. However, MPS
addresses some of them, such as the use of intention, to provides the user with suggestions
to avoid having a dangling reference, or code completion and aliases to mitigate ambiguities
introduced when composing languages.

43

2.3.5. Motivation for Gentleman

Projectional editing is still lacking in terms of adoption despite the current solutions
described in the previous section. To better understand what is missing from projectional
editors, we analyze MPS, the most documented and most discussed solution in recent papers
and on forums.

Looking at the editor in itself, which is the first barrier of entry for a user, the UI of the
environment looks too complex [115]. This unnecessarily encumbers the user as the DSL
could itself be simple. Additionally, for a language engineer, there are lots of moving pieces.
Simply opening a new project (i.e., creating a language), the user is presented with seven
folders dedicated to different aspects of the language.

MPS concepts definition is heavily influenced by Java and the OO paradigm [104], such as
the inheritance mechanism. Similar to UML, the structure is defined with implicit reference
and multiplicity on relations. This causes friction when the domain expert tries to convert
his conception into actual concepts in the editor. With this approach, the domain expert has
to maintain two abstractions as well as possess knowledge about a programming paradigm
that is likely to be outside of his domain of expertise.

The cell-based projections are convenient as the definition is close to the rendered result.
However, stacking cells in this way results in a flat layout which might not be sufficient to
represent containment intuitively. As mentioned in the previous section, although cells can
accept a variety of elements, it strongly favors text by its design and features such as code
folding and the sequence pattern of text.

Finally, MPS editors are desktop applications, not web applications. Therefore, the editor
must be installed and updated on the machines of each user. This characteristic also impacts
the interoperability factor of the editor, as the editors built with MPS cannot be integrated
out of the box with web applications. Some of these concerns, such as simplifying the UI
or making it easier to work with the web, could be addressed. However, we also identified
some fundamental issues, such as the very definition of a concept, deeply rooted in Java and
the cell-based system, much more challenging to solve. In response to these, we introduce
Gentleman.

44

Chapter 3

Gentleman

In this chapter, we introduce Gentleman, the main contribution of this thesis. We describe
the design, going from the high-level components of the architecture to the low-level artifacts
of the implementation. We close this chapter by presenting the integration process and the
editor services offered by Gentleman.

3.1. Rationale
Gentleman is a lightweight web-based projectional editor that provides an environment

tailored to the domain expert requirements, making it possible to model at the right level of
abstraction with a familiar language. It was developed with the mindset of making modeling
more accessible to domain experts and practitioners. In Gentleman, a model or metamodel
is structured using concepts and visualized and interacted with using projections. An en-
vironment is generated by loading a set of concepts and projections compatible with each
other into the editor. The editor itself (shell and services) is also configurable to provide a
more personalized experience and deeper integration into an existing application.
Metamodeling. In the MDE paradigm, current approaches to metamodeling found in pop-
ular frameworks and tools, such as EMF and AToMPM, use the UML formalism, a code-
oriented approach. In this formalism, modeling is object-oriented (OO), a programming
paradigm, such that a model is conceived in terms of objects [4, 39]. These abstractions
are then translated, through a generator, into code using an OO programming language
that will be completed. However, such an approach creates an abstraction of the domain by
using an abstraction of the programming language, thereby requiring the domain concepts
to be transformed into OO concepts such as classes, attributes, references, and operations
[79]. This additional mapping between the perceived concepts and their expression increases
the cognitive effort for the domain expert. As the domain expert might be a lawyer or a
physician, he should not be expected to know a programming paradigm. To minimize this
cognitive effort, a metamodel in Gentleman is defined purely with concepts unrelated to any

code representation. A metamodel is then simply a graph of concepts parameterized in their
relationships with each other.
Language. Creating models and interacting with their concepts requires a modeling lan-
guage. As discussed in Section 2.1.4, most tools used to create a DSL use either a textual
syntax or a graphical syntax. The textual approach, found in prominent tools such as Xtext
sums itself as a manipulation of characters, assisted by an editor that helps in the presen-
tation and construction of the model using techniques such as syntax coloring and context
assistance. As noted previously, this approach is error-prone and does not communicate
intuitively the information that it captures, requiring a considerable amount of cognitive
effort. The graphical approach, found in mature tools such as MetaEdit+[108], shifts to
manipulation of shapes and forms, making it more intuitive to the expert, albeit requiring
learning the semantics of those shapes [92]. Furthermore, as the model gain in complex-
ity, it becomes harder to construct and comprehend as graphic elements are spatial and
therefore are constrained by the viewing area [103]. Additionally, the language is tied to
the metamodel in both of these approaches, making it hard to change. Thus the language
quickly becomes a burden for the domain expert, who has to use an increasingly inadequate
language. Therefore, to embrace the diversity found in experts and the dynamic nature of
their domain, Gentleman uses projections that map a visual (mixing text and graphics) to
an underlying concept.

This approach gives us a dynamic syntax. The projections may be changed at any
moment to visualize the concepts with a different view and may evolve independently of the
underlying concept to better fit the domain expert and the task at hand.

3.2. Running example
In the remainder of this thesis, we will use a TodoList application, as a running example,

to illustrate our presentation. Fig. 3.1 presents the metamodel of the DSL for building
a TodoList in a UML class diagram and Fig. 3.2 presents an instance of the metamodel
in Gentleman. The artifacts used by Gentleman to produce the editor can be found in
Appendix B.
Metamodel. A TodoList is identified by a title and consists of at least one task. A Task is
identified by a name and description, can be marked as completed, may be assigned a due
date, and a priority limited to P1 to P4. A Single task occurs once, whereas a Recurring
tasks may occur multiple times parametrized by a start date, an end date, and a recurrence
day. A task may create multiple references to labels defined in its parent todoList. A Label
is identified by a name and may also be assigned a priority.

46

Fig. 3.1. TodoList metamodel

In terms of constraints, we have the following: the length of the title must be between 1
and 50, the length of the name and description must be greater than 2, and the recurrence
must be between 1 and 7 to map correctly to a day of the week.
Model. In our model, presented in Fig. 3.2 with a grid layout, we have two TodoList titled
“Must-do for the day” (left) and “pending work” (right), respectively. The first TodoList,
on the left, contains two single tasks and defines three labels. The first task is marked as
completed resulting in the mark shown inside the checkbox. The second list contains a single
task and a recurring task with an error in the recurrence day value, which is greater than 7.
Lastly, on the right, we have the task options, which are associated with the first todo list
task. We also note the presence of errors indicated in the status bar and detailed in the log
and a deleted task in the footer.

3.3. Architecture
The architecture of Gentleman is presented in Fig. 3.3. Gentleman is mainly composed

of three modules structured as a Model-View-Controller architecture [59]: the Editor module
(EM) acts as a Controller, the Concept module (CM) acts as a Model and the Projection
module (PM) acts as a View. This section only presents an external view of concepts and
projections in the last two modules. They are explored in much more detail in Chapter 4
and Chapter 5, respectively.

47

Fig. 3.2. TodoList model in Gentleman

The domain expert, which we will refer to as User, initiates a Gentleman instance which
we will call App, by loading into the editor the concept schema and the projection schema,
which hold the definition of the concepts and projections respectively. Optionally, a con-
figuration file may also be provided to the editor for additional configuration. The editor,
now initialized, keeps track of CM and PM, which are in constant interaction to keep the
projections and concepts in sync with each other.

3.3.1. Editor module

The Editor is the entry point of the App and, as the main controller, it is the first to
respond to incoming requests and messages. Incoming requests may be categorized as an
API call, where a method declared in the Editor is directly invoked, or an Event call, which
triggers one of the event listeners. As seen in Fig. 3.3, examples of API calls include a call
to create a concept, create a projection, export the session, or load a resource, which are
mapped directly to a method declared in the Editor API. Event calls are messages, internal
or external, received by the Editor. External events, such as a keystroke event (key up, key
down) or a mouse event (click), originate from the webpage, as opposed to Internal events,
such as editor events (log created) and model events (value changed, view changed), which
originate from the App itself. The Editor implements the Facade pattern [29], and as such
most of the requests will be coordinated with its specialized units or delegated entirely to
other modules.

48

Fig. 3.3. Gentleman architecture showing some key interactions

The Editor units encapsulate distinct elements and operations, thus avoiding unnecessary
coupling. They provide a Manager, for the Editor to communicate with, that is responsible
of the interaction with the elements (data structures or UI components) controlled by the
unit. A Manager has common methods to create, retrieve, update or delete (CRUD) an
element as well as element-specific methods.
Context. The modeling experience truly begins when we start creating instances of the
concepts loaded in the editor, the highest context of the App which comprises the whole
of Fig. 3.2. As instances are created, our context becomes fragmented, illustrated here by
the smaller windows within the editor. Jumping from one instance to another the Editor
needs to follow along so that each operation can target the instance intended by the User.
In Gentleman, there are three levels of context: instance, active , and window. An instance
context is bound by the concept (root) with which it was created and its projection. This
allows the concept and projection to be accessed from a closer parent than the Editor. From
within the instance, numerous concepts are instantiated as seen in the TodoList context,
where we find a collection of task which will receive focus at different moments of the editing
activity. However, the instance context is not specific enough for some operations such as
copying or removing which targets the element directly. The Active context is therefore
introduced to track the active element. A common feature found in modern editors is the
ability to create high-level contexts and split the view of the model, allowing the user to stay
focus on parts of the model and thus be more effective. In Gentleman, windows that will

49

contain instances may be created to fragment the App context, as shown in Fig. 3.2 where
a task is displayed in the main window (window 1), and its options in a secondary window
(window 2).
Navigation use-case. As we navigate through the structure, it will become increasingly diffi-
cult to keep track of our position in the model. In Gentleman, a breadcrumb is used to track
the user’s position, as a method recommended by [93]. It is located at the top of the editor
as shown in Fig. 3.2. The breadcrumb is window-specific, begins at the root of an instance,
and ends with the active element, thereby illustrating all three context levels.
Status. For any system with which a person interacts with, in order to provide good usability,
it is critical that the User feels in control and is informed of the state of the system [71].
Continuing with our previously introduced breadcrumb, it informs the User of the state of
the active element found at the end of the trail but indicates very little regarding the state
of the other instances and the general state of the App. The Status Unit is dedicated to
this very task. It monitors the state of all the instances and their elements, as well as the
state of the editor. Therefore, it is the first to respond to an error found in the model or a
warning signal by the editor.
Status-bar use-case. To communicate this state to the user, a dedicated status bar is pre-
sented in the footer of the Editor. In the TodoList example, while the breadcrumb indicates
no errors, the status bar indicates the presence of two errors, showcasing its usefulness. It
also serves as a layout manager for the user who has access to different layouts listed on the
right edge of the bar. Lastly, as messages such as errors and notifications are emitted during
the interaction with the App, the User should not be required to remember it all. To that
effect, the status bar presents an entry to the log center where all the messages are gathered,
as seen in Fig. 3.2 where it lists the errors detail.
Command. Some interactions with the App should be followed by actions, such as clicking
on the menu icon which should be followed by the menu actually opening. However, many
triggers may result in the same action, such as exporting the model, which can follow a
click on the export icon of the App or hitting a key combination. To process this efficiently,
the command unit has been dedicated to the task, as an implementation of the Command
pattern.
Subscription. During the interaction with the App, many events may be triggered as shown
in Fig. 3.3, near the bottom half of the Editor module. The ones on the left-hand side
originate from outside the App and therefore are simply handled internally. However, those
on the right originates from within as explained earlier, and thus are not automatically
broadcast to the page environment, where another application might have reacted to. In
order to provide some flexibility and control over the resulting behavior, in Gentleman, it
is possible to subscribe to these events, following a Publish-subscribe pattern. The Handler

50

manager provides CRUD methods to manage the subscribed handlers and defines additional
methods to register or unregister a handler and trigger an event, which may be parameterized.
Resource. In a static system, everything that composes it must be provided ahead of time.
Modeling being a dynamic activity, some elements will only be made available during the
modeling activity. These elements that we call resources will be provided by the user when
needed, and lazy-loaded in the App. The Resource Unit serves as a repository for these
resources and comes with a type I manager. A special distinction is made for some resources
that Gentleman recognized such as a resource that represents a collection of concepts, useful
to make meta-references.

3.3.2. Concept module

Turning to our second module presented in Fig. 3.3, at the top we found the Concept
module (CM). It is mostly concerned with exposing the concepts received as a schema from
the Editor, managing the concept instances and preserving their values. As we can see in
Fig. 3.3, CM is initialized by the editor with a concept schema, which lists a collection
of concept definitions. Following that transaction, the Editor may communicate with the
module to retrieve or remove a concept or query the model or instance. Now that our module
is presented at the high level, let us look at the interactions, following the initialization,
between the CM components and with the other modules.
Manager. The manager stores and manage the schema, the created concept instances, and
their values. Although the manager is responsible for the management of the instances, their
creation is delegated to a factory, as other modules might also need to create an instance. An
example is found when previewing an element where the instance should not be considered
as part of the model.
Factory. The factory is a direct application of the Factory method pattern. As shown in
Fig. 3.3, it is strictly concerned with the creation of concept instances. Usually called by the
manager, it receives the schema of a specific concept, and using it, it produces the appropriate
concept instance. In this case, the created instance is then stored in the Manager.
Concept. Found at the end of every input request is a concept instance, referred to here as
an instance. Created by the factory, an instance holds a reference to the Manager as well as
the Editor in order to notify the user as quickly as possible when an error is found. Through
the instance unit, a projection is registered to an instance, which is notified of every change
of state of the instance. Since concepts are put in relation with one another, an instance
will observe the same relation with those concept instances, as shown as the parent relation
between instance Todo and String in Fig. 3.3.

51

3.3.3. Projection module

Turning down to our third and final module presented in Fig. 3.3, we found the Projection
module (PM). Representing the view in our MVC architecture, it is responsible for the
creation of all the visuals, concrete and virtual, which display the state of our model. It then
follows, that it is concerned with the projections, and requests that are directly concerned
with the projections are transferred to PM. Similarly to CM, it is initialized by the Editor,
with a schema that lists the definition of the projections loaded in the App.

Next, we present the internal structure of the module, which resembles closely that of
the CM.
Manager. The manager stores the schema received by the editor, the projections, and the
components created during the session. It exposes some CRUD methods to manage the
projections and their elements. As with the CM manager, the creation of projection is
delegated to a factory, which is also useful for the preview scenario enunciated in the previous
section.
Factory. Responsible for the creation of projections, depending on the received schema, the
factory produces the appropriate projection.
Projection. The workflow of a projection is where this module differs from the previous one,
as a projection is much more complex than a concept as it is expected when comparing the
details of a View to that of a Model. A projection might span other projections similarly to a
concept instance. However, the rendering of a projection requires three dedicated Handlers
to resolve the Content, the State, and the Style.
ContentHandler. The content handler is responsible for finding the kind of content that is
required by the projection or its components, such as a Field, a Layout or a Static element.
This puts it in relation proxy position between the projection the content factories. With
the kind of content resolved, it selects the appropriate factory to produce the element which
will be rendered following a similar process.
StyleHandler. The style handler is responsible for resolving the styling attributes that will
be applied to the rendered content. This is mostly done following a mapping system to find
the appropriate CSS rule to apply. However, styling may be dynamic when using a derived
value, hence the need for a dedicated handler.
StateHandler. Similar to the style handler, the state handler is responsible for resolving
the state of a projection. It groups methods that will apply first-order logic to resolve the
state of the projection. Here also, some terms might come from a derived value.

3.4. Implementation
With a clear understanding of the architecture, we can now tackle the implementation and

complete our exploration of Gentleman’s design. It is distributed as a Javascript (JS) library,

52

written entirely in Javascript. It conforms to the ECMAScript 6 (ES6) standard which
has several important features that help integration and organization such as generators,
modules, and classes [95]. As a JS library, the web is the de facto running platform for
Gentleman. On the web where available resource (space) is limited [14], the page size,
which is an aggregation of the resources size found on the page, has a correlating impact
on performance, and that is paramount to improve the User Experience (UX) [64, 120].
Gentleman aims to be a lightweight editor, and this characteristic is observed both in the
User Interface (UI) and the size of the library. The current version of Gentleman (0.4.0) is
sized at 205 KB, which is much lower than Ace 1, the code editor used by DSLForge which
is sized at 362 KB, and comparable to a modern WYSIWYG editor such as Quill 2, sized at
211 KB. Being a pure Javascript library, Gentleman runs fully on the client-side (browser),
which makes offline use possible. As with any web application, HTML and CSS are used to
structure the content on the page and arrange its presentation. The editor comes with very
little restriction and can be adapted to various HTML/CSS layouts and integrated into any
web application.

3.4.1. Integration

The next step for a library is the installation and integration into a larger application. As
a web solution, Gentleman requires no installation. It can be easily integrated into any web
application with a single script (<script src="gentleman.js"></script>). With the script
loaded, the editor can be just as easily activated in one of two ways. The simplest solution is
to decorate an HTML Tag in the body of the page with the attribute data-gentleman, such as
<div data-gentleman="editor"></div> . In this case, after loading the script, every HTML
element on the page found with this attribute will have a Gentleman instance attached to
it with the editor rendered inside. Alternatively, and for a more controlled integration, the
instance may be created dynamically in a JS script loaded on the page as shown in Listing
3.1. Using this approach, a config may be provided and handlers may be registered.

const EDITOR = require(’[CONFIG_FILE_PATH].json’);

const CONCEPT = require(’[CONCEPT_FILE_PATH].json’);

const PROJECTION = require(’[PROJECTION_FILE_PATH].json’);

let editor = Gentleman.activateEditor(".app -editor")[0];

editor.init({

config: EDITOR ,

conceptModel: CONCEPT ,

projectionModel: PROJECTION

1https://ace.c9.io/
2https://quilljs.com/

53

https://ace.c9.io/
https://quilljs.com/

});

Listing 3.1. Gentleman dynamic integration

The ability to span multiple editors allows a parent application to have multiple Gentle-
man instances within a single context. This enables a web-based language workbench, like
AToMPM, to control and stylize the edition of numerous attributes simultaneously.

3.4.2. Configuration

The editor options can be configured directly in the code during the initialization or
through a JSON file which can be loaded into the editor at any time. The configuration
options can be categorized into two segments: those that target the UI and those that target
the behavior.

At the UI level, the following elements are subject to customization: the header, the
menu, and the layout. The header configuration allows the title and styling to be changed
for a more cohesive look as the editor will be part of an existing design. The list of concepts
available for instantiation may be filtered to limit the concepts displayed to the user. The
menu gives some options to style the displayed elements and choose which one are displayed
or disabled. The menu may also be augmented with additional elements, handled outside
of Gentleman. Lastly, the layout of the editor may be set to one of the pre-defined layouts
such as Grid or Tab. As seen in Fig. 3.2, the Grid layout presents the instances on a grid,
which is useful to have a global view. In the Tab layout, each instance is attached to a tab
and viewed one at a time. Like the menu, custom layouts may be defined and added to the
list of layouts available to the end-user.

For the behavior, the most important component is the handler described in Section 3.3.1.
In Listing 3.2, we see how a handler could be defined to be executed every time an instance’s
value is changed. A handler may also be parameterized to be called once or under certain
conditions. Using handlers, we can also extend and control the flow of validation. Our last
configuration option is the storage option which could be set to an external server, where
additional work might be done with the output.

const Handlers = {

"value.changed": function () {

// access the editor with ‘‘this ’’

// action executed when an instance ’s value has changed

}

};

... // create or retrieve the editor

editor.init({

... // other arguments

54

handlers: Handlers

});

Listing 3.2. Gentleman handler configuration

3.5. Editor services
With the editor in place and well understood, we can visit Gentleman main editor services,

which help provide a good user experience.

3.5.1. Instantiation

Modeling with Gentleman begins with the instantiation, which is done by selecting one
of the exposed concepts available in the header. A concept may be instantiated multiple
times, which can be useful to create a draft or temporary copy. A key advantage to the
distinct separation between concepts and projections is that multiple projections may be used
simultaneously against the same concept. This brings us to the special case of instantiation:
the linked instance.
Linked instance. An instance can quickly become too crowded as you modify it, and you
might want to focus on a small part of it. Fortunately, because the view is a composition
of projections, they can each be manipulated separately as linked instances, similar to UML
aliasing [74]. As such, any modification done to the linked instance is reflected on the original
as they both share the same underlying concept instance. Fig. 3.2 presents a linked instance
of a single task in window 2, focusing on its optional attributes. It is linked to one of the
task listed in window 1. As a linked instance, deleting it will have no side effects on the
underlying concept instance, which is still bound to the original one.

3.5.2. Navigation

Gentleman supports both mouse and keyboard navigation. With the mouse, it’s simply a
matter of pointing and clicking on the element you want to focus on. With the keyboard, you
can use the arrow keys to access close-by elements or the Tab key to iterate over the elements.
The ability to create rich UI in Gentleman often results in a container-based layout (layered
visual) as opposed to the flat layout found in textual editors. This impacts the navigation
flow since not all elements are found on the same plane.

3.5.3. Reusing values

While editing, it is very common to find patterns that suggest reusing existing structures
or values to avoid manual repetition. Copying part of a structure into another part, com-
monly referred to as copy-pasting, has become one of the most frequent interactions when

55

handling editors [22]. Gentleman enables any part of an instance to be copied and pasted
into another. As a projectional editor, only values coming from a similar concept will be ap-
plied to the target concept. Interestingly, the ease that comes with the action has developed
the need for multiple slots to hold our copy, especially during a refactoring operation where
some elements are temporarily removed. As a response, Gentleman allows multiple copies
to be preserved at the same time.

3.5.4. Undo/Redo

Another feature that has come to be expected from editors is the ability to undo an
action or reverse the undo with a redo. Although more frequent with the textual editor
as the probability of making an error increase with the input rate, Gentleman attempts to
responsibilize the User. It offers the ability to undo one step, but it also gives the User a
visual of the deleted elements, which can be restored until permanently deleted, as seen in
Fig. 3.2. Additionally, with the many saving slots, Gentleman encourages the User to use
them frequently to store parts that might be useful at a later time.

3.5.5. Code assistance

Another way to assist our User is with auto-completion, a well-known technique imple-
mented by many applications, very useful when filling out forms on the web [121, 35]. It
has been noted to help prevent spelling errors as well as boost the confidence of the User
[117]. As a projectional editor that follows a fill-in blank flow, Gentleman offers contextual
assistance in the form of autocompletion when the input is textual (characters or symbols).

3.5.6. Search and filter

As a model gain in complexity, looking for a specific element can be quite tedious. With
a filtering mechanism, such a task takes much less time and effort. As a web application,
Gentleman leverages the searching mechanism found in the browser to assist the User in his
task.

3.5.7. State

As previously described in Section 3.3.1, Gentleman offers many cues to keep the User
informed of the state of the model. The breadcrumb gives the state of the active instance
and, in the presence of errors, it can be queried for more details about the nature or source
of the error. The element itself gives various cues such as horizontally shaking as soon an
error is made or coloring the border in red. Lastly, in the footer, the status uses different
icons to inform the User of the state of the model, going from a green circle to a red square
when an error is found.

56

3.5.8. Import/Export

Gentleman does not support a storage facility for models. Storage should be handled by
the application embedding a Gentleman editor. To ease this process, Gentleman offers some
export options to select different formats, namely JSON, XML and Ecore (XMI).
JSON. When using Gentleman as a stand-alone application, it is possible to save the session
with all the created instances as a JSON file. It is the default export format, also used to
import and load a model.
XML. JSON is the preferred choice when interacting with web services. However, many
applications outside the web still prefer XML for exchanging data. To interop with these
applications, Gentleman offers XML as an export format.
Ecore/XMI. Lastly, we have the Ecore (XMI) format. As Ecore is widely used in the MDE
community, it would be beneficial with it. As such, Gentleman offrs a migration tool to
import Ecore models as well as the option to export the Gentleman model into Ecore.

3.5.9. Bootstrapping

The meta-languages used to define concepts and projections have been specified using
Gentleman, making the editor bootstrapped. This technique makes it possible to create
concepts and projections with a familiar language. The user may swap projections directly
from the menu in Gentleman without interrupting his work or losing his created instances,
as seen in Fig. 3.4. Therefore, it is essential to note that all the editor images presented in
this thesis, including those used for metamodelling presented in the following chapters, are
simply one possible view of the underlying concept and may be projected differently.

57

Fig. 3.4. Gentleman editor menu giving access to the loaded concepts and projections

58

Chapter 4

Concept

In Gentleman, the structures that encapsulate the concepts used to define a model are called
concept, inspired by MPS. As such, a model can be viewed as a graph of concepts related
to one another. Gentleman only uses concepts to create the structure of a metamodel,
but there are different types of concepts. Each type encapsulates different behaviors and
restricts the area of action of the concept. This is similar to the differentiation found in OO
regarding classification, where we might use an interface, an abstract class or a concrete class
to communicate different intents in the model. In Gentleman, we distinguish between four
types of concepts: primitive, concrete, prototype, and derivative. Complex structures, such
as a task or a person, will involve many concepts. They will be put in relation in the form of
attributes and properties, which will resolve to a primitive. Fig. 4.1 presents the metamodel
of concepts in Gentleman, which we will explore in this chapter.

Fig. 4.1. Gentleman concept metamodel

4.1. Structure
As presented in the creation of the TodoList concepts, shown in Fig. 4.2, a concept is

identified by its name and its nature, corresponding to the ones listed in the above paragraph.
To allow experts to follow the naming scheme of their choice, little restriction has been put
on the name, therefore allowing numbers, letters, and even special characters to be part of
the name.
Relations. A concept structure is mainly defined by its relations, as shown in the metamodel
in Fig. 4.1. As a concept is put in relation with other concepts, the structure becomes more
complex. For any given concept, an input, like assigning a value, or a request, like verifying
the presence of a value, may require the involvement of other concepts to be processed. Using
the running example, if we consider the Task concept, which encapsulates some characteris-
tics of an actual task when given a string representing the name or a boolean representing
the completed status, it will require the primitive concepts String and Boolean respectively
to be processed. To process the request of the length of the title, which is defined by a String
concept, the Number concept will be needed to output the result. Thus, in Gentleman, a
concept may have two types of relations. To process an input, a concept will use an external
relation, named Attribute, to find the primitive that will process it. To process a request, a
concept will use an internal relation, named Property, to resolve it using primitive operations.

4.1.1. Attribute

An attribute represents an extrinsic characteristic of its parent concept. The attribute
of a concept describes a relation held by the parent with a target concept. It is identified
by a name that is unique within the concept. In this relationship, the target concept may
be parameterized with constraints, similar to how OCL is used to add constraints on class
diagram elements. As seen in Fig. 4.2, defining constraints is simple in Gentleman as the
constraints are defined within the concepts, thereby avoiding scattering the definition of
a concept. As an example, in the TodoList presented in Fig. 3.1, the Priority has two
associations, defined with Task and Label. However, it is likely that these two concepts
use Priority differently, and they might use different default values, or one might need to
restrict the priorities to P1 and P2 only. By defining the constraint in the attribute, every
relation may define its own use of a concept. When using an OO-based approach to create
a metamodel, a relation is defined in terms of multiplicity, which is evaluated against the
value held by the object. Therefore, the relation is always present in the model, whether
it is needed or not, in which case it has a null value. In Gentleman, an attribute may be
optional, meaning that an instance of the parent concept would be valid without a relation
to the target concept.

60

Example. In the TodoList example, every attribute and end association is represented as
a concept attribute. As an example, the target concept of name would be the primitive
concept String. Interestingly, the target concept of tasks, which is a collection, would be the
primitive concept Set, instead of Task directly.

4.1.2. Property

A property represents an intrinsic characteristic of its parent concept. The property of a
concept describes a relationship within itself. As a relation, it is identified by a unique name.
A property draws some similarity with UML derived attribute and query operation, which
is an operation that does not modify the owning class in any way [79]. A property may be
used to define a constant value or a computed value. A constant value would take the form
of a key-value pair, such as a link to the documentation or some metadata. A computed
applies an operation on the current state of the concept without changing it. Whereas the
attribute would make relations with any other concept in the model, a property uses only
the concepts accessible by the parent in its operation. Therefore, a property will result in a
primitive value.
Example. In the TodoList example, we could have a completedTasks property, where the
value is derived from the tasks attribute. It would return a filtered set with only the com-
pleted tasks. Another example could be found in the Recurring concept where we could add
a duration property. It would return the number of days between the start date and end
date.

4.2. Primitive
Primitive data types are the building blocks of most programming and modeling lan-

guages. In Gentleman, they are self-defined concepts and not related to any other concepts,
i.e., they have no attributes. However, they possess properties used to query their state,
such as the length property in the String concept. For better model integration, primitives
are accessible globally to any model. Every concept can be resolved to a composition of
primitives. Gentleman offers the following predefined primitive concepts: String, Number,
Boolean, Set, and Reference. They contain specific properties and constraints that can be
used when defining an attribute to restrict the concept.

4.2.1. String

The first primitive that is needed should give us the capacity to input characters, as this
is how most computer activities are done. In Gentleman, such behavior is encapsulated by
the String primitive concept, which gives the ability to store and manipulate characters. It

61

Fig. 4.2. TodoList concept in Gentleman

62

is also found in most languages and modeling tools, such as UML where it is a primitive,
SQL which has the VARCHAR type, and Excel which has the Text type.
Constraints. As a fundamental element, the domain governed by the String concept is
broad. It is all the possible combinations of all the possible characters. Therefore, as we see
in Fig. 4.2, through attribute, constraints may be defined on the String concept in order to
limit the domain of acceptance. The constraint may target the exposed properties of the
String concept, such as its value, length, or the list of values accepted in the domain.
Operations. When defining computed properties or interacting with a concept, we would
like to invoke or chain operations to avoid manual computation and repetitive actions. As
such, primitives, like the String concept expose some operations such as concatenation,
segmentation (substring), transformation, and comparison. With concatenation, the given
values are chained in the order of entry to result in a single value. With segmentation applied,
a value is created by taking parts of an existing value. With transformation, a mapping is
done on the characters of a value. With comparison, a pattern is used to find similarities
between multiple values.
Example. In the TodoList example, we have many attributes targetting the String primitive,
such as the todo list’s title, the task’s name and even the Priority (see Fig. 4.2).

4.2.2. Number

The following primitive is just as common as the String concept as it gives the ability to
count and perform arithmetic operations. It is the Number concept, which is also defined
as a primitive in UML, and found in most modeling tools. Note that a number can be any
negative or positive integer or a real value of arbitrary length.
Constraints. As a foundation element, the domain governed by the Number concept is just
as large. Therefore, constraints may be defined on Number to refine and restrict the accepted
values. The constraint may target the exposed properties of the Number concept, such as
its value, the list of accepted values, and the use of decimals.
Operations. The Number concept exposes some arithmetic operations such as those found
in OCL [63], making it possible to perform addition, subtraction, multiplication, and divi-
sion. It also gives access to comparison operations to evaluate the equality of two numbers
by leveraging the JS engine.
Example. In the TodoList example, we have a single use of the Number concept, with the
recurrenceDay attribute.

4.2.3. Boolean

The Boolean primitive is very simple when compared to the previous two in terms of
domain, as it is composed of only two values. However, it becomes quite powerful when

63

considering its operations. These operations allow us to perform boolean algebra, which is
useful for creating complex properties. The boolean concept, being a small domain, defines
no constraint.
Example. In our TodoList example, we have a single use of the Boolean concept, with the
completed attribute.

4.2.4. Set

The next primitive is not as common as the previous ones and actually missing in UML
and MPS as a primitive. It is the Set concept, which is usually left as a complex datatype in
most programming languages or dealt with in execution such as in OCL. However, this creates
significant friction when metamodeling with UML as the set is implicit (using cardinalities)
and cannot be dealt with separately. As it is strictly defined and bound by a type, this
makes it difficult for the set to evolve and accept other types, which could be dealt with by
generalizing the type. However, such a generalization is not desirable as it does not reflect
the domain but instead solves a technical limitation. Therefore, in Gentleman we have the
Set primitive, defined in a similar way as ComplexType found in XML schema [107].
Constraints. The Set must have a target concept, which may be of any nature, and may
be constrained to an OrderedSet, which would take the index into consideration when ma-
nipulation the set elements. It exposes a single property, the cardinality, as show in Fig. 4.2
where it ensures that the tasks (set) will have at least one task. It is important to note that
simply having a relation, signified by the required attribute, does not imply the presence
of a task. We could have a relationship with an empty set. The cardinality can be restricted
to limit the minimum or the maximum number of elements accepted in the set.
Operations. The Set concept exposes some operations to manipulate its elements and query
the set. As an example, it could be queried for the existence of an element, verify if it is
empty or if it is disjointed with another set.
Example. In the TodoList example, we have two examples of Set with the list of tasks and
the list of labels. As previously mentioned in the Attribute example, the TodoList concept
has a relation with the Set concept which has a relation with the Task concept if we consider
the task list.

4.2.5. Reference

In some programming languages, such as C [87], pointers are used to create references
and to dynamically manipulate memory addresses. However, such ability is lost in the high
level of abstraction of OO metamodeling. Similar to Set, in UML, references are left implicit,
and as such, configuring them is tedious, often requiring complex OCL constraints to define
their scope. This is addressed in MPS with reference constraints that allow the scope to

64

be explicitly defined 1, to have references pointing at a restricted set of allowed targets. In
Gentleman, we have a Reference primitive to make and manipulate references as first-class
citizens, just as a string or a number. It is important to differenciate it from an Attribute,
which is a relation and may not be manipulated but only navigated.
Constraints. A reference with no constraint may point to any concept, which might be
helpful for annotations but not desirable for most scenarios. As we have our implicit refer-
ences in a UML class diagram, we want at least the target type to be defined, which will
be the first constraint to be defined. Following this is the scope, as not all elements of this
type would be valid candidates. Gentleman defines the scope as a query that will be used at
runtime. The query is created with the target concept and its hierarchical relationship with
the reference.
Example. In the TodoList example, we have one attribute, the task labels, targetting the
Reference concept through the Set. As enunciated in Section 3.2, we would like our tasks
to refer only to label found in their parent todolist. This is achieved by simply limiting the
scope to the target concept TodoList, which has a parent relation with.

4.3. Complex
Having seen the primitives, we can now build complex structures with them.

4.3.1. Concrete

A concrete concept represents a regular concept of the model and is comparable to a class
in OO. Unlike a primitive, it is specific to a model and must have a relation with another
concept.
Example. In the TodoList metamodel shown in Fig. 3.1, every declared concept, with the
exception of Task and Priority, is a concrete concept, and we can see that they all present
at least one relation or one attribute. The Single Task inherits the relations defined in the
Task concept, as seen in Fig. 4.2.

4.3.2. Prototype

Gentleman borrows some notions from the OO paradigm, but also from prototype-based
programming [19], as concrete concepts are the only means to model applications. A proto-
type creates a base skeleton to provide reusability and extension to concepts of the model.
It could be seen as a non-empty starting point for another concept to build from. Any con-
cept can reuse a prototype and would inherit its attributes, which may be redefined in the
concept. Prototypes follow the Liskov substitution principle. If the target of an attribute is
a prototype, then any concept reusing it can also be the target. In this case, any property
1urlhttps://www.jetbrains.com/help/mps/scopes.html

65

or constraint defined on the attribute would still hold. Lastly, a key advantage of having
a prototype as a self-sufficient entity with its own state and behavior is to be able to use
projections directly on it, which is not possible with OO-based solutions such as MPS. In
this case, additional rules are needed as an abstract class cannot be instantiated.
Example. In the TodoList example, Task is represented as Prototype concept, reused by
the Single and Recurring concept. As an example of overriding, the name attribute could
be further constrained in Recurring, such that it would end with a digit representing its
recurrence.

4.3.3. Derivative

We have seen how to extend and reuse complex concepts, but it is not always needed
to create new relations to express a characteristic of a concept. Instead, we could specialize
existing relations and combine them to create new ones. This brings us to the Derivative
concept, in which the structure is derived from another concept, called base. Every value
that a derivative can capture must also be valid for its base concept, a primitive or concrete
concept. When the base is a primitive, it can serve as a form of specialization. As described
in the previous section, constraints may be used on primitives to restrict the values that
should be accepted. When the base is a concrete concept, the derivative could be used to
define computed properties.
Example. An enumeration would usually be translated into a derivative. As such, in our
TodoList example, Priority would be represented as a Derivative of String with a constraint
on the accepted values.

4.4. Comparison with OO
As shown throughout this chapter, concepts in Gentleman holds some similarities to class

in OO. In this section, we highlight those similarities by describing the migration of an Ecore
model into a Gentleman model.

4.4.1. Modelling in EMF

First, it is important to note that EMF is a modeling framework and code genera-
tion facility for building tools and other applications based on a structured data model.
Whereas Gentleman is being developed specifically for DSM, EMF is much larger. As such,
it is missing some special metamodeling concepts such as Model. Nonetheless, Ecore is
the de-facto reference implementation of OMG’s Essential Meta-Object Facility (EMOF).
A simplified subset of Ecore is shown in Fig. A.1 and a detailed version can be found in
[12]. The main elements of Ecore are EClass, EReference, and EAttribute. At the root
of an Ecore model is a package containing classifiers . A classifier can either be an EClass

66

or an EDatatype. EClasses can have EReferences that express unidirectional relationships
between two EClasses. An EClass can additionally have EAttributes to express properties
of the EClass. The range of the attribute values is specified by a data type such as EInt,
EString, or EBoolean. EFeatures can be ordered

4.4.2. Mapping

The mapping of concepts is shown in the Table 4.1. Some elements supported by Gentle-
man, such as properties, are not presented in the table as they have no equivalence in Ecore.
An EPackage, being the root of an Ecore model, is mapped to a Model element with the
same name. Note, however, that these two concepts do not share any semantic properties;
they are mapped because they serve the same function as a container of the metamodel
elements. An EClass can be mapped to a Prototype element, an Abstract element, or a
Concrete element if it is an abstract, an interface, or neither respectively. The name and
relations to the EAttributes and EReferences are preserved. They are both mapped to an
Attribute element. If the EAttribute has a multiplicity higher than 1, the corresponding
Attribute will have a type Set.

Ecore Gentleman
EPackage Model

EClass (abstract or interface) Prototype
EClass Concrete
EEnum Derivative

EDataType Primitive
EAttribute (many) Set

EAttribute Attribute
EReference Attribute

Table 4.1. Mapping between Ecore and Gentleman concepts

4.4.3. Transformation

Gentleman supports importing a metamodel defined in Ecore into a Gentleman model.
To this end, we implemented a transformation chain that can be executed directly in Eclipse.
The transformation is two-fold. First, we apply a model-to-model transformation, following
the mapping presented in Table 4.1, with the ATLAS Transformation Language (ATL), a hy-
brid model transformation language that allows both declarative and imperative constructs
to be used in transformation definitions [45]. The transformation rules can be found in
Listing A.1, with the Gentleman metamodel in Ecore presented in Fig. A.2. With the gener-
ated model, we apply a model-to-text transformation with the Epsilon Generation Language
(EGL), a model-driven template-based code generator built atop Epsilon [89]. It serializes

67

the model in the JSON format supported by Gentleman. The transformation rules can be
found in Listing A.2. As components of the Eclipse Modeling Project, Eclipse will be used
to execute the transformations.
To apply the ATL transformation, an input and output metamodel are required. The in-
put metamodel will be Ecore, and the output will be Gentleman Ecore model, Gentleman
metamodel defined with Ecore. It will also be used in the EGL transformation.

68

Chapter 5

Projection

In Gentleman, as a projectional editor, the concrete syntax is defined with projections that
are bound to concepts. As explained in Chapter 3, multiple projections may be defined for
a concept. A projection is a light interchangeable and composable enveloppe that fits the
user’s view and the task requirements in order to manipulate a concept and thus a model.
Fig. 5.1 presents the metamodel of projections in Gentleman, which we will explore in this
chapter.

5.1. Structure
As a representation of a concept, a projection can be visualized and interacted within

the GUI. Unlike concepts, which may be categorized by type, as described in Chapter 4,
projections have no such distinction. A projection is the collection of views composed of

Fig. 5.1. Gentleman projection metamodel

Fig. 5.2. TodoList projection in Gentleman

many smaller elements, put together to interact with a concept and navigate its structure,
as seen in the metamodel in Fig. 5.1 . The elements that compose a projection are classified
as layouts, interaction points, static elements, and relation functions. They shape the body
of a projection, which may be customized with styling rules, added as the final layer.
Binding. In Gentleman, projections are loosely configured and use a late-binding approach
to maximize their modularity and flexibility. Although there is a definite correspondence
between a projection and a concept at runtime, this binding is not strictly specified in its
definition. A projection declares an assertion that specifies which concepts may be used
with it, using properties such as name and prototype. The editor uses that assertion when
looking for a projection compatible with a given concept. This allows a projection to target
a prototype concept and thus every concrete concept that implements that prototype.
Tagging. This dynamic behavior and loose coupling is also observed for projection compo-
sition. A projection follows the structure of a concept, which may have relations with other
concepts, having their own projections. The name or one of the tags may be used to target a
projection, similar to CSS class and id selectors, to select which projection will be displayed.
As the name is unique, if used, the projection will have a single or no solution. However,
using a tag will return a collection of projections as many projections may define the same
tag.

5.2. Layout
A layout is essential to any graphical representation as it organizes the projection elements

presented in the GUI. It indicates the initial location of its child elements and creates a flow

70

of constraints that they follow. In Gentleman, to define the scope governed by a layout,
it is associated with a container that can be configured with options, such as movable and
resizable which allows a container to be repositioned in a parent container and change the
rendered box size, respectively. Gentleman offers predefined layouts found in modern GUI
technologies [84] and frameworks such as Xamarin [36] and SWT [34].

5.2.1. Flex Layout

The FlexLayout leverages the Flexbox layout defined in CSS [3]. The direct children
of the associated container children elements can be laid out on one axis (either horizontal
or vertical), and these child elements can automatically grow and shrink to fill the space
available without overflowing the parent container [33]. This makes it simple to position
content while retaining the flexibility to introduce additional sibling elements later.
Example. In the TodoList example, the FlexLayout is used extensively and exclusively to
organize elements vertically and horizontally. As a layout may contain any element, including
another layout, a Todo is structured vertically first, with a header where we find the title
and a body, which shift the flow horizontally. The body is split into two vertical flex-layout
to organize the tasks and the tags.

5.2.2. Table Layout

While powerful, the FlexLayout deals with only one dimension. However, some entries,
such as tabular data, require a second dimension to coordinate the elements. In Gentleman,
this is made possible with TableLayout, which arranges its elements in a table that can either
be row-directed or column-directed and is divided into three sections: an optional Header
and Footer presented at the top and bottom of the table respectively, and a Body that may
itself be divided into subsections. They all contain cells organized in rows or columns. A
cell may span across multiple rows or columns and may contain child elements.

5.3. Interaction points
An interaction point, called Field in Gentleman, is concerned with manipulating the

value of a concept; thus, it enables data input and output. It offers data-specific controls,
which provide more structure to help users quickly scan and comprehend the information
presented [43]. It provides an abstraction for the underlying widget (control element) to
promote reusability and portability. It uses a modular approach to select the right widget
for the intent of the user. Gentleman offers fields that cover the most fundamental widget
components in GUIs [32]. Fields also have generic properties to specify, for example, if they
are read-only, disabled, or hidden.

71

5.3.1. TextField

As our interaction with computers is rooted in typing, even with the popular use of GUI,
textual input is still an important interaction [62]. It then follows that in order to accept
models that require textual inputs and in alignment with the web environment, Gentleman
offers the textfield. It allows the user to input characters and is represented as single-
line textbox or multi-line textbox depending on the requirements (configuration). In order
to assist the user with the entry, a textfield may provide some assistance in the form of
autocompletion [72]. Naturally, it is used to interact with a String or Number concept, both
capable of parsing textual input.
Example. Let us consider the Priority concept, which is limited to four values and defined
as a Derivative concept in Gentleman. As it is based on a String, a textfield is used to
interact with the concept, as seen on the right of Fig. 3.2. During the interaction with the
field, the user may query the field for the list of accepted values. Similarly, we see that the
reference attribute which targets a Number is also interacted with using a textfield.

5.3.2. BinaryField

Just as essential as the textbox is the checkbox according to [91]. However, as a gener-
alization of the interaction, we found that it may be presented as an element that alternates
between two states. Thus in Gentleman, we have the BinaryField filling that role. As seen
in Fig. 5.1, each state (true, false) may define its own representation. Generalizing the be-
havior like so frees the designer from the boundary of the mark to indicate a change in state.
Naturally, it used to interact with a Boolean concept, but may also be found useful against
a derivative presenting two values such as the result of a coin-flip.
Example. In our Todo example, the completed status of a task is a natural fit for the binary
field, presented as a customized checkbox in this case.

5.3.3. ChoiceField

It is not always necessary or desirable for the user to enter any value in our model, but a
binary choice might be too limited to fully express the list of possible values. For this reason,
we introduce the ChoiceField, which allows the user to select one item in a predefined list.
Similar to the popular PHP framework Symfony 1, depending on the configuration of the
ChoiceField, it might resolve to a radio-button list or a combo-box. Such a field is very
practical when interacting with a Prototype concept where the user needs to choose the
implementation to use or a Reference concept that accepts specific candidates.

1https://symfony.com/doc/current/reference/forms/types/choice.html

72

https://symfony.com/doc/current/reference/forms/types/choice.html

Example. In Fig. 3.2, we have an example of both. At the top of every task, the concrete
implementations of the prototype concept Task are listed as radio buttons. In the task
options, at the right, a combo-box is presented to make a reference to an existing tag.

5.3.4. ListField

An interaction may deal with a single element as described in the previous fields, but may
also deal with collection of elements. In Gentleman, such an interaction is made possible
with ListField which allows the user to manipulate a collection of values. It gives the user
the means to add and remove items in the list and may be provided with templates for each
of its items. It is dedicated to interacting with a Set concept.
Example. In the todo example, we have two instances of the ListField to manage our set
of tasks and labels. Though they use the same field, we can note that the layout and
presentation of the buttons as well as the elements are quite different. Indeed, ListField
manages the interaction with the collection while allowing its content and controls to be
freely customized.

5.4. Static element
Programs and models interactions are not purely restricted to value input and action

trigger, as to do those well, the context needs to be understood. Moreover, a model may
use in an activity that does not require it to be modified but queried for information. As
noted by [101], static elements, such as symbols and keywords, have a significant impact
on program comprehension. Gentleman presents several types of Static elements to ease the
process of program comprehension and enable rich projection.

5.4.1. Text

Textual content as decoration can play a very crucial role in understanding a model.
This is demonstrated with graphic visualization, which without text can be impossible to
decipher [98] or with forms where labels provide great insight to fill out the fields [40]. In
Gentleman, StaticText allows you to display text, which may be printed as HTML for richer
content.
Example. In our TodoList example, the titles and labels such as “Tags ”and “Priority ”,
respectively, are provided as StaticText. This helps the user quickly understand the type of
content of a section and fill in the fields with assurance.

5.4.2. Image

An image may convey information a lot quicker than text. As a decorative element, we
can distinguish between icons and graphics, which are symbolic, and pictures, which create

73

a theme in the surrounding area. In Gentleman, StaticImage allows you to display any
web-supported image, which may even be animated for richer content.
Example. In the TodoList example, there are several instances of StaticImages. At the top
of a TodoList, we have an icon that is symbolic of a list, which sets the tone for what is
coming next. The types of task to choose from have also been rendered with icons which
creates a cleaner interface and reduce the cognitive required to parse the type.

5.4.3. Link

With the previous two, we can already create rich projections. However, as the editor
runs on the web, we may want to create a hyperlink to a guide, documentation or any
resource that could help in the creation of a model. In Gentleman, StaticLink allows the
user to create hyperlinks to external resources.

5.4.4. ViewSwitch

A link as described above allows us to navigate to external resources, but there might
be a need to navigate inside a projection. This scenario is central to multi-projections,
where multiple projections are used to manipulate a concept. In order to navigate amongst
the different views, Gentleman introduces ViewSwitch. It may target any alternate view
currently found in the projection by using the tag or name to find the view.
Example. This is very useful when dealing with complex concepts. In this case, we split
the attributes into separate views, which may be accessible via a tabular structure, where
a tab is a ViewSwitch that switches the projection to a view. A more simple example is to
provide a collapsed view where a ViewSwitch could be used to switch the projection for a
much simpler one, presenting fewer elements.

5.4.5. Button

In order to encapsulate an action and give the user the ability to trigger it, a button is
usually required. In Gentleman, a button is called StaticButton and rendered as such in the
projection. A StaticButton may be used to broadcast a message on the editor, which we will
trigger the subscribe handlers or invoke an operation on the underlying concept.
Example. In the TodoList example, a StaticButton is displayed next to the label title, to
create a new label. When clicked, it sends a request to the Set concept used to manage the
labels. The Set creates the label and notifies the registered ListField, which displays the
newly added label. Another instance is found in the header of a task, where a three-dot
button is used to access the task options. In this, case a message is sent to the editor, which
triggers a handler that opens a window on the right to configure the options.

74

5.5. Relation function
One of the key features of a projectional editor is language composition as described

in Chapter 2. In Gentleman, in order to connect a projection to another projection, thus
making projection composition, we use relation functions. A relation function is rendered
as a dynamic element that targets a relation of the underlying concept. Projections are
composed together following the concept relations. As such, an attribute may be projected
to connect a parent projection to another compatible with the attribute target concept. The
target projection is selected based on the parameters, such as the projection tag given to the
function.
Example. In our running example, the TodoList projection is composed of a Textfield for the
title and a ListField for our tags. This conforms to the relations of a TodoList concept defined
in the metamodel. Returning to our example, we can note different types of representation
of Textfields. This showcases the selective properties of a relation function, targetting the
proper projection with the underlying concept.

5.6. Template
Templates favor reuse following the principle of write once, produce many [106], such

that a segment may be reused in various contexts. The degree of complexity of a template
lies in the implementation of its dynamic part [61], where a template might be a block of
content reuse in different places, such as the footer of a webpage, or it might define a generic
behavior that will change form depending on the context. In Gentleman, a template may be
defined and referred to by a projection.
Example. In the TodoList example, we see that, regardless of the task, we have a common
part that contains the name, describe and status (checkbox). For this, the Single task and
Recurring task use a template where those elements are defined.

5.7. Styling
Any projection can be complemented with style rules to describe its presentation. Styles

can be defined directly in the Gentleman editor or imported. Style can be applied to any
element of a projection. It follows the box model defined in CSS. For example, users can
set the font, color, and alignment of text and the border of a table. The former can either
target the text content or the container by defining a TextStyle or a BoxStyle respectively. To
avoid repetition and encourage better integration, Gentleman leverages browser technologies,
offering full support for CSS class selectors. Like so, changing the appearance of a projection
could be achieved by changing the stylesheet loaded on the page. Following best practices of
UI library such as Bootstrap [99] or Materialize [80], every element exposes a set of standard

75

classes representing the type and state of the element. As an example, every field has a class
named field, which for a textfield is complemented by field–textbox. When no value is
held by the textfield, the empty class is assigned to it. Similarly, the class error is used to
indicate the presence of errors. This open approach enables the designer to declare global
styles through CSS and specific context-based rules in Gentleman.
Text Style. A TextStyle allows the designer to describe and format the presentation of the
text. The available properties are: Bold, Italic, Underline, Strikethough, Color, Font (font
family), Transform.
Box Style. A BoxStyle concerns itself with the container. The available properties are:
Inner space (padding), Outer space (margin), Width, Height, Border, Background, Box
shadow.

76

Chapter 6

Evaluation

We have evaluated Gentleman with a user study to show its effectiveness and usefulness.
This study aims to show the effectiveness of modeling with a projectional editor using a
structured approach, as presented in Chapter 5. To showcase Gentleman interoperability, it
has been successfully integrated into a complex software developed with MDE technologies.

6.1. User study
In order to study the effectiveness of Gentleman, it will be compared to an existing

projectional editor. As discussed in Chapter 2, MPS is a valid candidate and representative
of the state of the art of projectional editors. MPS uses a cell-based approach to arrange its
projections, where each element (presented on the UI) occupies a cell. The cells are stacked
vertically and horizontally, resulting in a flat layout. Although MPS supports multiple
notations, it most frequently textual, and thus the interaction is similar to a textual editor
as described in Section 2.3.1. Gentleman, as described in Chapter 5, uses a container-based
approach to arrange the projections and widgets to interact with them. As containers can
be boxed, the layout may present multiple levels. The syntax found in a typical Gentleman
editor is very diverse, as we saw in the TodoList example Fig. 3.2, which is composed of
static content such as text and icons, buttons and widgets such as textbox and checkbox.

6.2. Objectives
The goal of this study is to evaluate the effectiveness of Gentleman, with respect to its

efficiency and usability, from the point of view of domain experts in the context of graduate
students and industry practitioners, performing modeling activities.

To do so, we formulate the following research questions.
RQ1: “Does the approach used by Gentleman improve the user’s productivity compared to
existing projectional editors?” In this question, we observe and compare the user’s efficiency
and the number of errors made during the activity with Gentleman and MPS.

RQ2: “Does the approach used by Gentleman improve the ability to understand a model
compared to existing projectional editors?” In this question, we observe and compare how
accurately the participant assesses the model’s state and how easy it is to change it with
Gentleman and MPS.

6.3. Study design
To answer the research questions stated above, we conducted a controlled experiment.

6.3.1. Setup

To perform this experiment, we used a Windows 10 machine (Dell XPS 13 9380, 8GB
RAM) connected to a wide monitor (24 inches), with the developed software, as well as the
support software such as the Chrome browser and PDF reader. In order to facilitate and
accommodate the participants, we performed the experiment remotely using the software
Anydesk to connect the participant to the machine. Every instance of the experiment was
conducted by me, with one participant for each session. In this experiment, I acted as the
supervisor. I introduced the experiment, explained each task, and signaled the beginning
and end of a task. Although the participant had access to the web for documentation, I
provided technical support during the task as a knowledgeable user of both tools. As this
was a remote experiment, our interaction was done through the videoconferencing platform
Zoom, thus enabling audio and video feedback.

6.3.2. Participant

We sent a call for volunteers to enroll participants for this study, emphasizing that no
prior knowledge of either tool was required. As the tasks were about concrete modeling
and not metamodeling, knowledge of MDE was also not a prerequisite. We followed a con-
venience sampling by sending invitations to research groups and industry practitioners of
our knowledge. We had 22 volunteers responded to the call and participated in this study,
with 12 from academia (researcher and graduate students) and 10 professionals from various
industries, including software engineering. Appendix C.1 presents the profile of the partic-
ipants. Most of them had a graduate degree, with varying years of expertise in computer
science ranging from 3 to 33. Two participants had no experience with computer science,
which added some diversity to the group. They had varying expertise of MDE, ranging
from 1 to 18, with the majority considered as a novice in MDE. Most of the participants
had almost no experience with projectional editing, with only six with more than two years
of experience (with MPS). A month before the experiment, we performed a run-test with
a volunteer to get some feedback regarding the experiment process and the setup. We did

78

not consider the data from his session in the following analysis. Many coming from a pro-
gramming or software engineering background are used to a type of editor. To reduce any
form of cognitive bias towards the editing experience, we chose participants from various
backgrounds. To remove any bias or familiarity effect, we divided the participants into two
groups and had them do the experience using both tools in a different order.

Group A: First completed all tasks with Gentleman and then completed the same
tasks with MPS.

Group B: First completed all tasks with MPS and then completed the same tasks
with Gentleman.

6.3.3. Experiment process

The user study was conducted in individual sessions, divided into three parts: the intro-
duction, the experiment, and the feedback. In the introduction, we presented the experiment,
went through the tool’s documentation, and provided a hands-on tutorial that lasted about 5
minutes. The tutorial helped them familiarized themselves with the UI and the editor main
interactions. As it was a modeling activity, the projections and concepts used in the editor
were prepared beforehand. The experiment was divided into a sequence of three distinct
modeling tasks. The first two were concerned with creating a model, and the third focused
on evaluating an existing model. After completing the three tasks with the first tool, we
repeated the same procedure with the other tool, starting with the documentation and the
tutorial. For the tasks, the participants used the metamodel of a traffic light (TL), presented
in Fig. 6.1. As most participants were discovering new tools, we did not impose any time
constraints. However, as an indication of the difficulty level, we communicated an estimate
of the time required to accomplish the task. This time was based on the time taken by
someone familiar with the tool but not with the projections (syntax). After completing the
tasks, we asked them to complete a survey. For most participants, the experiment lasted
about an hour.
Traffic light metamodel. A traffic light is modeled as a state-machine system. A State is
identified by a name and is related to other states through behaviors, which can either be
temporal or manual. A Temporal behaviour indicates the time to wait by specifing a value
and a unit, limited to s, ms and min. A Manual behaviour indicates the event that will
trigger the transition. As a traffic light system, the state will either be a light or a mode. A
Light is a state identified by a color, limited to 5 colors. A Mode is a state composed of at
least one light and indicates a start light.
Traffic light editor. Similar to the tutorial, the projections, and concepts used in the editor,
were prepared beforehand. Fig. 6.2 and Fig. 6.3 show the editor of a participant modeling
in Gentleman and MPS, respectively. The projections were created to be as user-friendly as

79

Fig. 6.1. Traffic Light metamodel

LIGHT TRANSITION
Name Color Type Value Target
Stop Red Temporal 15s Go
Slow Yellow Temporal 5s Stop
Go Green Temporal 30s Slow

Table 6.1. Requirements for the TL model of task 1

possible to showcase the best features of each editor. Gentleman’s editor presents a mix of
notations. Each light and mode has an icon next to it to communicate the type of content.
As the participant types the color, it is displayed next to it, helping them confirm the choice.
The type of behaviors are exposed so that the user does not have to guess and make it easy to
switch behavior. MPS’ editor presents a rich textual notation. The keywords are colored to
distinguish them from the entered value. Similar to Gentleman, the color typed is displayed
next to the value.
Task 1. As this was their first use of the tool, after the tutorial, the first task presented
a reduced version of the metamodel, as shown in Fig. 6.4. The focus here was less about
the complexity of the model and more about the difficulty found in the tool to create a
simple model, similar to the one used for the mind map tutorial. Therefore, at this stage,
the participant was only asked to create lights and behaviors. The requirements for this task
were to create three lights and assign to each light a temporal transition that would link it
to another light, as presented in Table 6.1.

80

Fig. 6.2. Gentleman Traffic Light editor

Fig. 6.3. MPS Traffic Light editor

81

Fig. 6.4. Traffic Light initial metamodel: task 1

MODE TRANSITION
Name Lights Initial light Type Value Target
Normal See table 6.1 Stop Manual signal Police
Police See table below On Manual signal Normal

LIGHT TRANSITION
Name Color Type Value Target
On Yellow Temporal 2s Off
Off Black Temporal 2s On

Table 6.2. Requirements for the TL model of task 2

Task 2. With the experience from task 1 and the tutorial, we assumed that the participant
gained enough familiarity with the tool and could tackle a more complex model. For the
second task, we revealed to the participant the complete metamodel, as shown in Fig. 6.1.
The difference with the metamodel of task 1 is the addition of the mode concept. To evaluate
his performance in a refactoring operation, the participant was asked to modify the existing
model. They had to change the model to conform to the new requirements, presented in
Table 6.2. They had to create two modes, named normal and police. The normal mode
reused the three lights created in task 1, and the police mode defined two additional lights.
The two modes had a manual behavior to transition to the other.
Task 3. At this stage, with tasks 1 and 2 completed, we assumed that the participant gained
enough familiarity with the syntax to evaluate an existing model using the same syntax. To
avoid a bias towards the evaluated model, which might make the task too easy or too hard, we

82

MODE TRANSITION
Name Lights Initial light Type Value Target

Automatic See table below GL Any Any Any
LIGHT TRANSITION

Name Color Type Value Target
GL Green Any Any YL
YL Yellow Any Any RL
RL Red Any Any GL

Table 6.3. Requirements for the TL model of task 3

created ten different models and randomly chose one for each participant. Therefore, in task
3, they were presented with a model containing several semantic errors. The requirements
used to validate the model is presented in Table 6.3. In this scenario, no constraint was
defined on the type of transition, indicated by the word Any in the table. They were asked
to identify the errors and explain the kind of the error. This activity was done orally, using
the mouse to point the error in the model. After the participant confirmed that he was done
reviewing the model, we asked them to apply the changes to obtain a valid model.

6.3.4. Feedback survey

At the end of the experiment, the participant was invited to complete an online survey, to
gain further insight into their experience. The goal of this survey was to identify the partici-
pant background and collect subjective evaluations of our approach and gain feedback about
the proposed solution. The survey consisted of 10 identification questions to create their
profile, focusing on their experience with modeling and with projectional editors. Following
that were 10 questions regarding their experience with Gentleman and the same questions
again with MPS. Those questions were formulated as statements and nswered using a five-
point Likert scale with 1 indicating strong disagreement with the statement and 5 indicating
complete agreement. The survey was taken in the presence of the supervisor to clarify the
questions. Appendix C.2 presents the complete survey.

6.4. Metrics
In order to measure quantitatively the effectiveness of our approach, we identified several

metrics.

6.4.1. Independant variables

The independent variables are mostly the participant background identified in the survey.
In addition to those, we added the task in itself as well as the tool.

83

6.4.2. Dependant variables

In order to gather cohesive metrics, we created four distinct categories: mechanical effort,
cognitive effort, completion, and error.
Mechanical effort. The mechanical effort variables targets the perceived actions that are
the direct result of a mechanical movement such as the movement of the mouse or a key
being pressed.

NB_Selection: Number of selection. A selection is either a mouse click or the end of a
pressed navigation key.

NB_Blank: Number of blank selection. It occurs when the selection does not change the
focus or the state of model, such as clicking on an already focused textbox.

NB_Miss: Number of miss selection. It occurs when the wrong selection is made, such
as clicking on the wrong button.

NB_CtxtChange: Number of tab or window change.
Cognitive effort. The cognitive effort variables target all the activity during a task that
is not captured by the tool, such as idle time or taking a pause to ask the supervisor some
questions.

T_Idle: Idle time. It begins after 2 seconds of inactivity, such that no mechanical effort
is produced, and the editor is not executing an operation.

T_QA: Question and answer (QA) time. It begins after 3 seconds of interaction with the
supervisor. This is to dismiss validating questions.

NB_Idle: Number of idle occurences.
NB_QA: Number of QA occurences.

Completion. The completion variables target the total time taken to accomplish a task and
consider the help given by the supervisor that was crucial to the completion of the task.

T_Total: Total time taken to complete the task.
NB_Block: Number of occurences when the user was blocked in his task, and requested

some assistance.
Error. The error variables target the mistakes of the participant, which result in a non-valid
state, and his ability to notice the error and correct it.

NB_Typos: Number of typos. These include wrong inputs such as “YELO” instead of
“YELLOW” or “red” instead of “RED”.

NB_DesignErr: Number of design errors. They occur when the requirements are not
respected, such as selecting the wrong type of behaviors.

RT_Detection: Detection rate. The ratio of the total number of errors and the number
of errors found.

RT_Recover: Recovery rate. The ratio of the total number of errors and the number of
errors corrected.

84

T_Recover: Total time taken to recover from all the errors following their detection.

6.4.3. Survey variables

The variables gathered from the survey are listed in Table 6.6. They are presented in the
same order as the question to which they are attached, presented in Appendix C.2.

6.4.4. Null hypothesis formulation

With our variables identified, we can formulate the null hypothesis that will help us
answer our research questions.

H0,Mec_Effort: The tool does not impact the mechanical effort required to accom-
plish a task with a projectional editor. Here we consider the following variables:
NB_Selection, NB_Blank, NB_Miss, NB_CtxtChange.

H0,Cog_Effort: The tool does not impact the cognitive effort required to accomplish a
task with a projectional editor. Here we consider the following variables: T_Idle,
T_QA.

H0,Com_T ime: The tool does not impact the time taken to accomplish a task with a
projectional editor. Here we consider the following variables: T_Total.

H0,Err_Number: The tool does not impact the number of errors produced during a task
with a projectional editor. Here we consider the following variables: NB_Typos,
NB_DesignErr.

H0,Err_Recover: The tool does not impact the ability to recover from errors with a pro-
jectional editor. Here we consider the following variables: RT_Detection, RT_Recover,
T_Recover.

H0,Usability: The tool does not impact the user experience of projectional editors with a
projectional editor. Here we consider the survey variables.

6.4.5. Data collection

After the confirmation of consent from the participant at the beginning of the experiment,
the session was recorded using ScreenCast 1, which captured the screen content as a video.
This included the interaction with the PDF reader and other manipulations such as opening
a browser window. During the activities, no notes were taken. Instead, we recorded the
audio using Zoom 2, to provide better insight as to the intent behind an interaction or
lack of interaction. Lastly, although Screencast distinguishes the clicking effect of a mouse,
we used a dedicated tool, Teramind 3, to monitor mouse and keyboard interactions. To

1https://screencast-o-matic.com/
2https://zoom.us/
3https://www.teramind.co/

85

https://screencast-o-matic.com/
https://zoom.us/
https://www.teramind.co/

protect the privacy of the participants, all the collected data was anonymized. After every
experiment was over, we analyzed the videos and collected the relevant information from
reports generated by the software, and then we destroyed the recorded data as per the
agreement mentionned to the participant. At the end of the session, we collected the answers
to the survey to contextualize the directly collected data. We statistically analyzed the
collected data for each metric using the software SPSS 25 4.

6.5. Results
Before we begin our analysis, it is important to consider the effect of the order of the tool

on the results. This preliminary analysis was done to compare means and variance between
each group, using a confidence interval of 95%. It was concluded that the order of the tool
had no significant impact on the survey results nor the performance metrics, listed in 6.4.
Appendix C presents a complete report of the tasks and the survey.

6.5.1. Descriptive statistics

To begin our analysis, we will first consider measures of center, such as the mean, median,
and mode. In the tables presented in the Appendix, for the performance metrics safe of
RT_Detection and RT_Recover, a lower number is considered better, as we are aiming for
efficiency. For the survey, the opposite is observed as it reflects the degree of appreciation.
Task 1. For task 1, considering the mean, participants performed better using Gentle-
man than MPS, but with various degrees. The most important differences are found in
the mechanical effort and completion time. On average, a participant produced 10 more
NB_Selection with MPS than with Gentleman and 3 more NB_Blank. However, the differ-
ence in terms of (NB_Miss) is only 0.46. For NB_CtxChange, on average, a participant produced
8 occurrences with MPS and none with Gentleman. In terms of time, on average, a partici-
pant took 90 more seconds to complete the task with MPS than with Gentleman. Looking
at the minimum, which reveals the best performance with each editor, they produced (for
most variables) the same result. However, the maximum is much higher on MPS case for
most variables. In terms of variability, participants produced a much larger distribution
with MPS than with Gentleman, especially for the mechanical effort variables. Lastly, we
note two instances where a participant needed critical help (NB_Block) for MPS and none
for Gentleman.
Task 2. For task 2, except for NB_Miss, every other variable indicated a better performance
with Gentleman than MPS. However, in terms of mechanical effort, the difference between
the two has reduced, with 6 more selections with MPS, compared to the previous 10 and
slightly more miss (NB_Miss) with Gentleman. The difference for NB_CtxChange remained
4https://www.ibm.com/docs/en/spss-statistics/25.0.0

86

https://www.ibm.com/docs/en/spss-statistics/25.0.0

just as important as task 1, but the difference in total time dropped to 60 seconds, still in
favor of Gentleman. For this task, we note some differences for the minimum. It is lower
in the case for Gentleman for the NB_Selection and T_Total, indicating that the best user
performed better with Gentleman. Similar to task 1, the maximum is higher for MPS. Lastly,
we note two instances where again a participant needed critical help for MPS and none for
Gentleman.
Task 3. For task 3, there is very little difference between MPS and Gentleman, with most
variables giving a slight edge to Gentleman. During this task, a participant triggered an
internal error (NB_Bug) in Gentleman and none in MPS.
Survey. In the survey, for Gentleman, like the results of the tasks, most participants strongly
agreed with the statements. The weakest point in the participant experience with Gentleman
is the navigation with the keyboard (NavKey). However, it should be noted that only 10
participants were considered as the rest navigated using only the mouse. All the other
variables indicate, on average, a score greater than 4.5 with a minimum between 3 and
4. For MPS, the average score was a point lower, indicating simple agreement with the
statements. The result distribution, in this case, presents a lot of variability towards a lower
score than its median of 4. The minimum for MPS mainly oscillated between 2 and 3, with
a few participants strongly disagreeing with some statements, such as It is easy to remember
the controls and commands of the editor and It is easy to know what actions are expected
from me or available to me at any point int time.

6.5.2. Statistical signifiance

To see whether those differences are significant, we conducted Levene’s test to assess
between-group variance differences and a one-way between-subjects ANOVAs test with
posthoc tests to assess between-group mean differences using the tool as the independent
variable. Table 6.4, Table 6.5 and Table 6.6 presents the ANOVA for tasks 1, 2, and the
survey, respectively. The significant variables annotated by a red star are selected at 95%
confidence level (p-value lower than 0.05). Having a small group of participants, we tested
the effect size with an Eta-squared test. As we can see in Appendix C.3, all of the significant
variables from the ANOVA test indicate an ETA squared greater than 0.14. Therefore our
sample size is large enough to consider those variables.
Task 1. For task 1, there is a significant difference in terms of mechanical effort, as indi-
cated with the variables NB_Selection and NB_BLANK, validating the difference noted in our
descriptive analysis. We attribute this difference mainly to the usability of the editors, as
MPS requires more interaction to discover what is possible. To create an instance, the user
has to right-click on the project folder and select it from the contextual menu, whereas they

87

Variable Mean Std. Deviation F P-value
Gentleman 27.73 5.15NB_Selection * MPS 37.55 15.36 (1, 42) = 8.08 0.007

Gentleman 1.32 1.55NB_BLANK * MPS 4.59 4.70 (1, 42) = 9.63 0.003

Gentleman 0.27 0.70NB_MISS MPS 0.73 0.88 (1, 42) = 3.57 0.066

Gentleman 0.00 0.00NB_CxtChange * MPS 8.36 3.43 (1, 42) = 130.79 < 0.001

Gentleman 1.59 1.68NB_IDLE MPS 2.27 2.10 (1, 42) = 1.41 0.241

Gentleman 5.36 7.61T_IDLE MPS 12.32 14.88 (1, 42) = 3.81 0.058

Gentleman 0.27 0.55NB_QA MPS 1.32 2.23 (1, 42) = 4.54 0.039

Gentleman 1.50 3.47T_QA MPS 12.27 26.78 (1, 42) = 3.50 0.068

Gentleman 138.18 57.21T_TOTAL * MPS 227.05 124.07 (1, 42) = 9.308 0.004

Gentleman 0.00 0.00NB_BLOCK * MPS 0.41 0.59 (1, 42) = 10.57 0.002

Table 6.4. Task 1 ANOVA results

are readily available in the header for Gentleman, as seen in Fig. 6.2. With MPS, the partici-
pant also has to query the editor to know what is expected at a certain position in the syntax,
useful when making a reference, whereas the choice field list all the possible options that the
user can choose from. Finally, as they were discovering the tools, they lacked any form of
trained reflex to react automatically to the three dots left as a placeholder in MPS, which
caused some participants to request some assistance to continue, indicated by NB_BLOCK. The
highest difference is in the number of context changes (NB_CtxChange). Gentleman offering
the grid layout, the participant never had to open another window (context) to access ad-
ditional information as they had the whole model presented in one. In MPS, however, each
root instance is opened in a separate window, thereby creating multiple contexts. Addition-
ally, creating a reference between the instance usually required the participant to navigate
through the windows to validate their choice. Lastly, we note that the total time (T_TOTAL)
is significantly lower in Gentleman than in MPS, which follows the explanation given above.
Task 2. For task 2, there is still a slight edge in favor of Gentleman, but for fewer variables.
In terms of mechanical effort, the number of blanks NB_BLANK is the only remaining significant
factor. This reduction is to be expected as the participant has learned the key interactions
of the editor. We attribute the difference in terms of blank selection to the type of editor.
As a textual editor, the participant is in a constant flow of interaction, which invites more

88

Variable Mean Std. Deviation F P-value
Gentleman 49.14 12.12NB_Selection MPS 55.45 20.69 (1, 42) = 1.53 0.223

Gentleman 2.86 2.77NB_BLANK * MPS 5.64 4.50 (1, 42) = 6.06 0.018

Gentleman 1.36 1.62NB_MISS MPS 1.09 1.27 (1, 42) = 0.39 0.538

Gentleman 0.32 1.13NB_CxtChange * MPS 9.95 4.37 (1, 42) = 100.30 < 0.001

Gentleman 2.23 1.34NB_IDLE MPS 2.41 1.50 (1, 42) = 0.18 0.674

Gentleman 9.45 7.04T_IDLE MPS 11.86 9.32 (1, 42) = 0.94 0.339

Gentleman 1.50 1.14NB_QA MPS 1.95 1.99 (1, 42) = 0.87 0.358

Gentleman 11.45 9.69T_QA MPS 15.36 19.46 (1, 42) = 3.50 0.068

Gentleman 295.00 107.59T_TOTAL MPS 358.18 143.82 (1, 42) = 2.72 0.106

Gentleman 0.00 0.00NB_BLOCK MPS 0.32 0.65 (1, 42) = 5.33 0.026

Table 6.5. Task 2 ANOVA results

interaction and, therefore higher chance of making an unnecessary interaction. The number
of context changes (NB_CtxChange) remained as significant as with task 1. However, some
participants mitigated this issue by repositioning the windows, as shown in Fig. 6.3.
Task 3. As seen in the descriptive analysis, there is no significant difference between the
tool. We attribute this parity to the nature of the task and the greater familiarity with the
tool. As this was an evaluation, the participant did not need to interact as much, which
would invite more selection and possibly more blanks. Although they had to apply some
changes, they did not have to create new structures but edit the existing ones.
Survey. For the survey, more than half the variables indicates a better experience with Gen-
tleman than with MPS. As a rich UI composed of widgets and buttons, most participants
navigated with the mouse and appreciated the experience as indicated by Mouse Navigation.
As discussed in the task, Gentleman offers a simple and practical UI, which exposes the es-
sential and does not clutter the view, resulting in a very favorable opinion for User Interface

from the participants. On the same note, being explicit also translated in better discoverabil-
ity, indicated by Actions coupled with Executions. At a lesser level of significance, we have
also Control and State. As most actions were exposed, there was less to learn or remember
for Gentleman, resulting in a better score. However, as noted in task 3, after getting familiar

89

Variable Mean Std. Deviation F P-value
Gentleman 4.73 0.456User Interface * MPS 3.95 0.84 (1, 42) = 14.28 < 0.001

Gentleman 4.77 0.43Control * MPS 4.14 0.99 (1, 42) = 7.65 0.008

State * Gentleman 4.73 0.46 (1, 42) = 5.71 0.021MPS 4.27 0.77

Keyboard Navigation Gentleman 4.30 0.82 (1, 42) = 0.04 0.839MPS 4.24 0.77
Gentleman 4.86 0.35Mouse Navigation * MPS 4.05 0.95 (1, 42) = 14.35 < 0.001

Reuse value Gentleman 4.64 0.58 (1, 42) = 3.71 0.061MPS 4.09 0.75

Focus Gentleman 4.59 0.80 (1, 42) = 7.27 0.010MPS 4.09 0.92

Recover Gentleman 4.73 0.46 (1, 42) = 2.98 0.092MPS 4.41 0.73
Gentleman 4.73 0.46Actions * MPS 3.55 1.14 (1, 42) = 20.28 < 0.001

Gentleman 4.77 0.53Executions * MPS 4.05 0.78 (1, 42) = 12.99 < 0.001

Table 6.6. Survey ANOVA results

with the syntax and the UI, evaluating the model takes the same amount of effort, which
results in the lowest significant p-value for State.

6.5.3. Hypothesis validation

Hyp. 1: Gentleman’s modeling approach improves the productivity by reducing
the mechanical effort.

H0,Mec_Effort: The tool does not impact the mechanical effort required to accomplish
a task with a projectional editor. There is no difference between Gentleman and
MPS when considering NB_Selection, NB_Miss. NB_Blank, and NB_CtxChange when
completing a task.

H1,Mec_Effort: The identified metrics produce lower results when using Gentleman,
compared with MPS.

As identified in our metrics, in tasks 1 and 2, NB_Selection, CodeNB_Blank and
NB_CtxChange are significantly lower in Gentleman, compared to MPS. Therefore, we can
reject the null hypothesis and conclude that the mechanical effort is reduced with
Gentleman.
Hyp. 2: Gentleman’s modeling approach improves the productivity by reducing
the cognitive effort.

90

H0,Cog_Effort: The tool does not impact the cognitive effort required to accomplish a
task with a projectional editor. There is no difference between Gentleman and MPS
when considering T_Idle, T_QA, NB_Idle, NB_QA and NB_BLOCK when completing a task.

H1,Cog_Effort: The identified metrics produce lower results when using Gentleman, com-
pared with MPS.

Looking at our significant variables, T_Idle, T_QA are much lower for Gentleman in task
1, and NB_QA is significantly lower for Gentleman for task 1, but this is not observed in task
2. However, NB_BLOCK is significantly lower in both tasks. Therefore, we can reject the null
hypothesis and conclude that that The cognitive effort is reduced with Gentleman.
Hyp. 3: Gentleman’s modeling approach improves the productivity by reducing
modeling time.

H0,Com_T ime: The tool does not impact the time taken to accomplish a task with a
projectional editor. There is no difference between Gentleman and MPS when con-
sidering T_Total when completing a task.

H1,Com_T ime: The time taken to complete a task is reduced when using Gentleman.
As identified in our metrics, in tasks 1 and 2, T_Total is significantly lower in Gentleman,

especially for task 1. Therefore, we can reject the null hypothesis and conclude that the
time taken to complete a task is reduced with Gentleman.
Hyp. 4: Gentleman’s modeling approach reduces the number of errors.

H0,Err_Number: The tool does not impact the number of errors produced during a task
with a projectional editor. There is no difference between Gentleman and MPS when
considering NB_Typos and NB_DesignErr when completing a task.

H1,Err_Number: The number of errors produced during a task is reduced when using
Gentleman.

The participant did not produce significantly more or less errors using Gentleman. There-
fore, we cannot reject the null hypothesis and conclude that the number of errors is not
impacted when using Gentleman.
Hyp. 5: Gentleman’s modeling approach improves the recovery rate of errors.

H0,Err_Recover: The tool does not impact the ability to recover from errors with a projec-
tional editor. There is no difference between Gentleman and MPS when considering
RT_Detection and RT_Recover when completing a task.

H1,Err_Recover: The recovery rate of errors during a task is higher when using Gentle-
man.

In accord with the previous hypothesis, the participant did not produce a significantly dif-
ferent recovery rate when using either editor. Therefore, we cannot reject the null hypothesis
and conclude that the recovery rate is not impacted when using Gentleman.
Hyp. 6: Gentleman’s modeling approach improves the user experience.

H0,Usability: The tool does not impact the user experience.

91

H1,Usability: The user experience is improved in Gentleman.
Considering the survey results, several variables identified in Section 6.5.2 indicates a

significantly better experience with Gentleman. Therefore, we can reject the null hypothesis
and conclude that the user experience is improved with Gentleman

6.6. Discussion
Having completed our analysis, it is also important to consider the context that brought

such results. From our experience, Gentleman significantly outperforms MPS in mechanical
effort, displaying a lower number of selections, which is made less significant with further
practice. This is in line with the known usability concerns of MPS as discussed in Chapter 1.
However, it should be noted that this experiment is based on one projection and could pro-
duce different results for MPS with another projection. This does not apply to all mechanical
variables, though, such as NB_CtxChange, which, regardless of the given projection, would still
be as significant as it is inherent to UI implementation. In terms of cognitive effort, Gentle-
man does perform better, but not overwhelmingly, according to the results. However, many
participants indicated in a debriefing session following the tasks that for MPS, without the
tutorial, it would have been a lot more difficult to use the editor. This is revealed here by
NB_BLOCK, which is relevant in task 1 and even task 2. Considering the performance of the
participants throughout the task, we notice a significant decrease in the disparity between
the two editors between tasks 1 and 2. The only remaining significant variables are the total
time and the number of context changes. Task 2 being more complex, participants went
through it much slower in both editors but decelerated more in Gentleman’s case. For MPS,
after the first task and the tutorial, the participant mastered the key interactions. However,
they still struggled with the copy-paste maneuver as the focus wasn’t clear. On Gentleman’s
side, many trials were required to do the copy-pasting as well. It should be noted that none
of the participants has ever encountered such an implementation of copy-paste in a previous
GUI. Lastly, it should be remembered that MPS is a commercial product with a team of
experienced professionals and over ten years of iteration, whereas Gentleman is currently
being developed by a single developer and is still in a beta release version. As such, this
experiment was also used as beta testing of the editor.

Having now put the task result in context, we can use the hypotheses evaluation to
answer the research questions.
RQ1: “Does the approach used by Gentleman improve the user’s productivity compared to
existing projectional editors?” As seen in all our examples, Gentleman uses a very rich nota-
tion. Usually, the projection is a composition of text, images, widgets, and buttons, allowing
the user to quickly and easily parse the content. Additionally, the simple user interface,
indicated as very intuitive by most participants, makes the potential actions explicit to the

92

user. On the other side, MPS has a crowded user interface, which intimidates newcomers.
Moreover, the editor’s presentation and interactions are programmer-oriented, making it less
intuitive to practitioners of other domains. As a result, per our hypotheses results, we may
conclude that Gentleman improves the the user’s productivity.
RQ2: “Does the approach used by Gentleman improve the ability to understand a model
compared to existing projectional editors?” A model is perceived and materialized through a
concrete syntax. Therefore understanding a model is a factor of the degree of familiarity with
the syntax. As highlighted in our analysis, after performing tasks 1 and 2, the participant had
gained enough familiarity with the syntax to perform evenly with Gentleman and MPS when
assessing the state of the model. However, most participants remarked that Gentleman’s
projections were more intuitive and thus required less practice to get used to. Therefore,
when considering a projection with which the user is familiar, as shown in our hypotheses
results, we may conclude that Gentleman does not improve nor hamper the ability
to understand a model.

6.7. Threats to validity
Before we can accept the results and conclusions of the experiment, it is crucial to consider

the actions that were taken in order to achieve adequate validity.
First, we consider the threat to construct validity, which refers to the extent to which the

experimental setting reflects the construct under study. To minimize this threat, we did not
communicate the goal of the experiment. As indicated in the discussion, our results are based
on one projection, which might not adequately represent the tool’s potential. Additionally,
our choice of variables might not fully reflect the hypothesis, such as the cognitive effort.

Second, we consider the threat to internal validity related to the influences that can affect
the factors with respect to causality. Our experience was conducted on two groups, differ-
entiated by order of the tool with which they performed the tasks. We did a preliminary
analysis to verify the influence of the order, and it was concluded that the order of the tool
had no significant impact on the survey results nor the performance metrics. Additionally,
to verify that the significance of the measures was not the result of our sampling, we per-
formed an ETA squared test, which validated our sample size as large enough to consider
the identified variables. Since we performed the experiment using a remote connection, there
were few instances of lag, but we did not note any great disturbance with the participant.

Third, we consider the threat to external validity, which is concerned with generalization.
Indeed, the subject population may not be representative of the entire population that we
want to generalize. To deal with this threat, we used a confidence interval of 95%. This
means that if conclusions followed a normal distribution, the results would be true 95% of
the time every time evaluation is repeated.

93

Fig. 6.5. ReLiS DSL Forge editor

Lastly is the threat to conclusion validity, concerned with the relationship between the
treatment and the outcome. We have mitigated this threat by having a very varied sample of
participants reflecting convenience sampling. This threat was also minimized by providing
the participants with a hands-on tutorial for each editor. Also, our experiments may be
threatened by the reliability of our measures. We used objective metrics such as time and
click, which are more reliable than subjective measures.

6.8. Integration with ReLiS
Gentleman is first and foremost an editor and thus not as complete as an IDE or a

language workbench such as MPS. Therefore, most use-cases will have Gentleman embedded
in a much larger system. As introduced in Section 3.4, one of Gentleman’s strengths is
its interoperability. To highlight this capability, Gentleman was successfully integrated into
the web platform ReLis. ReLiS is a tool to automatically install and configure systematic
reviews projects to conduct them collaboratively and iteratively on the cloud. [8]. It features
a domain-specific modeling language using DSLFORGE [56] based on an Ecore model and
an Xtext grammar. The editor is integrated into the platform and is used to create and edit
configuration files, as displayed in Fig. 6.5. As the editor is targeting a wide audience of
experts, this basic textual approach is not well suited to most. This makes ReLiS a very
good candidate to transition to a Gentleman editor and provide its users with a user-friendly
editor.

94

Fig. 6.6. ReLiS editor: initialization

Fig. 6.7. ReLiS editor: Screening

First, we created the concepts identified in the Ecore model, and with the input of some
of ReLiS active users, we created a projection that would improve their editing experience.
Here we present the integrated Gentleman editor to the ReLiS platform. Fig. 6.6 presents
the Gentleman editor with a blank project. Here, the user is informed of the different
configuration sections, which they can choose to open and configure. Fig. 6.7 shows the
configuration of the Screening section. Here elements are grouped by categories such as
Criteria, Conflict, and Validation. This makes it easier to scan the content. Finally, similar
to the traffic light editor, this one also uses icons to help users recognize a section.

As a web application, the integration did not require much work. Following the procedure
described in Section 3.4.1, we added the core script to the page and initialized the Gentleman
editor with the previously created concept schema and projection schema. With those in
place, a Gentleman editor can be used in place of the previous DSL Forge editor, thus
completing our Integration. However, as the ReLiS environment is automatically generated,

95

some additional work is required to include the gentleman artifacts in the process, thus
avoiding the need to manually update the concepts and incidentally the projections.

96

Chapter 7

Conclusion

We conclude by summarizing the contributions of this thesis and outlining future work. The
work presented in this thesis makes several contributions to MDE, more specifically modeling
language and modeling tool.

7.1. Summary
The emphasis on modeling has opened software development to a larger public, com-

posed of experts of various domains with very different requirements. Projectional editing
supports various notations that may easily be interchanged and recomposed, making it a
suitable approach to embrace this diversity and make modeling more accessible to domain
experts. However, current solutions are heavyweight, closed, and suffer from poor usability.
In this thesis, we introduced the projectional editor, Gentleman. It is lightweight to favor
interoperability and accessibility and web-based to ease the process of integration and dis-
tribution. Gentleman generates an editing environment to build and explore models with
the chosen concepts and projections, loaded in the editor.

In Gentleman, concepts are used to define the structure of the model. This concept-
based approach moves away from the OO paradigm found in UML and other modeling
languages by considering modeling in more direct terms, unrelated to the code executed
afterward. This results in less cognitive effort when defining a model, as no prior knowledge
of any programming paradigm is required. This is illustrated with the reference and set
primitives, which are left implicit in the UML approach but can be manipulated directly in
Gentleman, like a string or a number. The presented approach offers an extension mechanism
with prototypes, similar to prototype-based programming, and a specialization mechanism
with derivatives, making it simple to create enumerations. Lastly, concepts relations are
considered following two dimensions to allow self-defined characteristics as properties and
user-defined characteristics as attributes, which may define constraints on the target concept.

As a projectional editor, with Gentleman, projections are used to interact and manipulate
the concepts. Our approach uses specialized elements to make it easy for the user to scan
the content of a projection and interact with it, which was confirmed by most participants
in the user study, who praised the intuitiveness of the projections. Gentleman leverages web
technologies such as CSS to style the projections, HTML5 widgets for practical data entry,
and HTML templates for reusability. This enables the creation of visually rich and intuitive
projections composed of widgets, buttons, text, and images.

Gentleman offers some practical editor services to assist the user and ensure a good user
experience. It gives the ability to create a link instance to visualize part of a concept, the
garbage collecting service allowing the user to see the complete state of the model and easily
undo a deletion, and other common services such as copy-pasting and importing or exporting
an existing model. Built as a JS library, it is easy to integrate with any web application,
which was showcased with the ReLiS integration.

Lastly, to evaluate the approach, we invited a group of participants to perform a series
of modeling tasks using Gentleman and Jetbrains MPS. The tasks served to evaluate the
efficiency of the participant when creating a model with an unknown syntax and their ability
to understand a model in both tools. To do so, we measured the cognitive and mechanical
effort to accomplish each task, the total time taken to complete the task, the number of errors
produced, and the effort to correct errors when completing the activities. The experiment
concluded with a very positive note for Gentleman, which displayed better performance than
MPS for the modeling activities. The participants then also expressed their enjoyment with
the tool, praising its simplicity and intuitiveness.

7.2. Outlook
Having laid the foundation of modeling using a concept-based approach, we can now

dig deeper into the paradigm. The current structure of a concept is relatively static, both
externally and internally, as every parameter of an attribute or property is defined in the
metamodeling phase. Therefore, to embrace the dynamic nature of modeling, we plan to
introduce late-binding attributes, where some parameters would be resolved during the mod-
eling phase, where the user creates a model. The properties are, at the moment, only capable
of elementary computation but could be developed much further to enable predicate-based
property where the operation is applied under some condition, and context-based property,
where the results depend on the presence of some concepts. Constraints are currently bound
to primitives, which impacts their reusability. This could be solved by making them first-
class citizens, which would allow constraints to be manipulated outside a specific concept
and be reused in multiple contexts.

98

The concept-based approach uses projectional editing to enable interaction with the con-
cepts. Even though projections in Gentleman bring lots of benefits in terms of usability,
currently, most projection components are predefined. This impacts the flexibility of projec-
tions and the creativity of designers. Therefore, we will explore new primitives to give the
designer the ability to create a new element or component. Current work is adding support
for graphical projection and new graphic-specific layouts. This will enable the construction
of floating elements, shapes, and diagrams. Projections are currently defined independently
of the editor, resulting in arbitrary interaction. We will explore how to add editor-specific
configurations into the projection definition.

Being a library, Gentleman offers no reliable data storage facility, nor can it be used to
execute and validate models using domain-specific rules. As such, we will explore integrating
Gentleman with a modeling back-end. Additionally, the concept-based approach is built to
promote reusability, but few editor services have been developed to encourage such action.
Therefore, we plan on creating a repository of concepts to which anyone could connect and
share their concepts. Lastly, Gentleman is currently mostly capable of static modeling, where
most pieces are predefined, and the user cannot change the behavior during the execution.
Therefore, a topic to explore could be integrating more dynamic elements to Gentleman,
such as model transformations.

99

References

[1] Silvia Abrahão, Francis Bourdeleau, Betty Cheng, Sahar Kokaly, Richard Paige, Harald
Stöerrle et Jon Whittle : User experience for model-driven engineering: Challenges and future di-
rections. In 2017 ACM/IEEE 20th International Conference on Model Driven Engineering Languages
and Systems (MODELS), pages 229–236. IEEE, 2017.

[2] L. Agner et T. Lethbridge : A survey of tool use in modeling education. In Model Driven Engi-
neering Languages and Systems, pages 303–311. IEEE, 2017.

[3] Rachel Andrew : The New CSS Layout. A Book Apart, 2017.
[4] Jim Arlow et Ila Neustadt : UML 2 and the unified process: practical object-oriented analysis and

design. Pearson Education, 2005.
[5] Peter J Ashenden : The designer’s guide to VHDL. Morgan Kaufmann, 2010.
[6] Jon Bentley : Programming pearls: little languages. Communications of the ACM, 29(8):711–721,

1986.
[7] T. Berger, M. Völter, H. P. Jensen, T. Dangprasert et J. Siegmund : Efficiency of projectional

editing: A controlled experiment. In International Symposium on Foundations of Software Engineering,
pages 763–774, 2016.

[8] Brice Michel Bigendako : Relis: un outil flexible pour réaliser des revues systématiques itératives et
collaboratives. Mémoire de D.E.A., Université de Montréal, 2018.

[9] Meinte Boersma : Post-mortem for más. https://medium.com/@dslmeinte/post-mortem-for-m2018.
[10] Marco Brambilla, Jordi Cabot et Manuel Wimmer : Model-driven software engineering in practice.

Synthesis lectures on software engineering, 3(1):1–207, 2017.
[11] Karen Brennan et Mitchel Resnick : New frameworks for studying and assessing the development

of computational thinking. In Proceedings of the 2012 annual meeting of the American educational
research association, Vancouver, Canada, volume 1, page 25, 2012.

[12] Frank Budinsky, David Steinberg, Raymond Ellersick, Timothy J Grose et Ed Merks : Eclipse
modeling framework: a developer’s guide. Addison-Wesley Professional, 2004.

[13] Jordi Cabot et Martin Gogolla : Object constraint language (ocl): a definitive guide. In Inter-
national school on formal methods for the design of computer, communication and software systems,
pages 58–90. Springer, 2012.

[14] Raymond Camden : Client-side data storage: keeping it local. " O’Reilly Media, Inc.", 2015.
[15] F. Campagne : The MPS Language Workbench Volume I: The Meta Programming System. CreateS-

pace Independent Publishing Platform, 3rd édition, 2016.
[16] Y-S. Chang et N-W. Lin : A tool for constructing syntax-directed editors. In Asia-Pacific Software

Engineering Conference. IEEE, 2005.
[17] DSL Consultancy : http://mas-wb.appspot.com/.

[18] Alessandro Del Sole : Visual Studio Code Distilled: Evolved Code Editing for Windows, MacOS,
and Linux. Apress, 2018.

[19] Christophe Dony, Jacques Malenfant et Pierre Cointe : Prototype-based languages: from a new
taxonomy to constructive proposals and their validation. In Conference proceedings on Object-oriented
programming systems, languages, and applications, pages 201–217, 1992.

[20] Jon Duckett : HTML & CSS: design and build websites, volume 15. Wiley Indianapolis, IN, 2011.
[21] S. Erdweg, T. Van Der Storm, M. Völter et al. : The state of the art in language workbenches.

In International Conference on Software Language Engineering, pages 197–217. Springer, 2013.
[22] Sebastian Erdweg, Tijs Van Der Storm, Markus Völter, Laurence Tratt, Remi Bosman,

William R Cook, Albert Gerritsen, Angelo Hulshout, Steven Kelly, Alex Loh et al. : Evaluat-
ing and comparing language workbenches: Existing results and benchmarks for the future. Computer
Languages, Systems & Structures, 44:24–47, 2015.

[23] Moritz Eysholdt et Heiko Behrens : Xtext: implement your language faster than the quick and dirty
way. In Proceedings of the ACM international conference companion on Object oriented programming
systems languages and applications companion, pages 307–309, 2010.

[24] Andrew Forward et Timothy C Lethbridge : Problems and opportunities for model-centric versus
code-centric software development: a survey of software professionals. In Proceedings of the 2008
international workshop on Models in software engineering, pages 27–32, 2008.

[25] M. Fowler : Language workbenches: The killer-app for domain specific languages. https://
martinfowler.com/articles/languageWorkbench.html, 2005.

[26] Martin Fowler : UML distilled: a brief guide to the standard object modeling language. Addison-
Wesley Professional, 2004.

[27] André WB Furtado et André LM Santos : Using domain-specific modeling towards computer games
development industrialization. In The 6th OOPSLA workshop on domain-specific modeling (DSM06).
Citeseer, 2006.

[28] Miguel Gamboa et Eugene Syriani : Improving user productivity in modeling tools by explicitly
modeling workflows. Software & Systems Modeling, 18(4):2441–2463, 2019.

[29] Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides et Design Patterns : Elements of
reusable object-oriented software, volume 99. Addison-Wesley Reading, Massachusetts, 1995.

[30] Anna Gerber et Kerry Raymond : Mof to emf: there and back again. In Proceedings of the 2003
OOPSLA workshop on eclipse technology eXchange, pages 60–64, 2003.

[31] Richard C Gronback : Eclipse modeling project: a domain-specific language (DSL) toolkit. Pearson
Education, 2009.

[32] V. Gupta : Ui programming: Handling events and using advanced widgets. Accelerated GWT: Building
Enterprise Google Web Toolkit Applications, pages 105–134, 2008.

[33] Sam Hampton-Smith : Css flexible box layout. In Pro CSS3 Layout Techniques, pages 73–101.
Springer, 2016.

[34] R. Harris et R. Warner : The definitive guide to SWT and JFace. Apress, 2004.
[35] Melanie Hartmann et Max Muhlhauser : Context-aware form filling for web applications. In 2009

IEEE International Conference on Semantic Computing, pages 221–228. IEEE, 2009.
[36] D. Hermes : Xamarin Mobile Application Development: Cross-Platform C# and Xamarin. Forms

Fundamentals. Apress, 2015.
[37] Paul Hudak : Modular domain specific languages and tools. In Proceedings. Fifth international con-

ference on software reuse (Cat. No. 98TB100203), pages 134–142. IEEE, 1998.

102

https://martinfowler.com/articles/languageWorkbench.html
https://martinfowler.com/articles/languageWorkbench.html

[38] J. Hutchinson, J. Whittle, M. Rouncefield et S. Kristoffersen : Empirical assessment of mde
in industry. In International Conference on Software Engineering, pages 471–480. ACM, 2011.

[39] Lvar Jacobson et James Rumbaugh Grady Booch : The unified modeling language reference manual.
2021.

[40] Caroline Jarrett et Gerry Gaffney : Forms that work: Designing Web forms for usability. Morgan
Kaufmann, 2009.

[41] Mehdi Jazayeri : Some trends in web application development. In Future of Software Engineering
(FOSE’07), pages 199–213. IEEE, 2007.

[42] Bruce Johnson : Professional visual studio 2012. John Wiley & Sons, 2012.
[43] J. Johnson : Designing with the mind in mind: simple guide to understanding user interface design

guidelines. Elsevier, 2013.
[44] Frédéric Jouault et Jean Bézivin : Km3: a dsl for metamodel specification. In International Confer-

ence on Formal Methods for Open Object-Based Distributed Systems, pages 171–185. Springer, 2006.
[45] Frédéric Jouault et Ivan Kurtev : Transforming models with atl. In International Conference on

Model Driven Engineering Languages and Systems, pages 128–138. Springer, 2005.
[46] L. C. Kats et E. Visser : The spoofax language workbench: rules for declarative specification of

languages and ides. In Object oriented programming systems languages and applications, pages 444–
463, 2010.

[47] Steven Kelly et Juha-Pekka Tolvanen : Domain-specific modeling: enabling full code generation.
John Wiley & Sons, 2008.

[48] Stuart Kent : Model driven engineering. In International conference on integrated formal methods,
pages 286–298. Springer, 2002.

[49] Zachary A King, Andreas Dräger, Ali Ebrahim, Nikolaus Sonnenschein, Nathan E Lewis et
Bernhard O Palsson : Escher: a web application for building, sharing, and embedding data-rich
visualizations of biological pathways. PLoS computational biology, 11(8):e1004321, 2015.

[50] Steve Kinney : Electron in Action. Simon and Schuster, 2018.
[51] Donald E Knuth : Semantics of context-free languages. Mathematical systems theory, 2(2):127–145,

1968.
[52] D. Kolovos, L. M. Rose, S. B. Abid, R. F. Paige, F. A. Polack et G. Botterweck : Taming

emf and gmf using model transformation. In Model Driven Engineering Languages and Systems, pages
211–225. Springer, 2010.

[53] Dimitrios S Kolovos, Antonio García-Domínguez, Louis M Rose et Richard F Paige : Eugenia:
towards disciplined and automated development of gmf-based graphical model editors. Software &
Systems Modeling, 16(1):229–255, 2017.

[54] Thomas Kühne : Matters of (meta-) modeling. Software & Systems Modeling, 5(4):369–385, 2006.
[55] Louis-Edouard Lafontant et Eugene Syriani : Gentleman: a light-weight web-based projectional

editor generator. In Proceedings of the 23rd ACM/IEEE International Conference on Model Driven
Engineering Languages and Systems: Companion Proceedings, pages 1–5, 2020.

[56] Amine Lajmi, Jabier Martinez et Tewfik Ziadi : Dslforge: Textual modeling on the web. Demos@
MoDELS, 1255, 2014.

[57] Benoît Langlois, Consuela-Elena Jitia et Eric Jouenne : Dsl classification. In OOPSLA 7th work-
shop on domain specific modeling, 2007.

103

[58] Erhan Leblebici, Anthony Anjorin et Andy Schürr : Developing emoflon with emoflon. In In-
ternational Conference on Theory and Practice of Model Transformations, pages 138–145. Springer,
2014.

[59] Avraham Leff et James T Rayfield : Web-application development using the model/view/con-
troller design pattern. In Proceedings fifth ieee international enterprise distributed object computing
conference, pages 118–127. IEEE, 2001.

[60] Jochen Ludewig : Models in software engineering–an introduction. Software and Systems Modeling,
2(1):5–14, 2003.

[61] Lechanceux Luhunu et Eugene Syriani : Comparison of the expressiveness and performance of
template-based code generation tools. In Proceedings of the 10th ACM SIGPLAN International Con-
ference on Software Language Engineering, pages 206–216, 2017.

[62] I Scott MacKenzie et Kumiko Tanaka-Ishii : Text entry systems: Mobility, accessibility, universal-
ity. Elsevier, 2010.

[63] Luis Mandel et Maria Victoria Cengarle : On the expressive power of ocl. In International Sym-
posium on Formal Methods, pages 854–874. Springer, 1999.

[64] Jatinder Manhas : A study of factors affecting websites page loading speed for efficient web perfor-
mance. International Journal of Computer Sciences and Engineering, 1(3):32–35, 2013.

[65] Miklós Maróti, Tamás Kecskés, Róbert Kereskényi, Brian Broll, Péter Völgyesi, László Ju-
rácz, Tihamer Levendovszky et Ákos Lédeczi : Next generation (meta) modeling: web-and cloud-
based collaborative tool infrastructure. MPM@ MoDELS, 1237:41–60, 2014.

[66] Erica Mealy, David Carrington, Paul Strooper et Peta Wyeth : Improving usability of software
refactoring tools. In 2007 Australian Software Engineering Conference (ASWEC’07), pages 307–318.
IEEE, 2007.

[67] Raul Medina-Mora et Peter H. Feiler : An incremental programming environment. IEEE Trans-
actions on Software Engineering, (5):472–482, 1981.

[68] Jim Melton et Alan R Simon : Understanding the new SQL: a complete guide. Morgan Kaufmann,
1993.

[69] Pierre-Alain Muller, Frédéric Fondement, Benoit Baudry et Benoit Combemale : Modeling
modeling modeling. Software & Systems Modeling, 11(3):347–359, 2012.

[70] Gail C Murphy, Mik Kersten et Leah Findlater : How are java software developers using the
elipse ide? IEEE software, 23(4):76–83, 2006.

[71] Jakob Nielsen : Ten usability heuristics, 2005.
[72] Erik G Nilsson : Design patterns for user interface for mobile applications. Advances in engineering

software, 40(12):1318–1328, 2009.
[73] David Notkin : The gandalf project. Journal of Systems and Software, 5(2):91–105, 1985.
[74] Florian Noyrit, Sébastien Gérard et Bran Selic : Facademetamodel: masking uml. In International

Conference on Model Driven Engineering Languages and Systems, pages 20–35. Springer, 2012.
[75] Edward E Ogheneovo et al. : On the relationship between software complexity and maintenance

costs. Journal of Computer and Communications, 2(14):1, 2014.
[76] Terence J. Parr et Russell W. Quong : Antlr: A predicated-ll (k) parser generator. Software: Practice

and Experience, 25(7):789–810, 1995.
[77] Vaclav Pech, Alex Shatalin et Markus Voelter : Jetbrains mps as a tool for extending java. In

Proceedings of the 2013 International Conference on Principles and Practices of Programming on the
Java Platform: Virtual Machines, Languages, and Tools, pages 165–168, 2013.

104

[78] Marian Petre : Uml in practice. In 2013 35th international conference on software engineering (icse),
pages 722–731. IEEE, 2013.

[79] Dan Pilone et Neil Pitman : UML 2.0 in a Nutshell. " O’Reilly Media, Inc.", 2005.
[80] Anirudh Prabhu et Aravind Shenoy : Introducing materialize. In Introducing Materialize, pages 1–9.

Springer, 2016.
[81] Andreas Prinz et Gergely Mezei : The art of bootstrapping. In International Conference on Model-

Driven Engineering and Software Development, pages 182–200. Springer, 2019.
[82] Helen Purchase, Linda Colpoys, Matthew McGill, David Carrington et Carol Britton : Uml

class diagram syntax: An empirical study of comprehension. pages 113–120, 12 2001.
[83] Dave Raggett, Arnaud Le Hors, Ian Jacobs et al. : Html 4.01 specification. W3C recommendation,

24, 1999.
[84] Ó. S. Ramón, J. S. Cuadrado et J. G. Molina : Model-driven reverse engineering of legacy graphical

user interfaces. Automated Software Engineering, 21:147–186, 2014.
[85] Thomas Reps et Tim Teitelbaum : The synthesizer generator. ACM Sigplan Notices, 19(5):42–48,

1984.
[86] M. Resnick, J. Maloney et A. et al. Monroy-Hernández : Scratch: programming for all. Com-

munications of the ACM, 52(11):60–67, 2009.
[87] Dennis M Ritchie, Brian W Kernighan et Michael E Lesk : The C programming language. Prentice

Hall Englewood Cliffs, 1988.
[88] Arnold Robbins, Elbert Hannah et Linda Lamb : Learning the vi and Vim Editors. " O’Reilly Media,

Inc.", 2008.
[89] Louis M Rose, Richard F Paige, Dimitrios S Kolovos et Fiona AC Polack : The epsilon generation

language. In European Conference on Model Driven Architecture-Foundations and Applications, pages
1–16. Springer, 2008.

[90] Rijul Saini, Shivani Bali et Gunter Mussbacher : Towards web collaborative modelling for the
user requirements notation using eclipse che and theia ide. In 2019 IEEE/ACM 11th International
Workshop on Modelling in Software Engineering (MiSE), pages 15–18. IEEE, 2019.

[91] Vinoth Pandian Sermuga Pandian, Sarah Suleri et Prof Dr Matthias Jarke : Uisketch: A large-
scale dataset of ui element sketches. In Proceedings of the 2021 CHI Conference on Human Factors in
Computing Systems, pages 1–14, 2021.

[92] Zohreh Sharafi, Alessandro Marchetto, Angelo Susi, Giuliano Antoniol et Yann-Gaël
Guéhéneuc : An empirical study on the efficiency of graphical vs. textual representations in
requirements comprehension. In 2013 21st International Conference on Program Comprehension
(ICPC), pages 33–42. IEEE, 2013.

[93] Maria Shitkova, Justus Holler, Tobias Heide, Nico Clever et Jörg Becker : Towards usability
guidelines for mobile websites and applications. In Wirtschaftsinformatik, pages 1603–1617. Citeseer,
2015.

[94] Charles Simonyi : The death of computer languages, the birth of intentional programming. In NATO
Science Committee Conference, pages 17–18. Citeseer, 1995.

[95] Kyle Simpson : You Don’t Know JS: ES6 & Beyond. " O’Reilly Media, Inc.", 2015.
[96] K. Smolander, K. Lyytinen, V-P. Tahvanainen et P. Marttiin : Metaedit – a flexible graphical

environment for methodology modeling. In International Conference on Advanced Information Systems
Engineering, pages 168–193. Springer, 1991.

[97] R. Solmi : Whole Platform. Ph.d. thesis, Universitá di Bologna e Padova, mar 2005.

105

[98] Madeleine Sorapure : Text, image, data, interaction: Understanding information visualization. Com-
puters and Composition, 54:102519, 2019.

[99] Jake Spurlock : Bootstrap: responsive web development. " O’Reilly Media, Inc.", 2013.
[100] Arjun Srinivasan, Hyunwoo Park, Alex Endert et Rahul C Basole : Graphiti: Interactive spec-

ification of attribute-based edges for network modeling and visualization. IEEE transactions on visu-
alization and computer graphics, 24(1):226–235, 2017.

[101] Andreas Stefik et Susanna Siebert : An empirical investigation into programming language syntax.
ACM Transactions on Computing Education (TOCE), 13(4):1–40, 2013.

[102] Dave Steinberg, Frank Budinsky, Ed Merks et Marcelo Paternostro : EMF: eclipse modeling
framework. Pearson Education, 2008.

[103] Daniel Strüber, Kristopher Born, Kanwal Daud Gill, Raffaela Groner, Timo Kehrer, Manuel
Ohrndorf et Matthias Tichy : Henshin: A usability-focused framework for emf model transformation
development. In International Conference on Graph Transformation, pages 196–208. Springer, 2017.

[104] Ana Maria Şutîi, Mark van den Brand et Tom Verhoeff : Exploration of modularity and reusabil-
ity of domain-specific languages: an expression dsl in metamod. Computer Languages, Systems &
Structures, 51:48–70, 2018.

[105] E. Syriani, H. Vangheluwe, R. Mannadiar, C. Hansen, S. Van Mierlo et H. Ergin : AToMPM:
A web-based modeling environment. In MODELS’13 Invited Talks, Demonstration Session, Poster
Session, and ACM Student Research Competition, volume 1115, pages 21–25. CEUR-WS.org, 2013.

[106] Eugene Syriani, Lechanceux Luhunu et Houari Sahraoui : Systematic mapping study of template-
based code generation. Computer Languages, Systems & Structures, 52:43–62, 2018.

[107] Henry S Thompson, David Beech, Murray Maloney et Noah Mendelsohn : Xml schema part 1:
structures second edition. W3C recommendation, 39, 2004.

[108] Juha-Pekka Tolvanen et Steven Kelly : Metaedit+ defining and using integrated domain-specific
modeling languages. In Proceedings of the 24th ACM SIGPLAN conference companion on Object ori-
ented programming systems languages and applications, pages 819–820, 2009.

[109] R. Van Der Straeten, T. Mens et S. Van Baelen : Challenges in model-driven software engineer-
ing. In Model Driven Engineering Languages and Systems, pages 35–47. Springer, 2008.

[110] A. Van Deursen, P. Klint et J. Visser : Domain-specific languages: An annotated bibliography.
ACM Sigplan Notices, 35(6):26–36, 2000.

[111] Arie Van Deursen et Paul Klint : Domain-specific language design requires feature descriptions.
Journal of computing and information technology, 10(1):1–17, 2002.

[112] M. Voelter et S. Lisson : Supporting diverse notations in mps’ projectional editor. In Workshop on
The Globalization of Modeling Languages, volume 1236, pages 7–16. CEUR-WS.org, 2014.

[113] M. Voelter, J. Siegmund, T. Berger et B. Kolb : Towards user-friendly projectional editors.
In International Conference on Software Language Engineering, volume 8706 de LNCS, pages 41–61.
Springer, 2014.

[114] Markus Voelter, Sebastian Benz, Christian Dietrich, Birgit Engelmann, Mats Helander,
Lennart CL Kats, Eelco Visser et GH Wachsmuth : Dsl engineering-designing, implementing and
using domain-specific languages. 2013.

[115] Markus Voelter, Bernd Kolb, Tamás Szabó, Daniel Ratiu et Arie van Deursen : Lessons learned
from developing mbeddr: a case study in language engineering with mps. Software & Systems Modeling,
18(1):585–630, 2019.

106

[116] Markus Voelter, Daniel Ratiu, Bernd Kolb et Bernhard Schaetz : mbeddr: Instantiating a
language workbench in the embedded software domain. Automated Software Engineering, 20(3):339–
390, 2013.

[117] David Ward, Jim Hahn et Kirsten Feist : Autocomplete as research tool: A study on providing
search suggestions. Information Technology and Libraries, 31(4):6–19, 2012.

[118] J. Whittle, J. Hutchinson et M. Rouncefield : The state of practice in model-driven engineering.
IEEE software, 31(3):79–85, 2013.

[119] J. Whittle, J. Hutchinson, M. Rouncefield, H. Burden et R. Heldal : Industrial adoption of
model-driven engineering: Are the tools really the problem? In Model Driven Engineering Languages
and Systems, volume 8107 de LNCS, pages 1–17. Springer, 2013.

[120] Maarten Wijnants, Robin Marx, Peter Quax et Wim Lamotte : Http/2 prioritization and its
impact on web performance. In Proceedings of the 2018 World Wide Web Conference, pages 1755–
1764, 2018.

[121] Marco Winckler, Vicent Gaits, Dong-Bach Vo, Firmenich Sergio et Gustavo Rossi : An approach
and tool support for assisting users to fill-in web forms with personal information. In Proceedings of
the 29th ACM international conference on Design of communication, pages 195–202, 2011.

107

Appendix A

Ecore to Gentleman transformation

A.1. Ecore models

A.2. ATL transformation
-- @nsURI MM=http://www.eclipse.org/emf /2002/ Ecore

-- @path MM1=/ Ecore2Gentleman/MetaModels/Gentleman.ecore

module E2G;

create OUT: MM1 from IN: MM, IN_Library: MM1;

rule EPackage2Model {

from

pkg: MM!EPackage

to

m: MM1!Model (

name <- pkg.name ,

concepts <- pkg.eClassifiers

)

}

rule EClass2Concept {

from

class: MM!EClass (

class.abstract = false and class.interface = false

)

to

g: MM1!Concrete (

name <- class.name ,

structures <- class.eStructuralFeatures ,

Fig. A.1. Ecore metamodel

prototype <- class.eSuperTypes -> first ()

)

}

rule EAbstractClass2Prototype {

from

class: MM!EClass (

class.abstract = true

)

to

g: MM1!Prototype (

name <- class.name ,

structures <- class.eStructuralFeatures

110

Fig. A.2. Gentleman Ecore model

)

}

rule EEnum2Concept {

from

enum: MM!EEnum

to

g: MM1!Derivative (

name <- enum.name ,

base <- ’string ’,

values <- enum.eLiterals ->collect(e | e.name)

)

}

rule EAttribute2Attribute {

from

attr: MM!EStructuralFeature (

attr.many = false

)

to

a: MM1!Attribute (

name <- attr.name ,

target <- if (attr.eType.name = ’EString ’) then

thisModule.EType2String(attr)

else

111

if (attr.eType.name = ’EBoolean ’) then

thisModule.EType2Boolean(attr)

else

if (attr.eType.name = ’EInt’ or attr.eType.name = ’EByte ’)

then

thisModule.EType2Number(attr)

else

attr.eType

endif

endif

endif

)

}

rule EAttributeMany2Set {

from

attr: MM!EStructuralFeature (

attr.many = true

)

to

a: MM1!Attribute (

name <- attr.name ,

target <- thisModule.EType2Set(attr)

)

}

lazy rule EType2String {

from

st: MM!EAttribute

to

p1: MM1!CString (

name <- ’string ’,

default <- st.eType.defaultValue

)

}

lazy rule EType2Boolean {

from

st: MM!ETypedElement (

st.name = ’EBoolean ’

)

112

to

p1: MM1!CBoolean (

name <- ’boolean ’

)

}

lazy rule EType2Number {

from

st: MM!EAttribute

to

p1: MM1!CNumber (

name <- ’number ’,

default <- st.eType.defaultValue

)

}

lazy rule EType2Set {

from

st: MM!EReference

to

p1: MM1!CSet (

name <- ’set’,

accept <- st.eType ,

minCardinality <- st.lowerBound ,

maxCardinality <- st.upperBound

)

}

Listing A.1. ATL transformation of an Ecore model to a Gentleman model

A.3. EGL transformation

{"concept": [

[% for (concept in mm.concepts) { %]

[% var attributes = concept.structures.select(struct|struct.

isKindOf(Attribute)); %]

[% var properties = concept.structures.select(struct|struct.

isKindOf(Property)); %]

{

"id": "[%= concept.id %]",

"name": "[%= concept.name %]",

"nature": "[%= concept.type().name.toLowerCase () %]"

113

[% if (concept.hasProperty("prototype") and concept.prototype

<> null) { %]

,"prototype": "[%= concept.prototype.name %]"

[% } %]

[% if (concept.hasProperty("base") and concept.base <> null) {

%]

,"base": "[%= concept.base %]"

[% } %]

[% if (concept.hasProperty("values") and concept.values <>

null) { %]

,"values": [[% for (val in concept.values) { %]"[%= val %]"[%

if (concept.values.last() <> val) { %],[% } %][% } %]]

[% } %]

[% if (not attributes.isEmpty ()) { %]

,"attributes": [

[%for (attr in attributes) { %]

{

"name": "[%= attr.name %]",

"target": {

"name": "[%= attr.target.name %]"

[% if (attr.target.accept <> null) { %],"

accept": {

"name": "[%= attr.target.accept.name %]"

}

[% } %]

}

}[% if (attributes.last() <> attr) { %],[% } %]

[% } %]

]

[% } %]

}[% if (mm.concepts.last() <> concept) { %],[% } %]

[% } %]

]}

Listing A.2. EGL transformation of a Gentleman model to JSON

114

Appendix B

Gentleman TodoList artefacts

B.1. Concept schema
{

"concept": [

{

"id": "11g5bwb5 -451d-344f-80d0 -1 e2138a59ec9",

"name": "todolist",

"nature": "concrete",

"attributes": [

{

"name": "title",

"target": {

"name": "string",

"constraint": {

"length": {

"type": "range",

"range": {

"min": { "value": 1 },

"max": { "value": 50 }

}

}

}

},

"unique": true ,

"required": true

},

{

"name": "tags",

"target": {

"name": "set",

"accept": {

"name": "tag"

}

},

"required": true

},

{

"name": "tasks",

"target": {

"name": "set",

"accept": {

"name": "task",

"default": "single -task"

},

"constraint": {

"cardinality": {

"type": "range",

"range": {

"min": { "value": 1 }

}

}

}

},

"required": true

}

]

},

{

"id": "01f6fc23 -pdab -4e74 -b9cd -51 afb30ecfc5",

"name": "tag",

"nature": "concrete",

"attributes": [

{

"name": "name",

"target": {

"name": "string"

},

"required": true

},

{

116

"name": "priority",

"target": {

"name": "priority"

},

"required": true

}

]

},

{

"id": "adefde42 -abd9 -o57f -8e84 -ae1f056d26f7",

"name": "task",

"description": null ,

"nature": "prototype",

"attributes": [

{

"name": "name",

"target": {

"name": "string",

"constraint": {

"length": {

"type": "range",

"range": {

"min": { "value": 2 }

}

}

}

},

"required": true

},

{

"name": "description",

"target": {

"name": "string",

"constraint": {

"length": {

"type": "range",

"range": {

"min": { "value": 2 }

}

}

}

117

},

"required": true

},

{

"name": "completed",

"target": {

"name": "boolean",

"default": false

},

"required": true

},

{

"name": "tags",

"target": {

"name": "set",

"accept": {

"name": "reference",

"accept": {

"name": "tag"

}

}

},

"required": true

},

{

"name": "priority",

"target": {

"name": "priority"

},

"required": false

},

{

"name": "due_date",

"target": {

"name": "date"

},

"required": false

}

]

},

{

118

"id": "g52dedae -ca1d -24f5 -8e84 -d2a1f0e566f7",

"name": "single -task",

"nature": "concrete",

"prototype": "task",

"attributes": []

},

{

"id": "ddeqd2e4 -4da1 -7of4 -82e9-a1hf06d2e6f7",

"name": "recurring -task",

"nature": "concrete",

"prototype": "task",

"attributes": [

{

"name": "start",

"target": {

"name": "date"

},

"required": true

},

{

"name": "end",

"target": {

"name": "date"

},

"required": true

},

{

"name": "recurrence",

"target": {

"name": "number",

"constraint": {

"value": {

"type": "range",

"range": {

"min": { "value": 1 },

"max": { "value": 7 }

}

}

}

},

"required": true

119

}

]

},

{

"id": "p3a693c6 -6e13 -4e2f -b39f -26707210 ab66",

"name": "priority",

"nature": "derivative",

"base": "string",

"constraint": {

"values": ["P1", "P2", "P3", "P4"]

}

},

{

"id": "c6pa3963 -713e-2e2f -9fb3 -263707 d2b6p6",

"name": "date",

"nature": "derivative",

"base": "string",

"constraint": {

"value": {

"type": "pattern",

"pattern": {

"insensitive": true ,

"global": true ,

"value": "^([12]\\d{3} -(0[1 -9]|1[0 -2])

-(0[1 -9]|[12]\\d|3[01]))$"

}

}

}

}

]

}

Listing B.1. Gentleman Todo concepts

B.2. Projection schema

{

"concept": [

{

"id": "11g5bwb5 -451d-344f-80d0 -1 e2138a59ec9",

"name": "todo",

"nature": "concrete",

120

"attributes": [

{

"name": "title",

"target": { "name": "string" },

"unique": true ,

"required": true

},

{

"name": "tags",

"target": {

"name": "set",

"accept": { "name": "tag" }

},

"required": true

},

{

"name": "tasks",

"target": {

"name": "set",

"accept": { "name": "task" },

"constraint": {

"cardinality": {

"type": "range",

"range": {

"min": { "value": 1 }

}

}

}

},

"required": true

}

]

}

]

}

Listing B.2. Gentleman Todo projections

121

Appendix C

User study data

C.1. Participant profile

C.2. Survey

129

C.3. Results
C.3.1. Task 1 results

139

Lower Upper

Gentleman 22 27.73 5.147 1.097 25.45 30.01 20

MPS 22 37.55 15.358 3.274 30.74 44.35 20

Total 44 32.64 12.361 1.863 28.88 36.39 20

Gentleman 22 1.32 1.555 0.332 0.63 2.01 0

MPS 22 4.59 4.697 1.001 2.51 6.67 0

Total 44 2.95 3.833 0.578 1.79 4.12 0

Gentleman 22 0.27 0.703 0.150 -0.04 0.58 0

MPS 22 0.73 0.883 0.188 0.34 1.12 0

Total 44 0.50 0.821 0.124 0.25 0.75 0

Gentleman 22 0.00 0.000 0.000 0.00 0.00 0

MPS 22 8.36 3.430 0.731 6.84 9.88 5

Total 44 4.18 4.862 0.733 2.70 5.66 0

Gentleman 22 1.59 1.681 0.358 0.85 2.34 0

MPS 22 2.27 2.097 0.447 1.34 3.20 0

Total 44 1.93 1.910 0.288 1.35 2.51 0

Gentleman 22 5.36 7.607 1.622 1.99 8.74 0

MPS 22 12.32 14.875 3.171 5.72 18.91 0

Total 44 8.84 12.194 1.838 5.13 12.55 0

Gentleman 22 0.27 0.550 0.117 0.03 0.52 0

MPS 22 1.32 2.234 0.476 0.33 2.31 0

Total 44 0.80 1.692 0.255 0.28 1.31 0

Gentleman 22 1.50 3.474 0.741 -0.04 3.04 0

MPS 22 12.27 26.767 5.707 0.40 24.14 0

Total 44 6.89 19.634 2.960 0.92 12.86 0

Gentleman 22 138.18 57.208 12.197 112.82 163.55 75

MPS 22 227.05 124.065 26.451 172.04 282.05 80

Total 44 182.61 105.525 15.908 150.53 214.70 75

Gentleman 22 1.00 0.000 0.000 1.00 1.00 1

MPS 22 1.00 0.000 0.000 1.00 1.00 1

Total 44 1.00 0.000 0.000 1.00 1.00 1

Gentleman 22 0.00 0.000 0.000 0.00 0.00 0

MPS 22 0.41 0.590 0.126 0.15 0.67 0

Total 44 0.20 0.462 0.070 0.06 0.34 0

Gentleman 22 0.59 0.959 0.204 0.17 1.02 0

MPS 22 0.32 0.568 0.121 0.07 0.57 0

Total 44 0.45 0.791 0.119 0.21 0.70 0

Descriptives

N Mean

Std.

Deviation

Std.

Error

95% Confidence

Interval for Mean

Min

NB_Selection

NB_Blank

NB_Miss

NB_CxtChange

NB_Idle

T_Idle

NB_QA

T_QA

T_Total

RT_Success

NB_Block

NB_Typos

Gentleman 22 0.05 0.213 0.045 -0.05 0.14 0

MPS 22 0.09 0.426 0.091 -0.10 0.28 0

Total 44 0.07 0.334 0.050 -0.03 0.17 0

Gentleman 22 0.00 0.000 0.000 0.00 0.00 0

MPS 22 0.09 0.294 0.063 -0.04 0.22 0

Total 44 0.05 0.211 0.032 -0.02 0.11 0

Gentleman 22 0.31818 0.476731 0.101639 0.10681 0.52955 0.000

MPS 22 0.04545 0.213201 0.045455 -0.04907 0.13998 0.000

Total 44 0.18182 0.390154 0.058818 0.06320 0.30044 0.000

Gentleman 22 0.41 0.503 0.107 0.19 0.63 0

MPS 22 0.23 0.429 0.091 0.04 0.42 0

Total 44 0.32 0.471 0.071 0.17 0.46 0

Gentleman 22 3.64 6.673 1.423 0.68 6.59 0

MPS 22 1.27 3.042 0.649 -0.08 2.62 0

Total 44 2.45 5.263 0.793 0.85 4.05 0

Gentleman 22 0.2269 0.08541 0.01821 0.1891 0.2648 0.09

MPS 22 0.1907 0.08216 0.01752 0.1543 0.2271 0.09

Total 44 0.2088 0.08482 0.01279 0.1830 0.2346 0.09

Sum of

Squares df

Mean

Square F Sig.

Between Groups 1060.364 1 1060.364 8.083 0.007

Within Groups 5509.818 42 131.186

Total 6570.182 43

Between Groups 117.818 1 117.818 9.625 0.003

Within Groups 514.091 42 12.240

Total 631.909 43

Between Groups 2.273 1 2.273 3.571 0.066

Within Groups 26.727 42 0.636

Total 29.000 43

Between Groups 769.455 1 769.455 130.790 0.000

Within Groups 247.091 42 5.883

Total 1016.545 43

Between Groups 5.114 1 5.114 1.416 0.241

Within Groups 151.682 42 3.611

Total 156.795 43

Between Groups 532.023 1 532.023 3.812 0.058

Within Groups 5861.864 42 139.568

Total 6393.886 43

NB_DesignErr

NB_Bug

Detection

RT_Recover

T_Recover

task_velocity

ANOVA

NB_Selection

NB_Blank

NB_Miss

NB_CxtChange

NB_Idle

T_Idle

Between Groups 12.023 1 12.023 4.544 0.039

Within Groups 111.136 42 2.646

Total 123.159 43

Between Groups 1276.568 1 1276.568 3.504 0.068

Within Groups 15299.864 42 364.282

Total 16576.432 43

Between Groups 86864.205 1 86864.205 9.308 0.004

Within Groups 391960.227 42 9332.386

Total 478824.432 43

Between Groups 0.000 1 0.000

Within Groups 0.000 42 0.000

Total 0.000 43

Between Groups 1.841 1 1.841 10.565 0.002

Within Groups 7.318 42 0.174

Total 9.159 43

Between Groups 0.818 1 0.818 1.317 0.258

Within Groups 26.091 42 0.621

Total 26.909 43

Between Groups 0.023 1 0.023 0.200 0.657

Within Groups 4.773 42 0.114

Total 4.795 43

Between Groups 0.091 1 0.091 2.100 0.155

Within Groups 1.818 42 0.043

Total 1.909 43

Between Groups 0.818 1 0.818 6.000 0.019

Within Groups 5.727 42 0.136

Total 6.545 43

Between Groups 0.364 1 0.364 1.663 0.204

Within Groups 9.182 42 0.219

Total 9.545 43

Between Groups 61.455 1 61.455 2.285 0.138

Within Groups 1129.455 42 26.892

Total 1190.909 43

Between Groups 0.014 1 0.014 2.055 0.159

Within Groups 0.295 42 0.007

Total 0.309 43

Statistic
a

df1 df2 Sig.

NB_QA

T_QA

T_Total

RT_Success

NB_Block

NB_Typos

NB_DesignErr

NB_Bug

Detection

RT_Recover

T_Recover

task_velocity

Robust Tests of Equality of Means
b,c,d,e

Welch 8.083 1 25.659 0.009

Brown-Forsythe 8.083 1 25.659 0.009

Welch 9.625 1 25.548 0.005

Brown-Forsythe 9.625 1 25.548 0.005

Welch 3.571 1 39.985 0.066

Brown-Forsythe 3.571 1 39.985 0.066

Welch

Brown-Forsythe

Welch 1.416 1 40.097 0.241

Brown-Forsythe 1.416 1 40.097 0.241

Welch 3.812 1 31.280 0.060

Brown-Forsythe 3.812 1 31.280 0.060

Welch 4.544 1 23.542 0.044

Brown-Forsythe 4.544 1 23.542 0.044

Welch 3.504 1 21.707 0.075

Brown-Forsythe 3.504 1 21.707 0.075

Welch 9.308 1 29.544 0.005

Brown-Forsythe 9.308 1 29.544 0.005

Welch

Brown-Forsythe

Welch

Brown-Forsythe

Welch 1.317 1 34.113 0.259

Brown-Forsythe 1.317 1 34.113 0.259

Welch 0.200 1 30.882 0.658

Brown-Forsythe 0.200 1 30.882 0.658

Welch

Brown-Forsythe

Welch 6.000 1 29.077 0.021

Brown-Forsythe 6.000 1 29.077 0.021

Welch 1.663 1 40.972 0.204

Brown-Forsythe 1.663 1 40.972 0.204

Welch 2.285 1 29.368 0.141

Brown-Forsythe 2.285 1 29.368 0.141

Welch 2.055 1 41.937 0.159

Brown-Forsythe 2.055 1 41.937 0.159

NB_Selection

NB_Blank

NB_Miss

NB_CxtChange

NB_Idle

T_Idle

NB_QA

T_QA

T_Total

RT_Success

NB_Block

NB_Typos

NB_DesignErr

NB_Bug

Detection

RT_Recover

T_Recover

task_velocity

a. Asymptotically F distributed.

b. Robust tests of equality of means cannot be performed for NB_CxtChange because at

least one group has 0 variance.

Eta Eta Squared

NB_Selection * tool 0.402 0.161

NB_Blank * tool 0.432 0.186

NB_Miss * tool 0.280 0.078

NB_CxtChange * tool 0.870 0.757

NB_Idle * tool 0.181 0.033

T_Idle * tool 0.288 0.083

NB_QA * tool 0.312 0.098

T_QA * tool 0.278 0.077

T_Total * tool 0.426 0.181

NB_Block * tool 0.448 0.201

NB_Typos * tool 0.174 0.030

NB_DesignErr * tool 0.069 0.005

NB_Bug * tool 0.218 0.048

Detection * tool 0.354 0.125

RT_Recover * tool 0.195 0.038

T_Recover * tool 0.227 0.052

task_velocity * tool 0.216 0.047

c. Robust tests of equality of means cannot be performed for RT_Success because at least

one group has 0 variance.

d. Robust tests of equality of means cannot be performed for NB_Block because at least

one group has 0 variance.

e. Robust tests of equality of means cannot be performed for NB_Bug because at least one

group has 0 variance.

Measures of Association

C.3.2. Task 2 results

145

Lower Upper

Gentleman 22 49.14 12.124 2.585 43.76 54.51 28 76

MPS 22 55.45 20.694 4.412 46.28 64.63 30 98

Total 44 52.30 17.063 2.572 47.11 57.48 28 98

Gentleman 22 2.86 2.765 0.590 1.64 4.09 0 9

MPS 22 5.64 4.499 0.959 3.64 7.63 0 18

Total 44 4.25 3.948 0.595 3.05 5.45 0 18

Gentleman 22 1.36 1.620 0.345 0.65 2.08 0 7

MPS 22 1.09 1.269 0.271 0.53 1.65 0 4

Total 44 1.23 1.445 0.218 0.79 1.67 0 7

Gentleman 22 0.32 1.129 0.241 -0.18 0.82 0 5

MPS 22 9.95 4.370 0.932 8.02 11.89 3 20

Total 44 5.14 5.805 0.875 3.37 6.90 0 20

Gentleman 22 2.23 1.343 0.286 1.63 2.82 0 6

MPS 22 2.41 1.501 0.320 1.74 3.07 0 6

Total 44 2.32 1.410 0.213 1.89 2.75 0 6

Gentleman 22 9.45 7.042 1.501 6.33 12.58 0 26

MPS 22 11.86 9.321 1.987 7.73 16.00 0 35

Total 44 10.66 8.255 1.244 8.15 13.17 0 35

Gentleman 22 1.50 1.144 0.244 0.99 2.01 0 4

MPS 22 1.95 1.988 0.424 1.07 2.84 0 6

Total 44 1.73 1.619 0.244 1.24 2.22 0 6

Gentleman 22 11.45 9.689 2.066 7.16 15.75 0 30

MPS 22 15.36 19.456 4.148 6.74 23.99 0 60

Total 44 13.41 15.317 2.309 8.75 18.07 0 60

Gentleman 22 295.00 107.593 22.939 247.30 342.70 115 540

MPS 22 358.18 143.822 30.663 294.41 421.95 160 750

Total 44 326.59 129.524 19.526 287.21 365.97 115 750

Gentleman 22 1.00 0.000 0.000 1.00 1.00 1 1

MPS 22 1.00 0.000 0.000 1.00 1.00 1 1

Total 44 1.00 0.000 0.000 1.00 1.00 1 1

Gentleman 22 0.00 0.000 0.000 0.00 0.00 0 0

MPS 22 0.32 0.646 0.138 0.03 0.60 0 2

Total 44 0.16 0.479 0.072 0.01 0.30 0 2

Gentleman 22 0.18 0.395 0.084 0.01 0.36 0 1

MPS 22 0.09 0.426 0.091 -0.10 0.28 0 2

Total 44 0.14 0.409 0.062 0.01 0.26 0 2

Descriptives

N Mean

Std.

Deviation

Std.

Error

95% Confidence

Interval for Mean

Min Max

NB_Selection

NB_Blank

NB_Miss

NB_CxtChange

NB_Idle

T_Idle

NB_QA

T_QA

T_Total

RT_Success

NB_Block

NB_Typos

Gentleman 22 0.09 0.294 0.063 -0.04 0.22 0 1

MPS 22 0.23 0.752 0.160 -0.11 0.56 0 3

Total 44 0.16 0.568 0.086 -0.01 0.33 0 3

Gentleman 22 0.05 0.213 0.045 -0.05 0.14 0 1

MPS 22 0.00 0.000 0.000 0.00 0.00 0 0

Total 44 0.02 0.151 0.023 -0.02 0.07 0 1

Gentleman 22 0.27273 0.455842 0.097186 0.07062 0.47484 0.000 1.000

MPS 22 0.04545 0.213201 0.045455 -0.04907 0.13998 0.000 1.000

Total 44 0.15909 0.369989 0.055778 0.04660 0.27158 0.000 1.000

Gentleman 22 0.32 0.477 0.102 0.11 0.53 0 1

MPS 22 0.14 0.351 0.075 -0.02 0.29 0 1

Total 44 0.23 0.424 0.064 0.10 0.36 0 1

Gentleman 22 2.55 4.339 0.925 0.62 4.47 0 12

MPS 22 1.14 3.299 0.703 -0.33 2.60 0 14

Total 44 1.84 3.876 0.584 0.66 3.02 0 14

Gentleman 22 0.1813 0.06008 0.01281 0.1547 0.2080 0.10 0.30

MPS 22 0.1658 0.06041 0.01288 0.1391 0.1926 0.09 0.32

Total 44 0.1736 0.06005 0.00905 0.1553 0.1918 0.09 0.32

Sum of

Squares df

Mean

Square F Sig.

Between Groups 439.114 1 439.114 1.527 0.223

Within Groups 12080.045 42 287.620

Total 12519.159 43

Between Groups 84.568 1 84.568 6.064 0.018

Within Groups 585.682 42 13.945

Total 670.250 43

Between Groups 0.818 1 0.818 0.387 0.538

Within Groups 88.909 42 2.117

Total 89.727 43

Between Groups 1021.455 1 1021.455 100.300 0.000

Within Groups 427.727 42 10.184

Total 1449.182 43

Between Groups 0.364 1 0.364 0.179 0.674

Within Groups 85.182 42 2.028

Total 85.545 43

Between Groups 63.841 1 63.841 0.936 0.339

Within Groups 2866.045 42 68.239

Total 2929.886 43

NB_DesignErr

NB_Bug

Detection

RT_Recover

T_Recover

task_velocity

ANOVA

NB_Selection

NB_Blank

NB_Miss

NB_CxtChange

NB_Idle

T_Idle

Between Groups 2.273 1 2.273 0.864 0.358

Within Groups 110.455 42 2.630

Total 112.727 43

Between Groups 168.091 1 168.091 0.712 0.404

Within Groups 9920.545 42 236.203

Total 10088.636 43

Between Groups 43911.364 1 43911.364 2.722 0.106

Within Groups 677477.273 42 16130.411

Total 721388.636 43

Between Groups 0.000 1 0.000

Within Groups 0.000 42 0.000

Total 0.000 43

Between Groups 1.114 1 1.114 5.332 0.026

Within Groups 8.773 42 0.209

Total 9.886 43

Between Groups 0.091 1 0.091 0.538 0.467

Within Groups 7.091 42 0.169

Total 7.182 43

Between Groups 0.205 1 0.205 0.628 0.433

Within Groups 13.682 42 0.326

Total 13.886 43

Between Groups 0.023 1 0.023 1.000 0.323

Within Groups 0.955 42 0.023

Total 0.977 43

Between Groups 0.568 1 0.568 4.487 0.040

Within Groups 5.318 42 0.127

Total 5.886 43

Between Groups 0.364 1 0.364 2.074 0.157

Within Groups 7.364 42 0.175

Total 7.727 43

Between Groups 21.841 1 21.841 1.470 0.232

Within Groups 624.045 42 14.858

Total 645.886 43

Between Groups 0.003 1 0.003 0.727 0.399

Within Groups 0.152 42 0.004

Total 0.155 43

Statistic
a

df1 df2 Sig.

NB_QA

T_QA

T_Total

RT_Success

NB_Block

NB_Typos

NB_DesignErr

NB_Bug

Detection

RT_Recover

T_Recover

task_velocity

Robust Tests of Equality of Means
b,c,d

Welch 1.527 1 33.896 0.225

Brown-Forsythe 1.527 1 33.896 0.225

Welch 6.064 1 34.885 0.019

Brown-Forsythe 6.064 1 34.885 0.019

Welch 0.387 1 39.726 0.538

Brown-Forsythe 0.387 1 39.726 0.538

Welch 100.300 1 23.792 0.000

Brown-Forsythe 100.300 1 23.792 0.000

Welch 0.179 1 41.489 0.674

Brown-Forsythe 0.179 1 41.489 0.674

Welch 0.936 1 39.082 0.339

Brown-Forsythe 0.936 1 39.082 0.339

Welch 0.864 1 33.545 0.359

Brown-Forsythe 0.864 1 33.545 0.359

Welch 0.712 1 30.813 0.405

Brown-Forsythe 0.712 1 30.813 0.405

Welch 2.722 1 38.899 0.107

Brown-Forsythe 2.722 1 38.899 0.107

Welch

Brown-Forsythe

Welch

Brown-Forsythe

Welch 0.538 1 41.753 0.467

Brown-Forsythe 0.538 1 41.753 0.467

Welch 0.628 1 27.289 0.435

Brown-Forsythe 0.628 1 27.289 0.435

Welch

Brown-Forsythe

Welch 4.487 1 29.768 0.043

Brown-Forsythe 4.487 1 29.768 0.043

Welch 2.074 1 38.610 0.158

Brown-Forsythe 2.074 1 38.610 0.158

Welch 1.470 1 39.197 0.233

Brown-Forsythe 1.470 1 39.197 0.233

Welch 0.727 1 41.999 0.399

Brown-Forsythe 0.727 1 41.999 0.399

NB_Selection

NB_Blank

NB_Miss

NB_CxtChange

NB_Idle

T_Idle

NB_QA

T_QA

T_Total

RT_Success

NB_Block

NB_Typos

NB_DesignErr

NB_Bug

Detection

RT_Recover

T_Recover

task_velocity

a. Asymptotically F distributed.

b. Robust tests of equality of means cannot be performed for RT_Success because

at least one group has 0 variance.

Eta Eta Squared

NB_Selection * tool 0.187 0.035

NB_Blank * tool 0.355 0.126

NB_Miss * tool 0.095 0.009

NB_CxtChange * tool 0.840 0.705

NB_Idle * tool 0.065 0.004

T_Idle * tool 0.148 0.022

NB_QA * tool 0.142 0.020

T_QA * tool 0.129 0.017

T_Total * tool 0.247 0.061

NB_Block * tool 0.336 0.113

NB_Typos * tool 0.113 0.013

NB_DesignErr * tool 0.121 0.015

NB_Bug * tool 0.152 0.023

Detection * tool 0.311 0.097

RT_Recover * tool 0.217 0.047

T_Recover * tool 0.184 0.034

task_velocity * tool 0.130 0.017

c. Robust tests of equality of means cannot be performed for NB_Block because at

least one group has 0 variance.

d. Robust tests of equality of means cannot be performed for NB_Bug because at

least one group has 0 variance.

Measures of Association

C.3.3. Task 3 results

151

Lower Upper

Gentleman 22 16.55 4.512 0.962 14.55 18.55 11

MPS 22 16.68 5.818 1.240 14.10 19.26 10

Total 44 16.61 5.145 0.776 15.05 18.18 10

Gentleman 22 0.77 1.066 0.227 0.30 1.25 0

MPS 22 2.32 2.033 0.433 1.42 3.22 0

Total 44 1.55 1.784 0.269 1.00 2.09 0

Gentleman 22 0.18 0.501 0.107 -0.04 0.40 0

MPS 22 0.18 0.501 0.107 -0.04 0.40 0

Total 44 0.18 0.495 0.075 0.03 0.33 0

Gentleman 22 0.00 0.000 0.000 0.00 0.00 0

MPS 22 0.00 0.000 0.000 0.00 0.00 0

Total 44 0.00 0.000 0.000 0.00 0.00 0

Gentleman 22 0.95 1.090 0.232 0.47 1.44 0

MPS 22 1.05 1.174 0.250 0.52 1.57 0

Total 44 1.00 1.121 0.169 0.66 1.34 0

Gentleman 22 3.82 5.422 1.156 1.41 6.22 0

MPS 22 4.45 7.576 1.615 1.10 7.81 0

Total 44 4.14 6.519 0.983 2.15 6.12 0

Gentleman 22 0.09 0.426 0.091 -0.10 0.28 0

MPS 22 0.23 0.429 0.091 0.04 0.42 0

Total 44 0.16 0.428 0.065 0.03 0.29 0

Gentleman 22 1.82 8.528 1.818 -1.96 5.60 0

MPS 22 1.36 2.904 0.619 0.08 2.65 0

Total 44 1.59 6.300 0.950 -0.32 3.51 0

Gentleman 22 187.50 78.327 16.699 152.77 222.23 75

MPS 22 212.95 92.243 19.666 172.06 253.85 80

Total 44 200.23 85.542 12.896 174.22 226.23 75

Gentleman 22 1.00 0.000 0.000 1.00 1.00 1

MPS 22 1.00 0.000 0.000 1.00 1.00 1

Total 44 1.00 0.000 0.000 1.00 1.00 1

Gentleman 22 0.00 0.000 0.000 0.00 0.00 0

MPS 22 0.05 0.213 0.045 -0.05 0.14 0

Total 44 0.02 0.151 0.023 -0.02 0.07 0

Gentleman 22 4.36 0.848 0.181 3.99 4.74 3

MPS 22 4.00 0.926 0.197 3.59 4.41 2

Total 44 4.18 0.896 0.135 3.91 4.45 2

Descriptives

N Mean

Std.

Deviation

Std.

Error

95% Confidence

Interval for Mean

Min

NB_Selection

NB_Blank

NB_Miss

NB_CxtChange

NB_Idle

T_Idle

NB_QA

T_QA

T_Total

RT_Success

NB_Block

NB_Typos

Gentleman 22 3.36 0.848 0.181 2.99 3.74 2

MPS 22 3.45 0.800 0.171 3.10 3.81 2

Total 44 3.41 0.816 0.123 3.16 3.66 2

Gentleman 22 0.09 0.294 0.063 -0.04 0.22 0

MPS 22 0.00 0.000 0.000 0.00 0.00 0

Total 44 0.05 0.211 0.032 -0.02 0.11 0

Gentleman 22 1.00000 0.000000 0.000000 1.00000 1.00000 1.000

MPS 22 1.00000 0.000000 0.000000 1.00000 1.00000 1.000

Total 44 1.00000 0.000000 0.000000 1.00000 1.00000 1.000

Gentleman 22 1.00 0.000 0.000 1.00 1.00 1

MPS 22 1.00 0.000 0.000 1.00 1.00 1

Total 44 1.00 0.000 0.000 1.00 1.00 1

Gentleman 22 86.59 36.167 7.711 70.56 102.63 40

MPS 22 93.41 48.926 10.431 71.72 115.10 35

Total 44 90.00 42.659 6.431 77.03 102.97 35

Gentleman 22 0.1056 0.06238 0.01330 0.0779 0.1332 0.05

MPS 22 0.0938 0.05700 0.01215 0.0686 0.1191 0.03

Total 44 0.0997 0.05935 0.00895 0.0817 0.1178 0.03

Sum of

Squares df

Mean

Square F Sig.

Between Groups 0.205 1 0.205 0.008 0.931

Within Groups 1138.227 42 27.101

Total 1138.432 43

Between Groups 26.273 1 26.273 9.974 0.003

Within Groups 110.636 42 2.634

Total 136.909 43

Between Groups 0.000 1 0.000 0.000 1.000

Within Groups 10.545 42 0.251

Total 10.545 43

Between Groups 0.000 1 0.000

Within Groups 0.000 42 0.000

Total 0.000 43

Between Groups 0.091 1 0.091 0.071 0.791

Within Groups 53.909 42 1.284

Total 54.000 43

Between Groups 4.455 1 4.455 0.103 0.750

Within Groups 1822.727 42 43.398

Total 1827.182 43

NB_DesignErr

NB_Bug

Detection

RT_Recover

T_Recover

task_velocity

ANOVA

NB_Selection

NB_Blank

NB_Miss

NB_CxtChange

NB_Idle

T_Idle

Between Groups 0.205 1 0.205 1.118 0.296

Within Groups 7.682 42 0.183

Total 7.886 43

Between Groups 2.273 1 2.273 0.056 0.814

Within Groups 1704.364 42 40.580

Total 1706.636 43

Between Groups 7127.273 1 7127.273 0.973 0.329

Within Groups 307520.455 42 7321.916

Total 314647.727 43

Between Groups 0.000 1 0.000

Within Groups 0.000 42 0.000

Total 0.000 43

Between Groups 0.023 1 0.023 1.000 0.323

Within Groups 0.955 42 0.023

Total 0.977 43

Between Groups 1.455 1 1.455 1.846 0.181

Within Groups 33.091 42 0.788

Total 34.545 43

Between Groups 0.091 1 0.091 0.134 0.716

Within Groups 28.545 42 0.680

Total 28.636 43

Between Groups 0.091 1 0.091 2.100 0.155

Within Groups 1.818 42 0.043

Total 1.909 43

Between Groups 0.000 1 0.000

Within Groups 0.000 42 0.000

Total 0.000 43

Between Groups 0.000 1 0.000

Within Groups 0.000 42 0.000

Total 0.000 43

Between Groups 511.364 1 511.364 0.276 0.602

Within Groups 77738.636 42 1850.920

Total 78250.000 43

Between Groups 0.002 1 0.002 0.425 0.518

Within Groups 0.150 42 0.004

Total 0.151 43

Statistic
a

df1 df2 Sig.

NB_QA

T_QA

T_Total

RT_Success

NB_Block

NB_Typos

NB_DesignErr

NB_Bug

Detection

RT_Recover

T_Recover

task_velocity

Robust Tests of Equality of Means
b,c,d,e,f,g

Welch 0.008 1 39.550 0.931

Brown-Forsythe 0.008 1 39.550 0.931

Welch 9.974 1 31.738 0.003

Brown-Forsythe 9.974 1 31.738 0.003

Welch 0.000 1 42.000 1.000

Brown-Forsythe 0.000 1 42.000 1.000

Welch

Brown-Forsythe

Welch 0.071 1 41.770 0.791

Brown-Forsythe 0.071 1 41.770 0.791

Welch 0.103 1 38.039 0.750

Brown-Forsythe 0.103 1 38.039 0.750

Welch 1.118 1 41.999 0.296

Brown-Forsythe 1.118 1 41.999 0.296

Welch 0.056 1 25.805 0.815

Brown-Forsythe 0.056 1 25.805 0.815

Welch 0.973 1 40.925 0.330

Brown-Forsythe 0.973 1 40.925 0.330

Welch

Brown-Forsythe

Welch

Brown-Forsythe

Welch 1.846 1 41.678 0.182

Brown-Forsythe 1.846 1 41.678 0.182

Welch 0.134 1 41.862 0.716

Brown-Forsythe 0.134 1 41.862 0.716

Welch

Brown-Forsythe

Welch

Brown-Forsythe

Welch

Brown-Forsythe

Welch 0.276 1 38.673 0.602

Brown-Forsythe 0.276 1 38.673 0.602

Welch 0.425 1 41.664 0.518

Brown-Forsythe 0.425 1 41.664 0.518

NB_Selection

NB_Blank

NB_Miss

NB_CxtChange

NB_Idle

T_Idle

NB_QA

T_QA

T_Total

RT_Success

NB_Block

NB_Typos

NB_DesignErr

NB_Bug

Detection

RT_Recover

T_Recover

task_velocity

a. Asymptotically F distributed.

b. Robust tests of equality of means cannot be performed for NB_CxtChange because at least

one group has 0 variance.

Eta Eta Squared

NB_Selection * tool 0.013 0.000

NB_Blank * tool 0.438 0.192

NB_Miss * tool 0.000 0.000

NB_Idle * tool 0.041 0.002

T_Idle * tool 0.049 0.002

NB_QA * tool 0.161 0.026

T_QA * tool 0.036 0.001

T_Total * tool 0.151 0.023

NB_Block * tool 0.152 0.023

NB_Typos * tool 0.205 0.042

NB_DesignErr * tool 0.056 0.003

NB_Bug * tool 0.218 0.048

T_Recover * tool 0.081 0.007

task_velocity * tool 0.100 0.010

Measures of Association

c. Robust tests of equality of means cannot be performed for RT_Success because at least one

group has 0 variance.

d. Robust tests of equality of means cannot be performed for NB_Block because at least one

group has 0 variance.

e. Robust tests of equality of means cannot be performed for NB_Bug because at least one

group has 0 variance.

f. Robust tests of equality of means cannot be performed for Detection because at least one

group has 0 variance.

g. Robust tests of equality of means cannot be performed for RT_Recover because at least one

group has 0 variance.

C.3.4. Survey results

157

Lower Upper

Gentleman 22 4.73 0.456 0.097 4.53 4.93 4 5

MPS 22 3.95 0.844 0.180 3.58 4.33 2 5

Total 44 4.34 0.776 0.117 4.11 4.58 2 5

Gentleman 22 4.77 0.429 0.091 4.58 4.96 4 5

MPS 22 4.14 0.990 0.211 3.70 4.58 1 5

Total 44 4.45 0.820 0.124 4.21 4.70 1 5

Gentleman 22 4.73 0.456 0.097 4.53 4.93 4 5

MPS 22 4.27 0.767 0.164 3.93 4.61 2 5

Total 44 4.50 0.665 0.100 4.30 4.70 2 5

Gentleman 10 4.30 0.823 0.260 3.71 4.89 3 5

MPS 21 4.24 0.768 0.168 3.89 4.59 3 5

Total 31 4.26 0.773 0.139 3.97 4.54 3 5

Gentleman 22 4.86 0.351 0.075 4.71 5.02 4 5

MPS 22 4.05 0.950 0.203 3.62 4.47 2 5

Total 44 4.45 0.820 0.124 4.21 4.70 2 5

Gentleman 22 4.64 0.581 0.124 4.38 4.89 3 5

MPS 22 4.09 0.750 0.160 3.76 4.42 3 5

Total 44 4.36 0.718 0.108 4.15 4.58 3 5

Gentleman 22 4.59 0.796 0.170 4.24 4.94 3 5

MPS 22 4.09 0.921 0.196 3.68 4.50 2 5

Total 44 4.34 0.888 0.134 4.07 4.61 2 5

Gentleman 22 4.73 0.456 0.097 4.53 4.93 4 5

MPS 22 4.41 0.734 0.157 4.08 4.73 3 5

Total 44 4.57 0.625 0.094 4.38 4.76 3 5

Gentleman 22 4.73 0.456 0.097 4.53 4.93 4 5

MPS 22 3.55 1.143 0.244 3.04 4.05 1 5

Total 44 4.14 1.047 0.158 3.82 4.45 1 5

Gentleman 22 4.77 0.528 0.113 4.54 5.01 3 5

MPS 22 4.05 0.785 0.167 3.70 4.39 3 5

Total 44 4.41 0.757 0.114 4.18 4.64 3 5

Levene

Statistic df1 df2 Sig.

Based on Mean 2.797 1 42 0.102

Based on Median 4.004 1 42 0.052

Descriptives

N Mean

Std.

Deviation

Std.

Error

95% Confidence

Interval for Mean

Min Max

ui

control

state

navkey

navmouse

reuseval

focus

recover

actions

execution

Test of Homogeneity of Variances

ui

Based on Median and with

adjusted df

4.004 1 39.475 0.052

Based on trimmed mean 2.318 1 42 0.135

Based on Mean 2.711 1 42 0.107

Based on Median 3.556 1 42 0.066

Based on Median and with

adjusted df

3.556 1 32.238 0.068

Based on trimmed mean 3.872 1 42 0.056

Based on Mean 3.319 1 42 0.076

Based on Median 2.908 1 42 0.096

Based on Median and with

adjusted df

2.908 1 39.311 0.096

Based on trimmed mean 4.280 1 42 0.045

Based on Mean 0.107 1 29 0.746

Based on Median 0.196 1 29 0.661

Based on Median and with

adjusted df

0.196 1 28.419 0.661

Based on trimmed mean 0.092 1 29 0.764

Based on Mean 19.903 1 42 0.000

Based on Median 22.129 1 42 0.000

Based on Median and with

adjusted df

22.129 1 36.527 0.000

Based on trimmed mean 22.758 1 42 0.000

Based on Mean 0.514 1 42 0.477

Based on Median 1.217 1 42 0.276

Based on Median and with

adjusted df

1.217 1 41.297 0.276

Based on trimmed mean 0.844 1 42 0.364

Based on Mean 0.030 1 42 0.862

Based on Median 1.065 1 42 0.308

Based on Median and with

adjusted df

1.065 1 40.557 0.308

Based on trimmed mean 0.236 1 42 0.629

Based on Mean 9.227 1 42 0.004

Based on Median 2.983 1 42 0.092

Based on Median and with

adjusted df

2.983 1 35.097 0.093

Based on trimmed mean 8.723 1 42 0.005

Based on Mean 16.697 1 42 0.000

Based on Median 10.290 1 42 0.003

Based on Median and with

adjusted df

10.290 1 33.060 0.003

ui

control

state

navkey

navmouse

reuseval

focus

recover

actions

Based on trimmed mean 16.153 1 42 0.000

Based on Mean 3.347 1 42 0.074

Based on Median 5.463 1 42 0.024

Based on Median and with

adjusted df

5.463 1 41.900 0.024

Based on trimmed mean 4.514 1 42 0.040

Sum of

Squares df

Mean

Square F Sig.

Between Groups 6.568 1 6.568 14.280 0.000

Within Groups 19.318 42 0.460

Total 25.886 43

Between Groups 4.455 1 4.455 7.651 0.008

Within Groups 24.455 42 0.582

Total 28.909 43

Between Groups 2.273 1 2.273 5.707 0.021

Within Groups 16.727 42 0.398

Total 19.000 43

Between Groups 0.026 1 0.026 0.042 0.839

Within Groups 17.910 29 0.618

Total 17.935 30

Between Groups 7.364 1 7.364 14.354 0.000

Within Groups 21.545 42 0.513

Total 28.909 43

Between Groups 3.273 1 3.273 7.269 0.010

Within Groups 18.909 42 0.450

Total 22.182 43

Between Groups 2.750 1 2.750 3.709 0.061

Within Groups 31.136 42 0.741

Total 33.886 43

Between Groups 1.114 1 1.114 2.983 0.092

Within Groups 15.682 42 0.373

Total 16.795 43

Between Groups 15.364 1 15.364 20.280 0.000

Within Groups 31.818 42 0.758

Total 47.182 43

Between Groups 5.818 1 5.818 12.986 0.001

Within Groups 18.818 42 0.448

Total 24.636 43

actions

execution

ANOVA

ui

control

state

navkey

navmouse

reuseval

focus

recover

actions

execution

Statistic
a

df1 df2 Sig.

Welch 14.280 1 32.294 0.001

Brown-Forsythe 14.280 1 32.294 0.001

Welch 7.651 1 28.613 0.010

Brown-Forsythe 7.651 1 28.613 0.010

Welch 5.707 1 34.182 0.023

Brown-Forsythe 5.707 1 34.182 0.023

Welch 0.040 1 16.721 0.844

Brown-Forsythe 0.040 1 16.721 0.844

Welch 14.354 1 26.636 0.001

Brown-Forsythe 14.354 1 26.636 0.001

Welch 7.269 1 39.529 0.010

Brown-Forsythe 7.269 1 39.529 0.010

Welch 3.709 1 41.141 0.061

Brown-Forsythe 3.709 1 41.141 0.061

Welch 2.983 1 35.097 0.093

Brown-Forsythe 2.983 1 35.097 0.093

Welch 20.280 1 27.511 0.000

Brown-Forsythe 20.280 1 27.511 0.000

Welch 12.986 1 36.778 0.001

Brown-Forsythe 12.986 1 36.778 0.001

Eta Eta Squared

ui * tool 0.504 0.254

control * tool 0.393 0.154

state * tool 0.346 0.120

navkey * tool 0.038 0.001

navmouse * tool 0.505 0.255

reuseval * tool 0.384 0.148

focus * tool 0.285 0.081

recover * tool 0.257 0.066

actions * tool 0.571 0.326

execution * tool 0.486 0.236

Robust Tests of Equality of Means

ui

control

state

navkey

execution

a. Asymptotically F distributed.

Measures of Association

navmouse

reuseval

focus

recover

actions

	Résumé
	Abstract
	Contents
	List of tables
	List of figures
	List of abbreviations and acronyms
	Aknowledgements
	Chapter 1. Introduction
	1.1. Context
	1.2. Problematic and thesis proposition
	1.3. Contribution
	1.4. Outline

	Chapter 2. Background and State of the art
	2.1. Model-Driven Enginneering
	2.1.1. Modeling
	2.1.2. Domain-Specific Language
	2.1.3. Metamodeling
	2.1.4. Concrete syntax definition
	2.1.5. Editor generation

	2.2. Language workbench
	2.2.1. Free-form editors
	2.2.2. Syntax-directed editors
	2.2.3. Projectional editors

	2.3. Projectional editing
	2.3.1. MPS
	2.3.1.1. Structure
	2.3.1.2. Editor
	2.3.1.3. Type System
	2.3.1.4. Code generation

	2.3.2. The Whole Platform
	2.3.3. Scratch
	2.3.4. Literature review
	2.3.5. Motivation for Gentleman

	Chapter 3. Gentleman
	3.1. Rationale
	3.2. Running example
	3.3. Architecture
	3.3.1. Editor module
	3.3.2. Concept module
	3.3.3. Projection module

	3.4. Implementation
	3.4.1. Integration
	3.4.2. Configuration

	3.5. Editor services
	3.5.1. Instantiation
	3.5.2. Navigation
	3.5.3. Reusing values
	3.5.4. Undo/Redo
	3.5.5. Code assistance
	3.5.6. Search and filter
	3.5.7. State
	3.5.8. Import/Export
	3.5.9. Bootstrapping

	Chapter 4. Concept
	4.1. Structure
	4.1.1. Attribute
	4.1.2. Property

	4.2. Primitive
	4.2.1. String
	4.2.2. Number
	4.2.3. Boolean
	4.2.4. Set
	4.2.5. Reference

	4.3. Complex
	4.3.1. Concrete
	4.3.2. Prototype
	4.3.3. Derivative

	4.4. Comparison with OO
	4.4.1. Modelling in EMF
	4.4.2. Mapping
	4.4.3. Transformation

	Chapter 5. Projection
	5.1. Structure
	5.2. Layout
	5.2.1. Flex Layout
	5.2.2. Table Layout

	5.3. Interaction points
	5.3.1. TextField
	5.3.2. BinaryField
	5.3.3. ChoiceField
	5.3.4. ListField

	5.4. Static element
	5.4.1. Text
	5.4.2. Image
	5.4.3. Link
	5.4.4. ViewSwitch
	5.4.5. Button

	5.5. Relation function
	5.6. Template
	5.7. Styling

	Chapter 6. Evaluation
	6.1. User study
	6.2. Objectives
	6.3. Study design
	6.3.1. Setup
	6.3.2. Participant
	6.3.3. Experiment process
	6.3.4. Feedback survey

	6.4. Metrics
	6.4.1. Independant variables
	6.4.2. Dependant variables
	6.4.3. Survey variables
	6.4.4. Null hypothesis formulation
	6.4.5. Data collection

	6.5. Results
	6.5.1. Descriptive statistics
	6.5.2. Statistical signifiance
	6.5.3. Hypothesis validation

	6.6. Discussion
	6.7. Threats to validity
	6.8. Integration with ReLiS

	Chapter 7. Conclusion
	7.1. Summary
	7.2. Outlook

	References
	Appendix A. Ecore to Gentleman transformation
	A.1. Ecore models
	A.2. ATL transformation
	A.3. EGL transformation

	Appendix B. Gentleman TodoList artefacts
	B.1. Concept schema
	B.2. Projection schema

	Appendix C. User study data
	C.1. Participant profile
	C.2. Survey
	C.3. Results
	C.3.1. Task 1 results
	C.3.2. Task 2 results
	C.3.3. Task 3 results
	C.3.4. Survey results

