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Résumé 

Les forêts sont une ressource naturelle importante sur le plan écologique, culturel et 

économique, et sont confrontées à des défis croissants en raison des changements 

climatiques. Ces défis sont difficiles à prédire en raison de la nature complexe des 

interactions entre le climat et la végétation, dont une le feu. Compte tenu de l’importance des 

écosystèmes forestiers, des dangers potentiels des feux de forêt et de la complexité de leurs 

interactions, il est primordial d'acquérir une compréhension de ces systèmes à travers le 

prisme de la science des systèmes complexes. La science des systèmes complexes et ses 

techniques de modélisation associées peuvent fournir des informations sur de tels systèmes 

que les techniques de modélisation traditionnelles ne peuvent pas. Là où les techniques 

statistiques et basées sur équations cherchent à contourner la dynamique non-linéaire, auto-

organisée et émergente des systèmes complexes, les approches de modélisation telles que 

les automates cellulaires et les modèles à base d'agents (MBA) embrassent cette complexité 

en cherchant à reproduire les interactions clés de ces systèmes. Bien qu'il existe de nombreux 

modèles de comportement du feu qui tiennent compte de la complexité, les MBA offrent un 

terrain d'entente entre les modèles de simulation empiriques et physiques qui peut fournir 

de nouvelles informations sur le comportement et la simulation du feu. Cette étude vise à 

améliorer notre compréhension du feu dans le contexte de la science des systèmes complexes 

en développant un tel MBA de propagation du feu. Le modèle utilise des données de type de 

carburant, de terrain et de météo pour créer l'environnement des agents. Le modèle est 

évalué à l'aide  d’une étude de cas d'un incendie naturel qui s'est produit en 2001 dans le sud-

ouest de l'Alberta, au Canada. Les résultats de cette étude confirment la valeur de la prise en 

compte de la complexité lors de la simulation d'incendies de forêt et démontrent l'utilité de 

la modélisation à base d'agents pour une telle tâche. 

Mots-clés : modèle à base d'agents (MBA/ABM) ; perturbations forestières ; écologie du 

paysage ; comportement du feu ; simulation d'incendie de forêt ; systèmes complexes 
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Abstract 

Forests are an ecologically, culturally, and economically important natural resource that face 

growing challenges due to climate change. These challenges are difficult to predict due to the 

complex nature of the interactions between climate and vegetation. Furthermore, fire is 

intrinsically linked to both climate and vegetation and is, itself, complex. Given the 

importance of forest ecosystems, the potential dangers of forest fires, and the complexity of 

their interactions, it is paramount to gain an understanding of these systems through the lens 

of complex systems science. Complex systems science and its attendant modeling techniques 

can provide insights on such systems that traditional modelling techniques cannot. Where 

statistical and equation-based techniques seek to work around the non-linear, self-organized, 

and emergent dynamics of complex systems, modelling approaches such as Cellular 

Automata and Agent-Based Models (ABM) embrace this complexity by seeking to reproduce 

the key interactions of these systems. While there exist numerous models of fire behaviour 

that account for complexity, ABM offers a middle ground between empirical and physical 

simulation models that may provide new insights into fire behaviour and simulation. This 

study seeks to add to our understanding of fire within the context of complex systems science 

by developing such an ABM of fire spread. The model uses fuel-type, terrain, and weather 

data to create the agent environment. The model is evaluated with a case study of a natural 

fire that occurred in 2001 in southwestern Alberta, Canada. Results of this study support the 

value of considering complexity when simulating forest fires and demonstrate the utility of 

ABM for such a task.  

Keywords: agent-based model (ABM); forest disturbances; landscape ecology; fire 

behaviour; wildfire simulation; complex systems science 
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Chapter 1 - Introduction and context 

1. Introduction 

Invoked by Waldo Tobler in 1970, the first law of geography states that “Everything is related, 

but near things are more related than far things.” While this statement pertains more to the 

spatial nature of interconnectedness, it nevertheless tells us that geography is the study of 

connected things. Whatever part of the world under study, it does not exist in a void, and is 

part of a system of interacting elements that connect through processes across and between 

scales. By looking at these elements and their interactions, we can better understand how 

and why higher-level characteristics emerge. Complex systems theory provides the means to 

study these connections and interactions and the resulting characteristics. 

In brief, a complex system is one consisting of multiple parts interacting in ways that produce 

emergent behaviour. This emergence is the result of non-linear dynamics that are not easily 

predictable by classical mathematical means, and therefore simulation is the primary method 

for studying complex systems (Batty & Torrens, 2005). Section 2 of this chapter goes into 

more detail about complex systems and some modelling techniques, and Section 5 describes 

the general process of complex systems modelling. Among the available simulation 

techniques, Agent Based Modelling (ABM) is a versatile tool whose basis is the interaction 

between heterogeneous elements called agents (so-called because they have agency within 

the simulated world, in acting upon and reacting to the world and other agents) (Sengupta & 

Sieber, 2007).  

Going back to the idea that most of the world consists of interconnected systems, a prime and 

vital example are forest ecosystems (Filotas et al., 2014; Parrott, 2010). Forests are 

intrinsically linked to the global climate system, where changes in one feed back into the 

other, via temperature, precipitation, carbon cycling, respiration, etc. Affecting and affected 

by both climate and vegetation, fire is another vector of feedback between climate and 

vegetation (Harris, Remenyi, Williamson, Bindoff, & Bowman, 2016; Messier et al., 2015). The 

patterns of fire activity that form over time are a result of interactions with climate and 

vegetation, including the evolution of fire-adapted species (both fire-encouraging and fire-
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suppressing) (Parks, Holsinger, Miller, & Nelson, 2015). At a smaller scale, each individual 

fire is a complex system in and of itself, dependent on vegetation and weather conditions to 

start and grow, but feeding back into the atmosphere over its evolution. While individual fires 

act on a miniscule scale compared to the global climate, complexity and emergence at that 

scale can inform emergence at the larger scale. Fire, as a necessary component of many 

ecosystems around the world, is also destructive and dangerous to human lives and property 

(Bowman et al., 2009; Hammer, Stewart, & Radeloff, 2009). Given also the increasing 

devastation of forest fires in recent history, linked to climate change, it is more relevant than 

ever to study them (Chuvieco et al., 2016). 

1.1 Research questions 

Given that fires are complex, it makes sense to think of them from a complex systems 

viewpoint. Doing so opens up a toolset of modelling approaches and techniques that can 

potentially offer new insights into fire behaviour or how to simulate fire behaviour. Agent-

Based Modelling, mentioned earlier, offers an intriguing way to simulate fire spread; like an 

agent, fire is a spatial phenomenon that reacts to local stimuli (fuel, wind, terrain) and acts 

upon its environment (consuming fuel and affecting wind). This leads us to two broad 

research questions: 

 Can a complex systems approach provide new insights into fire behaviour?  

 Can it be simulated with an agent-based modelling approach? 

1.2 Research objectives 

Answering these questions requires the development and evaluation of an ABM of fire 

spread. This ABM must incorporate at least the core elements of the system that make fire 

complex and its evaluation must identify its level of validity enough to make conclusions 

about the use of ABM for modeling fire spread. This leads us to three research objectives: 

 To develop an ABM of forest fire behaviour based on a complex systems 

approach 

 To demonstrate the importance of considering complexity within this model 

 To evaluate the model with the best available data 
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The goal of this research is exploratory, not explanatory. It does not seek to improve our 

understanding of the processes of fire behaviour at this stage, but rather to see what a new 

modelling approach can offer. Furthermore, given the difficulties, if not impossibility, of full 

model validation, the third objective refers instead to evaluation. This objective involves 

validation efforts, but accepts that the model may not reach a state of validity suitable for 

reliable predictions of scenarios for which the model is not calibrated. Its validity revolves 

around the demonstration of ABM applied to forest fires, rather than the exact formulation’s 

ability to predict new fire behaviour. 

The rest of this chapter begins with a deeper explanation of complex systems theory, 

followed by an overview of forests and fire in light of complexity. This aims to demonstrate 

that it is appropriate to consider both of these as complex systems. Perhaps the best way to 

study a complex system is not only to model it, but to simulate it (Batty & Torrens, 2005; A. 

Heppenstall et al., 2021; Puettmann, 2013). Therefore, this chapter follows up with a review 

of fire models at different scales and levels of complexity, and it ends with a description of a 

general modelling approach for complex systems. Addressing the research objectives above, 

the second chapter presents a scientific article that describes and evaluates a model based 

on a complex system modelling approach, with a literature review that contextualizes it 

among the most relevant fire behaviour models. Finally, a third chapter presents the general 

conclusions brought by this research. 

2. Complex systems 

Complex systems are difficult if not impossible to explain by classical equation or statistic-

based means because of certain key properties (Niazi & Hussain, 2013; Parunak, Savit, & 

Riolo, 1998). Complex systems are dynamic: they change over time and constantly evolve, 

whether or not the changes are apparent. They are composed of many elements: these can 

be heterogeneous and they interact with each other. These interactions often involve 

feedback loops: elements that are not in direct interaction may affect each other through a 

chain of interactions, possibly between or across scales. These interactions between 

elements can give rise to self-organisation in the form of hierarchies, groupings, or stable 

pathways (Puettmann, 2013; Weimer, Miller, & Hill, 2016). The key characteristic of a 
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complex system, and the main reason they are non-linear, is emergence. Through those 

interactions of myriad elements, patterns form and behaviours appear that are not 

necessarily predictable based solely on the initial inputs to the system. Because of these 

properties, the best way to understand, explore, or predict the behaviour of a complex system 

is to simulate it (Batty & Torrens, 2005; Messina et al., 2008). At the very least, simulation 

allows interactions over time, something unavailable to classical means. 

There are two broad approaches to simulating a complex system, Cellular Automata (CA) and 

Agent-Based Modeling (ABM). Cellular Automata are a mathematical representation of a 

complex system wherein a lattice of cells is subject to a set of rules that determine their state 

and state information is passed between neighboring cells (Gaudreau, Perez, & Drapeau, 

2016; Wolfram, 1984). Perhaps the most famous example of a CA is John Conway’s Game of 

Life (Connelly, Berlekamp, Conway, & Guy, 1986), first introduced in 1970. Since then CA 

models have been used to simulate systems ranging between forests and fires (Hogeweg, 

1988; Karafyllidis & Thanailakis, 1997; Yassemi, Dragićević, & Schmidt, 2008), land use and 

cover change (Kocabas & Dragicevic, 2007) to problems relating to diffusion limited 

aggregation (Witten & Sander, 1983) and more. However, one of the limits of CA in simulating 

some systems is the fixed and regular location of the automata. Some complex systems, like 

ecosystems with roaming prey and predators, need some kind of freedom of movement. 

Others, instead, may be better represented as networks, where the connectivity between 

automata is more relevant. In this sense, ABM is the conceptual successor to CA, where agents 

are computational automata situated in some environment that they can perceive, influence, 

and react to (Langlois, 2010). The term “agent” reflects the “agency” of the automaton in that 

it can act upon its environment and with other agents (Grimm et al., 2005). 

Because of this agency and the possibility of mobility and interactions among agents and 

between agents and their environments, ABM is an excellent fit for complex spatial systems 

(Heppenstall et al., 2021; Langlois, 2010; Torrens, 2010). The focus of both CA and ABM is on 

complexity from simplicity, i.e., that complex behaviours should emerge from the simplest 

possible rules. However, the agency and heterogeneity of agents allow for more convoluted, 

and complex, rules and interactions. This facilitates ABM to address new areas of complexity 

such as predator-prey relationships (Grimm et al., 2005), environmental planning and policy 
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(Ager et al., 2018; Pérez & Dragićević, 2010; Spies et al., 2014), evacuation (Helbing & 

Johansson, 2012) and social networks (Macal & North, 2014), as well as simulate systems 

that CA could, but with new layers of complexity, such as land use and cover change (Ngo & 

See, 2012) or forest succession (Keane et al., 2004).  

Throughout this thesis, we will discuss a range of models pertaining to forests and fires, each 

using different approaches and with differing levels of complexity. An objective classification 

of models is beyond the scope of this work, but we strive to align those presented here on the 

axis of complexity. The least complex are linear and lack feedback mechanisms, while the 

most complex feature numerous interacting systems at high granularity. Before getting to the 

models themselves, we must understand the system in question. Therefore, the next section 

provides a broad background on forest fires and illustrates how forests and fires both are, 

and are part of, complex systems. This leads us to the value of simulation modelling and a 

brief review thereof as applied to fire behaviour.  

3. Forests, fires, and complexity 

3.1 Forests 

Forests cover almost 38% of Canada’s land area, consisting of almost 350 million ha, 77% of 

which is found in the Boreal zone (Natural Resources Canada, 2020). Their cultural, 

ecological, and economic value makes them an important research topic. Forests are a 

complex system, exhibiting heterogeneity, hierarchy, self-organization, and non-linearity. 

Heterogeneity in forests is not limited to biodiversity, but includes variety in time and space, 

such as age differences among trees that contribute to the biodiversity of understory species 

as well as disturbance dynamics like gap formation. Even forest stands with little diversity in 

species can have great intraspecific genetic diversity that can contribute to the emergent 

resilience of the ecosystem (Filotas et al., 2014). Diversity also exists across larger spatial 

scales due to soil properties, hydrology, and topography contributing different resources to 

the ecosystem. 

It is the interactions among these heterogeneous components that form the basis for 

complexity and lead to hierarchy, self-organization, and non-linearity. These interactions can 
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happen across and between spatiotemporal scales. Cross-scale interactions are the basis for 

the hierarchies present in a complex system (Cash et al., 2006). Trophic levels within a food 

web serves as a familiar example of hierarchies, where primary producers form a base level, 

above which lie their consumers, which are in turn dominated by predators (Simon, 1998). 

A food web itself is a complex system that connects in many ways to broader systems. Socio-

economic elements also contribute to the hierarchical organization of forests, where 

interactions between (human) stakeholders in those systems influences forest development 

in the form of management, harvesting, and preservation (which themselves may encompass 

a variety of spatiotemporal scales) (Messier et al., 2015; Parrott & Meyer, 2012; Spies et al., 

2014). Hierarchies are also present along a temporal axis, where species longevity, for 

example, determines the time window over which processes are relevant or planning 

horizons in forest management (Filotas et al., 2014). In the spatial dimension, hierarchies 

exist in the scale of influence of individual organisms and plant communities. For a brief 

example, the Mountain pine beetle (Dendroctonus ponderosae Hopkins), is a small wood-

boring insect whose collective behaviour can result in large swathes of dead trees (Pérez & 

Dragićević, 2011; Safranyik & Carroll, 2006). Disturbances also contribute to spatial 

hierarchies, where small disturbances (e.g., gaps from felled trees, small fires) produce spots 

where new interactions are available and directly influenced by nearby vegetation (Turner 

& Simard, 2002). Large disturbances, however, can have vastly different effects. For example, 

in a large clear-cut, the perimeter is subject to influence by untouched vegetation, but the 

inner area can suffer soil degradation or follow a successional path unusual for that area of 

forest (Johnstone et al., 2016; Lesieur, Gauthier, & Bergeron, 2002). Given the variety of 

effects possible from disturbances of differing sizes, there is a growing trend to mimic natural 

patterns, such as fires, when actively managing a forest (Drever, Peterson, Messier, Bergeron, 

& Flannigan, 2006; Hunter, 1993; Messier et al., 2015).  

Scale is an important consideration for complexity because small-scale interactions can cause 

patterns, behaviours, or characteristics to emerge at broader scales. These broad-scale 

behaviours often act as regulating mechanisms that maintain the lower-level interactions 

resulting in those patterns and behaviours, leading to an apparent self-organization (Riley & 

Thompson, 2016; Sneyd, Theraula, Bonabeau, Deneubourg, & Franks, 2001). These 
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mechanisms can in turn act in aggregate to form even higher-level patterns (spatially or 

temporally). It is important to note that not every small interaction propagates an effect up 

through scales, and that it is usually the aggregation of small interactions that becomes a 

pattern at a larger scale. In forest ecosystems, self-organizing behaviours are the driving 

force behind forest regeneration, and are essential components of forest health (Drever et al., 

2006; Johnstone et al., 2016). Forest health is a somewhat ambiguous term, but it generally 

refers to the ability of a forest to maintain itself and includes productivity, biodiversity, 

resistance and resilience (Brandt, Flannigan, Maynard, & Thompson, 2013). Competition is a 

simple form of self-organization that influences the larger-scale pattern of stand 

composition. For example, Boreal ericaceous shrubs, such as sheep laurel (Kalmia 

angustifolia), exert control on black spruce (Picea mariana) growth by reducing nutrient 

availability, to which black spruce is more sensitive than Kalmia, and by producing 

allelochemichals which affect the mycorrhizae community and inhibit black spruce seedling 

growth directly (Yamasaki, Fyles, Egger, & Titus, 1998). Thus, when given the chance (e.g. 

after a clear-cut or the formation of a gap in the canopy), Kalmia will outcompete black spruce 

regrowth and maintain its access to sunlight (Reicis et al., 2020).  

That particular kind of self-organization is reliant on disturbances. Disturbances are usually 

exogenous in origin, but forest ecosystems, in turn, influence those disturbances. Some plant 

species have functional traits that encourage those disturbances by which they regenerate 

their community. In wetter forests, certain tree species have shallow roots that make them 

prone to windfall, which encourages gap formation and seedling recruitment of a younger 

generation of that species (Filotas et al., 2014). In Canada, fire is the main agent of stand 

renewal across the Boreal forest, and has shaped the landscape for thousands of years 

(Brandt et al., 2013). 

3.2 Fires 

3.2.1 Interactions with forests 

Wildfires consume an average of about 2 million ha of forest land in Canada annually, 

although this can vary between years by an order of magnitude and it is difficult to extract a 

trend due to the complexities of the system (Stocks et al., 2002). Recent years have seen total 
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burned areas well above average (Canadian Forest Service, 2018; McCarten, 2021). Large 

fires (>200ha) compose 3% of total fires, but account for 97% of area burned, and due in part 

to the remoteness of Canada’s forests, lightning is the main source of ignition for large fires, 

though human ignitions account for a larger number of fires in general (Stocks et al., 2002). 

Given the ubiquity of fires in Canada, and as part of the self-organisation of disturbances, 

some plant species have evolved to thrive in fire-prone landscapes. Aspen (Populus 

tremuloides Michx), for example, can quickly reclaim burned forest patches by sprouting from 

stumps and roots (Smith, O’Loughlin, Buck, & St. Clair, 2011). Some trees have even evolved 

to engage in feedback loops that necessitate and perpetuate fire. In the Boreal forest, jack 

pine (Pinus banksiana Lamb) and lodgepole pine (Pinus contorta Douglas ex Loudon) have 

serotinous cones that only release their seeds under the high temperatures of a stand-

replacing fire, and serotiny correlates to dead branch retention, which acts as a fire-ladder 

that encourages intense crown fires (Bond & Keeley, 2005). The evolutionary benefit of the 

serotiny-fire feedback loop is since fires clear vegetation from the surface, and to some extent 

below ground, new seedlings face very little competition from other species. The frequency, 

pattern, and severity of fires over thousands of years has shaped the Boreal forest into a 

mosaic of species and stands whose species composition is closely tied to the time since the 

last fire (Gauthier, Bernier, Kuuluvainen, Shvidenko, & Schepaschenko, 2015).  

The evolutionary link between vegetation and fire goes beyond fire-prone landscapes that 

require and encourage fires, but is also a key factor in the equilibrium between grassland and 

forest cover in places like Australia and the Great Plains of North America (Bond & Keeley, 

2005; Scheffer & Carpenter, 2003). Furthermore, some studies argue that all vegetation is 

fire-adapted to some extent, as, for example, the temperate forests of the Eastern United 

States have evolved thick, fire-retardant barks and dense canopies that discourage 

understory growth (Bond & Keeley, 2005; Pausas & Keeley, 2009).  

Another aspect of self-organisation found in the relationship between forests and fires is the 

accumulation or removal of forest-floor litter (Hurteau, Liang, Westerling, & Wiedinmyer, 

2019). Coniferous trees as found in the Boreal forest or the Western US tend to produce a lot 

of litter that decomposes slowly compared to deciduous forests in the East (Weber & 

Flannigan, 1997). If dry enough, this bed of litter provides ample fuel for fast-spreading fires. 
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However, fires are self-limiting, in that they simply cannot burn the same place twice in short 

succession, as the fuel is gone (barring rare exceptions of low-severity fires followed by high-

intensity fires driven by weather) (Parks et al., 2015). This self-organising property of the 

fire cycle can have devastating consequences if disrupted (Pyne, 2001); the most notorious 

example is the effect of a policy of total fire suppression by the US Forest Service in the early 

20th century. By so disrupting the fire cycle, those efforts resulted in the unnatural 

accumulation of dead organic litter, which in turn led to larger and stronger forest fires, 

leading to rising costs of fire suppression (Taylor & Skinner, 2003).  

3.2.2 Danger 

Not only have extreme fires become more common in the last few years, but the danger to 

human life and property has increased due to the expansion of communities into forested 

ecosystems (Hope, McKenney, Pedlar, Stocks, & Gauthier, 2016; Kirchmeier-Young, Zwiers, 

Gillett, & Cannon, 2017; Lannom et al., 2014). That space where human infrastructure and 

property encroaches on forests and other vegetative fuels is termed the Wildland-Urban 

Interface (WUI) (Stewart, Radeloff, Hammer, & Hawbaker, 2007). This term generally relates 

to interactions between human development and fire, especially the cost of fires. The exact 

definition of the WUI and the methods to define it vary broadly between studies, but the term 

generally considers non-industrial infrastructure (homes, towns). However, industrial value 

is at risk from fire, from not only the destruction of the structures themselves, but also the 

disruptions to productivity from said destruction, evacuations, or loss of connecting 

infrastructure (e.g. roads or rails). A recent effort to map the WUI in Canada that includes 

industrial assets and infrastructure places the total WUI in Canada at 18.1 % of the country’s 

total land area (Johnston & Flannigan, 2018). Because of the varied methods used to define 

the WUI, it is difficult to quantify how it has changed over time, but the general consensus is 

that it is growing due to urban sprawl into outlying suburbs, increased demand for recreation 

properties, and population growth in isolated areas (Hammer et al., 2009).  

The encroachment of human structures into fire-prone areas often results in costly losses. 

Many factors comprise the cost of wildfires, including suppression efforts, destruction of 

property, natural resource loss, lost revenue, ecosystem degradation, and long-term health 

impacts (Richardson, Champ, & Loomis, 2012; Cordy Tymstra, Stocks, Cai, & Flannigan, 
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2020). The average annual fire suppression cost in Canada, from 1970 – 2009, was $537 

million (Hope et al., 2016), and some of the most destructive fires, based on insurance claims, 

cost hundreds of millions, with the largest Canadian wildfire of recent history, the Horse 

River Fire of 2016 in northern Alberta, costing $3.84 billion (Cordy Tymstra et al., 2020). Or 

a total of $9 billion according to Natural Resources Canada (2020). 

3.2.3 Fire as a complex system 

Fire itself is essentially a complex system of interactions between fuel, oxygen, and heat. 

Combustion occurs when a fuel particle reaches a temperature high enough to sustain rapid, 

exothermic oxidation (Byram, 1959). Burning material will heat fuel around it until it reaches 

its temperature of ignition, thus consuming more oxygen and releasing more heat, closing 

the feedback loop commonly referred to as the fire triangle. However, forest fuels are 

complicated structures consisting of a variety of combustible materials, which undergo a 

number of chemical reactions together known as combustion. There are three phases of 

woody fuel combustion: 1) preheating, in which the temperature rises, moisture evaporates, 

and some compounds decompose and become volatile, 2) gaseous oxidation of these 

volatiles, and 3) solid oxidation on the surface of the remaining charcoal (Byram, 1959; 

Korobeinichev et al., 2013). The energy from combustion transfers to unburned fuel by 

radiation and convection (Anderson, 1969). For vegetation, moisture content is the most 

important factor in determining its risk and rate of combustion, which is why precipitation, 

humidity, and temperature are important factors in determining fire danger and behaviour 

(Byram, 1959). Moisture content of fuel affects combustion in numerous ways. It absorbs 

heat as it warms up, and as it evaporates, it smothers flammable gasses and particles released 

to the air as woody fuels heat up. A higher moisture content is associated with a lower fire 

temperature and slower rate of spread. Wind plays an important role in directing energy 

transfer, and local gradients create a “backdraft” that angles the flames of a fire front and 

blows hot air over unburned fuels ahead of a fire. This preheats and dries the fuel, and the 

more energy released by a fire, the more pronounced this preheating effect (Byram, 1959; F.-

J. Chatelon, Balbi, Rossi, & Marcelli, 2013). As these interactions move between scales, such 

as from the very local environment of a single burning fuel element to the air moving in to 

feed that fire, more and more complexity is at play and new behaviours emerge. 
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Going up in scale from a single fuel element to a burning patch of forest, the release of energy 

is enough to start affecting local convection. Updrafts caused by the heat of a fire generate 

horizontal movement as the surrounding air moves into the pressure gradient. Due to this 

movement, the ambient wind field is not the only driving force of fire behaviour, and the fire-

generated wind can even become the dominant driver (Potter, 2002; Yedinak, Strand, Hiers, 

& Varner, 2018). Although with less complexity, vegetation structure and arrangement can 

also affect wind flow, usually by damping ambient flow as it drags along grasses, branches, 

and leaves (Pimont, Dupuy, Linn, & Dupont, 2011). What vegetation remains after the fire 

passes can also have an effect.  

Though difficult to predict, spotting is a common result of fire-atmosphere interactions, 

whereby wind carries aloft a piece of lightweight, burning material (called a firebrand) and 

transports it some distance from the fire front (Martin & Hillen, 2016). This can sometimes 

set ablaze a new section of forest unconnected to the original fire. Before, and as, these two 

burning areas meet (if they do), their interactions with the atmosphere can affect larger 

patterns of movement that propagate effects between them (Viegas, Raposo, Davim, & Rossa, 

2012).  

The complex feedbacks between fire and the atmosphere can result in surprising 

phenomena, such as the highly localised generalized blaze flash, also known as a “flashover”. 

This phenomenon is the sudden and dramatic change in fire behaviour, where a large area of 

forest seems to burst suddenly into flames. The exact mechanisms behind this behaviour are 

unknown, but two broad theories attempt to explain it (Chatelon, Sauvagnargues, Dusserre, 

& Balbi, 2014). The first postulates that as plants heat up and release volatile organic 

compounds (VOCs), under some circumstances these VOCs can accumulate until they reach 

a concentration suitable to sustain an explosion. The second theory posits that the convective 

flow of air providing oxygen to a fire can manifest as a sudden onrush of air which increases 

rate of spread, and therefore oxygen consumption, and thus convective airflow (F. Chatelon 

et al., 2014).  

Extremely large fires have correspondingly extreme effects on the atmosphere. A sufficiently 

large and hot fire can shape the weather around it, either forming or augmenting 

thunderclouds above it, called pyrocumulonimbus (pyroCb). These pyroCb can send smoke 
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and pollutants into the stratosphere, once thought only possible by volcanoes (Fromm et al., 

2010). PyroCb can produce lightning that can potentially ignite new fires. The Horse River 

Fire of 2016 was the only observed case of a pyroCb starting new fires through lightning 

(Kochtabajda, Brimelow, Flannigan, Morrow, & Greenhough, 2017). 

Fires vary not only in size and rare, emergent phenomena, but also in type, severity, and 

intensity. Fire type qualifies which part or parts of an ecosystem through which fire 

propagates: these are ground, surface, and crown fires (Van Wagner, 1976). Ground fires 

burn in the top layer of soil, usually in a smoldering manner with little flaming. Surface fires 

consume low vegetation, like grasses, herbs, and shrubs, staying beneath the forest canopy. 

Finally, crown fires travel up to the tops of trees and between them, consuming the forest 

canopy. Fires can potentially exhibit any one or any combination of those three broad types; 

in some cases, even a crown fire may persist without understory burning (Van Wagner, 

1976). Intensity, not to be confused with severity, is strictly the energy output of a fire. 

Specifically, it is the rate of energy release per unit time per unit length of fire front (Byram, 

1959). The definition of severity is still subject to debate, but it is generally a measure of fire 

impact. Keeley (2009) argues that severity should strictly be a measure of the loss or change 

of organic matter (relating to vegetation killed and depth of burn), and subsequent ecological 

response (such as time of regrowth and successional path) should be separate. In contrast to 

the immediacy of severity, the ecological response to a forest fire depends on surviving 

seedbanks, recolonization, and soil quality, and observing the effects takes years or decades, 

and thus while it is a result of severity, it should not be a measure of severity (Keeley, 2009). 

Fire type and severity are related, in that low-severity fires tend to be surface fires, and high-

severity fires are often stand-replacing crown fires, where all vegetation is burned away 

(though not necessarily killed, as with some of the fire-adapted vegetation discussed earlier).  

Moving up in the temporal and spatial scales from an individual fire, the characteristics of 

fires inform the fire regime: a measure of the spatiotemporal patterns and impacts of fire at 

an ecosystem or landscape scale (Morgan, Hardy, Swetnam, Rollins, & Long, 2001). The 

elements of a fire regime are typically the frequency, severity, pattern, and seasonality of fires 

in a given region over a given time period. Fire frequency is the primary descriptor of a fire 

regime, and there are multiple ways to measure it: fire return interval, probability of 
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occurrence, or rotation period. Fire frequency can be the number of fire events in a specified 

area over a specified time period (mean frequency), or it can be the length of time over which 

the entirety of a specified area will have burned (fire return interval), or it can be the number 

of times a sub-unit of an area has burned (e.g. one pixel) (Morgan et al., 2001). From the 

perspective of a fire regime, severity of individual fires informs the kinds of fires typical to 

the region of study over the time period of interest. For example, is a region prone to frequent, 

low-severity fires, or infrequent, high-severity fires? Fire regime characteristics depend on 

the nature of fire data (points, areas, individual trees or stands) and the spatial and temporal 

extents under study. The fire regime of a forested valley may differ greatly from that of its 

encompassing mountain range, and a century of fire activity may bear no resemblance to the 

last decade of fire activity in a region. Further complicating the measure of fire regimes, 

detailed historical fire records go back a century at most, and are not necessarily complete, 

especially for remote areas. Paleogeographic reconstructions of fire activity extend our 

knowledge of fire history, but such data are severely spatially limited (Power, Marlon, 

Bartlein, & Harrison, 2010; Wolf et al., 2013). Defining a baseline fire regime is critical to 

understanding the drivers of fire regimes, especially in the face of a changing climate. 

Unfortunately, an extensive history of human activity puts in question the very idea of a 

“natural” fire regime. Isolating the effects of climate on fire regimes from that of humans is a 

difficult task, but an increasingly important research question (Bowman et al., 2011).  

Fire regimes are a description of the stable interactions between ecosystems and climate, but 

those interactions that give rise to the patterns used to define a fire regime are complex. As 

established, vegetation affects fire behaviour in terms of fuel availability and flammability, 

and fire affects vegetation in terms of matter consumed, as well as affecting species diversity 

and even adaptations. Fuel availability and flammability are the result of fires, 

climate/weather, human activity, and evolution. The spatio-temporal patterns of ignition 

depend on weather and vegetation, and once again human activity. Because they consume 

fuel, fires limit the spread of subsequent fires in the same area, though the effect decays over 

time as the forest regrows (Parks et al., 2015). Extreme weather conditions can diminish the 

damping effect of past fires on current fires. This feedback loop is part of the complex nature 
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of fire regimes, and the resulting autocorrelation is an added challenge to the measurement 

of fire regimes (Morgan et al., 2001). 

3.3 Fire and climate change 

As climate changes, so will patterns of ignition and the flammability and availability of fuel. 

The most direct effect on flammability will be changes to drought and precipitation patterns, 

temperature anomalies, and longer fire seasons. More subtle, but equally important, will be 

the changes in vegetation productivity and species composition in an area. Given the 

importance of environmental variables on forest fires and the inexorable advance of climate 

change (IPCC, 2021), much effort has been put toward studying how fire activity might 

change under the effects of climate change (Flannigan & Van Wagner, 1991; Hessl, 2011). 

Most studies have shown that changes in wildfire behaviour will vary spatially but will affect 

higher latitudes more strongly than elsewhere (Flannigan, Krawchuk, De Groot, Wotton, & 

Gowman, 2009). Generally, predictions indicate that fire frequency will increase throughout 

Canada, mainly in Western and Central Canada, and to a smaller degree in Eastern Canada 

(Flannigan, 1998; Wang et al., 2017). However, trends in global fire activity are difficult to 

identify (Doerr & Santín, 2016), due in part to the interregional variability of climate change 

and the inherently complex nature of fire regimes (Parisien et al., 2012; Williams & 

Abatzoglou, 2016). 

Climate affects fire directly through fire season length, drought and precipitation patterns, 

and natural ignition patterns. Climate also has indirect effects on fire through vegetation, 

such as changes to net primary productivity and to ecological niches of species with different 

relationships with fire, affecting fuel availability and flammability (Parisien et al., 2012). That 

is leaving aside direct human impacts on ignitions and land use change. Fire, in turn, affects 

the climate directly though emissions of greenhouse gases, release of atmospheric aerosols, 

and changes to albedo (Bowman et al., 2009). Post-fire vegetation growth can counteract 

some these effects over time (as a carbon sink), but until then, other effects such as soil 

degradation and perturbed successional pathways may influence aspects of the climate-fire-

vegetation system. Fire impacts the way climate affects vegetation, as it can accelerate 

vegetation composition changes that fit new climatic conditions (Stevens, Safford, Harrison, 

& Latimer, 2015; Stralberg et al., 2018; Terrier, Girardin, Périé, Legendre, & Bergeron, 2013). 
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This long-term feedback loop could lead to the replacement of fire-encouraging Boreal 

ecosystems by less flammable deciduous ecosystems (Terrier et al., 2013).  

4. Fire modelling 

4.1 Global and regional 

Complex interactions between climate, fire, and vegetation render predictions of future fire 

activity challenging. Despite these difficulties, traditional statistical approaches that relate 

fire probability to environmental factors such as climate, weather, and vegetation, provide 

meaningful estimates of future fire activity (Krawchuk & Moritz, 2014; Moritz et al., 2012). 

However, the often coarse scale of the means and norms of the independent variables limits 

the utility of feedback mechanisms and only provides information on mean fire activity over 

a coarse time scale. Statistical approaches typically assume independent variables such as 

climate and vegetation will change exogenously, and at coarse timescales that make 

interactions moot (Harris et al., 2016), but recent studies have developed new statistical 

approaches that elucidate the importance of interactions. Parisien et al.  (2014) demonstrate 

the impact of temporal resolution on a statistical model of fire by comparing an annual model 

with an averaged model covering the period 1980 – 2012. They show that, while both model 

predictions were similar, the divergence of the annual model highlighted the presence of a 

feedback loop between biomass consumption and fire activity. Their two regression models 

measured annual area burned, and the annual model updated its climate and vegetation 

variables annually. Specifically, the annual model updated vegetation maps based on 

historical fire data to account for the change in vegetation on an annual basis. By accounting 

for this effect, the model shows that past fire activity can limit future fire activity, and the 

discrepancy between the two models supports the idea that feedback mechanisms are 

important considerations when predicting fire activity. This remains a statistical approach 

using a data assimilation technique, and while it can observe the effect of a feedback 

mechanism, it does not replicate it. For it to predict future fire activity, their annual model 

would have to incorporate a mechanism that simulates the loss of vegetation due to fire 

activity, instead of using vegetation loss as an independent variable.  
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Further highlighting the importance of temporal resolution for models of fire activity in a 

large landscape (Canada), Wang et al. (2014) developed an empirical model relating daily 

weather variables to daily fire spread potential for different areas in Canada known to have 

different fire regime characteristics (Boulanger, Gauthier, & Burton, 2014). They used a 

linear link function to estimate how potential spread relates to realized fire spread. Wang et 

al. (2017) used this approach to estimate future realized spread days for those different areas 

based on various climate scenarios. By accounting for short-term variability in weather, in 

particular anomalies such as droughts, that greatly influence fire behaviour, this method 

provides a better estimate of fire activity and variability than those that use monthly or 

annual averages of weather. However, as shown in their discussion, this study assumes not 

only that the relationship between potential spread days and realized spread days will 

remain the same under climate change, but that the factors making up the relationship will 

remain unchanged. These factors, --vegetation distribution and flammability, ignition 

patterns, suppression patterns--, all participate in the feedback loops that make fire regimes 

so complex in the first place.  

Some statistical models can tackle non-linear dynamics. Multivariate adaptive regression 

splines (MARS) is a type of statistical model that can account for interactions between 

variables and non-linear relationships, making it a suitable technique for tackling the fire-

vegetation-climate system. Terrier et al. (2013) use MARS to explore the potential effect of 

changes in forest composition on boreal wildfires in Eastern Canada. Their study 

demonstrates the effect of changes in forest composition by building a model of fire 

occurrence based on fire weather and tree composition variables, then comparing future 

scenarios with either no tree species dispersal, or unlimited tree species dispersal based on 

ecological niche. The model predicts that while fire occurrence will increase in the first 

scenario, the northward migration of deciduous species can produce a net reduction in fire 

occurrence in the 2071-2100 period. Unfortunately, while the MARS algorithm can model 

interactions between variables, it does not model feedback loops. So, while the above study 

explores one aspect of a complex system, it leaves aside many interacting components, such 

as ignition sources, weather anomalies at sub-annual resolutions, fire-induced fuel 
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limitations, and the actual dispersal and competition mechanisms that regulate tree species 

migration. 

In contrast to statistical models, dynamic models can incorporate not only the changes of 

such determining factors, but also the interactions that influence those changes, thus 

accounting explicitly for feedback loops and opening the floodgates of complexity. Following 

the thematic trend of the previous examples, and building on the work of Wang et al., (2017, 

2014), Stralberg et al., (2018) used a novel hybrid empirical and simulation-based modelling 

approach to address the issue of vegetation species distribution response to climate change 

and fire activity. They model vegetation as an empirical function of terrain, geology, and 

climate, and use the Burn-P3 fire probability-mapping model (Parisien et al., 2005) to 

explicitly simulate fire activity. The study compares 18 scenarios (all combinations of 1) 

static, climate-driven, or fire-mediated fuel scenarios, 2) constrained or unconstrained fire 

regimes, and 3) three climate models). In their fire-mediated scenarios, different feedback 

loops emerge based on the fire regime. In the constrained fire regime scenario, early 

increases in fire frequency produce an increase in deciduous forests that results in long-term 

reduction in area burned. In the unconstrained scenario, increases to fire frequency and 

duration outweigh decreases in flammability and result in a rapid shift to highly flammable, 

but low biomass grass ecosystems. Even accounting for only one major interaction process, 

this study highlights the importance of feedback loops in the climate-fire-vegetation system 

and showcases the utility of dynamic models to that end. Including a dynamic vegetation 

model that accounts for dispersion, recruitment, succession, and competition dynamics 

would undoubtedly reveal more feedback loops and potentially produce different results. 

After all, a fire regime itself is a result of complex interactions and is inherently dynamic. 

This brings us to two classes of fire-climate-vegetation models called Landscape Fire 

Succession Models (LFSMs) and Dynamic Global Vegetation Models (DGVMs). Dynamic 

Global Vegetation Models, as the name suggests, are global-scale models that explore long-

term changes in vegetation due to climate change. Landscape Fire Succession Models are 

vegetation models that explicitly account for disturbance regimes and can range from local 

to global scales, though they do not necessarily incorporate climate (Keane et al., 2004). In 

this sense, global LFSMs that incorporate climate are a type of DGVMs, and fire-enabled 
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DGVMs are a global LFSM. Hierarchically speaking, the category of DGVM encompasses 

LFSMs. Both these types of models incorporate interacting processes for vegetation change, 

fire occurrence, fire behaviour, and climate change, and some even include elements of 

biogeochemical cycling. The complexity of each component varies greatly between models, 

making it difficult to compare models and to identify what level of complexity can 

satisfactorily model the fire-vegetation-climate system (Keane et al., 2004; Rabin et al., 2017). 

As a matter of course, fire-enabled DGVMs and LFSMs tend to become more complex over 

time. Early forms of DGVMs only implicitly represented fire effects through generic 

treatments on plant mortality (Hantson et al., 2016). LFSMs are themselves a specific, fire-

centric extension of earlier models of forest dynamics. One source of the increasing 

complexity of these types of models is the growth in computing power available to 

researchers (Shifley et al., 2017). However, researchers must still balance complexity with 

feasibility, and so DGVMs and LFSMs make use of a variety of fire modelling components. The 

fire components range from statistical relationships between vegetation, climate, and fire 

activity, down to weather- and vegetation-driven simulations of fire behaviour. Even using 

statistical methods to recreate fire activity, these types of models are more complex than the 

statistical models described previously, because these statistical, linear methods serve as 

input factors for feedback loops between the other large-scale components (e.g. vegetation 

and climate). Yet for those DGVMs and LFSMs that use process-based fire models, none, so 

far, use detailed physical simulations of fire, nor any that incorporate atmospheric feedback 

during a fire. This may be because, generally, such fire-climate-vegetation models operate 

scales much coarser than the intended application of the more complex fire behaviour 

models currently available, or because of the high (computational and development) costs of 

increased complexity. 

4.2 Individual fire behaviour 

This thesis has already discussed DVGMs and large-scale models of fire behaviour at the 

regime-scale and up, but such simulations rely on models of individual fire behaviour, of 

which there are a plethora. These fire behaviour models range from purely linear models to 

full-physics simulations of combustion and fluid dynamics in space and time. The article in 

Chapter 2 of this thesis provides a literature review of those models most relevant to the new 
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one described in said article, so this section will discuss some of the history of fire modelling 

and the state of the art today. 

In his three-paper series, Sullivan (2009a, 2009b, 2009c) provides a thorough review of fire 

behaviour models of all types. With a cumulative 538 citations between them (according to 

Web of Science, accessed May 20, 2021), these papers are an authoritative and excellent 

resource for those looking for an in-depth review of the field of fire behaviour modelling and 

the standouts within. Here, I will present an overview of some of the key models and systems 

developed for fire research in the US and Canada. Both countries have a long history of 

wildland fire research, and the key simulation models in use today have roots in the 

mathematical models developed years ago. In the US, mathematical models of fire spread 

developed by Rothermel (Rothermel, 1972) eventually formed the basis of the Behave, and 

subsequent BehavePlus (Andrews, 2007) mathematical modelling software applications, and 

in parallel, the spatially explicit FARSITE model (Finney, 2004). Fire research in Canada 

followed a similar path starting with the mathematical models of Van Wagner (1974), used 

to develop the Fire Weather Index and later the Fire Behaviour Prediction system (Lawson, 

Stocks, Alexander, & Van Wagner, 1985), which together form the core of the Canadian Forest 

Fire Danger Rating System (Stocks et al., 1989). This system, in turn, is the mathematical 

foundation for the spatially explicit Prometheus fire spread model (Tymstra, Bryce, Wotton, 

Taylor, & Armitage, 2010). Research does not stay behind borders, of course, and work from 

scientists in either country contributed to the development of both the US and Canadian 

systems. Complex systems science has also lent a hand to early fire behaviour models, with 

cellular automata models based largely on stochastic processes (Almeida & Macau, 2011; 

Karafyllidis & Thanailakis, 1997).  

4.3 Early mathematical models 

The original mathematical model of Rothermel (1972) calculates spread rate and intensity 

for surface fires. It uses inputs describing the physical and chemical makeup of fuel and 

environmental conditions to calculate steady state spread rate and intensity. Steady state 

behaviour refers to a fire line free of influence from other parts of a fire, i.e., when the head 

fire is sufficiently far from the back and flank fire lines to move at a constant rate under 

uniform wind and fuel conditions. The inputs of the model, for fuel characteristics, are 
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loading, depth, particle surface-area-to-volume ratio, particle heat content, particle moisture 

and mineral content, moisture content for extinction, and fuel element size distribution and 

arrangement. The other inputs are average wind speed and slope. Because most of the fuel 

variables are costly and time-consuming to obtain in the field, predetermined parameters for 

certain vegetation types (in which the parameters are not expected to vary) are tabulated as 

fuel models. These fuel models represent typical field conditions and contain the inputs 

necessary to run the fire spread model. 

Similar to the Rothermel (1972) model, the Fire Weather Index (FWI) (Van Wagner, 1974) 

uses the moisture content of three (size) classes of forest fuel to determine intermediary 

indices of rate of spread and available fuel, and a final index, the eponymous FWI, that 

represents the intensity (as energy output per unit length of fire front) of a single fire in a 

standard fuel type. The inputs for this model, however, are simply daily readings of 

temperature, relative humidity, wind speed, and rain. The purpose of the model is to track 

fuel moisture content and availability as it changes through time to calculate an index of fire 

danger. The three fuel classes are represented by indices called moisture codes that track 

changes in moisture from rain and drying.  

Supplementing the FWI, the Fire Behaviour Prediction (FBP) system combines fuel type and 

topography with the base elements of the FWI to calculate fire behaviour (Forestry Canada 

Fire Danger Group, 1992). The system also uses geographic location, season, and time-since-

ignition to provide information on fire type (surface or crown) and size. The primary outputs 

are rate of spread, fuel consumption, head fire intensity, and fire description (type and crown 

fraction burned). The secondary outputs of the system are spread distances, rates of spread, 

and intensities for head, flank, and back fires, plus area burned and fire perimeter, based on 

a simple elliptical model of fire spread. (This elliptical model will be discussed further below). 

Like Rothermel’s model, the FBP makes use of fuel models. The 16 fuel types of the FBP are 

based on forest floor cover and organic layer, surface and ladder fuels, and stand structure 

and composition. They represent the majority of vegetation types covering Canada, including 

a mixed-wood fuel type to account for forests with differing proportions of coniferous and 

deciduous tree species. The fuel types provide parameters for equations relating FWI 

components to fire behaviour such as fuel consumption (differentiating between fuel 
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elements) and rate of spread. The effect of slope on fire spread is converted to a wind speed 

equivalent value and combined with the actual wind speed and direction to provide a net 

effective wind speed for use in calculating fire spread, direction, and size (Forestry Canada 

Fire Danger Group, 1992; Wotton, Alexander, & Taylor, 2009).  

 

4.4 Spatial spread simulators 

The next logical step from these models describing fire behaviour is to make them spatially 

explicit. That is exactly what the FARSITE (Finney, 2004) and Prometheus (Tymstra et al., 

2010) models do, using the American and Canadian mathematical fire models, respectively. 

Both models use a vector-based approach to simulating the fire perimeter. This approach 

uses an ellipse as a template shape of fire spread (widely accepted as the best geometric 

model of a fire shape in uniform conditions (Finney, 2004; Van Wagner, 1969)), and 

propagates the perimeter in a manner based on Huygen’s wavelet principle. An ellipse 

extends from an ignition point (one of the foci) based on local conditions of fuel, topography, 

and weather, and at the next time step is discretized into a number of points along its 

perimeter (vertices), which form the focus of new ellipses which extend in the same manner. 

The perimeter at each time step is the combination of these new ellipses, from which new 

ellipses form and so on. Aside from variations in implementation into code, the only 

differences between FARSITE and Prometheus are the underlying mathematical fuel and 

spread models (Fujioka, Gill, Viegas, & Wotton, 2008). 

Prometheus and FARSITE are mainstays of the fire management and research communities. 

Not only are they the official operational fire models for the forest services of both Canada 

and the US, respectively, but they are finding use in Australia and parts of Europe, as well 

(Fujioka et al., 2008; Opperman, Gould, Finney, & Tymstra, 2006). Because the models were 

designed to accommodate expert knowledge in the field, they are readily adaptable to new 

environments with appropriately adjusted fuel models (Opperman et al., 2006). Proper 

validation of these new fuel models is the limiting factor in using these models in new 

environments.  
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Both papers describing FARSITE (Finney, 2004) and Prometheus (Tymstra et al., 2010), 

respectively, discuss the limitations of the classic alternative to fire modelling, cellular 

automata (CA). Like the above models, CA models represent the world in a rasterized format 

(i.e. a continuous lattice of cells or a grid). The simulation world is made up of layers of 

rasters, each representing a variable. Thus, each cell can contain information about terrain, 

vegetation, and weather (Clarke & Olsen, 1994; Gaudreau et al., 2016). While vector models 

simulate fire spread as an expanding polygon, CA models do so on a cell-by-cell basis. There 

is a large variety of ways to accomplish this, for example as a function of the probability of 

fire spreading from one cell to another, or by calculating the expected time of arrival to a 

neighboring cell. The concept of cell neighborhoods is critical to any CA model, and of 

particular importance to CA models of fire behaviour. The classic neighborhood types for CA 

are the four cell Von Neuman neighborhood (the four cells sharing a side with the center cell) 

and the eight cell Moore neighborhood (the four diagonal cells sharing a corner with the 

center cell in addition to the other four). Of course, any size and shape of neighborhood is 

possible. The problem with older CA models of fire spread, and the criticism summarized in 

Finney (2004) and Tymstra et al. (2010) is that they produce distorted fire shapes due to the 

regularity of the grid and neighborhood. Recent models have largely overcome this limitation 

by applying specialised rules to fire spread rates in different directions. In their paper, Ghisu, 

Arca, Pellizzaro, & Duce, (2015) accounted for shape distortions caused by an eight-cell 

neighborhood with a set of five correction factors applied to Rothermel’s model of fire 

spread. The correction factors adjust the relationship between advection velocity and spread 

angle to minimize distortion in fire shape. They used a numerical optimizer to find the best 

values for these correction factors. The resulting CA model produced almost identical fire 

perimeters as FARSITE for one simulated grass fire on realistic topography. The work of 

Yassemi, Dragićević, & Schmidt (2008) presents an integrated GIS-based CA model using 

rules affecting fire spread within a cell. The model considers the proportion of a cell burning 

(the ratio of burning area to cell area), and uses the FBP system to determine spread rate 

within a cell. Wind direction affects that rate of spread based on which neighbor fire is 

spreading into, and special rules account for cells with multiple burned neighbours. Their 

model compares well against three Prometheus simulations of observed fire scenarios. 
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4.5 Coupled fire-atmosphere models 

All the fire spread models above have one thing in common: they are simple. That is, they do 

not simulate fire-atmosphere feedbacks, which are, in fact, the reason fires take on an 

elliptical shape in the first place (Clark, Coen, & Latham, 2004; Coen, 2018). They are 

nonetheless effective and well-established research and management tools, and offer certain 

advantages over complex models. They are fast, empirically proven, and have limited data 

requirements. On the other hand, increases to computational power have lowered the barrier 

for more complex simulation models, and advances in computational fluid dynamics (CFD) 

have led to the creation of coupled fire-atmosphere models since the 1990s (J. Coen, 2018).  

Computational fluid dynamics is already a complicated research subject, trying to solve the 

Navier-Stokes equations. This system of equations has analytical solutions for only a few 

idealized problems, and the rest rely on computational simulation to solve. One consequence 

of this is that CFD models typically have solutions for only a specific spatiotemporal range. 

Coupled fire-atmosphere models therefore only solve for atmospheric motion at a scale 

determined by the choice of CFD model. According to (Coen, 2018), there are two general 

scales relevant to fire behaviour modelling: the microscale and the mesoscale. The microscale 

(~ <1 m – 100 m) simulates turbulent eddies and the atmospheric boundary layer, and can 

include combustion processes but not weather processes. The mesoscale (~ 100 m – 20 km) 

spans between the boundary layer effects of the microscale to the far-reaching weather 

patterns at the synoptic scale. It includes vertical motions in clouds and weather systems and 

terrain-influenced winds. The complex and chaotic nature of fluid dynamics means 

prediction errors grow during forecasts, and more so at finer scales. Mesoscale predictions 

are useful for several days, but errors in microscale models grow exponentially with time 

(Coen, 2018). This is part of the reason CFD models treat these scales separately, as many 

issues arise when trying to combine them (Moeng & Weil, 2010).  

Typically, coupled fire-atmosphere models operating at the microscale of fluid dynamics also 

simulate combustion processes like pyrolysis of wood, oxidation, and evaporation of water 

and pitch, as well as gas transport. The HIGRAD-FIRETEC model (Linn & Harlow, 1998; Linn 

& Cunningham, 2005), hereafter referred to as FIRETEC, is one of the most advanced such 

coupled fire-atmosphere models. The fire component of FIRETEC uses bulk volumetric 
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representations of vegetation at meter scales that represents fine-fuel elements (twigs and 

leaves). The atmospheric component uses a Large Eddy Simulation (LES) approach to 

simulate large turbulent fluctuations as well as modelling sub-grid fluctuations. This 3D 

model is capable of simulating some of the complex emergent behaviours of fire, such as the 

elliptical shape of a fire in uniform conditions, the forward tilt of flames at the fire front, as 

well as “fingering”; where the fire front exhibits small lobes that jut out from the mean 

representation of the fire line (Linn & Cunningham, 2005). FIRETEC also serves to examine 

the effects of vegetation structure on turbulent airflow in and around tree canopies (Pimont 

et al., 2011). However, the model is limited by the huge computational requirements of 

resolving the complex set of equations in three dimensions. As a result, it seems FIRETEC has 

largely been used to simulate small fires in simple environments (a few hundred to a 

thousand m2 to and uniform grasslands or forests (Bakhshaii & Johnson, 2019; Dupuy et al., 

2011; Linn & Cunningham, 2005).  Section 1.2 of the paper in Chapter 2 describes the 

computational requirements of FIRETEC in more detail.  

At the mesoscale, the focus of modelling is more on fire-atmosphere feedbacks than 

combustion dynamics. To this end, the WRF-Fire model uses semi-empirical relationships to 

parametrize the physical processes of fire, while atmospheric simulation occurs at a coarser 

scale (Coen et al., 2013). WRF-Fire is a physics module in the Weather Research and 

Forecasting model (WRF) (Skamarock et al., 2005), which itself is a mesoscale Numerical 

Weather Prediction model. By using nesting grids, WRF can simulate atmospheric dynamics 

across many scales, accounting for a range of phenomena such as atmospheric fronts, cloud 

convective updraft, and bulk characteristics of the daytime turbulent atmospheric boundary 

layer. Coupled with a semi-empirical fire model that represents two-dimensional surface fire 

spread and the release of heat, WRF-Fire can simulate fire-atmosphere feedbacks as they 

propagate from the fire itself to the whole surrounding region. Similar to FIRETEC, the 

complex feedbacks between fire and atmosphere strongly shapes wind near the fire, and so 

reproduces the expected elliptical fire shape through emergence alone. In particular, the 

coupling creates strong winds pushing the fire at the head, produces fire whirls along the 

flanks that keep the fire from extending laterally too rapidly, and draws wind in at the rear 
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(Coen et al., 2013). WRF-Fire has slightly lower computational requirements than FIRETEC, 

but still requires supercomputing resources to achieve faster-than-real-time simulation. 

The purpose of such coupled fire-atmosphere models is more than simulating fire growth. 

These models serve to explore and explain observed fire phenomena that are difficult to 

measure and poorly understood. In particular, they aim to further our understanding of rare 

events that arise from the complexities of the fire-atmosphere system such as fire vortexes, 

generalized blaze flashes, or even extreme, weather-altering effects like the formation of 

pyroCb (Coen et al., 2013). Experimentation in-silico with these models also helps test 

physical assumptions about fire behaviour (Bakhshaii & Johnson, 2019; Dupuy et al., 2011), 

as well as test forest management techniques (Marshall et al., 2020). While the science of 

coupled fire-atmosphere modelling is steadily advancing toward this goal, certain problems 

remain on two fronts: scale-based distortions in CFD models and computational cost (Coen, 

2018; Linn et al., 2020; Linn & Cunningham, 2005). As mentioned earlier, CFD models 

struggle to combine microscale simulation with meso- and synoptic-scale modelling, and as 

a result, the choice of scale used in a coupled fire-atmosphere model imposes limitations. 

Fine-scale models lack the ability to model weather and terrain-influenced airflow (and the 

chaotic nature of turbulence at that scale and lower makes it technically unpredictable 

(Lorenz, 1969; Moeng & Weil, 2010)), while mesoscale models can dampen fire behaviour as 

sharp gradients near the fire are smoothed in the transition between grid scales (Coen, 2018). 

There are ways to introduce complexity into fire spread models without huge computational 

costs. If the goal is not to replicate the full physical environment of a fire to have a tool for 

exploring poorly understood fire behaviour, but rather to reproduce fire shape by way of 

feedback dynamics, it is possible to limit atmospheric simulation requirements. With the goal 

of producing a fast-running fire spread model that incorporates fire-influenced winds as the 

driver of fire shape, one study demonstrates the use of “pyrogenic potential” to model airflow 

around a fire (Hilton, Sullivan, Swedosh, Sharples, & Thomas, 2018). This two-dimensional 

potential flow formulation assumes air flows horizontally close to the ground until it reaches 

the flame, at which point it immediately turns upwards into the fire plume. The pyrogenic 

potential produces a wind correction factor around a flaming region, which can be added to 

the ambient wind field. Hilton et al. (2018) couple the pyrogenic potential model to a fire 
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spread model that uses the level-set method, and demonstrate that the coupled model 

effectively reproduces fire shape compared to small, low-wind (1-2 m2) experimental fires. 

The model is computationally efficient, resolution independent, and takes on the order of 

seconds to run. One significant limitation to the model, as pointed out by the authors, is the 

assumption that the plume is not significantly affected by wind. The experiments against 

which the model was tested involve low wind speeds and the effect on the plume would 

indeed be minimal in these cases. The authors propose an improvement to the model that 

would move the location of the local head flux maximum (which determines the pyrogenic 

potential) to be in line with a displaced plume. 

As these three very different coupled fire-atmosphere models show, the level of complexity 

of a simulation is a choice based on the research goals of the modellers. The complexity of 

simulation models, for a given system, exists on a continuum. Since a model is intrinsically a 

simplified representation of a real system, the modeller makes choices on what parts of the 

system to include in the model (Aumann, 2007; Grimm et al., 2005). There can be a wide 

range of models of the same system, which may even produce the same results (a concept 

known as equifinality (Batty & Torrens, 2005; Beven, 1996)). Therefore, the choices of what 

to include determines the level of complexity of the model. The ellipse-based models of fire 

spread described above involve no complex feedback loops, instead considering the direct 

relationship between fuel, topography, and weather on fire spread behaviour. At the other 

end of the spectrum of complexity, full-physics models include complex atmospheric 

dynamics as well as complex heat transfer processes within fuel elements and between those 

and the atmosphere. Slightly less complex than that, coupled CFD-fire spread models add fire 

effects to the already complex and multi-scale models of atmospheric interactions, which in 

turn affect the fire behaviour and so on. The choice of how much complexity to include 

depends on the goals of the modeller. Is the goal to predict fire behaviour in a timely and 

useful manner for immediate fire-fighting operations? Is it to explore our understanding of 

the physical processes of fire behaviour at a fine scale too difficult and expensive to test in 

live fires? Or is the goal to include just enough complexity to capture the essential emergent 

properties of fire behaviour while minimizing computational load, in order to account for the 
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uncertainties of input data and turbulent airflow while providing insights on potential fire 

behaviour? 

Depending on the goal, the modelling approach will differ. The next section returns to 

complex systems science in general, where model design frameworks can apply to a variety 

of environmental, social, or physical systems. It describes the process of model design in 

relation to research goals, data availability, and calibration and validation requirements. 

5. Modelling of a complex system 

There are certain key steps in developing a simulation model of a complex system. First, the 

design itself, which determines how to represent the different parts of the system in a way 

that can answer the research question(s). Second, verification, which entails ensuring that 

the implementation (in code) is in accordance with the original design and relevant 

literature. Third, calibration, which determines model parameters based on measurements 

of model performance. Fourth, validation, which involves testing the model to determine if, 

and to what extent, it accurately simulates the system in question in relation to the research 

goals (Rykiel, 1996). Fifth, sensitivity and uncertainty analyses, which explore the 

functioning of the model. This last item is not necessarily the last thing to do in developing a 

model; sensitivity and uncertainty analyses (SA and UA, respectively) are useful processes 

during design and calibration, as well, since they can help separate influential parameters 

from unimportant ones, potentially simplifying the calibration process or influencing 

changes to the design over the course of model development. 

5.1 Design 

The design of a model stems from the research goals. These goals are reflected not only in the 

architecture of the model, but also in designing the experimental framework to evaluate the 

model such as the calibration and validation methods (Aumann, 2007). The research goals 

determine what elements of a system to include, the spatial and temporal scales, and at what 

level of complexity (Law, 2011). Once these decisions are made, the design must be 

implemented as a simulation model. The choice of technique is also related to the research 

goal, as there are many tools out there offering different advantages and disadvantages 

(Rixon, Moglia, & Burn, 2005). Considerations include the familiarity of the modeller with the 
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tool, the ease of implementing certain processes, the availability of code libraries relevant to 

the model, etc. (Castle & Crooks, 2006). 

5.2 Verification 

Verification is conceptually simple. It involves ensuring the simulation model (the code, 

algorithms, and equations involved) accurately reflect the model design. Despite it seeming 

obvious, verification is important because translating a formal model description into code 

is not necessarily simple, or easy. While model description papers aim to provide sufficient 

information for other researchers to replicate the model, implementing a complex system 

model is subject to idiosyncrasies in modeller decisions and software (Crooks, Castle, & Batty, 

2008; Dalle, 2012; Wilenski & Rand, 2007). In other words, a given model, as presented in a 

scientific article, may be implemented in a number of different ways. This is particularly the 

case if the model description is purely conceptual, but even full mathematical descriptions 

are subject to idiosyncrasies in event scheduling or even floating-point errors (Dalle, 2012). 

Tangential to model design and development itself, reproducibility is a challenge in computer 

simulation modelling in general, and especially for complex systems modelling (Dalle, 2012; 

Grimm et al., 2020; Wilenski & Rand, 2007). 

5.3 Calibration 

Once the model is up and running, it must be calibrated to produce the intended results. 

These intended results are usually that the model can reasonably match observed behaviour 

of the real system. Exactly what behaviours and what constitutes a reasonable match derives 

from the research goals and model design (Janssen & Heuberger, 1995). The observed 

behaviour of the system used for comparison should be detailed enough to represent some 

the complexity of the system. Aggregated data is not always suitable for this and the best data 

for comparing with models of complex systems is fine grained enough to show the evolution 

of the system (Batty & Torrens, 2005; Crooks et al., 2008). This data then serves to quantify 

agreement between the model and the real system. That measure of agreement depends on 

the type of data available and the nature of the problem.  

Calibration identifies a point or region in the parameter space of the model that satisfies the 

modeller’s criteria of agreement. It is possible that there is a single point in the parameter 
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space that produces a global maximum of the agreement measurement, but it is more likely 

that this maximum is unidentifiable due to various errors, uncertainties, and variability in 

the model and data. In this case, calibration identifies a parameter set, or a region in the 

parameter space, that fits within an acceptable range of agreement. It is also possible to 

calibrate a model for multiple agreement measures simultaneously, identifying an area in the 

parameter space that maximizes a vector of measures (Janssen & Heuberger, 1995; Trucano, 

Swiler, Igusa, Oberkampf, & Pilch, 2006). The idea of multiple measures for calibration 

corresponds well with the concept of pattern-oriented modelling (Grimm et al., 2005). In this 

approach, patterns are the object of measurement, and models are judged by their ability to 

replicate patterns (spatial, temporal, behavioural, etc.) observed in the real complex system. 

The paper stresses that comparing to multiple patterns at multiple scales improves model 

design, calibration, and robustness. 

5.4 Validation 

Validation serves to evaluate the model and support the idea that model results are due to 

more than just chance (Rykiel, 1996). It confirms the model and, in general, the more 

instances of validation, the more confident we can be in the model (Crooks et al., 2008; Heath, 

Hill, & Ciarallo, 2009). Validation is an extension of the calibration process, using the same or 

new agreement measures to evaluate the model instead of adjusting the model. Validation 

using the same agreement measures as calibration requires independent data not used 

during calibration. New agreement measures, such as patterns or behaviours, can be used for 

validation using the same data as for calibration, as long these measures were not part of 

model development (Augusiak, Brink, & Grimm, 2014). Such validation is useful in the 

context of limited data, but researchers must be cautious of these results as they are not 

necessarily fully independent of the calibration. Validation with independent data is always 

the better choice. Usually, validation is based on some overall measure of model 

performance, but it is equally possible to validate parts of the model, such as processes, 

mechanisms, and sub-models, provided sufficient data and testing procedures  (Cooley & 

Solano, 2011; Ngo & See, 2012). As before, this can serve to increase confidence in the model. 

However, this confidence must come with the caveat that almost all models of complex 

systems cannot be fully validated, for quite a variety of reasons (Heath et al., 2009). For one, 
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models are built with a number of explicit and implicit assumptions, and only some of these 

are testable (Batty & Torrens, 2005). This caveat is an important aspect in any modelling 

endeavor, and it is the modeller’s responsibility to clearly lay out the assumptions included 

in the model (Boschetti, Grigg, & Enting, 2011). But beyond this, and given that some 

assumptions are untestable and therefore impossible to validate directly, confidence in the 

model should be quantified and variance attributed. 

5.5 Uncertainty and Sensitivity Analyses 

Uncertainty analysis assesses the uncertainty in model output due to uncertainties in input 

factors (which includes data, parameters, initial states, and sometimes model equations 

themselves) (Crosetto, Tarantola, & Saltelli, 2000; Pianosi et al., 2016; Riley & Thompson, 

2016). The purpose of UA is to determine the overall variance of the model’s output, or the 

distribution of its potential range of outputs. This information, by itself, is a useful addition 

to model validation, as it refines the limits of model validity (Messina et al., 2008; Wallentin 

& Car, 2013). Sensitivity analysis builds on UA to apportion the output variance to the input 

factors. Nevertheless, UA and SA are separate processes, where the first is a measure of 

overall uncertainty, while the latter apportions uncertainty to input factors and measures 

their influence as well (Crosetto et al., 2000; Saltelli & Annoni, 2010). In this way, SA is very 

useful in an iterative model design/development approach (Trucano et al., 2006). Input 

factors can be ranked by their level of influence, thus identifying the most important, and the 

least important (Ligmann-Zielinska, Kramer, Spence Cheruvelil, & Soranno, 2014). These 

negligible factors can even be removed from the model, assuming there are no vital 

interactions between them and other factors. Sensitivity analysis can also identify 

interactions between input parameters and discern regions of input variability space that 

have important consequences of model output. 

5.6 Example of modelling a complex system 

A model of Mountain pine beetle (MBP) (Dendroctonus ponderosae Hopkins) (Pérez & 

Dragićević, 2011; Safranyik & Carroll, 2006), infestation in British Columbia serves as an 

example of the above model development steps. The MBP is an invasive species that is 

currently devastating the pine forest ecosystems in British Columbia, Canada. Although inter-
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beetle interactions are non-social, their behaviour as a whole is the result of individual 

decision-making, while the swarm behaviour itself affects individual agents. This 

characteristic makes the MPB and its infestation of the pine ecosystems of British Columbia 

a perfect candidate for modelling as a complex system (Perez & Dragicevic, 2010). 

The system is modelled using an agent-based approach, where both beetles and trees are 

agents with rules determining their phenology and spatiotemporal interactions. The main 

pathway for insect infestation of trees is a pheromone production and response system. In 

the model, female beetles randomly find a healthy tree susceptible to attack, and then 

produce a pheromone to attract other beetles and begin their attack. Another pheromone 

response regulates the number of attacking beetles to prevent over-crowding. Comparing the 

spatial behaviour of beetle agents between the model and an alternative, random behaviour 

model verified that the model operated as intended 

Using data of tree mortality patterns in 2001 and 2006, the model was calibrated by running 

5 1-year simulations, to adjust two major parameters that resulted in the patterns most 

similar to 2006 tree mortality. Sensitivity analysis helped identify the importance and the 

optimal setting of one of those parameters, the neighborhood size of beetle agent pheromone 

search (Pérez & Dragićević, 2011; Pérez, Dragićević, & White, 2013). The model was then 

validated with a full 5-year simulation to determine the accordance between model 

infestation patterns and 2006 infestation patterns. 

Based on the importance of neighborhood size identified by SA, later work on MPB modelling 

using machine learning techniques integrated neighborhood effects as variables in model 

calibration, which allowed spatiotemporal complexities to be simulated (Harati, Perez, & 

Molowny-Horas, 2020) 

A model like the one presented above allows researchers and forest managers to predict 

possible outcomes of policies and treatments to mitigate the damage caused by the MPB. It 

can also uncover key aspects of modelling assumptions that can inspire new avenues of 

research. Complex systems science, then, provides the means and guidelines to simulate, 

investigate, and analyse these kinds of systems. 
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6. Forest fire modelling via complex systems science 

As this chapter has explained, forest fires are a complex system, and complex systems science 

offers many tools with which to study them. One such tool, Agent Based Modelling, has thus 

far seen little use in simulating forest fires. That is why the research objectives of this thesis 

focus on exploring the possibilities of using ABM to simulate forest fires. Chapter 2 presents 

a paper that responds to the objectives laid out in Section 1.2 of this Chapter. 
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Agent-based modelling is an uncommon approach in fire spread modelling and simulation, 

and the following article aims to explore the advantages it can bring, namely the 

incorporation of complex feedback mechanisms at low computational cost; hitherto a 

significant challenge among fire spread models. The article presents the Agent-Based 

Wildfire Simulation Environment (ABWiSE) model, developed to respond to the research 

questions posed by this thesis. Developed from a complex systems viewpoint, ABWiSE 

represents fire as a set of mobile agents which, in aggregate, replicate fire spread. The model 

design seeks to reproduce realistic fire behaviour based on the interactions of these agents 

with each other, terrain, vegetation, and a simplified atmospheric feedback mechanism. The 

article contextualizes the place of ABWiSE within the fire modelling literature, describes the 

model, the calibration procedures and evaluation methods, and presents and discusses the 

results of this evaluation. 
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ABWiSE v1.0: Toward an Agent-Based Approach to Simulating 

Wildfire Spread 

 

Abstract: 

Wildfires are a complex phenomenon emerging from interactions between air, heat, and 

vegetation, and while they are an important component of many ecosystems’ dynamics, they 

pose great danger to those ecosystems, as well as human life and property. Wildfire 

simulation models are an important research tool that help further our understanding of fire 

behaviour and can allow experimentation without recourse to live fires. Current fire 

simulation models fit into two general categories: empirical models and physical models. We 

present a new modelling approach that uses agent-based modelling to combine the 

complexity possible with physical models with the ease of computation of empirical models. 

Our model represents the fire front as a set of moving agents that respond to, and interact 

with, vegetation, wind, and terrain. We calibrate the model using two simulated fires and one 

real fire and validate the model against another real fire and the interim behaviour of the real 

calibration fire. Our model successfully replicates these fires, with a figure of merit on par 

with simulations by the Prometheus simulation model. Our model is a stepping-stone in using 

agent-based modelling for fire behaviour simulation, as we demonstrate the ability of agent-

based modelling to replicate fire behaviour through emergence alone. 

Keywords: agent-based model (ABM), forest disturbances, landscape ecology, fire behaviour, 

wildfire simulation 
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1. Background 

Fire is an integral part of ecosystems the world over but also poses a serious danger to human 

life and property (Bowman et al., 2011; Moritz et al., 2010; Brenkert-Smith et al., 2013; Butry 

et al., 2001; Carroll et al., 2006; Chuvieco et al., 2014; Kochi et al., 2010; Richardson 

et al., 2012). In recent years, anthropogenic climate change has exacerbated this danger 

chiefly by lengthening growing seasons and increasing the risk of drought (Flannigan 

et al., 2016; Lozano et al., 2017), leading to more frequent and more extreme fires in many 

parts of the world (Chuvieco et al., 2016; Kirchmeier-Young et al., 2019, 2017). The use of 

controlled burning has, for a very long time (Gott, 2005; Roos et al., 2021), helped to mitigate 

the risks of extreme fires and to maintain forest health (Boer et al., 2009; Camp and 

Krawchuk, 2017; Fernandes and Botelho, 2003). Given the exacerbation of conditions ripe 

for extreme fires, it is paramount to predict how a fire might spread if it starts, especially for 

prescribed burns. Fire behaviour models are an important research tool that help further our 

understanding of fire behaviour and can allow experimentation without recourse to live fires 

(Hoffman et al., 2018). More specifically, modelling at the scale of individual fires is 

important for both the study of fire regimes (Keane et al., 2013; Parisien et al., 2019) and the 

operational management of active fires (Finney, 1999; Lawson et al., 1985; Tymstra 

et al., 2010; Van Wagner, 1974). 

Bearing in mind that a complex system is one in which numerous elements interact in ways 

that give rise to emergent behaviour, often non-linear in nature, usually featuring feedback 

loops (Batty and Torrens, 2005; Langlois, 2010), at its base, fire is a complex system of 

interactions between fuel, oxygen, and heat (Byram, 1959). The dynamics and emerging 

behaviour are the result of self-organization, and the complex system will exhibit some form 

of hierarchy (Langlois, 2010), e.g. heat released from combustion warms neighbouring 

material to the point of combustion and creates convective currents in the air, moving oxygen 

through the system, which in turn keeps feeding the fire (Anderson, 1969; Byram, 1959). In 

a forest fire, the heat flux of all the burning material contributes to convection in the air mass 

surrounding a fire, sometimes enough to alter the flow of air that drives it (Clements 

et al., 2019; Filippi et al., 2009). This fire leaves a portion of land bereft of vegetation until it 

is recolonized, and this patch of land responds differently to new ignitions thereafter (Parks 
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et al., 2015). Many fires over many years may affect the climate, which affects the vegetation, 

affecting the fires as a result, forming a feedback loop (Bowman et al., 2014; Stevens 

et al., 2015; Stralberg et al., 2018). Nevertheless, the challenge of any fire model is to balance 

complex behaviour with speed of computation, at a relevant scale. 

Our goal is to demonstrate the potential of agent-based modelling (ABM) for the simulation 

of forest fire spread. Using ABM and a complex systems approach, we build a model that uses 

simple rules to reproduce fire behaviour as an emergent property of interactions between 

numerous agents representing fire. Agent-based modelling is a useful tool for modelling 

complex systems and is broadly much more computationally efficient at reproducing these 

systems than classical approaches based on solving numerous partial differential equations 

(Parunak et al., 1998; Sun and Cheng, 2005). As presented in the literature review below, 

ABM has appeared very little in fire behaviour research, and with this study, we aim to 

illustrate the potential of this approach to the field of forest fire disturbances and address 

some of its limitations. 

1.1 Fire behaviour models 

Bearing in mind that wildfires are a global phenomenon that pose significant and growing 

threats to human lives, property, wildlife habitat, regional economies, and global climate 

change, a variety of tools to tackle and envisage fire propagation have been developed. Some 

of these tools have the purpose of monitoring (Chu and Guo, 2013; Chuvieco et al., 2019; 

Giglio et al., 2016, 2003), others to forecast the likelihood of wildfire events (Cheng and 

Wang, 2008; Taylor et al., 2013; Forkel et al., 2019), and lastly some to model and simulate 

fire behaviour (Sullivan, 2009a, b, c). The literature concerning this latter category is of 

particular interest to the goal of this study. 

There are many fire behaviour models described in the literature, ranging from empirical 

relations between environmental factors and fire behaviour to physics-based models that 

simulate the heat transfer of combustion between fuels and between fuel and atmosphere 

(Sullivan, 2009a). Among the most important advantages of empirical simulation models is 

their speed of computation; by simplifying the interactions between environmental factors 

and the fire front, they only have a small set of equations to solve at each time step 
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(Sullivan, 2009b). The primary design goal for empirical models is operational use by 

firefighters, who need rapid results and have the expert knowledge to overcome model 

limitations (Finney, 2004; Stocks et al., 1989). On the other hand, physical simulation models 

are better able to represent fire–atmosphere interactions and replicate the complexity and 

emergent behaviour of real fires (Coen, 2018). For example, while semi-empirical models 

such as FARSITE (Finney, 2004) or Prometheus (Tymstra et al., 2010) assume that fire shape 

is elliptical, physics-based models do not make this assumption, and fire shape matches 

observations through emergence (Filippi et al., 2009; Linn and Harlow, 1998). The drawback 

of physics-based models is their computation time; since they typically simulate interactions 

at a very small scale and have huge computational requirements, such models struggle to 

perform faster-than-real-time (FTRT) simulations (Sullivan, 2009a). 

Modellers are attempting to bridge this gap between complexity of model behaviour and 

execution speed in various ways. One is by coupling a computational fluid dynamics model 

(CFD) with empirical fire behaviour models (Coen et al., 2013; Filippi et al., 2013), though it 

is argued that the generally coarse scale of the fire behaviour component limits their use 

(Linn et al., 2020). Yet despite simplifying the fire spread component of a coupled fire–CFD 

model, FTRT simulation can be difficult to achieve. Using the WRF-Fire (Weather Research 

and Forecasting – Fire) model (Coen et al., 2013) to simulate a real fire event in Bulgaria, 

Jordanov et al. (2012) reported simulation speeds based on number of processing cores and 

noted that FTRT simulation required a minimum of 120 cores. The CFD was the more 

demanding component of those simulations. It is possible to simulate fire–atmosphere 

interactions without using a complicated CFD but instead using a model that considers only 

relevant airflow. Hilton et al. (2018) created a model of pyrogenic potential to simulate two-

dimensional airflow at the fire line, and their results match well with real-world experimental 

fires. While physics-based models provide the most realistic representations of fire 

behaviour, simplified physical or empirical models are also able to reproduce reasonably 

realistic fire behaviour by retaining relevant fire–atmosphere interactions. Other models 

take advantage of principles from complex systems modelling, in which complex phenomena 

are simplified by spreading calculations to individual, interacting computational units known 
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as automata or agents in order to capture the essential interactions of a system 

(Sullivan, 2009c). 

1.2 Complex systems modelling 

In complex systems modelling, there are two broad computational approaches to modelling 

environmental systems: cellular automata (CA) and agent-based model(ing) (ABM). CA are a 

mathematical representation of a complex system wherein a lattice of cells is subject to a set 

of rules that determine their state and state information is passed between neighbouring 

cells (Gaudreau et al., 2016; Yassemi et al., 2008). Agent-based modelling uses autonomous, 

interacting agents following a rule set, like in CA. The key differences are that in an ABM, 

agents are mobile and can be heterogeneous; agents can interact with each other and their 

environment while moving through it, and different agents can follow different rule sets 

(Perez and Dragicevic, 2012; Pérez and Dragićević, 2011). 

There are numerous CA models of forest fire behaviour. Earlier CA fire models had difficulty 

simulating correct fire shapes generally due to grid and neighbourhood shape biases 

(Tymstra et al., 2010). More recently, CA models on par with popular semi-empirical models 

have been developed; for example, the model by Ghisu et al. (2015) compares well with 

FARSITE, and that by Yassemi et al. (2008) does so with Prometheus. Due to their simplicity, 

CA models find use in dynamic fire–vegetation models, which simulate fire–climate–

vegetation interactions over long time spans and at coarse spatial scales (Cary et al., 2006; 

Gaudreau et al., 2016). However, few, if any, CA models we have reviewed account for fire–

atmosphere interactions to inform fire behaviour. 

Agent-based modelling often simulates systems where mobile individuals are important, 

such as predator–prey systems (Grimm et al., 2005), flocks of birds or fish (Oloo and 

Wallentin, 2017), or insect infestations in forests (Pérez and Dragićević, 2011). Agent-based 

modelling lends itself well to simulating socio-ecological systems, such as forest management 

(Ager et al., 2018; Pérez and Dragićević, 2010; Spies et al., 2014) in which human decision-

making must be modelled. While these examples have so far shown the utility of ABM for 

simulating decision-making entities, ABM does well with physical systems such as particles 

or smoke. A recent paper (Smith and Dragicevic, 2018) presents a physics-based ABM of 
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forest fire smoke propagation, including two types of agents, one for fires and one for smoke 

particles. A single fire agent represents a single fire and produces the smoke agents. The fire 

agents can be either stationary or move according to a very simplified model of fire spread 

(2 % of surface wind speed), but fire shape and area are not represented. Because the only 

aspect of fire behaviour present in the model is smoke production, we do not consider this 

an ABM of fire behaviour. 

The one paper we have found that explicitly claims to be an ABM of fire behaviour is the work 

by Niazi et al. (2010). It uses a virtual overlay multi-agent system (VOMAS) for validation and 

verification of their fire spread model, in which the VOMAS serves as a simulacrum of 

measurement points in the simulated forest. 

Our literature search has uncovered only two fire behaviour models that match our 

description of ABM, yet the authors refer to them as CA. The first is the Rabbit Rules model 

of Achtemeier (2003) that bases itself on some of the principles of complex systems theory 

as described by Wolfram (2002). The first paper describing the Rabbit Rules model 

(Achtemeier, 2003) does explain that it is not a CA model and that “each element, a rabbit, is 

an autonomous agent … not constrained by the definition of the underlying grid (raster) 

domain”; nevertheless, the term ABM does not appear. Later papers that use or mention the 

Rabbit Rules model refer to it as a CA model, masking the fact that it uses a completely 

different modelling approach (Achtemeier et al., 2012; Achtemeier, 2013; Linn et al., 2020). 

The Rabbit Rules model recasts the physical and mathematical problems of fire behaviour as 

a set of rules of “rabbit behaviour” due to the analogical resemblance between fire and rabbit 

behaviours. Rabbits eat, jump, and reproduce just as fire consumes fuel, passes from fuel 

element to fuel element or spots, and reproduces as it ignites unburned material. In addition 

to rules for eating (fuel consumption), jumping (spotting), and reproduction (new ignitions), 

secondary rules modify these to include the effects of terrain, weather, fuel, and fire–

atmosphere feedbacks. The Rabbit Rules model produces a ring shape under windless 

conditions, and a bowed front in high wind, without any predetermined geography such as 

in ellipse-based models. Just like an ABM, Rabbits move across the landscape, interact with 

each other and their environment, and produce reasonable perimeter shapes due to 

emergence alone. 
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Achtemeier (2013) presents a field validation of the Rabbit Rules model with the FireFlux 

experimental grassland fire, conducted in tall-grass prairies near the Gulf Coast of Texas, USA 

(Clements et al., 2007). The field validation demonstrates a reasonable match between 

simulated and observed airflow 2 m above the surface at two observation towers used in the 

FireFlux experiment. That study also notes that the Rabbit Rules model can simulate non-

linear processes unachievable by empirical models and much more quickly than full-physics 

models; while FIRETEC can take about 90 s for each second of simulation on a 64-processor 

supercomputer, Rabbit Rules took only 0.67 s for each second of simulation on a desktop PC 

for this experiment. The simulation speed information for FIRETEC comes from a review by 

Sullivan (2009a). We have not found more recent information on simulation speed for 

FIRETEC, although the website for HIGRAD/FIRETEC states that “FIRETEC takes the huge 

computational resources at the Los Alamos National Laboratory to run, so it is currently a 

research tool only” (https://www.frames.gov/firetec/home, last access: 20 April 2021). 

The initial exploration of ABM applied to fire behaviour by Achtemeier (2003, 2013) 

provided the base for a new model, QUIC-Fire (Linn et al., 2020). QUIC-Fire is a fuel–fire–

atmosphere simulation model that combines the rapid wind solver QUIC-Urb (Singh 

et al., 2008) with their new physics-based fire spread model Fire-CA. This fire spread model 

builds on the conceptual framework of the Rabbit Rules model, in which instead of “rabbits”, 

energy packets (EPs) represent units of energy that can evaporate moisture, burn fuel, or 

transfer their energy to the atmosphere. While Fire-CA is described as a cellular automata 

model, the EPs act like agents that move across the grid-based computational landscape; 

therefore we include it with the Rabbit Rules model as the only other example of fire 

behaviour simulation using ABM. Linn et al. (2020) demonstrate the model in two case 

studies, comparing the simulation results of FIRETEC and QUIC-Fire. The first case study was 

a simulated grass fire, and the second was a simulated prescribed fire in a forest landscape, 

replicating conditions typical of a prescribed burn at Eglin Air Force Base, in Florida, USA. 

Even though the paper does not report simulation speed, it does state QUIC-Fire is capable of 

FTRT simulation and required ∼1/2000 of the computational cost of FIRETEC for the 

simulations reported. 
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As stated earlier, the aim of this study is to demonstrate the potential of ABM for the 

simulation of forest fire spread. To do so we build an agent-based simulation model of fire 

behaviour using an empirical approach. This allows us to demonstrate how interactions 

between agents can produce common patterns found in fires by following simple rules. The 

model proposed here does not aim to replace or upgrade any fire spread model but rather to 

showcase the advantages and potential of using an alternative modelling approach. With this 

in mind, we design it for the simulation of large individual fire events in Canada, as large fires 

(>200 ha) account for ∼3 % of fires in Canada and are responsible for ∼97 % of total area 

burned (Stocks et al., 2002). Fires of this scale are particularly relevant for the study of fire 

regimes and fire–climate–vegetation interactions, as present in dynamic global vegetation 

models. These types of models typically use very simple fire spread models (Keane 

et al., 2004) and could benefit from a computationally efficient fire spread model that 

accounts for complex interactions during a fire event. An ABM of fire spread could potentially 

fill this niche. 

The proposed and implemented Agent-Based Wildfire Simulation Environment (ABWiSE) 

model represents the fire front as a set of moving agents whose behaviour is determined by 

rules accounting for vegetation, terrain, and wind, as well as the interactions among the 

agents and with their environment (such as fire–wind feedback). We implement the ABWiSE 

model on two base case scenarios and two parts of one real fire (cases 1 through 4, 

respectively). The first two cases are simulated fires, and the latter two are from a fire in 

Alberta, Canada. The cases are detailed in Sect. 3.1 and listed in Table 1. We calibrate the 

model with cases 1, 2, and 3 and validate the model against case 4, as well as progression 

data for case 3. While we perform some preliminary uncertainty and sensitivity analyses to 

calibrate the model and evaluate some assumptions, a thorough uncertainty and sensitivity 

analysis will be the subject of future work. 

2 ABWiSE fire spread simulator  

2.1 General overview 

ABWiSE translates the concept of a moving fire front as a set of mobile fire agents that, viewed 

in aggregate, form a line of varying thickness. Ultimately, the goal of such a fire simulation 
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model is to provide predictions of the behaviour of hypothetical fires. Presently, this paper 

uses ABWiSE to explore how ABM, using simple interactions between agents and a simple 

atmospheric feedback model, can simulate emerging fire spread patterns. Specifically, we 

aim to identify the strengths and weaknesses of ABM applied to this purpose and how it 

differs from other modelling approaches. 

We use pattern-oriented modelling as a strategy to both design and evaluate our model 

(Grimm et al., 2005). The patterns in question are fire line rate of spread (RoS; temporal), fire 

shape (spatial), and fire–wind interactions (emergence). As mentioned earlier, the ellipse is 

widely accepted as the generic fire shape (Anderson et al., 1982; Van Wagner, 1969), and it 

serves as the starting pattern. In uniform fuel and wind conditions, how can we get agents to 

burn an elliptical area through emergence and not an explicit rule? The guiding assumptions 

that lead to the model’s current form are that fire is slower at the edges of a fire line than the 

center (Finney, 2004; Van Wagner, 1969), that the relationship between wind speed and rate 

of spread changes with the angle between the direction of spread and wind direction, and 

that fire dries the fuel ahead of it, making it more flammable (Byram, 1959). Fire line rate of 

spread and fire–wind interactions are what create fire shape as it evolves over time (Clark 

et al., 1996), so we use fire shape to evaluate our model under different conditions and at 

different times. The specific evaluation scenarios are described in Sect. 3. 

2.2 Entities, state variables, and scales 

The model entities are fire agents and grid cells. The fire agents have two main properties, 

heading and rate of spread (RoS), plus their location (floating-point coordinates). The 

heading is the direction, in degrees, an agent faces. The RoS is the portion of a cell an agent 

travels every time step (called a tick). The units of the RoS depend on the spatial and temporal 

scales of the model. 

The spatial and temporal resolutions of the model are linearly proportional; e.g. at a 200 m 

cell size, each time step (or tick) represents 1 min, and at a 400 m resolution, each tick is 

2 min. The spatial and temporal extents of the model depend entirely on the scenario to 

simulate. The model is implemented in the NetLogo multi-agent programmable modelling 
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environment (Wilenski, 1999). The code and data are freely available under an open source 

license on GitHub (https://doi.org/10.5281/zenodo.4976112, Katan, 2021). 

We base the flammability and fuel of cells on the Canadian Forest Fire Danger Rating System 

(CFFDRS) (Van Wagner, 1974; Wotton, 2009). We chose it due to the availability of fuel type 

data in Canada and the system’s use around the world (Opperman et al., 2006). The system 

includes 16 classes of vegetation for which there are empirically derived equations relating 

fuel moisture and weather to fire behaviour. The CFFDRS is currently composed of two sub-

systems: the Fire Weather Index (FWI), which provides a general rating of fire spread 

potential based on fuel moisture, temperature, and wind speed, and the Fire Behaviour 

Prediction (FBP) system, which combines the FWI with fuel type characteristics to provide 

more detailed fire behaviour information. This system has been in use for decades but does 

not account for any form of feedback mechanism. Because ABWiSE uses feedback loops to 

replicate fire behaviour, using the FWI would require reworking its equations without wind, 

as it is an important variable within its subsystems. Doing so is beyond the scope of this 

research at this time. Instead, we chose to map the average characteristics of fuel types of the 

CFFDRS, as described in Forestry Canada Fire Danger Group (1992), to flammability and fuel 

values (Sect. A1). This keeps wind as a separate input and variable that forms part of a 

feedback loop. 

2.3 Procedures 

Figure 1 provides a schematic overview of the procedures. A model run begins with an 

ignition, creating four fire agents at that point, each facing one cardinal direction. Since 

flammability is the first driver of fire spread, fire agents have an initial RoS value set to the 

flammability of the cell they start in. At each time step, fire–wind interactions provide a local 

effective wind speed and direction for cells within a certain distance of fire agents (Feedback 

procedure, Sect. A2.1). Next, fire agents update their RoS and heading based on wind, 

flammability, terrain, and the local density of fire agents and then move by that RoS in that 

direction (Spread procedure, Sect. A2.2). After moving, agents preheat the cell within the 

distance of their RoS by a small amount, raising its flammability (Preheating procedure, 

Sect. A2.3). Next, agents have a chance to be extinguished (or die) based on the fuel value at 

their location and their RoS (Death procedure, Sect. A2.4). Those that do not die then 

https://nhess.copernicus.org/articles/21/3141/2021/#bib1.bibx93
https://nhess.copernicus.org/articles/21/3141/2021/#bib1.bibx93
https://doi.org/10.5281/zenodo.4976112
https://nhess.copernicus.org/articles/21/3141/2021/#bib1.bibx49
https://nhess.copernicus.org/articles/21/3141/2021/#bib1.bibx49
https://nhess.copernicus.org/articles/21/3141/2021/#bib1.bibx91
https://nhess.copernicus.org/articles/21/3141/2021/#bib1.bibx91
https://nhess.copernicus.org/articles/21/3141/2021/#bib1.bibx95
https://nhess.copernicus.org/articles/21/3141/2021/#bib1.bibx95
https://nhess.copernicus.org/articles/21/3141/2021/#bib1.bibx67
https://nhess.copernicus.org/articles/21/3141/2021/#bib1.bibx67
https://nhess.copernicus.org/articles/21/3141/2021/#bib1.bibx36
https://nhess.copernicus.org/articles/21/3141/2021/#bib1.bibx36


80 

propagate if they have travelled more than a certain distance from their point of origin and if 

there are fewer than a set number of other fires already in their current cell (Sect. A2.5). 

Lastly, fire agents reduce the amount of fuel in a cell based on their RoS (Sect. A2.6). The 

simulation ends if there are no more fire agents or after a predetermined number of 

iterations. Detailed descriptions of the procedures, including the equations involved, are 

included in the Appendix (Sect. A2). However, we will explain here some of the reasoning 

behind key procedures, namely Feedback and Spread. The Feedback procedure combines the 

input wind values at a cell with the effect of fire agents nearby and smooths the resulting 

vector based on the wind in nearby cells. This is a simple proxy for fire–wind interactions 

that was inspired by the pyrogenic potential of Hilton et al. (2018). The Spread procedure 

attempts to match the relationship between RoS and wind speed and direction to 

observations, as well as producing a reasonable fire shape. In short, low wind speeds have a 

small effect on the fire agents but have a stronger effect on fire agents whose heading is close 

to the wind direction. The relationship between RoS and wind speed follows a logistic curve 

based on the same assumption as Forestry Canada Fire Danger Group (1992) that there exists 

a maximum RoS based on fuel type, though the relationship is not identical. The various 

feedbacks change the final RoS from that particular logistic equation, so it would be moot to 

use the exact same relationship between wind speed and RoS as the FBP system. 

 

Figure 1. –  Schematic description of model procedures.  

The “Check cell” diamond represents the check for the Death procedure, followed by the 

check for Propagation, after which Consumption occurs. Fire agent RoS and heading are 

https://nhess.copernicus.org/articles/21/3141/2021/#bib1.bibx45
https://nhess.copernicus.org/articles/21/3141/2021/#bib1.bibx45
https://nhess.copernicus.org/articles/21/3141/2021/#bib1.bibx36
https://nhess.copernicus.org/articles/21/3141/2021/#bib1.bibx36
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updated in the Spread procedure, which are used by the Feedback procedure at the start 

of the next iteration. Because agents update asynchronously within a procedure, 

Preheating by one agent can affect the next agent to perform the Spread procedure. 

The last important detail about model processes is stochasticity. There are two sources of 

stochasticity in the model: the first is the chance of agents dying out, and the second is the 

turn order of the agents at each time step. While the operations listed above happen in the 

order presented, the order of agents or cells performing them is random. This asynchronous 

updating of agents is a default of the NetLogo programming language and serves to avoid 

artifacts of execution order. Due to the stochasticity, we base the model evaluation on 

ensemble maps representing the sum of 100 simulations with the exact same inputs and 

parameters. 

 

3 Calibration and validation 

To calibrate ABWiSE, we compare its output with expected behaviour and adjust the 

parameters until it performs adequately. Overfitting is a serious problem with this approach, 

and we try to minimize it by fitting our model to three different scenarios. However, detailed 

fire behaviour data and corresponding weather data are difficult to come by, especially for 

large and remote wildfires. Fortunately, the free-to-use Prometheus model (Tymstra 

et al., 2010) offers a sample dataset of a real fire for download: the Dogrib fire of 2001 in the 

foothills of the Rocky Mountains in Alberta, Canada (McLoughlin, 2019). We use one part of 

this fire for calibration, leaving another part for validation. Because we did not find other 

datasets using the Canadian FBP fuel type as model input, the two other scenarios for 

calibration are base cases as simulated by Prometheus. 

3.1 Scenarios 

The four scenarios are listed in Table 1 for ease of reference. The first base case scenario 

(Fig. 2a) is a 2 h long fire on a flat plane of the C-2 fuel type, Boreal Spruce, with no wind and 

a temperature of 25 ∘C. The second base case (Fig. 2b) is the same but with 20 km/h wind 

https://nhess.copernicus.org/articles/21/3141/2021/#bib1.bibx89
https://nhess.copernicus.org/articles/21/3141/2021/#bib1.bibx89
https://nhess.copernicus.org/articles/21/3141/2021/#bib1.bibx89
https://nhess.copernicus.org/articles/21/3141/2021/#bib1.bibx62
https://nhess.copernicus.org/articles/21/3141/2021/#bib1.bibx62
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speed, coming from the east. Though ABWiSE does not use temperature as an input, 

Prometheus uses it to calculate the FWI and track changes in fuel moisture over time. 

 

Figure 2. –  Base cases 1 and 2 

 

The Dogrib fire started on 25 September 2001 in the Rocky Mountains of southwest Alberta, 

Canada. The fire was detected at 17:00 MDT (all times are in mountain daylight time) on 

29 September and reached a size of 675 ha at 16:30 the next day. Fire suppression started at 

06:00 on 1 October. It burned at various rates under some suppression efforts until it grew 

to 852 ha by 15 October. On the 16th, a wind event pushed the fire through a gap in the 

surrounding mountains and caused the fire to jump the Red Deer River. After this, it spread 

19 km in 6.7 h in a northeast direction. The final fire size was 10 216 ha, 90 % of which was a 

result of the 16 October fire run (McLoughlin, 2019). The vegetation consumed by the fire 

consisted mostly of lodgepole pine (Pinus contorta), followed by subalpine fir (Abies 

lasiocarpa), and Engelmann spruce (Picea engelmannii). Respectively, the FBP fuel types C-3, 

C-1, and C-2 represent these. 

Table 1. Scenarios used for model calibration and evaluation. 

Scenarios Description 

Case 1 C-2 (Boreal Spruce) fuel type, no wind 
Case 2 C-2 (Boreal Spruce) fuel type, 20 km east 
Case 3 Dogrib fire, 16 October portion 
Case 4 Dogrib fire, 29 September portion 

 

 

https://nhess.copernicus.org/articles/21/3141/2021/#bib1.bibx62
https://nhess.copernicus.org/articles/21/3141/2021/#bib1.bibx62
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The example scenario provided with Prometheus provides data for both the initial 

unsuppressed burn between 17:00 on 29 September and 18:30 on 30 September and the 

16 October fire run, shown in Fig. 3. These represent cases 4 and 3, respectively. Case 4 

serves as an independent dataset for validation, and the final perimeter of case 3 serves for 

calibration, while the progression perimeters (solid polygons in Fig. 3, as provided with 

example data) are used for interim validation. The nearby Yaha Tinda automated weather 

station provided the necessary weather data for the simulation. According to the case study, 

this single weather station could not account for the complex topography of the mountainous 

area. The Dogrib case study includes a manually created weather patch for the Prometheus 

simulation in order to replicate the wind funnelling effect of the Red Deer River valley 

observed in the actual fire event. This funnelling is what drove the fire through a gap in the 

mountains and across the river. The report states that use of this weather patch provided 

more realistic simulation results in the case study than either uniform winds or dynamically 

modelled weather grids accounting for topographical influence on wind flow 

(McLoughlin, 2019). We use the exact same weather information for the ABWiSE simulations. 

 

https://nhess.copernicus.org/articles/21/3141/2021/#bib1.bibx62
https://nhess.copernicus.org/articles/21/3141/2021/#bib1.bibx62
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Figure 3. –  Study area 

Two parts of the Dogrib fire. The ignition points are those provided with the sample data, 

as used in our simulations as well as the Prometheus simulations. Background is a 

combination of hill shading, elevation, and fuel-type. The solid polygons show fire 

progression representing the time by which at least that much area has burned. 

 

3.2 Model evaluation 

Evaluation is critical for any simulation model, especially one that relies on empirical 

relations between variables instead of physical rules. Quantitative spatial methods to 

measure fire behaviour model performance broadly fall into two categories: final perimeter 

methods and time-based methods. Final perimeter methods, as the name suggests, measure 

the similarity between the final simulation perimeter and a final observed perimeter. Such 

methods are dependent on the error of the observation time and related assumptions about 
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simulation duration, and they provide no information about model performance at 

intermediate times (Filippi et al., 2014). 

In order to measure model performance throughout calibration, we use a final perimeter 

measure: the figure of merit (FoM) (Eq. 1), equivalent to the Jaccard similarity coefficient 

(Pontius et al., 2018). Values of the FoM range from 0 to 1, with 1 being a perfect match. In 

the case of fire perimeters, hits are those cells burned by the simulation that were also 

burned in the observation, misses are those unburned by the simulation but burned in 

observation, and false alarms are those burned by the simulation that were not burned in 

observation. Though there are some criticisms about the FoM and its use in measuring 

land-use change models (Harati et al., 2021; Varga et al., 2019), it still provides useful 

information and is easy to interpret when used to compare burned areas (Filippi 

et al., 2014). In particular, criticisms surrounding the FoM are based on full map 

comparisons, but in this study, the comparison is between burned perimeters only. Correct 

rejections far from the area of interest are never considered. Furthermore, simplicity of 

calculation is an important factor when measuring millions of simulations, as is necessary 

in calibrating this model.  

𝐹𝑜𝑀 = 
ℎ𝑖𝑡𝑠

ℎ𝑖𝑡𝑠+𝑚𝑖𝑠𝑠𝑒𝑠+𝑓𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚𝑠
                   (1) 

3.3 Calibration 

Calibration begins with manual exploration of the parameter space to eliminate 

parametrizations that produce very inaccurate results (based on both visual assessment and 

FoM). Large deviations from these manually identified initial settings produce very poor 

results (e.g. FoM less than 0.2). The next stage explores promising regions of parameter space 

at finer resolution, which consists of varying parameters around those manually identified 

initial settings by steps of about 5 % of their total range, up to three steps above and below 

the initial setting. We uses up to three steps because varying all 12 parameters by six steps 

would require just over 2 billion simulations. In addition, the need to repeat simulations for 

each combination to account for stochasticity acts as a multiplier to that number. We keep 

our parametrization runs to about 100 000 combinations at a time, with three repetitions, 

choosing to apply a broader sweep to those parameters deemed to have the most impact and 

https://nhess.copernicus.org/articles/21/3141/2021/#bib1.bibx32
https://nhess.copernicus.org/articles/21/3141/2021/#bib1.bibx32
https://nhess.copernicus.org/articles/21/3141/2021/#bib1.bibx74
https://nhess.copernicus.org/articles/21/3141/2021/#bib1.bibx74
https://nhess.copernicus.org/articles/21/3141/2021/#bib1.bibx44
https://nhess.copernicus.org/articles/21/3141/2021/#bib1.bibx44
https://nhess.copernicus.org/articles/21/3141/2021/#bib1.bibx92
https://nhess.copernicus.org/articles/21/3141/2021/#bib1.bibx92
https://nhess.copernicus.org/articles/21/3141/2021/#bib1.bibx32
https://nhess.copernicus.org/articles/21/3141/2021/#bib1.bibx32
https://nhess.copernicus.org/articles/21/3141/2021/#bib1.bibx32
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a smaller sweep to the other parameters. The parametrization runs generate a table with 

each row containing the parameter values and the final FoM of that simulation. After such a 

run, we use a classification and regression tree (CART) (Brieman et al., 1984; Loh, 2011) 

based on the table to identify new “search” areas for parametrization. That is, the CART 

identifies important parameters and determines the values above or below which the FoM 

was better. However, the non-random nature of how we set the parameters and explore 

parameter space means the CART models are never as robust as if we had used random 

samples of the parameter space. We repeat the parametrization–CART process twice to 

arrive at a parametrization that adequately simulates all three scenarios without over-fitting 

the model to the few scenarios available to us. 

After calibration, we use Monte Carlo methods (Kroese et al., 2014; Metropolis and 

Ulam, 1949) to account for the stochasticity of the model, producing ensemble maps of 100 

simulations of each scenario. One ensemble map is the sum of the output maps of all 100 

simulations. Cell values in these maps range between 0 and 100, representing how many 

times it burned in the ensemble or, in other words, burn probability. Note that this is the 

probability of that cell burning in the ensemble of simulations, not a prediction of burn 

probability in reality. We calculate a more robust FoM based on the statistics of these 

probability maps. 

3.4 Validation 

Typical model validation compares model output for scenarios not used in model calibration 

(Hoffman et al., 2018). The only independent scenario available is case 4, the 29–30 

September portion of the Dogrib fire that was not subject to suppression efforts. This fire was 

about 14 km away from the automated weather station that supplied the data for the Dogrib 

case study and was nestled in a mountain valley. The available weather data are almost 

certainly less accurate than those for the 16 October run, which had improvements from 

experts and field observations. Therefore, while independent for the sake of model 

validation, the quality of the data limits the robustness of this validation. We supplement this 

validation with a time-based method to validate interim fire behaviour. Because the measure 

for calibration was only the final perimeter, the measure of intermediate fire behaviour is to 

some extent independent and can validate interim behaviour (Filippi et al., 2014). Although 

https://nhess.copernicus.org/articles/21/3141/2021/#bib1.bibx13
https://nhess.copernicus.org/articles/21/3141/2021/#bib1.bibx13
https://nhess.copernicus.org/articles/21/3141/2021/#bib1.bibx60
https://nhess.copernicus.org/articles/21/3141/2021/#bib1.bibx60
https://nhess.copernicus.org/articles/21/3141/2021/#bib1.bibx55
https://nhess.copernicus.org/articles/21/3141/2021/#bib1.bibx55
https://nhess.copernicus.org/articles/21/3141/2021/#bib1.bibx63
https://nhess.copernicus.org/articles/21/3141/2021/#bib1.bibx63
https://nhess.copernicus.org/articles/21/3141/2021/#bib1.bibx63
https://nhess.copernicus.org/articles/21/3141/2021/#bib1.bibx46
https://nhess.copernicus.org/articles/21/3141/2021/#bib1.bibx46
https://nhess.copernicus.org/articles/21/3141/2021/#bib1.bibx32
https://nhess.copernicus.org/articles/21/3141/2021/#bib1.bibx32
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this cannot validate the whole model, it helps to elucidate the validity of its mechanisms. In 

addition to burn probability maps, the ensemble simulations provide maps of mean arrival 

time, which we use with the Dogrib fire progression data for case 3 in a time-based measure 

of performance to validate interim behaviour. Progression data for case 3 consist of 

reconstructions of the Dogrib fire perimeter at four instances between the start and end of 

the fire. Progression data for case 4 are too sparse for this method. Details for this evaluation 

are in Sect. 4.3. 

4 Results 

4.1 Ensemble maps 

The ensemble maps in Fig. 4 provide a visual overview of model performance. Cases 1 (Fig. 4a 

and b) and 2 (Fig. 4c and d) both show an excellent agreement between simulated and 

expected shapes, with case 2 having slightly more variation in its final perimeter. Since there 

is wind driving the fire in case 2, there is more room for emergence through the fire–wind 

interactions, and thus we would expect more variability in the ensemble simulation. This 

variability is even more present in case 3 (Fig. 4e), in which not only is the time of burn 

longer, but the input wind itself is more dynamic. The ensemble simulations of case 3 

demonstrate a wide range of potential outcomes. The majority of simulations do burn within 

a similar area as the real Dogrib fire, though some also cross the mountains further north and 

burn a large swath of land parallel to the real fire. Simulation of case 4 often burns far less 

than the observed fire. The simulation also never burns for the full duration of the 

observation data, with a mean burn time of 421 min out of 1550 min and a maximum of 

1492 min before burning out completely. Table 2 summarizes the FoM of the simulations in 

an ensemble, i.e. the summary statistics of the score of each individual simulation. To test 

whether the fire–wind feedback has a meaningful influence on fire behaviour in ABWiSE, we 

also perform these simulations with the w1 parameter (see Sect. A2.1) set to 1, which 

effectively reduces the effect of fire–wind feedback to 0. The table also includes the FoM for 

simulations by Prometheus for comparison. 

Considering that ABWiSE is designed with coarse scales in mind, we perform the same 

simulation measurements as before but at a resolution of 500 m per cell instead of 200 m. 
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The scores, in Table 2, are generally lower due in part to the smaller total number of cells 

involved in the calculations. As for fire–wind feedback, almost every scenario scores lower 

without the feedback effect than with it. Only case 1 at a 200 m resolution and case 3 at a 

500 m resolution score better without it. Most notably, the maximum scores are all lower. As 

seen in Fig. 5, simulated fire shape under windy conditions tend to be fan-shaped, rather than 

elliptical, with case 2 showing the most evident difference between simulations with and 

without fire–wind feedback. 

 

Figure 4. –  Ensemble maps for all 4 scenarios at 2 resolutions (200 m and 500 m).  

Graticule spacing for every map is 2000 m except (i), for which it is 500 m. This is to help 

compare the size of each scenario. Panels (e) to (h) have the same spatial extent in order 

to show the relative size and locations of cases 3 and 4. 
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Table 2. Figure of Merit (FoM) descriptive statistics based on each run in an ensemble 

simulation; “(no fb)” specifies scenarios run with the fire-wind feedback disabled. 

 200 m resolution 500 m resolution Prometheus 

Case Mean FoM Max FoM SD Mean FoM Max FoM SD FoM 

1 0.8322 0.8800 0.0185 0.5416 0.6300 0.0286 1 

2 0.8080 0.9300 0.0873 0.5598 0.6900 0.0524 1 

3 0.4783 0.6800 0.1830 0.4279 0.7200 0.1839 0.5647 

4 0.2817 0.4100 0.0608 0.2139 0.4600 0.0803 0.2108 

1 (no fb) 0.8362 0.8769 0.0141 0.4939 0.5882 0.0204 NA 

2 (no fb) 0.4558 0.5507 0.0431 0.3716 0.5000 0.0274 NA 

3 (no fb) 0.4116 0.4550 0.0214 0.4449 0.5507 0.0731 NA 

4 (no fb) 0.1377 0.1806 0.0277 0.1423 0.3673 0.0647 NA 
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Figure 5. –  Ensemble maps for all four scenarios at two resolutions (200 and 500 m) for 

simulations with no fire-wind feedback. 

Note that the simulation space topology is toroidal, meaning that fire agents that reach 

the edge of the world disappear and reappear at the opposite edge. Under normal 

circumstances this condition should not be reached, but the lack of fire-wind feedback 

resulted in exceptionally fast-moving fire fronts that passed the edge of the world before 

the end of the simulation. The results of this can be seen in panels (c), (d), (e), and (f). 

 

4.2 Figure of Merit maps 

There are two ways of calculating and showing the FoM of these ensemble maps. The first, in 

Fig. 6, shows an ensemble of the FoM components as calculated for each individual 

simulation. This visualization of the different FoM components provides insight into just how, 

and where, the model agrees or disagrees with observations. For case 1 (Fig. 6a, b, c), the 

simulation burns the entirety of the observed burn almost all the time, misses a few cells in 

a scant 2 % of simulations, and over-burns only a small ring outside the observation 

perimeter. With a mean FoM of 0.83, the simulation of case 1 is in good agreement with 

observations and, notably, creates a circular perimeter through emergence alone. Case 2 has 

a mean FoM of 0.81, also indicating good agreement. Figure 6e and f show that there is a fair 

amount of under- and over-burning in the ensemble, which contribute to the error. Once 

again, the simulation perimeter closely resembles the expected ellipse through emergence 

alone. Case 3 has a mean FoM of 0.48, much lower than the first two cases. Figure 6g shows 

that the majority of simulations in the ensemble do burn in a similar shape and area as the 

observation, but the ensemble frequently under-burns the top edge of the Dogrib fire. Figure 

6h shows the corollary and demonstrates that the model very rarely burns the full width of 

the Dogrib fire, particularly in the bottom portion of the fire. Over-burning is the smaller 

source of error for case 3, with mostly low probabilities, and Fig. 6j highlights the particularly 

low probability of the northern parallel burn mentioned earlier. Case 4 has a mean FoM of 

0.28 and never burns the full extent of the observed fire, as visible in Fig. 6k and l. On the 
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other hand, the simulations very rarely over-burn except a small portion to the north of the 

fire, which is the top of a ridge. 

 

Figure 6. –  Individual FoM components from each simulation, stacked as ensemble maps.  
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Cell value represents how many times a cell was part of a given component in the 

ensemble, in other words, the percent occurrence in that category. In this case count and 

percent are equivalent, given an ensemble consists of 100 simulations. 

The second way to calculate FoM from ensemble simulations uses a statistically derived 

subset of the full ensemble map to calculate FoM. The subset consists of those cells with a 

burn probability above a certain threshold value, and this subset is compared to the 

observation data. We calculated the FoM for four threshold values: the mean, 1 standard 

deviation, 2 standard deviations, and the second quartile. This provides the FoM of the most 

probable outcome of the model. Figure 7 shows the resultant FoM maps and scores for cases 

3 (Fig. 7a to d) and 4 (Fig. 7e to f) for the four different thresholds. These results show that 

while the mean FoM for cases 3 and 4 are relatively low, the most probable outcomes of the 

model (as defined by the statistical subsets) score higher. 
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Figure 7. –  Components of Figure of Merit.  
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Each column shows the FoM components and score for cells in the ensemble with a burn 

probability value above a threshold burn probability. First column is cells in the ensemble 

with a value above the mean, second column is those above 1 standard deviation below 

the maximum (100), third is above 2 standard deviations from the max, and fourth is 

above the 2nd quartile. Note that the real fire shape is the combination of Hits and Misses, 

while the simulated fire shape is the combination of Hits and False Alarms. 

4.3 Time-based evaluation 

A time-based measure of model performance allows us to evaluate interim fire behaviour 

and thus validate to some extent the processes that make up the simulation. In particular, it 

reduces the impact on FoM of impossibly burned cells, as mentioned above. Figure 8 shows 

how our simulation corresponds to the coarse reconstructions of the Dogrib fire (which are 

included with the sample data). Simulation progression uses the mean arrival time of a cell 

to determine those burned within a time period, and we use the mean probability subset 

(shown in Fig. 7a for comparison). In the first time period (Fig. 8a), both reconstructed and 

simulated fires grow similarly, though offset, but their fronts advance to a similar point. In 

the second period (Fig. 8b), the simulation fire continues to over-burn to the north and lags 

behind the furthest eastward extent of the reconstructed perimeter. By the third period 

(Fig. 8c) the simulation fire rushes ahead of the reconstruction, though the width of the fires 

stays similar. At the end of the fire the simulation has burned further and wider than the 

reconstruction. These tests show a degree of agreement between the progression of the 

simulated fire and that described in the case study (McLoughlin, 2019) in that the fire grows 

slowly in the first two periods, and then spreads very quickly in the last two. 

https://nhess.copernicus.org/articles/21/3141/2021/#bib1.bibx62
https://nhess.copernicus.org/articles/21/3141/2021/#bib1.bibx62
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Figure 8. –  Components of FoM for case 3, at four times past ignition. 

 

Table 3. Figure of merit values for ensemble simulations for different fuel types. 

Scenario Figure of merit Hits Misses False alarms 

Fuel type and wind speed Mean SD Mean SD Mean SD Mean SD 

C-1 00 km 0.16 0.01 3 0 0 0 16.37 0.86 

C-1 20 km 0.27 0.02 33.69 2.04 89.31 2.04 1.57 1.32 

C-2 00 km 0.83 0.02 56.96 0.2 0.04 0.2 11.35 1.28 
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C-2 20 km 0.82 0.06 146.11 9.23 15.89 9.23 15.86 8.52 

C-3 00 km 0.11 0 9 0 0 0 72.46 1.91 

C-3 20 km 0.54 0.04 105.29 4.02 1.71 4.02 89.4 16.89 

C-4 00 km 0.79 0.02 64 0 0 0 17.45 1.97 

C-4 20 km 0.79 0.06 168.77 9.4 18.23 9.4 28.49 13.81 

C-5 00 km 0.1 0.01 2 0 0 0 17.39 1.01 

C-5 20 km 0.61 0.03 23.73 0.51 3.27 0.51 11.94 2.46 

C-6 00 km 0.46 0.02 9 0 0 0 10.43 0.87 

C-6 20 km 0.22 0.01 34.42 1.79 118.58 1.79 0.87 1.31 

D-1 00 km 1 0 1 0 0 0 0 0 

D-1 20 km 0.17 0.01 1 0 0 0 5 0.4 

M-1 00 km 0.84 0.04 19.3 0.83 3.7 0.83 0 0 

M-1 20 km 0.62 0.03 34.93 1.98 21.07 1.98 0.77 1.05 

O-1 00 km 0.8 0.03 21 0 0 0 5.18 0.95 

O-1 20 km 0.84 0.05 36.32 1.17 1.68 1.17 5.17 2.84 

Case 3 random 0.04 0.02 104.58 65.19 2318.42 65.19 0.25 1.35 

 

 

5 Discussion 

Overall, the results of our simulations show good agreement between ABWiSE simulations 

and observations. The model performs very well in simulating the two base cases, while its 

performance decreases when simulating the real fire of cases 3 and 4. Ensemble simulation 

produces an improved score but also introduces certain problems related to the process-

based nature of the phenomenon for case 3 (Fig. 7b), in which using the second quartile as a 

threshold includes cells in the subset that could only have been burned if the fire had burned 

further north earlier in the simulation. The core concept of using ABM to simulate fire spread 

has proven successful. The agent-based framework lends itself well to the complex nature of 

forest fires. Integrating complexity at the level of a disaggregated fire line means fire 

behaviour emerges from the bottom up, as in physical models, but with far less computational 

load. While the fire–wind feedback mechanism has a role in adequately simulating fire 

behaviour, it is clearly not the sole factor at play, both as a source of error and a vital part of 

successful simulation. Despite the simplicity of the fire–wind feedback sub-model, the results 

presented in Table 2 and Fig. 5 do indicate that ABWiSE produces more realistic simulations 

with it than without it. Even though the results of the validation are promising, there is still 
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room for improvement. Two avenues for improvement are, of course, more data and an 

enhanced model. Exploring the limitations of both the data and the model helps us by 

highlighting the successes and failures of this approach and guides future work. 

5.1 Error and data limitations 

Differentiating between input error and model error requires high-quality data to minimize 

input error, leaving the model as the only potential source of error. Data availability and 

quality limit the validation of the model, in particular the weather observation data for case 

4. Simulation of case 4 by Prometheus has an FoM of 0.21 (compared to the Dogrib perimeter 

at a 200 m resolution) because it over-burns a large area southwards, which indicates that 

case 4 is difficult and complex to simulate and reinforces the notion that input data for it are 

inaccurate and a large source of error. However, we can consider our test cases 1 and 2 to 

have perfect input data since the comparison was another model’s output based on the same 

data. Any inaccuracy in cases 1 and 2 is due to model error. The data for case 3 are the best 

real-world data available to us and are of sufficient quality for the Prometheus model to have 

an FoM of 0.568. On the other hand, there are obvious problems with the reconstructed fire 

perimeters used for the time-based validation of case 3: the reconstructed fire progression 

does not reach the full extent of the observed final perimeter, nor is it as wide, indicating 

some discrepancy between reconstruction and reality. Limits to input data do not mean 

model errors are the same between ABWiSE and Prometheus. Attributing sources of error 

and uncertainty in model output is the goal of sensitivity and uncertainty analyses (SA and 

UA, respectively). 

The preliminary sensitivity analysis pertaining to fuel types demonstrates that fuel is an 

important subject of error in the model. The true source of error is presently 

indistinguishable between the model procedures using the fuel type variables and the fuel 

type variables themselves. The Spread, Death, Preheating, and Consumption procedures all 

use or affect these variables. Furthermore, this analysis shows only the discrepancy between 

ABWiSE and Prometheus, not real fire behaviour. However, the fact that randomized fuel 

resulted in an extremely low FoM for case 3 means that fuel is an important input factor, and 

its parametrization is at least somewhat correct. Described further in Sect. 5.3, SA and UA are 

the next step for the model presented in this paper. 
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The general problems of data limitations can be addressed by new field experiments and 

observation techniques (Chuvieco et al., 2019). In particular, the proliferation of publicly 

available satellite data is a great resource for forest fire observations, though limits to return 

time and resolution affect the quality and applicability of these observations (Andela 

et al., 2019). Canada's future WildFireSat mission (https://www.asc-

csa.gc.ca/eng/satellites/wildfiresat/default.asp, last access: 9 June 2021) will address this 

issue and provide daily infrared observations of wildfires at a 200–500 m resolution; an ideal 

scale for the niche ABWiSE aims to fill. 

5.2 Model Limitations 

ABWiSE makes many assumptions about fire behaviour in the form of the equations that 

define fire agent RoS and heading and their relation to environmental variables. Another 

assumption is the simple fire–wind feedback sub-model. There was no intention for the 

equations based on these assumptions to be a new way to explain fire behaviour. Rather, they 

were kept relatively simple in order to explore the potential of ABM as a way to simulate fire 

behaviour in a bottom-up, complex systems approach. The design of these equations makes 

use of numerous parameters so that the relations between agents and input variables could 

be honed in on through calibration across many scenarios. Although the equations are purely 

empirical in nature, not adhering to the physics of fire (thus imposing an ultimate limit on 

the model’s accuracy and validity), the modelling approach and the calibration framework 

mean that the model could be continuously improved with more data up to that limit. 

However, the corollary to this – that the model performs well in spite of a purely empirical 

formulation – supports our objective of demonstrating the potential of ABM for fire spread 

simulation. 

5.3 Future Work 

Future work on ABWiSE may focus on sensitivity and uncertainty analyses. Together, SA and 

UA quantify the overall uncertainty of a model and partition the output variation among the 

input factors. These input factors include not only parameters but data and even the model's 

equations and algorithms. By this process, we could clearly identify the limits of the model 

and attribute the uncertainty to specific sources. From this point, a renewed calibration effort 

https://nhess.copernicus.org/articles/21/3141/2021/#bib1.bibx23
https://nhess.copernicus.org/articles/21/3141/2021/#bib1.bibx23
https://nhess.copernicus.org/articles/21/3141/2021/#bib1.bibx5
https://nhess.copernicus.org/articles/21/3141/2021/#bib1.bibx5
https://nhess.copernicus.org/articles/21/3141/2021/#bib1.bibx5
https://www.asc-csa.gc.ca/eng/satellites/wildfiresat/default.asp
https://www.asc-csa.gc.ca/eng/satellites/wildfiresat/default.asp
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could proceed on the sources (input factors) most influential to the model output. However, 

this would require more input data to analyze the model over a larger spread of scenarios, as 

well as potentially billions of simulations to properly explore the parameter space. As 

demonstrated with the brief sensitivity analysis presented above, examining one factor at a 

time is not necessarily enough to identify precise sources of error. However, if we performed 

similar analyses pertaining to wind and terrain, we might discern which of the major 

environmental inputs upon which to focus our efforts first. 

Given that ABWiSE is currently a proof-of-concept model, and we consider that it has proven 

the concept of using ABM to simulate fire spread, a simpler way forward may be to replace 

many of its algorithms and equations with adaptations of empirical models: specifically, 

implementing the FWI and FBP system equations in a way that accommodates the ABM 

approach and fire–wind interactions. This wind feedback, in turn, may be generated by 

coupling with a CFD or most likely implementing the pyrogenic potential model of Hilton 

et al. (2018). ABWiSE, in its current state, would then serve as the benchmark for 

improvements. 

One of the benefits of the ABM approach, and the NetLogo environment in general, is that it 

is relatively easy to add functionalities to the model, such as fire suppression. For example, 

firefighting efforts are an important factor in the behaviour of fires subjected to it, and 

suppressed fires tend to be significant for their proximity to the wildland–urban interface 

(Johnston and Flannigan, 2018). In its current form, ABWiSE could simulate the effect of 

firefighting by simply reducing the flammability and/or available fuel in those cells being 

suppressed. The matter of simulating intelligent firefighter behaviour is a completely 

different challenge, however. 

5.4 Computation 

All simulations in this study used a desktop PC with a 12-core, 64 bit processor. On average, 

simulation speed is 10 time steps per second, though speed goes down as the number of 

agents grows very large (>500, occasionally surpassed in case 3). The most intense scenario, 

case 3, runs in under 80 s, on average, which compares favourably to Prometheus' 93 s on the 

same computer. ABWiSE's simulation time goes down for ensemble simulations, as NetLogo 

https://nhess.copernicus.org/articles/21/3141/2021/#bib1.bibx45
https://nhess.copernicus.org/articles/21/3141/2021/#bib1.bibx45
https://nhess.copernicus.org/articles/21/3141/2021/#bib1.bibx45
https://nhess.copernicus.org/articles/21/3141/2021/#bib1.bibx47
https://nhess.copernicus.org/articles/21/3141/2021/#bib1.bibx47
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can take advantage of multi-threading for simultaneous runs. The Monte Carlo simulations 

of all four cases at two different resolutions (800 runs, producing the ensemble maps) took 

approximately 40 min. Simulation speed varied greatly during calibration, with some 

parameter sets resulting in very slow speeds, and so calibration took the longest time, with 

each parameter sweep taking about 30 h to complete. 

6 Conclusions 

Through a complex systems approach focusing on key interactions and conceiving of fire as 

a set of mobile agents, this study demonstrates the potential of agent-based modelling for use 

in simulating forest fire behaviour. We present ABWiSE, an empirically calibrated ABM of fire 

behaviour, which succeeds at the key goal of replicating fire shape through emergence from 

basic rules. We evaluate the model with a suite of perimeter comparison techniques, 

including a time-based method, which identify specific strengths and weaknesses in 

simulation results. ABWiSE is still in the early stages of development and requires more data 

for both calibration and validation, which will help refine its output and determine its range 

of applicability. It is no replacement for existing models of fire behaviour but rather a step in 

exploring a new avenue of modelling. While other ABMs of fire spread such as the Rabbit 

Rules model or QUIC-Fire demonstrate the potential of ABM at small scales, ABWiSE applies 

another formulation to large forest fires, highlighting how ABM can track the core elements 

of complexity of fire across scales. By using the interactions of individual agents to simulate 

fire behaviour, complex patterns and behaviours emerge without specifically coding them in. 

We believe the use of ABM in fire modelling merits further research as it leverages efficient 

bottom-up simulation of complex systems for coupled fire–wind interactions.  

Code and data availability 

The ABWiSE code, along with the data used for the simulations presented in this paper, is 

freely available on GitHub (https://doi.org/10.5281/zenodo.4976112, Katan, 2021). 
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Appendix A 

A1. Fuel type characteristics 

Table A1 presents a detailed description of the variables mapped and used in our model. The 

Dogrib fire case study does not include all 16 fuel types of the FBP system, thus we only 

present those present. The mapping of fuel types to fuel and flammability values for our 
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model uses the curves presented in (Forestry Canada Fire Danger Group, 1992). The 

flammability value is based on the steepness and maximum value of the Rate of Spread vs 

Initial Spread Index curves in section 7.2 of the aforementioned report. Fuel values are based 

on assumptions of fuel type characteristics. This is a gross simplification of fuel type 

characteristics, but the use of a simple index for each value means a sub-model could later 

serve to generate more accurate values. 

Table A1. – Fuel type and variable values 

Fuel type Model value 

Code Name Fuel Flammability 

C-1 Spruce-Lichen 0.5 0.5 

C-2 Boreal Spruce 0.5 0.85 

C-3 Mature Jack or Lodgepole Pine 0.5 0.9 

C-4 Immature Jack or Lodgepole Pine 0.5 0.85 

C-7 Ponderosa Pine-Douglas Fir  0.5 0.2 

D-1/D-2 Aspen 0.5 0.1 

O-1a/O-1b Grass 0.4 0.6 

M-1/M-2 Boreal mixed-wood 0.5 0.6 

- Non-fuel 0 0 

- Water 0 0 

 

A2. Procedures 

A2.1 Fire-wind interactions 

The local wind vector �⃗�  is the weighted average of the global (or ambient) wind 𝐺 , the effect 

of fire on wind 𝐹 , and the current local wind 𝐿0
⃗⃗⃗⃗ , written as: 

�⃗� =  𝑤1𝐺 + ( 1 − 𝑤1)(𝑤2𝐿0
⃗⃗⃗⃗ + (1 − 𝑤2)𝐹 )        (A1) 

where 𝐿0
⃗⃗⃗⃗  is the local wind based on values of the previous time step, and w1 and w2 are 

weighting parameters. Only cells within a certain distance of fire agents (6 cells if the 
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resolution is 200m) calculate a local wind vector, and only a subset of these (cells within 4 

cells of fire), calculate the effect of fire on wind and apply a smoothing function to their wind 

vectors. The smoothed local wind vector for the subset is the Inverse Distance Weighted 

(IDW) interpolation (eq. 2) of �⃗�  of the larger set. The general formula for IDW is 

𝐼𝐷𝑊(𝑥) =
∑

𝑥𝑖

𝑑
𝑖
𝑝

𝑛
𝑖=1

∑
1

𝑑
𝑖
𝑝

𝑛
𝑖=1

           (A2) 

Where d is the distance between x and xi, and p is a constant value affecting the influence of 

distance. These calculations mean that at the exterior edge of this active wind zone, global 

wind is the most influential factor on local wind, and fire has the strongest effect in cells with 

fire agents present.  

The fire influence, 𝐹  in equation 1, is the sum of a local gradient of fire RoS, ∇RoS, and a 

smoothed fire vector, IDW(RoS). The gradient ∇RoS is a vector pointing to the greatest change 

in the sum of the RoS of fire agents in the eight neighboring cells (aka the Moore 

neighborhood), with the exception that if there are no fires in one of the neighboring cells, 

the value for that cell is substituted with that of the center cell. The value of  𝐹  is then, 

 𝐹 =  𝑘∇𝑅𝑜𝑆 + 𝐼𝐷𝑊(𝑅𝑜𝑆)         (A3) 

With the constant, k, scaling the effect of ∇RoS. Because fire agents spawn and die suddenly at 

each time step, we used IDW(RoS) of fires in that Moore neighborhood to improve continuity 

between time steps. This is a very simple proxy for actual fire-wind interactions and it was 

inspired by the pyrogenic potential of Hilton et al. (2018).  

A2.2 Fire spread 

Fire agent RoS is the result of flammability, wind, and slope at its present location. Many 

corrective factors were necessary to match the relationship between RoS and wind speed 

and direction to observations, as well as producing a reasonable fire shape. In short, low wind 

speeds have a small effect on the fire agents, but have a stronger effect on fire agents whose 

heading is close to the wind direction. The relationship between RoS and wind speed follows 

a logistic curve based on the same assumption as (Forestry Canada Fire Danger Group, 1992) 
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that there exists a maximum RoS based on fuel type. Equation 4 shows how fire agent RoS, 

wind, and slope vectors are combined to determine the new RoS by which a fire agent will 

move this time step, and carry on to the next.  

𝑅𝑜𝑆 = 𝑅𝑜𝑆𝑏𝑓𝑚𝑜𝑑𝑑𝑚𝑜𝑑 + �⃗� (1.05 − 𝑓𝑚𝑜𝑑)𝑤𝑚𝑜𝑑 + 𝑆 𝑠𝑚𝑜𝑑      (A4) 

where 

𝑅𝑜𝑆𝑏 = [𝑓1𝑅𝑜𝑆0 + (1 − 𝑓1) (𝑓𝑙𝑎𝑚1.3 +  𝑓𝑙𝑎𝑚 + 𝑤3‖�⃗⃗� ‖|𝑐𝑜𝑙𝑙𝑖𝑛𝑒𝑎𝑟| + 𝑠1‖�⃗⃗� ‖𝑐𝑜𝑠𝑙𝑜𝑝𝑒]𝑚1𝑤𝑚𝑜𝑑   (A5) 

where flam is the flammability of a cell; f1, w3, s1, and m1 are user-defined parameters; 

collinear and coslope are the cosines of the difference between the fire agent’s heading and 

the wind direction and terrain aspect, respectively. Using the absolute value of collinear 

means that fires moving directly into the wind still increase their RoS instead of slowing to a 

stop. This reflects an assumption that the oxygen supplied by the wind in this case is sufficient 

to increase the strength of the fire, allowing fire to move against the wind in low-wind 

conditions. The term wmod represents the logistic equation with parameters a, b, and k:  

𝑤𝑚𝑜𝑑 = 
𝑎+

𝑓𝑙𝑎𝑚

30

[1+𝑏𝑒−𝑘‖𝐿‖]
1

𝑓𝑙𝑎𝑚+2.6+𝑅𝑜𝑆

        (A6) 

In Eq. 4, fmod is an additional correction component with some constants fixed at values that 

appeared to provide acceptable model behaviour, and one parameter, f2, is left open to more 

thorough parametrization. 

𝑓𝑚𝑜𝑑 = 𝑓2(1.2 −
𝑤𝑚𝑜𝑑

1.3
)         (A7) 

Finally, dmod is another correction factor based on the density of fire agents, representing an 

assumption that closely clumped fire agents stay hotter, longer, and fire agents out on their 

own lose heat more quickly and don’t move as fast. Density, d, is expressed as the number of 

fire agents within a radius of 1 of the agent calculating it, and the near-density, nd, is the mean 

density of those same agents in a radius of 1, such that the density modifier is: 

𝑑𝑚𝑜𝑑 =  1 + (
𝑑+1

𝑑𝑚𝑎𝑥
−

𝑛𝑑+1

𝑑 
)  × 𝑑1        (A8) 
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Where 𝑑𝑚𝑎𝑥 is the maximum density of all fire agents at that time step. It is scaled by 

parameter d1. 

A2.3 Preheating 

Agents heat the cell ahead of them at a distance of their RoS by raising its flammability. RoS 

may be less than 1, thus the “cell ahead” may be the cell the agent is already in. The modelling 

software determines cell location by the center of the cell, so a cell that is one RoS away may 

have a different distance from the agent. For example, if the edge of a cell is one RoS away, its 

distance to the agent is one RoS + 0.5. Therefore, the distance between the cell and the agent, 

d in equation 9, is not the same as the RoS. Only cells with a flammability below 1 (the 

maximum) are heated by the amount defined by: 

𝑓𝑙𝑎𝑚 = 𝑓𝑙𝑎𝑚0
0.005×𝑅𝑜𝑆

(1+𝑑)2
         (A9) 

A2.4 Death 

Just after moving, fire agents have a chance to die out if the fuel value at their location is below 

a certain threshold modulated by their own RoS (eq. 10). This means that slower fires have a 

higher chance to die out at higher fuel values than faster fires. If the fuel of their current cells 

is lower than that threshold, agents die if they generate a random floating-point number 

between 0 and RoS-1 that is less than 1. This means that slower fires, while triggering this 

condition sooner than fast fires, have a smaller chance of actually dying out. This 

counterbalancing aims to simulate a kind of smouldering behaviour. 

𝑓𝑢𝑒𝑙 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 =  0.2(1.1 − 𝑅𝑜𝑆)        (A10) 

𝑃𝑑𝑖𝑒 =  𝑟𝑎𝑛 (
1

𝑅𝑜𝑆
)          (A11) 

A2.5 Propagation 

If, after moving, fires find themselves beyond √4 × 𝑅𝑜𝑆 cell lengths from their start location, 

and if there are fewer than 3 other fire agents already in that cell, they spawn three new fire 

agents then die. The limit of 3 prevents an excessive number of agents from suddenly 

appearing in one cell and very rapidly consuming all the fuel. Slower fire agents spawn and 

die more frequently than faster fires. The new fire agents each inherit their “parent’s” RoS 
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and heading and deviate from that heading by -45, 0, and +45 degrees, respectively. These 

new fire agents consume fuel on this tick, but only start moving on the next tick.  

A2.6 Consumption 

Finally, the fires present at this time step of the simulation consume fuel. They reduce the 

fuel value of the cell they are in by 𝑅𝑜𝑆 × 𝑓𝑢𝑒𝑙 × 𝐵−1 where B is another parameter. 

Including the fuel variable in the rate of consumption means that cells with high fuel levels 

lose fuel quickly, but as fuel reduces, it burns away more slowly. 
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Chapter 3 – General conclusion 

1. Addendums 

Between submitting this thesis to the jury and receiving their report, the article in Chapter 2 

was published with minor revisions. These revisions were not part of the original thesis 

submission, and the article now in Chapter 2 is the final published version. The published 

version of the article addresses some of the jury’s comments, but not all. In order to maintain 

the form of the published article, additional analyses are presented here to respond to the 

jury’s comments more completely.  

In order to clarify the calibration process somewhat, Fig. 9 shows one of the CART results 

that helped determine the model parameters. The FoM is the dependent variable, and all the 

parameters are the dependent variables. The CART shows which parameter/value pairs had 

the most impact on the dataset (the higher up the node, the more important). Based on this 

tree it is possible to narrow the search range of parameter settings to obtain a better FoM 

score. For example, the CART in Fig. 9 indicates that FoM improves with parameters f1 <= 

0.25, b >= 25, w1 < 0.35, k < 35, and d1 < 3, and also if w2 >= 0.65, and burnscaler < 18. Note 

that burnscaler was renamed to B in the article, and note that the right branch in the tree 

indicates that the condition of the fork is false. With these results, a new parameter sweep 

can be performed where each parameter is varied close to those settings, to explore the 

“nearby” parameter space. The final parameter set used for the simulations in Chapter 2 is 

the default for the downloadable version of the model, but it is also presented in Table 4. 

Table 4. Model parameters 

Parameter Procedure Value 

f1 Spread 0.2 

f2 Spread 0.81 

d1 Spread 2.5 

s1 Spread 0.019 

w3 Spread 4.2 

m1 Spread 0.2 
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a wmod 0.57 

b wmod 180 

k wmod 16 

B Consumption 17 

w1 Fire-wind interactions 0.44 

w2 Fire-wind interactions 0.24 

 

The revised paper contains more evaluation efforts than the previous version. It compares 

ABWiSE’s performance with that of Prometheus, where applicable. It also tests whether the 

fire-wind feedback has meaningful influence on model performance, and evaluates the fuel 

type parameterization. To provide one more measure of model performance, the kappa 

statistic for the statistical subsets of ensemble outputs for cases 3 and 4 are presented in 

Table 5. The kappa statistic, a.k.a. Cohen’s kappa coefficient (Cohen, 1960) is a measure of 

interrater reliability, i.e., it measures to which extent raters (or classifiers) agree, while 

accounting for the possibility of chance agreement. The kappa statistic has gained 

widespread use in fields where map comparison is necessary (Filippi, Mallet, & Nader, 2014), 

but it has certain limitations and there are arguments for discontinuing its use (Pontius & 

Millones, 2011). Nevertheless, it is a familiar measure for map comparison, and so provides 

a way to compare the performance of different simulation models. 

Table 5. Kappa statistics. Colour serves to better visualize differences; green is high, red is 

low. 

  Evaluation domain proportion 

  0 0.5 1 
Case 3 mean -0.1888532 0.28753686 0.41143052 

 Q2 -0.26045408 0.23947592 0.37289707 

 1 SD -0.10489359 0.33947792 0.45254875 

 2 SD -0.19339313 0.28460851 0.40909771 

 Prometheus -0.13442408 0.32164281 0.43848052 
Case 4 mean -0.32014719 0.19544103 0.33703891 

 Q2 -0.34274931 0.17745469 0.32220596 

 1 SD -0.3197366 0.19576011 0.33730099 

 2 SD -0.33178079 0.18629008 0.32950716 

 Prometheus -0.41319331 -0.20357896 -0.08701451 
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One of the issues with the kappa statistic is that evaluates agreement over an entire area of 

interest (evaluation domain), and there is no formal way to determine the extent of the 

evaluation domain (Filippi et al., 2014). The evaluation domain can have a large impact on 

the final score. This issue is particularly relevant to fires, as one of the components of the 

kappa statistic is correct rejections. For a fire, anywhere that is unburned in either the 

observed fire or the simulated fire is a correct rejection. Therefore, the larger the evaluation 

domain relative to the burned area, the better the score. To demonstrate this, I used three 

different evaluation domains to calculate the kappa statistics of ABWiSE’s simulations. The 

evaluation domain proportion, as shown in Table 5, is the proportion of the observed fire 

area added to the calculation of kappa as correct rejections. Consider it as a buffer around the 

observed perimeter to be used as an evaluation domain. At a proportion of 0, the evaluation 

domain is exclusively those cells burned by either the observed fire or the simulated fire, or 

in other words, only the area in which change occurred. I calculated the kappa statistic this 

way for each statistical subset of ABWiSE’s results, as well as with the results of Prometheus’ 

simulations of the same scenarios. 

First, results show that the evaluation domain proportions has a major impact on the kappa 

statistic for all comparisons. At a domain proportion of 1, ABWiSE has fair agreement with 

the observed fire of Case 4 (the validation fire), while Prometheus has a negative score. For 

the other domain proportions, ABWiSE scores better than Prometheus for Case 4, and scores 

similarly for Case 3. This new evaluation supports the claims made in Chapter 2, and also 

highlights one of the caveats of using the kappa statistic to compare observed and simulated 

fire areas.   
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Figure 9. –  Example of CART output from calibration procedure. 
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Nodes indicate first the predicted FoM score and then the percent of observations present 

in each. Blue shade is based on predicted score. Below each node is the parameter and its 

value above or below which the score differs meaningfully within the parameterization 

dataset. 

2. Discussion 

Chapter 1 introduces complexity and its prevalence in forest ecosystems. It shows that forest 

fires are important for ecological reasons, but that they are also very, and increasingly, 

dangerous. In particular, it shows that forests, fires, and the links between the two are all 

complex, and that this complexity extends to become part of the global fire-climate-

vegetation system. As said at the very beginning, geography is about understanding a system 

by looking at the pieces, and always remembering that they are connected. That is the 

purpose of this thesis: to look at one part of one part of one part of the whole Earth System. 

To follow the links from one conceptual level down, until there is one tractable system to 

model. To see that system, the forest fire, and understand its links up, down, and across 

scales, all the while trimming them away, to arrive at a model. 

Developing that simulation is the crux of this research, the start and the end. The core concept 

is very simple: what if we simulate fire as numerous agents that travel continuously across a 

landscape?  The assumptions and simplifications of the model are straightforward: 1) fire 

agents have a direction and a rate of spread, as if you were looking at a point along a fire line, 

2) they respond like fire by moving according to wind, vegetation, and slope, and 3) they 

interact with each other and affect the wind in their vicinity. These elements make up a 

minimum complexity that can make use of and demonstrate the strengths of ABM (directly 

responding to the first research objective).  

As demonstrated implicitly in Chapter 2, ABWiSE differs from other known ABMs of fire 

spread namely in its approach of representing complexity and its intended scale of use. While 

for the other two ABMs, complex behaviour is a consequence of the physical mechanisms 

included in the design, ABWiSE’s design focuses on how to simply represent the interactions 

that result in observed fire behaviour. Complex behaviour is the objective, rather than a 

consequence. Admittedly, this is a small conceptual difference, and the effective difference is 
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in the empirical vs physical basis of the equations governing agent behaviour and the links 

between mechanisms. The second difference of ABWiSE is that it is made to simulate large 

fires (and evaluated with a large fire), whereas the other two ABMs seem to focus on small-

scale fires (e.g. in grasslands or prescribed burns). 

An early goal of this research project, that was later abandoned, was to then incorporate this 

ABM in a Landscape Fire Succession Model (LFSM) in order to incorporate more granular 

complexity than is typically found in these models. The challenge of developing just one 

simulation model quickly became apparent, but some traces of that ulterior objective still 

guided its design. This original goal resulted chiefly in striving for a low computational cost 

of simulation, being suitable for a coarse resolution, and being able to simulate large fires. 

Other requirements for a successful LFSM, such as measures of burn severity, biomass loss, 

and CO2 release, would have required much longer model development, from design through 

validation. Initially considering the requirements of a LFSM also helped delimit the level of 

complexity the ABM should have. Because it had to operate at a coarse scale, considering 

individual trees was not an option. At the time, weather in the LFSM would have been 

stochastic but based around seasonal and projected norms, so the atmospheric feedback 

mechanism did not need to propagate effects back up to the meso-scale. Given enough 

resources, every feedback link could be considered, but by adding complexity one strand at 

a time, we effectively perform a conceptual sensitivity analysis. Not a thorough or 

quantifiable one, but nonetheless, by adding complexity piecemeal to a model of the fire-

climate-vegetation system, we may see whether that complexity is relevant to the whole 

system. Some complex behaviours propagate effects upwards through scale to form 

emergent behaviours, but others may dampen and dissipate. In the end, the ABM developed 

for this research simulates just fire spread, and the context of its complexity within a LFSM 

remains unexplored. But at a lower scale, the context of atmospheric complexity within a fire 

spread simulator is explored. 

This context of complexity within the ABWiSE model responds to the second research 

objective. It is the feedback loops, both among agents and between them and their 

environment, which allow realistic fire behaviour to emerge. As stated in the article’s 
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conclusion, ABM is a viable way to capture the complexity of fire behaviour at low 

computational cost in order to produce meaningful simulations.  

In response to the third research objective, ABWiSE is evaluated against data of a real fire 

using geospatial and ensemble simulation methods. The evaluation shows that the model 

output is in good agreement with fires for which it has been calibrated, and somewhat less 

so for a fire it was not calibrated for. However, its performance is quite similar to that of 

Prometheus, and is in fact slightly better for the validation fire. Nevertheless, the 

disagreements with observed fire data are useful in identifying model limitations and future 

avenues of improvement. By quantifying the model’s performance, the evaluation 

demonstrates the functionality of ABWiSE and supports the viability of ABM for fire 

behaviour simulation. 

As discussed in the article, data limitations proved to be a challenge for better model 

calibration and validation. Other challenges presented themselves in model design and 

development. The core idea of incorporating complexity without excessive computation 

meant an empirical approach was more desirable than trying to precisely replicate physical 

processes. However, the way ABWiSE uses feedback loops to replicate fire behaviour made 

it difficult to integrate existing empirical models (which lack complexity). In particular, 

ABWiSE’s variables for fuel availability and flammability are similar to the Buildup Index and 

the Fine Fuel Moisture Code components of the Fire Weather Index, respectively; however, 

for the latter pair, the FFMC takes wind speed as an input, as it forms a component of the 

Initial Spread Index (another component of the FWI), while flammability in ABWiSE does not. 

Thus, using the FWI to supply fuel availability and flammability values for ABWiSE would 

have required a reworking of the FWI without wind. It is certainly possible to do so, but that 

fell outside the scope of this research project. 

Despite these challenges, using ABM to model fire behaviour has advantages other than its 

suitability for modelling and simulating complex geospatial phenomena. Since ABM is an 

increasingly popular modelling approach in diverse fields of study, there exist well-

developed platforms and tools to build and evaluate ABMs. As noted in the article (Chapter 

2), ABWiSE was developed in NetLogo, whose simple semantics and Agent-Based Modelling 

focus were suitable for rapid prototyping and testing. On the other hand, the numerous 
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requirements of ABWiSE revealed certain difficulties in NetLogo and its code extensions, 

particularly in working with geospatial datasets. In addition, while NetLogo comes with a tool 

for automated model experimentation, it was not well suited to the exploration of parameter 

space on the scale required for calibrating ABWiSE. 

Nonetheless, NetLogo’s strengths outweigh its limitations. In particular, its popularity and its 

suitability for rapid prototyping may encourage engagement by the scientific community 

with either ABWiSE or new ABMs of fire behaviour. Since ABWiSE is open source and freely 

available for download, other researchers can, first of all, easily replicate the simulations 

presented in the article above, and second, they can copy or modify it as they wish, and in so 

doing add their expertise to the budding realm of Agent-Based Modelling of fire behaviour.  

3. Conclusion 

The article in Chapter 2 presents the ABWiSE simulation model. Where Chapter 1 is broad 

and tries to be holistic, the article is narrow and focused, describing only those links between 

systems and scales that are necessary to contextualize it among other models. The article 

applies the ideas and methods of complex systems theory to the simulation of forest fires. It 

presents an agent-based simulation model based on this application and evaluates it as well 

as possible with the available data. This research contributes to the modelling community by 

reinforcing the versatility of ABM. Agent-based modelling is still a nascent field of research, 

more so applied to forest fires, and ABWiSE serves as a new data point in charting what ABM 

can and cannot do. This research adds to the list of what they can do, and provides insights 

on how. The article shows a way to break a system down into interacting elements and retain 

only the most relevant complexities. Some of these elements then serve as the Agents of the 

model, where the system’s behaviours emerge from their governing rules. As the article 

explains, there are very few ABMs of fire spread, including ABWiSE, and all are fundamentally 

different. What they have in common is the ability to bridge the gap between complexity and 

simplicity imposed by computational limits. A new ABM of fire spread benefits the fire 

science community by exploring a new avenue of simulation that can offer insights into fire 

behaviour, and by providing a new framework in which to model the complex interactions of 

fire, vegetation, and atmosphere. Specifically, ABWiSE successfully simulates a real fire 
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through simple rules of interaction between agents, highlighting the importance of 

considering complexity and demonstrating the value of ABM for fire simulation. 
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