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Résumé

La modélisation du choix d’itinéraire est un sujet de recherche bien étudié avec des implica-
tions, par exemple, pour la planification urbaine et l’analyse des flux d’équilibre du trafic.
En raison de l’ampleur des effets que ces problèmes peuvent avoir sur les communautés, il
n’est pas surprenant que plusieurs domaines de recherche aient tenté de résoudre le même
problème. Les défis viennent cependant de la taille des réseaux eux-mêmes, car les grandes
villes peuvent avoir des dizaines de milliers de segments de routes reliés par des dizaines de
milliers d’intersections. Ainsi, les approches discutées dans cette thèse se concentreront sur la
comparaison des performances entre des modèles de deux domaines différents, l’économétrie
et l’apprentissage par renforcement inverse (IRL).

Tout d’abord, nous fournissons des informations sur le sujet pour que des chercheurs
d’un domaine puissent se familiariser avec l’autre domaine. Dans un deuxième temps, nous
décrivons les algorithmes utilisés avec une notation commune, ce qui facilite la compréhension
entre les domaines. Enfin, nous comparons les performances des modèles sur des ensembles
de données du monde réel, à savoir un ensemble de données couvrant des choix d’itinéraire
de cyclistes collectés dans un réseau avec 42 000 liens.

Nous rapportons nos résultats pour les deux modèles de l’économétrie que nous discutons,
mais nous n’avons pas pu générer les mêmes résultats pour les deux modèles IRL. Cela était
principalement dû aux instabilités numériques que nous avons rencontrées avec le code que
nous avions modifié pour fonctionner avec nos données. Nous proposons une discussion de
ces difficultés parallèlement à la communication de nos résultats.

Mots-clés: Modélisation de choix d’itinéraire, Prévision des flux de trafic,
Modèles de choix discret dynamique, Apprentissage par renforcement inverse
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Abstract

Route choice modeling is a well-studied topic of research with implications, for example,
for city planning and traffic equilibrium flow analysis. Due to the scale of effects these
problems can have on communities, it is no surprise that diverse fields have attempted
solutions to the same problem. The challenges, however, come with the size of networks
themselves, as large cities may have tens of thousands of road segments connected by tens
of thousands of intersections. Thus, the approaches discussed in this thesis will be focusing
on the performance comparison between models from two different fields, econometrics and
inverse reinforcement learning (IRL).

First, we provide background on the topic to introduce researchers from one field to
become acquainted with the other. Secondly, we describe the algorithms used with a common
notation to facilitate this building of understanding between the fields. Lastly, we aim to
compare the performance of the models on real-world datasets, namely covering bike route
choices collected in a network of 42,000 links.

We report our results for the two models from econometrics that we discuss, but were
unable to generate the same results for the two IRL models. This was primarily due to
numerical instabilities we encountered with the code we had modified to work with our data.
We provide a discussion of these difficulties alongside the reporting of our results.

Keywords: Route choice modeling, Traffic flow prediction, Dynamic discrete
choice models, Inverse reinforcement learning
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Chapter 1

Introduction

While the modern car has improved connectivity between both individuals and communities,
there is no doubt that the associated traffic that comes alongside a high volume of cars is
undesirable. While the obvious negative for any driver who has been stuck in rush hour traffic
would be the time delays, there are many other issues that arise with vehicular traffic, namely
noise, environmental pollution, and traffic accidents. In order to minimize these negative
factors, cities employ urban planners and network administrators to design and plan effective
transport networks. Their jobs are to maximize the total utility for all occupants on the road,
whereas each individual tends to make decisions based on what they believe will maximize
their individual utility. This discrepancy of goals between individuals and their community
exposes an important problem and has been a well-researched area, specifically part of what
is known as route choice modeling.

Route choice modeling seeks to understand the choices that travelers in a network make.
This understanding is gained through the ability to both predict the route a traveler will take
as well as explaining why the traveler made that choice. While being able to explain past
actions may have some benefit, the primary goal of route choice models (RCMs) is to tackle
the problem of what is called counterfactual prediction or policy forecasting in econometrics.
That is, the prediction of how traffic operates under different, novel scenarios. These predic-
tions are central to many different transport problems, such as traffic equilibrium analysis.
The interpretation of parameter values (e.g., value of time) along with the predictions allow
experts such as city planners to better design their road system to best serve the community
under a wide variety of possible settings.

The difficulties related to RCM boil down to three requirements stated by Zimmermann
and Frejinger (2020); firstly, the route choice model must be scalable to large networks
that reflect the scale of modern day transportation systems. Secondly, the models must be
generalizable to different scenarios (the counterfactual prediction we mentioned a moment
ago), thus giving benefit to the model beyond the inherently limited number of scenarios



the data was gathered under. Lastly, these models must be interpretable, so the effects of
different features within the network can be understood. For example, Ziebart et al. (2008)
found the cost to a driver when taking a left turn across traffic to be approximately 6 seconds
of travel time.

With such an important problem, it is no surprise that diverse fields have made simulta-
neous progress in the attempt to find novel solutions. Specifically, the field of econometrics
has utilized a litany of discrete choice models, culminating in approaches such as the recur-
sive logit model and nested recursive logit models. Another field, machine learning (ML),
has also attempted solutions within the subfield of inverse reinforcement learning (IRL),
with algorithms such as maximum entropy IRL and its generalized counterpart, generalized
maximum causal entropy. However, there has been little cross-over between the two fields,
in spite of the similarity of their approaches and applicability to each other’s fields. Creating
this explicit link is the primary goal of this thesis. By linking the two fields together, through
rewriting algorithms with common notation as well as comparing the performances of the
different algorithms, we hope to open up a bridge between the literatures and provide an
introduction to researchers from one area about the other.

The remainder of the thesis is structured as follows: Chapter 2 provides background
information on both the econometrics approach as well as the background for understanding
the inverse reinforcement learning approach for someone from the opposite field. This section
should be sufficient in bringing the reader quickly up to speed on what they should be aware
of before reading the algorithms and models specific to the route choice problem. Chapter 3
discusses the methodologies of the two fields. For each field, we describe how the algorithms
work, provide pseudo-code for the algorithms, discuss why we chose to focus on the algorithms
in this thesis, and lastly, discuss the metrics used and a justification of their usage. Chapter 4
presents numerical results for the four models used and a discussion on the impact of the
results.
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Chapter 2

Background on Dynamic Discrete Choice and
Inverse Reinforcement Learning

Before describing the algorithms and models that this thesis will focus on, it is first im-
portant to understand their background. First, we introduce Discrete Choice Models, the
framework that our algorithms utilize. To explain their workings, we discuss random utility
maximization and the property of Independence of Irrelevant Alternatives. Next, we discuss
the area of shortest path problems, and we introduce the reader to the concept of Markov
Decision Processes (MDP) as a useful setting for sequential decision problems. Thirdly, we
discuss the area of dynamic discrete choice models, describing their parameter estimation as
well as introducing the Multinomial Logit Model which we build on in Chapter 3. Lastly,
we introduce the reader to Inverse Reinforcement Learning, with much the same approach
as with the dynamic discrete choice models.

2.1. Discrete Choice Models
Studied within the field of econometrics, Random Utility Maximization (RUM) models

are designed to describe how actors in an environment make choices given a set of information
and available actions. The framework of any RUM model is that individual n makes a choice
p from a choice set Cn, based on the utility of a choice, un(p). A choice set Cn is the
set of all available choices for individual n. The utilities are indexed by individual as the
utility from one traveler to another may be different, as they may value different aspects
of any action with different weights. The utility can be viewed as the assessment of how
good a choice is for an individual. Numerically, we express utility as the variable un(p),
where un(p) = vn(p) + µεn(p), with vn(p) representing the deterministic utility of choice
p, and µεn(p) representing the random utility of choice p. The deterministic utility vn(p)
encompasses the measured attributes of the choice or attributes specific to the individual,
whereas the random utility µεn(p) covers the uncertainty in the observed data, where the µ



is a scale parameter of the random variable. Commonly, the deterministic utility is linear-
in-parameters, and is written as vn(p) = θxn(p), with θ being a parameter vector with
coefficients to be estimated, and xn(p) being a vector of attributes containing the information
on the choice p for individual n. We assume that individuals seek to maximize this utility with
respect to their choices, a concept known as “utility maximization”. Under this assumption,
we can formulate the probability of an individual n choosing path p from Cn as the following:

P (p|Cn) = P (un(p) > un(p′) ∀ p′ ∈ Cn)

= P (un(p) = max
p′∈Cn

un(p′)).

While there are a wealth of different types of models that depend on the assumptions made
on distribution of the random error terms, by assuming the error terms εn(p) are independent
and identically distributed (i.i.d.) extreme value type I, we get the Multinomial Logit (MNL)
formulation (McFadden, 1977). This is one of the more simple assumptions and provides
the basis for the later models discussed, though as can be seen in Train (2009), there exist
many other assumptions and models that could be used in a MNL’s stead. With the MNL,
we can reformulate our previous probability of taking choice p to be

P (p|Cn) = evn(p)∑
p′∈Cn e

vn(p′) .

In the study of RUMs, it is critical to consider alternatives when analysing which choice
to make. For example, the MNL model exhibits the Independence of Irrelevant Alternatives
(IIA) property. It is useful because it ensures that relative likelihood between two options is
unaffected by the addition of an alternative. For example, if the majority of voters preferred
candidate A to candidate B, then when a novel candidate C is introduced, B should not now
be preferred to A. While this property seems logical, there are certain issues with the IIA
property. The textbook case of problems arising with this would be an individual choosing
between a car and a blue bus McFadden (1977). If the individual has no preference, having a
(1:1) ratio of choosing one against the other, then upon allowing their choice to include a red
bus, the IIA property imposes that the resulting odds for the individual must keep the (1:1)
odds for the car and blue bus. However, to many individuals, there may be no difference in
choice between a red and blue bus, and thus the odds of choosing car, blue bus, red bus may
take the odds (1:0.5:0.5), which keeps the odds of car, bus at (1:1), but the odds of car, blue
bus have now fallen to (1:0.5). While this may seem like an overly specific problem to invent,
there may be many cases where an alternative may be similar enough across individuals to
induce the “bus choice apathy” seen in this instance.

Previously, much work had been done with path-based RCMs. Here, the set of possible
alternatives is the set of paths in the network, but the goal remains the same; we wish to
understand the underlying reasons behind observed behaviors. Examples of these types of
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models include the C-Logit from Cascetta et al. (1996), Path Size Logit from Ben-Akiva and
Bierlaire (2000), and the Cross Nested Logit from Vovsha (1997), all of which are discussed
further in Prato (2009). Many of these models make use of certain variables to represent
a correlation factor between alternatives to avoid the IIA which typically does not hold in
route choice modeling. For example, the C-Logit model defines variables CF , representing
the commonality factor, discussed in Cascetta et al. (1996), while the Path Size Logit uses
path size. There are differences and similarities in each of these types of approaches, but all
of these are attempts at solving the same problem: within a road network, of all the possible
paths from and origin to a destination, many of the paths are going to contain many of the
same links and thus share much of their properties.

A common issue faced in path-based models is choosing which of the possible alternatives
to include in the selection of the choice set. With these path-based methods, given that the
total number of possible actions can quickly grow out of hand, enumerating all possible
paths can become difficult if not impossible. One workaround suggests choosing a subset of
all possible paths that will be considered, where all other paths are assumed to have zero
probability. This set of paths chosen to consider is known as the choice set, and is commonly
denoted with Cn. The choice set presents several advantages, namely reduced computational
time, reduced complexity, and more tractable solutions to the modeling problem. However,
with any simplification comes issues, and choice set selection is not immune to this problem.
An obvious issue is that an individual would prefer one of the actions not included within the
choice set. As discussed in Wasi and Keane (2012), it is possible for randomly sampled choice
sets to lead to consistent estimation of the parameters, yet achieving randomly sampled
choice sets proves problematic when it is required to contain a specific alternative (such as
an observed choice made by an individual in your data). However, there is a rich literature
about the generation of choice sets, and for further discussion of the vast variety of choice
set generation approaches, we direct the reader to the survey of Bekhor et al. (2006).

A second type of RCMs are the link-based RCMs, also known as recursive RCMs. The
recursive term refers to how these RCMs view the paths traversed by individuals. Here, a
path consists of a series of arcs between nodes, and the state space is made up from these
arcs, rather than from all possible sequences of arcs from an origin to a destination. As
described by Rust (1994), the problem solved in the link-based models is the estimation of
the MDP parameters. The εa term is utilized once again to account for the noise intrinsic
to the data, which allows us to formulate our estimation for the MDP’s utility function as
u(a|s) = v(a|s) + µεa, with s being the current state and a being a link alternative. This
µ value is the scale associated with the error terms, allowing us to increase or decrease the
influence of the assumed noise.
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2.2. Shortest Path and Inverse Shortest Path Problems
Now, we introduce shortest path problems. The route choice problems we discuss are

instances of shortest path problems, specifically the inverse shortest path problem, as this
forms the forward problem for our optimization. We start by introducing the definitions and
notation for the graphs we describe, followed by a description of various shortest path prob-
lems. We build successive problems on previous ones, starting with deterministic shortest
path problems, and ending with inverse shortest path problems.

In a shortest path problem, we have a graph G composed of a tuple (A,V), with V the set
of all nodes in our graph G, and A the set of all links (arcs) between nodes1. For each node,
we define a subset A(i) to be the set of all adjacent links to node i, and for each link ai,j ∈ A,
ai,j departs node i and arrives at node j. Furthermore, each link ai,j has an associated cost
to its traversal, denoted ci,j. This cost is a function c : A → R. Here, we also define a path,
which is a sequence of links where each subsequent link departs from the node the prior
link arrived at, forming an unbroken walk along the graph G. The cost of this path is the
sum of all link costs associated with each link chosen in the path. The goal of a shortest
path problem is typically to minimize the cost of a path between a certain origin node and a
certain destination node, though it is not uncommon for techniques to solve simultaneously
for one origin node to all possible destination nodes, or vice versa.

The simplest of the shortest path problems are the deterministic shortest path (DSP)
problems in which there is no uncertainty about where an action will lead. The primary
hurdle for solving shortest path problems comes in the form of the large number of possible
choices. Even for relatively small networks, the number of possible paths between two nodes
is beyond feasible enumeration methods. However, as the paths are built of individual choices
at each link for which departing link to take, many methods utilize Dynamic Programming
(DP) methods to more efficiently tackle the problem. DP was introduced by Bellman to
solve sequential problems where the outcome of preceding steps may be used to “guide the
course of future ones” (Bellman, 1954). As an iterative method, it builds on previous values
to minimize a cost over time steps. As we can decompose the shortest path problem this way,
we can rely on the Bellman principle of optimality (Bellman, 1954) which states that optimal
sequences are composed of optimal sub-sequences. Building on the principle of optimality, we
use the Bellman Equation to represent the cost of a state as C(ki) = minai,j∈A(k)(ci,j +C(j)),
where the optimal cost of link i is the minimum sum between the link leaving i and the cost
of the tail node it will arrive at. We can solve the DSP problem by assigning V to be our
state set and A to be our action set. In order to use this DP formulation for one state in
one time step, we define a recursive equation to solve for the optimal path from node i to

1Note that this set of vertices V differs from the definitions of value functions discussed, which we also have
denoted V (s). Here, the notation for the set of vertices is standard.
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destination node d, as well as its related cost

C(ki) =

minai,j∈A(i) (ci,j + C(j)) i 6= d

0 i = d.

As mentioned in Zimmermann and Frejinger (2020), graphs, and therefore road networks,
may have cycles, meaning unbounded recursion would result in infinite costs, or negative
cycles may result in negative infinite costs. However, as we have assumed to be working
with a connected graph, we can make the assumption that all nodes are reachable in at most
|V | − 1 links. This is the approach taken by Bellman (1958), and we have an algorithm
to compute not only the solution, but also the shortest paths between any node i and the
destination node d in 0 < n ≤ N steps, where N = |V | − 1:Cn(i) = 0 ∀i|ai,d ∈ A(i)

Cn(i) = minai,j∈A(i) (ci,j + Cn+1(j)) ∀i ∈ V , n = 1, 2, . . . , N − 1.

The Stochastic Shortest Path (SSP) problem is similar to the DSP problem, with the differ-
ence between the two found in the transition probabilities between two states. In the DSP,
we had that any action taking a link would result in arriving at the tail node for the link,
i.e., choosing to take link ai,j from node i would take us to tail node j with probability 1.
In SSP problems, these probabilities can take on any value in [0,1], not just the elements in
{0,1}. In order to denote this change, we define p(j|i, ai,j) to be the probability of ending
up in state j having been in state i and taking action ai,j. Luckily, we are still able to utilize
the Bellman equation to write out a recursive value and the algorithm to solve for solutions.
However, it is important to understand that with what has been defined, we cannot predict
the best path, as each walk along the path may not walk through the same states even with
the same actions taken, as we have a stochastic problem. Thus, our goal is to learn a policy
π that will best traverse from origin to destination nodes in expectation. Our value function
now takes the recursive formulation

V (i) = min
ai,j∈A(i)

ci,ai,j +
∑
j∈S

p(j|i, ai,j)V (j)
 ,

where we use the notation V instead of C to distinguish the stochastic case.
The inverse shortest path problem is simply an extension of the shortest path problem,

where the cost function is unknown. Burton and Toint (1992) describe this problem and
propose their solution. In their paper, they discuss the range of possible cost functions,
from linear to decidedly non-linear functions. The goal of this line of work is to recover
this unknown cost function, which then allows for novel predictions as we can estimate the
decisions an expert would take, enabling us to evaluate link flows, traffic patterns, and route
choice. In their paper, however, Burton and Toint (1992) sought to find the direct link
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costs ci,j for all links ai,j, instead of assuming any parameterized form of the cost function.
This assumes that the modeler has access to the true costs of the links, something that is
often unavailable in route choice modeling. The assumption holds in the problem considered
in Burton and Toint (1992) as seismic topology and the propagation of seismic waves are
known to follow the shortest path and observations of when these waves arrive at monitoring
stations allow seismologists to compare their estimates for the geologic composition to the
recorded values. Without the need for a parameterized cost function, the work in Burton
and Toint (1992) and the following papers used the l2 norm, or least squares norm, to impose
structure on the minimization problem, leading to a quadratic programming formulation.

Route choice modeling is linked to inverse shortest path problems as both aim to infer
values of unknown parameters in the objective function. In the case of RUM models, these
are parameters in the utility functions, and in the case of inverse shortest paths, they are
cost parameters. Making this link is useful as shortest path problems are not solved by path
enumeration. (Recall that defining choice sets of paths is a key drawback of path-based
RCM.) Instead the problem can be effectively solved by means of dynamic programming.
However, RCMs are not deterministic. We therefore introduce Markov Decision Processes in
the following section before discussing inverse stochastic problems in the section on inverse
reinforcement learning.

2.3. Markov Decision Processes
Here, we introduce Markov Decision Processes (MDPs) that can be used to formulate

sequential decision-making problems subject to uncertainty. One of the primary benefits of
utilizing MDPs is that it provides a method to deal with problems that rely on future choices
or decisions, as well as dealing well with uncertainty within the system. They are able to
model decisions that impact future decisions through the passage of factors like time, states,
or other dynamic variables. MDPs are composed of four parts. The first part is the state,
as well as all the information surrounding the possible states. The state is usually denoted
si, representing the ith state, yet could also be expressed as st, which typically relates to
the state at a time t. The information contained in s can be the physical state within the
system, any information needed for the computation of the cost/reward function, and any
other information necessary for making a decision. The second component is the action or
decision, denoted as at. These actions can take on many values, be it binary, as it may be
in situations such as stopping problems, discrete, where the action can take any value from
a discrete set of values, or continuous, be it vectors or scalars. Other possibilities include
categorical values, which can be represented as discrete actions, or vector-valued decisions.
Many times, actions will be expressed as at = Aπ(st), where A is the total possible set of
actions, and π is the policy that generates the action at from the set of A when given st. The
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third part is the transition function P , describing how an actor moves between two states.
This transition function is known by many other names, such as system model, plant model,
or the transfer function. The transition function may be deterministic, where taking an
action leads to the same outcome any time the action is taken from the state, or stochastic,
where taking the same action from the same state may lead to alternative future states. The
final piece of a MDP is the objective function, which may be a cost function or a reward
function, which are simply negatives of each other as cost can be viewed as a negative reward.
The objective function can be set to maximize cumulative rewards, where the rewards for
all actions taken in a given span of time are summed together to give us a value of how
good our decision were, or it can be set to maximize the final reward, where the reward
at the terminus of our decision-making process is the value we wish to maximize. Lastly,
we introduce the Markov property, where the current state for an agent is only dependant
on the previous state, not the entire history of states until the present. This gives us that
p(st | st−1, st−2, . . . ,s1) = p(st | st−1). Using this framework, we can build out many different
systems of sequential decision models that may be more beneficial to the problem we wish
to model.

Now that we have provided descriptions of how we can frame networks for use with
sequential decision-making, we can apply the discrete choice methods and introduce Dynamic
Discrete Choice. Introduced by Rust (1987), Dynamic Discrete Choice (DDC) is a common
method of modeling individuals choice making in an environment. A core tenet of DDC
modeling is that agents will make decisions based on their current value of utility, and that
this valuation of utility can change between states. This framework allows agents to model
taking actions in order to maximize their utility through later states. An agent’s choice of
an action at a given state can be modeled as the maximum over an expectation,

E

[
T∑
i=0

γiu(ai, si)|a0, s0

]
.

γ (sometimes represented as β in the literature) represents the discount factor, which weights
utilities based on their temporal distance from our current context. This ensures that deci-
sions far into the future will have less impact on the decisions much closer to our current state.
This formulation of choosing actions with future utilities allows us to frame the problem in
a Dynamic Programming framework.

One of the main goals of DDC modeling is to understand how changes in the system would
impact choices made by individuals; for example, Rust’s example of replacing bus engines
seeks to learn how an increase in bus engine mileage impacts the value to the operator in their
evaluation of rising operating costs compared to the cost of engine replacement. Solving the
DDC problem involves utilizing the Nested Fixed Point (NFXP) algorithm, proposed by Rust
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(1987), which is a gradient iterative search, combining the BHHH method to solve maximum
likelihood equations, and value iteration to solve the dynamic programming problem.

With our DDC models, we seek to find parameters that maximize the action probabilities
of the observed trajectories from our data. These trajectories, the set of which are denoted ζ,
are composed of a sequence of ζn = {s0, a0, s1, a1, . . . , sT , aT}, containing the full set of states
and actions taken from the origin to the destination. In order to accomplish this, we maximize
the likelihood function, and thus, maximize the log-likelihood as well. It is common to use
the log-likelihood instead of the likelihood as with many of models using the exponential
family, transforming into the log space simplifies the computations by both reducing the
exponential terms to linear ones and changes large products into more manageable sums like
below,

L(θ, ζ) =
∏
ζi∈ζ

∏
(s,a)∈ζi

p(a|s)

LL(θ, ζ) =
∑
ζi∈ζ

∑
(s,a)∈ζi

ln(p(a|s)).

The parameter θ∗ that will give the behavior we want is found at

θ∗ = max
θ
LL(θ, ζ).

This θ∗ is known as the maximum likelihood estimate and this estimation method is how we
infer our parameters for our models from the data we have.

2.4. Inverse Reinforcement Learning
Reinforcement learning as a field aims to find a policy π that maps from the state space

to a distribution over the action space which maximizes a reward in a given environment.
In order to evaluate how well the policy maximizes this expected reward, we utilize a value
function derived from previously mentioned Bellman Equation (Bellman, 1954). Denoted
V (s), it describes the value of being at state s, including the expected rewards for future
states from the current state. Assuming stationarity (that is, the reward and state features
are independent of time), we can write it as,

Vπ(s) =
∑
a∈A

π(a|s)
R(s,a) +

∑
s′∈S

p(s′|s, a)Vπ(s′)
 .

We make this assumption assuming an infinite horizon (classic in stochastic shortest path
problems (Bertsekas and Tsitsiklis, 1991)). However, for finite-horizon problems, stationarity
is not necessary. The infinite nature of infinite horizon problems leads to obvious difficulties
in non-stationary formulations, as there can be vast differences in time steps in a single
trajectory, leading to unnecessarily complicated relationships between the rewards. Another
common equation used in reinforcement learning is the Q-function (also known sometimes
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as the “state-action value”) which is similar to the value function, except it measures the
expected reward for a state-action pair. The Q-function is given by

Qπ(s,a) = R(s,a) +
∑
s′∈S

p(s′|s, a)Vπ(s′).

Note that the Q-function is the inner bracket value in the value function, so that the value
function can be written as

Vπ(s) =
∑
a∈A

π(a|s)Qπ(s,a).

Inverse Reinforcement Learning, first introduced by Russell (1998), sought to bring the
successes of Reinforcement Learning to systems with partial knowledge. Much of the work
done at the time relied on fully observable MDPs where the underlying state and all of its
corresponding information is accessible to the modeler. In order to solve Partially Observable
MDPs (POMDPs), where we are unable to observe the underlying state, we must rely instead
on an observed value, which may be missing information when compared to the underlying
state. In Inverse Reinforcement Learning, we have this POMDP without the given reward,
R, that we would normally have with a MDP, but we are given a set of observations, ζ
(Russell, 1998). These trajectories ζ are sequences of states and actions, such that ζi =
{(s0, a0), (s1,a1), . . . ,(sT ,aT )}, which were generated under a policy πexpert. The IRL problem
is that we do not know what πexpert is, or what weights it assigns to various features in the
network. This problem of inferring parameters to compute this πexpert was first posed as a
possible area of future research in the original extended abstract by Russell (1998). In it,
Russel proposed using maximum likelihood estimation to solve this.

As we are unable to observe the underlying state, a common approach used to estimate
the performance of a given policy π is known as feature matching (Abbeel and Ng, 2004).
From their paper, we define a feature vector as f : S × A → Rd, a function that maps
our state and action space to some d-dimensional representation. Within the route choice
problem, this feature value representation commonly involves travel features such as link
length, travel time, and speed limits, but also can include other features such as whether
or not the link will result in a turn, the type of turn, or the type of road (highway, surface
road, bus lane, etc.). With the feature function, we can define the feature vector fs,a as the
output of our feature function for the state-action pair (s,a). With this, Abbeel and Ng
(2004) define the empirical feature count to be the average over the sum of feature vectors
of the observed trajectories, that is, fζ = 1

|ζ|
∑
ζi∈ζ fζi , where fζi = ∑

(s,a)∈ζi fs,a. As explained
in Abbeel and Ng (2004), in order to match this empirical feature count, our formal goal is
to find π̂ such that E [fS,A|π̂] = fζ , and thus match, in expectation, the actions taken in the
observations.
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Most IRL models use an approach known as Value Iteration (VI) in order to compute
the optimal policy for a given MDP. Value Iteration is an iterative process where the es-
timation for the values of states is incrementally increased until the values converge. The
process starts with randomly initialized values for each state, then loops until the values
for the states converge. In each loop, the Q-value for each state-action pair is computed
as Q(s,a) = ∑

s′∈S p(s′|s, a)(r(s,a) + γV (s′)), and the new value for state s is given to be
V (s) = maxaQ(s,a). Under certain assumptions, this process is guaranteed to converge to
the optimal values, however convergence can be slow.

While these algorithms are used to tackle the RCM problem, they also served as possible
solutions for other types of problems as well. In the Maximum Causal Entropy paper by
Ziebart (2010), the algorithm is tested on a host of different problems. Some of them include
helicopter control, where the model needed to learn how to hover about an origin point from
a set of sub-optimal trajectories, a pursuit-evasion scenario, where the model was tasked
with learning both chasing and evasion strategies for agents in the environment, and lastly
a vehicular diagnostic and repair problem, where the model was tasked with choosing which
components to evaluate in order to minimize the cost to the customer while still resolving the
problem experienced by said customer. Previous work done in the field prior to the Ziebart
Maximum Entropy model includes Apprenticeship Learning by Abbeel and Ng (2004), where
they applied their algorithm to both a gridworld version of the RCM problem, as well as
learning policies for driving vehicles, where they sampled driving styles from various expert
policies and were able to successfully train their models to recreate the policies they observed.
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Chapter 3

A Unified View of Existing Models and
Algorithms

3.1. Notation
The purpose of this section is to define a common notation to use with both the DDC

models and the IRL models, to facilitate comparison and mutual understanding of the al-
gorithms. Recall that the structure of route choice can be modeled using a graph network,
where our graph G is defined as G = (A,V), where A is the set of all links in the graph
and V is the set of the nodes in the graph, with the set A(k) to be the set of all links
leaving the end of link k. With this graph structure, we can cast the route choice problem
using the general framework of an MDP. As MDPs are defined by their states, actions, and
transition probabilities between any two states, we define these variables as follows: the set
of states, S, is the set S = {1,2, . . . ,|A|}, our set of actions happens to be the same set A,
as the approach we take is link-based, not node-based. Lastly, the transition probabilities
p : S × A × S → [0,1] map from our current state, action taken at the current state, and
next state to a real number in the range of [0,1]. In practice, we assume our MDP’s state
transitions to be deterministic, where an attempt made by a driver to turn from one street to
another street will not land them on a third street and will incur a known and deterministic
cost in the form of travel time. The transition probabilities p : S × A → {0,1} are then de-
generate. In this case, it becomes a sequential decision-making problem rather than a MDP.
Nevertheless, this abuse in terminology is common in reinforcement learning. Therefore, we
continue to refer to MDP even if the state transition probabilities are degenerate.

We are also provided a set of observed trajectories, ζ, where for each ζi,
ζi = {k0, k1, k2, . . . , kd}, and each k is a link chosen by the expert, which satisfies
ki+1 ∈ A(ki) for all i < d. These expert trajectories are assumed to have been created with



an unknown reward or cost function in mind 1. This reward function, R(k, a) represents the
reward of taking link a ∈ A(k) at the end of link k. In order to estimate this reward function
from the observations, our models are linear-in-parameter, with θ ∈ Rf , weighting the
elements of the state features, denoted by fs ∈ Rf , where f is the number of features which
compose our feature matrix F ∈ Rf×|A|. In order for our models to estimate the reward of
the trajectories, we let R(ζi) = ∑

sj∈ζi θ
TFsj . As mentioned in the previous sections, the

reward is computed here with r(s,a) = θTFs. This differs from the instantaneous utility as
in many models, we add in an εn(a) term to represent the effect of any unobserved variables
that may have affected the decisions of an actor n when considering link choice a. Since
we are working with a multinomial logit model, these epsilon terms are i.i.d extreme value
type I random variables with zero mean. However, this instantaneous utility is commonly
calculated as the deterministic utility, our reward, plus this epsilon error term.

3.2. Recursive Route Choice Models
DDC modeling has a wide variety of applications, certainly not limited to route choice

modeling. The technique has seen use in such diverse applications from estimating resource
selection for wildlife, such as modeling elk summer bed selection (Cooper and Millspaugh,
1999) to modeling consumer demand in marketing (Chintagunta and Nair, 2011). This shows
that the DDC framework can be applicable in many situations and thus, showing any overlap
between the literature and methods of DDC and IRL may provide additional opportunities
for those in unrelated fields to utilize novel algorithms for their own research.

Of these DDC models applied to the RCM problem is the Recursive Logit (RL) model.
The RL model Fosgerau et al. (2013) gives probabilities of choosing an action a at state s
according to the formula

P d(a|s; θ) = e
1
µ
r(a|s;θ)+V d(a|θ)∑

a′∈A(s) e
1
µ
r(a′|s;θ)+V d(a′|θ)

.

The recursive logit model is specific to a given destination, and needs to be solved for each
destination in the data, hence the superscipts of a specific d. Let n denote the agent taking
the route, that we assume to be traveling to some destination node. We extend the network
by adding a new dummy link d which leaves the destination node and has the property
v(d|s) = 0, for all s with d ∈ A(s) Fosgerau et al. (2013). For the model, when we write the
Bellman Equation for a given destination, we have

V d(s) = E

[
max
a∈A(s)

r(a|s) + V d(a) + µε(a)
]
. (3.2.1)

1A reward function is simply the negative of a cost function, so for simplicity, we will only refer to reward
functions henceforth.
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We can also write the exponential of this value function as

e
1
µ
V (s) =


∑
a∈A δ(a|s)e

1
µ
r(a|s)+V (a) s ∈ A

1 s = d.

By formulating the exponential of the value function in this manner, we can formulate our
value function as the solution to a system of linear equations. We define a new destination
specific matrix Md with values ms,a defined as

ms,a =

δ(a|s)e
1
µ
r(a|s) s ∈ A

0 s = d

where δ(a|s) is defined to be 1 when a ∈ A(s) and 0 otherwise. Furthermore, define a vector
z as a |A| × 1 vector defined by zs = e

1
µ
V (s), and vector b a |A| × 1 vector which has zeros

in the sth position for all k except our destination, which has a value of 1, we can solve
a system of linear equations to find the values of the links. This system is expressible as
zd = Mdzd + bd.

Mai et al. (2018) provided a method to speed up the computation for the original recursive
logit model, by utilizing matrix decomposition methods to pare down the number of linear
systems which need to be solved. This also allows for the utilization of mixed recursive logit
models to model correlated random terms.

The decomposition method proposed by Mai et al. (2018) takes advantage of the structure
of these systems of linear equations by rewriting the learning algorithm using matrix notation
for quickly solving the problem. We define a new matrix M0, where m0

s,a = md
s,a if s,a ∈ A,

and 0 otherwise. Define another matrix, Ud of size |A| + 1 by |A| + 1, with d a destination
sink node, defined by uds,a = δ(d|s)e

1
µ
r(d|s) if a = d, and 0 otherwise. Now, for each of the

absorbing destination nodes d ∈ D, we have that Md = M0 + Ud. Mai et al. (2018) show
that zd is expressible as M0zd + td + bd, where td is defined to be the last column of Ud.

By defining two new matrices, B, of size |A| + 1 by |D|, with the dth column being the
column vector td + bd, and Z, also of size |A| + 1 by |D|, with the dth column being zd,
we can rewrite all the systems of equations to be Z = M0Z + B. This is equivalent to
(I −M0)−1Z = B, which has a solution if and only if I −M0 is invertible, the conditions of
which are discussed in Fosgerau et al. (2013).

From this point, we need to chose a nonlinear optimization method to find our optimal
solutions. There are a broad range of nonlinear optimizers (Nocedal and Wright, 2006), and
the BFGS algorithm that we use in this thesis is just one of many that could be chosen. By
using the BFGS algorithm, we can solve for the optimal parameters with the Jacobian and
the Hessian matrices. For the Jacobian, we get that the gradient of Z with respect to the
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parameter θi is
∂Z

∂θi
= (I −M0)−1∂M

0

∂θi
Z + (I −M0)−1∂B

∂θi
and the Hessian is

∂2Z

∂θiθj
= (I −M0)−1

(
∂2M0

∂θiθj
Z + ∂M0

∂θi

∂Z

∂θj
+ ∂M0

∂θj

∂Z

∂θi
+ ∂2B

∂θiθj

)
.

As mentioned, one issue with the Recursive Logit model is the IIA property. This is
due to how the value function is formulated. Due to this, Mai et al. (2015) introduce a
new approach which relaxes this property, the Nested Recursive Logit (NRL) model. The
key to the NRL approach is link-specific scale parameters, µs. While in the RL model, the
instantaneous utility is given by u(a|s) = r(a|s) + µεa, we now have u(a|s) = r(a|s) + µsεa.
This scale parameter is strictly positive, and differs from the RL model in that the RL model
assumes that for all s, µs = µ. While RL model specifies its value function in (3.2.1), the
NRL value function is given by

1
µs
V d(s) = ln

 ∑
a∈A(s)

e
1
µs

(r(a|s)+V d(a))

 .
Similarly to the RL approach, we can rewrite the exponential of this value function to be

e
1
µ
V d(s) =


∑
a∈A δ(a|s)e

r(a|s)+V d(a)
µs s ∈ A

1 s = d.

Since these scale parameters are link-specific as mentioned above, we relax the IIA property,
as the scales do not cancel out like in the RL model.

Literature surrounding route choice modeling has utilized a variety of methodologies as
well as measuring different metrics to evaluate these models. In Fosgerau et al. (2013), they
utilize a feature space of only 4 features, travel time, left turn, a link constant, and finally a
u-turn.

3.3. Maximum Entropy Models
Of the IRL models discussed in this thesis, the Maximum Entropy (ME) model (Ziebart

et al., 2008) is the simplest as well as the foundation for the models discussed later in
this section. In order to understand this algorithm, it is important to discuss the concept
of entropy. Taken from Information Theory, entropy is a measure of the information or
surprise there is in a system (Shannon, 1948), representing the number of bits required to
represent the average outcomes. Information of an event x occurring with probability p(x)
in this context is defined to be I(x) = − log(p(x)) . It is evident that an event with a high
probability close to 1 would have very little information associated with it, while a rare event
would have a large value of information. When taken with the idea of entropy, we see that by
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maximizing the entropy across our probability distribution, each event will provide us more
information than if we have low entropy across our distribution and require less assumptions
of the distribution. By maximizing the entropy, we ensure that the model is optimizing
the feature matching as discussed in Section 2.4, without assigning additional preferences
to links other than their rewards. Out of this idea, we get a probability distribution for a
trajectory ζi with parameters θ of

P (ζi|θ) = 1
Z(θ) exp fζi

where Z(θ) is the partition function, which represents the likelihood of all trajectories.
Ziebart et al. (2008) (i) define a probabilistic model according to a “max entropy princi-
ple” and (ii) maximize the cross-entropy of their model with the empirical distribution of
the observed data, with respect to its parameters. We note that (ii) is equivalent to pseudo
maximum likelihood and with minimization of KL divergence with the empirical distribution
of the data.

With entropy and the partition functions explained, we move to the algorithm proper.
The ME algorithm is composed of a backward pass and a forward pass akin to the value
iteration approach discussed previously. In the backward pass, we compute the probability
mass for each state and action, effectively computing the partition function. This is accom-
plished by recursively “backing up” from each terminal state, computing the probabilities for
adjacent (lines 4,5 of Algorithm 1). In line 8, we compute the local probabilities by dividing
our probability masses by their respective partition function value. In the forward pass, we
compute the expected state visitation frequencies using these local probabilities (line 11),
taking their sum to give us our total state visitation frequencies under θ in line 12. Line 13
is our update state, as we adjust our parameter vector by the resulting difference between
the observed feature expectation and the computed feature count.

Building on the ME model, Ziebart (2010) introduced the Maximum Causal Entropy
(MCE) model. The MCE model extends the ME approach of maximizing the entropy to
conditional probability distributions where there is a conditionally causal relationship be-
tween the actions and states. Under a trajectory ζ of length T with actions and states Aζ

and Sζ respectively, we can express this conditionally causal relationship, P (Aζ ||Sζ), as

P (ζ) = P (Aζ ||Sζ)

=
T∏
t=1

p(Aζt |Aζ1:t−1, S
ζ
1:t).

Note that causally conditional probabilities are denoted with the double vertical line, as
opposed to the single vertical line with normal conditional probabilities.

The motivation behind this addition was that it provides a certain directionality for the
information. For example in the RCM problem, if equal amounts of individuals were observed
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Algorithm 1: Maximum Entropy IRL Ziebart et al. (2008)
Data: Observed trajectories ζ
Result: θ parameters

1 Initialize θ
2 Set f̃ = 1

|ζ|
∑
ζi fζi

3 for each iteration until stop do
4 Set Zsi = 1
5 for N iterations do
6 Zai,j = ∑

k P (sk|si, ai,j)Zskeθ
T fsi

7 Zsi = ∑
ai,j Zai,j

8 P (ai,j|si) = Zai,j
Zsi

9 Set Dsi,t to initial state probabilities
10 for N iterations do
11 Dsi,t+1 = ∑

ai,j

∑
kDsk,tP (ai,j|si)P (sk|ai,j, si)

12 Dsi = ∑
tDsi,t

13 θ = θ + f̃ −∑si Dsifsi

approaching the same intersection from two opposite directions only to continue down the
same direction they had been driving, the traditional ME approach would state the two links
they took should have equal probability when at that intersection. This example could lead
to a prediction of a u-turn for an individual, which may not make sense if their destination
was previously in front of them. However, with the conditioning on past states and actions,
the MCE model would better predict that given the directionality of their route, they would
continue on in their direction, and avoid taking an unnecessary u-turn or the like.

One of the drawbacks to the previous IRL approaches is that the reward function derived
from the data may explain the trajectories observed by experts, whereas it has no concept
of correlation between connected states in the system. This drawback was the inspiration
behind the Generalized Maximum Causal Entropy (GMCE) algorithm (Mai et al., 2019),
which sought to generalize the MCE model proposed by Ziebart (2010). Similarly to how
the Nested Recursive Logit Algorithm from the previous section relaxed the IIA property,
the GMCE algorithm does as well, for the same reasons. An example of the benefits of
breaking this assumption in the IRL field is given in their paper (Figure 1 of Mai et al.
(2019)), where classical maximum entropy approaches would assign equal weight to the three
possible paths, even though 2 of the 3 paths share half of their links. By expanding upon the
existing approach, their algorithm devalues these two paths as they are functionally equal,
leading to a more intuitive solution when compared to the predecessors. To incorporate this
idea into their algorithm, they utilize the same method of feature matching, however. Their
features, Fµ

s , contain not only the same state features as would be expected in the maximum
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entropy approach, but also some information on the “overlapping-level” Mai et al. (2019) of
state s. This addition of a connectivity attribute can be viewed as this algorithms approach
to the link size attribute proposed in Fosgerau et al. (2013).

The GMCE algorithm progresses in much the same way as the ME algorithm, with the
computation of the probability masses (lines 13 and 14 of Algorithm 2) and state visitation
frequencies (lines 15 and 16), denoted once again with Z and D respectively. For an in-
depth definition of the function G, we refer the reader to the original paper by Mai et al.
(2019). The function, G(p|s) : R+ × S → R+, is assumed to be positive and differentiable
with respect to p, which is also positive, invertible such that G(G−1(p|s)|s) = p, ∀p ∈ R+,
and lastly, that there exists µ : S ×R+ such that ∂ ln(G(p|s)

∂p
= µ(s)

p
. These assumptions give us

that there exists a mapping v : S → R+ such that G(p|s) = ev(s)pµ(s). From these, we have
enough defined to define the algorithm.

Algorithm 2: GMCE LL and Gradient Computation Mai et al. (2019)
Data: Observed trajectories ζ
Result: θ parameters

1 Initialize θ
2 for t = T,. . . ,1 do
3 if t = T then
4 forall at, st do
5 Yat|st = R(st, at)
6 Uat|st = ∇θR(st, at)
7 Zst = 1, and Dst = 0
8 else
9 Yat|st = R(st, at) +∑

st+1 p(st+1|at, st) lnG(Zst+1|st+1)
10 Est,st+1 = ∂G−1(z|st)

∂z
|z=Zst+1

Dst+1
G(Zst+1 |st+1)

11 Uat|st = ∇θR(st, at) +∑
st+1 p(st+1|at, st)Est,st+1

12 forall at ∈ At, st ∈ S do
13 Zat|st = G−1(eYat|st )
14 Zst = ∑

at Zat|st
15 Dat|st = ∂G−1(z|st)

∂z
|
z=eYat|st e

Yat|stUat|st +∇θG
−1(eYat|st |st)

16 Dst = ∑
at Dat|st

17 for any observation (s̃t, ãt) do
18 lnP (ãt|s̃t) = Zãt|s̃t/Zs̃t
19 ∇θ lnP (ãt|s̃t) = Dãt|s̃t/Zãt|s̃t −Ds̃t/Zs̃t

The Maximum Entropy algorithm proposed by Ziebart operated on a MDP modeled on a
road network surrounding and including Pittsburg Pennsylvania, and observations generated
from 25 taxi cab drivers across the span of 12 weeks. This generated around 13,000 distinct
trips, covering more than 10,000 miles. In order to represent the paths, they modeled 22
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distinct features, including the road type (highway roads through to low speed local roads),
the indicated speed limit (low speed to high speeds), the number of lanes (one lane through
many lanes), and the inter-road transitions (i.e. hard left, left, straight, right, hard right
turns). Furthermore, they split their data into a 80-20 training-test sets, in order to test
their data on data that appears novel to the model. In their measuring of the success of
their algorithm, they use three metrics: path matching, 90% path matching, and the log
probability of most likely paths. Both path matching and 90% path matching are metrics
based on the percentage of overlapping route distance between what the model predicts
for a given origin and destination, with path matching being the raw value, and 90% path
matching representing the percentage of trips where the path matching value is over 90%.

The GMCE algorithm proposed by Mai et al. (2019) operated on an unnamed transport
dataset consisting of 1,832 trajectories of taxi cab drivers on a road network with 7,288
links. Unlike the 22 features used to describe states in the Ziebart et al. (2008) example,
Mai et al. (2019) used only four features. The first three were binary, representing if the
action was a left turn, a u turn, or at an intersection. The fourth and final feature was the
travel time between the connected links. Again, an 80-20 training-test split is created for
the evaluation, and the metrics monitored are the same as Ziebart’s Max Entropy example.
While this is useful for the comparison they made between their algorithm and the algorithm
it was generalized from, it represents a clear propagation of a blind spot in the IRL route
choice modeling literature, as no other metrics were utilized.

3.4. Discussion
Both the econometric DDC models and the IRL models use functions to calculate prob-

abilities based on values, utilities, or costs. The multinomial logit model with i.i.d. extreme
value type 1 error terms gives a probability of P (ai|s) = ef(ai,s)∑

aj∈A(s) e
f(aj,s) , with function f

representing the specific value function. To those in the world of machine learning, this is
better known as the softmax function2. This exponential function is the exact framework for
both the original Maximum Entropy (ME) algorithm and the Recursive Logit models, with
different value functions. For ME, this value is f(ai, s) = Q(s, ai), while for the IRL model,
the utility is f(ai, s) = 1

µs
(v(a|s) + V d(a)).

In addition, with both the GMCE and NRL approaches, the IIA assumption is relaxed.
Thus, we pose that GMCE is to ME as NRL is to RL, providing us a wonderful opportunity
to compare these approaches. As discussed, the reasoning behind this relaxation of the
IIA assumption has long been discussed (McFadden, 1977), and can prove to be a useful
assumption to drop.
2It should be noted that while the Ziebart (2010) paper describes using the softmax function for calculating
probabilities, the function used is the Log-Sum-Exp function, which is distinct from the typical definition of
softmax in ML.
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3.5. Performance Metrics
A wide variety of performance metrics have been used in the literature, and as one of the

goals of this thesis is to attempt a direct comparison between algorithms from the two fields,
we attempt to take metrics from both strands of literature to align the comparison. One
theme we found was that the work from econometrics measures the shape of the distribution
around the estimated parameters, while the IRL methods lean towards measuring accuracy of
the predictions when compared to the observed trajectories. This is natural as the maximum
likelihood estimator has nice properties, namely consistency and efficiency. Thus, values such
as the average and standard deviation of the estimated parameters are often reported in the
papers originating from econometrics. This is not to say that there is no overlap between
the two fields’ commonly reported performance metrics: the most common metric is the log-
likelihood on the data. This is a relatively simple metric to measure as with the maximum
likelihood estimation, log-likelihood has already been computed as part of the estimation
procedure.

Other metrics besides those that fit into the aforementioned categories have also been
studied; in Mai et al. (2018), in addition to the log-likelihood, they also report computational
performance. For example, the time taken in seconds for both gradient computation and
estimation of their algorithm compared to similar algorithm that theirs is derived from.

Of the many choices for metrics to choose from, we take eight to focus on. One of these
is the “path matching” percentage (%PM); this is the average percentage of the length of
matching links between the observed trajectories and their respective generated trajectories,
where 100% would be a perfect match between the observed and generated trajectories with
each generated trajectory taking the exact same path as the observed trajectory it is being
generated against. A similar metric that is often used alongside the path matching percent-
age is the “90% path matching” (90%PM), which represents the percentage of generated
trajectories that share at least 90% of their component links with their observed trajectory
counterparts. Perhaps the most common metric is the average log-likelihood of observed
paths under the given model and its parameters on the holdout set. While we cannot always
directly compare the log-likelihood values between two models, we report the values here
as there are direct similarities between both the RL and NRL models. For the RL and
NRL comparison of log-likelihood data, the RL model is functionally the NRL model with
the scale parameters set to 1, whereas the NRL model learns the scale parameters. The
difference in number of parameters can be one potential issue with this comparison, as the
RL and NRL models differ in that the NRL model has additional scale parameters. Thus,
we report the LL values with the understanding that they may be not directly comparable,
but with the hope we can gain some insight in their individual performances on the data.
We measure these values for both the train sets and the holdout test sets, measuring the
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in-sample and out-of-sample performances respectively. By measuring both sets, we can
form a better understanding on how our models perform on novel data relative to the data
it has already seen. Lastly, we have multiple measures to understand the amount of time
or compute needed to run the models. For example, the value time represents the time in
seconds that it takes to compute the value function for all states in the network. While we
measure the average time to train the model and the average time to evaluate the model,
our models are written in two different programming languages (Matlab for the RL and
NRL models and Python for the ME and GMCE models). Thus, we also report the average
number of training iterations taken by each model. As this will be language independent,
this should provide a level comparison between the models.

Finally, we note that we are comparing the inner algorithm in the parameter estimation,
and we do not measure the impact of the outer algorithm on the estimation procedure.
Different optimization algorithms may lead to differences in the number of iterations of the
outer loop. However, we leave an exploration of the impact of various outer algorithms in
the optimization as possible future work.
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Chapter 4

Numerical Results

In this chapter we discuss our results as well as the issues which prevented us from computing
results for all of our models. We discuss the performance of our models on a small, toy
dataset, for which we were able to generate results, as well as discuss the results we were
able to generate for a much larger dataset, consisting of GPS traces of cyclists in the US city
of Portland. After the discussion of results, we explain the causes behind the issues with our
results, both from the numerical side as well as the programming side.

4.1. Illustrative Example
We start by discussing the results of our models on a toy dataset, consisting of 19 total

links (Figure 4.1). This dataset has previously been used in Zimmermann and Frejinger
(2020) in their comparison between the path-based Logit model and the RL model, the
former of which uses choice sets to enumerate the set of possible paths instead of using the
link-based approach of the RL model. The two features used in this model are the travel
times (denoted TT (a)), seen as the weights associated with the links in the figure, and a link
constant (LC(a)), with a value of 1 for all links in the network. With this synthetic dataset,
the observations are generated under the assumption that the true utility is given by

u(a) = (−2.0 ∗ TT (a)) + (−0.01 ∗ LC(a)) + ε(a).

Using this utility, 500 trajectories have been generated starting from node o and ending at
node d. Of these, 400 are used for training, and 100 used for testing, an 80-20 split common
to 5-fold cross-validation. One feature of the structure of the network is its acyclic nature,
where once a node has been left, there is no route to return to it. While this acyclic feature
is not necessary for any of the models we have discussed, it does limit the maximum length
of a trajectory as well as speeds up convergence of the algorithms.

The testing for this network was done using a 2017 MacBook with a 3.5GHz processor.
In our testing, we were able to achieve results for the RL, NRL, and ME model, but ran into



Fig. 4.1. Toy Dataset Network (Zimmermann and Frejinger, 2020)

Model RL NRL ME
Log Likelihood on Train set -2.309 -2.309 -2.309
Log Likelihood on Test set -2.312 -2.312 -2.318
Nb. Train Iterations 8 8 55
Average Time Taken during Training (sec) 0.794 4.538 19.208
Average Time for Testing (sec) 0.0 0.0 0.0
Avg. Computation of Value Function (sec) 0.086 0.210 0.092

Table 4.1. Results on Toy Dataset

programming difficulties with the GMCE model. For the models we achieved results with,
we see that the performance of the three are all very similar. We see the log-likelihoods of all
the models on the train set to be equal, with only their testing log-likelihood differing, with
the ME model having a lower testing log-likelihood by 0.006. The biggest difference between
the models tested comes in their time taken, specifically with the ME model taking almost 5
times as long as the NRL model to complete the parameter estimation. However, the seconds-
per-training-iteration of the ME model is 0.349 seconds, less than the NRL model’s 0.567
seconds. This difference in iterations is traceable to the RL and NRL approach of solving
the value function as a system of linear equations, whereas the ME model approximates the
value function using the value iteration method.

The issues with the GMCE model arose both due to the lesser number of features, which
our framework had not been set up to handle, as well as issues with the optimization library
used (SciPy). These issues were unexpected, as even with changes to the code to account
for the reduction of the feature space, numerical errors were raised by the optimization
library used. The solution to the latter has thus far eluded us, but is believed to be a type
disagreement within the computations of the value function.

4.2. Bike Route Choice Results
Next, we move to a much larger, real world dataset. We call this dataset the Portland

Bike dataset, as it is composed of 42,000 links from the Oregonian city of Portland’s road
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network as well as 648 GPS traces of cyclists navigating an average of approximately 50 links
each, with a maximum of 261 links traversed. Furthermore, as this is a real-world network,
the graph is highly cyclic, especially in comparison to the toy network described previously.
The attributes we will use for the instantaneous utilities of our models consist of the same
attributes as in Fosgerau et al. (2013), namely link travel time, a left turn value LT (a|s)
with value 1 if the turn from link s to link a is between the degree value of 40 and 177, and
u-turn value UT (a|s) with value 1 if the turn from link s to link a has value greater than
177, and a link constant set to 1 for all links. With our models, the utility for links within
this network is specified by

u(a|s) = θTTTT (a) + θLTLT (a|s) + θUTUT (a|s) + θLCLC(a) + εa.

For our experiments, we utilize cross-validation by splitting the observation data into
5 roughly equal-sized subsets, 3 sets of 130 and 2 of 129. To ensure fair testing, we split
the data once, ensuring all models are run on the exact same train/test sets. This allows
us to run 5 tests using completely unseen holdout sets of 20% of our total data each run,
giving us a fair estimate of our performance metrics. For the path matching, we compute
this value by generating trajectories with the same origin node and destination node that the
corresponding trajectories utilize. Once we have the generated trajectories, we compare each
trajectory’s generated and observed data, summing the shared path length, and dividing by
the number of trajectories generated. After computing the path matching percentage for
each of the holdout sets, we take the average of the 5 runs to get our final reported value.
For the testing, the models were run on m5.4xlarge Amazon Web Service (AWS) instances
running Linux, as these provided us 64 GB of available memory.

Model RL NRL
Path Matching (avg %) 35.62 35.37
90% Path Matching (avg %) 7.86 7.20
Log Likelihood of Train Set (avg) -29.145 -29.792
Log Likelihood of Test Set (avg) -29.256 -29.534
Time to Train (avg sec.) 29.145 124,147
Number of Training Iterations (avg) 42 41.25
Time Test (avg sec.) 27.449 37.695
Value Function Time (avg sec.) 19.983 106.058

Table 4.2. Average of Cross-validation Results for the Portland Bike Dataset

Of the four models, we were able to generate results for only the RL and NRL models.
However, there are important insights to be gleaned from the limited results. First, as will be
discussed in the next section, the NRL model took significantly longer than the RL model,
with the NRL taking approximately 34 hours compared to the RL models’ 30 seconds. With
that large increase in training time, the NRL model took a very similar number of iterations
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Fig. 4.2. Distribution of Shared Lengths on Portland Bike Dataset

to converge to a solution to the RL, and both solutions tended to be fairly equal. The
RL model achieved slightly better log-likelihoods on both train and test sets. However, the
difference is not significant (likelihood ratio of 0.556, which for the one degree of freedom
between the models, gives a p-value of 0.455. The path matching performances are also
similar.

In Figure 4.2, we can see the cumulative distribution of the shared proportions of length
between both the predicted routes and the observed routes for origin-destination pairs, with
the RL being represented in blue, NRL in orange, and their overlap having a dark blue color.
From this, we can see that the NRL model had significantly more trajectories with less than
20% path matching, and only slightly more trajectories with over 95% path matching when
compared to the RL model. Furthermore, the RL model had a more even distribution than
the NRL model, showing that the predictions the RL model made after training were slightly
more accurate in predicting the routes a novel driver would take through the network.

4.3. Numerical Issues and Programming Challenges
As there were many issues with the generation of results, both from the models which we

were unable to generate results for as well as issues with the models for which results could
be generated, we provide explanations for these issues as well as solutions we found. We split
the insights gained into two categories: numerical issues and programming challenges. The
reflections on numerical issues focus on problems we had with regards to the data or how
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our algorithms interacted with the data. The reflections on programming challenges center
around issues that we experienced when executing our programs, including unreasonable
running times, memory overhead issues, and the computation of certain aspects of the data
itself.

4.3.1. Numerical and Data Issues

Of the numerical issues experienced in this thesis, numerical stability was a repeated
issue. When implementing the code for the Maximum Entropy IRL (Ziebart et al., 2008),
we continually suffered from underflow issues in our value function computations. Due
to the iterative nature of this computation (lines 6 and 7 of Algorithm 1), and the small
values found when working with probabilities in general, it was common for our computed
probability masses to vanish. This caused issues as in line 8 of the same algorithm, we divide
by the sum of the probability masses assigned to a given state, and when underflow issues
caused these vanishing probabilities, our policy computations would become undefined due
to them dividing by zero.

To deal with this numerical stability issue, we elected to transfer the computation of the
probabilities to the log-space, as was done in Ziebart et al. (2010b), with a few alterations.
In the original derivation of the Maximum Entropy algorithm (Algorithm 1), the probability
computation consists of iterating over the loop

Zai,j =
∑
k

P (sk|si, ai,j)Zskeθ
T fsi

Zsi =
∑
j

Zai,j .

Here, we make a simplification to this computation due to the deterministic nature of our
state transitions. In the calculation for the action specific Z value, the only non-zero value
of P (sk|si, ai,j) is when k is equal to j, so we can remove the sum in favor of computing the
value directly. For simplicity, we drop the P (sk|si, ai,j) term as it will be equivalent to 1
with how the transition matrix is defined. This allows us to compute Zai,j as

Zai,j = Zsje
θT fsi .

With this computation reframed in this manner, transforming the calculations to the log
space is trivial:

logZai,j = logZsj + θT fsi
= logZsj + r(si, ai,j).

With these changes, the algorithm no longer experienced numerical stability issues in the
value function computation. In addition, this formulation allowed us to compute the value
function using matrix addition, speeding up the computation time of our algorithm. For
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the matrix addition, we used the transition matrix induced by the original structure from
the computation of Zai,j that relies on looping over all possible actions ai,j by element-wise
multiplying the transition matrix by the transpose of our logZs values

logZa = P ⊗ logZT
s +R.

The full algorithm we used can be seen in Algorithm 3. The transition to the log space for
the probability mass computation is visible on lines 7 and 8. In addition to the numerical
stability gained from this, many mathematical libraries have optimized “LogSumExp” meth-
ods, allowing us to compute line 8 efficiently (See NumPy, SciPy, Torch, Tensorflow for their
various implementations of this function). Computing the probabilities for our policy on line
9 is equivalent to the calculation in the original algorithm, when shifted to the log space,
where our division becomes subtraction. The other notable change comes in the computa-
tion of the state visitation frequencies, where we no longer store a history of past Ds values,
and instead iterate on the same variable, with the transpose of the policy probabilities being
element-wise multiplied by the vector result of adding the current value of Ds with the initial
probability.

Algorithm 3: Our Numerically Stable Max Entropy IRL
Data: Observed trajectories ζ
Result: θ parameters

1 Initialize θ
2 Compute initial state probabilities p0

3 Set f̃ = 1
|ζ|
∑
ζi fζi

4 for each iteration until stop do
5 Set Zsi = 1
6 for N iterations do
7 logZa = P ⊗ logZT

s +R
8 logZsi = log∑j∈A(si) expZai,j
9 Pπ(ai,j|si) = exp

(
Zai,j − Zsi

)
10 for N iterations do
11 Ds = P T

π ⊗ (Ds + p0)
12 θ = θ + f̃ −∑si Dsifsi

In addition to the numerical instabilities, we also encountered issues with portions of
the data. The primary dataset we sought to test on was the Portland Bike dataset, as the
number of links was relatively small compared to the alternative dataset we had access to
(42k in comparison to 1.5m). One issue we came across with this data was the previously
parsed data and existing code given to us had discrepancies between the stated values and
the values we observed. One example of this is in the turn data: as mentioned, we define
turns as being link transitions within specific link angles (i.e. a left turn is only a left when
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the angle between the links is between 40 and 177 degrees Mai et al. (2015)) while the
existing code and data had angle requirements with a range of 150 degrees as opposed to
the cited 137 degrees. This caused a perplexing issue where models were training towards
notably different minima, when they should have been converging towards similar solutions,
even though they had theoretically been training on the same data.

4.3.2. Programming Challenges

We split the programming challenges into two categories. The first is memory overhead
issues. With such large networks, algorithms which required storage of many variables, or
implementations which required many dense representations of the data, quickly surpassed
that amount of available memory on the system. The second category is that of implemen-
tation issues and issues surrounding the integration of the data into the implementations.

With regards to the memory issues, we found both the NRL and the GMCE implementa-
tions had significant memory overheads. The required amount of memory was so significant
that when we attempted testing on the AWS instance we had originally planned to use, the
m5.xlarge, the 8 GB of memory were quickly allotted and the programs would crash during
training. With an inability to train, we were unable to test the algorithms in the state which
we received them. In response, we revisited the implementations to optimize their memory
usages. Within both the NRL and GMCE implementations, we found that many of the
computations kept large matrices loaded in memory for quicker access for future computa-
tions. However, while re-computing these matrices each time they were needed would be
computationally more expensive, we found that by deallocating the variables, such as the
intermediates for computing value functions or gradients, we could decrease the memory
overhead by approximately 20 GB for the NRL implementation, and by over 100 GB for the
GMCE implementation, when training with the Portland Bike dataset. This reduction in
memory overhead for the NRL model allowed us to train the algorithm using the larger AWS
instance we mentioned with 64 GB of memory, and the increase in time spent recomputing
these somewhat frequently used variables may play a part in the vast difference in training
time between the RL model and the NRL model. In addition to the removal of these stored
variables, the GMCE code contained variable redundancies that further stretched the avail-
able memory. The original implementation contained hundreds of lines of code dedicated
to repetitive computations, such as computing the gradient for each scale parameter. By
replacing these large blocks of code with a combination of loops and pythonic list compre-
hension, the reassignment of variables that had been left behind reduced the memory usage
by a factor directly proportional to the number of parameters used.

Even with the memory reduction for the GMCE model, the AWS instance we had selected
struggled to run our training program. Thus, we reframed much of the data to consolidate
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the information into sparse matrices. The difficulties came with the dimension of the data
the GMCE implementation was using, with the various forms of transition matrix having the
form P : |S|× |A|×|S| → R. As mentioned, the deterministic nature of the state transitions
allows us to simplify the construction of the transition matrix. Given what our transitions
represent, taking the action ai,j would only be a non-zero value when going from state i to
state j, leaving |A| − 1 empty sets of the final |S| dimension. While n-dimensional sparse
matrices are certainly possible to use, 2-dimensional sparse matrices are the most intuitive
and flexible when it comes to matrix multiplication or manipulation, as well as having highly
optimized libraries for their computations. Thus, we reduced our matrices to be of the form
|S| × |S|, with the probability of each ai,j being found on the ith row and the jth column of
our P matrix.

With the reduction of redundant or non-critical code in conjunction with the replacement
of dense matrices by their sparse counterparts, we were successful in starting the training
for the GMCE implementation. While the exact amount was not critically studied, these
changes achieved memory improvements of approximately 90% (6.5 GB of memory compared
to 500 MB of memory when tested with a 7k link dataset). Additionally, with the code
written in Python, we were able to achieve computational time decreases by moving repeated
calculations to list-comprehension approaches. These changes made it possible to run the
code on the AWS server architecture that we had agreed to use, as the dataset we tested on
was approximately 40 times larger than this small dataset.

Similarly to the values reported in Zimmermann and Frejinger (2020), we found that the
NRL code ran significantly slower than the RL code. This can be seen in our current results,
with the training time taking an average of 36 hours when compared to the Decomposition
method for the RL, which took 30 seconds. This made for incredibly slow testing and
debugging, yet the GMCE model took even longer. While we were able to start the GMCE
code, the first iteration took over 27 hours to complete. This kept us from successfully
training the model, as even if the GMCE model converged within around 42 iterations as
the RL and NRL models did, this training would have taken over a month and half.
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Chapter 5

Conclusion

This thesis focused on the comparison between econometric dynamic discrete choice models,
and IRL maximum entropy models, with specific attention given to their applications to
the route choice problem. Furthermore, we provided descriptions of the algorithms and
models using common notation to facilitate mutual understanding between the two fields.
By creating this understanding, we hope that the two approaches may be able to take and
build upon those from across this bridge, leading to wider corpora of literature available
from both the past and the future.

This thesis served to achieve two goals. Firstly, we provided an introduction for re-
searchers from one field to build a framework of knowledge to understand the approaches
used by the other field. While there have been surveys and tutorials written for RCMs
and the variety of approaches (Zimmermann and Frejinger, 2020; Prato, 2009), the empha-
sis we put towards describing the two fields of econometrics and IRL as well as the depth
with which we describe how these fields approach the route choice problem are made to
specifically cater towards researchers from one area attempting to understand the other. By
utilizing a common notation, researchers should be able to familiarize themselves quickly
with approaches novel to them, as they can compare the models and algorithms to those
they already have knowledge of. Secondly, we provided a comparison between the two fields,
through our reported results and use of various metrics taken from each of the fields. With
use of the shared metrics, we provided values from our testing that can contextualize the
results reported in previous work.

Of the issues encountered in this work, the primary barrier to the achievement of all
objectives set out in this thesis was the issues surrounding our numerical results. Throughout
the implementation process, our algorithms were plagued with numerical instabilities, our
approaches to fixing were described in detail in the previous section. With our transformation
of the algorithms to the log space, we found greater stability, but still had convergence issues
with the Portland dataset.



There are many different directions for future work based on the initial information
presented in this thesis. Completing the computations and testing on the datasets would
be a clear starting point, but a further investigation into the exact similarities between the
Nested Recursive Logit and the Generalized Maximum Causal Entropy models may have
merit. Additionally, creating more comparisons between models from separate fields tackling
the route choice problem would help expand on the primary objective set out by this thesis,
bringing a wider scope of literature for researchers to incorporate into their own future work.
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