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Résumé

Cette thèse porte sur la prévision de la demande des expéditeurs et des offres de capac-
ité des transporteurs pour la planification opérationnelle des systèmes ‘Many-to-One-to-
Many’ (M1M). Un tel système agit comme un décideur intermédiaire entre les expéditeurs
et les transporteurs en coordonnant le transport des marchandises des expéditeurs aux des-
tinataires en utilisant les capacités offertes par les transporteurs. Le décideur prend ses déci-
sions dans un horizon de planification opérationnelle, en optimisant ces décisions en tenant
compte de l’incertitude sur les périodes futures. Pour accompagner les décisions du décideur,
il est essentiel de prédire les nouvelles demandes des expéditeurs et les nouvelles capacités des
transporteurs. Cela conduit à des problèmes de prévision de séries chronologiques à plusieurs
variables et à plusieurs étapes. L’objectif de ce travail est d’analyser l’impact des erreurs de
prévision sur la qualité de la solution pour un problème de planification opérationnelle M1M
donné.

Cette thèse présente d’abord la structure du système M1M, la planification opérationnelle
et les tâches de prévision associées. Nous décrivons la caractérisation des demandes des ex-
péditeurs et des offres des transporteurs ainsi que comment la prévision peut soutenir les
décisions en définissant les informations nécessaires pour le décideur sur l’horizon opéra-
tionnel.

Nous couvrons ensuite l’optimisation de l’affectation charge-transporteur en introduisant
un modèle d’optimisation déterministe et les prévisions utilisées en entrée. En l’absence de
données réelles, nous générons un ensemble de données synthétiques qui est ensuite utilisé
pour estimer les modèles de prévision. L’objectif est de définir quelques modèles de prévision
qui présentent des erreurs afin que nous puissions évaluer leur impact sur la qualité de la
solution pour le problème de planification opérationnelle. Dans ce contexte, nous comparons
plusieurs modèles ARIMA pour prédire les futures demandes et offres. Nous constatons
que les modèles avec des erreurs de prévision relativement faibles peuvent conduire à des
améliorations significatives de la qualité de la solution. Enfin, nous exposons quelques pistes
de recherches futures.

Mots clés : Prévision de demande, séries chronologiques, M1M Systems, planification
opérationnelle.
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Abstract

This thesis is about forecasting new shipper-demand requests and carrier-capacity offers
for operational planning of Many-to-One-to-Many (M1M) systems. Such a system acts as
an intermediary decision-maker between shippers and carriers, coordinating the transporta-
tion of goods from shippers to consignees (shipment recipients) using capacity offered from
carriers. The decision-maker makes the decisions within an operational planning horizon,
optimizing these decisions accounting for uncertainty over future time periods. To support
the decisions, forecasting new shipper-demands and carrier capacities is essential. This leads
to multi-variate multi-step time series forecasting problems. The objective of this work is to
analyze the impact of forecast errors on the solution quality for a given M1M operational
planning optimisation method.

This thesis first presents the M1M system structure, operational planning, and related
forecasting tasks. It explains the characterization of the shipper requests and carrier offers.
We describe how forecasting can support the decisions by defining the needed information
for the decision-maker over the operational horizon.

We then cover the optimization of load-to-carrier assignments introducing a deterministic
formulation and the forecasts used as input. In the absence of real data, we generate a
synthetic data set that is then used for estimating forecasting models. The aim is to define
a few forecasting models that exhibit some errors so that we can assess their impact on
the solution quality for the operational planning problem. In this context, we compare
several ARIMA models to predict future requests and offers. We find that the models with
relatively low forecast errors can lead to significant improvements in solution quality. Finally,
we outline a few directions for future research.

Keywords: Freight Demand Forecasting, Time Series Models, M1M Systems, Opera-
tional Planning.
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Chapter 1

Introduction

Freight transportation is perhaps one of the most vital industries, mainly in advanced coun-
tries. The importance of transport systems has been particularly visible during the Covid-19
pandemic. For example, consumers and transport service providers use online interactions
to a larger extent than before. In turn, the performance of freight transport systems affects
all actors involved in sending and receiving shipments. These actors often have conflicting
objectives. Shippers and shipment recipients want to pay lower transportation costs. Carri-
ers aim to decrease operational costs, increase revenue and their service quality. Moreover,
society as a whole can benefit from efficient systems with a lower environmental footprint.

Integrating shipper-demand requests and carrier-capacity offers in the decision-making
process could optimize operations and achieve a balanced set of stakeholders’ goals. In
that matter, a multi-layer M1M decision-making structure has been introduced for logistics
service providers (Guo et al., 2021; Crainic et al., 2021). The idea is an integrated decision-
making process consisting of several highly coordinated sub-processes to satisfy the overall
operational planning goals. The sub-processes consist of shippers’ demand planning, car-
riers’ capacity planning as well as consolidation and economic planning. In this work, we
focus on the decision-making problem at the so-called Intelligent Decision Support Platform
(IDSP) level. Henceforth we refer to IDSP as the decision-maker. In the introduced struc-
ture, shipper-demand requests and carrier-capacity offers occur in different locations and
times. By consolidating shipments from different shippers into vehicles and by synchroniz-
ing operations, the decision-maker aims to optimize the selection of shipper-demand requests,
carrier-capacity offers, load-to-carrier assignments, shipment itineraries, and carrier routes
in time and space. Several aspects of this system are uncertain, and forecasting can be used
to reduce this uncertainty.

The purpose of forecasting new shipments and capacities is to support decision-making.
The decision-maker works within different locations and makes its decisions continuously
over time. Forecasting for such a decision-maker is challenging because recorded data by the



system varies over time and space. From the time perspective, we deal with a multivariate
multi-step time series forecasting problem. From the shippers’ side, they make requests for
their shipments per period over the operational horizon. From the carriers’ side, they offer
capacity per period over the operational horizon. The loads and capacities are characterized
by their physical, time, and economic attributes. We create the time series data for each
shipper and carrier based on their past requests and offers.

In this thesis, we use statistical models to predict shipper-demand requests and carrier-
capacity offers for the operational decision-making problem at hand. The aim is to assess
the impact of forecast errors on the solution quality of the optimization problem. For this
purpose, we generate synthetic data for shippers’ demand and carriers’ capacity offer using
autoregressive models. We use the data to train different ARIMA models whose forecasts
are used as input to a deterministic optimization model. The latter is a slight modification
of the single-leg multiperiod model proposed in Crainic et al. (2021). We feed the provided
forecast data to the optimization model by two forecasting models. Based on several problem
instances, we draw the conclusion that the magnitude of the impact on solution quality is
smaller than the magnitude of the forecast errors used as input.

This thesis is structured as follows. In Chapter 2, we introduce operational planning of
M1M systems, and we describe the related forecasting problem. In Chapter 3, we review some
classical time series forecasting models that can be used for our problem. In Chapter 4, we
present the methodology. That is, a formulation of the optimization problem and forecasting
models for shipper-demand requests and carrier-capacity offers over the operational horizon.
We also introduce the data generation process to produce data for forecasting models. In
Chapter 5, we discuss the detail of the evaluation and computational results of our proposed
models. Finally, Chapter 6, presents the conclusion of this thesis and future work.
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Chapter 2

Operational Planning of M1M Systems

In this chapter, we describe the M1M system that aims to fulfill efficiency and profitability
stakeholders’ interests in freight transportation. In Section 2.1, we introduce its elements
and how they interact. In Section 2.2, we discuss operational planning: decisions, activities,
and system optimization. We describe a data generation process at the operational level and
forecasting problems related to the M1M system optimization in Section 2.3.

2.1. M1M System
M1M system structure and its interactions are depicted in Figure 2.1. The system of

interest is composed of a business, communication, and decision-making structure (Guo
et al., 2021; Crainic et al., 2021; Taherkhani et al., 2021), comprising three main elements: 1)
shippers 2) carriers and 3) a decision-maker. Shippers, including manufacturers, wholesalers,
distributors, and three and four logistics service providers (3-PLs and 4-PLs), make shipper-
demand requests for transporting their product loads. Carriers, including 3-PLs and 4-PLs
and transportation service providers of diverse modes and types (motor carriers, railroads,
airlines, rivers and maritime carriers), offer capacities for transportation. Consignees, clients,
or customers are the recipients of the products, which could be a distribution center or the
customers who purchased the products. Each shipment starts at a shipper’s location and
must be delivered to a consignee’s location. Large shippers and freight forwarders usually sign
contracts with carriers or 3-PLs and 4-PL to transport their shipments for a long period.
In this case, the shipper-demand requests are typically fixed. On the other hand, some
shippers have relatively small shipper-demand requests, so they do not sign a contract but
use shipping services in the spot market before shipping travel. Carriers give services to both
long-term contract and spot market shippers.

Both shippers and carriers have their concerns; shippers are interested in more efficient
transportation services, including their preferred delivery time and cost-effective services,
which guarantees low investment and safety of their products. Carriers are interested in more



Fig. 2.1. M1M system structure, elements, interactions, and decisions (Guo et al., 2021;
Crainic et al., 2021).

efficient transportation systems, mainly to increase their revenue. In that sense, a decision-
maker, a platform-based intermediary called IDSP, is introduced for the M1M system (Guo
et al., 2021; Crainic et al., 2021). IDSP provides automated planning and optimizes opera-
tions to satisfy the shippers, carriers, and platform’s interests. The decision-maker aims to
optimize load-to-carrier assignments, selection of routes and offers, and shipment itineraries
in time and space.

Figure 2.1 also illustrates the interactions, including data and decision exchanges of
the M1M system. In that regard, from the shippers’ side, product loads in different sizes
and weights should transport loads from many different shippers’ locations to their related
consignees’ locations within their desired delivery time. From the carrier’s side, vehicles with
various capacities carry the loads through different routes.

The M1M system interacts with shippers and carriers to retrieve data needed for the
decision-maker. The decisions are based on provided information from shipper-demand re-
quests and carrier-capacity offers characterized by related operational, time-related, and
economic attributes. Operational attributes are related to the physical aspects of requests
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and offers required for handling shipments. Time attributes of requests and offers are re-
lated to the timeliness of pick-up and delivery operations. Economic attributes are related
to revenue and penalties for IDSP.

IDSP works on one and the same continuous (infinite) time stream. It receives both
time-dependent shipper-demand requests and carrier-capacity offers and responses through
a continuous stream of decisions. In that sense, IDSP receives both sides’ information and
makes its decisions at time steps. The decision-maker may suspend a request or an offer for
the next decision time or make the decisions when receiving requests and offers. The IDSP
decides to accept or reject a request or an offer. At the time of accepting a request, IDSP
decides to assign the product loads to accepted offers’ capacities, the departing vehicles. The
dispatch time of the vehicle is based on the offered services, i.e., on the service departure
and arrival times between a specific origin and destination (OD). If the schedule is not
predefined, IDSP has a choice of dispatching time; it can decide at what decision time the
vehicle should dispatch. If the schedule is predefined, then the decision-maker decides to
dispatch the vehicle at the time of assigning the request to the capacity.

For example, a shipper wants to send product loads (e.g., boxes) with a specified volume
between OD facilities respecting a preferred delivery time. Conversely, carriers offer capac-
ities in different volumes to transport product loads. For the accepted requests and offers,
IDSP looks at both sides’ information to see at what time and what itinerary should decide
to assign the product loads to which capacities based on the volume of both sides and when
the vehicles should be dispatched. If the schedule is predefined when IDSP assigns the loads,
it decides to dispatch the vehicle. Mass industrial producers with signed long-term contracts
usually have fixed schedules from carriers’ side to transport their product loads.

Based on the decisions IDSP takes, different activities occur at the operational level.
To transport a shipment from an origin to a destination, three types of activities could
occur: 1) consolidation operations, 2) transfer operations, and 3) delivery operations. In
consolidation operations, assuming that a given request has been accepted, at first, the
shipment should be picked up from the shipper’s door (initial consolidation), then carried
to the nearest terminal within the area of the shipper. At the terminal, there are different
split and join handling operations (second consolidation); the shipment could transfer or be
classified based on the product. If the shipment is a single product, a box, for instance,
the transfer activities are unload, cross-dock handling then loads to the outgoing vehicle.
For the multi-product shipment, the transfer activities are to reclassify, unload, sort, move,
then load to the outgoing vehicle. There are three possible destinations regarding delivery
operations for outgoing vehicles after departing the terminal: 1) the vehicle could go to the
final destination, which is the consignee’s door, 2) a terminal in the consignee’s area, and 3)
an intermediary terminal to transfer.
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The M1M system may work within any network at the regional, national, continental,
and geographical levels. The system operates between several service zones of a network.
The zones can be urban areas or any geographically relevant area, which contain shippers
and consignees’ facilities. A related terminal may service each zone and be managed or
used by IDSP to perform required activities like sub-contracting warehousing or cross-dock
transfer. The network can be of different structures, and there are many related planning
problems at the strategic, tactical, and operational levels (Crainic and Laporte, 1997). In
the following section, we focus on operational aspects.

2.2. Operational Planning
IDSP receives many shipper-demand requests and carrier-capacity offers and aims to op-

timize its decisions regarding load-to-carrier assignments, shipment itineraries, and carrier
routes. Synchronizing the operations related to handling such requests and offers requires
operational planning, which reduces handling time and operational costs, also provides con-
venient transportation.

In this section, we discuss the three main components of operational planning in the M1M
system (i) time, (ii) requests and offers information, and (iii) the decision-making process.
Regarding the time component, the decision-maker receives time-dependent requests and
offers, then makes its decisions at different points in time. IDSP can make the decisions
when a new request or an offer appears, when a certain number of requests or offers are
received, or make the decisions according to a predefined schedule (once or twice a day, for
instance). Regardless of which form we choose, IDSP works based on discrete time steps at
which decisions are taken at the operational level.

In this work, the time steps of decisions define the IDSP’s schedule length at the oper-
ational level based on when a certain number of requests or offers are received. We work
with a discrete-time sequence of observations, where a decision is taken at a time instance
t, and the subsequent decision will be at time t + 1. It continues with equal time intervals
until the end of time horizon T . Each one of these intervals is called a time period. Hence,
we define the IDSP’s operational planning horizon (OPH) within periods of equal discrete
length t = 1, 2, 3, . . . , T . Figure 2.2 illustrates the operational planning horizon of the M1M
system.

Fig. 2.2. Operational Planning Horizon
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The time-related, operational, and economic attributes of requests and offers provide the
information needed for the decision-maker. In that sense, operational planning is concerned
with “when” and “what” issues (Crainic and Laporte, 1997). For example, when the IDSP
decides to accept or reject a request, or what quantity or volume of loads should the decision-
maker consider for what capacity.

The time-related attributes of the requests and offers related to transportation times
are defined to treat “when” issues in operational planning. In this context, shipper-demand
requests are characterized by:

a) their delivery times,
b) when IDSP should decide to accept or reject the requests, and
c) when the requests are ready to be picked up from shippers’ facilities.

From carriers’ side, the offers are characterized by:
(1) when IDSP should decide to accept or reject the offers,
(2) when vehicles arrive and depart all locations,
(3) when vehicles are ready to work,
(4) when vehicles should release at the destination terminals, and
(5) travel times between terminals.
Attributes of requests and offers related to revenue management of the M1M system con-

sist of revenue and costs for IDSP. Shippers should pay IDSP for their shipments’ handling,
and if the load is delivered out of the preferred delivery time, IDSP has to pay the shippers
based on the service level of the agreement contract. From the carriers’ side, IDSP should
pay the carriers for their fees corresponding to fixed and variable costs for handling and
transportation.

Regarding the load-to-carrier assignment decision-making process, IDSP makes its de-
cisions over the OPH based on information provided by both sides’ operational, time, and
attributes. Assuming the decisions are taken when receiving a certain number of requests
and offers, IDSP decides to accept or reject the requests or offers at the current time t. For
a rejected request, the shipper receives a notification for further negotiation. If the request
is accepted, the decision-maker decides to assign the request to an accepted capacity offer
regarding both sides’ attributes and the itinerary. IDSP can dispatch the vehicle at present
t or dispatch the vehicle at the following periods if it has the option of dispatching.

When the decisions are taken at each period based on the information at that period,
ignoring future events, it is called a myopic decision-making process. Given the dynamic
nature of the problem, this can lead to poor decisions. Consider, for example, at the current
time t, an IDSP receives a request for a single product and will receive another request in
the next period. If the decision-maker has the request information in the following periods
at the current time t, it may hold the request until the coming period to assign both requests
together. Whereas in a myopic way, at present t, IDSP decides to accept or reject the request,
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and if it still wants to hold the request, it does not know for how long. This scenario can
happen for the dispatching time of the vehicle as well. In that sense, it is more likely that
IDSP rejects a request in the myopic process because it does not have a suitable offer for it
when making its decisions. Or may assign the request to a vehicle and dispatch the vehicle,
not at the perfect time regarding using the vehicle’s total capacity. Hence, the decision-maker
can optimize its decisions if it has more knowledge of the coming periods.

To fulfill the goal, more information should be used to support decisions. Instead of
a myopic model, we consider the future data that belong to the following time periods
of the operational horizon. The information needed for IDSP to make the decisions at
current time t is composed of present attributes’ information of requests and offers, past
time periods decisions’ information, and expected requests and offers information from the
following periods. To optimize a decision at the current time t, IDSP uses an integration of
past, present, and forecasts of future information, which makes it a multi-period decision-
making process.

The planning horizon is application specific. The required information at the current
time t can be uncertain as it is by, e.g., weather, geographical region, spatial effects. Hence,
to decrease the uncertainty, forecasting for new requests and offers is needed.

In the M1M system at the operational level, IDSP makes the decisions using an opti-
mization model through the two decision-making processes over OPH. Forecasting for new
requests and offers at each period in both decision-making processes are two inputs informa-
tion for the optimization model. In the next section, we focus on forecasting tasks needed
for the operational planning of the M1M system.

2.3. Forecasting Tasks
IDSP makes its decisions based on current and future information over the operational

planning horizon. Current information consists of received requests and offers’ information
at current time t and past time periods decisions information. Future information consists of
1) known information from a signed contract or point forecast and 2) unknown or partially
known information.

We define point forecast as the most likely predicted single value of each new shipper
demand and carrier capacity over the operational horizon. At the current time t, we therefore
forecast over the following time periods of the OPH. The difficulty of the forecasting task
increases with the length of the horizon. How many successive time periods can be taken
as known information for the decision-maker is related to the reliability of the forecasts and
the planning requirements. Accordingly, if we have a deterministic optimization problem, we
use point forecasts of new demand requests and capacity offers over the operational horizon.
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If the formulation is stochastic, then we can leverage information about the uncertainty of
the forecasts.

Regarding the forecasting process, the system operates continuously, and data can be
captured as activities unfold. That means each request and offer is recorded with a timestamp
and the associated activities. That leads to highly detailed data in both time and space
dimensions, including all related attributes. For example, each shipment is associated with
the shippers’ facility’s exact addresses and the related consignees’ locations, as well as the
volume, quantity, delivery time, and pick-up time. In that sense, the requests and offers’ data
are observed over time and space with varied timestamps and locations. Hence, large-scale
unstructured data is captured which each request and offer can have its own time and space
dimension.

Although data can be recorded in every detail, it needs to be structured based on the IDSP
decision-making process. The decisions are taken over the OPH within different terminals
associated with zones. Thus, the operational planning horizon defines the time dimension,
and the terminals represent the space dimension of the M1M system. The observed requests
and offers’ data needs to be organized within the time steps of OPH and related terminals.

We consider the forecasting of new requests and offers by OD pair over the OPH. The data
needed for the forecast comes from the history of past periods’ recorded attributes of requests
and offers. Hence, forecasting for multiple steps ahead using past period observations leads us
to a multi-variate multi-step time-series forecasting problem. In the actual setting, depending
on the recorded data, it is likely that the shippers-demand requests exceed the capacity
offers. That means requests are constrained by offers, and the system may not observe the
true requests, which is known as censored or constrained data (see, e.g., Fields et al., 2021,
for recent study).

This work focuses on the mentioned multi-variate multi-step time-series forecasting tasks
and their impacts on the operational decisions for a specific OD pair. We assume a deter-
ministic formulation of the operational planning problem and do point forecasts for shippers-
demand requests and carrier-capacity offers over the OPH. We measure the shipments and
capacities by their observed volume attributes over one of their associated time attributes
(availability time). Unfortunately, we never gained access to real data. Therefore, we gen-
erate synthetic data to train the forecasting models. Although we might need to deal with
censored data in the actual setting of the system before the forecasting process, it is not the
focus in this work. In the following, we review some classical time series models.
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Chapter 3

Literature Review

Due to its multidimensional characteristics, freight demand can be more complex to fore-
cast than passengers’ transportation demand problems. Nevertheless, researchers have been
more interested in understanding passengers’ demand (Systematics, 1997). Freight fore-
casting is highly application-specific, and the studies that have been done in this field are
related to specific applications. Even though machine learning has seen recent success, the
vast majority of freight forecasting studies use statistical or econometric models. The latter
tend to perform relatively well in small data regimes (Laage et al., 2021; Makridakis et al.,
2018). The two fields of machine learning and statistics/econometrics are related, yet with
distinct approaches to forecasting. In essence, machine learning is data-driven, while statis-
tics/econometrics rely on models as representations of reality and related hypothesis testing.
Unfortunately, we did not get access to real data for the work in this thesis. We therefore use
statistical models for data generation and forecasting. The literature on time series modeling
is vast. Here we focus on statistical time series models, including Autoregressive and Moving
Average, Exponential Smoothing, and Autoregressive Integrated Moving Average (ARIMA)
models. The reason for reviewing these models is because they perform well with small sizes
data sizes and have the ability to describe time components and correlations within the data.
Our review will continue with a discussion of demand forecasting for operational planning.

3.1. Time Series Forecasting
Box et al. (1970) introduces statistical techniques by using an iterative forecasting process

to estimate parameters from data. The classical method for estimating models involves three
steps: 1) model selection/definition, 2) parameter estimation and 3) model verification.
These steps are common to the models we review in the following subsections.



3.1.1. Autoregressive and Moving Average Methods

We focus on the discrete time-domain category of quantitative methods. In particular,
Autoregressive (AR) and Moving Average (MA) models introduced by Yule (1927) from a
random time basis process. Yule (1927) introduced an AR model by modeling a harmonic
movement of a pendulum. He developed the sinusoidal motion for three intervals then
represented the movement yt as a function of time which typically can be a linear second-
order differential equation of the function as

r
d2y

dt2
+ p

dy

dt
+ qy = εgt (3.1.1)

where r, p, and q are the constant parameters, gt is the impulse force disturbance at time
t = 0, and ε is the magnitude of the disturbance. He decomposed (3.1.1) for discrete time
series by differencing the first and second intervals of the observations as

ψ2∇2ỹt + ψ1∇ỹt + ψ0ỹt = εt (3.1.2)

where, ψ0, ψ1,ψ2 are parameters, εt is an error term at time t. The deviation from the mean
is

ỹt = yt − µ, (3.1.3)

∇yt = yt − yt−1, (3.1.4)

∇2yt = yt − 2yt−1 + yt−2, (3.1.5)

and we obtain

ỹt = α1ỹt−1 + α2ỹt−2 + εt, (3.1.6)

where (3.1.6) is the second-order autoregressive model, and α1,α2 are parameters.
The generalized form of (3.1.6) for univariate AR of order p can be written as

yt = α0 + α1yt−1 + α2yt−2 + · · ·+ αpyt−p + εt, (3.1.7)

where, α0,...,αp are unknown parameters of past p-lags that are estimated from data. The
error terms εt are independent and identically distributed (i.i.d.) with zero mean and variance
σ2.
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3.1.2. Exponential Smoothing Methods

Brown (1959) introduced exponential smoothing methods, and Winters (1960) used them
for short-term forecasting to generate predictions to be used in optimization-model solving.
With the help of an exponential system, Brown (1959) showed that it is possible to predict
the next time period sales by weighted sales’ average of the present time period, which
can continue over the following periods. He used simple exponential smoothing, double
exponential smoothing, and triple exponential smoothing methods to predict three different
time series. The first model used a simple exponential smoothing model corresponding to
a time series with no long-term trend and no clear seasonality pattern. In that sense, at
the current time t = 1, each time period has a forecasting weight, and weighted averages
compute the forecast for the next time period from the past periods at t = 2. The weights
decrease exponentially with the lags. We obtain

yt+1 = αyt + α(1− α)yt−1 + α(1− α)2yt−2 + · · ·+ α(1− α)pyt−p, (3.1.8)

or equivalently,

yt+1 =
p∑
i=0

α(1− α)iyt−i, (3.1.9)

where yt+1 is the forecast for time period t + 1, and 0 ≤ α ≤ 1 is the smoothing parameter
which controls the weights for past periods.

This model can not handle trends and seasonality. Holt (2004) enhanced the method for
predicting with seasonality and trend. His introduced method consists of trend and level
smoothing. A comparison between Holt and Brown exponential smoothing has been made
by Xiao et al. (2014) for freight demand forecasting. He compared the two methods using 15
years of a real dataset. He showed that even though most studies adopt Brown exponential
smoothing, the Holt method performed better in his experiments.

Standard exponential smoothing methods are simple to implement but can handle simple
seasonal streams. A class of exponential smoothing methods for freight transportation at
an operational level has been presented in Godfrey and Powell (2000). They introduced
a Damped Trend Multi-Calendar (DTMC) exponential smoothing model that can forecast
demands with characterized OD, volume, and type of shipper requests. Their model is
based on Gardner and Everette (1985), a damped trend and multiplicative season applicable
per season, which they changed the seasonal parameter to their calendar factors. Their
forecasting equation for DTMC is

yt(m) =
(
St +

m∑
i=1

φiTt

)∏
j∈J

Imt (j), (3.1.10)
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where yt(m) is the forecast form−th period ahead of their calendar, and St is the exponential
smoothing formulation of subsequent time period computed the same as (3.1.9), φ is damping
(multiplicative) factor for trend, Tt is the smoothed trend at the end of period t, and Imt (j)
is the calendar factor over, all set of calendar attributes J .

They examined their model for a six-year real dataset aggregated from 25 cities and
compared their model with a seasonal autoregressive MA as a benchmark. They used root-
mean-squared error (RMSE) to evaluate the performance

RMSE =

√√√√ n∑
i=1

(ŷt(m)− yt(m))2

n
, (3.1.11)

and showed that the DTMC model performs better than the benchmark.

3.1.3. ARIMA Models

ARIMA models offer a different perspective on time series forecasting. The two most
generally used techniques for time series forecasting are exponential smoothing and ARIMA
models, which give complementary approaches to the problem. While exponential smoothing
methods try to explain the data’s trend and seasonality, ARIMAmodels strive to characterize
the data’s autocorrelations. ARIMA models allow both AR and MA components in modeling
which makes it more flexible than the other statistical models. Box et al. (1970) introduced
the ARIMA model as

yt = α1yt−1 + · · ·+ αp+dyt−p−d − θ1εt−1 − · · · − θqεt−q + εt, (3.1.12)

where (3.1.12) is the ARIMA(p,d,q) model consisting of AR of order p, the integration of
difference of d past steps, and MA of order q. Parameters α1,...,αp, and θ1,...,θq are unknown
and most be estimated from data, and ε1,...,εq are the i.i.d. error terms at past lags.

Judging which model is the best fit in terms of (p, d, q) orders is an empirical and it-
erative process. One way is to determine the initial orders of the model by estimating the
autocorrelation function (ACF) of order p from the data of y as

γ̂(p) = 1
N

N−P∑
n=1

(yt − ȳ)(yt−P − ȳ), (3.1.13)

where γ̂(p) is the estimated autocovariance function for lag p, and ȳ is the sampled mean.
Then, we have

ρ̂(p) = γ̂(p)
γ̂(0) , (3.1.14)

where ρ̂(p) is the estimated ACF for a lag p. For partial autocorrelation function (PACF)
the aim is to find the part of correlation between yt and yt−p that is not reflected by the
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observations {yt−p+1, . . . , yt−1}. From that we have a conditional correlation of order p as

φ̂(p) = Cov(yt, yt−p|yt−1, . . . , yt−p+1)√
Var(yt|yt−1, . . . , yt−p+1)V ar(yt−p|yt−1, . . . , yt−p+1)

, (3.1.15)

where φ̂(p) is the estimated PACF for lag p. We note that in modern statistical learning,
models are selected based on their out-of-sample fit (error on validation sets) rather than
according to ACF and PACF. The latter can nevertheless provide interesting insights.

Guo et al. (2010) used an ARIMA model to forecast monthly railway freight volumes in
China. Their observations consist of 96 samples of railway freight from 2002 to 2009. The
ACF and PACF analyses of 12 months show that their observed data is non-stationary with
trends and has a 12-month seasonal cycle. They defined the ARIMA(p, d, q) model as

zt = φ1zt−1 + φ2zt−2 + · · ·+ φpzt−p + ut − θ1ut−1 − θ2ut−2 − · · · − θqut−q, (3.1.16)

zt = ∇dyt, (3.1.17)

where zt is defined based on the time series data yt with d step difference the observed
data from time t. φ and θ are the parameters of the AR and MA, respectively, and ut is
the random disturbance at time t (Guo et al., 2010). They compared their model with a
Holt-Winter model and explain that although the Holt-Winter model performs well on the
short-term forecast, the ARIMA model produces more accurate forecast value as the number
of periods grows. They used four testing approaches to find the best fit: 1) stability test, 2)
residual analysis, 3) model excessive set test, and 4) model low set test.

We can define ARIMA-based models for different types of time-series data. Schulze and
Prinz (2009) introduced a seasonal ARIMA (SARIMA) model for container transportation
within the origin Germany and three destinations. They analyzed the seasonal behavior of
quarterly data from 1989 to 2006 and quarterly forecasts for 2007 and 2008. They build four
forecasting models for each destination and the total output of the origin ports. To build the
model by analyzing the ACF, PACF, and statistical test, they applied a double differencing
linear transformation filter for nonseasonal and seasonal time steps formulated by

∇1∇4 = (yt − yt−1)− (yt−4 − yt−5) . (3.1.18)

The order of differencing is used to make the time-series stationary. By statistical
test, they showed that the data could be assumed stationary with 1 step differencing in
nonseasonal and quarterly seasonal. For forecasting, they built and initialed quarterly
SARIMA(0,1,1)(0,1,1) which is

ŷT+1 =yT + yT−3 − yT−4 + β1 · eT + β4 · eT−3 + β1β4 · eT−4, (3.1.19)
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where T is the quarterly periods, β is the estimated parameter of MA model. Regarding the
forecast interval for h-step ahead they showed

ŷT+h = ŷT+h−1 + ŷT+h−4 + ŷT+h−5, (3.1.20)

which after 5 step-ahead, the errors decreased to zero. They compared their model with
a Holt-Winters model, and for residual analysis, they used root mean squared errors and
Theil’s U (Schulze and Prinz, 2009) as follow

U = RMSE(forecast)

RMSE(naive)
, (3.1.21)

where forecasting at yt−4 has been used as a naive model. Their comparison shows that the
SARIMA model is slightly more accurate than the Holt-Winters model.

Freight demand is characterized by several attributes that we need to consider in predic-
tion. Some variables may influence each other, which means there is cross-correlation. This
leads to a multivariate time-series forecasting problem. One of the approaches to model the
problem is using a vector autoregressive (VAR) models (Box et al., 2015). The complexity
of such models depends on the number of variables involved in the modeling. Using the
VAR model, we write time-series equations with the number of variables to forecast the next
period. In each equation, we consider the other variables at each lag. If we have p lags and
n variables, then we have p × n values for each forecaster equation. As long as we have n
parameters needed to estimate, the total variables would be p × n2. Hence the parameters
needed to estimate will increase in the order of O(n2). The equation for the VAR with the
order of 1 is

Zt = ΦZt−1 + at, (3.1.22)

and for n = 2 we have

Zt =
 φ11 φ12

φ21 φ22

Zt−1 +
 a1t

a2t

 , (3.1.23)

where Zt = (z1t, . . . , znt)′ is the stationary variables vector, Φ is the matrix form of the
parameters needed to estimate, at is the error vector at time t.

3.2. Demand Forecasting for Operational Planning
The literature focused on demand forecasting specifically for operational planning of

transport systems is relatively scarce. In this section we review literature related to forecast-
ing for third-party logistic service providers. Bayraktar et al. (2008) analyzed the impact
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of demand forecasting on the information distortion in shipper demands for a 3PLs com-
pany, using an exponential smoothing model. They described that although the seasonality
component decreases the forecast accuracy, it positively reduces the distortion parameter in
customer demands between orders from carriers and sales to customers.

Ren et al. (2020) proposed an integrated approach composed of convolutional neural
networks (CNN) and LSTM models for demand forecasting related a China’s 3PLs company.
Their model uses weekly time-space data, and a CNN model extracts the space dimension,
removes the noise, and reduces the parameters as the first layer of their model. Then an
LSTM model uses the output of the first layer with only time dimension to model the time
series data and its complexities.

In the sense of unknown factors’ effect on forecasting, Pradita et al. (2020) analyzed
two events that significantly impact container demand forecasting for an Indonesian 3PLs
company. They defined factors related to shippers, carriers, and customers in the supply
chain as internal factors, and economic situation, government policies, oil price, and natural
disasters as external effects. Then, with a preprocessing approach, they adjusted the data
and used different statistical methods to find the best performing model.

In summary, there are studies in the literature on both time series models and machine
learning algorithms for sequential data. If we had access to a real, large source of data, it
would be relevant to train both types of models and compare their predictive performance
measuring, e.g., mean squared error on validation sets. Unfortunately, we do not have access
to real data. We therefore select ARIMA models for our multi-step multi-variate forecasting
problem (Section 2.3). Moreover, we choose a second-order autoregressive model to generate
synthetic data. The next chapter introduces the models for forecasting shipper-demand
requests and carrier-capacity offers in the M1M system. We also describe the formulation of
the operational planning problem (Fomeni et al., 2021) that we use.
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Chapter 4

Methodology

The IDSP is designed to optimize load-to-carrier assignments, selection of routes and offers,
and shipment itineraries in time and space. It makes its decisions over the operational plan-
ning horizon within terminals based on the decision-making process presented in Section 2.2.
The forecasting process is defined based on the data type generated by the system. We have
a multi-step multi-variate time-series forecasting problem that we model using approaches
introduced in Chapter 3. Forecasts are inputs to the multi-period decision-making process.

In this chapter, we introduce a deterministic optimization model for the decision-making
process in Section 4.1. We discuss a synthetic data generation process in Section 4.4 and
determine the assumptions needed to consider for forecasting models. Finally, in Section 4.3,
we introduce two time-series forecasting models aiming to produce point forecasts for future
shipments and capacities over the operational planning horizon.

4.1. Load-to-carrier Assignment Optimization Model
For optimizing load-to-carrier assignments, Fomeni et al. (2021) introduce a multi-period

optimization model, based on Bin Packing principles, for the single-segment case (i.e., two
terminals linked by several transportation modes). In this section, we consider a simplifica-
tion of the model for a specific OD pair. The formulation is the same as Fomeni et al. (2021)
except a slight adaptation to integrate time series forecasts, as we further explain below.

Fomeni et al. (2021) introduce a Bin-Packing problem taxonomy D/C/B/K/T [·] where
• D stands for the D-dimensionality of physical attributes.
• C represents the vehicle fixed cost, which could be the same for all or variable for
each vehicle.
• B is the vehicle size, which we could be all vehicles as the same or variable sizes.
• K stands for the shipment types, which could be single or multi-shipment types.
• T illustrates the single or multi-periods of the operational horizon.



• [·] represents additional attributes, which could be different load-to-carrier related
costs and rules.

The multi-period model, 1/V/V/S/M[I2B], considers both physical and time attributes of
shipments and capacities for the decisions. Here we consider D = 1 (1-dimension physical
characteristic), C = V is the fixed cost of capacities that can vary for each vehicle, B = V is
different volumes of vehicles, K = S which means single commodity type, T = M meaning
the multi-period of the operational horizon, [·] = [I2B] is the load-to-carrier assignment.

In this context, the physical features of loads and capacities correspond to volume. The
time attributes are defined by a) shipments’ pickup time and latest delivery time, and b)
vehicles’ starting work time and release time. They define the following time windows:

• Tk = [ tk, t̄k ] is the availability time window of a shipment where tk is the pickup time
and t̄k is the latest delivery time;
• Γv = [ Γv,Γv ] is the availability time window of a capacity where Γv is when the
vehicle is ready to work and Γv is when the load is released; and
• Tkv is the feasible load-to-carrier assignment interval considering Tk and Γv.

This work focuses on forecasting new requested volumes and offered volumes over the
operational planning horizon. We define the OPH with schedule length T ∈ Z+, consisting of
time periods t = 1, 2, . . . , T . This process repeats over the same schedule length, represented
by a deterministic formulation of the optimization model. Hence, we have a fixed horizon
where, at each t, we produce point forecasts of new requested volumes and offered volumes
based on their availability times over t + 1, t + 2, . . . , t + T . At each decision time period,
the information provided by forecasting is considered known to the decision-maker.

Fomeni et al. (2021) consider Nt shipper requests and Mt carrier offers per time period,
each characterized by its volume and temporal attributes. In this work, we consider a set
of N shippers, and a set of M carriers, each making requests and offers over time. We
construct one time series for each shipper and each carrier and assume that they make at
most one request/offer per time period. This is a restriction compared to Fomeni et al.
(2021) because the set of shippers and carriers is assumed fixed and known. We make this
assumption to ensure that there is historical data for each actor. In practice, if a new shipper
or carrier enters the market, one would first need to use a forecast model trained on existing
data and update it as data for this specific actor becomes available. The assumption of one
request/offer per time period is not very restrictive as a time period can be relatively short
in an operational planning problem. We now define this setting more formally.

From the shippers’ side, let Kt be a set of shippers which have requested volumes to
transport for a specific destination with availability time tk that falls in time period t. Let
|Kt| = N be the number of shippers at time period t. Each shipper makes at most one
request per time period. We define the shipper-demand request ystk to be the volume of each
shipper’s shipment k ∈ Kt at time period t as a function of its past values. The notation s,
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stands for a shipper. From that for N number of shippers in Kt, we define the request vector
yst consisting of requests yst = (yst,1, yst,2, . . . , yst,N)T , where yst ∈ RN

+ .
We forecast ŷst+1, . . . , ŷ

s
t+T , and define a matrix of shippers’ requested volumes forecasts

Ŷ
s =


ŷst+1,1 ŷst+2,1 . . . ŷst+T,1
ŷst+1,2 ŷst+2,2 . . . ŷst+T,2

... ... . . . ...
ŷst+1,N ŷst+2,N . . . ŷst+T,N



T

, (4.1.1)

where Ŷ
s ∈ RT×N

+ .
From the carriers’ side, let Vt be a set of carriers offering capacity volumes for a specific

destination with availability time tv that falls in time period t. Let |Vt| = M be the number
of carriers at time period t. Each carrier makes at most one offer per time period. We define
carrier-capacity offer yctv for volume of each carrier’s vehicle v ∈ Vt at time period t as a
function of its past values. The notation c, stands for a carrier. For M distinct number
of carriers we define the offer vector yct consists of offers yct = (yct,1, yct,2, . . . , yct,M)T , where
yct ∈ RM

+ .
We forecast ŷct+1, . . . , ŷ

c
t+T , and define the matrix of carriers’ offered volumes forecasts

Ŷ
c =


ŷct+1,1 ŷct+2,1 . . . ŷct+T,1
ŷct+1,2 ŷct+2,2 . . . ŷct+T,2

... ... . . . ...
ŷct+1,M ŷct+2,M . . . ŷct+T,M



T

, (4.1.2)

where Ŷ
c ∈ RT×M

+ . For the decision-maker at current time t, by concatenating yst with
Ŷ

s, and yct with Ŷ
c, we define the matrix request Y s and the matrix offer Y c such a that

[Y s]tk = ystk and [Y c]tv = yctv.
The optimization problem consists in minimizing the total cost over the OPH. The deci-

sion variables are:
• ξt,v = 1 if vehicle v ∈ Vt at time period t ∈ Γv is selected, otherwise 0,
• ζt,kv = 1 if shipment k ∈ Kt with long-term contract is assigned to vehicle v ∈ Vt at
time period t ∈ Tkv, otherwise 0,
• ut,k = 1 if shipment k ∈ Kt is assigned to a spot market vehicle at time period t ∈ Tk,
otherwise 0.

Using the forecasts we just introduced, the resulting multi-period formulation is

min
ξ,ζ,u

∑
v∈Vt

∑
t∈Γv

fvξtv +
∑
k∈Kt

∑
v∈Vt

∑
t∈Tkv

atkvζtkv +
∑
k∈Kt

∑
t∈Tk

ptkutk (4.1.3)

s.t.
∑
k∈Kt

ŷstkζtkv ≤ ŷctvξtv, ∀v ∈ Vt, t ∈ Γv, (4.1.4)
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∑
v∈Vt

∑
t∈Tkv

ζtkv +
∑
t∈Tk

utk = 1, ∀k ∈ Kt, (4.1.5)

∑
t∈Γv

ξtv ≤ 1, ∀v ∈ Vt, (4.1.6)

ξtv ∈ {0,1}, ∀v ∈ Vt, t ∈ Γv, (4.1.7)

ζtkv ∈ {0,1}, ∀k ∈ Kt, v ∈ Vt, t ∈ Tkv, (4.1.8)

utk ∈ {0,1}, ∀k ∈ Kt, t ∈ Tk, (4.1.9)

where, fv is the fixed cost of selecting and using a vehicle, atkv is the variable cost of assigning
a shipment to the selected capacity at each time-period, ptk is the shipping cost of assigning
a shipment to a spot market vehicle at each time-period.

The objective function (4.1.3) is computed by minimizing the total fixed cost of using
the accepted capacities, the total assignment cost of shipments to the accepted vehicles,
and the total shipping cost of assigning the loads to the spot market vehicles over the OPH.
Constraints (4.1.4) enforce the physical requirements of both sides, which means the total as-
signed shipments’ volume cannot be more than the accepted capacity’s volume. Constraints
(4.1.5) ensure that all accepted shipments are assigned to at least one vehicle. Constraint
(4.1.6) guarantees that the decision-maker does not accept a vehicle more than once. Binary
constraints on the decision variables are imposed by constraints (4.1.7), (4.1.8), and (4.1.9).

Compared to the model in Fomeni et al. (2021), we use each set Kt and Vt at each
time period instead of one set of shipments and capacities over the schedule length because
the decision-maker makes its decisions per time period. We modified the constraints (4.1.4)
where we inserted the forecasted requested volumes and offered volumes over the operational
horizon because shipper-demand requests and carrier-capacity offers are frequent per time
period.

4.2. Load-to-carrier Assignment Solution Method
With respect to solving the multi-period formulation explained in Section 4.1, Fomeni

et al. (2021) proposed four constructive heuristic algorithms, HM1 - HM4. The main goal
of the solution approaches proposed by the authors is to adapt the well-known First-Fit
Decreasing and Best-Fit Decreasing algorithms where the shipments are sorted in descending
order of sizes in both algorithms. Then by using the first algorithm, one assigns shipments
to the first large carrier capacity. The second algorithm assigns shipments to the already
loaded carrier capacity in which it fits (Martello and Toth, 1990; Dyckhoff, 1990).
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Fig. 4.1. Multi-period heuristic algorithms framework

HM1 - HM4 use the same framework to solve the multi-period problem. Figure 4.1
shows the structure of proposed heuristic algorithms. First, for each availability time in
the operational horizon, one reproduces the selection variables of the capacity offer and
shipper demand to adjust the model. Then, one breaks the multi-period problem into a
series of single-period subproblems with respect to the availability times over the horizon and
sequentially solves each of them by introduced single-period algorithms in the paper. To find
the best possible solution, one determines the best time period for selecting and packing each
capacity to avoid duplication of selection in the process. After obtaining the solution, related
load-to-carrier assignment decisions will be made, including assigning the shipments to the
most cost-efficient selected capacity and resorting unassigned loads and capacities. Finally,
all shipments will be allocated to either selected or spot-market capacities by repeating the
process.

Our choice of heuristic to solve the 1/V/V/S/M [I2B] model depends on assessment of
the carrier capacities to identify their most efficient time period and which single-period
algorithm is used to solve the problem. If capacities are rated by their cost contribution, we
use HM4 to solve the model. If capacities are not ranked, HM1 - HM3 would be applicable.

The results in Fomeni et al. (2021) show that the proposed algorithms perform well in
terms of finding a feasible solution to minimize the related cost. They evaluate the perfor-
mance based on computational time and the difference between the best-known solution and
the best feasible solution called the optimality gap. One set of instances – referred to as Set
1 Type 1 by the authors – where capacities’ volumes are relatively larger than shipments’
volumes, the HM1 returns the optimality gap between 1.06% and 16.24% and computational
time between 0.01 s and 2.50 s. HM2 gives the optimality gap in the range of 5.53% to
15.71%, with computing time in the range of 0.02 s to 8.11 s. HM3 yields an optimality
gap between 7.31% and 16.05%, and a computing time between 0.03 s and 15.84 s. Finally,
HM4 returns an optimality gap in the range of 0.94% to 8.84% with the computational time
between 0.05 s to 6.90 s.

Based on the results, HM4 outperforms the other algorithms on Set 1 and Type 1 for
ranked capacities. In this research, vehicles are available in their orders and are assessed
with no ranking for our specific problem. Hence, we use HM1 in our experiments to find a
feasible solution. HM1 is based on the shipper demands, focusing on assigning all loads to the
carrier capacities. The algorithm first assigns the selected shipper demands to empty sets of
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accepted carrier capacities. For the remaining unassigned shipments, the algorithm tries to
sequentially allocate them to the best possible accepted vehicle based on related costs. If such
a vehicle is not available, a new carrier capacity may be selected and the algorithm tries to
assign remaining shipments to the new vehicle based on its costs’ efficiency. Afterward, if the
shipper’s demands remain unassigned, the algorithm uses spot-market vehicles to complete
its assignment decisions.

4.3. Forecasting Models
In this section, we consider two simple models from the literature to forecast new ship-

ments and capacities: an autoregressive (AR) model and an ARIMA model. In Section 3.1
we described the general form of AR(p) on (3.1.7), which will be used to define the AR
model for requests and offers as

ystk = α0k + α1ky
s
(t−1),k + α2y

s
(t−2),k + · · ·+ αp,ky

s
(t−p),k + εtk, (4.3.1)

yctv = α0v + α1vy
c
(t−1),v + α2y

c
(t−2),v + · · ·+ αp,vy

c
(t−p),v + εtv, (4.3.2)

where αp,k and αp,v are the unknown parameters of past p-lags apart needed to infer from the
generated data. Random terms εtk and εtv are i.i.d. with zero mean and constant variance
σ2. How many lags we should consider for the forecasting model depends on the significance
in partial autocorrelation function analysis of the generated data. PACF is defined to show
other correlations within the captured data between ystk and ys(t−p),k, which the AR process
cutoff to zero after p-lag.

We can explain the forecasting formulation for both sides in terms of a) ystk and yctv with
their past volumes’ values, b) the generated error εtk and εtk at each time period, where the
errors are uncorrelated, and each error term is a linear function of its preceding. From that,
three ARIMA-based models presented in Section 3.1:

(1) ystk and yctv are a function of their past values, the error terms at past and current
time periods, as well as a function of differencing;

(2) ystk and yctv are only a function of error terms at past and present time periods;
(3) ystk and yctv are a function of the sum of weighted past values and the error term at

the current time period.
Regarding model selection with the help of auto correlation function, we select the first

formulation to address the second forecasting model. Based on (3.1.12) we define

ystk = α0k + α1ky
s
(t−1),k + · · ·+ α(p+d),ky

s
(t−p−d),k − θ1kε(t−1),k − · · · − θq,kε(t−q),k + εtk, (4.3.3)

yctv = α0v + α1vy
c
(t−1),v + · · ·+ α(p+d),vy

c
(t−p−d),v − θ1vε(t−1),v − · · · − θq,vε(t−q),v + εtv, (4.3.4)
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where (4.3.3) and (4.3.4), are the ARIMA(p,d,q) models by direct use of (3.1.17) in the
model. Unknown parameters αp,k, αp,v, θq,k, and θq,v need to be estimated. Random terms
εq,k and εq,v are i.i.d. at past lags.

In practice, depending on the data under study, there are different approaches in the
literature to make the time-series data stationary. For example, in our case, when we have
a stochastic forecasting process with deterministic variation over mean to make the data
stationary, Yue and Pilon (2003) compared differencing methods with detrending approaches.
They showed that using differencing methods can distort the existing forecast process, while
detrending can remove the deterministic trend without any change. Since we aim to generate
synthetic data (details in the following section) and it is stationary, we can define (4.3.3)
and (4.3.4) as follows

ystk = α0k +
p∑

n=1
αn,ky

s
(t−n),k + εtk −

q∑
n=1

θn,kε(t−n),k, (4.3.5)

yctv = α0v +
p∑

n=1
αn,vy

c
(t−n),v + εtv −

q∑
n=1

θn,vε(t−n),v, (4.3.6)

where (4.3.5) and (4.3.6) are the ARIMA(p, 0, q) models or can interpret as ARMA(p,q)
models, order p and q come from PACF and ACF analysis where AR process shows sharply
cutoff to zero after p-lags. Parameters αn,k, αn,v, θn,k, and θn,v need to be estimated.

Determining which model is the best fit is an empirical and iterative process in which
we set the initial orders by analyzing ACF based on (3.1.13) and (3.1.14). Also, based on
(3.1.15) we are aiming to find the part of correlation between ystk and ys(t−p),k that are not
reflected by the values of {y((t−p),k)+1, . . . , y(t−1),k} by analyzing PACF. Then by applying the
orders of AR and MA, we can estimate the unknown parameters by model fitting. Of course,
in our context we know the ground truth model so this analysis is for illustrative purposes.

In the following section, we explain the synthetic data generation.

4.4. Synthetic Data Generation Process
The forecasting process is defined based on the shipper-demand requests and carrier-

capacity offers’ data types generated by the system. In Fomeni et al. (2021) they provide
synthetic data for the optimization model. In this regard, in this research, we generate the
data synthetically based on past values of requests and offers by considering both sides’
physical and temporal attributes.

From physical attributes, each shipment and capacity is measured with mentioned charac-
terizations in Section 2.2. Each shipper-demand request contains one shipment. We generate
the data by reflecting the volume of freights and capacities. From temporal features, the
decision-maker works over the operational horizon where shipments and capacities are avail-
able for decisions within their related time windows. We take the pickup time of loads and
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vehicles’ starting work time as their availability time. Other time attributes are fixed in
a rule-based manner, similar to Fomeni et al. (2021). From that, the availability time of
both sides defines the time dimension, which is discretized in equal intervals and falls in
operational time periods.

We generate the volume data for N number of shippers and M number of carriers with
their corresponding requests and offers. We assume the loads and capacities are uncorrelated
when generating the data for each side. In practice, the captured data may contain cross-
correlation within different shipments concerning unknown effects.

The decision-maker works between two specific terminals, and requests and offers are
frequent per period. In this case, we will have univariate time-series data per shipper and
per carrier between two terminals. According to the autoregression model, we generate the
data with respect to each request and offer as a function of their past values. In our results,
we use a second-order autoregressive model. For shippers we use (4.3.1) with p = 2 lags
apart. For carriers we use (4.3.2) with p = 2 lags apart. For both sides, we assume that the
errors are i.i.d. Normal with µ = 9.5 and σ = 3.16 for shipper demands, and µ = 100 and
σ = 33.33 for carriers capacity offers.

Since we are considering the deterministic components of time, we should add the level
of time-series α0k, and α0v. That means the forecasting process should follow the trend
pattern in the past, and we should consider this to make the series stationary. We assume
the generated data follows the trend pattern of its past.

We define the following pseudo algorithm to generate the synthetic data records for the
N number of shippers. For the carriers’ side, we follow the same process.

Algorithm Data generation
Input: Parameters α0k, α1k, α2k,
parameters µ, and σ,
values of ys(t0−1), y

s
(t0−2), T ,

m number of data points,
n number of shippers;
Output: (m× n) generated time-series DataFrame;
Initialize shippers’ DataFrame;
1: for each number of shippers do
2: for each number of data points do
3: Call autoregressive function yst (4.3.1);
4: Truncate;
5: Call discrete time-series data points generator;
6: Append yst to shippers’ DataFrame.
7: end for
8: end for

There are two truncated normal distributions for both sides’ values, where volumes are
randomly generated within their related bounds (line 4). It does so by generating a random
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distribution of εt with constant µ and σ. Since 97% of values fall in 3σ from the µ, to more
satisfying the interval bounds, we calculate the parameters as half of the interval length for
mean and 1/3 of this for standard deviation. The remaining 3% of values are set to the
bounds. All values are greater than or equal to zero. We should note that for the synthetic
data generation, we set the constant term mentioned in (4.3.1), and (4.3.2) to zero to satisfy
the boundaries; in fact, the calculated µ at the start point ystk, and yctv can be taken as the
level of the normally distributed data.

In a real setting, the captured data usually contains censored data, missing values, and
outliers that we need to deal with before modeling. Furthermore, the data reliability during
the data fusion section needs to be assessed. In this work, we assume that requests are not
constrained by capacity, so the data is not censored or truncated. We do not simulate the
effect of any other data issues either. In other words, we consider the data to be an accurate
representation of demand and capacities, respectively. In the next chapter, we generate the
data, describe the implemented forecasting models for both sides, analyze the results and
compare the solutions obtained using the different forecasts.
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Chapter 5

Computational Results

In this chapter, we describe the experimental phase of our research. We start by presenting
the data produced by the synthetic time-series data generator introduced in Section 4.4.
Recall that we use this data because we do not have access to real data.

We estimate the parameters of the forecasting models presented in Section 4.3. We
then assess the ARIMA models in Section 5.2 by estimating orders and parameters, and by
analyzing their ACF, PACF, and AIC. We compare the results of this performance evaluation
to select the models to use in evaluating the impact of forecasting precision on the quality
of the optimization results. We select the best-performing model, as well as a model with a
significantly lower performance in terms of forecasting errors, to provide the data, requested
volumes and offered volumes, to the optimization model (Section 4.1).

In Section 5.3, we finally assess the impact of forecasting on the solution quality of the
optimization model, by solving it with the data provided by the two selected ARIMA models,
and by comparing performances based on the total cost, percentage error, average error, and
10− 90 percentile error range.

5.1. Synthetic Data Generation
In Section 4.4, we introduced two second-order AR models to generate data for shippers

and carriers. We set the initial parameters for (4.3.1) and (4.3.2) and generate the data.
Table 5.1 shows the initial parameter setting for generating the data for the requests and
offers’ values. We set the initial values for parameters α1 and α2 based on Yule-Walker rule
for stationary second order AR model where the parameters rely in the triangle −1 ≤ α2 ≤
1−|α1| (Eshel, 2003). We set the initial value of yt0−1 and yt0−2 in the requests and offers’
values range the same as in Fomeni et al. (2021). We set the T = 10 based on the operational
horizon. We set the initial values of µ and σ to satisfy the shipments and capacities’ volume
range mentioned in 4.4.



Table 5.1. Initial parameter setting for shippers and carriers’ datasets

Requests Offers
N. records 1010 1010
α1 −0.25 −0.25
α2 0.35 0.35
yt0−1 1 50
yt0−2 2 70
T 10 10
µ 9.5 100
σ 3.16 33.33

The total 1,010 data records were generated for each of the 285 shippers (requests) and 39
carriers (offers). The data is generated within [1, 20] and [50, 250] intervals for shippers and
carriers, respectively. For each time series, we use 1,000 data points for training the models
and 10 data points for the test set as ground truth. In other words, we do not perform
cross-validation.

Figure 5.1 shows the data generated for the two time series and a subsample of 200
observations. We check the forecastability by plotting each time series correlogram and
verifying the autocorrelation within the data. Figure 5.1 illustrates the autocorrelation of
requests and offers of a shipper and a carrier, which is notable by two past lags significance
from time t = 0 with 95% confidence interval. We use the synthetic generated data to feed
the forecasting models in the following section.

Fig. 5.1. Autocorrelation of request and offer values.
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5.2. Forecasting Results
In this section, we are following the forecasting process explained in Section 4.3. Re-

call that we generate data according to an AR model. Using that data, we estimate
ARIMA(p,d,q) models. Lacking access to real data, the purpose is to produce simple forecast
models that exhibit some error and then evaluate the impact of those forecast errors on the
solutions to the optimization problem. Given that we use simple statistical models, we can
use classic hypothesis tests.

5.2.1. Stationary Distribution Verification

By assumption, the generated data based on Section 4.4 is stationary. Nevertheless, in
this section, we validate the generation process by testing the stationary of the time series.
In this context, ystk and yctv are stationary if the joint probability distribution of n values of
ystk and yctv are on the same level with a set of p-shifted n observations. From that, we use
the Augmented Dickey-Fuller (ADF) test, which is a statistical significance test. Based on
Fuller (1976), the Dickey-Fuller (DF) test is a statistical test on a first-order autoregressive
model where the null hypothesis is non-stationary existence within the data when the lag
parameter α1k is one. The alternative hypothesis is the stationary of the time series. For
such a representation of

ystk = α0k + βkt+ α1ky
s
(t−1),k + εtk, (5.2.1)

we can describe DF as

∇ystk = ystk − ys(t−1),k = α0k + βkt+ γy(t−1),k + εtk, (5.2.2)

where γ = (α1k − 1), and ystk is explained by a linear relationship of the previous lag with a
trend time component βkt and a level α0k.

The goal is to find out if we can remove the dependency of the value of ystk on its previous
lag ys(t−1),k in (5.2.1) by differentiating them in (5.2.2). The null hypothesis is when we
assume the existence of an explanatory variable which α1k = 1 and γ = 0, and then, the
alternative hypothesis is when −1 < 1 + γ < 1. The null hypothesis can be rejected by a
standard t-test where the p-value returns less than 0.05.

Using regression ∇ystk as a first differentiating lag provides weak stationary because there
may be still an autocorrelation within the error terms, and ADF is introduced to use p-lags
past in the model ∇y(t−p),k with the same statistical test as

∇ystk = α0k + βkt+ γys(t−1),k +
p∑

n=1
ρn−1∇y(t−n+1),k + εtk, (5.2.3)
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where ρ is the differentiating parameter at lag n. Several approaches were introduced in
the literature for the ADF test. We use the Akaike information criterion (AIC) approach
(Sakamoto et al., 1986).

Table 5.2 reports the ADF test results for a shipper and a carrier data requests and offers.
The ADF test statistic using the AIC method returns the minimum value of information cri-
teria −18.441 and −18.523 for the requests and offers’ values, respectively. The prominence
of p-value is noticeable where the value is much less than 0.05, and we can strongly reject
the null hypothesis and verify the stationary of the time-series data. Choosing 1-past lag
shows the order needed to apply for the regression to achieve the minimum value of the AIC
method by using (5.2.2), for the 0.1, 0.01, 0.05 critical values. The fairly similar values of
requests and offers in the table are due to the normal distribution assumed in both cases.

Table 5.2. Augmented Dickey-Fuller test for a shipper and a carrier datasets.

Requests Offers
ADF test statistic −18.441 −18.523
p-value 2.159e−30 2.107e−30

p-lags 1 1
n-observations 1008 1008
0.01 critical values −3.436 −3.436
0.05 critical values −2.864 −2.864
0.1 critical values −2.568 −2.568

By verifying the stationary of the time series we can use the ARIMA-based models
without differencing order explained in the next section.

5.2.2. Model Selection

For model selection, we can analyze the ACF and PACF to determine the (p,d,q)-orders.
We use two ARIMA models for forecasting requests and offers values over the following time
periods. The first model is an ARIMA(p,d,q) model, and the second is an AR model based
on ARIMA(p,q,0) aiming to build a model with a higher forecasting error rate. Based on
Section 4.3, we set the order of differencing d to zero to select the best model.

We estimate PACF by computing φ̂(p) from equation (3.1.15) for each lag with its past
lags without considering the lags in-between, to select the p-order of the AR model. That
means the total number of lags of ((N/2) − 1) we can consider in computing. Table 5.3
demonstrates the PACF estimation for a sample of past 10-lags for both datasets. Since
forecasting for new requested volumes and offered volumes follows the same process, we show
ystk and yctv by yt in forecasting results, for the sake of simplicity. We depict the results for a
shipper-demand requests and a carrier-capacity offers data, then we forecast ŷt+1, . . . , ŷt+10

for N number of shippers and M number of carriers, as explained in Section 4.1.
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Table 5.3. Estimated partial autocorrelation function for 10-lags of a shipper and a carrier
time series data.

Lags Requests Offers
yt−1 −4.509e−1 −3.628e−1

yt−2 3.653e−1 3.322e−1

yt−3 2.451e−2 1.433e−2

yt−4 2.870e−3 −3.021e−2

yt−5 1.201e−2 1.022e−2

yt−6 −3.012e−2 1.441e−2

yt−7 2.557e−2 −5.403e−2

yt−8 5.875e−2 6.646e−3

yt−9 −1.728e−2 8.018e−3

yt−10 −3.807e−3 −3.444e−2

Fig. 5.2. Requests and offers values partial autocorrelation correlogram.

We use the statistical significance test to select the p-order of the AR models by 95%
confidence interval. We plot the PACF correlogram of both sides in Figure 5.2. For the sake
of clarity, we plot 100 observations. The two past lags significance from t = 0 is clear, we
can also see after 2-lags the process sharply cutoff to zero. That means we can estimate the
AR model with order of 2 for both sides.

To select the q-order of the MA model, we estimate ACF by computing ρ̂(q) using
equations (3.1.13) and (3.1.14), for each lag. Table 5.4 shows the ACF estimation for a
sample of past 10-lags of both sides’ data. In the estimated values, we aim to determine
how many lags are needed to take into account to eliminate any autocorrelation within the
generated error terms. In that sense, we use the statistical significance test to select the
q-order of the MA models by 95% of a confidence interval. Figure 5.1 points out that the
autocorrelation correlogram is symmetric plotting; we consider just the positive lags. The
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Table 5.4. Estimated autocorrelation function for 10-lags of a shipper and a carrier time
series data.

Lags Requests Offers
yt−1 −0.450 −0.362
yt−2 0.494 0.420
yt−3 −0.289 −0.211
yt−4 0.260 0.164
yt−5 −0.164 −0.091
yt−6 0.116 0.074
yt−7 −0.062 −0.083
yt−8 0.081 0.059
yt−9 −0.053 −0.053
yt−10 0.054 0.013

past two lags from the t = 0 time period are significant; hence we can estimate the order of
2 for the MA model.

In practice, finding orders of the model is an iterative process by fitting the model with
the estimated orders and using statistical tests, which may lead us to overestimate the orders.
To make our estimation more accurate, we use the AIC method for selecting the orders, the
same as when we used the AIC method for the statistical significance test, instead of the
standard t-distribution test in the stationary analysis. In general, AIC for estimating p and
q orders are computed as

AIC = 2(k − ln(L̂))
N

≈ N ln(σ̂2
a) + 2k
N

, (5.2.4)

where L̂ is the maximum likelihood estimation of σ2
a denoted by σ̂2

a, N is the number of
observations contributed in estimation, k = p + q + 1 is the number of estimated orders
which may include a constant term (Box et al., 2015). We aim to minimize the residual
variance σ̂2

a and iteratively adding k to the model as a penalty term to find the optimal.
Consequently, the best estimation of p and q orders is when the equation is minimized, and
we can take it as criteria for the model selection. Tables 5.5 and 5.6 show the model selection
information criteria using the AIC method with their related estimated parameters for the
requests and offers data.

Even though all AR models in Tables 5.5 and 5.6 satisfy the standard t-test, we can see
that each model’s AIC criteria are different. We select the model for forecasting with the
minimum AIC criteria, ARIMA(2,0,0) for both datasets. It can also be verified by comparing
the truth models’ orders highlighted in the tables. In terms of comparing parameters as
another indicator, we set α1 = −0.25, and α2 = 0.35 to generate the ground truth for both
shippers and carriers, depicted in Table 5.1. The selected model for shippers’ data inferred
the parameters better than the other models compared to the data generator’s parameters.
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Table 5.5. Model selection information criteria and estimated parameters of shippers’
dataset.

AIC α1 α2 α3 θ1
ARIMA(1,0,0) 5235.1 -0.44 0 0 0
ARIMA(2,0,0) 5093.2 -0.28 0.36 0 0
ARIMA(3,0,0) 5094.5 -0.29 0.37 0.02 0
ARIMA(0,0,1) 7249.8 0 0 0 -0.26
ARIMA(2,0,1) 5094.5 -0.21 0.39 -0.07 0
ARIMA(1,0,1) 5141.2 -0.82 0 0 0.46
ARIMA(3,0,1) 5096.5 -0.29 0.37 0.02 -0.0014
ARIMA(2,2,0) 6119.0 -1.32 -0.51 0 0

Table 5.6. Model selection information criteria and estimated parameters of carriers’
dataset.

AIC α1 α2 α3 θ1
ARIMA(1,0,0) 9925.9 -0.36 0 0 0
ARIMA(2,0,0) 9812.0 -0.24 0.33 0 0
ARIMA(3,0,0) 9813.7 -0.24 0.33 0.017 0
ARIMA(0,0,1) 11891.3 0 0 0 -0.21
ARIMA(2,0,1) 9813.9 -0.22 0.33 0 -0.018
ARIMA(1,0,1) 9852.6 -0.78 0 0 0.48
ARIMA(3,0,1) 9815.7 -0.24 0.33 0.017 0.0001
ARIMA(2,2,0) 10672.1 -1.33 -0.53 0 0

The estimated parameters are similar in the three models in the carriers’ data, which indicates
that those models may produce similar forecasts. We predict the successive 10 time periods
on each time series data by fitting the selected model. Table 5.7 illustrates the forecasted
new requested volumes and offered volumes, the ground truth, and the residuals for each
time period.

In this section, we used several tests to find the best orders of ARIMA-based models
and provide the best estimation of parameters by comparing the models to the ground truth
values. In the next section, we analyze the performance of represented forecasting models
with the help of two performance measurement metrics to select the two models.

5.2.3. Forecast Performance Analysis

Depending on the data under study, selecting which performance metric to use can be dif-
ferent. To analyze the residuals, we use regression metrics to assess the performance. We use
two data parameter-free metrics to evaluate the performance because we have two different
datasets for shippers and carriers with varying data parameters. We use the minimum-
maximum (Min_Max) error metric for the first performance measurement and the mean
absolute percentage error (MAPE) for the second metric. Since the generated and predicted
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Table 5.7. Forecasted new requested volumes and offered volumes for the next 10 time
periods using ARIMA(2,0,0).

Requests Offers
Lags Forecasted Ground truth Residuals Forecasted Ground truth Residuals
yt+1 13.8 13.3 -0.5 94.1 100.9 6.8
yt+2 7.3 8.7 1.4 122.0 149.1 27.1
yt+3 15.1 12.1 -3 103.5 125.8 22.3
yt+4 1.0 9.5 8.5 117.2 134.2 17
yt+5 11.9 11.5 -0.4 107.8 102.6 -5.2
yt+6 7.4 9.9 2.5 114.6 66.3 -48.3
yt+7 10.4 11.1 0.7 109.9 102.6 -7.3
yt+8 10.6 10.2 -0.4 113.3 121.6 8.3
yt+9 15.9 10.9 -5 110.9 72.5 -38.4
yt+10 7.7 10.3 2.6 112.6 130.1 17.5

values vary over the mean, we aim to see how the models perform for very small and very
large volumes of requests and offers through the Min_Max Error function. It does so by
averaging the minimum value of actual requests or offers concerning the minimum value of
forecasted demands or offers ŷt over the maximum of both sides’ actual and predicted values.
The minimum-maximum error function over schedule length T is defined as

Min_MaxError(yt|T , ŷt|T ) = 1− 1
T

T∑
n=1

min(yt+n, ŷt+n)
max(yt+n, ŷt+n) . (5.2.5)

We use the MAPE function (5.2.6) as the second performance metric to show the error
percentage of predicted requests and offers’ values. The MAPE metric returns the propor-
tional error of estimated values over the schedule length T ,

MAPE(yt|T , ŷt|T ) = 1
T

T∑
n=1

|yt+n − ŷt+n|
max(ε, |yt+n|)

, (5.2.6)

where ε is a small constant to avoid deviation by zero when the system observed zero values.
We forecast the new requested volumes and offered volumes for the successive 10 time

periods by fitting the models in Table 5.6 and then computing the Min_Max Error and
MAPE to verify the selected ARIMA(2,0,0) by our previous analysis. Table 5.8 reports the
performance evaluation results for a shipper-demand requests and a carrier-capacity offers’
volumes.

Since we analyze the forecasting residuals in Table 5.8, the lower the value, the better
it is. The selected model, ARIMA(2,0,0), performs better in both evaluation metrics than
the other models. From this, as for the accuracy of the chosen model, the Min_Max Error
metric shows 77.6% accuracy in observing very small or very large shipments’ volumes. On
the other hand, the MAPE measures 0.6% sensitivity regarding the actual values with their
corresponding forecasted values. This evaluation confirms our previous analysis regarding
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Table 5.8. Performance evaluation results for the successive 10 time periods of a shipper
and a carrier time series data.

Requests Offers
Min_Max Error MAPE Min_Max Error MAPE

ARIMA(1,0,0) 0.263 0.156 0.171 0.220
ARIMA(0,0,1) 0.275 0.182 0.175 0.224
ARIMA(2,0,0) 0.224 0.006 0.163 0.213
ARIMA(3,0,0) 0.226 0.009 0.165 0.214
ARIMA(2,0,1) 0.226 0.009 0.164 0.214
ARIMA(1,0,1) 0.226 0.009 0.152 0.202
ARIMA(3,0,1) 0.232 0.013 0.165 0.214
ARIMA(2,2,0) 0.573 0.268 0.536 0.555

ACF, PACF, and AIC criteria for selecting the ARIMA(2,0,0) to provide new requested
volumes’ information for the decision-maker. Both metrics show very close errors for models
with orders (3,0,0), (2,0,1), and (1,0,1), because the data is normally distributed.

The ARIMA(1,0,1) performs better for the carriers’ dataset in both performance metrics
regarding very small and very large capacities’ values and the relative errors at all forecasted
time periods. To find the best model we increased the number of data records to 10,000
and repeated the performance evaluation steps. In the case of ARIMA(2,0,0), the Min_Max
Error metric returns 0.136, and shows 89.1% of accuracy that is 2.3% more accurate than
the ARIMA(1,0,1) with 0.159 of error. The MAPE returns 18.6% of sensitivity in terms
of actual values with their related forested, which performs better than the ARIMA(1,0,1).
From that, we select the ARIMA(2,0,0) to provide new offered volumes’ information for the
decision-maker.

In evaluating the other models, ARIMA(0,0,1) tends to the mean after 1-step ahead
forecasting over both shippers and carriers’ datasets, which shows the property of MAmodels.
We observe, however, that, with the exception of ARIMA(2,2,0), all the other models are
not significantly worse than the best one. Therefore, in order to provide more insights into
the impact of prediction errors on optimization, we select the worst model, ARIMA(2,2,0),
which is expected to perform poorly. The model yields Min_Max Error metrics of 57.3%
and 53.6% error, respectively. As to MAPE metric, the ARIMA(2,2,0) returns 26.8%, and
53.6% of sensitivity with respect to the ground truth with their corresponding forecasted
values.

We use the two selected models to forecast new requested volumes and offered volumes
over the operational horizon and create matrices Y s and Y c explained in Section 4.1 to
provide information for the optimization modeling.
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5.3. Impact of Forecast Errors on Solution Quality
In this section we report the main results. We evaluate the impact of forecasting results

on the performance of the optimization model 1/V/V/S/N[I2B] described in Section 4.1.
We solve the (4.1.3)-(4.1.9) by HM1, then analyze the impact of forecast errors on solution
quality. We measure this impact for each instance based on percentage error δ that is
computed for a given forecasting model in three steps:

1. Solve (4.1.3)-(4.1.9) using ground truth values, Ys, and Yc, giving solution value G.
2. Solve (4.1.3)-(4.1.9) using forecasts Ŷs and Ŷc.
3. Evaluate the cost F according to (4.1.3)-(4.1.9) of the solution obtained in Step 2

using ground truth values Ys and Yc. Note that in case of excess demand, it is
covered by spot-market vehicles at a cost.

The resulting metric is then
δ = F −G

G
· 100. (5.3.1)

Table 5.9 reports the calculated total costs for Set 1 and Type 1 in Fomeni et al. (2021)
instance over 10 successive time periods. We use forecasts generated by ARIMA(2,0,0) and
ARIMA(2,2,0) to provide data for aforementioned three steps.

As for illustrating the performance of the forecasting models over different experiments we
use average forecast error, mean absolute relative error, and 10th and 90th percentile forecast
error metrics for shippers’ requested volumes across the operational horizon on Table 5.10.
We also use aforementioned performance metrics for carriers’ offered volumes reported in
Table 5.11.

Table 5.9. Total assignment cost (ground truth G and using forecasts F ) over ten time
periods.

Total assignment cost
(Requests, Offers) ARIMA(2,2,0) ARIMA(2,0,0) Ground truth

(100, 97) 12641 10852 9984
(200, 51) 24087 23625 23600
(300, 84) 36169 33573 32868
(500, 11) 57308 56522 55207
(750, 74) 100224 95182 90594
(1000, 73) 142490 129150 121576

Table 5.12 shows the computed percentage error for the two models along with the fore-
cast errors on the 10 days horizon in Table 5.10 and Table 5.11. As for analyzing the
impact of forecasting errors on the solution quality, we use the same two forecasting mod-
els to produce data from Section 5.2.2. On the first experiment using (100, 97) of requests
and offers, ARIMA(2,0,0) shows 17.92% better performance in comparison to ARIMA(2,2,0)
with respect to load-to-carrier selection and assignment decisions. On the other hand, by
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Table 5.10. Forecast errors produced by ARIMA(2,2,0) and ARIMA(2,0,0) for shippers’
requested volumes over the operational horizon.

ARIMA(2,2,0) ARIMA(2,0,0)

Requests Mean Absolute
Error (MAE)

Mean Absolute
Relative Error

10th Percentile
Error MAE

90th Percentile
Error MAE

Mean Absolute
Error (MAE)

Mean Absolute
Relative Error

10th Percentile
Error MAE

90th Percentile
Error MAE

100 6.41 0.78 1.0 14.5 2.92 0.58 0.55 6.60
200 6.48 0.76 1.0 14.0 2.91 0.41 0.40 6.45
300 7.53 0.85 1.0 17.0 3.03 0.42 0.50 6.10
500 8.07 0.94 1.0 17.0 2.83 0.39 0.50 5.85
750 8.04 0.95 1.0 18.0 2.81 0.41 0.40 5.70
1000 7.74 0.89 0.4 17.0 2.84 0.37 0.40 5.70

Table 5.11. Forecast errors produced by ARIMA(2,2,0) and ARIMA(2,0,0) for carriers’
offers volumes over the operational horizon.

ARIMA(2,2,0) ARIMA(2,0,0)

Offers Mean Absolute
Error (MAE)

Mean Absolute
Relative Error

10th Percentile
Error MAE

90th Percentile
Error MAE

Mean Absolute
Error (MAE)

Mean Absolute
Relative Error

10th Percentile
Error MEA

90th Percentile
Error MAE

97 69.39 0.72 11.5 131.4 30.18 0.33 5.8 54.1
51 64.55 0.56 6.1 143.1 23.14 0.21 4.2 51.6
84 50.31 0.49 8.7 110.5 24.39 0.26 3.0 52.9
11 110.51 1.26 60.2 171.5 22.0 0.29 4.4 42.4
74 86.86 0.88 13.6 184.6 27.32 0.27 4.3 54.4
73 155.81 1.63 25.3 270.6 31.95 0.37 8.2 60.1

Table 5.12. Percentage error of objective function value due to forecasting.

Percentage Error Objective Function
(Requests, Offers) ARIMA(2,2,0) ARIMA(2,0,0)

(100, 97) 26.61 8.69
(200, 51) 2.06 0.10
(300, 84) 10.04 2.14
(500, 11) 3.80 2.38
(750, 74) 10.62 5.06
(1000, 73) 17.20 6.22

referring to Table 5.10 and Table 5.11, we can see that on the same experiment using 100 re-
quests and 97 offers, the ARIMA(2,0,0) returns 3.94 lower average forecast error for requests
and 39.18 lower average forecast for offers, as well as, 0.20 lower average relative forecast
error for requests and 0.39 lower average relative error for offers. As for 10th and 90th
percentile metrics, the results for the same experiment show 0.45 lower in 10th percentile
forecast error, and 7.9 lower in 90th percentile error using 100 requests for ARIMA(2,0,0)
compare to the ARIMA(2,2,0) model. In addition, for the carrier’s side, the result for 97
offers shows 5.7 lower in 10th percentile forecast error and 77.3 lower in 90th percentile
error for ARIMA(2,0,0) compare to the ARIMA(2,2,0) model. That means the selected
model with lower forecast error performs better than ARIMA(2,2,0) regarding assignment
decisions. To verify that, we compute the percentage errors and forecast errors by experi-
menting with different sets illustrated in Tables 5.10, 5.11 and 5.12. Going down the tables,
the result shows lower percentage errors and forecast errors using the ARIMA(2,0,0) beating
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the ARIMA(2,2,0) by a handy margin. In other words, the selected model in all experiments
outperforms the ARIMA(2,2,0) model.

The mean absolute relative errors of ARIMA(2,2,0) are in the range 49-163% and
ARIMA(2,0,0) in the range 21-58% considering both shippers and carriers. The result-
ing deterioration in solution quality nevertheless range between 0.1-8.7% for ARIMA(2,0,0)
and 2.1-26.6% for ARIMA(2,2,0). Optimizing assignment and consolidation decisions hence
allows to reduce the magnitude of the impact of forecast errors.
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Chapter 6

Conclusion and Future Work

The task of forecasting shippers’ requested volumes and carriers’ offered volumes for oper-
ational planning of M1M systems is inevitable and a necessity considering the uncertainty
of new information involved. This work focused on assessing the impact of forecast errors
on operational planning quality. Several autoregressive moving average approaches, where
we forecast new requested volumes and offered volumes characterized by their physical and
time attributes over the following time periods of the operational horizon. We generated
the quantile over quantile random normal distributed time series data for both sides with
respect to predefined boundaries. We systematically evaluated the performance of several
ARIMA models following a forecasting process to select the best model as the forecaster.
The forecaster provided new information for the decision-maker. We evaluated the impact
of forecasting errors on the optimization model, where we computed, e.g., the total cost,
percentage errors and average errors.

To summarize our contribution, we provide the data for the optimization model by using
two ARIMA models from the forecasting process. We solve the optimization model using
ground truth and forecast values and evaluate the cost by computing percentage error for
the two ARIMA models. We analyzed the impact of forecast errors produced by these two
models on the solution quality. We measured the impact based on the percentage error
measurement metric. We also analyzed the forecast errors produced by the forecasting
models for different sets for both sides’ requests and offers’ volumes over the operational
horizon. Our analysis showed how the model with lower forecast errors could positively
impact the decisions. While there is an increase in forecasting accuracy, we observed that
the decision-maker could rely on the forecasting provided data as the known information to
use in its decisions. We concluded that 1) even an imprecise forecast could be useful (the
magnitude of the impact on solution quality is smaller than the magnitude of the forecast
errors), at least in the context of our experiments, and 2) optimizing the assignment and



consolidation decisions over several periods allows to reduce the magnitude of the impact of
forecast errors.

Future work should continue to focus on the impact of forecasting errors on optimization
modeling, in particular using data-driven approaches which handle time-series data, e.g., ma-
chine learning and neural networks. In real applications, when the actual model is unknown,
estimating forecast models’ parameters is more challenging than using the synthetic gener-
ated data in this research. Hence we should investigate the results according to different true
and forecast models. Moreover, in general, future work should be dedicated to finding the
best forecasting models for complex optimization-based decision-support methods to insure
the reliability of forecasting provided data. Moreover, future work should focus on extend-
ing forecasting models to provide information for the decision-maker that works in general
freight transportation networks consists of several origins and destinations which leads us
to a time-space forecasting problem. We also extend our focus on learning the forecasting
models jointly with the optimization modeling as the long perspective of future work.
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