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Résumé

Concorder un modèle à certaines observations, voilà qui résume assez bien ce que l’appren-
tissage machine cherche à accomplir. Ce concept est maintenant omniprésent dans nos vies,
entre autre grâce aux percées récentes en apprentissage profond. La stratégie d’optimisation
prédominante pour ces deux domaines est la minimisation d’un objectif donné. Et pour
cela, la méthode du gradient, méthode de premier-ordre qui modifie les paramètres du
modèle à chaque itération, est l’approche dominante. À l’opposé, les méthodes dites de
second-ordre n’ont jamais réussi à s’imposer en apprentissage profond. Pourtant, elles offrent
des avantages reconnus qui soulèvent encore un grand intérêt. D’où l’importance de la
méthode du col, qui unifie les méthodes de premier et second-ordre sous un même paradigme.

Dans ce mémoire, nous établissons un parralèle direct entre la méthode du col et le
domaine du contrôle optimal ; domaine qui cherche à optimiser mathématiquement une
séquence de décisions. Et certains des problèmes les mieux compris et étudiés en contrôle
optimal sont les commandes linéaires quadratiques. Problèmes pour lesquels on connaît très
bien la solution optimale. Plus spécifiquement, nous démontrerons l’équivalence entre une
itération de la méthode du col et la résolution d’une Commande Linéaire Quadratique (CLQ).

Cet éclairage nouveau implique une approche unifiée quand vient le temps de déployer
nombre d’algorithmes issus de la méthode du col, tel que la méthode du gradient et celle
des gradients naturels, sans être limitée à ceux-ci. Approche que nous étendons ensuite
aux problèmes à horizon infini, tel que les modèles à équilibre profond. Ce faisant, nous
démontrons pour ces problèmes que calculer les gradients via la différentiation implicite
revient à employer l’équation de Riccati pour solutionner la CLQ associée à la méthode du
gradient. Finalement, notons que l’incorporation d’information sur la courbure du problème
revient généralement à rencontrer une inversion matricielle dans la méthode du col. Nous
montrons que l’équivalence avec les CLQ permet de contourner cette inversion en utilisant
une approximation issue des séries de Neumann. Surprenamment, certaines observations
empiriques suggèrent que cette approximation aide aussi à stabiliser le processus d’op-
timisation quand des méthodes de second-ordre sont impliquées ; en agissant comme un
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régularisateur adaptif implicite.

Mots-clés : optimisation, apprentissage profond, apprentissage machine, méthode du col,
réseaux de neurones, commande linéaire quadratique, algorithme du gradient, méthode des
gradients naturels, équation de Riccati, contrôle optimal, modèle à équilibre profond.
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Abstract

Machine learning entails training a model to fit some given observations, and recent advances
in the field, particularly in deep learning, have made it omnipresent in our lives. Fitting a
model usually requires the minimization of a given objective. When it comes to deep learn-
ing, first-order methods like gradient descent have become a default tool for optimization
in deep learning. On the other hand, second-order methods did not see widespread use in
deep learning. Yet, they hold many promises and are still a very active field of research. An
important perspective into both methods is steepest descent, which allows you to encompass
first and second-order approaches into the same framework.
In this thesis, we establish an explicit connection between steepest descent and optimal con-
trol, a field that tries to optimize sequential decision-making processes. Core to it is the
family of problems known as Linear Quadratic Regulation; problems that have been well-
studied and for which we know optimal solutions. More specifically, we show that performing
one iteration of steepest descent is equivalent to solving a Linear Quadratic Regulator (LQR).
This perspective gives us a convenient and unified framework for deploying a wide range of
steepest descent algorithms, such as gradient descent and natural gradient descent, but cer-
tainly not limited to. This framework can also be extended to problems with an infinite
horizon, such as deep equilibrium models. Doing so reveals that retrieving the gradient via
implicit differentiation is equivalent to recovering it via Riccati’s solution to the LQR as-
sociated with gradient descent. Finally, incorporating curvature information into steepest
descent usually takes the form of a matrix inversion. However, casting a steepest descent
step as a LQR also hints toward a trick that allows to sidestep this inversion, by leveraging
Neumann’s series approximation. Empirical observations provide evidence that this approx-
imation actually helps to stabilize the training process, by acting as an adaptive damping
parameter.
Keywords: optimization, deep learning, machine learning, steepest descent, neural net-
works, linear quadratic regulator, gradient descent, natural gradient descent, Riccati’s equa-
tion, optimal control, deep equilibrium models.
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Chapter 1

Introduction

It took a while for Deep Learning (DL) to shine and become the workhorse of artificial
intelligence, with many pieces falling into place to make it happens. One of the key com-
ponents that enabled neural networks to be trained at scale is the development of efficient
optimization methods tailored to the high dimensional and noisy regime under which deep
neural networks typically operate. First-order optimization methods have predominantly
been used for training deep neural networks due to their low computational overhead
(see Goodfellow and Vinyals 2015). While computationally advantageous, first-order
optimization methods fall short of leveraging the local geometry of the loss landscape; for
example, first-order methods will ignore curvature while second-order methods can converge
faster by leveraging this information. In order to increase the computational efficiency of
second-order methods, Pearlmutter 1994; Martens and Sutskever 2011 proposed matrix-free
variants using the "forward over reverse" approach of automatic differentiation (Griewank
and Naumann 2003) combined with a matrix-free linear solver such as Conjugate Gradient
method (Hestenes and Stiefel 1952).

Despite these improvements, second-order optimization methods have not been adopted
by practitioners. We believe that the problem is twofold: 1) the inadequacy of the local
geometry implied by the chosen second-order solver, 2) the need for a layer-aware approach
in improving computational efficiency.

This thesis addresses those two challenges jointly by proposing a framework in which a large
class of steepest descent methods can be implemented efficiently with the same blueprints.
The key insight in this work is to recognize that under certain assumptions, the problem
of finding the direction of steepest descent is amenable to solving a local Linear Quadratic
Regulation problem.



This provided us a direct entry point to try to address these issues more generally in the
Optimal Control (OC) framework which, as in Reinforcement Learning (RL), is concerned
with how to optimize sequential decision-making processes (Pontriagin et al. 1962; Bellman
1952). Our results offer a new perspective on the nature of the computation performed
during an optimization step: the parameters update step of a whole family of steepest
descent algorithms can itself be expressed as LQR problems.

The history of deep learning is intertwined with that of optimal control. Indeed, backprop-
agation was first described via the Optimal Control Problem (OCP) framework and studied
under the Hamiltonian formalism (see Bryson and Ho 1969, Lecun 1988 and Linnainmaa
1976); this formalism being the backbone of OC. The specific case of the neural net op-
timization was also connected to optimal control theory explicitly by Dreyfus 1990, who
applied the Kelley-Bryson procedure, a.k.a backpropagation, to optimize neural nets. More
recently, Zhang et al. 2019 and Seidman et al. 2020 studied min-max optimization as an op-
timal control problem to improve training stability. Optimal control has also recently gained
attention within the DL community for modeling continuous dynamical systems governed
by Ordinary Differential Equations (ODEs). This line of work came from Chen et al. 2018
who developed Neural ODEs from the question: what if the discretization step in ResNets
(He et al., 2016) was made increasingly smaller? To efficiently optimize such models, the
authors used the adjoint method from Bryson and Ho 1969 in optimal control to evaluate the
derivatives. Using insights from optimal control, Haber and Ruthotto 2017 also investigated
the stability of forward propagation in neural networks by studying a continuous-time coun-
terpart that led them to propose new neural architectures. The work developed in this thesis
extends those ideas by showing for the first time that each gradient step during training can
be computed as the solution to a specific kind of optimal control problem.

1.1 Deep Learning Formulation in Optimal Control

We follow the path outlined above, and formulate some of the concepts encountered in ML
in the language of OC. However, we currently restrict ourselves to the discrete setting. The
training task of a NN can thus be posed as a Mayer problem (see Bliss 1968); that is, an
optimal control problem (OCP) of the form:

min
u

J(x,u)

subject to xi+1 = fi(xi,ui)

given x0

(1.1.1)
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Indeed, when training a NN, one would receive an input (x0) that will then be processed
sequentially through all the layers fi before evaluating the loss (J(x,u)) over the final
representation only.

Since we will be leveraging tools from the OC setting to perform optimization in ML, we
decided to align our notation with as is conventional in OC. When dealing with the specific
task of optimizing a NN in ML, the correspondence between the concepts are as follows:

ML terminology Control terminology
Name Notation Name Notation
Input x0 Initial state x0

Feature/Activation ai Transition state xi
Output y Final state xN

Parameters θ Controls u
Loss function l(·) Cost function J(·)

Layer Transition function fi

Table 1.1. Notations used in ML vs OC

1.2 Contributions
The work in this thesis was sparked by our attempt to leverage a connection shown in
Bertsekas (2016) (section 2.6.2) between a particular LQR problem and Newton’s descent
step for an OCP. This particular implementation of Newton’s method was first formalized
simultaneously by Dunn and Bertsekas (1989) and independently by De O. Pantoja and
Mayne (1989). We realized that this was only a specific case and that an equivalence
could be built more broadly for the steepest descent minimization objective. A similar
connection has also been found by Jin et al. (2020), but only in the context of an end-to-end
differentiable architecture for reinforcement learning. Our results apply more broadly to
unconstrained optimization in other areas of ML.

Thus the contributions of this thesis, to the best of our knowledge, include:

• We describe how a gradient descent step, a steepest descent step under a Euclidean
norm, over a discrete dynamical system with terminal cost (which encompasses neural
networks) is always equivalent to the solution of a LQR (section 3.1).

• We generalize this equivalence between LQR and an individual steepest descent step
for a variety of divergence measures that encompasses second-order methods such as
natural gradient descent and Newton’s method (section 3.2).

15



• As a specific case we derive the LQR equivalent to performing a natural gradient
descent update (section 3.2.3).

• We extend the above results to the infinite horizon setting, thus making the technique
appropriate to train models such as deep equilibrium models. As a consequence, this
gives us an algorithm to train such models with second-order methods, something
that does not seem to have been attempted yet (chapter 4).

• We show that, as a special case, solving the LQR equivalent to gradient descent in
the infinite horizon setting is equivalent to retrieving it via implicit differentiation
(section 4.2).

• The matrix inversion involved with the general steepest procedure descent is usually
computationally expensive. We show how we can sidestep this difficulty for NN that
possesses ReLu activation functions by deriving a trick based on Neumann’s series
(section 5.1).
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Chapter 2

Background

Steepest descent is a paradigm that encompasses a whole family of optimization algorithms,
but it does not necessarily provide a unified method to solve the optimization problems
formulated through it. We will attempt to cover some of this ground, by bringing a few
OC results into the realm of DL. We assume most readers will be acquainted with one of
the two fields, but not necessarily both. As such, we will give a very brief overview of the
optimization trends in DL before going more technical and providing the details that will
be leveraged from steepest descent. We will continue in this vein and explains the exploited
concepts about LQR and the formulation associated with it in OC. Finally, we will succinctly
introduce the deep implicit models’ framework as we will be extending some of our results
to this area.

2.1 Optimization Methods for Deep Learning
2.1.1 First-Order Methods
The optimization landscape in Deep Learning (DL) is largely dominated by first-order
stochastic gradient descent methods. This simple approach is extremely efficient in DL,
providing an unbiased estimate of the gradient and being able to escape local minima (see
Bottou 1998 for more information about SGD). It also scales very well with the number
of examples, it is thus suited to big data (see Robbins 2007). Yet, this method still has
few disadvantages: it often requires manual tuning of hyperparameters such as the learning
rate and may make very slow progress in a noisy setting. These issues are well discussed in
Ruder (2016). Multiple variants were later used for training Deep Neural Nets (DNN) in
order to mitigate the challenges faced by SGD.

Momentum (Polyak 1964) is a key idea to accelerate training; it accumulates past gradients
and adds them (scaled by an exponentially decaying rate) to the current update. This
technique is particularly efficient in noisy high curvature settings. It is also a core idea



when it comes to accelerating learning and has many derivatives. As an example, Nesterov
acceleration (Nesterov 1983) extends this idea but evaluates the gradient after applying
it. This strategy brings a better rate of convergence in deterministic settings and a prac-
tical speed up in stochastic scenarios, such as the training of DNN (see Sutskever et al. 2013).

Even with those improvements, setting the learning rate correctly remains a difficult
hyperparameter optimization problem. Momentum somewhat improved the situation but
did so by introducing a new hyperparameter, namely the mass parameter. Methods were
thus designed to specifically address the problem, by introducing an adaptive learning rate
tailored separately to each weight. AdaGrad (Duchi et al. 2011) did so by proportionally
scaling a learning rate decay to the size of the partial derivatives. Weights that adapt more
slowly will therefore decay less and the training procedure should make better progress in
the directions for which the gradient slope is smoother. RMSProp (Hinton 2012) modified
AdaGrad by discarding the earlier part of the updates history when calculating the decay
rate, allowing for better performance in a non-convex setting.

Finally, when it comes to first-order methods, Adam (Kingma and Ba 2015) is probably
the default choice for DL practitioners nowadays, as it is considered to be more robust to
the choice of hyperparameters. It incorporates momentum as an estimate of the first-order
moments of the gradients and includes a bias correction term to account for the initialization
at the origin. The bias correction leverages an estimate of the second-order moments along
with the estimate of the first-order moments.

2.1.2 Second-Order Methods
In contrast, second-order methods never saw wide applications in DL, suffering drastically
from the curse of dimensionality as the algorithms implementing them traditionally require
computation time and memory storage scaling with O(n3). However, there is experimental
evidence (Martens 2016) that they allow training convergence in fewer iterations, even
if the time to do so may not be smaller than via first-order methods (for which an
individual update is computed much more quickly). Martens 2016 provides a good overview
of the difficulties as well as the advantages that come with those methods when applied to DL.

Because of those challenges, most early applications of second-order methods to Ma-
chine Learning (ML) were through the methods known as Quasi-Newton that replace
the Hessian inverse by an approximation. The most popular among those is the Broy-
den–Fletcher–Goldfarb–Shanno (BFGS) method for which a limited memory variant (Liu
and Nocedal 1989) can offer better performance than plain SGD in some instances (see Le
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et al. 2011). However, their applicability to DL remains limited as they still do not scale
well with the large number of parameters that a DNN usually possesses.

Recently, another second-order method has drawn some attention: the Natural Gradient
Descent (NGD). This method leverages the Fischer Information matrix to condition the
gradient update and was first introduced by Amari 1998. In the context of DL, empirical
evidence was gathered about the robustness of the approach when facing limited training
data by Pascanu and Bengio 2014.

The main difficulty regarding the widespread use of NGD remains its scalability since in
theory it also requires to invert a matrix scaling with the number of parameters (the Fischer
information matrix). A recent approach, K-FAC (Martens and Grosse 2015), alleviated part
of the problem by first performing a block-diagonal approximation of the Fischer information
matrix and then using Kronecker factorization to ease the inversion task. It was shown that
this strategy could be scaled and adapted to distributed systems by Osawa et al. 2019, but
the result requires more overheads than typical first-order methods.

2.2 Steepest Descent
Steepest descent can be seen as a generalization of gradient descent. It should be noted also
that the mirror descent approach can be cast as the steepest direction in the Riemannian
space induced by the chosen divergence (see Raskutti and Mukherjee 2015; Beck and
Teboulle 2003). The core idea behind those methods is that two quantities need to be
determined in order to optimize a function locally. Thus, one has to decide on a direction
in which to search to improve the objective as well as the magnitude of the step to take in
the chosen direction.

If we first fix the step size, what is left to find is the optimal direction in which to take
that step. For a given direction v, the first-order Taylor’s approximation (see Nocedal and
Wright, 2006) yields:

f(x+ v) ≈ f(x) +∇f(x)Tv

The steepest direction of norm 1 will therefore be the vector v that minimizes:

v∗ = arg min
v

f(x) +∇f(x)Tv s.t. ||v|| = 1

= arg min
v
∇f(x)Tv s.t. ||v|| = 1

(2.2.1)
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Already, we can see that the steepest descent algorithm can come in many flavors. Indeed
depending on the norm choice, we can obtain very different updates. Although this problem
might seem difficult to solve because of the constraint requiring ||v|| = 1, we can relax the
problem so that we recover the same direction, but rescaled. That is, there exists a constant
α such that (2.2.1) is equivalent to:

v∗ = α
[

arg min
v
{∇f(x)Tv + 1

2‖v‖
2}
]

(2.2.2)

which is a much more convenient form. The details for this equivalence are provided in
Appendix A and a more formal introduction to steepest descent can be found in section 9.4
of Boyd and Vandenberghe 2004.

2.2.1 Gradient Descent
Gradient descent is an instance of steepest descent, and we recover this specific algorithm
by choosing the Euclidean norm in the steepest descent formulation. Indeed, in this case,
we want to minimize:

α
[

arg min
v
{∇f(x)Tv + 1

2v
Tv
]

This is a simple quadratic so that we can recover the minimum by setting the derivative to
zero:

0 = α∇f(x) + v∗ =⇒ v∗ = −α∇f(x) ,

where such a v∗ is exactly the update we want to apply when we perform gradient descent.

2.2.2 Steepest Descent under a Quadratic Norm
Let us now consider the quadratic norm ‖·‖P defined as ‖z‖P = (zTPz)1/2 for a matrix P
that is positive semidefinite.

Then, just as above, we can seek the minimum by setting the derivative to zero, which yields:

v∗ = −αP−1∇f(x)

With this formulation, we can therefore also cast NGD and Newton’s descent as special
instances of steepest descent, where P is chosen to be the Fisher matrix, F , for the former
or the Hessian H for the latter.
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2.3 Linear Quadratic Regulator
Linear quadratic regulators are the canonical problems of control theory. Although far from
being a simple problem, LQRs are well-studied problems that have the nice property of being
analytically solvable. Moreover, LQRs have many practical applications and thus many
numerical solvers have been developed for this family of problems over the years. Readers
interested in a more thorough introduction can refer themselves to Anderson and Moore 1990.

LQR are control problems for which the dynamics are described by a linear system. In
control theory, xt ∈ Rn is often used to denote the state of the system at time t while
ut ∈ Rm denotes the control taken at time t. The control is usually the quantity that one
can vary to obtain the desired trajectory. Under this notation, the system dynamics can be
described by:

xt+1 = Atxt +Btut (2.3.1)

The goal is then to minimize a cost associated with the trajectory obtained by following the
system dynamics. For LQRs problems, this cost must be at most quadratic with respect to
its states and controls and of the following form:

J(x,u) = aTTxT + xTTQTxT +
T−1∑
i=0

[
aTi xi + xTi Qixi + bTi ui + uTi Riui + uTi Mixi

]
(2.3.2)

Note that objective function is the sum of per-state costs, and the immediate cost at a given
time step depends solely on the current state and control. That is, there are no cross-terms
in the cost between parameters of different time steps.

For such problems, the optimal values for the controls can be retrieved via the Riccati
equation. To do so, we have to solve backward for the gain matrix that will define the
optimal controls. The Riccati equation is provided below for the two cases that we encounter
when building the equivalence between a steepest descent step and a LQR.

Though LQR problems are well defined both for continuous and discrete settings, we will
focus on the latter case. This is because DL models currently consist mostly of discrete
optimization problems; as seen in section 1.1 the passage from one layer to another can
be seen as moving forward by one time step. The connection made later between an
optimization step and an LQR will be grounded in the discrete setting.
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2.3.1 Finite Horizon

In OC, a finite horizon means that the dynamic system reaches a final state after N steps.
For us here, the final state would be the final output given by the last layer of a NN.

LQR problems that are well formulated will fit the form:

min
u

J(x,u) = aTTxT + xTTQTxT +
T−1∑
i=0

[
aTi xi + xTi Qixi + bTi ui + uTi Riui + uTi Mixi

]
subject to xi+1 = Aixi +Biui

given x0

(2.3.3)

To solve such problems, we can leverage the Riccati equation to first retrieve the gain matrices
Ki and the vector λi (see Reid, 1972).

Ki = AT
i Ki+1Ai +Qi − (AT

i Ki+1Bi +MT
i )(Ri +BT

i Ki+1Bi)−1(Mi +BT
i Ki+1Ai)

(2.3.4)

λi = ai +AT
i λi+1 − (AT

i Ki+1Bi +MT
i )(Ri +BT

i Ki+1Bi)−1(bi +BT
i λi+1) (2.3.5)

With KN = QN and λN = aN .
The optimal controls are then calculated with:

u∗0 = −(R0 +BT
0 K1B0)−1(b0 +BT

0 λ1)

x∗0 = x0

x∗i+1 = Aix
∗
i +Biu

∗
i

u∗i = −(Ri +BT
i Ki+1Bi)−1

(
(Mi +BT

i Ki+1Ai)x∗i + bi +BT
i λi+1

)
(2.3.6)

Since a full development of those equations that encompasses the case when ai 6= 0 and
bi 6= 0 is lengthy, we provide a proof in Appendix B.

2.3.2 Infinite Horizon

The infinite horizon setting deals with the case when N → ∞, with both the cost terms
(a, b,Q,M ,R) and the transition matrices (A,B) remaining constant through time. In
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such cases, it makes no sense to have a cost associated with the final state, and the problem
formulation becomes:

min
u

J(x,u) =
∞∑
i=0

[
aTxi + xTi Qxi + bTui + uTi Rui + uTi Mxi

]
subject to xi+1 = Axi +Bui
given x0

(2.3.7)

Again, we can use the associated Riccati equation to obtain the gain matrix K and λ.

K = ATKA+Q− (ATKB +MT )(R+BTKB)−1(M +BTKA) (2.3.8)

λ = a+ATλ− (ATKB +MT )(R+BTKB)−1(b+BTλ) (2.3.9)

The equation (2.3.8) is known as the Discrete Algebraic Riccati Equation (DARE), and its
solution has many practical uses. Many efficient numerical DARE solvers already exist, and
it is still an active area of research (see Bini et al. 2011).

A solution exists to (2.3.8) if the closed loop state transfer matrix,A−B(R+BTKB)−1(M+
BTKA), has a spectral radius smaller than one (it is stable). The optimal trajectory can
then be retrieved in the same fashion:

u∗0 = −(R+BTKB)−1(b+BTλ)

x∗0 = x0

x∗i+1 = Ax∗i +Bu∗i
u∗i = −(R+BTKB)−1

(
(M +BTKA)x∗i + b+BTλ

)
(2.3.10)

Note that the optimal controls are guaranteed to stabilize when the closed-loop state transfer
matrix is stable.

2.3.3 Cyclic Case

Finally, as it will be relevant later, we mention that a cyclic case exists for LQR in the
infinite horizon setting. If a given LQR cycles through N different linear system, it takes
the form:
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min
u

J(x,u) =
∞∑
i=0

N∑
n=1

[
aTnxin + xTinQnxin + bTnuin + uTinRnuin + uTinMnxin

]
subject to xi(n+1) = Anxin +Bnuin

with xiN = x(i+1)0

given x00

(2.3.11)

The Riccati solution is similar, the difference being that we now need to solve a system of
gain matrices.

KN−1 = AT
N−1KNAN−1 +QN−1−

(AT
N−1KNBN−1 +MT

N−1)(RN−1 +BT
N−1KNBN−1)−1(MN−1 +BT

N−1KNAN−1)
...

K1 = AT
1K2A1 +Q1 − (AT

1K2B1 +MT
1 )(R1 +BT

1 K2B1)−1(M1 +BT
1 K2A1)

KN = AT
NK1AN +QN − (AT

NK1BN +MT
N)(RN +BT

NK1BN)−1(MN +BT
NK1AN)

(2.3.12)

Likewise, we need to solve the cyclic system for λi.

The good news for us is that, again, there are multiple cyclic DARE solvers already available
to solve such problems.

2.4 Deep Implicit Models

Implicit models were recently brought into light within the deep learning community first
by its use in modeling Ordinary Differential Equations (ODEs) system Chen et al. 2018 and
then the introduction of the Deep Equilibrium Models (DEQ) Bai et al. 2019 that leveraged
the same ideas over modern architectures. Let us remark that those papers made popular
the uses of implicit layers within the ML community, but the core ideas behind date back
to the ’80s (e.g. Almeida 1990 and Pineda 1987).

The key point to the implicit layers is that instead of representing a typical transformation
of the form :

z = f(x) (2.4.1)
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it instead focus on its implicit representation of the form :

g(z,x) = f(x)− z = 0 (2.4.2)

and the goal is now to find the root of the above equation.

This formulation becomes particularly useful when the transformation f has a dependency
on z (f : X ×Z → Z) and is applied repeatedly until convergence to a fixed point, that we
can denote z∗.

The root-finding problem is then:

g(z,x) = f(x,z)− z = 0 (2.4.3)

With a solution at the fixed point z∗ = f(x,z∗). The fixed point has an implicit dependency
over x, and we can design the function ϕ : X → Z to be the function returning the fixed
point of f(x,z), i.e. ϕ(x) = z∗.

For such problems, when a fixed point exists, we can then leverage the Implicit Function
Theorem to find the derivative to (2.4.3) around the fixed point z∗, given by:

∇T
xϕ(x) =

(
∇T
z g(x, z)

∣∣∣
z=z∗

)−1

∇T
xg(x,z∗) (2.4.4)

Under the condition that the matrix
(
∇T
z g(x, z)

∣∣∣
z=z∗

)−1
is invertible.

This relationship has practical consequences: the Jacobian of the implicit layer f can be
recovered without having to backpropagate through the fixed-point solver/iterator.

This means that we are free to use any fixed point solver to find z∗ and then recover analyti-
cally the Jacobian of interest via (2.4.4): without representing explicitely the computational
graph (as build by typical automatic differentiation tools) of the fixed-point solver.

2.4.1 Deep Equilibrium Models

DEQ models deploy the above ideas in the realm of deep learning. Indeed, conceptually, one
could think of a DEQ as a recurrent neural network of infinite depth. If the representation
induced by the infinitely repeated layer eventually reaches a fixed point, such a NN could be
written as:
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z0 = 0

zi+1 = f(x,θ, zi) until zi=1 = zi

J(x) = l(z∗(x,θ))

(2.4.5)

Where z∗ is the fixed point of the layer f(x,θ, z), x is the input, θ are the layer parameters
and l(·) is the loss calculated with respect to the NN output.

In practice, we often want to optimize such a network with a variant of the SGD algorithm.
In all cases, the optimization step will most likely require the computation of the quantity:

∇θϕ(x,θ)∇z∗l(z∗) = ∇θl(z∗)

That is, the vector-Jacobian product between the Jacobian of the fixed point with respect
to the parameters and the gradient of the loss with respect to the final representation. To
recover such a quantity, we can leverage the Implicit Function Theorem showcased above
that tells us:

∇T
θϕ(x,θ) =

(
∇T
z f(x,θ, z)

∣∣∣
z=z∗
− I

)−1

∇T
θ f(x,θ, z∗) (2.4.6)

For any vector b (such as ∇z∗l(z∗)), we have that:

∇θϕ(x,θ)b = ∇θf(x,θ, z∗)
(
∇T
z f(x,θ, z)

∣∣∣
z=z∗
− I

)−T
b (2.4.7)

Finally, to be compatible with the automatic differentiation framework, one will want to
retrieve the quantity

(
∇T
z f(x,θ, z)

∣∣∣
z=z∗
− I

)−T
b by solving instead the system:

x̄ =
(
∇T
z f(x,θ, z)

∣∣∣
z=z∗

)
x̄− b (2.4.8)

The system above also describes a fixed-point equation, and one key concept of the DEQ
networks is that we have access to a fixed-point solver. We thus have all the tools needed
to derive the gradient update with automatic differentiation. Moreover, if a fixed point
exists for the implicit layer of the DEQ (2.4.5), then we are guaranteed that a fixed point
also exists for (2.4.8). Indeed, the local convergence condition for both system is the same
: that

(
∇T
z f(x,θ, z)

∣∣∣
z=z∗

)
has a spectral radius smaller than 1 (and is thus a contraction,
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see Nayfeh and Balachandran 1995 section 2.2).

We now have in hand everything needed to derive the equivalences proposed in the intro-
duction.
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Chapter 3

Steepest Descent as Linear Quadratic
Regulation

We begin by showing that performing a single GD step with steepest descent is equivalent to
solving a corresponding unique LQR. From there, we will be able to move toward our main
result, which extends this equivalence to steepest descent under various divergence measures.
Please note that the results presented in this chapter are developed for finite horizon, discrete
OCP – a setting that holds when trying to optimize a traditional NN made from a finite
number of layers.

3.1 Problem Statement for a Single Gradient Step
For consistency, we will now denote the various quantities via their typical OC denomination,
following the equivalences put forward in table 1.1. Let F : Rn → Rd be a NN mapping the
input xk0 to the output xkN through the applications of N − 1 layers labelled f0, f1, ..., fN−1.
Each layers has its own parameters ui so that xki+1 = f(xki ,ui). The whole set of parameters
can be written as u = {u0,u1, ...,uN−1}. A loss function of the form J(xkN) is defined, with
an implicit dependency over the parameters u, so that we can in fact label the loss as J(u).

Then, posed in the framework of steepest descent, performing a single GD step for this
NN over the parameters u can be seen as a Bolza problem (Bliss 1968) that minimizes the
following objective for the current input xk0 and current parameters uk:

min
∆u
∇J(uk)T (∆u) + 1

2(∆u)T (∆u) = min
u
∇J(uk)T (uk − u) + 1

2

N−1∑
i=0

(uki − ui)T (uki − ui)

(3.1.1)
The above problem is quadratic and thus convex, a unique optimal solution exists given by
∆u∗ (or u∗). The GD update to the parameters for the current input is then given by:



uk+1 = uk + ∆u∗ = u∗

We will now show that (3.1.1) is in fact a proper LQR problem. Already, we can notice that
a quadratic cost is present; what is lacking is a linear dynamic system describing the system
evolution. But, we will see that the linearization arise naturally from the differentiation,
that is from the term ∇J(uk)T (∆u) in (3.1.1).

Intuitively, this property can be understood easily from the multivariate chain rule. Indeed,
if we think of a given system with x1 = φ(u) and x2 = g(x1,u), we have :

Du(f(x2,u) ◦ g)(x,u) = Dx2fDug +Dfx2Dx1gDuφ+Duf

= Dx2f

(
Dx1gDuφ+Dug

)
+Duf

= A2(A1 ·C +B1) +B2

That is, differentiation and linearization are closely related. Moreover, the above can be
seen as a discrete-time linear dynamical system.

More formally, by applying the chain rule to the first term in (3.1.1) and denoting ∇TJ(uk)
by ∇TJk (and fi(xki ,uki ) by fki ) we have that:

∇T
uJ

k(u− uk) = ∇T
xN
Jk(∇T

xN−1
fkN−1∇T

u0:N−2
fkN−1 +∇T

uN−1
fkN−1)(u− uk)

= ∇T
xN
Jk(∇T

xN−1
fkN−1(∇T

xN−2
fkN−2∇T

u0:N−3
fkN−3 +∇T

uN−2
fkN−2) +∇T

uN−1
fkN−1)(u− uk)

= ...

= ∇T
xN
Jk
(
...∇T

x1f
k
1 (∇T

x0f
k
0∇T

u0f
k
0 +∇T

u0f
k
0 ) +∇T

u1f
k
1 ...

)
(u− uk)

(3.1.2)

We chose to denote the Jacobians via the matrix of gradients, ∇vi
fi, for which each columns

are the gradients of the elements of the vector function fi. As such, we have that the
Jacobian of fi is the transpose of this matrix, i.e. ∂fi(vi)

∂vi
= ∇T

vi
fi. Moreover, the notation

∇T
u0:i

is used to indicate that the derivative is taken with respect to the parameters u0 up
to ui.
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Now we note that x0 is constant, so ∇T
x0f

k
1∇T

uf0 = 0 and also that we can distribute (u−uk)
over the sum, taking into account that fi has only partial derivatives over ui and xi:

∇T
uJ

k(u− uk) = ∇T
xN
Jk
(
...∇T

x2f
k
2

(
∇T
x1f

k
1 (∇T

u0f
k
0 )(u0 − uk0) +∇T

u1f
k
1 (u1 − uk1)

)
+∇T

u2f
k
2 (u2 − uk2)...

)
(3.1.3)

Finally, by adopting the notation Ai = ∇T
xi
fki , Bi = ∇T

ui
fki ; ũi = ui − uki and x̃i+1 =

Aix̃i +Biũi we get:

∇T
uJ

k(u− uk) = ∇T
xN
Jk
(
...A2

(
A1(B0ũ0) +B1ũ1

)
+B2ũ2...

)
= ∇T

xN
Jk · x̃N

(3.1.4)

As it will be useful later, note that if we denote explicitly the implicit dependence of x over
u via x = φ(u) (so that J(x,u) = J(φ(u),u)), then (3.1.4) shows that:

∇T
uφ(u) · (u− uk) = x̃N (3.1.5)

Since the cost J has only a direct dependency over the variable xN and ∇T
uJ

k(u − uk) =
∇T
xN
Jk
(
∇T
uφ(u) · (u− uk)

)
.

3.1.1 Equivalence with Gradient Descent

What we have in (3.1.4) is a discrete linear dynamical system. Indeed the transition
layers of this system are obtained via the linearization of the original layers in the
model. Thus, (3.1.1) can be rewritten as a standard OCP, allowing us to put forward a
preliminary result of this thesis, obtained by construction from the above problem statement:

Theorem 3.1.1. Retrieving the update for a single gradient descent step over the parameters
uk for a given example xk in a neural network is equivalent to solving the following linear
quadratic regulator problem:

min
ũ
∇T
xN
J(uk)× x̃N + 1

2

N−1∑
i=1
ũTi ũi

subject to x̃i+1 = Aix̃i +Biũi

where Ai = ∇T
xi
fki , Bi = ∇T

ui
fki

given x̃0 = 0

(3.1.6)
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Based on the material presented in section 2.3, we can see that (3.1.6) is a proper LQR
problem: the cost to minimize is quadratic and the transition functions are linear. Therefore,
the optimal solution, ũ∗ to (3.1.6) can be obtained by solving the Riccati equation (2.3.4),
starting with KN = 0 and λN = ∇T

xN
J(uk)

Ki = AT
i Ki+1Ai − (AT

i Ki+1Bi)(I +BT
i Ki+1Bi)−1(BT

i Ki+1Ai)

λi = AT
i λi+1 − (AT

i Ki+1Bi)(I +BT
i Ki+1Bi)−1BT

i λi+1
(3.1.7)

The equivalent GD update is then given by:

ũ∗0 = −(I +BT
0 K1B0)−1BT

0 λ1

x̃∗i+1 = Aix̃
∗
i +Biũ

∗
i

ũ∗i = −(I +BT
i Ki+1Bi)−1

(
(BT

i Ki+1Ai)x̃∗i +BT
i λi+1

) (3.1.8)

With a learning rate α, the GD update can therefore be applied via:

uk+1 = uk + αũ∗ (3.1.9)

Note that the initial condition x̃0 = 0 arises from ∇T
x0f

k
1∇T

uf0 = 0; defining the subsequent
x̃i by x̃i+1 = Aix̃i + Biũi is then a convenient choice to describe the state transitions
happening in the linear system of (3.1.4).

Also, it is worth noting that the learning rate for the GD step can equivalently be incorpo-
rated in the optimization problem (3.1.6) by minimizing instead

min
ũ
∇T
xN
J(uk)× x̃N + 1

2α
N−1∑
i=1
ũTi ũi

and the solution follows as above, but taking αI instead of I in (3.1.7) and (3.1.8).

3.2 Steepest Descent Objective
The result shown in Theorem 3.1.1 was obtained by minimizing the steepest descent objective
under the Euclidean norm (see section 2.2.1). But, the steepest descent procedure extends
well beyond gradient descent and will lead to other optimization algorithms (such as NGD
and Newton’s method) when the divergence measure is chosen differently. We will now show
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that an equivalent LQR can be obtained to the steepest descent problem for a wide choice
of divergence measures.

3.2.1 General LQR Equivalence

To perform a steepest descent step under a given P-norm, ‖ · ‖P , we need to solve:

min
v
∇f(x)Tv + 1

2‖v‖P

The P-norm is often induced by a divergence measure, and for such cases, we can recover
an equivalent LQR. We provide this result below, by simply extending the demonstration
of the equivalence between a LQR problem and one Newton’s method step stated in
Bertsekas 2016. The use of the notation H in (3.2.3) refers to the Hamiltonian defined in
the development of the Pontryagin’s maximum principle (PMP) Pontriagin et al. 1962.

Theorem 3.2.1. If the matrix P (x,u) inducing the quadratic norm ‖ · ‖P can be written as
P (x,u) = ∇2

uuD(x,u) and D is a function that can be expressed layer-wise (i.e. D(x,u) =
DN(xN) +∑N−1

i Di(xi,ui)), then the minimization problem

min
v
∇TJ(F (x))v + 1

2‖v‖P

= min
ũ
∇TJ(u)ũ+ 1

2ũ
T
(
∇2
uuD(x,u)

)
ũ

(3.2.1)

is equivalent to the following LQR when F is the dynamical system of an OCP (for example,
when F is a NN) and J the associated cost :

min
ũ
∇T
xN
J(uk)× x̃N + 1

2{x̃
T∇2

xxH(φ(u),u,p(u))x̃+ x̃T∇2
xuH(φ(u),u,p(u))ũ+

ũT∇2
uxH(φ(u),u,p(u))x̃+ ũT∇2

uuH(φ(u),u,p(u))ũ}

subject to x̃i+1 = Aix̃t +Biũi

where Ai = ∇T
xi
fki , Bi = ∇T

ui
fki

given x̃0 = 0

(3.2.2)

Where:

φ(u) = [x1,x2, ...,xN ]T
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H(φ(u),u,p(u)) = D(φ(u),u) + h(φ(u),u)Tp(u) (3.2.3)

h(φ(u),u) =


f0(u0,x0)− x1

...
fN−1(uN−1,xN−1)− xN

 = −→0

And

p(u) =


∇x1f1 · p2 +∇x1D

...
∇xN−1fN−1 · pN +∇xN−1D

∇xN
D



Proof. When going over the proof, it is important to realize that the objective to minimize
in (3.2.1) is not a valid cost function for LQR problems, because it is not decoupled with
respect to the controls and the states. This is why introducing the Hamiltonian is so helpful:
the Hamiltonian is such that the controls are minimizers at each transition step (i.e. at
every layer) (see Lenhart and Workman, 2007). It is this property that allows us to cast the
optimization objective as a sum of decoupled terms, thus making it a proper objective for a
LQR problem.

We already know that the term ∇TJ(u)ũ gives rise to the "skeleton" of the LQR, so to
complete the proof we focus on showing that

ũT
(
∇2
uuD(x,u)

)
ũ =x̃T∇2

xxH(φ(u),u,p(u))x̃+ x̃T∇2
xuH(φ(u),u,p(u))ũ

+ ũT∇2
uxH(φ(u),u,p(u))x̃+ ũT∇2

uuH(φ(u),u,p(u))ũ

To see this, we need to view D as an "alternate loss term" for which we can develop the
appropriate adjoint terms; an approach inspired by the PMP.
Since h is a zero valued vector, we have that ∀p, D(φ(u),u) = H(φ(u),u,p(u)) when H is
defined as:

H(φ(u),u,p(u)) = D(φ(u),u) + h(φ(u),u)Tp(u)

By taking the first derivative with respect to u and applying the chain rule, we get
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∇uH = ∇uφ(u)∇xH(φ(u),u,p(u)) +∇uH(φ(u),u,p(u))

This is true for any p, and in particular for the given p s.t. ∇xH(φ(u),u,p(u)) = 0. This
means that we can rewrite pi as being

pi = ∇xi
fi · pi+1 +∇xi

D

pN = ∇xN
D

Taking the derivative of ∇uH once more, we now get:

∇2
uL = ∇2

uφ(u)∇xH(φ(u),u,p(u)) +∇uφ(u)∇xxH(φ(u),u,p(u))∇T
uφ(u)

+∇uφ(u)∇xuH(φ(u),u,p(u)) +∇uxH(φ(u),u,p(u))∇T
uφ(u)

+∇uuH(φ(u),u,p(u))

Remembering that ũT∇uφ(u) = x̃T (3.1.5) and ∇2
uφ(u)∇xH(φ(u),u,p(u)) = 0 because of

our choice of p(u), we get the desired result.
�

The conditions imposed on D in Theorem 3.2.1 may seem quite restrictive, but we argue
that it should not be the case in practice. Indeed, in most scenario, the divergence is only
measured over the final state, i.e.: D(x,u) = DN(xN). Moreover, the divergence measure
can often be approximated (sometimes exactly) via their second-order Taylor’s expansion
(again, Nocedal and Wright, 2006):

Theorem 3.2.2. For a divergence measure D ∈ C2 having the following properties:

D(x,x) = 0 ; D(x,y) ≥ 0

We have that:
D(u) ≈ uT

(
∇2
uuD(u′)

)
u (3.2.4)

Proof. Taking the second order Taylor’s expansion of a divergence measureD(u) = D(u′,u)
around u = u′:
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D(u) ≈ D(u′) +∇uD(u′)u+ uT
(
∇2
uuD(u′)

)
u

By definition D(u′) = D(u′,u′) = 0, and ∇uD(u′) = 0 as well since D(u) is minimal at
u′. �

3.2.2 Riccati’s Solution to the Steepest Descent Objective

Since (3.2.2) is a LQR problem, just as for the GD case, we can recover the steepest descent
update by solving the LQR with Riccati’s equation. By defining Hi as:

Hi(xi,u,pi) = Di(xi,ui) + hi(xi,ui)Tpi

And adopting the notation QN = ∇2DN(xN), aN = ∇xN
J(uk), Qi = ∇2

xixi
Hi, Ri =

∇2
uiui

Hi, Mi = ∇2
uixi

Hi, we can rewrite (3.2.2) more succinctly as:

min
ũ

aTN x̃N + 1
2 x̃

T
NQN x̃N +

N−1∑
i=0

(1
2 x̃

T
i Qix̃i + 1

2ũ
T
i Riũi + ũTMx̃

)
subject to x̃i+1 = Aix̃t +Biũi

where Ai = ∇T
xi
fki , Bi = ∇T

ui
fki

given x̃0 = 0

, (3.2.5)

a problem for which the optimal solution is obtained by solving backward:

Ki = AT
i Ki+1Ai +Qi − (AT

i Ki+1Bi +MT
i )(Ri +BT

i Ki+1Bi)−1(Mi +BT
i Ki+1Ai)

(3.2.6)

λi = AT
i λi+1 − (AT

i Ki+1Bi +MT
i )(Ri +BT

i Ki+1Bi)−1BT
i λi+1 , (3.2.7)

with KN = QN and λN = aN .
The updates are then:
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ũ∗0 = −(R0 +BT
0 K1B0)−1BT

0 λ1 (3.2.8)

x̃∗i+1 = Aix̃
∗
i +Biũ

∗
i (3.2.9)

ũ∗i = −(Ri +BT
i Ki+1Bi)−1

(
(Mi +BT

i Ki+1Ai)x̃∗i +BT
i λi+1

)
. (3.2.10)

3.2.3 Equivalence with Natural Gradients

Natural gradient descent Amari 1998 is an optimization algorithm well suited to the modeling
of probability measures and has known advantages over GD in the context of deep learning
(e.g. Pascanu and Bengio 2014). NGD can be stated in the language of steepest descent as
the search for the optimal unitary step in a space scaled by the Fisher’s information matrix
(F ):

∆v = arg min
v
∇f(u)Tv + 1

2‖v‖F

= arg min
v
∇f(u)Tv + 1

2v
TFv

, (3.2.11)

leading to the NGD update rule for some parameters u:

uk+1 = uk − F−1∇f(u)

Furthermore, there is a well-known connection between the Hessian of the Kullback–Leibler
(KL) divergence and the Fisher’s information matrix, allowing to develop the second-order
Taylor’s approximation of the KL divergence as:

DKL(pu||pu+v) ≈ DKL(pu||pu) +∇T
u′DKL(pu||pu′)

∣∣∣
u′=u
· v + 1

2v
T

(
∇2
u′u′DKL(pu||pu′)

∣∣∣
u′=u

)
v

= DKL(pu||pu) +∇T
u′DKL(pu||pu′)

∣∣∣
u′=u
· v + 1

2v
TFv

The first two terms are zero (see Theorem 3.2.2), which allows us to equivalently state the
steepest descent step above as (see Amari and Nagaoka 2007):

∆v = arg min
v
∇f(u)Tv + 1

2v
T

(
∇2
u′u′DKL(pu||pu′)

∣∣∣
u′=u

)
v (3.2.12)
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This form is an exact fit to the formalism developed in Theorem 3.2.1. Thus, one can recover
the NGD update step by optimizing the following LQR:

min
ũ

aTN x̃N + 1
2 x̃

T
NQN x̃N +

N−1∑
i=0

(1
2 x̃

T
i Qix̃i + 1

2ũ
T
i Riũi + ũTi Mix̃i

)
subject to x̃i+1 = Aix̃i +Biũi

where Ai = ∇T
xi
fki , Bi = ∇T

ui
fki

given x̃0 = 0

(3.2.13)

where

QN = ∇2
x′N
DKL(pxN

||px′N )
∣∣∣
x′N =xN

; aN = ∇xN
J(uk),

Qi = ∇2
xixi

Hi ; Ri = ∇2
uiui

Hi ; Mi = ∇2
uixi

Hi

and with Hi = fi(xk,uk)Tpi simply here since the KL-divergence has a direct dependency
only over xN , the final state of the dynamic system that is a representation of the
distribution we are trying to model.

The solution can be recovered via Riccati equation directly with (3.2.6) and (3.2.8).
It is worth noticing that the solution is obtained without retrieving the Fisher’s in-
formation matrix; indeed one only need to recover the Hessian of the KL divergence
with respect to the final state (much simpler than recovering the Hessian with respect to
the whole system parameters) before applying the Riccati equation to get the gain matrixK.

Another advantage of the method is that we do not need to invert the Fisher to recover
the NGD update, but instead, we perform N − 1 matrix inversion of the quantity
(Ri + BT

i Ki+1B). When the dynamic system is a NN and with nl parameters per layer
(the total number of parameters is n = ∑

l nl), this means we must invert N − 1 matrices of
size nl × nl instead of inverting the Fisher of size n× n.

3.2.4 Equivalence with Newton’s method
As mention earlier, the motivation for this thesis came from the realization that the
connection between the use of Newton’s method for OCP optimization and LQR formalism
generalizes to many steepest descent problems. For completeness, we develop this equiva-
lence (originally shown in Bertsekas 2016; Dunn and Bertsekas 1989; De O. Pantoja and
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Mayne 1989) below.

Newton’s method can be easily stated as a steepest descent problem by optimizing the
second-order Taylor’s approximation of our function around the current parameters (uk):

J(u) ≈ Jk +∇T
uJ

k(u− uk) + 1
2(u− uk)T∇2

uJ
k(u− uk)

= Jk +∇T
uJ

k(u− uk) + 1
2(u− uk)TH(u− uk)

, (3.2.14)

where we used H to denote the Hessian. If H is positive semi-definite, then we are facing
a convex problem and (3.2.14) minimum can be obtained by setting the derivative to 0. We
get:

0 = ∂

∂u

(
Jk +∇T

uJ
k(u− uk) + 1

2(u− uk)TH(u− uk)
)∣∣∣
u=u∗

= ∇T
uJ

k +H(u∗ − uk)

=⇒ u∗ = −H−1∇T
uJ

k

.

Thus, to recover the Newton’s update, we can solve the following steepest descent problem:

∆u = arg min
u
∇T
uJ

k(u− uk) + 1
2(u− uk)TH(u− uk) (3.2.15)

If we are trying to optimize a NN, the equivalence with LQR problems developed in 2.3
allows us to express (3.2.15) as :

min
ũ

aTN x̃N + 1
2 x̃

T
NQN x̃N +

N−1∑
i=0

(1
2 x̃

T
i Qix̃i + 1

2ũ
T
i Riũi + ũTMx̃

)
subject to x̃i+1 = Aix̃t +Biũi

where Ai = ∇T
xi
fki , Bi = ∇T

ui
fki

given x̃0 = 0

, (3.2.16)

where
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QN = ∇2
xN
J(uk) ; aN = ∇xN

J(uk),

Qi = ∇2
xixi

Hi ; Ri = ∇2
uiui

Hi ; Mi = ∇2
uixi

Hi

Hi = fi(xk,uk)Tpi .

The above is a problem we can solve via the Riccati equation (see section 3.2.2).

3.3 Experimental validation
To validate the theory developed in the previous section, we set up a simple experiment:
a NN trained with SGD and NGD, via the LQR algorithm, for one epoch. At every time
step, before updating, we measured the cosine similarity between the update proposed by
the LQR algorithm and the one obtained by plain automatic differentiation.
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Figure 3.1. top: A NN composed of 3 convolution layers followed by 2 dense layers trained
on MNIST database with SGD (5 examples per minibatch) but implemented with the LQR
approach. left: Accuracy over one epoch of training. center: Loss over one epoch. right:
The cosine similarity, measured at every step, between the gradients calculated via the LQR
approach and by traditional automatic differentiation. bottom: Same as above, but for
NGD.

As we can see in figure 3.1, the cosine similarity between the two schemes always remains
close to 1, up to a factor of 10−5, meaning they are pointing in the same direction. The very
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small difference measured between the updates can thus safely be attributed to numerical
precision.

Yet, the results presented here are mostly theoretical by now, as we are still lacking an efficient
implementation that could justify a wide deployment of this approach. Those limitations
will be discussed further in the conclusion, and we will touch upon possible improvement
directions in chapter 5. But first, we will turn our attention toward a question that arose
quickly in the development of our results: could the equivalence be extended to infinite
horizon problems?
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Chapter 4

Extension to the Infinite Horizon Case

The previous developments were made with the discrete horizon setting in mind. Yet,
Linear Quadratic Regulation problems are also well-defined and understood in the infinite
horizon setting, and we would like to extend the equivalence developed in the finite setting
to this problem family as well.

In the deep learning setting, we can think of the DEQ (2.4.1) as an example of an infinite
horizon discrete problem. The implicit block (usually made of multiple individual layers)
can be thought of as the sole layer repeated indefinitely until a fixed point is reached. The
loss is then usually taken at this fixed point.

Beginning with the equivalent LQR we have for steepest descent in finite horizon setting,
we will try to manipulate the obtained solution to make it compatible with the LQR
formulation for infinite horizon problems.

One benefit that arises from such a correspondence is that the optimal solution of a discrete
LQR problem with infinite horizon is obtained by solving the associated DARE problem.
Fortunately for us, the DARE is a well-studied problem for which a variety of powerful
solvers are available.

4.1 Problem Statement

The extension of the equivalence developed in (3.2.2) to the infinite-horizon setting leads to
an OCP in which the fixed point xj is reached after j iterations of the dynamic system.



min
ũ
∇T
xN
J(uk)× x̃N + g(x̃2,ũ2)

where N →∞

subject to x̃i+1 = Ax̃i +Bũi if i ≥ j

subject to x̃i+1 = Aix̃i +Biũi if i < j

where A = ∇T
xf(xj,uk), B = ∇T

uf(xj,uk)

where Ai = ∇T
xf(xi,uk), Bi = ∇T

uf(xi,uk)

given x̃0 = 0

, (4.1.1)

where we used the notation g(x̃2,ũ2) to denote the quadratic term in the LQR objective.
Note that the above system is equivalent to a linear OCP with transition layers having
frozen weights u across all layers. Moreover, the linear transition layers become static after
reaching the fixed point (i.e. Ai and Bi stabilize).

Just as it is the case for a NN with frozen weights, the total gradient over u is given by the
sums of the gradients recovered at each layer. This means that if the optimal solution to the
above problem is ũ∗i , then the update over the frozen weights uk must be:

∆uk =
N→∞∑
i

ũ∗i . (4.1.2)

We should not expect that ũi → 0 as N → ∞, thus the infinite summation above is
obviously divergent.

To overcome that problem, we should not worry about the total gradient value, but instead
its direction. In that case, the overall direction of the update stabilizes only if the linear
system in (4.1.1) obtained after reaching the fixed point also leads to a fixed point. That
is, the simplified dynamic system denoted by x̃i+1 = Ax̃i +Bũi must reach a fixed point,
that we can denote by the pair (x̃g, ũg).

We can convince ourselves that this will always be the case by using some notions from
dynamical system theory. It is known that to have a fixed point, the dynamic system space
must be contractive (i.e. spectral radius smaller than one) in the vicinity of the fixed point
(see section 2.2 in Nayfeh and Balachandran 1995). This means that locally around the
fixed point, the linearization of the dynamic system must also be contractive. Thus, since
Ax̃i +Bũi is a linearization around a fixed point of our system, it itself must have a fixed
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point (see proposition 1, Gilbert 1992).

Now, if the linearized system has reached its fixed point after j′ iterations, then we can
rewrite (4.1.1) equivalently as :

min
ũ
∇T
xN
J(uk)× x̃N + g(x̃2,ũ2)

where N →∞

subject to x̃i+1 = x̃g = Ax̃g +Bũg if i ≥ g = j + j′

subject to x̃i+1 = Ax̃i +Bũi if j + j′ > i ≥ j

subject to x̃i+1 = Aix̃i +Biũi if i < j

where A = ∇T
xf(xj,uk), B = ∇T

uf(xj,uk)

where Ai = ∇T
xf(xi,uk), Bi = ∇T

uf(xi,uk)

given x̃0 = 0

(4.1.3)

Therefore, it means that as N → ∞, we will have a stabilization of the optimal update ũ∗i
around ũ∗g and ∆u → N ũ∗g. That is, the optimal update goes toward infinity, but it does
so by being parallel to ũ∗g.

This means that to recover the optimal direction we only need to solve the system after it
has reached its fixed point and the resulting problem is then equivalent to solving (4.1.1):

min
ũ
∇T
xN
J(uk)× x̃N + g(x̃2,ũ2)

where N →∞

subject to x̃i+1 = Ax̃i +Bũi
where A = ∇T

xf(xj,uk), B = ∇T
uf(xj,uk)

given x̃0 = 0

. (4.1.4)

Keeping the initialization at x̃0 = 0 makes no difference here since we know that the linear
system given by x̃i+1 = Ax̃i +Bũi is contractive and will eventually reach the same fixed
point, x̃g as (4.1.3).

The above OCP is almost a proper LQR in the infinite horizon setting, except that the
terms ∇T

xN
J(uk) × x̃N makes no sense in such a setting. But since x̃i eventually reaches a
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fixed point, we can replace it by ∑N→∞
i=0 ∇T

xj
J(uk) × x̃i. Indeed, as N → ∞, this sum will

tend to N
(
∇T
xj
J(uk)× x̃g

)
and is thus a good proxy to the minimization of ∇T

xN
J(uk)× x̃N .

By construction, we can then state the following equivalence between steepest descent and
LQR problems in a discrete infinite horizon setting:

Theorem 4.1.1. The steepest descent update over the parameters uk for a given example
(input) xk in a discrete infinite horizon OCP (for example, a DEQ) is equivalent to solving
the following LQR problem:

min
ũ

∞∑
i=0

[
∇T
xj
J(uk)× x̃i + g(x̃2

i ,ũ
2
i )
]

subjectto x̃i+1 = Ax̃i +Bũi
where A = ∇T

xf(xj,u), B = ∇T
uf(xj,u)

given x̃0 = 0

, (4.1.5)

where xj is the fixed point reached by the underlying dynamical system and g(x̃2
i ,ũ

2
i ) denotes

the quadratic cost associated with the chosen divergence function used to measure the minimal
steepest descent step.

4.1.1 Riccati’s Solution in Infinite Horizon Setting
Just as for their finite counterpart, an exact solution exists for the problem of the form
(4.1.5) and it can be obtained by solving the discrete algebraic Riccati equation (DARE).
For a problem like (4.1.5), we need to solve the following Riccati system:

K = ATKA+Q− (M +BTKA)T (R+BTKB)−1(M +BTKA) (4.1.6)

λ = a+ATλ− (M +BTKA)T (R+BTKB)−1(BTλ) , (4.1.7)

with

a = ∇xj
J(uk) (4.1.8)

Q = ∇2
xxH ; R = ∇2

uuH ; M = ∇2
uxH (4.1.9)

H = D(xj) + f(xj,uk)Tp , (4.1.10)

where D(·) is the divergence measure we are using to perform the steepest descent. The
adjoint vector is recovered by solving the linear system:
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p = ∇xf(xj,uk) · p+∇xD(xj)

=⇒ p = (I −AT )−1∇xD(xj)
(4.1.11)

The optimal update is then obtained by solving the following dynamic linear system:

(x̃∗, ũ∗) =
(
Ax̃∗ +Bũ∗,−(R+BTKB)−1((M +BTKA)x̃∗ +BTλ)

)
(4.1.12)

4.2 Equivalence with Implicit Differentiation
To our surprise, it appears that the LQR approach in infinite horizon leads to the exact
same algorithm as the one obtained when calculating the gradient via the Implicit Function
Theorem (see section 2.4). We summarize this result in the following theorem:

Theorem 4.2.1. Taking a gradient step in a NN with infinite depth (such as a DEQ) via
the Implicit Function Theorem is equivalent to finding the solution to a discrete-time LQR
with an infinite horizon.

Proof. We know from Theorem 4.1.1 that to retrieve the GD update for a NN with infinite
depth that reaches a fixed point, we need to solve the following LQR problem:

min
ũ

∞∑
i=0

[
∇T
xj
J(uk)× x̃i + ũTi ũi

]
subject to x̃i+1 = Ax̃i +Bũi
where A = ∇T

xf(xj,u), B = ∇T
uf(xj,u)

given x̃0 = 0

(4.2.1)

Leveraging Riccati’s equation (4.1.6), we need to solve a matrix K that satisfies:

K = ATKA− (BTKA)T (I +BTKB)−1(BTKA)

to find the optimal update. But, the above problem is in fact a trivial case, for which the
obvious solution is K = 0. The optimal update is therefore given by (4.1.12):

ũ∗ = −BTλ
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With λ obtained by solving the linear dynamic system:

λ = a+ATλ = ∇xj
J(uk) +∇xf(xj,uk)λ

Or equivalently:

0 = (∇xf(xj,uk)− I)λ+∇xj
J(uk)

=⇒ λ = −(∇xf(xj,uk)− I)−1∇xj
J(uk)

And thus, the parameters update can be rewritten as:

ũ∗ = ∇uf(xj,u)(∇xf(xj,uk)− I)−1∇xj
J(uk)

Remembering that the matrix of gradients is the transpose of the Jacobian, we can recognize
that the parameter update recovered by solving the LQR is the same one as when we retrieve
the gradient via the Implicit Function Theorem (2.4.7) �

Although this result does not improve or lead to a new approach to recovering the gradient,
it provides a novel view on the training process behind the optimization of NN with infinite
depth.

4.3 Cyclic Solution
So far, we have treated the implicit block of layers involved in the transformation f(x,u) as
a whole. However, in practice, this transformation is usually made up of individual layers.
If the implicit block is composed of N layers, we can rewrite f(x,u) as:

f(x,u) = fN(fN−1(...(f2(f1(x,u)))))

Taking into account this decomposition, we can recast the LQR problem (4.1.5) as:

min
ũ

∞∑
i=0

N∑
n=1

[
∇T
xj
J(uk)× x̃in + g((x̃in)2,(ũin)2)

]
subject to x̃in+1 = Anx̃

i
n +Bnũ

i
x

with x̃iN+1 = x̃i+1
0

where An = ∇T
xn
fn(xjn,ukn), Bn = ∇T

un
fn(xjn,ukn)

given x̃0
0 = 0

, (4.3.1)
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where xjn denotes the fixed point inside the layer fn. Note that we moved the iteration
number i to a superscript to make room for the needed additional index, n, denoting the
layer. Overall, (4.3.1) denotes the exact same system as the one in (4.1.5); we simply
exposed here the underlying structure of the transformation f(x,u) that is repeated infinitely.

Nevertheless, a problem with a form such as (4.3.1) is known as a cyclic LQR and the solution
for such problem can be obtained by solving the cyclic equations system over Ki:

KN−1 = AT
NKNAN +QN − (MN +BT

NKNAN)T (RN +BT
NKNBN)−1(MN +BT

NKNAN)
...

K1 = AT
2K2A2 +Q2 − (M2 +BT

2 K2A2)T (R2 +BT
2 K2B2)−1(M2 +BT

2 K2A2)

KN = AT
1K1A1 +Q1 − (M1 +BT

1 K1A1)T (R1 +BT
1 K1B1)−1(M1 +BT

1 K1A1)
(4.3.2)

The same cyclic structure arises as well for the λi:

λN−1 = a+AT
NλN − (MN +BT

NKNAN)T (RN +BT
NKNBN)−1(BT

NλN)
...

λ1 = a+AT
2λ2 − (M2 +BT

2 K2A2)T (R2 +BT
2 K2B2)−1(BT

2 λ2)

λN = a+AT
1λ1 − (M1 +BT

1 K1A1)T (R1 +BT
1 K1B1)−1(BT

1 λ1)

, (4.3.3)

and the optimal solution is obtained by bringing solving the following system:

(x̃∗n+1, ũ
∗
n+1) =

(
Anx̃

∗
n +BN ũ

∗
n,−(Rn +BT

nKnBn)−1((Mn +BT
nKnAN)x̃∗n +BT

Nλn)
)

(4.3.4)
Although it may seem that this formulation only complicates things, we will see later that it
allows us to leverage a very useful approximation in the infinite setting. Moreover, we again
benefit from the maturity of the LQR field since cyclic counterparts already exist for most
of the DARE solvers.

4.4 LQR-based Natural Gradient Method for DEQs
To the best of our knowledge, second-order methods have not been deployed for the opti-
mization of infinite depth NN such as DEQ. A possible explanation is the computational and
engineering challenge necessary to recover the second derivative via implicit differentiation.
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What is interesting about the LQR equivalence is that it allows us to follow a simple recipe
to compute the update for second-order methods optimization. As an example, we detail
below the algorithm that arises from the LQR formulation when we want to find the NGD
update for a system such as DEQ, given the implicit block f and the final transformation h
(usually a dense layer followed by a softmax). We assume we have access to a fixed-point
solver, that we denote fx_point_solve, taking as input an initial value and a mapping.
The solver can simply be the repeated application of the implicit block until convergence
or leverage an acceleration scheme such as Anderson iteration (Anderson 1965). We also
assume we have access to a DARE solver; for a variety of such see Bini et al. 2011.

Algorithm 1 One epoch of training with natural gradient descent over an implicit model
procedure Implicit-NGD(f, x0)

for xk0 ∈ D do
xj ← fx_point_solve(f, xk0)
A← ∇xf(xj)
B ← ∇uf(uk)
p← fx_point_solve(ATp+∇xDKL(h(xj)||h(x′))

∣∣∣
x′=xj

, p = 0)
. p is the adjoint

H(x′,u′)← DKL(h(xj)||h(x′)) + f(x′, u′)Tp
Q← ∇xxH(xj,uk)
R← ∇uuH(xj,uk)
Q← ∇uxH(xj,uk)
a← ∇xj

J(uk)
K ← DARE(a,A,B,Q,R,M )
λ← fx_point_solve(a+ATλ− (M +BTKA)T (R+BTKB)−1BTλ, λ = a)
uk+1 ← fx_point_solve(−(R+BTKB)−1((M +BTKA)x̃+BTλ), u = uk)

. x̃ updated simultaneously to x̃← Ax̃+Bu
end for
return uN

end procedure

We tried this algorithm ourselves and noticed that the number of iteration needed to converge
was smaller on our toy network trained over MNIST, as showcased in figure 4.1. Sadly, we
encountered stability issues and were not able to scale this algorithm to larger DEQs.
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Figure 4.1. Zoom on the accuracy achieved (first 2500 iterations) during the training of
a toy DEQ (a Resnet block with 12 inner channels) over MNIST with the NGD algorithm
arising from the LQR approach. NGD starts to converge in less iteration, but it is 10x slower
than GD.

49



Chapter 5

Computational Perspective

Computationally speaking, when thinking about second-order method optimizers, the
approach described above already has a slight advantage over the direct implementation.
Indeed, the difficulties with those methods come from the fact that we need to invert a
matrix (Hessian for Newton’s method, the Fisher for NGD); a procedure that typically
requires O(m2.3) iterations for a matrix of size m ×m when solved with an algorithm such
as conjugate gradients (Hestenes and Stiefel 1952). This cost often proves prohibitive with
typical architectures in DL, the dimension of the parameters being simply too big.

Fortunately for us, a benefit of building the equivalent LQR is to reduce (slightly) the
computation complexity. To see it, let us consider that we want to perform NGD to
optimize a NN. Then, as seen with the system of equations shown in (3.2.6) and (4.3.2),
the inversion of the Fisher matrix (of size m×m, m being the total number of parameters)
is replaced by the inversion of N matrices scaling with the number of parameters per
layer (N being the number of layers). Thus, we instead need to invert the N matrices
(R+BTKB)−1 of size m1,m2, ...,mN ; an operation that has a computation complexity of
the form O(m2.3

1 + m2.3
2 + ... + m2.3

N ). Knowing that m = m1 + m2 + ... + mN , the second
procedure has thus an advantage.

Yet, this gain is not enough to justify the use of the LQR method since the number of
parameters inside an individual layer can still get pretty big with modern NN architectures.
To alleviate, this problem we now develop a useful approach when facing a NN composed of
layers with activation functions that have at most a linear dependency over their respective
layer parameters.



5.1 Leveraging Neumann Series

Let consider the term we need to invert when using the LQR approach to make a steepest
descent step:

(R̄i +BT
i KiB)−1 , (5.1.1)

where we have R̄i = Ri + δiI; that is a penalty term δi is added over the diagonal of
the matrix Ri. This decision corresponds to the addition of a damping term and can be
justified as a trust-region method. We will discuss this term in more detail later, so let us
just accept it as is for now.

Now, let us turn our attention to Ri. When the divergence measure is only taken over the
final state, this quantity is the Hessian of the transition function (a layer) with respect to
its parameters. But, typical layers inside a NN are composed of a linear function followed
by an activation (σ), that we can usually write as:

Ri = ∇uiuifi = ∇uiui σ(Wxi + bi) (5.1.2)

If we were not to use any activation function,Ri would be 0. What is more interesting though
is that the most popular activation function, the Rectified Linear Unit (ReLU) (Jarrett et al.
2009; Glorot et al. 2011), does not introduce a co-dependency in the activation between the
parameters of the current layer. Indeed, the ReLU pushes the negative terms to 0 and leaves
unmodified the others. For this particular case, we have:

Ri = ∇uiui ReLu(Wxi + bi) = 0 . (5.1.3)

This means that for such networks, we are seeking to invert matrices of the form:

(R̄i +BT
i KiBi)−1 = (Iδi

+ K̄i)−1

= (δi(I + 1
δi
K̄i)−1

= 1
δi

+ (I + 1
δi
K̄i)−1

, (5.1.4)
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where we abbreviated BT
i KiBi by K̄i. If the magnitude of the biggest eigenvalue of 1

δi
K̄i

is smaller than one, we can use Neumann’s series to approximate this inverse, knowing that
it would be convergent (e.g., see Neumann 1877; Suzuki 1976):

(I + 1
δi
K̄i)−1 =

∞∑
j=0

(− 1
δi
K̄i)j

≈ I − 1
δi
K̄i + 1

δ2
i

K̄2
i −

1
δ3
i

K̄3
i + ...

. (5.1.5)

The truncated series is often a pretty good approximation, as long as the spectral radius of
1
δi
K̄ remains smaller than one. What we now propose is to use the penalty δi as an adaptive

layer parameter that will ensure that it is the case. This idea is in line with the use of
a damping factor to rescale a linear system before solving it with Chebyshev iteration, a
special case of modified Richardson iteration (e.g. see Golub and Varga 2007)

We will show that this is a valid approach, but first, we need to show that the matrices Ki

(and by extension K̄i) are always symmetric:

Theorem 5.1.1. The gain matrices Ki (or K in the infinite horizon setting) given by
(3.2.6) (respectively (4.3.2)) are symmetric matrices, and therefore the matrices BT

i KiBi

(respectively BTKB) are also symmetric.

Proof. The proof follows from the fact that the matricesKi are a composition (via addition
and subtraction) of symmetric matrices.

By Schwartz’s Theorem (see Rudin 1976) we know that the partial second-order derivatives
matrices QN ,Qi, Mi and Ri are symmetric matrices.

Moreover, if Ki+1 is symmetric, then AT
i Ki+1Ai is also symmetric because:

(AT
i Ki+1Ai)T = AT

i K
T
i+1Ai = AT

i Ki+1Ai

The same argument holds forBT
i Ki+1Bi, and for (Mi+BT

i Ki+1Ai)T (...)(Mi+BT
i Ki+1Ai).

Finally, remembering that the inverse of a symmetric matrix is also symmetric, we have that
Ki,

Ki = AT
i Ki+1Ai +Qi − (AT

i Ki+1Bi +MT
i )(Ri +BT

i Ki+1Bi)−1(Mi +BT
i Ki+1Ai)
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is symmetric if Ki+1 is also symmetric. This will always be the case as the terminal gain
matrix, KN = QN is symmetric. �

We can now use the fact that K̄i is symmetric to show that we can indeed use the penalty
term δi to ensure that the new matrix 1

δi
K̄i will have a spectral radius smaller than one.

Indeed, the symmetry of K̄i implies that its eigenvalues are real. It also means that its
singular values, obtained via Singular Values Decomposition (SVD), are the absolute values
of the eigenvalues (see corollary C.5.2 in Lebanon 2012). That is,

K̄i = ŪiΣ̄iV̄
−1
i , (5.1.6)

where Σ̄i is a diagonal matrix for which the entries are the magnitude of the eigenvalues
of K̄i. Therefore, if we denote the largest absolute singular value of K̄i by λm and take
δi > |λm|, then we will have that the SVD of 1

δi
K̄i can be written as:

1
δi
K̄i = Ūi

( 1
δi

Σ̄i

)
V̄ −1
i , (5.1.7)

which is an expression that we can use to deduce that the magnitudes of the eigenvalues of
1
δi
K̄i would be smaller than one and therefore the Neumann’s series approximation will be

convergent.

5.1.1 An Algorithm without Matrix Inversion

The proposed approach above means that we now need to compute the spectral radius
(equivalent to its maximum absolute eigenvalues) of the matrix K̄i. Although such
calculation seems unusual in DL, it is not without precedent. Yoshida and Miyato 2017 for
example regularize the weight matrix of the NN they trained by their spectral radius and
claim better generalizability from it. Using the same strategy, Miyato et al. 2018 showed
that it could be used to stabilize the training of the discriminator of a generative adversarial
network. It is worth noting that both works use the power iteration method to estimate the
spectral radius of their matrix of interest, a method that is relatively quick computation-wise.

For us, this means that we can leverage a second-order method optimization method to
train a NN that has ReLu activation units without explicitly inverting a matrix. Moreover,
the trick can be applied in the finite horizon setting and in the infinite horizon one
(using the cyclic formulation for the latter).
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5.1.2 Parallel with Damping Parameter
Applying the adaptive penalty δi may seem arbitrary at first glance, but if we cast it as
a damping parameter over the weights update, it suddenly makes much more sense. The
use of a damping parameter is advocated as critical by Martens 2016 and Martens 2020
for second-order optimization of NN because the direction that such algorithms propose in
parameter space is not aligned with the distribution space. The resulting path will therefore
more often than not veers away from the target pointed to by the second-order method.

To alleviate this problem, we need to dampen the size of the updates. One strategy to do so
is via trust-region methods, i.e. by penalizing the update size made in some directions. In
fact, that is exactly what the penalty term δi does; its introduction is equivalent to adding
the following term to the cost of the LQR (3.2.5):

N−1∑
i=0
ũTi δiũi =

N−1∑
i=0

(ui − uki )T δi(ui − uki ) .

Experimentally, we also used a parameter δ to stabilize the training for second-order
methods implemented as a LQR without Neumann’s series trick, in the same fashion as
above. However, the term was kept constant across all layers and fine-tuned manually.

Setting δi via the spectral radius of K̄i allowed us to dampen adaptively the updates
and offer superior performance than without its use. This finding is summarized in figure
5.1. As of now, we do not have a better explanation for this behavior than the intuition
discussed above, and it will require further investigation from our side to quantify correctly
the impact of δi on the training.
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Figure 5.1. top: Accuracy curves of a training experiment, the same Convnet as in figure
3.1 (5 layers deep) trained on MNIST with the LQR approach equivalent to NGD and a
learning rate set to α = 0.1. left: In addition to the learning rate, a damping parameter δ
has to be fine-tuned for the training to be stable without Neumann’s series trick. right: On
the opposite, implementing Neumann’s series trick also has the added benefit of adding a
layer adaptive damping term that stabilizes the training. bottom: Same as above, but for
a learning rate set to α = 0.01.
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Chapter 6

Conclusion

Overall, the most important contribution of this thesis is to provide a template to express
steepest descent under various divergence, both in the finite and infinite horizon cases, as
a special LQR problem. Equipped with this new tool, a multitude of possible paths can
now be explored. Most of our experimentation within our framework has been through
second-order methods such as NGD and Newton’s, but those only represent specific cases.
At the moment, two major challenges are preventing us to apply our method at scale: the
lack of full matrix-free implementation and stability issues (for which we may have a partial
solution).

Matrix-Free Implementation: One of the major advantage of automatic differentiation
is the fact that the method is matrix free (see Baydin et al. 2017). Jacobian matrices are
never fully evaluated nor stored, and the computation time is much quicker. Unfortunately,
the framework we have described above did not completely preserve this property, in both
the finite and the infinite settings. This also means that the memory cost incurred by our
algorithm is bigger than for standard backpropagation.

For the finite horizon described in chapter 3, nothing prevents us from formulating the
algorithm as matrix-free; all Jacobian and Hessian matrices can be derived as matrix-vector
product (MVP) functions. The problem arises from the potential combinatorial explosion
in the expression of the matrices Ki in (3.2.6). Hence, if we were to evaluate K0 · v for
a NN with N layers, we would have to evaluate 4N−1 times the product KN · v, and then
to evaluate 4N−2 times the product KN−1 · v, etc. As such, the total number of MVP
evaluations quickly becomes intractable when increasing the number of layers.

To avoid this problem, we currently compute and store the matrices Ki. As those matrices
are proportional to the size of the representation vector of their respective layer (ni), they



each require O(ni) MVP evaluations and a memory space that scale with O(n2
i ).

It should be noted that we could be strategic when designing the NN architecture that we
want to optimize to mitigate this issue. In practice, only storing the Ki matrices every 2 or
3 layers would not incur too much slow down. Knowing this, one could include a features
bottleneck in their NN design and only store/compute the Ki for those layers.

The issue is different in the infinite horizon setting, presented in chapter 4, since typical
fast DARE solvers rely on doubling algorithms and therefore perform multiple matrix
multiplications (see Bini et al. 2011). There is thus no gain in keeping everything as an
MVP, and for this setting, we currently compute and store all Jacobians and Hessians when
performing steepest descent (the matrices A, B, Q, R, andM ). At least, the implicit block
in typical DEQ usually does not consist of many layers, so it is still feasible to do it that way.

Stability: The observed stability that occurs during training with the use of the damping
parameter δi introduced in chapter 5 came as a surprise to us; we expected a bit of tuning
to be necessary. This penalty term directly reduces the spectral radius of the gain matrices
Ki, but does it implicitly impact the spectral radius of the weight matrices? We plan to
investigate further to see if it is the case as it could allow us to understand the stable
behavior through the lens of spectral norm regularization (see Yoshida and Miyato 2017
and Miyato et al. 2018).

Also, as already mentioned, our formulation allowed us to train DEQ networks under a
different divergence measure than the Euclidean norm; a formulation for which popular
second-order methods are a specific case. Yet trying it with NGD, we did encounter stability
issues during and extensive hyperparameter tuning was required. We hope that bringing the
Neumann series trick in the infinite horizon setting will bring the same advantages noticed
in the finite setting while allowing faster computation simultaneously.

6.1 Future Work
So far, we have limited our work to the field of discrete-time problems but we do believe it
is worth exploring if the same connection can be made in the continuous-time setting. As
a starting point, we could cast the optimization objective with mirror descent; a technique
that was originally motivated in continuous time (see Nemirovsky and Yudi 1983). The
solution of the mirror descent objective in continuous time under various divergence leads
to continuous-time descent dynamics to follow to converge to an optimum (e.g. Krichene
et al. 2015).
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Moreover, the PMP (Pontriagin et al. 1962) was also first developed for control problems in
continuous time; the optimality principle still allows us to design an objective that decouples
the controls at every time by handing us a function that must be optimal at every time
step. That is, the optimal trajectory will consist of the instantaneous optimal control of the
Hamiltonian put end-to-end. We thus believe we will be able to cast the mirror descent
objective as a continuous LQR (see Miquel 2020 for more details on the PMP and LQR in
a continuous setting).

This would imply that a Continuous-Time Algebraic Riccati Equation (CARE) solver could
be used to perform a mirror descent step. The discretization of the optimal trajectory
obtained would then provide updates for the parameters of a given NN that preserves the
convergence guarantee obtained via mirror descent. It could also be used directly to provide
updates to a neural ODEs network (Chen et al. 2018). Again, since LQR problems have
long been studied and since it exists efficient solver for them, we can hope to leverage those
tools to obtain performance gain during the training of a neural net.

Another possible line of work stems from the question: does casting the steepest descent
step as a LQR gives us a new tool to analyze the behavior of optimization technique?
After all, LQR problems come with great convergence guarantees/conditions and analytical
solutions. We do believe our framework opens a new door for the analysis of optimization
algorithms, especially when a divergence term other than Euclidean distance is brought in
to quantify the size of the updates.

Finally, we hope that establishing an equivalence between a steepest descent and LQR will
now enable the design of new efficient optimization algorithms while providing new tools to
study their theoretical properties.
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Appendix A

Steepest descent – Minimization Without
Constraints

Theorem A.0.1. The steepest descent direction can be obtained via the following minimiza-
tion problem.

v∗ = α
[

argmin
v
{∇f(x)Tv + 1

2‖v‖
2}
]

(A.0.1)

Proof. First, let us suppose that w∗ is the solution to normalized steepest descent problem,
that is :

w∗ = arg min
v
∇f(x)Tv s.t. ||v|| = 1

Now, in (A.0.1), we can reexpress v as v = tw, t ≥ 0 being a scalar and with w = v/‖v‖
With this substitution, we are facing a minimization problem over two variables, that we
can try to optimize successively.
By first taking w as fixed and minimizing for t we have:

t̂ = arg min
t
{t∇f(x)Tw + t2

2 }

This is a quadratic problem for which the minimum can be obtained by putting the derivative
to zero:

0 = t+∇f(x)Tw

=⇒ t = −∇f(x)Tw



This in turn implies that t̂ = 0 if we choose w s.t. ∇f(x)Tw > 0 since we have that t ≥ 0.
And therefore, to minimize t∇f(x)Tw + t2

2 we must pick a w s.t. ∇f(x)Tw ≤ 0 and
t̂ = −∇f(x)Tw

Turning our attention toward the minimization over w we have:

ŵ = arg min
w,‖w‖=1

{t∇f(x)Tw + t2

2 }

= arg min
w,‖w‖=1

{t∇f(x)Tw}

= arg min
w,‖w‖=1

{−(∇f(x)Tw)2}

= arg max
w,‖w‖=1

{|∇f(x)Tw|}

A problem for which we already know the solutions, that is ŵ = ±w∗ But since we require
∇f(x)Tw ≤ 0, we get that ŵ = w∗.

Therefore, we have that:

arg min
v
{∇f(x)Tv + 1

2‖v‖
2} = t̂ŵ

= −∇f(x)T ŵŵ

= −∇f(x)Tw∗w∗

= αw∗

with α = −∇f(x)Tw∗ ≥ 0

�
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Appendix B

Riccati’s Equation – Solution with a Linear
Term in the Final Cost

Since an exhaustive development of the discrete Riccati equations for the case of an LQR
with a linear term in final cost was hard to come by, we provide one below.

We seek the Riccati equation for the following problem, which is the problem we encounter
when transforming the steepest descent step into a LQR:

min
u

aNxN + xTNQNxN
N−1∑
i=0

[1
2x

T
i Qxi + 1

2u
T
i Rui + uTi Mxi

]
subject to xi+1 = Aixi +Biui

given x0

With the Hamiltonian functions given by :

Hi(xi,ui) = xTi Qxi + 1
2u

T
i Rui + uTi Mxi + pi+1

(
Aixi +Biui)

HN(xN) = aNxN + xTNQNxN

The adjoints are defined by pi = ∇xi
Hi, and in particular when evaluated at the optimal

pair (x∗i ,u∗i ):

pi = ∇xi
Hi(x∗i ,u∗i )

= Qix
∗
i +MT

i u
∗
i +AT

i p
∗
i+1

(B.0.1)

They are also chosen such that they satisfy ∇ui
Hi = 0, so that:



0 = ∇ui
Hi(x∗i ,u∗i )

= Riu
∗
i +Mix

∗
i +BT

i p
∗
i+1

=⇒ u∗i = −R−1
i (Mix

∗
i +BT

i p
∗
i+1)

We now want to prove by induction that we can rewrite p∗i as:

p∗i = Kix
∗
i + λi (B.0.2)

∀i = 0,...,N − 1 starting with i = N − 1 with p∗N = QNx
∗
N + aN

Supposing it holds for i+ 1, we have that:

u∗i = −R−1
i (Mix

∗
i +BT

i Ki+1x
∗
i+1 +BT

i λi+1

= −R−1
i (Mix

∗
i +BT

i Ki+1(Aix
∗
i +Biu

∗
i ) +BT

i λi+1

Riu
∗
i +BT

i Ki+1Biu
∗
i = −(Mix

∗
i +BT

i Ki+1Aix
∗
i +BT

i λi+1)

u∗i = −(Ri +BT
i Ki+1Bi)−1((Mi +BT

i Ki+1Ai)x∗i +BT
i λi+1)

(B.0.3)

Using this result, we can rewrite x∗i+1 as :

x∗i+1 = Aix
∗
i +Biu

∗
i = Aix

∗
i −Bi(Ri +BT

i Ki+1Bi)−1((Mi +BT
i Ki+1Ai)x∗i +BT

i λi+1)

Multiplying each side by Ki+1 and then adding λi+1 we get from (B.0.2):

p∗i+1 = Ki+1Aix
∗
i −Ki+1Bi(Ri +BT

i Ki+1Bi)−1((Mi +BT
i Ki+1Ai)x∗i +BT

i λi+1) + λi+1

Now multiplying each side by AT
i :

AT
i p
∗
i+1 = AT

i Ki+1Aix
∗
i−AT

i Ki+1Bi(Ri+BT
i Ki+1Bi)−1((Mi+BT

i Ki+1Ai)x∗i+BT
i λi+1)+AT

i λi+1

And finally adding (Qix
∗
i +MT

i u
∗
i ) on each side, replacing u∗i its expression in (B.0.3):
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p∗i = Qix
∗
i +MT

i u
∗
i +AT

i p
∗
i+1 from (B.0.1)

=
(
AT
i Ki+1Ai +Qi − (AT

i Ki+1Bi +MT
i )(Ri +BT

i Ki+1Bi)−1(Mi +BT
i Ki+1Ai)

)
x∗i

+AT
i λi+1 − (AT

i Ki+1Bi +MT
i )(Ri +BT

i Ki+1Bi)−1BT
i λi+1

Completing the induction proof while also giving convenient expressions for Ki and λi:

Ki = AT
i Ki+1Ai +Qi − (AT

i Ki+1Bi +MT
i )(Ri +BT

i Ki+1Bi)−1(Mi +BT
i Ki+1Ai)

(B.0.4)

λi = AT
i λi+1 − (AT

i Ki+1Bi +MT
i )(Ri +BT

i Ki+1Bi)−1BT
i λi+1 (B.0.5)

The optimal trajectory can then be recovered from the system dynamics and from (B.0.3):

u∗0 = −(R0 +BT
0 K1B0)−1BT

0 λ1 (B.0.6)

x∗i+1 = Aix
∗
i +Biu

∗
i (B.0.7)

u∗i = (Ri +BT
i Ki+1Bi)−1((BT

i Ki+1Ai)x∗i +BT
i λi+1) (B.0.8)
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