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Résumé

La recherche dŠinformation vise à trouver des documents pertinents par rapport à une re-

quête. Auparavant, de nombreux modèles traditionnels de la Recherche dŠInformations ont

été proposés. Ils essaient soit dŠencoder la requête et les documents en vecteurs dans lŠes-

pace des termes et dŠestimer la pertinence en calculant la similarité des deux vecteurs, soit

dŠestimer la pertinence par des modèles probabilistes. Cependant, pour les modèles dŠespace

vectoriel, lŠencodage des requêtes et des documents dans lŠespace des termes a ses limites:

par exemple, il est difficile dŠidentiĄer les termes du document qui ont des sens similaires au

termes exactes de la requête. Il est également difficile de représenter le contenu du texte à

différents niveaux dŠabstraction pouvant correspondre aux besoins différents dŠinformation

exprimés dans des requêtes. Avec le développement rapide des techniques dŠapprentissage

profond, il est possible dŠapprendre des représentations utiles à travers une série de couches

neurones, ce qui ouvre la voie à de meilleures représentations dans un espace dense latent

plutôt que dans lŠespace des termes, ce qui peut aider à identiĄer les termes non exactes mais

qui portent les sens similaires. Il nous permet également de créer de différentes couches de

représentation pour la requête et le document, permettant ainsi des correspondances entre

la requête et les documents à différents niveaux dŠabstractions, ce qui peut mieux répondre

aux besoins dŠinformations pour différents types de requêtes. EnĄn, les techniques dŠappren-

tissage profond permettent également dŠapprendre une meilleure fonction dŠappariement.

Dans cette thèse, nous explorons différentes techniques dŠapprentissage profond pour

traiter ces problèmes. Nous étudions dŠabord la construction de plusieurs couches de re-

présentation avec différents niveaux dŠabstraction entre la requête et le document, pour des

modèles basés sur la représentation et lŠinteraction. Nous proposons ensuite un modèle per-

mettant de faire les matchings croisés des representations entre la requête et le document sur

différentes couches pour mieux répondre au besoin de correspondance terme-phrase. EnĄn,

nous explorons lŠapprentissage intégré dŠune fonction de rang et les représentations de la

requête et du document. Des expériences sur des jeux de données publics ont montré que

nos méthods proposées dans cette thèse sont plus performantes que les méthodes existantes.

Mots-clés: Recherche dŠInformation; Apprentissage Profond; Réseaux Neu-

rones; Tri
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Abstract

Information Retrieval aims to Ąnd relevant documents to a query. Previously many tradi-

tional information retrieval models have been proposed. They either try to encode query

and documents into vectors in term space and estimate the relevance by computing the

similarity of the two vectors or estimate the relevance by probabilistic models. However for

vector space models, encoding query and documents into term space has its limitations: for

example, itŠs difficult to catch terms of similar meanings to the exact query term in the doc-

ument. It is also difficult to represent the text in a hierarchy of abstractions to better match

the information need expressed in the query. With the fast development of deep learning

techniques, it is possible to learn useful representations through a series of neural layers,

which paves the way to learn better representations in latent dense space rather the term

space, which may help to match the non exact matched but similar terms. It also allows us to

create different layers of representation for query and document thereby enabling matchings

between query and documents at different levels of abstractions, which may better serve the

information needs for different queries. Finally, deep learning techniques also allows to learn

better ranking function.

In this thesis, we explore several deep learning techniques to deal with the above problems.

First, we study the effectiveness of building multiple abstraction layers between query and

document, for representation- and interaction-based models. Then we propose a model

allowing for cross-matching of query and document representations at different layers to

better serve the need of term-phrase matching. Finally we propose an integrated learning

framework of ranking function and neural features from query and document. Experiments

on public datasets demonstrate that the methods we propose in this thesis are more effective

than the existing ones.

Key Words: Information Retrieval; Deep Learning; Neural Networks; Rank-

ing
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Chapter 1

Introduction

1.1. Research Context

1.1.1. Background

Information Retrievel (IR) plays an important role in our life. Given a query, the goal of

information retrieval is to retrieve a ranked list of relevant documents [Drott, 1998, Hiemstra,

2001]. When a query is issued, the IR system will analyze the query and try to understand the

information need expressed in this query as well as the documents in a document collection

[den Branden, 2007]. In order to achieve this, the system will often convert the query

and documents into certain representations and then feed the representations of query and

documents into a ranking function to calculate their relevance score [Croft, 1981, Belkin et al.,

1995]. Finally the system will rank the retrieved documents according to their relevance

scores in descending order and present those results to the user.

To accomplish this task, many traditional approaches have been proposed, which could

be roughly divided into Vector Space Model (VSM) [Lee et al., 1997, Castells et al., 2007],

Probabilistic Models [Fuhr, 1992, Jones et al., 2000a,b] and Language Models [Zhai and

Lafferty, 2001, Tao et al., 2006]. Vector Space Models encode a query and a document into

vectors [Soucy and Mineau, 2005]. Most of them use a bag-of-words representation [Wallach,

2006, Sethy and Ramabhadran, 2008] to encode query and document into weighted vectors

in term space [Wu et al., 2008]. Finally a similarity function such as dot product or cosine

similarity [Sidorov et al., 2014] is applied between the query and document representation

vectors to estimate the relevance of query and document. On the other hand, Probabilistic

Model relies on an estimation of the probability of relevance for a given query and document

[Porter, 1982, Crestani et al., 1998]. Finally, Language Model method tries to estimate

a language model for each document and rank documents by the likelihood of the query

according to the language model [Zhai and Lafferty, 2001].



Although those traditional models have demonstrated their effectiveness, they still face

challenges because the features employed are often superĄcial in the vocabulary space, and

could only catch exact term matches between query and document. Those approaches fail

to match important information expressed by semantically related terms in the document.

Very often, to satisfy the userŠs information need expressed in a query, it requires more than

a simple term matching and the matching is highly semantic and conceptual, which the

traditional models are unable to achieve. For example, for the query Şlymphoma in dogsŤ,

the document containing Şcanine blood cancerŤ is also relevant, since lymphoma is a type of

cancer, and dogs belong to the canine category. ThereŠs no exact-matched terms between this

particular query and document. More importantly, lymphoma is not a synonym of cancer

but is a special type of cancer and therefore implies the concept of ŞcancerŤ. The same goes

for dog and canine. Therefore a retrieval model needs to generalize the semantics of query

terms ŞlymphomaŤ and ŞdogŤ into the concept space in order to successfully match them

with relevant documents. This is difficult for a traditional model to achieve without using

external resources such as concept nets [Egozi et al., 2011] where related concepts such as

dog and canine are connected through a semantic relation. Intuitively, much of such general

knowledge should have been incorporated in the representations, so that a more speciĄc

term would have some commonality in its representation with a more general term. This

is difficult to achieve with the bag-of-words representations. From this example, we can

observe that there is also the need to learn a hierarchy of representations at different levels

of abstraction for queries and documents in IR tasks and generalize query and document to

the appropriate level when needed.

Recently, with the rapid development of deep learning techniques [Bengio, 2009, LeCun

et al., 2015], it is possible to learn semantic and abstract representations from raw texts to

some extent [Boom et al., 2016, Zhang et al., 2017a,b]. This opens a new perspective for

IR to perform semantic-based retrieval. Typically, those models employ neural networks to

learn a series of layers for query and document, and utilize the last layerŠs vector to calculate

a relevance score. Depending on how the neural layered are learned, those neural models

could be roughly categorized into representation- and interaction-based model.

Representation-based models learn semantic representations for query and document

separately through a series of neural representation learning layers and employs the last

layer of query and document representations to output a relevance score. For example, the

DSSM [Huang et al., 2013] employs feed-forward layers to encode query and document and

applies a cosine similarity function on the last layer of query and document representations

to estimate the relevance score. CDSSM [Shen et al., 2014] employs 1D convolution to learn

query and document representations, and applies a cosine similarity on the last layer of query

and document representation to obtain a global matching score.
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On the other hand, interaction-based models build local interaction pattern between

query and document at the bottom and then employ multiple neural layers to analyze it.

Finally the last layer of the interaction pattern will be used to output a score. For instance,

the MatchPyramid model [Pang et al., 2016a] builds local term interactions between query

and document by cosine similarity at the bottom and employs 2D convolutions to analyze the

interaction pattern. Finally it outputs a relevance score based on the information obtained

on the last max-pooled layer. Another way to analyze the matching pattern is to employ 2D-

RNNs. MatchSRNN [Wan et al., 2016] Ąrst built term-to-term local interactions in a similar

way as MatchPyramid. Afterwards, instead of employing 2D-CNN to analyze the interaction

pattern, it utilizes a 2D-RNN to read the interactions in two directions: from left to right and

from top to bottom. Finally a series of dense layers are employed to output a global matching

score. The DRMM model [Guo et al., 2016] employs histograms to represent the interaction

pattern between query and document. It Ąrst calculates term-wise cosine similarity between

each query term and all document terms. Afterwards it converts these interaction values into

histograms according to the intervals that they fall into. Finally, dense layers are applied to

analyze the interaction patterns and a gating mechanism is employed to combine the signals

for all query terms.

It is worth noting that all these previous deep models have one common feature, that

is: they only employ the information learned at the last layer to represent the query and

document or the interactions between them. In Chapter 2, we will provide a more detailed

presentations of these approaches.

In addition to those models, another framework called Learning-to-Rank (L2R) is widely

used in the current IR research and practice [Liu, 2011, Cao et al., 2007]. In L2R, relevance

estimation is regarded as a machine learning task, where the model will typically employ a

wide range of features [Chapelle and Chang, 2011, Li, 2011] ranging from different relevance

scores determined by traditional models [Robertson et al., 2004, Clinchant and Gaussier,

2010], to text statistics such as the length of document title, document body, anchor text [Liu,

2009] and webpage speciĄc scores like PageRank [Page et al., 1999, Singh and Kumar, 2009]

and HITS scores [Henzinger, 2000, Peserico and Pretto, 2009]. The goal is to learn implicitly

a combination function which combines all those features and estimate the relevance of query

and document. However, traditional L2R framework takes Ąxed feature as input. Within

the deep learning context, it is useful to incorporate representations and interactions learned

from neural models as features and use L2R ranking function to Ąne-tune the neural layers.

1.1.2. Limitations of the Existing Models

To summarize, in order to better apply deep learning techniques to IR models, we need

to improve the following aspects in the current approaches:
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1. Firstly, when multiple layers are involved in a neural network, one can generally assume

that a lower layer captures speciĄc and local information, while a higher layer captures more

general and global information from a text. In previous work, the query and document

representations used to produce a matching score are usually the last layer of the deep

neural model, which contains highly abstract information such as concepts and semantics

of the raw text or the abstract interaction pattern. However in information retrieval, the

information need formulated in userŠs query is not always at a high abstract or conceptual

level. It varies from lexical matching to conceptual matching as we explain below.

Some queries may ask for an exact word match to retrieve a document containing speciĄc

terms. We call those queries lexical queries. In this case, representation learned in the lower

part of the model would be more suitable. For example, in the query ŞRon HowardŤ, what

the user wants to Ąnd is the document concerning this speciĄc person. If an IR model, as

previously mentioned, always utilizes the last representation layer or interaction pattern to

perform a match, it may over generalize the lexical terms and Ąnd documents about other

people.

Other queries ask for a match at more abstract/conceptual level, where the use of high

level representations is required. For example, if the userŠs query is Şterminate employment

letterŤ, the userŠs actual information need will be searching for a template of a dismissal

letter to Ąre someone. In this case, the documents containing terms like ŞĄreŤ, ŞdismissŤ

are all relevant to this query, because the actual information need expressed in the query

is about the concept of Şemployment/dismissalŤ. Hence the utilization of higher layers are

preferred, since they contain generalized semantics which could help to match those terms

in concept space.

Finally there could well be queries lying in between. Therefore we argue that the use of

features at all levels could be helpful to further improve the performance of deep learning

IR models. Moreover the model should have the capability to dynamically adjust itself to

adapt to all types of query during the run.

2. Secondly, apart from employing multiple layers of the representations or interactions

of query and document from the same level, it is also useful to allow matchings to happen

across different levels of representations. We observe that in previous interaction-based

models, the matching often happens on the term level. For example, in MatchPyramid model

[Pang et al., 2016a], the interaction matrix is generated by matching query and document

term embeddings. In DRMM model [Guo et al., 2016], the histogram which represents the

interaction signals between query and documents is also produced by matching query term

embeddings with document term embeddings.

In reality, a query term can also match a phrase or even a longer segment of text in

documents and vice versa. For instance, for the query ŞwhatŠs the standard barrel length

for an ARŤ, it is helpful to match the query phrase Şstandard barrel lengthŤ with the terms
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ŞAK47Ť, ŞCarbineŤ in relevant documents, since they are all related to guns. Similarly, for

the query ŞwhatŠs the nickname for NevadaŤ, it is also helpful to match the query term

ŞNevadaŤ to the document phrase ŞSilver StateŤ, because they both refer to the State of

Nevada. Finally, for the query Şstainless steelŤ, it is also beneĄcial to match it with the

document containing the phrase Şcorrosion resistanceŤ since Şcorrosion resistanceŤ is one of

the properties of stainless steel.

In a neural model, the representation learning layers naturally aggregate low-level term

elements into higher-level hidden representations, which enables us to map term representa-

tions into phrase representations and match them to provide additional matching signals to

the model. This paves the way for performing term-phrase matching to serve the aforemen-

tioned need. The same cross-level matching may happen between any pair of representation

layers. Therefore it is worthwhile to investigate the possibility of matching not only repre-

sentations of the same level, but also those across different levels.

3. Thirdly, we observe a large gap between traditional learning-based IR model such as

L2R and neural IR model on several test collections. Neural models do not always perform

better than the traditional L2R models. Usually, when training a neural IR model, we

focus on learning appropriate representations for queries and documents [Guo et al., 2016].

However, when it comes to the ranking function, very often those models will employ a

simple pair-wise hinge loss [Pang et al., 2016a, Xiong et al., 2017b] to train. Employing

a simple hinge loss is straightforward and effective. However, in such a ranking task, it is

desirable to have relevant documents ranked higher and non relevant documents ranked lower

in the ranked list. Therefore, it is preferable to train a neural model in a L2R framework

which could push relevant documents upwards and non relevant documents downwards in

the ranked list.

When it comes to training a L2R model, we focus on learning a ranking function based

on all the features of the query and documents. However the input features are often Ąxed

hand-crafted features such as query length, document length, term frequencies, BM25 scores

of query-document pair etc. Those simple hand-crafted features lack the expressiveness of

learned neural representations.

To take advantage of both the representation learning power of deep models and the

ranking performance of L2R framework, it is natural to investigate whether it is possible to

combine deep learning model and L2R together to learn the representation and the ranking

function at the same time. The combination of L2R with deep neural representations could

be done quite easily as several L2R models are based on neural networks such as RankNet

[Burges et al., 2005] and LambdaRank [Burges et al., 2006]. It is thus possible to design a

combined architecture where the deep learning module is in charge of representation learning

and the upper L2R part is in charge of learning a ranking function.
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In summary, deep learning approach for IR presents a lot of potential advantages over

traditional IR approaches, nevertheless, it still faces challenges. By thoroughly investigating

the above aspects, we hope to be able to further improve the performance of deep learning

models in IR.

1.2. Outline of the Thesis

The remainder of this thesis is organized as follows:

Chapter 2 will present the related work and the state-of-the-art approaches. We will

present traditional IR models including Vector Space Models and Probabilistic Models, in-

cluding the well-known and widely used BM25 model [Robertson et al., 2004] and Language

Model (LM) [Song and Croft, 1999, Zhai and Lafferty, 2001]. We then present the tradi-

tional learning-to-rank framework. Finally, we present some of the state-of-the-art neural IR

models, including DSSM , CDSSM, MatchPyramid and DRMM.

Chapter 3 will present the evaluation methods and the collections utilized in this study.

Chapter 4 deals with multi-level document and query representations. We will present the

Multi-level Abstraction Matching Model (MACM) with Weak Supervision for Information

Retrieval and an Empirical study of MACM based on representations and interactions. These

investigations aim to answer the Ąrst research question raised in Section 1.1:

Is employing multiple levels of representations or interactions between query

and document useful for an neural retrieval model? If yes, how to combine the

maching signals from multiple levels?

Inspired by MatchPyramid [Pang et al., 2016a] and CDSSM [Shen et al., 2014], the

MACM models employ 2D or 1D convolutions to learn interactions between query and doc-

ument or representations of them. Instead of using only the last layerŠs interaction pattern or

representation, we extract interaction or representation signals from every layer and employ

a gating mechanism to dynamically combine them to output a relevance score. Experiments

on the ClueWeb09 collection demonstrated the usefulness of using matching signals from

multiple matching layers.

Chapter 5 investigates cross-level matching and we propose a Cross-level Matching Model

for Information Retrieval (CLMM). This addresses the second research question raised in

Section 1.1:

Is it helpful to cross-match different layers of query and document represen-

tations to serve the need of term-phrase matching and improve the performance

of a neural IR model?

In this chapter, we proposed a CLMM model which employs 1D convolution and bidi-

rectional LSTM to aggregate low level term representations into phrase representations.

Afterwards cross-level matchings generate term-to-term, term-to-phrase, phrase-to-phrase
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matching patterns. Those matching patterns are fed into 2D convolutions to be analyzed.

Finally a gating mechanism dynamically combines the matching signals from all channels.

Experiments on MSMARCO dataset demonstrated the effectiveness of employing cross-level

matching signals to improve the performance for IR.

Chapter 6 addresses the problem of combining deep neural representations with L2R. We

propose an Integrated Learning of Features and Ranking Function for Information Retrieval

(ILM). This aims to answer the third research question in Section 1.1:

Is it advantageous to combine both neural representation modules and L2R

framework together in order to learn features and ranking function simultane-

ously? If yes, how to effectively combine them?

The proposed model learns features of query and document and a ranking function end-to-

end by a LambdaRank loss function. We Ąrst learn neural features from query and document

texts by neural representation and interaction modules. They are then connected to a L2R

layer. In this layer, an arbitrary set of additional non neural features could also be appended.

Finally we employ LambdaRank loss to train both L2R layer and neural feature learning

modules in an end-to-end manner. Experiments on MQ datasets revealed its potential over

learning features and ranking function separately.

Chapter 7 will give a general conclusion of this thesis and point out possible future

research directions.
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Chapter 2

Related Work

In IR literature, many information retrieval systems have been built and lots of approaches

have been proposed. In this chapter, we describe the most representative and related tradi-

tional IR models and deep learning IR models and discuss about the state of the art models

in IR.

2.1. Traditional Retrieval Model

The ultimate goal of traditional models is to be able to estimate a relevance score given the

query and document as closely as possible to the userŠs own judgment. The traditional models

can be roughly divided into 2 categories, i.e. vector space model (VSM) and probabilistic

model (PM) [Croft et al., 2009, Roelleke, 2013]. Vector space models (VSM) generally convert

queries and documents into bag-of-words vector representations [Raghavan and Wong, 1986],

i.e. the vector contains counts or other weights in the term space, in which each dimension

represents a term. The relevance score of a given query and document pair is often calculated

with scalar product based cosine similarity. On the other hand, probabilistic model tries

to model the probability P (R = 1♣q,d) [Singhal, 2001, Clinchant and Gaussier, 2012], i.e.

regarding the relevance R as a random variable taking values from ¶0,1♢ and modeling the

probability of the relevant being 1 given query q and document d [Bikel and Zitouni, 2012].

Later, in order to further improve the performance of IR, learning-to-rank (L2R) ap-

proaches are proposed. L2R approaches regard IR task as a supervised learning process, and

take features like basic relevance scores such as BM25 [Robertson et al., 2004], LM [Hiem-

stra, 2001], other text statistics such as document length, and webpage speciĄc scores such

as PageRank and HITS scores [Liu, 2009]. The following sections will brieĆy review those

traditional models and discuss their advantages and limitations.



2.1.1. Vector Space Model

The history of bag-of-words representation started with the well known vector space

model (VSM) [Salton, 1971] which represents queries and documents by vectors in the term

space [Croft et al., 2009]. In vector space models, query and document will be encoded

into bag-of-words vectors by a weighting scheme. A simple weighting scheme uses only

term frequencies (TF) for both query and document vectors. However this simple weighting

scheme is not optimal because it will be dominated by frequent words in a language such as

ŞnewŤ, ŞĄleŤ, etc. which are not very informative about the content of a document. Thus

it is important to penalize those frequent words in documents [Fang et al., 2004]. The most

common approach is the TF-IDF weighting scheme. In TF-IDF weighting scheme [Aizawa,

2003], each element of the document vector representation is calculated as the product of

its term frequency (TF) and inverse document frequency (IDF), by Equation 2.1.1. [Ramos

et al., 2003].

TF − IDFij = tfij · log
N

ni

(2.1.1)

where tfij represent the term frequency of term i in document j, N represent the total number

of documents in the collection, and ni represents the number of documents containing the

term i.

Once the vector representations are constructed, the relevance score can be calculated

by cosine similarity as deĄned in Equation 2.1.2.

rel(q,d) =
< q,d >

♣♣q♣♣ ∗ ♣♣d♣♣
(2.1.2)

where q represents the query vector weighted with term frequencies and d represents the

document vector weighted with TF-IDF.

In order to further improve the performance of vector space model, many other weighting

heuristics are proposed such as TF normalization which will decrease the term frequencies and

not reward too much relevance score for terms with extremely high frequencies, and document

length normalization, which will penalize long documents because they naturally have more

words and tend to cover more words in query [Croft et al., 2009]. For example in the work

of Singhal et al [Singhal et al., 1996], the authors designed a heuristic weighting scheme to

incorporate document length normalization and the relevance score could be calculated as

follows.

rel(q,d) =
∑

w∈q∩d

c(w,q)
ln[1 + ln(1 + c(w,d))]

1 − b + b · ♣d♣
avdl

· log
M + 1

df(w)
(2.1.3)

where c(w,q) represents the term frequency of w in query q, c(w,d) represent the term

frequency of w in document d, ♣d♣ is the length of document d, avdl is the average document
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length of the document collection, M is the total number of documents in the collection,

df(w) is the document frequency of term w, and b ∈ [0,1] is a parameter of the model.

Although the VSM model is simple and straightforward, it still has some limitations. In

VSM model, the terms are assumed to be independent in the vector space and each term in

the vocabulary represent one dimension [Sun et al., 2004, Mabrouk et al., 2017], therefore

the very simple VSM model will neglect the dependency between terms [Billhardt et al.,

2002, Nallapati and Allan, 2002].

In order to overcome this shortcoming, the Generalized Vector Space Model is introduced

[Wong et al., 1985], where the query and document representations are Ąrst mapped with

a linear transformation before computing the scalar-product-based similarity score. This

offers the possibility to relax the hard constraint of term independence and incorporate

the relationships between terms into the linear transformation matrix. One popular way

to implement this idea is to do a Latent Semantic Indexing (LSI) [Deerwester et al., 1990]

which will basically conduct a SVD (Singular Value Decomposition) of the TF-IDF matrix

and maps the terms into the latent space. In some experiments on small datasets, it has

been shown that LSI can improve the performance of VSM. However, the creation of the

latent space and the mapping of terms into it is done in order to minimize the Frobenius

distance between the original matrix and the (truncated) transformed matrix, which may

not necessarily project similar terms into the same dimension of the latent space. As a

result, LSI failed to produce signiĄcant improvements on larger TREC collections [Atreya

and Elkan, 2010].

Others studies such as Mitra et al [Mitra et al., 1997] and Fagan et al [Fagan, 1987] try

to incorporate the compound terms, i.e. phrases into the the vector space. In those models,

in addition to the term dimensions, the phrases are considered as additional dimensions in

the vector space. Then the relevance score is calculated as a linear combination of the term

relevance and phrases relevance as in Equation 2.1.4

rel(q,d) = wterm · scoreterm(q,d) + wphrase · scorephrase(q,d) (2.1.4)

where wterm and wphrase are the weights of term score and phrase score respectively, which

controls the importance of the term similarity score and phrase similarity score. The ef-

fectiveness of the approach is largely conditioned by the phrase dictionary, which may not

cover all the meaningful phrases. In addition, it is also problematic to consider a phrase to

be independent from its constituent words, as they are represented by separate dimensions

in the vector.

One huge advantage of VSM model is its efficiency due to the building of 2 explicitly

separated representation for query and document. It is possible to incorporate various fea-

tures in both the query and document representations. However this advantage of having 2

separate representations for query and vector comes at the cost of having to design heuristics
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for the weighting scheme manually [Zhai, 2008, Ko, 2012]. In the work of Zobel and Moffat

[1998] it is observed that ŞNo component or weight scheme was shown to be consistently

valuable across all of the experimental domainsŤ. Despite this, the VSM is often used as a

basic IR model due to its simplicity and reasonable effectiveness across test collections.

2.1.2. Probabilistic Model

In probabilistic model [de Campos et al., 2002], the relevance function is often associated

with P (R♣d,q), i.e. the probability of relevant or not given the document and query, where

R is a random variable taking values from ¶0,1♢ representing relevant or not. In IR litera-

ture, many probabilistic models have been proposed which could be roughly divided into 2

categories: Binary Independence Model (BIR) [Manning et al., 2009] and language model

(LM) [Croft et al., 2009].

2.1.2.1. Binary Independence Model. In binary independence model, we assume that the

terms in queries and documents are independent and we represent their occurrence by binary

vectors. For example d = [1,0,0,1,1] signiĄes that the term w1, w4, w5 occurred in document

d, while w2, w3 do not. The goal is to estimate the ratio of P (R♣q,d)
P (NR♣q,d)

as the relevance score,

where R represents the relevance, NR represents the non-relevance, q represents the query

and d represents the document.

The direct estimation of the ratio P (R♣q,d)
P (NR♣q,d)

is difficult, however, we could employ Bayes

Rule to inverse the random variables.

P (R♣q,d)

P (NR♣q,d)
=

P (R♣q)P (d♣R,q)
P (d♣q)

P (NR♣q)P (d♣NR,q)
P (d♣q)

=
P (R♣q)

P (NR♣q)
︸ ︷︷ ︸

independent of d

P (d♣R,q)

P (d♣NR,q)
︸ ︷︷ ︸

need estimation

(2.1.5)

As we can observe from Equation 2.1.5, only the second factor depends on document, so we

can estimate only the second factor for the purpose of document ranking. Since the terms

are assumed to be independent, we can develop the formula into a product of individual

probabilities.

P (d♣R,q)

P (d♣NR,q)
=

∏

i

P (di♣R,q)

P (di♣NR,q)
=

∏

di=1

P (di = 1♣R,q)

P (di = 1♣NR,q)

∏

di=0

P (di = 0♣R,q)

P (di = 0♣NR,q)
(2.1.6)

Let pi = P (di = 1♣R,q) and si = P (di = 1♣NR,q) and assume that for all terms not occurring

in query, pi = si, then, the above formula becomes

∏

di=1

P (di = 1♣R,q)

P (di = 1♣NR,q)

∏

di=0

P (di = 0♣R,q)

P (di = 0♣NR,q)
=

∏

di=qi=1

pi(1 − si)

si(1 − pi)
︸ ︷︷ ︸

dependent of documents

·
∏

qi=1

1 − pi

1 − si
︸ ︷︷ ︸

independent of documents

(2.1.7)
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Since the second factor is independent of the document, we only needs to estimate the Ąrst

factor the Equation 2.1.7. Then, we take logarithm of the above formula and the relevance

function would be

rel(q,d) =
∑

di=qi=1

pi(1 − si)

si(1 − pi)
(2.1.8)

In order to estimate this relevance function, we can draw a contingency table, in which each

entry registers the number of documents in each case, as shown in Table 2.1. As such the

Table 2.1. Contingency Table of Term Occurrence

Relevant Non-relevant Total
di=1 ri ni-ri ni

di=0 R − ri N -ni-R+ri N -ni

Total R N − R N

relevance function in Equation 2.1.8 could be estimated by

∑

di=qi=1

log
(ri + 0.5)/(R − ri + 0.5)

(ni − ri + 0.5)/(N − ni + ri + 0.5)
(2.1.9)

where the added 0.5 is a smoothing term to deal with 0 count.

The binary independence model also give inspiration to birth of the well known BM25

model [Robertson et al., 2004], which is an extension to the binary independence model to in-

clude term weights. This extension is based on both probabilistic arguments and empirically

validated heuristics [Croft et al., 2009].

There are a lot of variants of the relevance function of BM25 model. One common form

could be expressed as follows [Croft et al., 2009]:

∑

i∈Q

log
(ri + 0.5)/(R − ri + 0.5)

(ni − ri + 0.5)/(N − ni − R + ri + 0.5)
·

(k1 + 1)fdi

K + fdi

·
(k2 + 1)fqi

k2 + fqi

(2.1.10)

where K is a parameter for document length normalization:

K = k1((1 − b) + b
dl

avdl
) (2.1.11)

where ri, R, ni, N are counts deĄned in Table 2.1, fdi is the frequency of term i in document,

fqi is the frequency of term i in query, k1 and k2 are parameters controlling how the weight

of term i will be discounted in document and query respectively, and b is a parameter to

control document length normalization.

In addition to binary independence model, there is another branch of probabilistic model

which directly incorporates term frequency into the model based on statistical language

model. We review this model in the next section.

2.1.2.2. Language Model. The approaches based on statistical language modeling esti-

mate the relevance function by query likelihood [Croft et al., 2009], i.e. the probability of

33



query q being generated from the document language model as follows.

rel(q,d) = P (q♣d) (2.1.12)

Usually we assume the independence between terms and employ unigram language model.

Therefore the probability of P (q♣d) can be calculated as follows.

P (q♣d) =
∏

w∈q

P (w♣d) (2.1.13)

If we take logarithm of this probability the relevance function will become,

rel(q,d) = logP (q♣d) =
∑

w∈q

logP (w♣d) =
∑

w∈V

c(w,q)logP (w♣d) (2.1.14)

where w is a term in vocabulary, c(w,q) is the frequency of term w in query. The probability

of P (w♣d) could be estimated by maximum likelihood (ML) [Akaike, 1998]. However there

might be unseen word in d. Thus smoothing is needed.

There are two popular smoothing schemes used in language models in IR, Jelinek-Mercer

smoothing and Dirichlet smoothing [Croft et al., 2009]. In Jelinek-Mercer smoothing, the

probability of P (w♣d) is estimated in an interpolated way.

P (w♣d) = (1 − λ)
c(w,d)

♣d♣
+ λP (w♣C), λ ∈ [0,1] (2.1.15)

where λ is the interpolating parameter controlling the importance of ML estimation and

smoothed LM from document collection, ♣d♣ is the document length of d. In Dirichlet smooth-

ing, the probability of P (w♣d) is estimated as follows,

p(w♣d) =
♣d♣

♣d♣ + µ
·

c(w,d)

♣d♣
+

µ

♣d♣ + µ
· P (w♣C) (2.1.16)

where ♣d♣ is the document length of d, and µ is the parameter of Dirichlet smoothing.

The relevance function of LM with Jelinek-Mercer and Dirichlet prior smoothing could

be derived as follows.

relJM(q,d) =
∑

w∈q∩d

c(w,q)log[1 +
1 − λ

λ
·

c(w,d)

♣d♣P (w♣C)
], λ ∈ [0,1] (2.1.17)

relDir(q,d) = [
∑

w∈q∩d

c(w,q)log[1 +
c(w,d)

µP (w♣C)
]] + nlog

µ

µ + ♣d♣
(2.1.18)

The classic LM based models in IR have demonstrated their effectiveness. However they

have the limitation of only modeling the unigram language model. One can naturally extend

the unigram model to bigram and trigram models. Song and Croft [1999] experimented those

extensions.

We can observe that all the traditional IR models are deĄned manually, with the pa-

rameters Ąxed by empirical experiments. A legitimate question is whether human expert
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would be able to deĄne such a score function, given the fact that we only have very simple

representations for documents and queries and we do not know exactly how relevance is

judged by humans. In order to overcome the disadvantage of manually deĄning functions

and parameters, learning-to-rank (L2R) models are proposed to learn a ranking function. In

the next section, L2R models will be reviewed in detail.

2.1.3. Learning to Rank

Learning-to-rank models (L2R) try to learn a ranking function in a supervised manner

to incorporate several features into the model, so as to determine the rank of a document

for a given query. Once the model is trained, it can be applied to a new document-query

pair [Liu, 2009]. The features used in L2R typically include two categories: those related to

the document and to the query, and those related to their relationship. The Ąrst category

of features includes the document and the query such as query length, document length,

the sum of matched termsŠ tf-idf value etc., and webpage speciĄc features such as PageRank

score and HITS score [Bai et al., 2010, Macdonald et al., 2012]. The second category includes

the basic relevance scores like BM25, LM of (q,d) discussed in the previous sections.

According to the goal of the objective function and the type of labeled training data,

the learning to rank approach could be roughly divided into 3 types [Liu, 2009]: pointwise

approach, pairwise approach, and listwise approach.

In pointwise approach, the training instances is in a format of ¶(q,d), l♢, given a query q,

each document d will be labeled with a degree of relevance l which could be binary, integer or

real scalar and the goal is to learn to estimate the degree of relevance. In pointwise approach,

according to different types of labels (binary or real scalar), the problem is often regarded

as a classiĄcation or regression problem, as such the classiĄcation loss or regression loss is

employed.

In listwise approach, each training instance is of the form ¶[q,(d1,d2)], l♢, i.e. a query and

a pair of document as input and the label l is the pairwise preference of the 2 documents

which takes values from ¶+1, −1♢, i.e. if d1 is ranked higher than d2, then, l = +1, otherwise

l = −1. In pairwise approach, given a query q the loss function measures the inconsistency

between h(d1,d2) and the true label ld1,d2
. Therefore many pairwise approach regards the

problem as a classiĄcation problem and employs classiĄcation loss [Liu, 2009].

In listwise approach, each training instance is in the format of ¶q,[d1,...,dn],l♢, i.e. a

query and a list of documents, and the associated label l is a ranked list of documents or its

permutation. Since the input of the model is a query and a list of documents and the output

should also be a ranked list of those documents, for practical reasons, the hypothesis of the

model is often a combination of 2 functions, h(q,x) = sort ◦ f(q,x) where f is determined

from the ranking preferences and sort is a function to sort according to the relevance. That
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is, the model will Ąrst calculate a relevance score for each document with respect to the given

query and then rank those documents according to their relevance scores [Liu, 2009].

Many machine learning methods can be used to implement the L2R approaches. For

example for pointwise approach, if the labels are binary the model could be a SVM [Tong

and Koller, 2001] classiĄer where the relevant documents are labeled as +1 and non relevant

documents are labeled −1. If the labels are real scalars, the model might employ subset

ranking [Cossock and Zhang, 2006] and treat the problem as a regression problem, and use

the real-valued relevance as label.

Pointwise approach relies heavily on manually annotated relevance scores, which might

be inconsistent because usually many annotators are involved. However their judgement on

preference of one document over another is more consistent. Therefore pairwise comparison

is more suitable for the goal of IR tasks which aims at ranking documents according to their

relevance rather than assigning an absolute score. A lot of pairwise models are proposed,

among which RankNet [Burges et al., 2005] is an interesting one.

2.1.3.1. RankNet. The RankNet model is a pairwise model which consists in building a

multi-layer perceptron (MLP) as relevance function f , and the sigmoid function is employed

as activation function for the hidden layer. Since it is a pairwise model, given 2 documents u,

v and their corresponding features xu and xv, the label lu,v is deĄned as a Boolean variable,

if u is more relevant than v, lu,v = 1, otherwise, lu,v = 0. Therefore, given a query q and 2

documentsŠ feature vectors xu and xv the model will estimate their relevance to the query

f(xu), f(xv) and then calculate the probability Ou,v deĄned as the document xu is more

relevant than document xv, and this output probability is modeled by a logistic function as

follows.

Ou,v =
exp(f(xu) − f(xv))

1 + exp(f(xu) − f(xv)
(2.1.19)

where f(xu) and f(xv) are the relevance scores of document u and v. The loss function is

deĄned as the cross-entropy of the output, as shown in Equation 2.1.20.

L(xu,xv,lu,v) = −lu,vlogOu,v − (1 − lu,v)log(1 − Ou,v) (2.1.20)

where lu,v is the ground truth label of the training pair (xu,xv), and Ou,v is the output of

the relevance model. Once the model is built, the training could be done with standard

back-propagation [Hecht-Nielsen, 1988].

Later, Matveeva et al. [2006] extended the RankNet model by adding nested rankers on

top of RankNet model in order to further improve the retrieval performance. The model will

iteratively rerank top documents with RankNet algorithm, and found to be able to improve

the performance on the top 10 documents.
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2.1.3.2. LamdaRank. Although the RankNet model has demonstrated its strength, it still

has some limitation. Since it is a pairwise model, and the loss function is deĄned to minimize

the preference errors, i.e. situations where the true label lu,v = 0 and the output probability

Ou,v ≥ 0.5 or lu,v = 1 and Ou,v < 0.5. The model will tend to only minimize this pairwise

error without taking into account the fact that the correct ranking of top documents is

more important than those at lower positions. As a consequence, improving the objective

function does not necessarily lead to a better evaluation measure. In fact, the position-related

evaluation measures are commonly used in IR. NDCG (Normalized Discounted Cumulative

Gain) [Yilmaz et al., 2008] is a common measure used in IR, especially in web search, which

is deĄned in Equation 2.1.21.

NDCG@n = (rel1 +
n∑

i=2

rel(i)

log2i
)/IDCG@n (2.1.21)

where reli is the relevance judgement for the document ranked at the ith position, n is

the cut-off position and IDCG@n is the ideal DCG@n score generated by the best possible

ranking for this topic. The deeper a relevant document is placed in the rank list, the more

its contribution will be discounted.

A B

Fig. 2.1. Example of Limitation of RankNet

For example in Fig 2.1, each line represents a ranked document in the ranked list. Here

we make a simple assumption that relevance scores are binary and take value from ¶0,1♢

and red line represents a relevant document, black line represents a non relevant document.

It can be observed that in sub Ągure A, the pair error (number of pair mis-ranked where

relevant document should be ranked higher than non relevant document) is 10. However if

the RankNet model decide to descend the Ąrst document 1 position and move up the 12th

document upwards to the 7th position, then the pair error will be reduced to 6. Although the

pair error has been reduced, if we mesure NDCG@10, the acutal NDCG value is decreased
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(because the negative impact on NDCG due to the Ąrst documentŠs moving down is much

larger than the positive impact of the 12th documentŠs moving up).

In order to overcome this shortcoming, LambdaRank approach is proposed to imitate

the idea of ŞgradientŤ which will push up relevant documents and descend non relevant

documents according to a retrieval performance metric such as NDCG. This concept of

ŞgradientŤ is called lambda function.

For example, in [Burges et al., 2006], the author optimizes on NDCG and the lambda

function is derived as follows,

λ = Zm

2yu − 2yv

1 + exp(f(xu) − f(xv))
(

1

log(1 + i)
−

1

log(1 + j)
) (2.1.22)

where Zm is the reciprocal ideal DCG (IDCG) for a given query, i, j are ranking positions for

document u, v (u is more preferred than v) in previous iteration, xu and xv are input feature

vectors and yu and yv are their corresponding labels. After each iteration the relevance scores

of u and v will be updated by +λ and −λ respectively.

2.1.3.3. LambdaMART. In order to further improve the performance of the LambdaRank

approach, a boosted decision tree based approach is proposed in [Wu et al., 2010]. This ap-

proach combines MART [Friedman, 2001] which is a boosted regression tree model with

lambdaRank approach. The ensembled output of MART could be written as a linear com-

bination of individual regression trees fi.

F (x) =
N∑

i=1

αifi(x) (2.1.23)

where αi is the boosting parameter and fi is the individual regression tree model.

Considering the case where n trees have been trained, in order to train the next tree,

lambdaMART employs gradient descent to decrease the loss [Wu et al., 2010]. The lambda

function could be derived as in [Burges, 2010]:

λij =
−σ♣Zij♣

1 + exp(σ(si − sj))
(2.1.24)

where σ is a parameter of the model to control the shape of the sigmoid function, si and

sj are the relevance scores for document i and j, and Zij is the utility difference caused by

swapping the rank of i and j, for example NDCG. If we choose to optimize the NDCG value,

the updates for each leaf value rkm in each tree m is derived in [Burges, 2010].

rkm =
−

∑

xi∈Rkm

∑

i,j ♣∆Zij♣ρij
∑

xi∈Rkm

∑

ij σρij(1 − ρij)
(2.1.25)

ρ is deĄned as follows.

ρij =
1

1 + exp(σ(si − sj))
(2.1.26)

where σ is a parameter to control the shape of the sigmoid function.
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Learning-to-rank approaches, which try to combine different features and implicitly learn

a complex relevance function, have demonstrated their effectiveness in many applications.

However, they still have some limitations among which a notable one is that the features they

employ are still simple. As we mentioned, in many L2R models, the features employed are

traditional relevance score like BM25 LM, some text statistics like the length of document

title, document body and some web document speciĄc scores like PageRank and HITS [Liu,

2009]. There isnŠt much high level representation involved in the learning process of L2R.

If the user issues a query which asks about a concept or semantic item, the system might

fail to satisfy the userŠs information need, because the manually deĄned features may fail to

represent the concept.

2.2. Deep Learning Model

Recently, with the rapid development of deep learning techniques, many attempts of

applying deep learning techniques to IR have been made. One big advantage of deep learning

techniques is that the model could learn a hierarchy of representations layer by layer from raw

input, and automatically extract salient features and discovers patterns in raw input [Bengio,

2009, Bengio et al., 2012, 2013]. This avoids the inĆexibility of hand-crafting features.

Moreover, since the representations are learned layer by layer, at higher level, we can expect

to have abstract and more semantic features extracted from raw text [Liang et al., 2017].

As such, deep learning model in IR adopted an approach which learns representations of

query and document and apply a matching function to estimate relevance between query

and document.

Depending on how the relevance is estimated, the neural IR models could be roughly

divided into two families: representation- and interaction-based models [Guo et al., 2016].

The general structures of the two types of model are presented in Fig. 2.2. As we can observe

from Fig. 2.2a Representation-based models Ąrst focus on learning meaningful representa-

tions through several hidden layers and then apply a similarity function on the last level

query and document representations to estimate relevance.

Instead of learning semantic representation of query and documents, interaction-based

models Ąrst compute local interactions between each query and document term at input and

then learn the term-level interaction patterns through several hidden layers. The process is

illustrated in Fig. 2.2b.

In this section, we will present some state-of-the-art representation-based models such

as Deep Structured Semantic Model (DSSM) and Convolutional Deep Structured Semantic

Model (CDSSM), and interaction-based models such as MatchPyramid and Deep Relevance

Matching Model (DRMM).
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Fig. 2.2. Representation- and Interaction-based Models
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Fig. 2.3. DSSM Model

The introduction of Deep Structured Semantic Model (DSSM) [Huang et al., 2013]

marked the Ąrst application of deep models in IR. The model builds 2 sets of deep feed-

forward network to map the query and documents separately into representations layer by

layer. At output, cosine similarity is employed to calculate the relevance of the document to

the query, as shown in Fig 2.3.

In this model the query-side network has its own set of parameters ¶W q
i ,bq

i ♢ and all

document-side networks shares parameter ¶W doc
i ,bdoc

i ♢.
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To deal with the large vocabulary, a letter n-gram representation of words is used. The

query and documents are Ąrst converted into bag-of-word term frequency vectors in input

layer x and the dimension of x is the vocabulary size, then the term frequency vector x is

mapped into a letter-ngram frequency layer by a Ąxed transformation matrix W1.

l1 = W1x (2.2.1)

The authors call this process word hashing [Huang et al., 2013]. It works as follows: for

each word, Ąrstly, beginning and ending symbols are added, then the word are cut into

letter-ngram, where n is a hyper-parameter of the model. For example, in order to convert

ŞgoodŤ, beginning and ending symbols are added and the word becomes Ş#good#Ť, if we

choose n = 3 (i.e. letter-trigram), then it is converted to (#go, goo, ood, od#). The goal of

conducting word hashing and map word frequency vectors to letter-ngram frequency vectors

is two-fold. Firstly it greatly reduces the dimension of the input. In this work, the vocabulary

size is around 500k, after this mapping the letter-trigram dictionary size is reduced to about

30k. This will alleviate the problem of curse of dimensionality and also reduce memory usage

to hardware restrictions. Secondly, converting the words into letter-ngram avoids the out-of-

vocabulary (OOV) problem. However an obvious risk is that this may create collisions, i.e. 2

different words having the same letter-ngram frequency vectors. However, after a thorough

investigation with real-world data, the authors found out that by utilizing letter-trigram,

there were only 22 collisions out of 30621 word tokens. Therefore the authors argue that

the collision phenomenon could be ignored in front of the huge advantage of word hashing

[Huang et al., 2013].

The conversion from term frequency vectors to letter-ngram frequency vectors is Ąxed

and W1 doesŠt participate in training. After the input term frequency vector x has been

converted into letter-ngram frequency vectors l1, it could be further forward propagated into

higher layer by Equation 2.2.3. tanh is employed as activation function in every layer.

li = f(Wili−1 + bi), i = 2,...N − 1 (2.2.2)

y = f(WN lN−1 + bN) (2.2.3)

The last layer y contains highly abstract semantic information about raw input. Cosine

similarity is employed to calculate the relevance between query and documents as follows:

R(Q,D) = cosine_sim(yQ, yD) =
yT

QyD

♣♣yQ♣♣♣♣yD♣♣
(2.2.4)

At last there will be a softmax layer which will calculate the probability of the document Di

being the relevant document P (Di♣Q).

P (Di♣Q) =
exp(R(Q,Di))

∑

j exp(R(Q,Dj))
(2.2.5)
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Fig. 2.4. CDSSM Model

The training is done in a supervised way: each training instance is of the format

(Q, D+, D−,..., D−), where Q is the query, D+ is a relevant document (positive example),

D− is a non relevant document (negative example). The number of non relevant documents

used in training is a hyperparameter. The model will minimize the following loss function.

L(Λ) = −log
∏

Q,D+

P (D+♣Q) (2.2.6)

As a Ąrst attempt of applying complex deep structures to conduct IR tasks, the DSSM

model has demonstrated its effectiveness by learning abstract representations of the raw text

through several non-linear layers. The word hashing technique has also been employed to

reduce dimensionality and avoid OOV problem. Despite its success, the DSSM still has its

limitation since it uses bag-of-words representations at input level, which fails to take into

account sequential information in original query and documents. Moreover, in its experiment

settings, the authors only tried to match queries with document titles rather than the whole

document, which contains much more non relevant terms. When DSSM is used on the whole

document, the resulting document representation could be noisier, which may in turn hinder

the effectiveness of DSSM.

2.2.2. Convolutional Deep Structured Semantic Model

In an attempt to exploit sequential information, Shen et al. [2014] proposed a convolu-

tional deep structured semantic model (CDSSM) structure which aligns query and document

words in a sequential order as input, and 1D convolution is used to map raw features into

hidden layer.
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Fig 2.4 shows a module to learn representation for a query or a document. At input

layer, words in a query or a document are aligned in a sequential order. Then the same word

hashing procedure used in DSSM is applied to each word to convert it into letter-ngrams.

Once word hashing is completed, each vector in word hashing layer ft contains frequency

count of each word in a sequential order. Then, the letter-ngram vectors of neighboring

words in a context window of size 2d + 1 are concatenated, and mapped into a vector of

dimension dimconved (which is 300 in the authorŠs setting) as follows.

ht = tanh(Wc[f
T
t−d,...fT

t ,...fT
t+d] + bc) (2.2.7)

where ht is the convolved hidden layer, [·,·] represents concatenation, fT
t−d,...fT

t+d represents

the letter-ngram vectors in a context windows of size 2d + 1, i.e. d vectors before current

wordŠs letter-ngram vector fT
d , and d vectors after current wordŠs letter-ngram vector, Wc,

bc are the weight matrix and bias vector respectively, which are shared across all words, and

tanh is applied as activation function. As such, the convolution operation is done on a 1D

space where the basic units are letter-ngram vectors ft.

Then, the vectors in the convolved layer ht are subject to a max pooling operation

which is done in a dimension-wise way across all convolved vectors. Suppose there are m

convolved vectors ht and each ht is of dimension dimconv, the max pooling operation consists

in extracting the max value from each of the dimensions of ht to form the max pooled vector

v. The max pooled vector v will have the same dimension dimconv as ht. This max pooling

operation could be formally described in Equation 2.2.8.

v(i) = max
j=1,...,T

ht(i,j) (2.2.8)

where i represent the ith dimension of ht(i,j), j represents one of the convolved vectors, and

T is the number of total convolved vectors. The max pooling operation is employed because

it is believed to be able to suppress the non-signiĄcant local features and only retain the most

salient features that are useful in IR tasks [Shen et al., 2014]. Once the max pooled layer v is

calculated, it is further mapped into a semantic layer y which is a high level representation

of the original input containing semantic information.

This module is applied to query and candidate documents separately with all candi-

date documents sharing the same parameter. After the semantic representations y have

been learned for both query q and candidate document d, the relevance is calculated by a

traditional cosine similarity as follows.

R(Q,D) = cosine(yQ, yD) =
yT

QyD

♣♣yQ♣♣♣♣yD♣♣
(2.2.9)

A softmax layer will be applied on top of the relevance vector to calculate the probability of

the document Di being the relevant document P (Di♣Q). The training is done in the same

43



way as DSSM, each training instance is a query Q with a list of positive document (relevant)

and negative documents (non relevant) [D+, D−,...,D−]. The goal is to minimize the same

loss function as in DSSM:

L(Λ) = −log
∏

Q,D+

P (D+♣Q) (2.2.10)

The CDSSM has demonstrated its improvement over DSSM thanks to its convolutional

structure which preserves some sequential information for input query and document. The

authors conducted experiments on an clickthrough dataset to retrieve document titles, and

got a 3.7% improvement on nDCG@10 over the DSSM model [Shen et al., 2014].

2.2.3. Match Pyramid

In addition to representation-based models such as DSSM and CDSSM discussed in

previous section, there have been another family of neural IR models proposed in literature.

Those models estimate the relevance of a query and document based on their interactions.

Instead of Ąrst learning representations of query and document, they usually Ąrst build

local term-to-term interactions between query and document to form an interaction pattern.

Afterwards a series of neural layers are employed to analyze the interaction patterns. Finally,

the last layer of the learned interaction information will be employed to output a relevance

score.

Among those interaction-based models, a well-known one is the MatchPyramid [Pang

et al., 2016a]. Its general architecture is presented in Fig 2.5.
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Fig. 2.5. Match Pyramid

In this model, the input feature is a 2D interaction matrix I of dimension ♣q♣ × ♣d♣,

where ♣q♣ and ♣d♣ represent the query and document length respectively. Each element Iij of

the matrix I is calculated as the cosine similarity of the representation ith query term and
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the jth document term. Here the representations of terms could be pre-trained by off-the-

shelf embedding tools such as Word2Vec [Goldberg and Levy, 2014]. The process could be

summarized in Equation 2.2.11.

Iij = cos(t
(q)
i , t

(d)
j ) (2.2.11)

Afterwards, the input interaction matrix I will be fed into a series of 2D convolution

and max-pooling layers and the last max-pooled layer will be Ćattened to form a 1D vector

to represent the Ąnal pattern vector learned through the model. Finally this pattern vector

will be fed into a dense layer to produce a relevance score. The whole process could be

summarized as follows.

P0 = max_pool(I) (2.2.12)

Ck
1 = f(W k

1 ∗ I + bk
1), k = 1,..,K (2.2.13)

P k
1 = max_pool(Ck

1 ), k = 1,..,K (2.2.14)

Ck
i = f(W k

i ∗ Pi−1 + bk
i ), i = 2,..,L, k = 1,..,K (2.2.15)

P k
i = max_pool(Ck

i ), i = 2,..,L, k = 1,..,K (2.2.16)

H = g(W hPK + bh) (2.2.17)

S = h(W sH + bs) (2.2.18)

where Ck
i is the feature map k of the ith convolved layer; I is the input interaction matrix;

W k
i and bk

i are the kernel and bias of layer i for the feature map k; L is the number of

convolution layers, and K is the number of feature maps; f , g, h are non-linear mappings;

and ∗ represents the convolution operator.

The training is then done by minimizing a pair-wise loss function. Given a training

example (Q,D+,D−), we hope that the positive score S(Q, D+) should be higher than the

negative score S(Q,D−). The loss is deĄned in Equation 2.2.19, where Θ includes all trainable

parameters in the model:

L(Q,D+,D−; Θ) = max(0, 1 − (S(Q, D+) − S(Q,D−))) (2.2.19)

2.2.4. Deep Relevance Matching Model

In DSSM, CDSSM, and Embedding-based Convolutional Model, only the semantic rep-

resentations of the last layer are used in relevance estimation. However the low level inter-

actions between query and document are discarded. To solve this problem, Guo et al. [Guo

et al., 2016] proposed a Deep Relevance Matching Model (DRMM) which attempts to solve

this problem. In this approach, local interactions at term level are employed in relevance

estimation. The structure of the model is presented in Fig 2.6.
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First, at input layer the word embeddings learned by off-the-shelf tools like word2vec

[Mikolov et al., 2013] are employed. Then, interactions between query and document at

term level are immediately calculated. The authors argue that if userŠs information need is

an exact match, low-level interactions on terms are crucial. Since query and document could

be of arbitrary length, in order to deal with the variable length problem, the DRMM model

doesŠt use traditional padding techniques, instead it employs an intensity-based histogram

method to calculate the low-level interactions. For each query termŠs embedding wi, the

model will Ąrst calculate the scalar product of the query term wi with every document

termŠs embedding di. Then, the interactions will be classiĄed into several intervals. Finally

the histogram will contain counts of interactions in each interval.

z
(0)
i = h(wi ⊗ d) (2.2.20)

where z
(0)
i is the interaction histogram vector for query term i, wi is the embedding of query

term i, d is a list containing embeddings of each document term, and ⊗ represents scalar

product.

For each query term, the interaction histogram vector will be fed into a deep feed-forward

network, the operation in each layer could be represented in Equation 2.2.21

z
(l)
i = tanh(W (l)z(l−1) + b(l)) l = 1,...,L (2.2.21)
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where z
(l)
i is the activation of layer l for query iŠs network, W (l) and b(l) are weight and bias

of layer l and are shared across all query term networks.

Finally the output score Z
(L)
i from each query termŠs network will be aggregated in a

weighted scheme

s =
∑

i

giz
(L)
i (2.2.22)

where gi is the aggregation weight for term i, and is calculated with a softmax function as

follows.

gi =
exp(wgxi)

∑

j exp(wgxj)
(2.2.23)

where wg is the weight of the term weight of the term gating network, and xi is the input of

query term i in the term gating network, which could be the embedding vector of term i or

the inverse document frequency of term i, depending on different experiment conĄgurations

[Guo et al., 2016]. The weight of this term gating network wg is set to be a learnable

parameter and learned together with other model parameters.

The model is trained in a pairwise manner with hinge loss: given a training pair (q, d+,

d-) where q is a query, d+ is a document ranked higher than d−, the loss function could be

expressed as

Loss(q,d + ,d−) = max(0, 1 − s(q,d+) + s(q,d−)) (2.2.24)

where s represents the predicted relevance score of query q and document d.

The experimental results reveal that DRMM outperforms representation-based models

such as DSSM and CDSSM signiĄcantly on MAP and nDCGs [Guo et al., 2016]. The

authors believe that for the task of adhoc retrieval, the most important signals are relevance

matchings signals rather than semantic representations. Since DRMM as an interaction-

based models focuses on analyzing the interaction pattern (i.e. the histogram) to estimate the

relevance score, it provides some advantage over representation-based models, namely, it can

capture Ąne-grained matching signals between document and query, which a representation-

based model could have difficulties to achieve.

2.2.5. Pre-trained Language Model

Recently the rapid development of pre-trained language models (PLMs) have shown

their potentials. Among those pre-trained language models, BERT [Devlin et al., 2019] is

a popular one and has been applied to many NLP tasks thanks to its effectiveness and

versatility. One of the advantages of the BERT model is that it pre-trains multiple layers

of contextualized representations on large training corpus and could be adapted to perform

different downstream tasks by Ąne-tuning it with the task speciĄc layers or objective function.

47



There have been some work which employed BERT as representation learning layers for

Information Retrieval tasks. For instance, TwinBERT [Lu et al., 2020a], employs two sym-

metrical BERTs to learn the query and document representations and the last layerŠs [CLS]

token representations for query and document are employed as global representations to per-

form a match by dot product. The ColBERT [Khattab and Zaharia, 2020] also learns query

and document representations separately by two BERT encoders. Afterwards, each query

term representation of the last layer is matched with each document term representation

of the last layer, and a max interaction value is retained. Finally the max interactions are

aggregated for all query terms. By delaying the interactions until the completion of query/-

document representation construction, it could achieve the desired fast response for serving

queries.

2.3. Summary

In this chapter, both traditional models and the state-of-the-art neural models for IR are

presented. From the above presentation, we can observe that a neural IR model essentially

boils down to two parts: representation learning module and matching function. Depending

on how the two parts are combined, the existing neural models could be categorized into

representation-based models and interaction-based models. Representation-based models

such as DSSM and CDSSM employ complex representation learning modules to learn a series

of layers of representations and employ the last layer of query and document representation

to perform a match. Usually this matching function is a simple one like cosine similarity. On

the other hand, interaction-based models such as MatchPyramid and DRMM employ simple

term representations such as term embeddings and build local term-to-term interaction such

as interaction matrix or histogram at an early stage. Afterwards, a series of neural layers in

charge of analyzing the matching patters are applied on the input pattern. Those layers are

in charge of learning the global matching function. Finally the learned matching pattern in

the last layer is employed to output a relevance score.

From the above description, it is not difficult to observe several limitations of the existing

neural IR models. Firstly, regardless of representation- or interaction-based models, most of

them only employs the representation or interaction pattern of the last layer to calculate a

relevance score. As mentioned previously, deep neural models have the capability to learn

more and more abstract information from input by a series of layers. The input layer is

in charge of capturing information on term level and higher layers are believed to capture

semantics on conceptual level. Hence those approaches which employ only the representation

or interaction of the last layer to calculate a relevance score are more suitable for conceptual

queries. However as discussed in [Guo et al., 2016] [Gysel et al., 2016], there are also lexical

queries requiring an exact match. For example, the query ŞRonald Reagan tax cutŤ asks
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the system to retrieve document containing the tax cut policy of the former US president

Ronald Reagan, any generalization of these terms to other president are not desirable. There

could also be many cases in between. Therefore it is more appropriate to incorporate the

representations or interactions of multiple layers into the process of estimating the relevance

score in order to serve different types of query.

Secondly, matching between query and document shouldnŠt only happen on the same

abstraction level. ThereŠs also the need of performing matchings across different layers of

abstraction to satisfy the need of term-phrase matching. Very often we observe that in the

document, a phrase could also be related to a single query term, and vice versa. For example,

for the query term ŞmaskŤ, the phrase Şpersonal protection equipmentŤ in document is also

relevant to it, since mask belongs to the concept of personal protection equipment. The

hierarchy of layers of representations learned by neural models gives the possibility to achieve

term-phrase matching, therefore it is also worthwhile to match representations of query and

document from different layers to better satisfy this need.

Thirdly, the traditional L2R framework has demonstrated its potentials in learning a

good ranking function. However it is observed that in many existing L2R models, the input

features are Ąxed, hand-crafted features such as query and document length, IDF of query

terms, BM25 and LM scores between query and documents. Those hand-crafted traditional

features are very practical, however they lack the expressiveness of neural features learned

by representation or interaction modules. On the other hand, existing neural IR models

are mostly trained with a simple pairwise hinge loss, which are less effective than that of

L2R framework. Moreover, It has often been observed that neural features and traditional

features are complementary, and they are often combined to help improve performance [Kim

et al., 2012, Severyn and Moschitti, 2015]. Therefore it is natural to raise the question: Is it

beneĄcial to combine both the L2R framework and neural feature learning modules together

to learn features and ranking function simultaneously in an end-to-end manner? If this is

possible, the integrated learning model could combine both neural features and traditional

features and learn the ranking function and neural features together to take advantage of

both neural models and L2R framework.

In this thesis, we will address the limitations mentioned above.
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Chapter 3

Collections and Evaluation Methods

In this section, we will present the evaluation framework used in this thesis. Section 3.1

describes the collections we used in our studies, Section 3.2 presents the external resources

that we used in this thesis, and Section 3.3 presents the evaluation metrics employed in

different studies.

3.1. Collections

In this study we employs several different public collections to conduct our experiments.

They are the ClueWeb09B, MQ2007, MQ2008 and MSMARCO collections. The details of

those collections are described in the following sections.

ClueWeb09B: The Text Retrieval Conference (TREC) 2 organized the web track 2009-

2012 competitions and prepared this ClueWeb09 Collection. This collection contains web-

pages crawled from the Internet in January and February 2009. The size of this collection

is very large, and we employ a commonly used subset of this collection called ClueWeb09B.

The details of this collection is presented in Table 3.1.

Table 3.1. ClueWeb09B Statictics

Collection Genre Validation Queries Test Queries #Docs avg d length

Clueweb09B Webpages #1-50 #51-200 50,220,423 1,506

The collection contains 50,220,423 documents. The genre of this collection is webpage,

and the average document length is 1,506 terms which is relatively long.

The judgments for validation and test queries are provided with this collection by TREC

webtrack 09-12 competitions. The judgments for documents this collection are graded from

−2 to 4. −2 signiĄes that this document is a spam document it doesnŠt appear to be useful

for any reasonable purpose. 0 signiĄes that this document is not relevant to the current

2http://trec.nist.gov/



topic, but may be relevant to other topics. 1 means that the content of this document is

relevant to the current topic. 2 means that the content of this document is highly relevant to

the topic. 3 signiĄes that this document is dedicated to the current topic, it is authoritative

and comprehensive. 4 means that this document is the homepage of an entity directly named

by the current query. An example of the judgments are presented in Fig 3.1,

Fig. 3.1. An Example of ClueWeb09 Judgment

where each line represent a judged query-document pair. The Ąrst column represents the

query id, the second column is a placeholder, the third column is the document id, the forth

column is the judgment.

MSMARCO: The MSMARCO reranking dataset 1 is released by Microsoft. The queries

are real user issued questions extracted from Bing 2 query log, and the documents are candi-

date answer passages. This dataset already provided a baserun by BM25 and the goal of this

dataset is to rerank the passages given a query. The statistics of this dataset are presented in

Table 3.2. The size of this collection is large. It contains 8,841,823 documents and 1,010,916

queries. Since the genre of the collection is answer passages, the average document length is

only 58 terms, which is relatively short. In this dataset, in order to facilitate training, the

authors of the dataset have already provided training triples (query, document, label) in 2

format: small (27.1GB) and large (272.2GB). To facilitate our experiments, we chose to use

the small set of training triples.

As for evaluation, the authors of the dataset have already prepared a baseline run based

on BM25, and provided the development and test query-document pairs. Therefore we follow

the testing protocol and rerank the provided baseline run by our proposed models.

1https://microsoft.github.io/msmarco/
2https://www.bing.com

52



Table 3.2. Statistics of MSMARCO Dataset

MSMARCO

# Docs 8,841,823

# Queries 1,010,916

# Training triples (small) 39,782,779

# Training queries 68,750

# Validation queries 698

# Test queries 6,282

# Avg doc len 58

The judgments are graded in a binary manner, i.e. if a document is relevant to a query,

it will be judged as 1, otherwise, it will be judged as 0. Note that since this dataset is

for answer passage reranking task, thereŠs only one relevant passage per query, which is the

correct answer to the query. An example of the judgments are presented in Fig 3.2, where

Fig. 3.2. An Example of MSMARCO Judgment

each line represents a judged query-passage pair. The Ąrst column represents the query id,

the second column is a placeholder, the third column is the document id, the forth column

is the judgment.

This collection is used in Chapter 5, in which we investigate if allowing cross-matches

between term and phrase representations will help to boost performance.

MQ2007 and MQ2008: The MQ2007 and MQ2008 datasets 1 contain documents from

the Gov2 collection 2 provided by TREC. The documents are crawled from gov websites in

early 2004 and the average document length is 956. Both datasets contain human assessorŠs

judgment triples (query, document, judgment) and the datasets have already been split into

1https://www.microsoft.com/en-us/research/project/letor-learning-rank-information-retrieval/
2https://www-nlpir.nist.gov/projects/terabyte/#data
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5 folds. For our experiments, we stick to the orignal splitting of the 5 folds to perform 5-fold

cross-validation. The details of the two datasets are presented in Table 3.3. The MQ2007

Table 3.3. Statistics of the MQ datasets

#queries #docs #rel_q #rel_per_q

MQ2007 1,692 65,323 1,455 10.3

MQ2008 784 14,384 564 3.7

dataset consists of 5 folds, which contains in total 1692 queries and 65,323 documents, the

number of queries with at least one relevant document is 1455 and the average number of

relevant document per query is 10.3. The MQ2008 dataset is smaller than the MQ2007. It

also consists of 5 folds, which has in total 784 queries and 14,384 documents, the number

of queries with at least one relevant document is 564 and the average number of relevant

document per query is 3.7. Because the size of MQ2008 is small, it might not be enough

to train a large neural model, following the practice of [Fan et al., 2018, Pang et al., 2017],

we merge the training folds of MQ2007 into MQ2008 and keep the validation and test fold

unchanged.

As for evaluation, since those datasets have already been split into 5 folds by the author

of the datasets, we perform 5-fold cross validation, using 3 folds for training, 1 fold for

validation and the remaining fold for testing. Following the practice of [Fan et al., 2018,

Pang et al., 2017], during evaluation, we do not rerank the validation and test instances over

a baseline run, but directly rank the validation and test query-document pairs provided in

the respective folds.

The judgment labels in these datasets are graded from 0 to 2. 0 signiĄes that the

current document is not relevant to the topic, 1 means that the document is relevant to the

query and 2 indicates that the document is highly relevant to the topic. An example of the

judgments for these datasets are presented in Fig 3.3 where each line represent a judged

query-document pair and their judgment. The Ąrst column represents the query id, the

second column represents the document id, the third column is the judgment.

These two datasets are very classic and have been employed in a series of traditional

IR models that doesnŠt involve learning and some traditional, non-neural feature-based L2R

models. However the major drawback of these datasets is that they are quite small (1692

and 784 queries) compared with MSMARCO (68,750 queries) and ClueWeb+AOL (8,969,337

queries) in terms of the size of training data. As discussed above, to train a deep model, it is

preferable to have a large amount of training data. In experiment, we did Ąnd that for these

two datasets, sometimes, in additional to the neural features learned by our model, we need

to add traditional non-neural features contained in these datasets to boost performance. We

employ these two datasets in the studies presented in Chapter 5 and 6.
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Fig. 3.3. An Example of MQ Judgment

In summary, we have 4 collections presented above. The details of those collections are

summarized in Table 3.4.

Table 3.4. Summary of Collection Statistics

Collection #Queries #Docs #Avg Doc Length Genre Judgement Test Scheme

ClueWeb09B 200 50,220,423 1,506 Webpages Graded Reranking

MSMARCO 1,010,916 8,841,823 58 Answer passages Binary Reranking

MQ2007 1692 65,323 956 Gov doc pages Graded Ranking

MQ2008 784 14,384 956 Gov doc pages Graded Ranking

The ClueWeb09B collection is a very big collection, containing webpages crawled from

the web in early 2009. The documents in this collection are also very long, consisting of

thousands of terms. The judgement for this collection are labeled in a graded way, and we

rerank the BM25 baseline results to test our modelŠs performance.

The MSMARCO is also a very large collection. This collection contains questions and

answer passages. Since the documents are answer passages, they are usually short in length.

This allows easier learning of the document representations. The judgement for this collection

is labeled in a binary way, and we perform reranking on a BM25 baseline to test our modelŠs

performance.

MQ2007 and MQ2008 are two relatively small datasets which contains several hundreds

to more than one thousand queries. The documents in this collections are government

document pages of hundreds of terms. The judgements are labeled in a graded way, and

following [Pang et al., 2017], we perform 5 fold cross validation and directly rank the test

queries in each test fold, rather than reranking a baseline result.
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3.2. External Resources

GloVe Embeddings: To better represent the term in neural IR models, we employ the

GloVe word embeddings 1 learned by [Pennington et al., 2014] to initialize the embeddings

of query and document terms. The set of embeddings we employed are trained on wikipedia

dump (2014) with 6 billion tokens, the vocabulary size is kept as 400K, and the dimension

of the embedding vectors is 300.

The advantage of using GloVe embeddings over the word2vec [Mikolov et al., 2013] is that

the GloVe embeddings considers global co-occurence of terms rather than the terms in the

local context window in word2vec. Experiment results on the task of ranking similar word

pairs [Agirre et al., 2009] demonstrated its superiority over word2vec embeddings [Pennington

et al., 2014].

AOL query log: The training of a deep IR model requires a large amount of labeled

training data. In the lack of a large amount of training data, the recent proposed idea of

weak supervision [Dehghani et al., 2017] framework could be employed to generate weakly

supervised training data. The general idea of weak supervision is to select a set of queries

and launch the queries with a traditional, non learning-based retrieval model such as BM25

against a document collection to retrieve documents and their scores, afterwards the scores

could be regarded as weak label. The details of weak supervision will be presented in Chapter

4. For the work ŞMulti-level Abstraction Convolution ModelŤ presented in Chapter 4, in

order to generate weakly supervised query-document pairs, we employed the AOL query log

[Pass et al., 2006] as training query set.

The AOL query log 2 contains 32,777,610 anonymized real user queries issued by 657,426

users from March 1st till May 31, 2006. Each entry of the query log contains an anonymized

userID, the query text, date, time of submission, the position of the clicked document and

the document URL. The structure of the query log and some typical queries are presented

in Table 3.5.

Table 3.5. Typical Queries of Aol Query Log

userID query date time click position URL

142 dfdf 3/24/06 22:23:07

142 merit release appearance 4/22/06 23:51:18

217 susheme 3/2/06 12:31:08

217 lottery 3/1/06 11:58:51 1 http://www.calottery.com

1337 kentucky fried chicken 4/25/06 16:07:14 1 http://www.kfc.com

2178 bare minerals make up 4/7/06 15:36:02 3 http://www.essentialdayspa.com

2334 jojo lyrics 3/19/06 15:12:26 1 http://www.azlyrics.com

1https://nlp.stanford.edu/projects/glove/
2http://octopus.inf.utfsm.cl/ juan/datasets/
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For the purpose of generating training query-document pairs, we only employs the query

text and discard the other information. We Ąlter out navigational queries (Queries containing

URL strings Şwww.Ť, Ş.comŤ, Ş.orgŤ, Ş.netŤ, Ş.eduŤ) and queries containing non-alphanumeric

characters as done in [Dehghani et al., 2017]. This results in 8,969,337 training queries.

3.3. Evaluation Metrics

The goal of information retrieval is to return a ranked list of document give a query

issued by user. Among the retrieved documents in the list, there could be some documents

judged positive and others judged negative. The evaluation metrics will evaluate how well

the system retrieves relevant documents from the collection and ranks them at top positions

in the list.

3.3.1. Binary Metrics

P@k: The precision at k [Zuva and Zuva, 2012] calculates the precision at the cut-off

position k in the ranked list. It is calculated as follows:

P@k =
k∑

i=1

rel(di)

k
(3.3.1)

where k is the cut-off position in the ranked list, rel(di) is the judgment of the ith document

in the ranked list, and rel(di) ∈ ¶0, 1♢.

AP: The average precision considers the precision at different positions in the ranked list

where a relevant document is placed. It is deĄned as follows.

MAP =
∑

i:rel(di)=1

P@i

♣R♣
(3.3.2)

where rel(di)(∈ ¶0, 1♢) is the judgment of the ith document in the ranked list, rel(di) = 1

means a relevant document, and ♣R♣ is the number of relevant documents.

MAP: The mean average precision [Craswell, 2009b] calculates the average precisions

(AP) over all test topics (queries). It is deĄned as follows.

MAP =
∑

q∈Q

AP (q)

♣Q♣
(3.3.3)

where q is a topic in the test topic collection Q, and ♣Q♣ is the total number of test topics.

MRR: The mean reciprocal rank [Craswell, 2009a] measures how close to the top the

relevant documents are ranked in the retrieved list. It is simple the mean of the reciprocal

ranks of relevant document:

MRR =
1

♣Q♣

∑

q∈Q

1

iq

(3.3.4)
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where iq is the position of the relevant document in the retrieved list for topic q, and ♣Q♣

is the total number of test topics. MRR is often used in the case where there is only one

relevant document for a topic.

3.3.2. Graded Metrics

Graded metrics consider graded relevance judgments. For example, relevance judgments

could be 0, 1, 2, 3 and 4, with 4 being perfectly relevant and 0 being non relevant. The most

commonly used metric is NDCG.

NDCG@k: The Normalized Discounted Cumulative Gain at k is proposed in [Järvelin

and Kekäläinen, 2002, Robertson, 2000]. The idea of proposing NDCG is to allow using

graded judgments and penalize relevant documents which are ranked at lower positions.

Firstly, the discounted cumulative gain is calculated as the gain for each document discounted

by the logarithm of its ranked position as follows.

DCG@k =
k∑

i=1

2rel(di) − 1

log2(i + 1)
(3.3.5)

where k represents the cut-off position, i is the current rank position, and rel(di) is the

relevance judgment of document di.

Once the discounted cumulative gain is calculated, the ideal discounted cumulative gain

(IDCG@k) is calculated as the DCG@k of the best ranking order (by placing the most rele-

vant ones on top). Finally the NDCG@k is obtained by normalizing DCG@k over IDCG@k

as follows.

NDCG@k =
DCG@k

IDCG@k
(3.3.6)

3.4. Summary

In this chapter, we presented the external resources that we employed in the studies

of this thesis. We employ the pre-trained GloVe embedding vectors to initialize the term

representations in our model to allow the models to have a better initial state in the parameter

space. We also employ the queries in the AOL queyr log to generate weakly supervised

training triples by the weak supervision framework for the study which will be presented in

Chapter 4.

We then presented the collections we employed in this thesis, their genres and basic

statistics, and the corresponding judgments. Finally we presented the evaluation metrics

we used in this thesis, including binary metrics such as MAP and MRR, graded metrics

like NDCG@k. We employ MAP and NDCG@k (k=1, 3, 10, 20) in the study presented in

Chapter 4, 5 and 6 and MRR in Chapter 5.
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Chapter 4

Multi-level Abstraction Convolution Model

Article Details:
1. Yifan Nie, Alessandro Sordoni, Jian-Yun Nie: Multi-level Abstraction Convolutional

Model with Weak Supervision for Information Retrieval. SIGIR 2018: 985-988

2. Yifan Nie, Yanling Li, Jian-Yun Nie: Empirical Study of Multi-level Convolution

Models for IR Based on Representations and Interactions. ICTIR 2018: 59-66

Context:
At the time of writing these articles, most of the existing neural IR models build either

representations or interactions and only employs the last layer of representations or interac-

tion patterns to perform matching. For example, for the representation-based models DSSM

[Huang et al., 2013] and ARC-I [Hu et al., 2014], only the last layer of learned query and

document representations participated in matching by cosine similarity or a dense layer. For

interaction-based models like MatchPyramid [Pang et al., 2016a], only the matching score

from the last layerŠs interaction pattern was extracted as a global matching score.

However we observe that there exist many types of queries: both lexical queries and

conceptual queries and queries in between. For lexical queries, the exact match of query

and document terms is more important, therefore the matching model is supposed to pay

more attention to the term layer. However for conceptual queries a match at higher layers

is more appropriate, since the representations/interactions learned at higher layers aggre-

gate the basic terms to generalize into more abstract concepts. There are also queries in

between. Therefore we argue that the use of representations/interactions of multiples layers

is beneĄcial for a neural IR model to be Ćexible in processing all types of queries.

Contributions:
The main contribution of our papers lies in a new model capable of coping with different

types of queries by matching them with documents at different levels of abstraction. This



idea can be easily adopted in other deep neural models, whether they are based on repre-

sentations or interactions, use CNN or RNN. Our experiments on ClueWeb09B conĄrm that

our approach can result in superior retrieval effectiveness.

Our Ąrst paper focus on employing multiple layers in interaction-based model. In this

work we proposed to use 2D convolutions to learn multiple layers of interaction patterns and

a gating mechanism to dynamically combine the matching signals from those matching layers

to produce a matching score. In the second paper, we extend the idea of multi-level matching

to representation-based models and build representations layers by 1D convolutions. We also

compare the performance of representation- and interaction-based models on comparable

settings and the same evaluation collection (ClueWeb09B) to study which paradigm works

better.

4.1. Introduction

Deep learning techniques have been successfully used Ąrst in image [Krizhevsky et al.,

2012] and speech processing [Graves et al., 2013]. The key idea behind them is to learn

representations to represent the content and features of images and speech. The main ar-

chitecture is convolutional neural network (CNN), which aggregates representation cells at

a lower-level to form a higher-level representation. It has been observed that the repre-

sentations can successfully capture features from lines, forms, face components, to speciĄc

face classes (persons) at different levels in an CNN trained for face recognition. The CNN

architecture demonstrates high capability of creating more and more complex and abstract

features when we move up in the convolution layers.

These techniques have then been extended to text processing. To cope with the speci-

Ącities of texts, deep learning techniques have been much extended, namely to incorporate

the sequential dependencies between words in texts. In particular, recurrent neural networks

(RNN) [Cho et al., 2014, Hochreiter and Schmidhuber, 1997] are widely used for different

tasks in text processing: machine translation, question-answering, and so on.

The great success of deep learning has triggered a tremendous interest in the IR com-

munity. We saw a large number of research papers on neural IR models in the recent years

[Huang et al., 2013, Shen et al., 2014, Severyn and Moschitti, 2015]. These models are based

on CNN or RNN. It has been shown that RNN can be successfully used in tasks that deal

with short texts such as in question-answering (i.e. to re-rank short answers) [Yang et al.,

2016]. However, RNN has not been often used for long texts, in which RNN has difficulty to

capture the essential part of a long text [Hochreiter et al., 2001, Pascanu et al., 2013]. For

the core ad hoc IR task, CNN is the main architecture used in most of the previous studies

on neural IR models.
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The previous studies have proposed two main families of models: representation-based

models and interaction-based models. Representation-based models such as DSSM [Huang

et al., 2013], CDSSM [Shen et al., 2014], ARC-I [Hu et al., 2014] focus on learning meaningful

representations through several hidden layers and apply a similarity function on the last level

query and document representations to estimate relevance.

Instead of learning semantic representation of query and documents, interaction-based

models calculate local interactions of each query and document term at input and learn the

term-level interaction patterns through several hidden layers.

In previous work, the two approaches have been tested under different experimental

conditions, making it difficult to compare them fairly. The Ąrst goal of this work is to

make a fair comparison of the main families of models proposed for ad hoc search. The

Ąrst question we examine is which of the representation-based and interaction-based models,

when implemented in a similar manner, better suits ad hoc IR tasks.

Apart from the above issue, we also observe that previous neural IR models only employ

the representations or interaction scores of the last level to produce a global interaction score.

For instance, in DSSM, CDSSM and ARC-I, the query and document representations are

learned separately through a series of dense or 1D convolution layers. Finally, only the query

and document representations of the last layer are employed to perform a match. Similarly

in interaction based model such as MatchPyramid [Pang et al., 2016a] and ARC-II [Hu et al.,

2014], only the last layer of learned interaction pattern is employed to produce a matching

score.

However, userŠs queries may be of different nature. For example, the query Şfact on

UranusŤ (a ClueWeb query) is a lexical query for which a low-level exact match for the word

ŞUranusŤ is required. Similarly, for the query ŞRon HowardŠ (another ClueWeb query)Š,

an exact match at term level is also crucial since the query asks for the information about

the exact person Ron Howard, not other people with a different name. For those lexical

queries, an exact match on term level is crucial whereas a semantic match may run the risk

of matching with other entities, leading to query drift.

On the other hand, the query Şlast supper paintingŤ is a conceptual query which needs

some generalized representations/interactions on higher level of the model, since this query

may ask for documents containing the description of the painting or the signiĄcance of this

painting in Catholicism. Similarly, the query ŞriceŤ may ask either some recipes of rice or

the nutrition values of rice.

From the above examples, we can observe that userŠs queries require different levels of

matching, from lexical to semantic levels. This is the general case for IR: users may submit

queries to locate documents containing the same words, or the same or similar concepts, and

there are also queries lying in between.
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Since neural IR models could learn multiple levels of representations or interactions, a

natural question is raised: Can different levels of representation or interaction be leveraged

to cope with the needs of different queries? If yes, how to integrate them?

In order to answer this question, we extend the existing representation- and interaction-

based models to multi-level matching and run extensive experiments under the same test

condition to compare these models. We will Ąrst test if different layers of representation

are indeed more suitable for different types of queries, and if their combination can better

deal with various types of query. Our contributions are two-fold: (1) We compare the

performance of representation- and interaction-based models under the same test conditions

(2) We propose Multi-level Abstraction Convolution Model to cope with different types of

queries by dynamically aggregating the matching signals from all layers instead of using just

the last layer of output from the neural model. Our results will clearly show that interaction-

based models are usually preferred to representation-based models for ad hoc search; and

multi-level matching is preferred to single-level matching.

4.2. Related Work

4.2.1. Representation- and Interaction-based Models

In deep IR models, given the query q and document d, the matching is often achieved by

estimating a relevance score rel of q and d. Depending on how to produce the relevance score

S(q, d), previous deep IR models could be roughly divided into 2 categories: representation-

based models and interaction-based models [Guo et al., 2016].

Representation-based models focus on learning meaningful semantic representations

through several hidden layers and estimate a global relevance score by a matching func-

tion applied on the last level representations of the query and document. The process could

be summarized in Equation 4.2.1.

rel(q, d) = S(ϕ(q), ϕ(d)) (4.2.1)

where ϕ is a complex feature function to map query or document text into meaningful

semantic representations through several hidden layers. S is a matching function, such as

cosine or dot similarity. For example, in DSSM [Huang et al., 2013], the feature function ϕ

is a feed forward neural network and S is a cosine similarity. In CDSSM [Shen et al., 2014],

ϕ is a convolutional network and S is the cosine similarity.

Different from representation-based models, interaction-based models focus on learning

salient interaction patterns from the input local interactions through a series of hidden layers.

The process could be summarized in Equation 4.2.2.

rel(q, d) = Sn ◦ Sn−1 ◦ ... ◦ S0(w(q), w(d)) (4.2.2)
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where w is often a simple embedding lookup function which will extract word embeddings of

corresponding terms, and the matching function is a composition of a series hidden neural

transformations Sn ◦ Sn−1 ◦ ... ◦ S0.

For example, in MatchPyramid [Pang et al., 2016a] and ARC-II [Hu et al., 2014], the

feature function w maps each term of query and document into word embedding vector, and

the matching function Sn ◦ Sn−1 ◦ ... ◦ S0 is a deep convolutional network of several layers to

learn the matching patterns from the input interaction matrix.

Similarly, the DRMM model [Guo et al., 2016] calculates the interactions between each

query term with each document term by a similarity function, and the histogram of inter-

actions between query term tq
i and all document terms are produced. Afterwards, n weight-

sharing feed-forward neural networks take the histograms as input and predict n matching

scores, where n is the length of the query. Finally the n scores are aggregated through an

aggregating gate to produce a global matching score.

The two families of approaches have been extensively tested. [Huang et al., 2013] and

[Shen et al., 2014] showed that representation-based models trained on clickthrough data

could successfully produce superior effectiveness than a traditional model (BM25) on docu-

ment title retrieval. However, [Pang et al., 2016a] and [Guo et al., 2016] showed that DSSM

and CDSSM were far less effective than BM25 on ad hoc retrieval and interaction-based

models performed better. It is difficult to draw a solid conclusion from these experiments

because the retrieval tasks and test conditions are very different. This is the very motivation

of our paper - to compare the two approaches under the same test condition. In this study, in

order to understand the contribution of representation-based and interaction-based models,

we test them separately in this paper.

The effects of representation-based and interaction-based models are believed to be com-

plementary: they can respectively achieve a high-level global matching or a Ąne-grained low-

level matching. Therefore, they are combined in some models. For example, the DuetNet

[Mitra et al., 2017] incorporates the strengths of both representation-based and interaction-

based models by explicitly building 2 sub-models. In this paper, however, we intend to

compare the two learning and matching schemas directly, without mixing up other aspects.

So, we do not consider such a combined model in this study.

In general, a neural IR model tends to create a high-level representation or matching

pattern along the convolution layers. It has been noticed that such a model may fail to

deal with lexical queries. To address this issue, the AttR-Duet model [Xiong et al., 2017a]

exploits both word and entity matching features like BM25 and TF-IDF scores and builds

two 1D CNN models to produce 2 matching scores, and the word and entity matching scores

are linearly combined with attention weights learned by a separate attention model. [Xiong

et al., 2017a] shows the importance of low-level lexical features. In our study, we will also
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combine lexical and semantic matchings, but in a different architecture. We propose to

combine the matching scores at multiple levels of convolution.

From the above analysis, we can observe that previous neural IR models only employed

the Ąnal level or low-level representation/interaction score to estimate a global relevance

score. However, as discussed in previous section, userŠs queries may be of different nature,

which may require matching at different levels of abstraction. Therefore we propose to

investigate the possibility of integrating multi-level matching into representation-based and

interaction-based models. The details will be discussed in the following sections.

4.2.2. Weak Supervision

The training of deep models requires a lot of labeled data. However in reality thereŠs often

a lack of such labeled (query, document, relevance) triples. To address this problem, the weak

supervision framework was proposed in [Dehghani et al., 2017]. The idea of weak supervision

is to use a simple, unsupervised retrieval model such as BM25 to estimate relevance scores

for query-document pairs, and use the computed relevance score as a weak label.

The advantage of weak supervision is that it could generate large amount of weakly

supervised training data at low cost. Once we have access to a certain amount of queries

(e.g. query log), we can launch those queries into a retrieval model such as BM25 against

a document collection to generate large amount of (query, document, score) triples. Even

though the generated labels for the query-document pairs are not perfect, we hope that the

large amount of the weak supervision training examples could compensate the imperfections

of the weak labels.

In this study, we employ the AOL query log presented in Section 3.2, and apply the weak

supervision framework [Dehghani et al., 2017] to generate our training data.

4.3. Representation-based Multi-level Abstraction Con-

volution Model

In this section, we will present the representation-based Multi-level Abstraction Convolu-

tion Model. In order to compare the performance of combining multiple levels of abstractions

with the tradition approach of using only the last layer of query and document representa-

tions, we Ąrst build representation-based single-level matching model. Afterwards, we will

introduce our proposed Multi-level Abstraction Convolution Model (MACM).

4.3.1. Representation-based Single-level Convolution Model

The architecture of the Representation-based Single-level Convolution Model is presented

in Fig 4.1. This model is similar to CDSSM [Shen et al., 2014] without the word transfor-
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Fig. 4.1. Representation-based Convolutional Model

mation to letter-trigram. In this model, the query terms and document terms are combined

into more abstract representations through 1D convolutions [Zhou et al., 2015].

Let q and d denote the query and document respectively. In this model, q and d are

represented by a sequence of word embeddings q = [tq
1, tq

2, ..., tq
n] and d = [td

1, td
2, ..., td

m],

where tq
i and td

j represent the word embedding of the ith query term and the jth document

term respectively. Then, a series of 1D convolutions are performed to combine the word

representations into more abstract representations as follows.

C
q,(1)
i = f(W q

1 ∗ [tq
i−w(1); ..; tq

i+w(1)] + bq
1) (4.3.1)

C
q,(k)
i = f(W q

k ∗ [C
q,(k−1)
i−w(k) ; ...; C

q,(k−1)
i+w(k) ] + bq

k), k = 2,...,L (4.3.2)

C
d,(1)
i = f(W d

1 ∗ [td
i−w(1); ..; td

i+w(1)] + bd
1) (4.3.3)

C
d,(k)
i = f(W d

k ∗ [C
d,(k−1)
i−w(k) ; ...; C

d,(k−1)
i+w(k) ] + bd

k), k = 2,...,L (4.3.4)

where W q
k , bq

k, W d
k , bd

k are the weight and bias for the query and document of the kth

layer respectively; t represents the input word embedding layer and C
q,(k)
i , C

d,(k)
i are the

ith convolved vectors of the kth layer; 2w(k) + 1 is the window size for the kth layer; f is a

non-linear transformation. Once the Ąnal level representations of the query Cq,(L) and the

document Cd,(L) are obtained, a cosine similarity function is applied to estimate the global

matching score SL as follows.

SL = Cos(Cq,(L), Cd,(L)) (4.3.5)

It is worth noting that similar to the existing representation-based models, in this

Representation-based Single-level Convolution Model, only the last layer of query and docu-

ment representations are employed to perform a match. However as discussed in Section 4.1,

userŠs query may be of different types, ranging from lexical queries to conceptual queries and

those in between. Therefore it is more suitable to employ multiple levels of representations

to perform matching in representation-based model.
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4.3.2. Representation-based Multi-level Matching Model

The Representation-based Multi-level Matching Model (MACM-Rep) is an extension

from the representation-based model described in the previous section, in which we will

deĄne a matching function at every level of representation. The architecture is shown in 4.2.

In this architecture, we Ąrst learn multiple layers of query and document representations
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Fig. 4.2. Representation-based Multi-level Matching Model

through 1D convolutions as the case in the Single-level Matching Model presented in previous

section. Afterwards, instead of computing the only one matching score (S2) at the last level

between query and document, we also deĄne matching scores S0, S1 at the input term level

and the intermediate level. The term level matching score S0 is expected to capture some

signals of term matching. It is possible to replace this function by a traditional matching

function such as BM25, as in [Severyn and Moschitti, 2015], but, as we explained, we want

to keep the whole architecture within the neural framework in this study. The intermediate

level matching score S1 is expected to capture some concept learned by generalizing term

representations.

Note that the architecture we use only contains three levels. It would be possible to

add more levels into it. However, more levels would mean more parameters to train and

more training data. In our case, as the amount of training data is limited, we limit our

investigation to an architecture with three levels.

The matching scores at different levels are determined as follows: For the ith level, we

construct a interaction matrix between the query and document representation vectors.

I
(0)
ij = Cos(tq

i , td
j ) (4.3.6)

I
(k)
ij = Cos(C

q,(k)
i , C

d,(k)
j ), k = 1,..,L − 1 (4.3.7)
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where Ik is the interaction matrix of the kth level. tq
i and td

j are the word embeddings of the

ith query term and the jth document term. Cq,k
i and Cd,k

j are the ith convolved vector for the

query at and the jth convolved vector for the document at layer layer k respectively.

Level-importance Score: Once the interaction matrices are produced, a series of level-

importance scores are extracted as follows: We take the top P interactions across each row

u of I(k) (P is set to 5 in this study) and average them to obtain a scalar value M (k)
u .

This M (k)
u represents the strongest interactions between the uth query representation and

the document. The idea behind is that the matching score only depends on a few matching

spots in the document instead of the entire document. We then sum up M (k)
u for every

query term/representation to obtain a matching score S(k) for the level k. The Ąnal level

matching score S(L) is estimated by the cosine similarity of the global query and document

representation. The process could be summarized as follows.

M (k)
u =

1

P

P∑

p=1

top P
v=1..m

I(k)
uv,p (4.3.8)

S(k) =
n∑

u=1

M (k)
u (4.3.9)

The intuition of designing the level-importance scores is to quantify the importance of

each level. If the score of one speciĄc layer is higher, we would pay more attention to the

matching score of this layer when aggregating the matching scores of different levels.

Aggregating Gate: Once the scores of each level are extracted, they are aggregated

through a softmax gate to produce the global matching score S as follows.

βk =
exp(αkS(k))

exp(
∑L

k=0 αkS(k))
(4.3.10)

S =
L∑

k=0

βkS(k) (4.3.11)

where αi are learnable parameters, S(k) is the matching score of the level k.

We have also tested other aggregation strategies such as direct concatenation of the

each levelŠs matching score and pass it into the last output MLP, or a weighted average of

each levelŠs matching score (without the guidance of level-importance score). They donŠt

work as well as the gated aggregation described above. The advantage of the proposed gated

aggregation is that the provided level-importance scores serve as guidance to the aggregation

process: the higher the layerŠs interaction is, the more attention we will pay to this layer.
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4.3.3. Training

For both single-level and multi-level matching models, we employ a pairwise training

scheme. The loss is deĄned in Equation 4.3.12, where S(Q,D+) and S(Q,D−) are the pre-

dicted scores for positive and negative example, Θ includes all trainable parameters of the

model.

L(Q,D+,D−; Θ) = max(0, 1 − (S(Q, D+) − S(Q,D−))) (4.3.12)

4.4. Interaction-based Multi-level Abstraction Convolu-

tion Model

Same as for the representation-based model, to compare the effectiveness of employing

multiple levels of interactions between query and document over using only the last level

of query-document interaction, we Ąrst build the Interaction-based Single-level Convolution

Model. Afterwards, we will introduce our proposed Interaction-based Multi-level Convolu-

tion Model.

4.4.1. Interaction-based Single-level Convolution Model

The interaction-based model we implement is inspired by MatchPyramid, which has sev-

eral convolution and pooling layers on top of the basic interaction matrix between document

and query terms [Pang et al., 2016a]. This architecture represents the essence of the family

of interaction-based models (although there are some quite important details in other alter-

native models). The architecture of the Interaction-based Convolutional Model is presented

in Fig 4.3.

At input, an interaction grid I is constructed, which can be done in different ways (ex-

plained below). Afterwards, several convolutional layers and max-pooling layers [Pang et al.,

2016a] are constructed to learn the underlying interaction patterns. Finally, a MLP is added

on top of the last max-pooling layer to extract a relevance score as global matching score.

There are 2 ways to build the interaction grid I: Either we build the interaction between

the global query representation and each document term representation (1D interaction) or

we build the interaction between each query term and document term (2D interaction). In

this study, both 1D and 2D interactions are explored.

In 1D interaction-based model, the interaction I reduces to a vector. We Ąrst calculate

a global query representation by taking the average of all query term embeddings as follows.

qmean =
1

n

n∑

i=1

tq
i (4.4.1)

where n is the query length, and tq
i is the embedding vector of the ith query term.
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Fig. 4.3. Intercation-based Convolutional Model

Then the interaction vector I is constructed by calculating the cosine similarity between

qmean and each document term embedding td
j as follows.

Ij = cos(qmean, td
j ) (4.4.2)

In 2D interaction-based model, the interaction I is a matrix with each entry Iij being

the cosine similarity of query term tq
i and document td

j calculated as follows.

Iij = Cos(tq
i , td

j ) (4.4.3)
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Once the interaction grid I is constructed, a series of convolutions and max-poolings are

performed as follows.

Ck
1 = f(W k

1 ∗ I + bk
1), k = 1,..,K (4.4.4)

P k
1 = max_pool(Ck

1 ), k = 1,..,K (4.4.5)

Ck
i = f(W k

i ∗ Pi−1 + bk
i ), i = 2,..,L, k = 1,..,K (4.4.6)

P k
i = max_pool(Ck

i ), i = 2,..,L, k = 1,..,K (4.4.7)

where Ck
i is the feature map k of the ith convolved layer; I is the input interaction matrix;

W k
i and bk

i are the kernel and bias of layer i for the feature map k; L is the number of

convolution layers, and K is the number of feature maps; f is a non-linear mapping; and ∗

represents the convolution operator.

In order to determine the global matching score, the last max-pooled layer is Ćattened

into a 1D vector and fed into a fully connected MLP to output a scalar score S

t = g(W hPL + bh) (4.4.8)

S = h(W sh + bs) (4.4.9)

where t and S represent the hidden layer of the MLP and the matching score respectively;

W h, bh, W s, bs are the weights and biases for the hidden and scoring layer; g and h are

non-linear mappings.

4.4.2. Interaction-based Multi-level Matching Model

Different from representation-based models, instead of learning representations for query

and document, interaction-based models focus on learning the underlying matching patterns

from the input interaction signals through several hidden layers [Pang et al., 2017, Hu et al.,

2014]. In order to investigate the effectiveness of multi-level matching in interaction-based

model, we also build an Interaction-based Mulit-level Matching Model (MACM-Inter). The

model is presented in Fig 4.4.

The convolution-pooling part (left part) of the model is identical to that described in the

previous section. What is added is a series of matching scores at every level of convolution,

as well as an aggregation layer to combine these scores into a global score. The details are

presented as follows:

Level-importance Score: For the input interaction matrix I and each convolved layer

Ci, a scalar feature M (i) will be calculated. For the input interaction matrix I, we take the

max interaction values M (0)
u across each row u, which represents the max matching intensity

across all document terms for the query term t(q)
u . Afterwards, we sum up all the M (0)

u s

for each query term t(q)
u and get the global maximum interaction value M (0) for the whole

query with respect to the document. This quantity reĆects the word-level matching between
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Fig. 4.4. Interaction-based Multi-level Matching Model

document and query. The process could be summarized as follows.

M (0)
u = max

v=1..m
Iuv, u = 1,..,n (4.4.10)

M (0) =
n∑

u=1

M (0)
u (4.4.11)
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For each feature map C
(k)
i in the convolved layer i, we proceed in the same way to obtain

a M
(i)
(k) for this speciĄc feature map k. Then we average the M

(i)
(k)s to obtain the global M (i)

for this convolution layer. The process could be summarized as follows:

M i
u,(k) = max

v=1..m
[C

(k)
i ]uv, u = 1,..,n, k = 1,..,K (4.4.12)

M
(i)
(k) =

n∑

u=1

M
(i)
u,(k), k = 1,..,K (4.4.13)

M (i) =
1

K

K∑

k=1

M
(i)
(k) (4.4.14)

The motivation of designing the M features is to try to capture the importance of each

interaction level. Intuitively, if the maximum interaction intensity at the level i is high,

we would rely more the interaction score of this level. Therefore the M features provide

evidence of importance when we assign gating weights to combine the interaction scores of

every abstraction level.

Aggregating Gates: After obtaining the level-importance score M as described above,

those values are normalized through a softmax gate as follows.

βi =
exp(αiM

(i))

exp(
∑L

j=0 αjM (j))
(4.4.15)

where αi are learnable parameters, M (i) are the M values for each convolution layer i, and

L is the total number of convolution layers.

The interaction scores Si are then weighted and concatenated as [β0S0,..,βLSL] to be fed

into a MLP aggregator to obtain an overall relevance score:

S = f(W [β0S0,..,βLSL] + b) (4.4.16)

4.4.3. Training

For both single-level and multi-level matching models, we employ a pairwise training

scheme. The loss is deĄned in Equation 4.4.17, where S(Q,D+) and S(Q,D−) are the pre-

dicted scores for positive and negative example, Θ includes all trainable parameters of the

model.

L(Q,D+,D−; Θ) = max(0, 1 − (S(Q, D+) − S(Q,D−))) (4.4.17)

4.5. Experimental Setup and Datasets

In this section, we will present the collection used in this study, evaluation metrics and

experimental settings. Those experiments aims to investigate the following research ques-

tions: (1). In a comparable setting, does interaction-based model generally outperform

representation-based model or the reverse is true? (2). Is multi-level matching beneĄcial to
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ad-hoc retrieval tasks compared with single-level matching models? If so, how could we com-

bine the matching signals from multiple levels? We will present the collection and evaluation

metrics used in this study and the experimental setups in the following subsections.

4.5.1. Collection

We employed the ClueWeb09B collection as our document collection in this study. The

details of this collection has been described in Section 3.1. As mentioned in Section 3.2, the

training of a deep IR model requires a lot of training data , and very often they are not easily

accessible at a large scale. Therefore, we follow the Weak Supervision [Dehghani et al., 2017]

framework to generate the training triples used in this study. We employ the queries 1-50 in

this collection as validation queries and 51-200 as test queries.

To generate the training triples, we employ the AOL Query Log described in Section 3.2

as our training query and BM25 model implemented in Indri1 as our weak supervisor. For

each query we retrieve the top 50 documents using BM25 model with default parameters

(k1 = 1.2,b = 0.75,k3 = 1000). Afterwards, we employ a pair-wise training scheme and

convert the retrieved documents to positive and negative training documents as follows: for

a given query, we randomly sample 2 documents and regard the one with higher BM25 score

as positive document, the other one as negative document.

4.5.2. Evaluation Metrics

In this study, we employ Mean Average Precision (MAP), Normalized Discounted Cumu-

lative Gain (NDCGs) as evaluation metrics. They are presented in detail in Section 3.3. In

particular we calculate NDCG at cut-off position 1, 3, 10, 20. The MAP is a binary metric

and aims to evaluate the general ad-hoc performance. NDCGs at different cut-off positions

simulate the real search scenario where a user would only want to browse the top-k ranked

documents.

Finally for statistical tests, we perform paired t-test (p < 0.05) of each of our proposed

model against the BM25 baseline.

4.5.3. Experimental Setup

In this subsection, we will present the detailed experimental setup of our models.

General Settings: We employ the GloVe.6B.300d pre-trained embeddings presented in Sec-

tion 3.2 to initialize the embedding layer of all our models. The dimension of each embedding

vector is 300. Since the interaction-based models mainly focus on learning the interaction

patterns whereas the representation-based models relies on learning good representations,

1https://www.lemurproject.org/indri/
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we Ąx the embeddings for interaction-based models and continue to Ąne-tune them during

training for representation-based models.

We set the max query length and document length to be n = 15, m = 1000 and apply

zero paddings as it is done in [Pang et al., 2016a]. The maximum query length limit is

enough to cover most of the queries in the training set and all the queries in the validation

and test sets (4 and 5 words respectively). For documents, the parts that exceed the limit

are cut off. Since document in this collection are very long, we omit the out-of-vocabulary

(OOV) terms in document.

As for evaluation, we employ reranking scheme during validation and test: For each

validation or test query, we Ąrst retrieve top 1000 documents by BM25 and then rerank

them by our proposed model.

Representation-based Model: For experiments on the representation-based models, we

limit the max number of convolution layers L to 3 and Ąx the hidden size to be 128. For

2-convolutional-layered model, the convolutional window sizes are set to [3, 13] for query

side (i.e. 3 for the Ąrst layer and 13 for the second layer), [3, 998] for document side, and all

strides are set to 1. For 3-convolutional-layered model, the convolutional window sizes are

set to [3,5,9] and strides are set to [1,1,1] for query side, and [3,10,198] and strides are set to

[1,5,1] for document side.

Interaction-based Model: For experiments on the 1D interaction-based model, in order

to determine best the convolution Ąlter size, we conducted preliminary tests with differ-

ent Ąlter size combinations on the validation set. For two-layered 1D interaction-based

model, we tested it with [2,4], [3,5], [4,6] and for three-layered model, we tested it with

[2,4,7], [3,5,9], [4,6,10]. The optimal Ąlter sizes are set to [3, 5] for the two layered model, and

the optimal Ąlter sizes are set to [3,5,9] for the three-layered model. The pooling size is set

to 2 for each max-pooling layer of both models. The number of feature maps is set to 128

for both models.

For experiments on the 2D interaction-based model, we limit the max number of convo-

lution layers L to be 2 due to memory limit and Ąx the number of feature maps to [32, 16]

for the 2 convolution layers. We Ąx the pooling size of all max pooling layers to be (2,2).

We also conducted preliminary tests to determine the optimal Ąlter shapes: we tested 2D

convolutional Ąlters of shape [(1,3),(2,5)],[(2,2),(4,4)],[(3,3),(5,5)],[(3,3),(5,10)] for the two

convolution layers. The optimal Ąlter shapes for the 2 convolution layers are set to (3,3) and

(5,5) according to this preliminary test.

4.6. Experimental Results

In this section, we will present the experimental results of our proposed models.
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4.6.1. Single-level Representation- vs Interaction-based Models

First of all, one of our research question is to investigate whether an interaction-based

model generally outperforms a representation-based model when trained and evaluated on

the same training and testing set.

We Ąrst present the experimental results of Single-level representation- and interaction-

based model presented in Section 4.3.1 and 4.4.1. They follow the idea of existing models

in literature which only employ the last layer query and document representations or query-

document interactions to produce a matching score.

The experimental results on the test set are presented in Table 4.1, where Rep-2L, Rep-

3L represent the single-level representation-based models with 2 and 3 convolution layers

respectively. Inter-1D-2L, Inter-1D-3L and Inter-2D-2L represent single-level 1D interac-

tion models with 2 and 3 convolution layers and single-level 2D interaction model with 2

convolution layers respectively.

During training, for each model, we monitor its performance of MAP on the held-out

validation set and only select the best model based on validation performance. This selected

best model is then evaluated on the test set.

Table 4.1. Results of Representation-based and Interaction-based Models on Test Set1

Model MAP NDCG@1 NDCG@3 NDCG@10 NDCG@20

BM25 0.0879 0.1178 0.1359 0.1356 0.1394

Rep-2L 0.0121 0.0019∗ 0.0024 0.0042 0.0053

Rep-3L 0.0145∗ 0.0158∗ 0.0143∗ 0.0143∗ 0.0149∗

Inter-1D-2L 0.0663∗ 0.0927 0.0846∗ 0.0912∗ 0.0967∗

Inter-1D-3L 0.0632∗ 0.0662∗ 0.0922∗ 0.0904∗ 0.0957∗

Inter-2D-2L 0.0884 0.1485* 0.1423 0.1411 0.1389

From Table 4.1, we observe that representation-based models donŠt perform well. One

possible reason is that it is difficult to learn good global representation of the document which

is often very long. Since the model employs only the Ąnal level representations to estimate

relevance, the performance will be inĆuenced by the quality of the global representations.

Intuitively, it is very difficult, even impossible, to represent every aspect of a long document

in a single dense vector, and that the vector should be appropriate to match with any related

query. This may be too much to ask. The poor effectiveness of representation-based models

has been observed in several previous studies [Guo et al., 2016, Pang et al., 2016a]. Our

observation is consistent.

1* means statistically signiĄcant difference with BM25
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We also observe that the Inter-2D-2L model could get competitive result with the BM25

model with the help of weak supervised data. The sharp contrast between interaction-based

and representation-based models suggests that the former can better capture useful matching

signals than the latter. In contrast to a global representation for a document, the interaction-

based models try to determine local matching signals between document and query. Local

matching signals are known to be important in IR - in fact, all the traditional models are

built on similar local matching signals. This also correspond to our understanding of the

general search tasks: a document is relevant often because parts of its content are relevant.

The local matching signals reĆect this very principle. This observation has also been made

in some previous studies such as [Guo et al., 2016].

It could be possible that the difference between the Inter-2D model and the Rep models

is due to the use of 1D and 2D convolutions. To better understand this aspect, we compare

Inter-1D with Rep models, which all use 1D convolution. In Fig. 3, we can see that Inter-1D

models (with 1 or 2 layers) clearly outperform representation-based models. This observation

shows that the main difference is due to the learning object - representation or interaction

pattern. However, we also observe that Inter-1D models have lower effectiveness than Inter-

2D model. This shows that the use of 2D convolution on the basis of term interactions may

capture better matching signals than the 1D convolution based on the interactions between

the whole query and each document term. The granularity of the interactions matters.

4.6.2. Multi-level Representation- vs Interaction-based Models

The experimental results of multi-level matching models evaluated on the test set are

presented in Table 4.2, where Rep_xL_Sy represents the representation-based model with

x convolutional layers, and Sy scores involving in matching. For instance, S0+S1 means

aggregating S0 and S1 scores. Inter − Sx is the interaction-based model with matching

score Sx of level x participating in matching. During training, for each model, we monitor

its performance of MAP on the held-out validation set and only select the best model based

on validation performance. This selected best model is then evaluated on the test set.

From Table 4.2, we can observe that for both representation- and interaction-based mod-

els, the ones employing multi-level matching scores outperform the ones employing only the

last level matching score. This result indicates that multi-level matching signals are impor-

tant to ad hoc tasks. It is also worth noting that with multi-level matching mechanism,

the interaction-based model continues to perform better than representation-based models.

This result is consistent with the models with single-level matching presented in Table 4.1,

and further conĄrms that it is preferable to employ interaction-based model in ad hoc search
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Table 4.2. Results of Multi-level Matching Models on Test Set1

Model MAP NDCG@1 NDCG@3 NDCG@10 NDCG@20

BM25 0.0879 0.1178 0.1359 0.1356 0.1394

Rep_0L_S0 0.0614∗ 0.0862 0.0861∗ 0.0936∗ 0.0953∗

Rep_1L_S0+S1 0.0401∗ 0.0857 0.0697∗ 0.0690∗ 0.0709∗

Rep_2L_S2 0.0121 0.0019∗ 0.0024 0.0042 0.0053
Rep_2L_S0+S1+S2 0.0503 0.0899∗ 0.0882 0.0875 0.0857

Rep_3L_S3 0.0145∗ 0.0158∗ 0.0143∗ 0.0143∗ 0.0149∗

Rep_3L_S0+S1+S2 0.0386∗ 0.0452∗ 0.0609∗ 0.0658∗ 0.0660∗

Rep_3L_S0+S1+S2+S3 0.0686∗ 0.0837∗ 0.0971∗ 0.1080∗ 0.1092∗

Inter-S0 0.0546∗ 0.1218 0.1020∗ 0.0991∗ 0.0938∗

Inter-S1 0.0789∗ 0.1218 0.1254 0.1283 0.1272∗

Inter-S2 0.0884 0.1485∗ 0.1423 0.1411 0.1389
Inter-S0+S1+S2 0.0928 0.1610∗ 0.1483 0.1431 0.1424

tasks. In fact, the interaction-based model with multi-level matching Inter − S0 + S1 + S2

can even outperform the BM25 baseline.

4.7. Discussions and Analysis

In this section, in order to better understand the advantage of multi-level matching over

single-level matching, we will discuss the experiment results, give some case studies based on

some typical queries in the test collection and give the complexity analysis of our proposed

Multi-level Abstraction Convolution Model.

4.7.1. Learning Curves

Single-level Matching Models: To better understand whether interaction-based models

generally outperform representation-based models on the same settings, we present the learn-

ing curves of single-level representation- and interaction-based models mentioned in Section

4.3 and 4.4 in Fig. 4.5.

All the curves measure the performance of MAP of different models on the validation

set and were logged periodically during training. We only retain the best model based on

validation performance and employ it to evaluate its test performance on test data. The

dark blue line marks the MAP of BM25 baseline which doesnŠt need learning and therefore

is a straight line. This sets a reference for us to understand how the deep IR model performs

compared with BM25. The green curve represents the 2D interaction-based model with

2 convolutional layers (Inter-2D-2L). The yellow curve and light blue curve represent the

1* means statistically signiĄcant difference with BM25
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Fig. 4.5. Single-level Models Learning Curve on Validation Set

1D interaction-based models with 2 and 3 convolutional layers respectively (Inter-1D-2L,

Inter-1D-3L). The orange and gray curve represent representation-based models with 2 and

3 convolutional layers respectively (Rep-2L, Rep-3L).

From Fig 4.5, we can observe that for the Inter-2D-2L, at the beginning of the training,

the model performance is lower than the MAP of BM25 model. As training goes on, the

performance would increase and approach the MAP of BM25. This observation conĄrms

the effectiveness of weak supervision. For 1D interaction models (Inter-1D-2L and Inter-

1D-3L), the performance also Ąrst increases at the start of the training and then stagnates,

however, the performance at convergence is not as good as 2D interaction-based models.

This indicates that using term-to-term, 2D query-document interaction matrix as input is

better than compressing the query terms into one vector and match with every document

term.

We also observe that for the representation-based models (Rep-2L and Rep-3L), the

performance could not catch up with BM25, showing that learning representation is more

difficult than learning interaction patterns.

Multi-level Matching Models: To compare the multi-level matching representation-based

model with interaction-based models, we also plot the learning curve of multi-matching

representation- and interaction-based models in Fig 4.6.

Same as Fig. 4.5, all the curves measure the performance of MAP of different models on

the validation set and were logged periodically during training. The dark blue line marks
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Fig. 4.6. Multi-level Models Learning Curve on Validation Set

the MAP of BM25 baseline. The yellow curve represents the performance of interaction-

based multi-level matching model with 2 convolutional layers (Inter-S0+S1+S2). The orange

and gray curve represent representation-based multi-level matching models with 2 and 3

convolutional layers respectively (Rep_2L_S0+S1+S2 and Rep_3L+S0+S1+S2+S3).

From Fig 4.6, we can observe that in the case of multi-level matching, interaction-based

model still outperforms representation-based model, which indicates the difficulty of training

good representations in representation-based models, even when multiple matchings are al-

lowed. In fact, although multiple matching scores allow us to match a query and a document

at different levels of abstraction, they are still based on global representations of the docu-

ment. These latter continue to have difficulties to capture the important matching elements

for different speciĄc queries.

For the interaction-based multi-level matching model (Inter-S0+S1+S2) we can observe

that the validation performance at the beginning of training was below that of BM25, then

as training goes on, the validation performance increases and at some point surpass that of
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BM25. This indicates that with the help of matching scores from multiple layers, the model

could outperform a traditional model under weak supervision.

4.7.2. Case Studies

To better understand the usefulness of multi-level matching in representation-based mod-

els, we compare the representation-based multi-matching model with some base models on

some representative queries in Table 4.3, where Rep-3L-MultiMatch is the model with match-

ing scores of every level (S0 + S1 + S2 + S3).

Table 4.3. NDCG@10 of Representative Queries for Rep Models

Topic_num Query Rep-3L_S0 Rep-3L_S3 Rep-3L-MultiMatch

62 Texas border patrol 0.0496 0.0092 0.0585
73 Neil Young 0.0600 0.0221 0.0882
130 fact on Uranus 0.2976 0.0948 0.5320

57 ct jobs 0.0112 0.0226 0.1121
61 worm 0.0104 0.1463 0.1976
77 bobcat 0.0114 0.0406 0.1862

From Table 4.3 we can observe that for lexical queries that ask for exact or near-exact

match, such as ŞNeil YoungŤ (a musician), Şfact on UranusŤ and ŞTexas border patrolŤ,

the model with only term-level S0 matching outperforms the model with only high level

score S3. The latter may expand too much the semantic of the query therefore results in

poor performance. For example, some of the documents retrieved by Multi-Match-3L_S3

for the query ŞNeil YoungŤ contain other people named Neil which are irrelevant to this

query. Similarly for the query ŞTexas border patrolŤ, there are documents retrieved by

Multi-Match-3L_S3 which contain border patrol of other states than Texas. For the query

Şfact on UranusŤ, the model Multi-Match-3L_S3 also retrieves some documents that contain

Mars which are not relevant to Uranus.

However, for queries requiring a conceptual match, such as Şct jobsŤ, ŞwormŤ and Şbob-

catŤ, the model with high level score S3 outperforms the model with low-level score S0,

since it can learn high level concept representations and perform matching at this level. For

example, among the retrieved documents for the query ŞbobcatŤ, there are desired docu-

ments containing information about bobcat company and bobcat brand tractors. In this

case the query has been correctly generalized at conceptual level. For the query ŞwormŤ,

among the retrieved documents, there are desired documents containing the wormŠs living

habits in nature and also desired documents about computer worm virus. For the query Şct

jobsŤ, by performing some generalization, the model retrieved desired documents about how

to Ąnd jobs in Connecticut and those containing the unemployment rate of Connecticut.
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We also notice that on the third column, by combining the matching scores of every level,

the Multi-Match-Rep model could outperform both the model with S0 and S3 scores, which

demonstrates the power of multi-level matching.

We also analyze some representative queries for interaction-based models and compare

the performance of the interaction-based multi-level matching model with some base models

in Table 4.4.

Table 4.4. NDCG@10 of Representative Queries for Inter Models

Topic_num Query Inter-S0 Inter-S2 Inter-MultiMatch

54 President of the United States 0.1370 0.0367 0.1429
62 Texas border patrol 0.2469 0.1832 0.2577
153 Pocono 0.0609 0.0595 0.0658

96 rice 0.5435 0.6898 0.6970
145 vines for shade 0.2225 0.3333 0.4201
155 last supper painting 0.2240 0.3479 0.3938

For queries which ask for an exact or near-exact match, such as ŞPresident of the United

StatesŤ, ŞTexas border patrolŤ and ŞPoconoŤ (a mountain), the model with only term-

level S0 matching outperforms the model with high-level score S2. The latter model may

expand too much the semantic of the query, which performs poorly. For example among

the documents retrieved for the query ŞPresident of the United StatesŤ by Inter − S2, a

number of documents are about presidents of other countries than the United States which

are irrelevant to this query. For the query ŞTexas border patrolŤ, there are also documents

retrieved by Inter − S2 which contains the name of other states which are irrelevant. For

the query ŞPoconoŤ, some documents retrieved by Inter − S2 contains the name of other

places which are also irrelevant to this query. These are examples of over generalization.

For conceptual queries such as ŞriceŤ, Şvines for shadeŤ andŞlast supper paintingŤ, the

model with high-level score S2 outperforms the model with only term-level score S0, since it

captures the high-level interactions required for these queries. For example, the documents

retrieved for Şlast supper paintingŤ by Inter − S2 include the desired documents about

Şdescription of the last supper paintingŤ, ŞsigniĄcance of last supper painting in CatholicismŤ.

For the query ŞriceŤ, the model Inter −S2 retrieved desired documents about recipes of rice

and the nutrition values of rice. In these cases, the query has been correctly generalized at

conceptual level.

We also observe in the third column that in both above cases, by dynamically combining

the matching scores of the 3 levels of abstraction by a gating mechanism, our Multi-Match-

Inter model can outperform each of the single-level base models. These examples show the

ability of our model to use the appropriate level(s) of matching depending on the query.
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4.7.3. Complexity Analysis

In this subsection, we mainly discusses the time complexity of our proposed multi-level

convolutional matching models. Both our representation- and interaction-based multi-level

matching models are based on Convolution Operations. According to [Vaswani et al., 2017],

one 1D convolution layer will cost O(k∗n∗d) multiplications in inference/test mode or equal

amount of gradient operations in training mode, where k is the dimension of the convolved

layer vectors, d is the dimension of the input layer vectors, and n is the sequence length

(number of terms). According to [He and Sun, 2015], one 2D convolution layer will cost

O(nin ∗ s2
f ∗ nout ∗ mh ∗ mw) operations, where nin is the number of input channels, sf is the

length of Ąlters (in our setting itŠs squared shape, so is the s2
f ), nout is the number of output

features maps, and mh, mw are the height and width of output feature map.

For the representation-based multi-level abstraction convolution model proposed in Sec-

tion 4.3.2, suppose that the maximum query and document length are n and m respectively,

the input embedding dimension is d, the hidden size is h, and in our setting h < d, then

for each 1D convolutional layer, to obtain the level-importance score, we need to build local

interactions between query and document representations, which is at most of size n ∗ m.

We also need to perform one layer of 1D convolution for both query and document, which

will cost at most (n + m) ∗ h ∗ d. Therefore for one layer, it will cost (n + m) ∗ h ∗ d + n ∗ m

operations. For L layers, the total complexity will be O(L((n + m)hd + nm)). If the hyper-

parameters of the network is Ąxed (i.e. L, h, d are Ąxed), then the dominant term will be

the n ∗ m and the complexity is bi-linear with respect to query and document length n and

m.

For the interaction-based multi-level abstraction convolution model proposed in Section

4.4.2, suppose that the maximum query and document length are n and m respectively, the

hidden size is h, for each convolutional layer, there will be no more than k feature maps and

the max Ąlter sizes are sf ∗ sf , then for each 2D convolutional layer, it will cost at most

k2 ∗ s2
f ∗ n ∗ m. At each layer i, to obtain the level speciĄc score Si, there will be a MLP layer

and Ąnal score outputting process which will involve two matrix-vector multiplications, the

complexity is n ∗ m ∗ h + h ∗ 1. So for one layer, it will cost at most (k2 ∗ s2
f + h) ∗ n ∗ m + h.

With L layers and the Ąnal aggregating MLP, the total complexity of the model will be

O(L ∗ ((k2 ∗ s2
f + h) ∗ n ∗ m + h + 1)). If the hyper-parameters of the network are Ąxed (i.e.

L, sf , k, h are Ąxed), then the dominant term will be n ∗ m which is bi-linear with respect

to the query and document length n and m.

In practical applications, the total time complexity of a retrieval model could be de-

composed into two parts: the offline complexity which represents the cost of indexing all

documents in the collection in an offline manner and the online complexity which reĆects

the cost to encode the query and perform retrieval. Representation-based models generally
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have low online complexity, since most of the document representation could be learned

offline during indexing stages, and the online matching process between query and docu-

ment representations usually involves simple matching functions such as cosine similarity or

dot product. Therefore they are more efficient in serving userŠs query in a timely fashion.

Interaction-based models need to perform complex interactions between query and document

early in the lower layers of the retrieval model, and this interaction could only be performed

after the query has been known, therefore they usually have higher online complexity but

offers better retrieval performance.

4.8. Conclusion

Previously, many neural models have been proposed to perform IR tasks. Depending on

how the relevance between query and document is calculated, those models could roughly

be categorized into representation-based and interaction-based models. Although they have

demonstrated their potentials, they have been trained and evaluated on different datasets,

which makes it difficult to compare their performance on a fair basis. In this work, we

build convolutional models on both schemas, train them and evalutate their performance on

the same training and testing collection. Our Ąrst goal is to compare the two approaches

as fairly as possible. The experimental results clearly show that interaction-based models

always outperform representation-based models. The promising performance of interaction-

based model is partly attributed to their capacity to learn the local interaction patterns

rather than learning global representations in representation-based model.

Moreover, to achieve query-dependent matching, we integrate multi-level matching mech-

anism into both representation- and interaction-based models and evaluate their perfor-

mance. The experimental results show that in both schemas, multi-level matching models

could outperform models with single-level matching. This result shows the usefulness to

design models that can cope with low-level lexical matching as well as high-level semantic

matching. In addition, we observe that with multi-level matching mechanism, representation-

based model still performs worse than interaction-based model, which further conĄrms that

it is preferable to employ interaction-based models for ad hoc search.
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Chapter 5

Cross-level Matching Model

Article Details:
Yifan Nie, Jian-Yun Nie: Cross-Level Matching Model for Information Retrieval. AIRS

2019: 106-117 (Best paper award)

Context:
At the time of writing this article, many neural retrieval models have been proposed

and shown competitive results. In particular, interaction-based models have shown superior

performance to traditional models in a number of studies [Guo et al., 2016, Fan et al., 2018].

However, the interactions used as the basic matching signals are between single terms or

their embeddings. For instance, in MatchPyramid [Pang et al., 2016a], the basic matching

components are term embeddings, and this model employs 2D convolutions to analyze the

term-to-term interaction matrix. In DRMM [Guo et al., 2016], the basic matching compo-

nents are also term embeddings. This model Ąrst calculates cosine similarity between each

query term embedding with all document term embeddings and then convert the similarities

into histogram.

In reality, a term can often match a phrase or even longer segment of text. Sometimes

the longer segment of text doesnŠt even contain exact matched term, but the whole segment

could represent a certain concept which could be matched with a single term. In theses cases,

in addition to term-to-term local interactions, it is also helpful to add additional matching

signals between term and phrase to help the model to cope with the need of term-phrase

matching.

Contributions:
To adapt to this reality, in this section, we propose a Cross-Level Matching Model which

enhances the basic matching signals by allowing terms to match hidden representation states

within a sentence. A gating mechanism aggregates the learned matching patterns of different

matching channels (both term-term and term-phrase) and outputs a global matching score by

deciding the importance of each matching channel. Our model provides a simple and effective



way to incorporate both term-to-term and term-phrase matching. Our paper won the best

paper award of the Asian Information Retrieval Society 2019 Conference (AIRS2019).

5.1. Introduction

Recently many neural models for information retrieval have been proposed and demon-

strated their effectiveness [Huang et al., 2013, Shen et al., 2014, Guo et al., 2016, Pang et al.,

2016a]. Generally, a neural retrieval model learns either the representations of query and

document or the interactions between them through a series of neural layers [Guo et al.,

2016, Dehghani et al., 2017]. Those neural layers such as RNN or 1D-convolutions aggregate

low-level representations/interactions to produce higher level features [Melamud et al., 2016,

Shen et al., 2014]. Afterwards, a matching function is applied on the representations or

interaction patterns to produce a matching score.

It has been found [Guo et al., 2016] that interaction-based neural models usually perform

better than representation-based models, as we also showed in the previous chapter, because

the former can capture more precise matching signals between components (words) in the

document and the query. However, in existing interaction-based models, the basic interaction

signals from which patterns are extracted are matchings between single words. This may

limit the ability of the models to match different, but semantically similar elements. For

example, in MatchPyramid [Pang et al., 2016a] and ARC-II [Hu et al., 2014], the basic

matching components are term embeddings. These models Ąrst build term-to-term local

interactions and then analyze the patterns through 2D convolutions. In DRMM [Guo et al.,

2016], the basic matching components are also term embeddings. This model Ąrst calculates

cosine similarity between each query term embedding with all document term embeddings

and then converts the similarities into histogram. Finally, several dense layers are employed

to analyze the interaction pattern.

However, in reality, a term could often match a phrase or even a longer segment of

text, and very often in the segment there could be no exact match of the term but words

grouped together, expressing the similar concept. Therefore there does exist the need of

term-phrase matching. For instance, for the query ŞwhatŠs the standard barrel length for

an ARŤ, it is helpful to match the query phrase Şstandard barrel lengthŤ with the terms

ŞAK47Ť, ŞCarbineŤ in relevant documents, since they are all related to guns. For the query

ŞwhatŠs the nickname for NevadaŤ, it is also helpful to match the query term ŞNevadaŤ to the

document phrase ŞSilver StateŤ, because they both refer to the State of Nevada, although the

phrase ŞSilver StateŤ doesnŠt contain the exact term ŞNevadaŤ at all. Similarly, for the query

Şstainless steelŤ, it is also beneĄcial to generalize those terms and match with the phrase

Şcorrosion resistanceŤ since it is one of the properties of stainless steel, although thereŠs no

exact match between them.

86



Although previous interaction-based models have demonstrated their potentials, they

primarily rely on the matching at term level to generate the interaction patterns. Since the

neural layers aggregate low-level terms into higher level representations, it is possible to map

the terms inside a phrase into hidden representations and match them with terms, thereby

providing additional matching signals to interaction-based models.

Inspired by the above observations, for a neural retrieval model, instead of matching

the query and document at term level, a better strategy is to produce the matching signals

between the query and document at every layer and across layers. The matching between the

term layers will provide valuable information about exact term matches and the matching

of synonyms. The cross-matching between the term layer and higher-level layer will provide

signals for the matching between term and phrase or segment of larger granularity. Finally

the matching between the higher-level layers will generate matching patterns on phrase level

or between segments of larger granularity.

To achieve this, in this study, we propose a Cross-level Matching Model for Information

Retrieval (CLMM). Our contributions are two-fold: (1) We perform matching between query

and document at every representation layer and across layers to produce different matching

patterns. (2) We employ a gating mechanism to dynamically aggregate the matching patterns

learned by each matching channel to produce a global matching score, thereby paying more

attention to more important matching channels. Our experiments on public datasets conĄrm

the effectiveness of cross-level matching over single level matching.

5.2. Related Work

Previously many neural IR models have been proposed. Typically, they either rely on

learning the representations of query and document separately and then matching the learned

query and document representation [Huang et al., 2013, Shen et al., 2014] or building inter-

actions between query and document at an early stage [Guo et al., 2016, Hu et al., 2014, Wu

et al., 2017]. The details of these work has been presented in Section 4.2.1.

However, the basic features of query and document employed in the above work are

usually the embeddings of single terms. A crucial problem in natural language is that the

meaning of a term can often be expressed by a phrase or more complex construct. The

basic term-level interactions may miss important matching signals between document and

query. Therefore, in this study, we explore the usefulness of matching terms against hidden

representations generated within a phrase.

The MACM [Nie et al., 2018] presented in Chapter 4 also considers multiple levels of

interaction. In this chapter, we extends it in several aspects: First, for the interaction-based

MACM, there is only one matching channel between query and document terms. In this work,

Instead of only employing term embeddings, we learn different layers of representations for
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the query and document and match the representations (not only term embeddings but also

phrase representations) at different levels. Second, we match the query and document not

only at the same level (i.e. (hq,(i), hd,(i))), but also across layers (i.e. (hq,(i), hd,(j)), i ̸= j).

Third, instead of obtaining only a scalar score at each level, we produce a vector representing

the matching pattern of each matching channel (hq,(i), hd,(j)) which is expected to be more

informative than the scalar value.

The C-KNRM model [Dai et al., 2018] also considers the matching between term and

phrase. In this model, the query and document terms are Ąrst aggregated into phrase

representations by 1D convolutions. Afterwords it performs matching on term-term, phrase-

phrase, term-phrase and phrase-term levels between query and documents through interac-

tion matrices. Finally the aforementioned interaction matrices are kernel-pooled and aggre-

gated through a MLP to output a global matching score. Our model is also different from

C-KNRM in several aspects: First, instead of kernel pooling, we employ 2D convolutions

to analyze the matching patterns of each matching channel. Second, instead of concate-

nating the learned patterns from each matching channel, we employ a gating mechanism to

attentively combine them, thereby paying more attention to important matching channels

dynamically.

Recently, with the success of pretrained language models, neural retrieval architectures

based on such pretrained language models have also been proposed. In particular, TwinBERT

[Lu et al., 2020b] employs BERT [Devlin et al., 2019] as representation learning module to

learn the representations of query and document and regards the [CLS] token of query and

document as global representations. Afterwards a dot product is applied between query and

document global representation to produce a matching score. Although this model demon-

strated its potential, it only involves the last layer of BERT representation in the matching

process. As mentioned above, the lower layers may also play a role in identifying relevant

parts for certain language entities. Therefore it may also be helpful to involve matchings

across different BERT layers to serve the need of matching different language entities between

query and document. We will demonstrate in our experiments that employing cross-level

matching in BERT brings beneĄts to the retrieval effectiveness.

5.3. Cross-level Matching Model

The architecture of our proposed Cross-level Matching Model is illustrated in Fig. 5.1.

The model could be roughly divided into 3 parts: representation learning module, cross-level

matching channels and gated aggregation module. The representation learning module is re-

sponsible of aggregating representations from Ąne-grained elements (such as terms) to coarse-

grained elements (such as phrases). The cross-level matching channels aims to match be-

tween different representation elements, such as term-term, term-phrase, and phrase-phrase
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and analyze the underlying interaction patterns between them. Finally the gated aggregation

module will attentively combine the matching patterns across different matching channels.

The details of the components will be presented as follows.
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Fig. 5.1. Cross-level Matching Model

5.3.1. Representation Learning module

Given a query q and a document d, we Ąrst extract their term embeddings through an

embedding lookup matrix and represent them as q = [tq
1, tq

2,...,t
q
n], d = [td

1, td
2,...,td

m], where tq
i ,
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td
j are the term embeddings for the ith query term and the jth document term. Once the term

embeddings are extracted, we learn L layers of representations for the query and document

by either Bi-LSTM or 1D-convolutions. For the BiLSTM encoder:

h
q,(1)
i = BiLSTM(tq

i , h
q,(1)
i−1 , h

q,(1)
i+1 ) (5.3.1)

h
q,(l)
i = BiLSTM(h

q,(l−1)
i , h

q,(l)
i−1 , h

q,(l)
i+1 ), l = 2..L (5.3.2)

h
d,(1)
i = BiLSTM(td

i , h
d,(1)
i−1 , h

d,(1)
i+1 ) (5.3.3)

h
d,(l)
i = BiLSTM(h

d,(l−1)
i , h

d,(l)
i−1 , h

d,(l)
i+1 ), l = 2..L (5.3.4)

where h
q,(l)
i and h

d,(l)
i represent the hidden state of the ith query and document term at layer

l. For the Conv1D encoder:

h
q,(1)
i = f(W q

1 ∗ [tq
i−w(1); ..; tq

i+w(1)] + bq
1) (5.3.5)

h
q,(l)
i = f(W q

l ∗ [h
q,(l−1)
i−w(l) ; ...; h

q,(l−1)
i+w(l) ] + bq

l ), l = 2,...,L (5.3.6)

h
d,(1)
i = f(W d

1 ∗ [td
i−w(1); ..; td

i+w(1)] + bd
1) (5.3.7)

h
d,(l)
i = f(W d

l ∗ [h
d,(l−1)
i−w(l) ; ...; h

d,(l−1)
i+w(l) ] + bd

l ), l = 2,...,L (5.3.8)

where h
q,(l)
i and h

d,(l)
i represent the hidden representations of the ith query and document

term at layer l. 2w(l) + 1 is the Conv1D window size at layer l. f is the tanh activation

function.

The above hidden representations can also be learned from more sophisticated represen-

tation learning modules such as transformers [Vaswani et al., 2017] or pretrained language

model such as BERT [Devlin et al., 2019]. Pretrained language models are shown to be

powerful to aggregate contextual information into higher-layer representations through self-

attention mechanism, thereby further improving performance in many NLP tasks [Qu et al.,

2019, Yates et al., 2021]. To take advantage of the power of the pretrained language models

and demonstrate the Ćexibility of our proposed framework, we also employed the pretrained

BERT [Devlin et al., 2019] as an alternative representation learning module.

Similarly to the Bi-LSTM or 1D Convolution representation learning modules, we also

Ąrst learn a series of representation layers by BERT encoder for each query and document

term.

hq,(1) = BERT (tq) (5.3.9)

hq,(l) = BERT (hq,(l−1)), l = 2,...,L (5.3.10)

hd,(1) = BERT (td) (5.3.11)

hd,(l) = BERT (hd,(l−1)), l = 2,...,L (5.3.12)
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where tq and td represent sequence of embeddings for the query and document, hq,(l) and hd,(l)

represents the lth layer of query and document hidden representations learned by BERT, and

BERT represents the BERT module.

5.3.2. Cross-level Matching Channels

Once the representations of each layer for the query [hq,(0),..,hq,(L)] and the document

[hd,(0),..,hd,(L)] are learned, we perform cross-level matching for each of the combinations

of the abstraction layers between query and document by calculating a cosine interaction

matrix. As an example, Fig. 5.1 only illustrates the case with Layer 0 (embedding layer)

and Layer 1, with in total 4 cross matching channels. The process could be summarized as

follows, where I l,m represents the interaction matrix for the lth and mth representation layer

of the query and the document.

I l,m
ij = Cos(h

q,(l)
i , h

d,(m)
j ), l = 0,..,L, m = 0,..,L (5.3.13)

Once the interaction matrices are built, the interaction patterns are learned through a se-

ries of 2D-convolutions. Finally the interaction patterns of the last max-pooled layers are

Ćattened into vectors Ql,m as in [Pang et al., 2016b] and compressed into reduced dimension

pattern vectors P l,m by MLP. The process could be summarized as follows, where Ck,(l,m)

and Mk,(l,m) are the kth feature maps of the convolved and maxpooled layer for the matching

channel (l,m). Wl,m and bl,m are the weight and bias for the dimension reduction MLP.

C
k,(l,m)
1 = Conv2D(I l,m) (5.3.14)

M
k,(l,m)
1 = Maxpool(C

k,(l,m)
1 ) (5.3.15)

C
k,(l,m)
2 = Conv2D(M

k,(l,m)
1 ) (5.3.16)

M
k,(l,m)
2 = Maxpool(C

k,(l,m)
2 ) (5.3.17)

Ql,m = Flatten(M l,m
2 ) (5.3.18)

P l,m = f(Wl,mQl,m + bl,m) (5.3.19)

5.3.3. Gated Aggregation

To aggregate the matching patterns P l,m learned from each matching channel, a better

strategy is to attentively combine them rather than concatenating them together, since

for each query-document pair, some matching channels might be more important than the

others.

In order to achieve attentive combination of the matching patterns of all matching chan-

nels, akin to [Nie et al., 2018] (Chapter 4), we calculate a channel-importance score M l,m

for each of the matching channels (l,m) from their interaction matrices I l,m. We Ąrst take

91



the maximum value M l,m
i of each row i of the interaction matrix I l,m, which represents the

strongest interaction between the ith query term / hidden representation and all document

terms / hidden representations. Afterwards, we take the average of all these M l,m
i values

across the rows to obtain the global maximum interaction of the whole query with respect

to the entire document. The process could be summarized as follows.

M l,m
i = max

j=1..v
I l,m

ij (5.3.20)

M l,m =
1

u

∑

i=1..u

M l,m
i (5.3.21)

where u, v are the number of rows and columns for the interaction matrix I l,m of the matching

channel (l,m). Intuitively, the higher the value M l,m is, the more we will rely on this matching

channel.

Once the channel-importance scores M l,m are produced, we feed them into a softmax

gate to get normalized weight for each matching channel.

αl,m =
exp(βl,mM l,m)

∑

r,s exp(βr,sM r,s)
(5.3.22)

where βl,m are learnable scalar parameters, and M l,m are the channel-importance scores

for each matching channel. Finally the matching patterns P l,m learned by each matching

channel are attentively aggregated with the channel-speciĄc weights αl,m to produce a global

pattern vector Ps.

Previous studies have also found that non-neural ranking features are useful in certain

cases [Severyn and Moschitti, 2015]. Therefore, our model also provides the Ćexibility to

incorporate arbitrary non-neural ranking features Pfeats into the global pattern vector Ps

by concatenating the learned neural matching pattern Ps with Pfeats to form new hybrid

matching pattern Pg.

This hybrid matching pattern Pg is then fed into a scoring MLP to produce a global

matching score S. The whole process could be summarized as follows:

Ps =
∑

(l,m)

αl,mP l,m (5.3.23)

Pg = Concat([Ps; Pfeats]) (5.3.24)

S = f(WgPg + bg) (5.3.25)

where Concat([; ]) is the concatenation operator.

The training is done with a pair-wise loss: given a training example (Q,D+,D−), we hope

that the score S(Q, D+) should be higher than the score S(Q,D−). The loss is deĄned in

Equation 5.3.26, where Θ includes all trainable parameters of the CLMM Model:

L(Q,D+,D−; Θ) = max(0, 1 − (S(Q, D+) − S(Q,D−))) (5.3.26)
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5.3.4. Alternative ConĄgurations

To investigate the best strategy to aggregate the learned matching patterns, we also build

several alternative combination schemas:

CLMM-concat: Once we obtain the Ćattened vector Ql,m of the last maxpooled layer

from each matching channel, we donŠt compress them into dimension-reduction MLP, but

directly concatenate them together, map it into Ps by MLP and optionally concatenate Ps

with additional non-neural features Pfeats to form Pg. Finally Pg is fed into the last scoring

layer. The whole process could be summarized as follows:

Pcat = Concat([Q0,0; Q0,1; ...Ql,m; ...QL,M ]) (5.3.27)

Ps = f(WcatPcat + bcat) (5.3.28)

Pg = Concat([Ps; Pfeats]) (5.3.29)

S = f(WgPg + bg) (5.3.30)

where Concat([; ]) represents the concatenation operation, f is the activation function,

Wcat, bcat, Wg, bg are the weights and biases for the MLP and scoring layer.

In this conĄguration, the matching patterns of all matching channels are mixed together.

The combination of learned cross-level matching patterns can be done implicitly. This al-

ternative method is more similar to [Dai et al., 2018]. Compared to the model we propose,

the concatenated pattern may be less structured. In reality, the importance of the matching

patterns between each cross-matching channel may not be equal. As we stated earlier, for

some queries, the matching on term level may be more important while for others, the match-

ing on higher level may be more helpful for the model to judge relevance [Nie et al., 2018].

Therefore this conĄguration may not allow the model to distinguish between more important

matching channels and less important ones, which correspond to different granularity of the

matching.

CLMM-MLP: After obtaining the Ćattened vector Ql,m of the last maxpooled layer from

each matching channel, we compress them through dimension-reduction MLPs to produce

P l,m. Then, we concatenate the P l,m together and optionally with additional non-neural

features Pfeats to form Pg. Finally Pg is fed into the last scoring layer. The whole process

could be summarized as follows:

P l,m = f(Wl,mQl,m + bl,m) (5.3.31)

Pg = Concat([P 0,0; P 0,1; ...P l,m; ...P L,M ; Pfeats]) (5.3.32)

S = f(WgPg + bg) (5.3.33)

where Concat([; ]) represents the concatenation operaction, f is the activation function,

Wl,m, bl,m, Wg, bg are the weights and biases for the MLP and scoring layer.
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This conĄguration applies MLP to reduce the dimensionality of the Ćattened vectors of

the last maxpooled layers. As we can expect, the pattern vectors obtained from the output

of 2D convolutions are often very wide since they incorporate signals from many feature

maps. Feeding those wide vectors directly into an aggregation MLP may hinder the modelŠs

performance, therefore it is reasonable to Ąrst compress them. However, once the output

patterns are compressed, this conĄguration still employs a MLP to mix up the patterns

learned from all matching channels, which is similar to CLMM-Concat and may not be the

optimal strategy.

CLMM-MLP-maxpool: Same as CLMM-MLP, after obtaining the Ćattened vector Ql,m,

we Ąrst compress them through dimension-reduction MLPs to produce P l,m. Then we per-

form dimension-wise maxpooling on P l,m across all matching channels to obtain Ps. Option-

ally, we could concatenate Ps with non-neural ranking features Pfeats to form Pg and feed it

into the last scoring layer. The whole process could be summarized as follows:

P l,m = f(Wl,mQl,m + bl,m) (5.3.34)

Ps(j) = max
l,m

(P l,m)(j) (5.3.35)

Pg = Concat([Ps; Pfeats]) (5.3.36)

S = f(WgPg + bg) (5.3.37)

where Ps(j) represents the jth element of the vector Ps, Concat([; ]) represents the con-

catenation operator, Wl,m, bl,m, Wg, bg are the weights and biases for the MLP and scoring

layer.

In this conĄguration, similar to the previous approaches, we Ąrst perform dimension

reduction on the learned matching patterns by MLP. Afterwards, we perform dimension-

wise max-pooling on those reduced matching pattern vectors across all matching channels.

Compared to previous conĄgurations, this may be a better strategy, since it selects the max

interaction values across all matching channels rather than mixing them up, thus can retain

less noise. However, compared to our proposed best combining strategy (gated aggregation),

it still may not be optimal, since the max-pooling operation only retains the max interaction

signals across different matching channels while discards other lower values. The potential

problem of this approach is that the matching signals max-pooled from all channels could

be artiĄcially ampliĄed: we could obtain a very strong max-pooled matching pattern vector,

while none of the individual channels can yield a strong matching. The problem is related

to the implicit assumption that each of the dimensions of the vector represents a separate

matching signal, which may be too strong. Indeed, the matching signals are hidden in the

vector, and the dimensions in it cannot be interpreted as separable features. By producing

the max-pooled vector, we also break the integrity of the matching channels: the whole

matching vector of a channel is broken into pieces and combined with those from other
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channels. In so doing, the original matching signals encoded in a channel vector may be

lost. In contrast, our proposed gating strategy uses each of the matching channels as a

whole to determine a score. This may better preserve the integrity of each channel and the

matching score is more meaningful. In the next section, we will compare these alternative

conĄgurations in experiments.

5.4. Experimental Setup and Datasets

In this section, we will present the collection used in this study, the baselines to be

compared with our model, evaluation metrics and experimental settings. Those experiments

aims to investigate the following research questions:

(1). Does it help to add the matching signals of term-phrase layers in addition to term-

term matching signals?

(2). If so, how can we combine the different matching signals effectively?

We will present the collection and evaluation metrics used in this study and the experi-

mental setups in the following subsections.

5.4.1. Collection

We employ the MSMARCO, MQ2007, MQ2008 to conduct experiments in this chap-

ter. The details of this collection has been described in Section 3.1. The authors of the

MSMARCO collection have already prepared training triples (query, passage, label) in two

formats: large (272.2GB) and small (27.1GB). Since the large training set is too large, we

employed the small training set which contains 68,750 training queries. As for testing, since

this collection is released for a competition and doesnŠt disclose the evaluation setŠs judg-

ment, we evaluate our method and all baselines on the development set, which is randomly

split into a validation and a test set with a ratio of 1:9. Our validation set contains 698

validation queries and test set contains 6282 test queries. The MSMARCO dataset already

contains a baseline run for all validation and test queries. We follow the evaluation protocol

to rerank the given baseline run for validation and test queries.

For MQ2007 and MQ2008 datasets, we perform 5-fold cross validation according to the

fold split pre-deĄned by the author of the datasets. On average across the 5 folds, there are

1015, 338, 339 training, validation and test queries in MQ2007 and there are 470, 157, 157

training, validation and test queries in MQ2008. Since the size of MQ2007 is much smaller

than MQ2007, following [Pang et al., 2017], we also merge the training folds of MQ2007 into

MQ2008 and keep the validation and test folds of MQ2008 unchanged.

It is also worth noting that the sizes of training data of MQ2007 and MQ2008 are much

smaller than MSMARCO (1015 and 470 training qureies vs. 68,750 training queries), a huge

neural model may not be perfectly trained and we Ąnd it beneĄcial to include additional
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non-neural features such as BM25 and LM into the model. Therefore during training and

evaluation we concatenate [BM25, LM ] scores as non-neural features for those MQ datasets

as described in the previous section.

5.4.2. Baselines

In order to demonstrate the effectiveness of CLMM, we compare our CLMM with the

following baselines:

BM25 [Robertson and Zaragoza, 2009], LM [Zhai and Lafferty, 2001]: Traditional

retrieval models. The BM25 model doesnŠt involve any term embeddings or neural represen-

tations. It is based on exact matched term counts.

MatchPyramid [Pang et al., 2016a]: An interaction-based model which doesnŠt learn

hidden representations for query and document. It directly matches the query and docu-

ment term embeddings by an interaction matrix and learn the matching patterns through

2D-convolutions. This model is equivalent to CLMM with only one matching channel

(Hq,(0), Hd,(0)).

SMN [Wu et al., 2017]: SMN Ąrst learns hidden representations of query and doc-

ument through RNNs and matches the hidden states of query and document through

2D-convolutions. This model is equivalent to CLMM with only one matching channel

(Hq,(1), Hd,(1)).

DRMM [Guo et al., 2016]: DRMM Ąrst builds the interactions between query and

document terms by histograms instead of interaction matrices. Afterwards it employs several

dense layers to analyze the interaction pattern and output a matching score. It is fully based

on matchings between query and document term embeddings, no hidden representations are

learned.

MACM [Nie et al., 2018] (Chapter 4): A modiĄed version of MatchPyramid which

produces a matching score at every level of interaction. The matching scores of all layers are

aggregated dynamically through a gating mechanism to produce a global matching score.

C-KNRM [Dai et al., 2018]: C-KNRM Ąrst builds bi-gram representations on top of

query and document terms by 1D convolutions. Afterwards, the matching patterns of 4

matching channels between the uni-grams and bi-grams of query and document are learned

through kernel pooling. The learned patterns are concatenated to produce a Ąnal matching

score.

5.4.3. Evaluation Metrics

In this study, we employ Mean Average Precision (MAP), Normalized Discounted Cu-

mulative Gain (NDCGs) as evaluation metrics. They are presented in detail in Section 3.3.

In particular we calculate NDCG at cut-off position 1, 3, 10, 20. The MAP is a binary
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metric and aims to evaluate the general ad-hoc performance. The NDCGs at different cut-

off positions simulate the real search scenario where a user would only want to browse the

top-k ranked documents. Additionally, for MSMARCO dataset, we also evaluate on MRR

which measures the mean reciprocal rank position of the positive document. This metric is

appropriate for a test collection where each query only has one relevant document, which is

the case of MSMARCO.

Finally for statistical tests, we perform perform paired t-test with Bonferroni correction

[Vialatte and Cichocki, 2008] on our CLMM models with respect to BM25, LM, DRMM,

MatchPyramid, SMN, MACM and C-KNRM baselines.

5.4.4. Experimental Setup

In this subsection, we will present the detailed experiment setup of our models.

We employ pretrained GloVe.6B.300d embeddings1 for the Bi-LSTM and Conv1D en-

coders, and Ąne-tune them during training. The vocabulary size is set to 400K and the

embedding dimension is 300.

For the MSMARCO dataset, due to memory limitations, we learn 1 layer of hidden repre-

sentations for both the BiLSTM and Conv1D representation modules, and perform matching

on 4 channels, namely (Hq,(0), Hd,(0)), (Hq,(1), Hd,(1)), (Hq,(0), Hd,(1)), (Hq,(1), Hd,(0)), where

Hq,(0), Hq,(1) represent the embedding layer and Ąrst hidden layer for query and Hd,(0), Hd,(1)

represent the embedding layer and Ąrst hidden layer for document. We set the max query

and document length to be n = 20, m = 100 for this dataset. Since the MSMARCO dataset

is large, due to hardware limitations we did not run the BERT variants on MSMARCO

dataset.

For the MQ2007 and MQ2008 dataset, we also learn the aforementioned 4 matching

channels. However, since the document are very long (several thousands terms), it is more

appropriate to model the hidden representations by Conv1D and BERT rather than BiLSTM,

therefore, for those two datasets we only evaluate our proposed CLMM models with Conv1D

and BERT as representation learning modules. Moreover, to tackle the long document

problem, for the Conv1D encoder, we cut those documents into passages and match each

query with all the passages by cosine similarity as in Equation 5.3.13. We then calculate

the passage-level average interaction value by averaging all elements of each passage-level

interaction matrix and keep only the top K passages with the highest interaction values

to be fed into higher layers of the model. We conducted a preliminary study and set the

number of passages to keep K = 3. We set the max query and passage length to be n = 20

and m = 100. For the BERT conĄgurations, due to memory limitations, it is difficult to

calculate a passage-wise max interaction since that demands feeding the whole document

1https://nlp.stanford.edu/projects/glove/
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into the BERT encoder. Therefore, for each document we truncate each document to keep

its Ąrst 300 terms, which is a common approach to deal with long documents [Dai et al.,

2018]. We cross-match the BERTŠs embedding layer with its last hidden representation layer.

The hidden size for one direction of the BiLSTM is set to 128, so the bi-directional hidden

representationŠs size is 256. The hidden size for Conv1D is set to 256 and the convolutional

window size is set to 2.

We limit the max number of 2D convolution layers to 2 and Ąx the number of 2D feature

maps to [32, 16] for the 2 convolution layers. The kernel sizes for the two 2D convolutional

layers are set to (3,3) and (5,5). We apply zero padding when needed as it is done in [Pang

et al., 2016a]. We Ąx the pooling size of all max pooling layers to be (2,2), and omit OOV

document terms. All hidden sizes in the aggregation components are set to 256.

As for evaluation, for the MSMARCO dataset, since the authors of this dataset have

already provided a baseline run for the validation and test queries, we follow this protocol

and rerank the provided baseline run during validation and test. For MQ2007 and MQ2008

datasets, the author of the datasets has already split them into 5 folds, therefore we follow

this scheme and perform 5-fold cross validation. Following the practice of [Fan et al., 2018,

Pang et al., 2017], we do not rerank the validation and test instances over a baseline run,

but directly rank the validation and test query-document pairs provided in the respective

folds.

5.5. Experimental Results

In this section, we will present the experimental results of our proposed Cross-level Match-

ing Model and compare its performance with the baselines. The main experimental results

are summarized in Table 5.1, Table 5.2 and Table 5.3.

CLMM-BiLSTM represents the proposed Cross-level Matching Model with BiLSTM as

representation learning module, and CLMM-Conv represents Cross-level Matching Model

with 1D-convolutions as representation learning module. Conv(1,1) is a model to be com-

pared within the CLMM-Conv group. It employs 1 layer 1D-convolution to learn hidden

representations of query and document and match the hidden representations of query and

document through 2D-convolutions, and no direct embedding-level matching is involved in

this model.

Similarly, on MQ2007 and MQ2008, as mentioned previously, to tackle the problem of

long documents, we cut documents into passages and only retain the top K passages with the

highest average interaction values (marked with −kpass). We also found that for the MQ

datasets it is beneĄcial to include non-neural ranking features BM25 and LM. Those models

are marked with −feats in table 5.2 and 5.3. For the BERT-encoder-based models, we match

either the query and document embedding layer (models marked with −(0,0)), query and
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Table 5.1. Experimental Results on MSMARCO 1

MSMARCO MAP NDCG1 NDCG3 NDCG10 NDCG20 MRR

BM25 0.1847 0.1214 0.1959 0.2668 0.2942 0.1873

LM 0.1717 0.1095 0.1828 0.2476 0.2743 0.1739

DRMM 0.0967 0.0535 0.0955 0.1388 0.1582 0.0979

MatchPyramid 0.2053 0.1407 0.2203 0.2940 0.3221 0.2081

SMN 0.1941 0.1332 0.2096 0.2744 0.3028 0.1970

MACM 0.2091 0.1463 0.2297 0.2970 0.3236 0.2123

C-KNRM 0.1883 0.1303 0.2006 0.2657 0.2946 0.1909

CLMM-BiLSTM-MLP 0.1931* 0.1297* 0.2060* 0.2746* 0.3045* 0.1957*

CLMM-BiLSTM-concat 0.1657* 0.1046 0.1729 0.2369* 0.2658* 0.1686*

CLMM-BiLSTM-MLP-Maxpool 0.1769* 0.1191* 0.1860* 0.2493* 0.2791* 0.1801*

CLMM-BiLSTM-Gate 0.2195* 0.1571* 0.2406* 0.3080* 0.3382* 0.2223*

Conv(1,1) 0.1370 0.0867 0.1398 0.1935 0.2199 0.1391

CLMM-Conv-MLP 0.2158* 0.1500* 0.2352* 0.3060* 0.3346* 0.2186*

CLMM-Conv-concat 0.1758* 0.1176 0.1848* 0.2485* 0.2785* 0.1782*

CLMM-Conv-MLP-Maxpool 0.2156* 0.1550* 0.2355* 0.3040* 0.3320* 0.2186*

CLMM-Conv-Gate 0.2310* 0.1653* 0.2592* 0.3244* 0.3524* 0.2343*

document last layerŠs hidden representations (marked with −(12,12)) or cross match BERTŠs

embedding layer and the last layer hidden representations (CLMM-BERT-Cross-feats).

In the following subsections, by comparing the experimental results in Table 5.1, Table

5.2 and Table 5.3, we aim to answer the following research questions:

1) Is CLMM effective compared to the baselines?

From Table 5.1, we Ąrst observe that with the best aggregating strategy, CLMM-

BiLSTM-Gate and CLMM-Conv-Gate outperform all the baselines on all evaluation metrics

on MSMARCO. From Table 5.2 and Table 5.3, we also observe that the same holds true on

both MQ2007 and MQ2008 datasets: CLMM-kpass-feats-Gate outperforms all baselines on

every evaluation metric. This conĄrms the effectiveness of our proposed CLMM model. If

we employ more powerful representation learning modules such as BERT, the performance

could be further improved, as the results of CLMM-BERT-Cross-feats indicate in the last

section of Table 5.2 and 5.3.

2) Is cross-level matching more advantageous than single-level matching?

1We perform paired t-test with Bonferroni correction on CLMM models with respect to BM25, LM,

DRMM, MatchPyramid, SMN, MACM and C-KNRM baselines. The statistically signiĄcant results (p <

0.05) are marked with ∗
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Table 5.2. Experimental Results on MQ2007 1

MQ2007 MAP NDCG1 NDCG3 NDCG10 NDCG20

BM25 0.4584 0.3842 0.3872 0.4305 0.4849

LM 0.4490 0.3630 0.3720 0.4145 0.4747

DRMM 0.4601 0.3801 0.3921 0.4315 0.4749

MatchPyramid-kpass-feats 0.4684 0.3907 0.4033 0.4461 0.5010

SMN-kpass-feats 0.4729 0.4046 0.4183 0.4543 0.5080

MACM-kpass-feats 0.4755 0.4075 0.4177 0.4571 0.5123

C-KNRM-kpass-feats 0.4709 0.3993 0.4143 0.4533 0.5050

Conv(1,1)-kpass-feats 0.4782 0.4222 0.4258 0.4650 0.5201

CLMM-kpass-feats-MLP 0.4816* 0.4273* 0.4333* 0.4656* 0.5168*

CLMM-kpass-feats-Concat 0.4845* 0.4141 0.4258* 0.4649* 0.5170*

CLMM-kpass-feats-MLP-Maxpool 0.4863* 0.4275* 0.4308* 0.4683* 0.5195*

CLMM-kpass-feats-Gate 0.4945* 0.4361* 0.4380* 0.4777* 0.5293*

BERT-(0,0)-feats 0.4675* 0.4033 0.4043* 0.4426* 0.4959*

BERT-(12,12)-feats 0.4874* 0.4322* 0.4362* 0.4726* 0.5218*

CLMM-BERT-Cross-feats 0.4961* 0.4582* 0.4488* 0.4839* 0.5305*

Table 5.3. Experimental Results on MQ2008 1

MQ2008 MAP NDCG1 NDCG3 NDCG10 NDCG20

BM25 0.4688 0.3524 0.4210 0.2183 0.1115

LM 0.4569 0.3290 0.4073 0.2122 0.1086

DRMM 0.4631 0.3550 0.4208 0.2190 0.1102

MatchPyramid-kpass-feats 0.4821 0.3843 0.4382 0.2303 0.1179

SMN-kpass-feats 0.4858 0.3762 0.4426 0.2314 0.1198

MACM-kpass-feats 0.4898 0.3917 0.4481 0.2332 0.1197

C-KNRM-kpass-feats 0.4734 0.3686 0.4360 0.2257 0.1174

Conv(1,1)-kpass-feats 0.4875 0.3884 0.4497 0.2288 0.1166

CLMM-kpass-feats-MLP 0.4913* 0.3899 0.4458* 0.2309* 0.1167*

CLMM-kpass-feats-Concat 0.4899* 0.3831 0.4473* 0.2323* 0.1180*

CLMM-kpass-feats-MLP-Maxpool 0.4948* 0.3869* 0.4483* 0.2333* 0.1181*

CLMM-kpass-feats-Gate 0.4977* 0.3987* 0.4551* 0.2350* 0.1207*

BERT-(0,0)-feats 0.4732* 0.3732 0.4286* 0.2235* 0.1161*

BERT-(12,12)-feats 0.4945* 0.4062* 0.4554* 0.2362* 0.1210*

CLMM-BERT-Cross-feats 0.5011* 0.4158* 0.4704* 0.2405* 0.1238*
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In Table 5.1, by comparing the results of MatchPyramid, SMN and CLMM-BiLSTM-

Gate, we notice that CLMM-BiLSTM-Gate outperforms both MatchPyramid and SMN.

MatchPyramid doesnŠt learn hidden representations of the query and document and directly

matches query and document term embeddings. It is equivalent to CLMM with one matching

channel (Hq,(0), Hd,(0)). In this conĄguration, the model is good at capturing the matching

signals at the term level but lacks the capability to capture semantic matching at higher

abstraction levels. SMN learns 1 layer of hidden representations of the query and document

and matches the hidden representations of the query and document. It is equivalent to

CLMM with one matching channel (Hq,(1), Hd,(1)). In this conĄguration, the model focuses

on the matchings in the hidden semantic space but may ignore some important matching

signals at term level. If we consider the conĄguration of Conv1D as representation module,

the same holds true for the comparison between MatchPyramid, Conv(1,1) and CLMM-

Conv-Gate.

As for the MQ datasets, by comparing the results of MatchPyramid-kpass-feats,

Conv(1,1)-kpass-feats, and CLMM-kpass-feats-Gate in Table 5.2 and Table 5.3, we observe

that the same holds true on the MQ datasets. The same holds true for the comparison

between BERT-(0,0)-feats, BERT-(12,12)-feats and CLMM-BERT-Cross-feats, where the

cross matched model CLMM-BERT-Cross-feats outperformed both the model matching

only query and document embeddings (BERT-(0,0)-feats) and the one matching only query

and documentŠs last hidden representation layers (BERT-(12,12)-feats)

From the above comparisons, we can conclude that using multiple matching channels is

clearly better than using any of the single-level matching channels. This conĄrms our earlier

intuition that various language entities may express similar meanings and this should be

incorporated into the matching function between query and document.

3) WhatŠs the best aggregation strategy?

We observe that among the different aggregation strategies, the gated aggregation works

the best on all the three datasets. This conĄrms that the aggregation of different matching

channels should be based on their utility for the speciĄc document-query pair. The score-

guided gating mechanism which dynamically weighs the contributions of different matching

channels and combines them, is an adequate means. Both alternative models CLMM-Concat

and CLMM-MLP use concatenation of the matching patterns of different channels. In this

case, the pattern vectors from different matching channels are treated without differentiation.

However, queries are of different types. For some queries, a term-level match channel is more

important while for others, a match on the phrase level is more appropriate. This possibly

explains why the concatenation strategy may not be the optimal approach.

The CLMM-MLP-Maxpool takes the dimension-wise max across the pattern vectors of

all matching channels. The resulting matching vector may not be meaningful and does not

preserve the integrity of the matching channels, as we explained earlier.
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The CLMM-Gate attentively combines the learned interaction patterns from all matching

channels according to the importance of each matching channel. It allows each of the match-

ing channels to operate completely before aggregating them. The matching score produced

in this way makes more sense than that based on max-pooled vector.

4) Combination with non-neural features

It has been shown that the combination of non-neural features with neural components

could help improve the performance of a neural retrieval model [Severyn and Moschitti, 2015].

While the neural features focus on the representations or interaction intensities between each

query and document, those additional non-neural features could be some scores involving

global statistics over the entire collection.

For the MQ datasets, we Ąnd it beneĄcial to employ BM25 and LM scores as the ad-

ditional non-neural features in ranking. Particularly, the BM25 score contains the inverse

document frequency (IDF) for each term which characterizes the rarity of the term in the

whole collection and the LM score contains the background collection smoothing term. Those

additional features are believed to be able to complement the model with some global statisti-

cal information, therefore help to improve performance. In fact, we performed a preliminary

study with Conv1D based CLMM-Conv models while removing the non-neural ranking fea-

tures (BM25 and LM scores), the experimental results on MQ2007 and MQ2008 are presented

in Table 5.4.

Table 5.4. Alternative ConĄgurations of CLMM without Non-Neural Features

MQ2007 MAP NDCG1 NDCG3 NDCG10 NDCG20

MatchPyramid-kpass 0.4302 0.3529 0.3552 0.3932 0.4543

SMN-kpass 0.4294 0.3508 0.3598 0.3966 0.4560

CLMM-kpass-Gate 0.4406 0.3691 0.3721 0.4127 0.4691

MQ2008 MAP NDCG1 NDCG3 NDCG10 NDCG20

MatchPyramid-kpass 0.4415 0.3407 0.3979 0.2064 0.0972

SMN-kpass 0.4396 0.3424 0.3886 0.1994 0.0922

CLMM-kpass-Gate 0.4577 0.3504 0.4151 0.2150 0.1037

From Table 5.4, we can observe that when the non-neural ranking features are removed,

our proposed cross-level matching model (CLMM-kpass-Gate) still outperforms the model

that only matches query and document embedding layer (MatchPyarmid-kpass) and the one

that only matches query and document hidden representations (SMN-kpass). However the

performance of both CLMM and the baselines drop below the performance of a traditional

model such as BM25 (reported in Table 5.2 and Table 5.3). This could possibly be explained

by the size of the training data: MQ2007 and MQ2008 only have 1015 and 470 training
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queries respectively (whereas MSMARCO has 68,750 training queries), while for the training

of a deep model, it may need much more training data to achieve better generalization to

unseen test instances. Therefore, for those smaller datasets, it may be beneĄcial to include

those traditional, non-neural ranking features (such as BM25 and LM scores) which involve

some global statistics over the entire collection.

5.6. Discussions and Analysis

In this section, in order to better understand the advantage of cross-level matching over

tradition local matching or same-level matching, we will discuss the experiment results,

present some case studies based on some typical queries in the test collection and give the

complexity analysis of our proposed Cross-level Matching Model.

5.6.1. Case Studies

In order to further understand the advantage of matching different representation layers

between the query and document and the roles of different matching channels, we take a

representative test query Şwhat is the standard barrel length for an ARŤ (a type of gun),

and a relevant passage to this query. We visualize the interaction matrices I0,0, I1,1, I1,0

and I0,1 of CLMM-BiLSTM-Gate for the matching channels (Hq,(0), Hd,(0)), (Hq,(1), Hd,(1)),

(Hq,(1), Hd,(0)) and (Hq,(0), Hd,(1)) respectively in Fig 5.2.

Note that the interaction matrix I0,0 captures the matching intensities between query

and document term embeddings, I1,1 captures the matching intensities between the hidden

representations of query and documents, which are believed to represent the semantics in a

phrase, and I1,0 represents the matchings between the query hidden representations and the

document terms, which serves the need of term-phrase matching.

From Fig 5.2a, we can observe that the term embedding matching channel I0,0 is respon-

sible to identify the exact-matched terms. In this example, the terms Şbarrel lengthŤ which

occur in both the query and document have very high matching intensities. This shows that

the channel I0,0 which is capable to capture exact matches, is very useful to fulĄll the need

for lexical matches.

From Fig 5.2b, we notice that the hidden representation matching channel I1,1 is respon-

sible to match in the latent semantic space. In this case, query terms Şbarrel lengthŤ and

relevant document terms Şunchanged at 16Ť are mapped into hidden representations and

matched with high intensities, which helps the model to successfully identify the answer to

this query. This demonstrates that the channel I1,1 is essential to generalizing query and

document terms and performing matching in the latent semantic space.
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(a) Interaction Matrix I0,0 of query and document embeddings

(b) Interaction Matrix I1,1 of query and document hidden representations

(c) Interaction Matrix I1,0 of query hidden representations and document embeddings

(d) Interaction Matrix I0,1 of query embeddings and document hidden representations

Fig. 5.2. Visualization of Matching Matrices, MSMARCO

Fig 5.2c shows that the cross-level matching channel I1,0 (query hidden representation

with document term embeddings) is also helpful. In this case, the model successfully asso-

ciates the document terms such as ŞCarbineŤ and ŞAK47Ť with hidden representations of

query phrase Şstandard barrel lengthŤ. Since the semantics of Şbarrel lengthŤ are related to
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guns, matching them with guns such as ŞCarbineŤ and ŞAK47Ť will help the model to Ąnd

the relevant document containing those terms.

Fig. 5.2d illustrates that the cross-level matching channel I0,1 (query term embeddings

with document hidden representations) also plays a role to match query terms with relevant

document phrases. In this case, the query term ŞbarrelŤ is matched with the document

phrase Şmodular weaponsŤ with high intensity. Since the barrel is a part of a modular

weapon, this matching will boost the modelŠs capability to Ąnd relevant document to this

query.

We also take another representative test query Şwhat is super duplex stainless steelŤ

and a relevant passage to this query. We plot the interaction matrices I0,0, I1,1, I1,0

and I0,1 of CLMM-BiLSTM-Gate for the matching channels (Hq,(0), Hd,(0)), (Hq,(1), Hd,(1)),

(Hq,(1), Hd,(0)) and (Hq,(0), Hd,(1)) respectively in Fig 5.3.

From Fig 5.3a, we can observe again that the term embedding matching channel I0,0 is

responsible to identify the exact-matched terms. In this example, the single terms ŞsuperŤ,

ŞduplexŤ, ŞstainlessŤ, ŞsteelŤ which occur in both the query and document have very high

matching intensities. This shows that the channel I0,0 which is capable to capture exact

matches, plays an important role for lexical matches.

From Fig 5.3b, we notice that the hidden representation matching channel I1,1 is respon-

sible to match in the latent semantic space. In this case, query phrase Şstainless steelŤ is

matched to the same phrase appearing in the document passage and it is also generalized to

match the document phrase Şcorrosion resistanceŤ, since Şcorrosion resistanceŤ is one of the

properties of stainless steel and is highly relevant to it. Therefore the hidden representation

channel helps the model to generalize the query semantics and match them in the latent

space with document representations.

Fig 5.3c shows that the cross-level matching channel I1,0 (query hidden representation

with document term embeddings) is also helpful. In this case, the model successfully as-

sociates the query phrase Şstainless steelŤ with the document terms such as ŞchromiumŤ ,

ŞnickelŤ and ŞcorrosionŤ. Since chromium and nickel are essential component of stainless steel

and corrosion is also related to stainless steel, this channel serves the need of term-phrase

matching and helps the model to match relevant document terms with query phrase.

Finally Fig. 5.3d illustrates the matching patterns in the cross-level matching channel I0,1

(query term embeddings with document hidden representations). In this case, we notice that

the model successfully matches the query term ŞstainlessŤ with document phrase Şcorrosion

resistanceŤ, which is a property related to stainless. Moreover, the model also matches the

query term ŞsteelŤ with the document phrase Şexceptional strengthŤ with high interaction

intensities, since steel does present the property of exceptional strength. This example

demonstrates that the matching channel I0,1 also plays a helpful role to match query with

document containing relevant phrases.
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(a) Interaction Matrix I0,0 of query and document embeddings

(b) Interaction Matrix I1,1 of query and document hidden representations

(c) Interaction Matrix I1,0 of query hidden representation and document embeddings

(d) Interaction Matrix I0,1 of query embeddings and document hidden representation

Fig. 5.3. Visualization of Matching Matrices, MSMARCO

To illustrate the potential of our CLMM model on different genre of collections, we also

take another representative test query from MQ2007 Dataset: Şfuture direct mental health

coverageŤ and a relevant document and visualize the interaction matrices I0,0, I1,1, I1,0 and
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I0,1 of CLMM-kpass-feats-Gate for the matching channels (Hq,(0), Hd,(0)), (Hq,(1), Hd,(1)),

(Hq,(1), Hd,(0)) and (Hq,(0), Hd,(1)) respectively in Fig 5.4.

…

…

(a) Interaction Matrix I0,0 of query and document embeddings

…

…

(b) Interaction Matrix I1,1 of query and document hidden representations

…

…

(c) Interaction Matrix I1,0 of query hidden representation and document embeddings

…

…

(d) Interaction Matrix I0,1 of query embeddings and document hidden representations

Fig. 5.4. Visualization of Matching Matrices, MQ2007

From Fig 5.4a, we can observe the same phenomenon that the term embedding matching

channel I0,0 is responsible to identify the exact-matched terms. In this example, the exact-

matched terms ŞmentalŤ and ŞhealthŤ in both the query and document have very high

matching intensities. This shows again that the channel I0,0 is very helpful to fulĄl the need

for lexical matches.

In Fig 5.4b, it is worth noting that this is the matching channel I1,1 between hidden

representations of query and document learned by Conv1D with convolution window size

set to 2. Therefore each square represents the matching intensity of fused query and doc-

ument bi-gram and the individual terms are placed at the edge of each square. Again, we

notice that this hidden representation matching channel is responsible to match in the latent
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semantic space. In this case, query phrase Şmental healthŤ is not only matched with its

exact appearance in document but also matched with relevant phrase such as Şpsychological

statusŤ. This helps the model to boost the matching score of this relevant document. This

demonstrates that the channel I1,1 is essential to generalizing query and document terms

and performing matching in the latent semantic space.

Fig 5.4c shows the matching patterns in the cross-level matching channel I1,0 (query hid-

den representation with document term embeddings). In this case, since we learn the query

hidden representation with Conv1D with convolution window size set to 2 and the document

representations remain to be term embeddings, each square represents the matching inten-

sity between query bi-gram and document term and the query terms are placed at the edge

of each square. We notice again that the model successfully associates query phrase Şmental

healthŤ with relevant document terms such as ŞmoodŤ and ŞpsychologicalŤ. Therefore, this

matching channel will help the model to match query phrase with relevant document terms.

Finally Fig. 5.4d illustrates the matching patterns in the cross-level matching channel I0,1

(query term embeddings with document hidden representations). As we learn the document

hidden representations by Conv1D with convolution window size set to 2 while the query

representations remain to be term embeddings, each square represents the matching intensity

between query term and document bi-gram and the document terms are labeled at the edge of

each square. In this case, we notice that the model not only successfully matches the query

term ŞmentalŤ with document phrase Şmental healthŤ, but also matches it with phrase

Şpsychological statusŤ in the document. This example demonstrates that the matching

channel I0,1 also plays a helpful role to match query with document containing relevant

phrases.

In conclusion, through the above analysis of representative queries and documents from

collections of different genre, we have a better understanding of the function of different

matching channels in our proposed CLMM model. Both the term matching channel I0,0,

hidden representation matching channel I1,1 and cross-level matching channels I1,0 or I0,1

have their own contributions to identify either an exact match, a semantic match or a term-

phrase match. Coupled with an attentive gating mechanism, they work collaboratively to

boost the performance of the model to Ąnd the relevant documents associated with a given

query.

5.6.2. Complexity Analysis

In this subsection, we analyze the time complexity of our proposed Cross-level Match-

ing Model. Our representation learning modules are based on either 1D-CNN or BiLSTM.

According to [Vaswani et al., 2017], one 1D convolution layer will cost O(k ∗ n ∗ d) multi-

plications in inference/test mode or equal amount of gradient operations in training mode,
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where k is the dimension of the convolved layer vectors, d is the dimension of the input

layer vectors, and n is the sequence length (number of terms). According to [Brahma, 2018],

one Bi-direction LSTM layer will cost linear time with respect to sequence length n, i.e. its

complexity is O(n). Our matching channels are built with 2D convolutions. According to

[He and Sun, 2015], one 2D convolution layer will cost O(nin ∗s2
f ∗nout ∗mh ∗mw) operations,

where nin is the number of input channels, sf is the length of Ąlters (in our setting itŠs

squared shape, so is the s2
f ), nout is the number of output features maps, and mh, mw are

the height and width of output feature map.

For our Cross-level Matching Model in Fig. 5.1, suppose that the maximum query and

document length are n and m respectively, the input embedding dimension is d, the hidden

size is h, and in our setting h < d. if we employ the 1D-CNN as representation learning

modules, the representation learning would cost (n + m) ∗ h ∗ d operations. If we employ

BiLSTM as representation learning modules, the representation learning would cost β∗(n+n)

operations, where β is a constant related with the conĄguration of the BiLSTM cells.

For each of the matching channels, and for each convolutional layer, suppose that there

will be no more than k feature maps and the max Ąlter sizes are sf ∗ sf , then for each

2D convolutional layer, it will cost at most k2 ∗ s2
f ∗ n ∗ m operations. The construction

of the interaction matrix will cost at most n ∗ m operations, and there would be an extra

n ∗ m ∗ h + h ∗ 1 operations for the Ąnal MLP layer. Therefore, for each channel there would

be 2 ∗ (k2 ∗ s2
f + h + 1) ∗ n ∗ m + 2h operations.

For a total of 4 channels, if we employ 1D convolution as representation learning module,

the total complexity will be O(8(k2 ∗ s2
f + h + 1) ∗ n ∗ m + 4(n + m) ∗ h ∗ d + 8h). If we employ

BiLSTM as representation learning modules, the total complexity will be O(8(k2 ∗ s2
f + h +

1) ∗ n ∗ m + 4β ∗ (n + m) + 8h). In either case, if the hyper-parameters of the network are

Ąxed (i.e. d, sf , k, h, β are Ąxed), then the complexity of the model is dominated by n ∗ m

which is bi-linear to the length of query n and document m.

5.7. Conclusion

Previously many neural IR models have been proposed and demonstrated their potentials,

however, most existing neural retrieval models rely on either the representations or interac-

tions of only one layer to perform matching. In reality, the relevant semantics of a term could

also be expressed in phrases. Therefore there exists the need for term-phrase matching. To

address this challenge, in this chapter, we propose a Cross-level Matching Model for Infor-

mation Retrieval, which learns multiple query and document representations and matches

them across all possible layers to produce different matching patterns. A channel-aware

gating mechanism aggregates the matching patterns of each matching channel attentively to
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produce a global matching score. Experiments on public datasets conĄrm the advantage of

employing multiple matching channels to enhance the basic term matching signals.
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Chapter 6

Integrated Learning of Features and Ranking

Function

Article Details:
Yifan Nie, Jiyang Zhang, Jian-Yun Nie: Integrated Learning of Features and Ranking

Function in Information Retrieval. ICTIR 2019: 67-74

Context:
At the time of writing this article, there has been a Ćourishing trend of employing neural

models for IR tasks. Those models could be roughly divided into representation-based models

[Huang et al., 2013, Shen et al., 2014], interaction-based models [Pang et al., 2016a, Guo et al.,

2016] and hybrid models (combination of the two schemes) [Mitra et al., 2017]. Those deep

IR models are good feature-learning models thanks to the application of neural networks,

yet most of those existing neural models use a simple pair-wise hinge loss to train.

When it comes to learning a better ranking function, the learning-to-rank framework

(L2R) such as LambdaRank provided a better solution. In particular, the LambdaRank could

learn a better ranking function by optimizing the ranking metrics such as NDCG. However,

we still observe a gap between deep IR models and L2R framework: the traditional L2R

framework is feature-based and the input features are usually Ąxed, hand-crafted features.

Therefore it is natural to raise the question: Is it possible to take advantage of both

the feature-learning power of neural models and the good ranking function learned by L2R

framework by combining them together? If yes, how could we do so? In the previous chapter,

we also explored the utilization of manually deĄned ranking features and we found this very

useful. So, do the manually deĄned features continue to bring beneĄts within the L2R

framework?

Contributions:
In order to take advantage of both the feature-learning power of the neural models and the

good ranking function learning by learning-to-rank framework, in this chapter, we propose



an integrated learning framework based on learning-to-rank to learn both neural features

and the L2R ranking function simultaneously. The framework also has the Ćexibility to

integrate arbitrary traditional features. Our experiments on public datasets conĄrm that

such an integrated learning strategy is better than separate learning of features and ranking

function, and integrating traditional features can further improve the results.

6.1. Introduction

We have described the existing neural approaches based on representations or interac-

tions in Section 4.2.1. Intuitively, representation-based models can create more abstract

representations about the contents, thereby enable some generalization so that similar con-

tents can be matched. They are more appropriate to cope with conceptual queries which

require some generalization. For example, for queries like Şsmall business statisticsŤ, the

documents containing Şsmall company statisticsŤ or Şmicro corporate statisticsŤ may also

be relevant. On the other hand, interaction-based models Ąrst build local term-to-term in-

teractions by applying a similarity function and the learning process focuses on interaction

patterns allowing to match the query and documents. Therefore, they are more able to deal

with lexical queries which require exact term match between query and document. Queries

that contain named entities such as Şdistance between Grand Canyon and PhoenixŤ fall

into this category. In this case, it is preferred that the retrieved documents contain Grand

Canyon and Phoenix, not elsewhere.

The above examples illustrate the respective strength of the two approaches, therefore

it is natural to combine the above two approaches into an integrated approach so as to

take advantage of both approaches. However, such a combined approach has not been

extensively studied. The Duet Model [Mitra et al., 2017] is an exception which combines

the two approaches by linearly adding the ranking scores of two separate models and learns

the ranking function by maximizing the probability score of positive document over negative

documents for a given query. Despite the fact that Duet improved the retrieval effectiveness,

we believe that both approaches can be better integrated. In particular, the way the two

components interact with each other should be learned, and a better ranking function could

be employed.

As stated before, neural models are capable of learning powerful features, but the existing

neural models only employ simple ranking functions. Learning-to-rank (L2R) framework such

as LambdaRank provides a better approach to learn a ranking function, but the features

employed in traditional L2R approaches are usually hand-crafted Ąxed features. They are

less expressive than the neural features learned by a neural model. Therefore it is natural to

raise the question: Is it possible to combine the neural representation and interaction feature
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learning under the L2R framework to take advantage of both the powerful neural features

and better ranking function learned by L2R?

To investigate this question, In this chapter, we propose a new general approach to

combine representation-based, interaction-based models and arbitrary additional traditional

features through learning-to-rank: the representation- and interaction-based models will gen-

erate a set of features that are fed into a L2R layer, and the latter will learn an appropriate

ranking function based on the features. Different from the traditional L2R methods, the

features used are also learned at the same time as the ranking function. Therefore, the ap-

proach we propose integrates both feature learning and ranking function learning. Compared

to separate feature learning and ranking function learning, an integrated learning framework

has a clear advantage: the features can adapt depending on how they are used in the ranking

function, and the ranking function also adapts depending on the features at hand. Both the

features and the ranking function are learned to maximize the Ąnal objective of document

ranking.

The utilization of representation and interaction features in traditional L2R is not new:

Most traditional L2R approaches utilize both categories of features [Qin and Liu, 2013, Liu,

2009]. It has been shown in many experiments that both types of feature are useful and they

are complementary. Our approach follows the same principle, but within the framework of

neural networks, and by incorporating neural feature learning as well. The incorporation of

optional non neural features has also been applied in recommendation systems. For example,

in Wide&Deep [Cheng et al., 2016], a series of attribute features of item are incorporated

under the ŞwideŤ part of the model , whereas the ŞdeepŤ part are responsible to learn neural

features of user-item interactions.

To summarize, this work proposes a method to combine the representation- and

interaction-based neural approaches within the learning-to-rank framework, in which

both feature learning and ranking-function learning are conducted end-to-end. We call

it Integrated Learning Model (ILM). Our contribution is three-fold: (1) We combine

representation-based and interaction-based neural approaches in a Ćexible learning-to-rank

framework. (2) We integrate feature learning with L2R ranking function learning, which are

trained end-to-end simultaneously. (3) We show that the proposed model can signiĄcantly

outperform the existing neural models on Million Query datasets, and that integrating

traditional features can further improve the performance.

113



6.2. Related Work

6.2.1. Neural IR Models

We have presented previous representation-based and interaction-based models in Section

4.2.1. As we mentioned, representation-based and interaction-based neural models have

their respective strengths. To take advantage of the strength and focus of both matching

mechanisms, the original Duet Model [Mitra et al., 2017] combines both a representation-

based model and an interaction-based model, which generates two independent relevance

scores. These scores are then added to produce a Ąnal score:

RDuet(q, d) = Rrep(q, d) + Rinter(q, d) (6.2.1)

To provide more informative matching signals, a recent Updated Duet Model [Mitra and

Craswell, 2019] produces matching pattern vectors of the two sub-models and combines them

through MLPs instead of adding the matching scores. The extended Duet model goes in the

same direction as our ILM model, but is done in parallel to our work.

Although Duet Model and its variants yielded better results than the representation-

based and interaction-based models separately, we can see several limitations. First, in the

local interaction model, only exact match function is employed, which does no allow matching

similar terms. It might be more reasonable to employ a more Ćexible function to capture not

only exact matches but also synonyms matched at this local position. Second, the ranking

function employed in Duet is a softmax probability over scores of positive document and

negative documents for a given query. It is better to optimize the Ąnal ranking objective for

ranking tasks as shown in [Burges, 2010, Tan et al., 2013].

6.2.2. Learning-to-rank

Learning-to-rank (L2R) is a general ranking framework for IR which yielded state-of-

the-art results [Liu, 2009]. According to how the ranking model is trained, L2R algorithms

could be categorized into 3 types: point-wise approaches, pair-wise approaches and list-wise

approaches [Liu, 2011]. In particular, pair-wise approaches care about the relative prefer-

ence between two documents given a query. A popular and effective pair-wise L2R model

is LambdaRank [Burges, 2010]. LambdaRank tries to push relevant documents upwards

and non relevant documents downwards in a ranked list during training by optimizing the

NDCG metric [Wang et al., 2013]. As the training objective function directly corresponds to

the evaluation metric, LambdaRank can outperform similar ranking models trained with a

pairwise hinge or cross-entropy loss [Burges, 2010]. In [Burges, 2010], an MLP is used to act

as ranker. A L2R model works with a set of features extracted from a document-query pair

such as document and query length, term frequencies, and different matching scores between
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them. It has been found that both the features relating to the query and to the documents

(contents), as well as the features relating to their interactions (matching scores or patterns)

are important. This observation motivates us to combine both representation-based and

interaction-based neural features in an integrated framework.

L2R has been recently adapted to the neural model context. In [Ai et al., 2018], a Group

Scoring Function Model (GSF) is proposed. For a given query q and a list of document

[di, ..., dn], the model considers each possible group (q, di, dj), i,j ∈ [1,n], and builds parallel

MLPs for each group in order to produce intermediate group relevance scores. The Ąnal

ranking score for a given document dk is calculated by accumulating its intermediate scores.

Other studies also extended the LambdaRank approach to general cases. LambdaLoss

[Wang et al., 2018] provides a theoretical analysis of the effectiveness when directly optimizing

an evaluation metric. It also generalizes LambdaRank to optimize other metrics such as

Average Relevance Position (ARP) [Wang et al., 2018]. A toolkit for neural L2R [Pasumarthi

et al., 2018] is also made available recently.

All the existing L2R approaches require to be provided with a set of features. In general,

these features are extracted independently from ranking-function learning. It is possible that

pre-trained features are not optimal for the ranker. It is more reasonable to learn features

and ranking function simultaneously, so that they can inĆuence each other. A deep neural

model offers a Ćexible framework to implement such an integrated approach.

Based on the above observations, we propose an Integrated Learning Model (ILM) which

incorporates the representation- and interaction-based features within the learning-to-rank

framework. In this model, both the ranker and features are trained simultaneously in an

end-to-end fashion by LambdaRank. We will describe the details of our model in the next

section.

6.3. Integrated Learning Model

The general architecture of the Integrated Learning Model (ILM) is shown in Fig. 6.1.

It integrates the learning of representation- and interaction-based features and the ranking

function within a learning-to-rank framework. It is composed of the following components:

representation module, interaction module, non-neural ranking features and the learning-to-

rank layer.

6.3.1. Model Components

The proposed ILM is composed of several components. In the lower part, several modules

aim at generating features. Those neural feature learning modules take query and document

term embeddings as input which is obtained from an embedding look-up matrix shared by

all neural feature learning modules.
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Fig. 6.1. Integrated Learning Model

We incorporate two types of neural modules to generate representation and interaction

features. In addition to neural features, we also incorporate traditional (non-neural) features.

The features will be fed into a L2R layer in order to produce a ranking score (S), and the

neural features will be tuned together with the ranking function rather than being served as

Ąxed inputs.

This framework is general and Ćexible. In fact, any existing representation-based and

interaction-based neural models can be used to play the role of the two feature modules in

the framework, provided that they can be trained in an end-to-end fashion together with the

ranking function.

Representation Module: Inspired by the CDSSM [Shen et al., 2014] representation learn-

ing module, we employ a similar 1D convolutional model to learn query and document

representations. The query and document are represented by a set of word embedding

vectors q = [t
(q)
1 ,...,t(q)

n ], and d = [t
(d)
1 ,...,t(d)

m ], where t
(q)
i and t

(d)
j represent the embedding

vectors for query term i and document term j respectively, and n, m are the query length

and document length respectively. Afterwards 1D convolution is applied to aggregate term

embeddings inside a window of size 2k + 1 into phrase representations as follows.

Cq
i,rep = f(W q ∗ [tq

i−k; ..; tq
i+k] + bq) (6.3.1)

Cd
i,rep = f(W d ∗ [td

i−k; ..; td
i+k] + bd) (6.3.2)
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where Cq
i,rep and Cd

i,rep represent the convolved representation for the ith query and document

term respectively; f is the activation function; W and b represent the weight and bias of the

convolution; and 2k + 1 is the window size of the convolution.

Once the convolution is performed, a dimension-wise max-pooling is performed and the

max-pooled query and document representations are fed into an output MLP layer for di-

mensionality reduction. The process is summarized as follows.

P q
rep = max

j
(Cq

i,rep(j)) P d
rep = max

j
(Cd

i,rep(j)) (6.3.3)

Qrep = f(W q
o P q

rep + bq
o) Drep = f(W d

o P d
rep + bd

o) (6.3.4)

where P q
rep and P d

rep are the max-pooled representations of the query and document; Ci,rep(j)

represents the jth dimension of the convolved vector Ci,rep; Qrep and Drep are the query and

document representations after the dimension-reduction output layer.

The representation of query Qrep and document Drep are then concatenated and fed into

a representation encoding MLP to produce the representation feature vector for the L2R

layer. The process is deĄned as follows:

Erep = concat(Qrep, Drep) (6.3.5)

Hrep = f(WrepErep + brep) (6.3.6)

where Erep is the concatenation of qrep and drep; f is the activation function; Wrep and brep

are the weight and bias of the representation encoding MLP.

Notice that this last step represents an important difference with a standalone

representation-based model: our module aims at producing a vector of neural representation

about the document and the query, rather than a matching score. As we stated earlier,

these features can interact in the L2R layer, together with the interaction features that we

will describe in the following section.

Interaction Module: MatchPyramid is a popular interaction-based model which has shown

promising performance in applications ranging from short text matching [Pang et al., 2016b]

to IR [Pang et al., 2016a]. We build similar interaction module to learn interaction pattern

from query-document pairs and employ the learned pattern as interaction feature.

First the local interaction matrix I is built by applying cosine similarity between each

query term embedding t
(q)
i and document term embedding t

(d)
j .

Iij = cos(t
(q)
i , t

(d)
j ) (6.3.7)
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Once the input interaction matrix is constructed, a series of 2D convolution and max-pooling

layers are added on top in order to build more abstract interaction patterns.

Ck
1,inter = f(W k

1 ∗ I + bk
1), k = 1,..,K (6.3.8)

P k
1,inter = max_pool(Ck

1,inter), k = 1,..,K (6.3.9)

Ck
i,inter = f(W k

i ∗ P k
i−1,inter + bk

i ), i = 2,..,L, k = 1,..,K (6.3.10)

P k
i,inter = max_pool(Ck

i,inter), i = 2,..,L, k = 1,..,K (6.3.11)

where Ck
i,inter is the feature map k of the ith convolved layer; I is the input interaction

matrix; W k
i and bk

i are the kernel and bias of layer i for the feature map k; L is the number

of convolution layers, and K is the number of feature maps; f is a non-linear mapping; and

∗ represents the convolution operator.

In order to extract the interaction pattern of q and d, following [Severyn and Moschitti,

2015, Pang et al., 2016a], the last max-pooled layer is Ćattened into a vector and fed into an

interaction pattern encoding MLP. The encoded vector is then utilized as interaction feature

and fed into the L2R layer.

Einter = flatten(PL,inter) (6.3.12)

Hinter = h(WoEinter + bo) (6.3.13)

Non-neural ranking features: We concatenate scalar feature values together and reshape

it into BS × Nfeats matrix Hfeats, where BS is the batch size, Nfeats is the number of non

neural features. These features are fed into the L2R layer. In this study, we employ the

following non neural ranking features: BM25, LM scores between the query and document,

term frequency of the document title, body, and whole document, IDF of document title,

body and whole document, TF-IDF of document title, body and whole document, length of

document title, body and whole document.

L2R Layer: The L2R layer aims at computing a ranking score S based on the representation

features Hrep, interaction feature Hinter and non-neural ranking features Hfeats:

S = f(Ws[Hrep; Hinter; Hfeats] + bs) (6.3.14)

where Ws and bs are the weight and bias and f represents the activation function. Different

from the Duet model which adds the ranking scores of the two matching models, we combine

the neural features of the two matching mechanisms to encourage interactions between them.

The ranking function will be trained through LambdaRank. In the same training process,

the neural features will also be adapted.
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6.3.2. LambdaRank End-to-End Training

We use LambdaRank model [Burges, 2010] and train the model in an end-to-end fashion.

For a given query q, Ąrst, the probability that a document di is more relevant than another

document dj is modeled by the logistic function. Then, a cross entropy loss Cij is employed

to measure the discrepancy between the ground truth label probability P ij = 1
2
(1 + Sij) and

the predicted probability Pij, where Sij is the preference score of document di and dj and

takes values in ¶+1, 0, −1♢.

Pij =
1

1 + e−σ(si−sj)
(6.3.15)

Cij = −P ijlogPij − (1 − P ij)log(1 − Pij) (6.3.16)

Afterwards the gradient ∂Cij

∂si
of loss function with respect to the predicted relevance score

si is multiplied by the change of nDCG [Wang et al., 2013] values by swapping the positions

of di and dj in the ranked list as follows.

λij =
∂Cij

∂si

♣∆nDCG(i, j)♣ (6.3.17)

The gradient of the loss Cij with respect to a trainable parameter wk of the model could

be derived by the chain rule.

∂Cij

∂wk

= λij

∂(si − sj)

∂wk

(6.3.18)

where the second factor ∂(si−sj)

∂wk
is the difference of the gradients of the predicted scores with

respect to the parameter wk which could be computed by back-propagation algorithm [Gu

et al., 2017]. Note that for neural feature learning modules, we do not stop back-propagation

at the L2R layer. We continue to back-propagate the loss signal to tune the neural feature

learning layers and the word embeddings.

We train our model in a group-wise manner: for a given query q and its corresponding

documents D = ¶d1, d2, .., dn♢, we consider all possible pairs (q, di, dj) where di, dj ∈ D. In

a batch, there could be several query groups.

6.3.3. Alternative ConĄgurations of ILM

To demonstrate the Ćexibility of ILM, we also test an alternative conĄguration, denoted

as ILM-Hist, in which Deep Relevance Matching Model [Guo et al., 2016] (DRMM) is used

as interaction feature module. The architecture is presented in Fig. 6.2

In the new interaction module, local interactions between query and document terms are

mapped into histogram of B bins. Akin to [Guo et al., 2016], for each query term t
(q)
i , we

calculate the interaction of this query term with all document terms [t
(d)
1 ,...,t(d)

m ] by cosine

similarity and count the number of interactions falling in each bin. We use log-based counts
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Fig. 6.2. Alternative ConĄguration ILM-Hist

as suggested by [Guo et al., 2016]:

Ii = [cos(t
(q)
i , t

(d)
1 ), ..., cos(t

(q)
i , t(d)

n )] (6.3.19)

Ti = Hist(Ii, B) (6.3.20)

T = concat([log(T1), ..., log(Tm)]) (6.3.21)

where Ii is the interaction vector of query term t
(q)
i with all document terms, Ti is the

histogram built based on the interaction vector Ii for the ith query, and T is the concatenated

histograms of all query terms. The concatenated histograms T are then mapped into the

encoded interaction pattern Hhist by a feed-forward layer.

Hhist = f(WhistT + bhist) (6.3.22)

where f is the activation function, Whist and bhist are the weight and bias of the model. This

Hhist is fed into the L2R layer as interaction features.

6.4. Experimental Setup and Datasets

In this section, we will present the collection used in this study, evaluation metrics and

experimental settings. Those experiments aim to investigate the following research questions:

Is integrated learning of features and ranking functions better than learning them separately?

If so, how can we combine them effectively under the L2R framework? We will present the

120



collection and evaluation metrics used in this study and the experimental setups in the

following subsections.

6.4.1. Collection

We employ the MQ2007 and MQ2008 datasets to conduct experiment for this study. The

details of these datasets has been described in Section 3.1. We perform 5-fold cross validation

and directly rank the validation/test fold rather than reranking. The relevance judgments

are integers ranging from 0 to 2. For a given training query, we consider all (q, di, dj) pairs

where the judgments are different. There are in average 12,886 and 2,799 training pairs over

the 5 training folds of MQ2007 and MQ2008 respectively.

Since MQ2008 only contains 784 queries which is too small and will cause insufficient

training problem in a deep model, we merge the training set of MQ2007 into that of MQ2008

and keep the validation and test set unchanged.

6.4.2. Baselines and Alternative ConĄgurations

Baselines: We implement the BM25 [Robertson and Zaragoza, 2009] and Language

Model with Dirichlet smoothing (LM) with Indri1 as our traditional model baselines. This

comparison will help us to understand the performance of neural models with respect to

those traditional models.

We also compare the performance of our models with RankMLP-Feats which employs

Letor features, BM25 and LM scores. We feed them into the L2R layer trained with Lamb-

daRank framework.

Rep-MLP: We Ąrst build models with only one matching mechanism. For representation-

based model, we utilize the same representation-based module, denoted as Rep-MLP pre-

sented in Section 6.3.1 to learn representations.

Inter-MLP: For interaction-based model, denoted as Inter-MLP, we utilize the same

pyramid-based interaction module presented in Section 6.3.1.

HM-sum: To combine the representation and interaction module without non-neural rank-

ing features, following the mechanism of Duet Model [Mitra et al., 2017], HM-sum directly

adds the matching scores of Rep-MLP and Inter-MLP to produce an aggregated relevance

score.

HM-MLP: An alternative HM-MLP which employs the similar mechanism depicted in

6.3.1, which feeds the representation features and interaction features into an MLP to pro-

duce an aggregated relevance score, instead of directly adding the scalar representation and

interaction matching score.

1https://www.lemurproject.org/indri/
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All the above models are trained with the hinge loss.

L(Q,D+,D−; Θ) = max(0, 1 − (S(Q, D+) − S(Q,D−))) (6.4.1)

ILM and its Variants: We also build the models within our proposed ILM framework

trained with LambdaRank in an end-to-end manner.

ILM-Neu: is the ILM model presented in Fig. 6.1 with only neural (representation and

interaction) modules.

ILM-BM25 and ILM-LM are the ILM-Neu model plus the baseline BM25 or LM score as

non neural ranking feature.

ILM-Feats is the ILM model presented in Fig. 6.1 with both representation, interaction

and additional Letor1 features, BM25, LM scores as non neural ranking features.

ILM-Fix-Feats: To study the beneĄts of end-to-end learning of both the ranker and the

neural feature learning modules, we also build model with pre-trained Ąxed neural features

output by Rep-MLP and Inter-MLP. Those pre-trained Ąxed neural features are combined

with Letor features, BM25 and LM scores.

ILM-Hist: To show that our framework is general and could be Ąt with other neural feature

learning modules, we also build ILM-Hist which uses a histogram-based interaction module

as presented in Section 6.3.3.

6.4.3. Evaluation Metrics

In this study, we employ Mean Average Precision (MAP), and Normalized Discounted

Cumulative Gain (NDCGs) as evaluation metrics. They are presented in detail in Section

3.3. We calculate NDCG at cut-off position 1, 3, 10, 20. The MAP is a binary metric and

aims to evaluate the general ad-hoc performance. The NDCGs at different cut-off positions

simulate the real search scenario where a user would only want to browse the top-k ranked

documents. We employ the official trec evaluation tools 2 to evaluate MAP and NDCGs.

Finally for statistical tests, we perform paired t-test with Bonferroni correction [Vialatte

and Cichocki, 2008] on our ILM models with respect to baselines.

6.4.4. Experimental Setup

During indexing and retrieval, we process queries and documents with Krovetz stemmer

[Krovetz, 2000] and remove stop words according to the Indri standard stop list3. We em-

ploy the pretrained 300-dimensional GloVe.6B.300d embeddings4 to initialize the embedding

look-up matrix and Ąne-tune it during training. For 1-layered and 2-layered representation

1https://www.microsoft.com/en-us/research/project/letor-learning-rank-information-retrieval/
2https://trec.nist.gov/trec_eval/; http://ir.cis.udel.edu/million/data.html#tools
3http://www.lemurproject.org/stopwords/stoplist.dft
4https://nlp.stanford.edu/projects/glove/
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modules, following [Nie et al., 2018], we set the convolution window size to 3 and [3, 5], the

dimension of convolved vector to 256. For the 2-layered pyramid interaction module, we set

the shape of the 2D convolution Ąlters to be (3, 3) and (5, 5), the number of Ąlters to be

[64, 32], and max-pooling shape to be (2, 2), based on a preliminary study. For the histogram

interaction module, we set the number of bins B to 30 according to [Guo et al., 2016]. The

dimension of the encoded representation Hrep and interaction pattern Hinter is set to 256,

and the size of the L2R layer is set to 512. The vocabulary size is 400K. We set the max

query length and document length to be n = 15, m = 1000, apply zero paddings [Pang

et al., 2016a] and omit OOV document terms. We employ Adam optimizer to optimizer the

trainable parameters of our models and the initial learning rate is set to 1 × 10−3.

As for evaluation, since the MQ datasets have already been split into 5 folds by the

author of the datasets, we perform 5 fold cross validation, using 3 folds for training, 1 fold

for validation and the remaining fold for testing. Following the practice of [Fan et al., 2018,

Pang et al., 2017], during evaluation, we do not rerank the validation and test instances over

a baseline run, but directly rank the validation and test query-document pairs provided in

the respective folds.

6.5. Experimental Results

In this section, we will present the experimental results of our proposed Integrated Learn-

ing Model and compare its performance with the baselines and variants.

Table 6.1. Experimental Results on MQ datasets 1

MQ2007 MQ2008

Models MAP NDCG@1 NDCG@3 NDCG@10 NDCG@20 MAP NDCG@1 NDCG@3 NDCG@10 NDCG@20

BM25 0.4584 0.3842 0.3872 0.4305 0.4849 0.4688 0.3524 0.4210 0.2183 0.1115

LM 0.4490 0.3630 0.3720 0.4145 0.4747 0.4569 0.3290 0.4073 0.2122 0.1086

RankMLP-Feats 0.4713 0.4241 0.4234 0.4535 0.5044 0.4789 0.4083 0.4486 0.2276 0.1206

ILM-BM25 0.4918a 0.4376a 0.4398a 0.4745a 0.5248a 0.5069a 0.4132a 0.4715a 0.2375a 0.1240a

ILM-LM 0.4830b 0.4154b 0.4277b 0.4626b 0.5161b 0.5022 0.4170b 0.4583b 0.2367b 0.1224b

ILM-Feats 0.4987c
∗ 0.4656c

∗ 0.4574c
∗ 0.4874c

∗ 0.5342c
∗ 0.5160c

∗ 0.4315 0.4731c
∗ 0.2450c

∗ 0.1278c
∗

The main experimental results are presented in Table 6.1. We conduct paired t-test to

compare ILM-BM25, ILM-LM, ILM-Feats with their respective counterparts BM25, LM,

RankMLP-Feats respectively. The statistically signiĄcant results (p < 0.05) with respect

to BM25, LM and RankMLP-Letor are marked with a, b, c respectively. For our proposed

model ILM-Feats, we also perform Bonferroni correction with respect to the group of all

1Statistical signiĄcance (p<0.05) with respect to BM25, LM and RankMLP-Feats is marked with a, b

and c. ∗ indicates statistical signiĄcance (p<0.05) with Bonferroni correction with respect to

the 3 baselines.
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Table 6.2. Comparison of Integrated and Separate Learning of the Ranker and Features 2

MQ2007 MQ2008

Models MAP NDCG@1 NDCG@3 NDCG@10 NDCG@20 MAP NDCG@1 NDCG@3 NDCG@10 NDCG@20

ILM-Fix-Feats 0.4694 0.4041 0.4152 0.4507 0.5003 0.4881 0.4000 0.4486 0.2368 0.1243

ILM-Feats 0.4987d 0.4656d 0.4574d 0.4874d 0.5342d 0.5160d 0.4315 0.4731d 0.2450d 0.1278d

3 baselines, and the statistically signiĄcant results after Bonferroni correction are marked

with ∗. From Table 6.1, we can Ąrst observe that our proposed ILM-Feats outperforms all

3 baselines on all evaluation measures. This conĄrms the effectiveness of our proposed ILM

model. To further understand the advantage of our proposed ILM model, we examine the

following questions in the experiments:

(1) Are neural features useful?

To answer the question more speciĄcally, we can compare models with neural features

(ILM-BM25, ILM-LM, ILM-Feats) against their counterparts that do not contain neural

features (BM25, LM, RankMLP-Feats) in Table 6.1. In all the cases, we observe a large

improvement on all the evaluation measures, and the differences are statistically signiĄcant.

This result clearly demonstrates that the neural features on representation and interaction

are useful, and they can help improve the effectiveness even when a set of traditional features

are already included.

(2) Is integrated learning better than separate learning of the ranker and fea-

tures?

To investigate the beneĄts of integrated learning of the ranker and neural features, we

build ILM-Fix-Feats. In this models, we learn representation and interaction neural features

with separate models, then input them as Ąxed features to the L2R layer and perform training

by LambdaRank. Comparing it with the corresponding end-to-end version (ILM-Feats),

from Table 6.2, we observe that the integrated learning is better than separate learning.

This result conĄrms the advantage we expected with integrated learning. Although it is

difficult to visualize the interactions between feature learning and ranking-function learning,

we believe that the mutual inĆuence between them reinforced both learning processes and

this contributed to obtaining both better features and a better ranking function.

6.6. Discussions and Analysis

In this section, in order to better understand the advantage of integrated learning of

features and ranking function, we will discuss the experiment results, present some case

studies based on some typical queries in the test collection and give the complexity analysis

of our proposed Integrated Learning Model.

2Statistical signiĄcance (p<0.05) with respect to the ILM-Fix-Feats is marked with d
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6.6.1. Discussions

Table 6.3. Experimental Results of Alternative ConĄgurations 1

MQ2007 MQ2008

Models MAP NDCG@1 NDCG@3 NDCG@10 NDCG@20 MAP NDCG@1 NDCG@3 NDCG@10 NDCG@20

Rep-MLP 0.4199∗ 0.3169∗ 0.3364∗ 0.3828∗ 0.4450∗ 0.4085∗ 0.2738 0.3391∗ 0.1837∗ 0.0931

Inter-MLP 0.4156∗ 0.3129∗ 0.3298∗ 0.3832∗ 0.4443∗ 0.4115∗ 0.2797 0.3479∗ 0.1864∗ 0.0922∗

HM-Sum 0.4169∗ 0.3087∗ 0.3301∗ 0.3839∗ 0.4452∗ 0.4222∗ 0.3078 0.3599∗ 0.1940∗ 0.0961∗

HM-MLP 0.4245∗ 0.3301∗ 0.3446∗ 0.3938∗ 0.4505∗ 0.4280 0.3116 0.3762∗ 0.2007∗ 0.1005∗

ILM-Neu 0.4313 0.3494 0.3586∗ 0.3986∗ 0.4589∗ 0.4593 0.3639 0.4128∗ 0.2124∗ 0.1053∗

ILM-Hist 0.4884∗ 0.4487∗ 0.4458∗ 0.4739∗ 0.5224∗ 0.5192∗ 0.4345∗ 0.4835∗ 0.2478 0.1295∗

Focus of representations and interactions: As discussed earlier, the focus of

matching in representation- and interaction-based models is different. Representation-based

models focus on representing contents, while interaction-based models focus more on local

lexical matches.

To conĄrm the roles of representation- and interaction-based models, we extract some

typical conceptual and lexical queries from Million Query and compare the performance

of Rep-MLP, Inter-MLP and HM-MLP on NDCG@10 in Table 4.1. From Table 4.1, we

Table 6.4. NDCG@10 of Representative Queries

topic_num Query Rep-MLP Inter-MLP HM-MLP

9394 preventing alcoholism 0.75297 0.61683 0.85124

9963 small business statistics 0.11068 0.04793 0.40252

8023 voyager 2 Neptune 0.4807 0.65641 0.73464

8068
distance between grand

0.15508 0.20615 0.22341canyon and phoenix

can observe that for conceptual queries (top part) such as Şpreventing alcoholismŤ, Şsmall

business statisticsŤ, etc., the representation-based model Rep-MLP outperforms interaction-

based model Inter-MLP. Actually all those queries expect some degree of generalization

or expansion from the term space. For example, for the query Şpreventing alcoholismŤ,

documents containing Şstop alcohol abuseŤ are also relevant and for the query Şsmall business

statisticsŤ, documents containing Şsmall company statisticsŤ are also relevant.

For lexical queries (bottom part) about some people and places, such as Şvoyager 2

NeptuneŤ, Şdistance between grand canyon and phoenixŤ which require exact term match,

the interaction-based model Inter-MLP outperforms the representation-based model Rep-

MLP. Take the query Şdistance between grand canyon and phoenixŤ as example, the user

1∗ indicates statistical signiĄcance (p<0.05) with Bonferroni correction with respect to the baselines in

Table 6.1.
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issued this query would like to Ąnd the distance between grand canyon and phoenix, but not

other places, therefore interaction-based models which focus more on lexical match performs

better.

By combing the representations and interactions, the model HM-MLP outperforms both

Rep-MLP and Inter-MLP for both lexical and conceptual queries. This result demonstrates

the complementarity between the two types of features. The general performance of the

three models are presented in Table 6.3. We can observe that the model using only one type

of feature (Rep-MLP vs Inter-MLP) can yield equivalent performance. When both types of

features are combined in HM-MLP, we obtain better results. This conĄrms again the two

types of features are complementary.

Integrated vs Separated Learning of Features and Ranking Function: In section

6.5, we have already observed that integrated learning of the neural features and ranking

function (ILM-Feats) is better than learning them separately (ILM-Fix-Feats). To better

illustrate the strength of integrated learning of features and ranking function, we take a

representative query Şqid 7993: model railroadsŤ from the test set and print the top 10

documents ranked by ILM-Fix-Feats and ILM-Feats in Fig. 6.3. Note that those two models

share the same neural components and non neural ranking features, but differ in whether

the neural features are learned together with the L2R ranking layer. ILM-Fix-Feats employs

pre-trained Ąxed representation and interaction features whereas ILM-Feats has the neural

features trained in an end-to-end manner with the ranker.

   

miscellaneous items of high demand subjects 329 publication transactions 8 98 issue model train

publication transactions 8 98 issue model train publication transactions 5 98 issue museum resources

publication transactions 5 98 issue museum resources hobby craft

tempe public library location PA railraod voluntary relief card

west virginia dnr news release west virginia dnr news release

cartoon draw subject 74 B1 model railroad

B1 model railroad B1 mode conversion method

tempe public library location railroad retire board home page

tempe public library location volpe center railroad system division

B1 power condition model miscellaneous items of high demand subjects 329

...

...

...

...

!"#$% '(()* +,-#. $/0.$,/-1 

ILM-Fix-Feats ILM-Feats

Fig. 6.3. Rank List for Query 7993: Document titles of relevant documents are marked in
red, and non relevant ones are marked in black; ILM-Fix-Feats represents the model which
learns neural features and ranking function separately, ILM-Feats learns the neural features
and ranking function in an end-to-end manner

The document titles of relevant documents (judgments ≥ 1) are marked in red, and non

relevant documents (judgments = 0) are marked in black. By comparing the 2 ranking lists,

we can observe that relevant documents are pushed upwards and non relevant documents are

pushed downwards in the rank list produced by the model trained in an end-to-end manner.
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For example, the document entitled Şpublication transactions 8 98 issue model trainŤ which

is relevant to this query is pushed upwards from rank position 2 to position 1 in the end-to-

end ILM model. Another document entitled ŞB1 model railroadŤ which is relevant is pushed

up from position 7 to position 6. Finally, the document entitled Şmiscellaneous items of high

demand subjects 329Ť which doesnŠt talk about railroad models is non relevant, and it is

pushed down from position 1 to position 2 in the end-to-end ILM model. This shows that

within the L2R framework, if we integrate the learning of the neural feature modules and

the ranker in an end-to-end manner, relevant documents could be ranked further upwards,

resulting in improved performance.

We also take another representative query Şqid 9150: sarcomaŤ (a type of tumor) from

the test set and print the top 10 documents ranked by ILM-Fix-Feats and ILM-Feats in Fig.

6.4. Same as the above setting, the two models share the same neural components and non

neural features but only differ in whether the neural representation and interaction features

are learned in an end-to-end manner or not. Same as the above example, the document

Query 9150: sarcoma

ILM-Fix-Feats ILM-Feats

national library of medicine 83 soft tissue sarcoma question

hhv8 referred human herpesvirus 8 national library of medicine 83

soft tissue inflamation sarcoma progress review

medlineplus medical encyclopedia soft tissue sarcoma

soft tissue sarcoma synovial cancer fact 61

sarcoma progress review cancer gov kaposi treatment

icd 03 histology childhood cancer introduction

soft tissue sarcoma question national cancer institute fact

kaposi version medlineplus medical encyclopedia 

gov childhood soft tissue hhv8 referred human herpesvirus 8
...

...

...

...

Fig. 6.4. Rank List for Query 9150: Document titles of relevant documents are marked in
red, and non relevant ones are marked in black; ILM-Fix-Feats represents the model which
learns neural features and ranking function separately, ILM-Feats learns the neural features
and ranking function in an end-to-end manner

titles of relevant documents (judgments ≥ 1) are marked in red, and non relevant documents

(judgments = 0) are marked in black. By comparing the 2 ranking lists, we observe the

same phenomenon: Relevant documents are pushed upwards and non relevant documents

are pushed downwards in the rank list produced by the model trained in an end-to-end

manner. In particular, the relevant document entitled Şsoft tissue sarcomaŤ is pushed up

from position 5 to position 4, the relevant document entitled Şsarcoma progress reviewŤ is

pushed up from position 6 to position 3, and the relevant document entitled Şsoft tissue

sarcoma questionŤ is pushed up from position 8 to position 1. On the other hand, the non

relevant documents Şnational library of medicine 83Ť and Şhhv8 referred human herpesvirus
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8Ť are pushed down from position 1 and 2 to position 2 and 10. This example illustrates again

that within the L2R framework, if we integrate the learning of the neural feature modules and

the ranker in an end-to-end manner, relevant documents could be ranked further upwards,

resulting in improved performance.

Effectiveness of LambdRank vs. Hinge Loss: ILM-Neu and HM-MLP are two similar

models that share the same model architecture and use the same neural features. However,

the former uses LambdaRank framework to optimize while the latter uses hinge loss. From

Table 6.3, we can observe that ILM-Neu outperforms HM-MLP on all evaluation metrics

on both datasets. This comparison demonstrates the beneĄts of employing LambdaRank

framework over the traditional hinge loss training approach and conĄrms the result in [Wang

et al., 2018]. In fact in the Lambdarank framework we directly optimize the delta NDCG

which has the effect of pushing the relevant documents upwards and pushing the non relevant

documents downwards. However, the traditional hinge loss doesnŠt have this group-wise

global view and could only optimize locally during training, therefore resulting in worse

results than the model trained with Lambdarank framework.

Combining features vs. combining scores: One of our initial intuitions is that it is

better to combine representation and interaction features than combining the scores they

produce. This can be conĄrmed by comparing HM-MLP and HM-sum (equivalent to the

Duet model) in Table 6.3: The HM-MLP employs a MLP to combine the representation

features, whereas the HM-sum simply sums the scalar scores of the representation and in-

teraction modules. From this comparison, It is clear that combining features is better than

combining scores. This suggests that MLP can indeed make better use of the features when

they are presented together since this allows them to have possible interactions among the

latent dimensions, whereas the simple addition of the two scalar scores would possibly omit

useful signals which may be helpful for the model.

Flexibility of ILM: Our ILM is also general, it is possible to replace the representa-

tion/interaction module with different ones. To illustrate this possibility, for the interaction

module, we replace the pyramid-based one with the histogram-based one depicted in Fig. 6.2

and build ILM-Hist. Experimental results in Table 6.3 show that it could still outperform

traditional baselines and offer comparable performance with respect to the original ILM.

This demonstrates the Ćexibility of our proposed ILM model: So long as there are neural

representation or interaction modules which are Ąne-tunable together with the L2R layer, it

could be plugged into our proposed ILM model. Moreover, if additional non-neural models

are deemed beneĄcial, they could also be easily incorporated into our ILM model at the L2R

layer.
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6.6.2. Complexity Analysis

In this subsection, we analyze the time complexity of our proposed Cross-level Matching

Model. Our representation modules are based on either 1D-CNN. According to [Vaswani

et al., 2017], one 1D convolution layer will cost O(k ∗ n ∗ d) multiplications in inference/test

mode or equal amount of gradient operations in training mode, where k is the dimension

of the convolved layer vectors, d is the dimension of the input layer vectors, and n is the

sequence length (number of terms).

Our interaction modules are built with 2D convolutions. According to [He and Sun,

2015], one 2D convolution layer will cost O(nin ∗ s2
f ∗ nout ∗ mh ∗ mw) operations, where nin

is the number of input channels, sf is the length of Ąlters (in our setting itŠs squared shape,

so is the s2
f ), nout is the number of output features maps, and mh, mw are the height and

width of output feature map.

For our Integrated Learning Model in Fig. 6.1, suppose that the maximum query and

document length are n and m respectively, the input embedding dimension is d, the hidden

size is h, and in our setting h < d. Suppose we feed in a batch of B triples (q, di, dj). The

representation module would cost B ∗ (n + m) ∗ h ∗ d operations.

As for the interaction module, suppose that there will be no more than k feature maps

and the max Ąlter sizes are sf ∗ sf , then for each 2D convolutional layer, it will cost at most

B ∗ k2 ∗ s2
f ∗ n ∗ m operations. The construction of the interaction matrix will cost at most

B ∗n∗m operations, and there would be an extra B ∗(n∗m∗h+h∗1) operations for the Ąnal

MLP layer. Therefore, for the interaction module there would be 2B∗(k2∗s2
f +h+1)∗n∗m+2h

operations.

The concatenation of non neural ranking features will cost a constant operations O(1),

and the learning to rank layer involves calculating NDCG of the current batch which will

cost O(α ∗ Blog(B)), where the Blog(B) reĆects the sorting involved in calculating ideal

DCG.

Therefore the whole model will have a complexity of O(B ∗ [(n + m) ∗ h ∗ d + 2(k2 ∗ s2
f +

h + 1) ∗ n ∗ m + 2h + αlog(B)]). if the hyper-parameters of the network are Ąxed (i.e. d, sf ,

k, h, B are Ąxed), then the complexity of the model is dominated by n ∗ m which is bi-linear

to the length of query n and document m.

6.7. Conclusion

Recent neural IR models have demonstrated their potentials. Those models mainly em-

ploy either representation or interaction mechanism or a combination of the two. Those

neural models are good at feature learning, however they usually employ simple ranking

function which is another crucial component of an IR model.
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Learning-to-rank (L2R) framework provides a good solution to learn a better ranking

function. However we still observe a large gap between traditional L2R approaches and

neural models, since traditional L2R usually accept Ąxed, hand-crafted features as input.

Therefore it is natural to investigate whether it is possible to take advantage of both the

feature learning power of neural models and the good ranking function learned by L2R by

combining the neural models of different mechanisms under the L2R framework.

To investigate this question, In this chapter, we proposed an Integrated Learning Model

(ILM) to combine both representation-based, and interaction-based and non neural features

within the LambdaRank framework. Both the neural feature modules and the ranking func-

tion are trained in an end-to-end fashion to allow interactions between them. Experiments

on public datasets conĄrm the effectiveness of integrated learning of ranking features of

different nature and ranking function.
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Chapter 7

Conclusion and Future Work

In this section we will give a general conclusion by summarizing the work presented in this

thesis and point out possible future research directions.

7.1. Summary of the Thesis

In this thesis, we present 4 investigations focusing on better adapting neural networks

for Information Retrieval tasks. The Ąrst two works focus on learning multiple layers of

representations or interactions and estimating the global relevance score by considering the

contribution of matching of all layers so as to satisfy different types of query (lexical and

conceptual). The third work focuses on matching representations of different layers in order

to achieve term-phrase matching. Finally the forth work focuses on learning neural features

and ranking function simultaneously in an end-to-end manner in order to take advantage of

both the feature-learning power of neural models and the better ranking function learned by

learning-to-rank framework.

When the Ąrst two investigations are made, typical neural models for IR are either based

on representations or on interactions. We observe that most of the existing neural IR models

(regardless of their mechanism) only employs the last layer representation/interaction to

produce a matching score as global relevance score. This might not be an optimal approach

for neural IR models, since users query could be of different types: some queries might be

lexical query where an exact match on the term level is more appropriate, whereas others

might be conceptual query which requires a certain degree of generalization to match with

relevant documents, and there could also be queries in between. Since neural models could

learn several layers of representations/interactions which generalize terms into more and more

abstract semantics, it is worthwhile to take advantage of the matching signals from multiple

layers to satisfy different types of queries rather than only using the matching information

of the last layer.



To achieve this goal, in the Ąrst two articles, we proposed Multi-level Abstraction Convo-

lution Model (MACM) which produces a matching score at every layer and aggregates them

by a dynamic gating mechanism. Therefore this MACM is capable of coping with different

types of queries by matching them with documents at different levels of abstraction. Our

contribution is two-fold: (1) We design a multi-level matching mechanism which leverages

the matching signals of all layers between query and document to satisfy different types

of query. (2) We conduct experiment on public dataset which validates the advantage of

multi-level matching over single-level matching.

Next, we explored the problem of term-phrase matching. As the writing of the third arti-

cle, many neural IR models have been proposed and shown competitive results. In particular,

interaction-based models have shown superior performance to traditional models in a number

of studies. However, the interactions used as the basic matching signals are between single

terms or their embeddings. For instance, in MatchPyramid, the basic matching components

are term embeddings, and this model employs 2D convolutions to analyze the term-to-term

interaction matrix. In DRMM, the basic matching components are also term embeddings.

This model Ąrst calculates cosine similarity between each query term embedding with all

document term embeddings and then convert the similarities into histogram.

In reality, a term can often match a phrase or even longer segment of text. Sometimes

the longer segment of text doesnŠt even contain exact matched term, but the whole segment

could represent a certain concept which could be matched with a single term. In theses cases,

apart from using term-to-term local interactions, it is also helpful to add additional matching

signals between term and phrase to help the model to cope with the need of term-phrase

matching.

To achieve this, in the third work, we proposed a Cross-level Matching Model (CLMM).

We Ąrst employ 1D-CNN or BiLSTM to learn representations of the phrases. Afterwards,

in addition to the traditional term-to-term matching channel in MatchPyramid, we also

match term representation with phrase representation between query and document. Those

additional matching signals and the traditional term-to-term matching signals are combined

to produce a Ąnal relevance score through a gating mechanism to pay more attention to more

important channels. Our contribution is two-fold: (1) We propose a Cross-level Matching

Model to consider not only term-to-term matchings but also term-phrase matching signals

to satisfy the need of term-phrase matching. (2) We conduct experiments on public datasets

and validate our hypothesis that incorporating term-phrase matching alongside with term-

to-term matching signals will help to improve the performance of an neural IR model.

Finally, we investigated the integration of neural feature learning and ranking function

learning. Any learning-based IR model boils down to essentially two parts: features and rank-

ing function. As the writing of the last article, a lot of neural IR models have demonstrated

their powerful feature learning capability thanks to the neural feature learning modules they
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employed, yet most of them simply output a scalar relevance score and employed a simple

pairwise loss to train.

When it comes to learning a better ranking function, the learning-to-rank framework

(L2R) such as LambdaRank provided a effective solution. However, we still observe a gap

between neural IR models and the L2R framework: the traditional L2R framework only

accept Ąxed features which are often hand-crated and lacks the Ćexibility and expressive

power exhibited in neural features.

Therefore it is worthwhile to investigate whether it is possible to take advantage of

both the feature-learning power of neural models and the good ranking function learned by

L2R framework by integrating them together. In order to answer this question, in the last

article, we proposed an Integrated Learning Model which integrates the learning of both

neural features and L2R ranking function. Our contribution is three-fold: (1) We combine

representation-based and interaction-based neural approaches in a Ćexible learning-to-rank

framework. (2) We integrate feature learning with L2R ranking function learning, which are

trained end-to-end simultaneously. (3) We show that the proposed model can outperform

the existing neural models on public datasets, and that integrating traditional features can

further improve the performance.

7.2. Future Work

In this thesis, after observing the limitations in existing neural IR models, we provide

some solutions to better adapt neural models to IR tasks. Recently, with the recent de-

velopment of NLP tools and more sophisticated deep learning techniques, it is possible to

further improve the performance of neural IR models. In this subsection, we will discuss

some possible future research directions following this thesis.

Recently the rapid development of pre-trained language models [Radford et al., 2019,

Devlin et al., 2019, Yang et al., 2019, Lewis et al., 2020] have shown their potentials in many

natural language processing tasks, ranging from traditional tasks such as masked token

prediction to natural language understanding tasks such as hate speech recognition [Sohn

and Lee, 2019].

SpeciĄcally, the BERT model [Devlin et al., 2019] whose architecture is based on the self-

attention mechanism [Vaswani et al., 2017] has shown its effectiveness and versatility in many

applications. One of the advantage of the BERT pre-trained model is that it contains multiple

layers of very detailed and expressive representations learned through some large training

corpus (800M and 2500M tokens) and could be adapted to perform different downstream

tasks by Ąne-tuning it with the task speciĄc module or objective function. In fact, [van

Aken et al., 2019] has analyzed the roles of different BERT layers in the question answering

(QA) tasks. They found out that the lower layers are responsible for semantic clustering,
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the middle layers help to connect entities to mentions and attributes, higher layers are able

to match questions to supporting facts in documents, and Ąnally the last layer is responsible

for answer extraction. These Ąndings are in line with the property of neural models where

at higher layers, more abstract representations/semantics are constructed to perform more

abstract tasks.

Thanks to the good representations learned by BERT, there have been some studies

using pre-trained BERT and Ąne-tuning it for IR tasks. For example, [Dai and Callan, 2019]

showed that BERT could help better understand the query and document texts with the help

of contextual terms. MarkedBERT [Boualili et al., 2020] adds marker tokens around query

exact-matched terms and those appearing in documents in order to introduce explicitly exact

match signals to further improve performance.

Recently the Dense Retrieval [Zhan et al., 2020] framework has also attracted much atten-

tion thanks to the use of the pre-trained language models (PLMs) like BERT. In those dense

retrieval models, instead of concatenating query and document together to learn a query-

document representation like the work presented above, query and document representations

are constructed separately by a Siamese structure composed of two PLMs. Afterwards the

query and document representation are matched through a fast matching function such as dot

product or cosine similarity. This framework presents two huge advantages for both research

and industrial applications: (1) The costly representation learning process for documents

could be moved to indexing stage to construct dense representations for each document in

the collection, therefore providing much faster query serving responses [Hofstätter et al.,

2020]. When a user issues a query, the dense retrieval model will build dense query repre-

sentation very quickly (since queries are usually short) and match it with pre-built dense

document representations by the fast matching function. (2) The neural model could be em-

ployed to perform full collection search instead of reranking a pre-fetched set of candidates

by a traditional retrieval method such as BM25. In fact, when user issues a query, the model

will construct the dense query representation and perform an approximate nearest neighbor

search [Babenko and Lempitsky, 2016] through the pre-built document dense index [Xiong

et al., 2021].

For example, in TwinBERT [Lu et al., 2020a], the query and document representations

are learned by two symmetrical BERTs and the last layerŠs [CLS] representations of query

and document are employed as global representations to perform a match by dot product.

The ColBERT [Khattab and Zaharia, 2020] model also learns query and document repre-

sentations separately by two BERT encoders. Afterwards, each of the last layerŠs query

token representation is matched with the last layerŠs document token representations, and a

max interaction value is retained. Finally the max interactions are aggregated for all query

terms. By delaying the interactions until the completion of query/document representation

construction, it could also achieve the desired fast response for serving queries.

134



Although those dense retrieval models have demonstrated their effectiveness, there are

still circumstances where they could not outperform a traditional sparse retrieval model [Lin

et al., 2020, Qiao et al., 2019, Luan et al., 2021], especially when the documents are long

or it requires exact match between query and document. This implies that in order to fully

harness the power of BERT-based dense retrieval models for IR tasks, some adaptations

need to be made.

One of the possible adaptations that could be made is to take advantage of multiple

layers learned by BERT encoders. In fact, most existing BERT-based dense retrieval models

only take advantage of the last BERT layer to output a global matching score. However as

we proposed in this thesis, using multiple layers to participate in ranking could make the

model suitable for different types of query, thereby improving performance. As presented

above, since the pre-trained layers in BERT naturally present the property of hierarchical

abstractions [van Aken et al., 2019], it is possible to adapt BERT to follow the multi-level

matching mechanism proposed in this thesis. Since the dense representations of all BERT

layers are pre-built during indexing stage, if we adopt the same fast matching function such

as dot product, the response time for serving a query only scales to a factor of numbers of

layers participated in ranking, therefore still suitable for the need of fast retrieval.

Another challenge to adapt BERT-based dense retrieval models for IR tasks is to handle

the long document. BERT was designed to handle sentence to passage level text which

ranges from tens to a few hundreds terms. However, in the application of IR, documents

could be as long as thousands of terms. In this situation, feeding the whole document into

the model might make the model lose focus and give poor results. To address this issue,

one possible solution is to cut the document into passages and build the query and passage

representations by BERT-encoder during indexing time while maintaining a link from each

passage to the original document it belongs to. Afterwards one could perform a fast MaxSim

operation as in [Khattab and Zaharia, 2020] to identify the best matched passages and their

original document. A Ąnal relevance score between the document and the query could be

obtained by aggregation of those passage level scores. Another solution is to base a retrieval

model on the Longformer [Beltagy et al., 2020] architecture which performs dilated sliding

window attention to save memory, therefore appropriate to encode very long documents.

Finally the basic element in existing BERT-based dense retrieval models are term repre-

sentations, and it only implicitly considers the term dependencies through the self-attention

mechanism. However in IR applications, thereŠs sometimes the need to perform phrase level

match. For example if the query contains the phrase Şspace explorationŤ and this phrase

also appears in the document, then this constitutes a strong evidence that this document

is relevant to the query. To explicitly model the phrase matching signals in BERT, one

solution is to Ąrst identify the phrases in query and add the same marker to all terms within
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this phrase, and perform the same marking operation in the document. This will allow the

BERT model to automatically identify the existence of query phrases in document.

Overall we believe that information retrieval could beneĄt greatly from the recent ad-

vancements and applications of neural learning techniques, yet traditional features which are

robust yet cheap to obtain could also play an role to assist a neural ranking model. However,

direct applying those techniques to IR tasks may not be optimal since it neglects the char-

acteristics of IR task itself. Therefore there are always some beneĄcial adaptations that one

could make to better take advantage of those neural techniques in IR tasks. In this thesis,

we discussed some of them and we hope that these mechanisms could spark more ideas and

give some insights for researchers in this domain in the future.
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