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Sommaire

Cette thèse en trois parties regroupe des travaux de recherches sous la thématiques des sy-

métries sous-jacentes aux systèmes intégrables et des structures algébriques qui les encodent.

Une première partie illustre comment les fonctions spéciales que sont les polynômes ortho-

gonaux apparaissent dans la théorie de la représentation des diverses structures algébriques

associées à des symétries. La seconde partie se concentre sur une généralisation algébrique

de l’opérateur de Heun classique menant à de nouvelles structures algébriques qui trouvent

des applications en traitement de signal et dans l’étude des systèmes intégrables. La der-

nière partie concerne l’élaboration d’un cadre théorique dans le langage de la théorie de

l’information algorithmique permettant de poser une définition mathématique de la notion

d’émergence.
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Summary

This thesis in three parts groups research work under the theme of the symmetries underlying

integrable systems and the algebraic structures that encodes them. A first part illustrates

how orthogonal polynomials, a type of special function, appear in the representation theory

of various algebraic structures associated to symmetries. The second part focuses on an

algebraic generalization of the classical Heun operator that leads to new algebraic structures

with applications in signal processing and in the study of integrable systems. The last part

concerns the formulation of a framework in the language of algorithmic information theory

the enables a mathematical definition for the notion of emergence.
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Introduction

Les symétries sont d’une importance fondamentale à la physique et sont intrinsèquement

liées à la présence de structures dans les systèmes physiques et leurs dynamiques. La notion

de symétrie est généralement introduite comme une opération qui laisse un certain objet

mathématique invariant. Cette définition se prête naturellement à des descriptions mathé-

matiques en termes de structures algébriques, souvent des groupes, qui agissent sur un objet

abstrait. Dans un contexte physique, cet objet mathématique est partie intégrante d’un

modèle théorique qui représente le système physique.

L’identification de symétries dans un système s’apparente à la description rigoureuse de

structures ou contraintes dans l’ensemble des solutions de la dynamique. C’est cet aspect

des symétries qui en rend l’application en physique fructueuse. En effet, l’identification de

symétries dans la dynamique d’un système contraint son évolution et donc ses solutions. De

cette manière, les systèmes hautement symétriques se prêtent plus facilement à un traite-

ment théorique. Lorsqu’un modèle est suffisamment contraint, il devient parfois possible d’en

obtenir par des manipulations symboliques des expressions explicites pour les quantités d’in-

térêt. On réfère alors au modèle comme étant exactement soluble. Les systèmes intégrables

sont des exemples importants de modèles dont la dynamique est exactement soluble.

Tel que mentionné, l’ensemble des symétries associées à un système exactement soluble

peut-être encodé sous la forme de structures algébriques. Les modèles apparaissent alors

comme des représentations de ces structures. Cette thèse en huit articles aborde l’étude et

l’application des structures algébriques encodant les symétries de systèmes exactement so-

lubles. Les résultats sont regroupés en trois parties sous une même thématique. La première

partie concerne les fonctions spéciales, et plus particulièrement les polynômes orthogonaux,

qui apparaissent dans les représentations de structures algébriques. La seconde partie se

concentre sur l’étude de généralisations algébriques de l’opérateur de Heun. Finalement, la



dernière partie construit un cadre théorique général dans l’étude des structures exhibées par

les systèmes physiques et propose une définition mathématique au concept d’émergence.

Dans l’optique de mettre en contexte les travaux présentés dans cette thèse, un survol

de la notion d’intégrabilité est maintenant présenté. Ce survol de la notion d’intégrabilité,

autant en mécanique classique que quantique, permet de mettre en évidence les structures

algébriques qui y sont associées.

Intégrabilité classique

La notion d’intégrabilité prend racine dans l’étude de la solvabilité des équations diffé-

rentielles de la mécanique classique. En effet, la mécanique Newtonienne fut initialement

formulée comme un système d’équations différentielles couplées donné, pour un système de

N particules ponctuelles, par

Fi = miai, i ∈ 1, 2, . . . , N.

La solution d’un tel système d’équation étant obtenue par intégrations successives on appelle

un tel système pour lequel cette intégration est tractable un système intégrable. Cette

conception vague et élémentaire de l’intégrabilité et des systèmes intégrables s’est généralisée

et formalisée substantiellement pour donner naissance au concept moderne d’intégrabilité,

applicable également à la mécanique quantique.

On voudrait formuler une définition de l’intégrabilité en mécanique classique qui soit va-

lide en mécanique quantique. Or, il s’avère qu’une telle définition dans un contexte général

n’est pas connue. Concrètement, il est souvent possible de se limiter à une définition opé-

rationnelle dans des contextes restreints, mais il est pertinent de tenter de mettre en valeur

un fil directeur derrière les diverses notions d’intégrabilité, tant classiques que quantiques.

Différentes notions connexes à l’intégrabilité seront donc présentées en tentant de maintenir

une continuité dans les concepts. En commençant par un contexte dynamique général, on

cherchera à converger vers une notion d’intégrabilité dans la formulation hamiltonienne de

la mécanique classique et de l’importance des symétries dans ce contexte.

Systèmes dynamiques

Avant de se restreindre à la mécanique classique hamiltonienne, une discussion dans

le cadre plus général des systèmes dynamiques est pertinente pour introduire les notions
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centrales. La description mathématique d’un système dynamique comprend premièrement

une variété M , l’espace de phase, dont les points indexent les états possibles du système. La

dynamique est encodée par l’action sur M d’un groupe G continu d’automorphisme gt ∈ G

à 1-paramètre encodant l’évolution temporelle:

gt : M −→M, ∀ t ∈ R

x 7−→ x(t).

Cette définition est suffisante pour décrire complètement la dynamique d’un système dé-

terministe. L’étude d’un tel système cherche alors à obtenir une description explicite de

la dynamique qui met à jour la structure de celle-ci ou du moins en offre une caractérisa-

tion qualitative. Cependant, la présente définition ne garantit pas la tractabilité d’une telle

étude. En effet, pour une condition initiale donnée x0, son orbite G(x0) sous l’action du

groupe d’automorphisme G ne possède pas nécessairement de structure au delà que d’être

un sous-ensemble de M . Par exemple, pour certains systèmes toutes les conditions initiales

génériques correspondent à des orbites denses dans M et donc à une dynamique chaotique.

Il est alors impossible d’identifier des régimes différents de la dynamique ou encore d’en

prédire les caractéristiques pour des conditions initiales spécifiées. L’étude théorique d’un

tel système demeure ainsi très limitée.

Supposons maintenant qu’il existe une fonction F : M −→ R qui soit constante sur les

orbites de G dans M . On sait alors que pour une condition initiale x0, l’orbite G(x0) sera

contenu dans la préimage de F (x0):

G(x0) ⊆ F−1(F (x0)).

Cette contrainte sur la dynamique peut permettre une classification qualitative des évolu-

tions possibles étant donnée les états initiaux. La tractabilité et la pertinence d’une telle

classification dépend de la forme du recouvrement de M par les préimages par F des points

de R. Ceci est le reflet de l’existence de régimes chaotiques dans les systèmes dynamiques. En

effet, F peut-être interprétée comme une quantité conservée par la dynamique, mais l’exis-

tence d’une telle quantité conservée ne permet pas nécessairement une simplification dans

l’étude du système. Par exemple, une fonction F dont les préimages seraient des ensembles

fractals ne permettrait pas de simplification. Par contre, si les préimages de F spécifient une

foliation de M , de sorte que la préimage de chaque point de R soit une sous-variété N de

3



M , alors la dynamique est effectivement contrainte à N ↪→ M et donc de dimensionnalité

réduite. Cette idée de foliation de l’espace de phase est à la base des différentes notions

d’intégrabilité en mécanique classique.

Mécanique Hamiltonienne

On se restreint maintenant à des systèmes dont la dynamique est hamiltonienne. Dans

ce contexte, l’espace de phase M est une variété symplectique avec une forme symplectique

bilinéaire ω agissant sur le fibré tangent1. La dynamique est spécifiée [8] par le biais d’une

fonction distinguée H : M −→ R générant l’évolution temporelle infinitésimale. En ef-

fet, puisque H est une fonction sur M , on en obtient aisément une 1-forme par la dérivé

extérieure2

H 7−→ dH ∈ T ∗M,

et puisque M est symplectique, cette 1-forme est associée à un champ de vecteurs par l’iso-

morphisme suivant, défini à partir de la forme symplectique

Φ : TM −→ T ∗M : X 7−→ ω( . , X).

On a alors le champ vectoriel hamiltonien Φ−1 ◦ dH générant un flot hamiltonien sur M. La

dynamique sur M constitue un groupe de difféomorphismes à 1-paramètre G avec

G : R −→ Diff(M) : t 7−→ gt, gt : M −→M.

Ainsi, un flot hamiltonien spécifie une dynamique par l’équation suivante

d

dt
gtx

∣∣∣∣
t=0

= Φ−1 ◦ dH
∣∣∣∣
x
∀x ∈M.

Cette dynamique peut également être exprimée comme une action de G sur les observables

directement. En effet, les observables d’un système en mécanique classique correspondent

aux fonctions sur l’espace de phase M . Ainsi, pour une observable représentée par une

fonction F : M −→ R, l’évolution du système implique une évolution de cet observable par

F (t) = F ◦ gt.

1Soit le recollement lisse des espaces tangents à M .
2Il s’agit de la différentielle de H dans le formalisme des formes différentielles.
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En introduisant le crochet de Poisson comme suit

{f, h} ≡ ω(Xf , Xh), Xf = Φ−1(df), Xh = Φ−1(dh),

on peut exprimer [8] l’évolution infinitésimale de F sous l’action de H par

d

dt
F (t) = {F,H}.

Il est maintenant possible de formuler une définition de l’intégrabilité classique. Soit un

système hamiltonien sur un espace de phase M de dimension 2n ayant pour Hamiltonien

H. On sait que pour tout observable invariant sous l’évolution temporelle, on aura que la

fonction F associée à cet observable sera telle que

{F,H} = 0,

de sorte que sous l’évolution dynamique, la valeur initiale f = F (x0) sera conservée. Suppo-

sons maintenant un ensemble {Fi} de n fonctions sur M indépendantes telles que

{Fi, H} = 0 i = 1, 2, . . . , n,

c’est-à-dire étant toutes associées à un observable conservé par la dynamique. Chacune

de ces quantités conservées définit une foliation de M contraignant la dynamique [1]. En

demandant également que

{Fi, Fj} = 0, i, j = 1, 2, . . . , n,

on s’assure que l’ensemble des {Fi} définisse une foliation globale de M en sous-variétés

invariantes sous la dynamique, chacune de dimension n. Le système est alors complètement

intégrable au sens de Liouville.

Structures algébriques associées

La présence du crochet de Poisson dans cette définition de l’intégrabilité est le reflet d’une

structure algébrique. Plus particulièrement, l’ensemble F des fonctions lisses sur l’espace de

phase M forme une algèbre de Poisson. En effet, une structure naturelle d’espace vectoriel

sur R existe pour F provenant de celle du codomaine R et le produit en chaque point font

de F une algèbre associative

αf1 + f2 ∈ F , f1f2 ∈ F , ∀ f1, f2 ∈ F , α ∈ R.
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Ensuite, la structure du crochet de Poisson fait de F une algèbre de Lie. Ces structures

définies sur F forment ensemble une algèbre de Poisson. Aussi, sachant que les fonctions

lisses sur M , soit les éléments de F , sont les observables de la mécanique classique, cette

structure de Poisson est définie sur les observables. Qui plus est, l’application

Φ−1 ◦ d : F −→ TM : f 7−→ Xf

a pour image les champs vectoriels hamiltoniens [1], c’est-à-dire les champs vectoriels qui sont

les générateurs infinitésimaux de symplectomorphismes hamiltoniens, aussi appelés transfor-

mations canoniques. Ainsi, des quantités invariantes {Fi} avec {Fi, H} = 0 génèreront des

transformations de symétrie de l’espace de phase M laissant les surfaces de contour de H

invariantes. Le groupe des symplectomorphismes associé s’apparente alors au groupe de

symétrie de la dynamique.

L’algèbre de Poisson F génère, par l’application exponentielle, le groupe des symplecto-

morphismes hamiltoniens. La sous-algèbre de F générée par l’Hamiltonien H et les quantités

conservées {Fi} constitue alors l’algèbre de symétrie du système qui génère le groupe de sy-

métrie par exponentiation. La structure de groupe que forment les symétries d’un système

physique peut être encodée [11] au niveau algébrique par la construction de l’algèbre enve-

loppante universelle. Formellement, cette structure se construit en prenant le quotient de

l’algèbre tensorielle T (F) par les relations algébriques

U(F) = T (F)/〈[X, Y ]−X ⊗ Y + Y ⊗X〉X,Y ∈F ,

et peut être vue comme l’algèbre des polynômes sous le produit tensorielle en termes des

éléments de l’algèbre de Lie F . Le quotient assure que les relations du crochet de Lie

demeurent présentes. L’aspect important de cette construction réside en ce qu’elle constitue

une algèbre de Hopf, encodant la structure de groupe de transformation généré par l’algèbre

de Lie associée. Aussi, la structure de U(F) est enrichie d’homomorphismes distingués, soit

le coproduit ∆, l’antipode S et la counité ε, de même que des relations de compatibilité

entre ceux-ci. Ces homomorphismes sont le reflet [11] de l’existence du produit de groupe,

de l’inverse et de l’identité, respectivement, dans la structure de groupe généré par F .
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Intégrabilité quantique

On cherche maintenant à cerner une notion d’intégrabilité dans le contexte de la mé-

canique quantique. Une première définition, inspirée de la notion classique, permettra de

mettre en valeur les subtilités de la question. Il sera ensuite question d’exposer l’origine

de l’équation de Yang-Baxter constituant les fondements pour la plupart des versions de

l’intégrabilité en quantique pour ensuite se tourner sur la formalisation algébrique de cette

équation reposant sur les algèbres de Hopf, une formalisation proposant un traitement plus

général des symétries qu’il ne l’est possible en utilisant des groupes.

Un système quantique est décrit par un espace de Hilbert H indexant les états possibles

du système et sur lequel agissent des opérateurs linéaires auto-adjoints représentant les ob-

servables. Ces opérateurs forment l’algèbre des observables O. Les éléments de cette algèbre

d’opérateurs génèrent des groupes à 1-paramètre d’automorphismes unitaires U(s) de H par

l’application exponentielle

exp : X 7−→ U(s) ≡ e−isX , ∀X ∈ O.

La dynamique est encodée par un opérateur distingué, l’Hamiltonien, qui génère l’évolution

temporelle du système. Cette évolution temporelle comme action sur les états peut être vue

comme un automorphisme de l’algèbre des observables de sorte que pour un observable O,

on ait l’évolution suivante
d

dt
O(t) = i[H,O(t)],

correspondant à l’approche de Heisenberg à la mécanique quantique, soit celle utilisée dans

cette discussion.

Une première définition

Le formalisme algébrique de la mécanique quantique se rapproche suffisamment de celui

de la mécanique classique pour suggérer d’importer directement la notion d’intégrabilité

classique au contexte quantique. Dans cette optique [18], pour un système avec N degrés de

liberté, on propose comme critère d’intégrabilité du système l’existence d’un ensemble {Qi}

de N quantités conservées qui commutent mutuellement entre-elles, c’est-à-dire

[H,Qi] = 0, [Qi, Qj] = 0, i, j = 1, 2, . . . , N, i 6= j.
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Cette définition peut sembler satisfaisante, mais plusieurs difficultés demeurent. En effet,

la diagonalisation simultanée des N quantités conservées devrait générer une base de H

dont chaque vecteur est étiqueté uniquement par les valeurs propres des opérateurs, c’est-à-

dire que ces quantités conservées forment un ensemble complet d’opérateurs qui commutent

(ECOC). Cependant, un théorème de von Neumann [17] démontre que pour tout ensemble

{Oi} d’opérateurs hermitiens bornés qui commutent entre-eux, il existe un opérateur O tel

que les opérateurs de cet ensemble soient tous fonctions de cet opérateur Oi = fi(O). On

aurait alors réduit l’ECOC à un seul opérateur. Inversement, en choisissant judicieusement

des projecteurs sur les états propres de l’Hamiltonien, il est en général possible [18] d’obtenir

des opérateurs qui commutent entre-eux et avec l’Hamiltonien. Ces remarques remettent en

question, dans le contexte de l’intégrabilité, le concept même d’ECOC dans le sens où la

complétude, ou maximalité, de l’ensemble n’est pas bien définie. Plusieurs raffinements de

cette définition existent. Entre autres, la notion d’indépendance fonctionnelle présente dans

les définitions classiques de l’intégrabilité n’a pas d’équivalent dans la présente définition.

Aussi, il est d’usage de demander l’indépendance algébrique des charges conservées. Par

exemple, dans [13], en plus de demander une forme d’indépendance algébrique, les opéra-

teurs admissibles pour les quantités conservées sont contraints d’être éléments de l’algèbre

enveloppante universelle U(hN) ou de sa complétion par des séries convergentes. Ici, hn

est l’algèbre d’Heisenberg, soit l’algèbre de Lie générée par les opérateurs de position et de

quantité de mouvement. Cependant, même ces définitions plus précises ne sont pas valides

en général [2]. Cette première tentative illustre la difficulté du problème et fait ressortir

la nécessité d’introduire des contraintes sur les opérateurs admissibles, tout en soulevant

l’importance minimale qu’occupe l’espace de Hilbert dans ces considérations.

Équation de Yang-Baxter

Ces observations suggèrent la pertinence, dans le but de cerner une notion quantique de

l’intégrabilité, de travailler avec une formulation de la mécanique quantique basée sur des

structures algébriques et de voir l’espace de Hilbert que comme une représentation de cette

structure. L’ensemble des opérateurs admissibles sur l’espace de Hilbert devrait ainsi [18]

être restreint par l’introduction de structures additionnelles afin de différentier les quantités

conservées ayant des conséquences qualitatives sur la dynamique de celles ne constituant
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que des reparamétrisations ingénieuses presque toujours possibles. La contrainte utilisée

ici consiste essentiellement en ce que les opérateurs admissibles soient les éléments d’une

algèbre de Hopf spécifique. Ces algèbres de Hopf apparaissent dans une vaste collection de

modèles intégrables. La nécessité d’une telle structure pour beaucoup de modèles intégrables

s’obtient en étudiant ce que la première définition de l’intégrabilité proposée implique au

niveau algébrique.

La présentation donnée ici suit celle dans [14] de même que [10]. Aussi, supposons un

système intégrable auquel est associé un ECOC {Qi} agissant sur un espace de Hilbert H

de sorte que

[Qi, Qj] = 0, ∀ i, j.

On assume que la complétude de cet ensemble soit définie dans un sens pertinent pour

la situation sans pour autant demander une définition explicite. L’ensemble pourrait être

infini et l’étude de ses propriétés algébriques est simplifiée par l’utilisation d’une fonction

génératrice, la matrice de transfert, donnée par

ln T (λ) =
∞∑
i=0

Qi(λ− ξ)n,

de sorte que l’on ait

Qi = 1
n!

dn

dλn
lnT (λ)

∣∣∣∣
λ=ξ

. (0.1)

La commutativité des charges conservées implique alors la commutativité des matrices de

transfert pour différents paramètres

[T (λ), T (µ)] = 0.

En ligne avec la méthode de la diffraction quantique inverse [16, 15], plutôt que de chercher

directement de tels opérateurs T (λ), on introduit le problème auxiliaire pour les opérateurs

de monodromie T (λ) agissant sur V0 ⊗ H, où V0 est l’espace auxiliaire, de sorte qu’une

solution T (λ) génère une matrice de transfert en prenant la trace sur V0

T (λ) = TrV0 T (λ).

La condition de commutativité des matrices de transfert s’exprime alors en terme des matrices

de monodromie comme

[TrV0T (λ),TrV0T (µ)] = 0.
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Ensuite, puisque la trace est multiplicative sur les membres d’un produit tensoriel, on peut

réécrire l’expression précédente comme

[TrV0 T (λ),TrV0 T (µ)] = TrV0⊗V0 (T (λ)⊗ T (µ)− T (µ)⊗ T (λ))

=⇒ TrV0⊗V0 (T (λ)⊗ T (µ)) = TrV0⊗V0 (T (µ)⊗ T (λ)).

Finalement, puisque la trace est invariante sous un isomorphisme de l’espace vectoriel V0⊗V0,

on obtient que les matrices de monodromie doivent être entrelacées3

R(λ, µ)T (λ)⊗ T (µ) = T (µ)⊗ T (λ)R(λ, µ). (0.2)

L’opérateur R(λ, µ) agissant sur V0⊗V0 est connu dans la littérature sous le nom de matrice

R.4

La relation (0.2) n’est pas suffisante seule et nécessite une condition de compatibilité

supplémentaire sur la matrice R. Cette condition prend son origine en ce qu’il existe deux

façons possibles de ré-ordonner un produit tensoriel de trois matrices de monodromie dans

l’ordre inverse en utilisant les matrices R. Explicitement, si l’on considère le triple produit

tensoriel T (λ)⊗T (µ)⊗T (ν) agissant sur V0⊗V0⊗V0⊗H de même que les trois matrices R,

notées R12, R13 et R23, agissant pour Rij sur le ième et le jème terme de V0⊗V0⊗V0, alors il

existe deux isomorphismes différents construits avec les matrices R qui relient T (λ)⊗T (µ)⊗

T (ν) à T (ν)⊗ T (µ)⊗ T (λ), selon l’ordre dans lequel les permutations sont appliquées. Or,

puisque que l’on demande l’isomorphisme de ces deux espaces

T (λ)⊗ T (µ)⊗ T (ν) ∼= T (ν)⊗ T (µ)⊗ T (λ),

on obtient la condition de compatibilité suivante

R23(µ, ν)R13(λ, ν)R12(λ, µ) = R12(λ, µ)R13(λ, ν)R23(µ, ν). (0.3)

Cette équation d’importance [3, 12] est connue sous le nom d’équation de Yang-Baxter et oc-

cupe une place centrale dans l’étude d’un grand nombre de systèmes intégrables quantiques.

En effet, une solution à l’équation de Yang-Baxter associée à une représentation de la re-

lation d’entrelacement (0.2) correspond essentiellement à un modèle intégrable quantique.

3intertwined
4littéralement R-matrix
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C’est cette notion de l’intégrabilité quantique, caractérisée par une dynamique formant une

solution à l’équation de Yang-Baxter, que l’on retiendra.

Algèbres de Hopf

Les relations (0.2) et (0.3) sont naturelles dans le contexte des algèbres de Hopf. Ces

structures algébriques permettent une définition de l’intégrabilité en quantique, d’autant

plus qu’elles possèdent des équivalents classiques bien définis. On donne maintenant une

définition sommaire d’une algèbre de Hopf comme suit. Premièrement, une bialgèbre est une

algèbre qui est également une coalgèbre5:

Definition 1 (Bialgèbre). Une bialgèbre A sur C est un espace vectoriel A doté d’un produit

associatif ∇ : A ⊗ A → A et d’une unité η : C → A de même qu’un coproduit coassociatif

∆ : A→ A⊗ A et une counité ε : A→ C avec les conditions de compatibilité suivantes

∆ ◦ ∇ = ∇⊗∇ ◦ (1⊗ τ ⊗ 1) ◦ ∆⊗∆, τ(x⊗ y) ≡ y ⊗ x,

∇ ◦ ε = ε⊗ ε, ∆ ◦ η = η ⊗ η, ε ◦ η = 1.

La coassociativité du coproduit peut être exprimée par la relation suivante

(1⊗∆) ◦∆ = (∆⊗ 1) ◦∆.

Ainsi la définition d’une algèbre de Hopf est alors

Definition 2 (Algèbre de Hopf). Une algèbre de Hopf A est une bialgèbre munie d’un

homomorphisme supplémentaire, l’antipode S, avec la relation suivante

∇ ◦ (S ⊗ 1) ◦∆ = η ◦ ε = ∇ ◦ (1⊗ S) ◦∆.

Il est pertinent d’élaborer sur les propriétés du coproduit ∆. Pour une algèbre de Lie g,

ayant pour algèbre enveloppante universelle U(g), ce coproduit est donné explicitement par

∆ : U(g) −→ U(g)⊗ U(g) (0.4)

X 7−→ X ⊗ 1 + 1⊗X. (0.5)

Le coproduit permet alors d’induire une action de U(g) sur le produit tensoriel de représen-

tations de cette algèbre, permettant alors de voir de tels produits de représentations comme

une représentation de U(g). Cette première propriété est de grande importance lorsque sont

5Ici au sens de la théorie des catégories.
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considérés des systèmes composites. Par exemple, il est standard de demander que les es-

paces de Hilbert associés à des systèmes physiques soient des représentations projectives du

groupe des rotations SO(3). Aussi, on voudra que l’espace de Hilbert d’un système com-

posite formé de tels sous-systèmes constitue également une représentation du groupe des

rotations. Or, SO(3) étant un groupe de Lie, on a directement cette propriété puisque les

sous-systèmes sont associés à des représentations eux-mêmes. L’action d’un générateur X

de SO(3) sur le système composite sera alors donnée par le coproduit ∆(X). Le résultat,

bien connu, de cette opération donne les lois d’additions pour les moments angulaires. Il est

pertinent de souligner que la forme symétrique du coproduit dans (0.4) ne provient pas de

la définition d’une algèbre de Hopf, mais bien du fait que g soit une algèbre de Lie. Aussi,

des déformations non-triviales du coproduit sont possibles, menant à de nouvelles structures

algébriques. Les algèbres quantiques [4] sont précisément des algèbres de Hopf n’ayant pas

un coproduit symétrique.

Ces algèbres de Hopf sont justement les structures algébriques nécessaires pour poser les

relations dérivées plus haut. Essentiellement, les matrices de monodromie T (λ) sont définies

à partir de l’exponentiation d’une somme formelle d’éléments de l’algèbre associative générée

par les opérateurs de l’ensemble initial {Qi}. Aussi, ces matrices de monodromie seront des

éléments de type groupe6, en tant qu’éléments d’une algèbre de Hopf A, de sorte que leurs

coproduits seront de la forme ∆(T (λ, µ)) = T (λ)⊗ T (µ), pour un certain T (λ, µ) ∈ A, telle

que la relation (0.2) puisse s’écrire

R∆(T ) = τ ◦∆(T )R.

Ainsi, la matrice R s’interprète comme l’isomorphisme d’entrelacement établissant l’équiva-

lence entre le produit tensoriel de deux représentations V1 et V2 de A et sa permutation

V1 ⊗ V2 ∼= V2 ⊗ V1.

De plus, cette interprétation des matrices R comme les opérateurs d’entrelacs d’algèbres de

Hopf implique directement [9, 10] l’équation de Yang-Baxter (0.3). Ces structures demeurent

également pertinentes dans un contexte classique. En effet [5], les solutions à l’équation de

Yang-Baxter classique correspondent à des bialgèbres de Lie, et donc également des algèbres

de Hopf associées aux structures de Poisson énoncées plus haut. Cependant, le passage

6group-like
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aux algèbres de Hopf, sans que des groupes ou des algèbres de Lie soient spécifiés constitue

une généralisation non-triviale de la notion de symétrie. Certaines algèbres de Hopf à la

base de plusieurs systèmes intégrables quantiques ne sont reliées à l’algèbre enveloppante

d’une algèbre de Lie g que par une déformation Uq(g), appelée quantification en analogie

avec la procédure similaire de quantification par déformation. Ces algèbres déformés sont

des algèbres ou groupes quantiques [19] qui permettent d’exprimer des transformations de

symétrie ne s’exprimant pas en terme de groupes de Lie.

L’existence de la structure d’algèbre de Hopf derrière l’intégrabilité d’un système classique

permet le passage naturel au contexte quantique tout en préservant la notion d’intégrabilité

[7]. On identifie alors une des charges conservées de l’ensemble {Qi} comme l’Hamiltonien et

toutes ces charges sont générées par l’équation (0.1). La structure algébrique dans laquelle

est alors construit le problème implique l’intégrabilité de celui-ci et donc sa solvabilité. Par

ailleurs, les travaux fondateurs de Hans Bethe sur les systèmes intégrables quantiques ont

menés à la technique de l’ansatz de Bethe qui repose également [6] sur cette structure

d’algèbre de Hopf associée à l’équation de Yang-Baxter. Cette connection est à la base de la

méthode de diffraction quantique inverse7 qui permet de formuler la version moderne qu’est

l’ansatz de Bethe algébrique.
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Partie 1

Approches algébriques aux polynômes

orthogonaux



Introduction

Les expressions explicites obtenues dans l’étude de modèles exactement solubles ou de sys-

tèmes intégrables s’expriment souvent en termes de fonctions spéciales. La solvabilité de

ces modèles s’explique par la présence de symétries qui peuvent être encodées mathémati-

quement au travers de structures algébriques. Les modèles s’interprètent alors comme les

réalisations de ces structures abstraites. Il est alors attendu que les fonctions spéciales se ma-

nifestent dans la théorie des représentations de structures algébriques encodant les symétries

d’un système.

Les polynômes orthogonaux forment un ensemble important de fonctions spéciales et se

retrouvent dans de nombreux domaines de la physique et des mathématiques. Ces polynômes

se définissent par un ensemble {Pn(x)}n∈I⊆N0 de polynômes réels Pn(x) en x ∈ D ⊆ R de

degré n doté d’une forme bilinéaire L non dégénérée de sorte que

L{Pn(x), Pm(x)} ∝ δn,m.

Cette partie de la thèse se concentre sur la connexion entre les polynômes orthogonaux et

la théorie de la représentation de certaines structures algébriques. Le chapitre 1 repose sur le

fait que les coefficients de Racah de la superalgèbre de Lie osp(1|2) s’exprime en termes des

polynômes de Bannai-Ito. Au travers d’une réalisation du problème de Racah de osp(1|2)

avec des opérateurs de Dunkl, une expansion asymptotique est utilisée pour obtenir une

fonction génératrice pour les polynômes de Bannai-Ito. En analogie avec l’identification des

polynômes de Krawtchouk en tant qu’éléments de matrices du groupe de rotations agissant

sur les états de l’oscillateur harmonique multidimensionnel, le chapitre 2 construit les core-

présentations unitaires de groupe quantique SUq(3) et identifie subséquemment les éléments

de matrices avec les polynômes de q-Krawtchouk bivariés. Cette partie de la thèse se conclut

au chapitre 3 avec la construction de représentations pour une algèbre quadratique simple.



La diagonalisation d’une combinaison linéaire des générateurs de l’algèbre fait apparaître

plusieurs polynômes orthogonaux classiques en tant que vecteurs propres. Dans le cas des

représentations de dimension finie, ces vecteurs de base sont donnés par des parapolynômes,

qui ne figurent pas dans les classifications standards des polynômes orthogonaux.
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Chapitre 1

Generating function for the Bannai-Ito

polynomials

G. Bergeron, L. Vinet and S. Tsujimoto (2018). Generating function for the Bannai-Ito

polynomials. Proceedings of the American Mathematical Society 146 (12), 5077-5090.

Abstract

A generating function for the Bannai-Ito polynomials is derived using the fact that these

polynomials are known to be essentially the Racah or 6j coefficients of the osp(1|2) Lie

superalgebra. The derivation is carried in a realization of the recoupling problem in terms

of three Dunkl oscillators.

1.1. Introduction

In a previous paper [2], generating functions for the dual -1 Hahn polynomials were

derived using the Clebsch-Gordan problem of the osp(1|2) Lie superalgebra. In the present

case, we exploit again the fact that osp(1|2) is the dynamical algebra of a parabosonic or

Dunkl oscillator. The generating function of the Bannai-Ito polynomials is found by using

the wavefunctions of this system and recalling [5] that the Racah coefficients for osp(1|2) are

given in terms of these polynomials.

Related approaches using wavefunction realizations of dynamical algebra to derive identi-

ties for orthogonal polynomials have been presented previously [8, 9, 12, 13]. In particular,

[3] uses manipulations of wavefunctions similar to the ones that will be presented here to

derive an integral representation of recoupling coefficients.



1.1.1. The Bannai-Ito polynomials

The Bannai-Ito polynomials, introduced in [1], denoted here by Bn(x), depend on four

parameters {r1, r2, ρ1, ρ2} and can be defined [11], see also [14], as the functions diagonalizing

the difference operator

(x− ρ1)(x− ρ2)
2x (I − Px) + (x− r1 + 1/2)(x− r2 + 1/2)

2x+ 1 (PxDx − I),

where Px is the reflection operator acting on functions of x as Pxf(x) = f(−x) and Dx is

the forward shift operator acting as Dxf(x) = f(x−1) and with the eigenvalues λn given by

λn =


n

2 for n even,

r1 + r2 − ρ1 − ρ2 −
n+ 1

2 for n odd.

They satisfy a three-term recurrence relation

xBn(x) = Bn+1(x) + (ρ1 − an − cn)Bn(x) + an−1cnBn−1(x),

with coefficients

an =



(n+ 2ρ1 − 2r1 + 1)(n+ 2ρ1 − 2r2 + 1)
4(n+ ρ1 + ρ2 − r1 − r2 + 1) for n even,

(n+ 2ρ1 + 2ρ2 − 2r1 − 2r2 + 1)(n+ 2ρ1 + 2ρ2 + 1)
4(n+ ρ1 + ρ2 − r1 − r2 + 1) for n odd,

(1.1)

cn =



−n(n− 2r1 − 2r2)
4(n+ ρ1 + ρ2 − r1 − r2) for n even,

−(n+ 2ρ2 − 2r2)(n+ 2ρ2 − 2r1)
4(n+ ρ1 + ρ2 − r1 − r2) for n odd,

(1.2)

and initial conditions B−1(x) = 0, B0(x) = 1. The possible choices of truncation conditions

for the recurrence relation are, for N even,

2(ri − ρk) = N + 1, i, k = 1, 2, (1.3)

and, for N odd,

ρ1 + ρ2 = −(N + 1)/2, or r1 + r2 = (N + 1)/2. (1.4)
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In this work, the truncation conditions used are

2(r2 − ρ1) = N + 1, for N even, ρ1 + ρ2 = −(N + 1)/2, for N odd. (1.5)

The orthogonality of the Bannai-Ito polynomials

N∑
S=0

wSBn(xS)Bm(xS) = hNδnm, S = 0, ... , N, (1.6)

is with respect to a discrete measure of weights wS on the grid xS, for S = 2s+p ∈ {0, ..., N}

and p ∈ {0, 1}, with normalization hN where

wS = (−1)p(ρ1 − r1 + 1/2)s+p(ρ1 − r2 + 1/2)s+p(ρ1 + ρ2 + 1)s
(ρ1 + r1 + 1/2)s+p(ρ1 + r2 + 1/2)s+p(1)s(ρ1 − ρ2 + 1)s

, (1.7)

with (a)m = a(a+ 1)...(a+m− 1) the rising Pochhammer symbol, and

xS = (−1)S(S + 2ρ1 + 1/2)− 1/2
2 , (1.8)

hN =


(2ρ1 + 1)N/2(r1 − ρ2 + 1/2)N/2

(ρ1 − ρ2 + 1)N/2(ρ1 + r1 + 1/2)N/2
, N even,

(2ρ1 + 1)(N+1)/2(r1 + r2)(N+1)/2

(ρ1 + r1 + 1/2)(N+1)/2(ρ1 + r2 + 1/2)(N+1)/2
, N odd,

(1.9)

where N = |ρ2 + r2|+ r2 − ρ2 − 2ρ1 − 1.

1.1.2. The osp(1|2) algebra

The osp(1|2) algebra is generated by two odd elements K± and one even element K0,

relative to a Z2-grading. The presentation used in this paper makes this grading explicit

by the introduction of a grade involution operator R that commutes/anticommutes with

the even/odd elements of the algebra. This presentation, also referred to as the sl−1(2)

algebra [10] in the literature, is given by the four generators K0, K± and R together with

the relations

[K0, K±] = ±K±, [K0, R] = 0, {K+, K−} = 2K0, {K±, R} = 0, R2 = 1, (1.10)

with [a, b] = ab− ba and {a, b} = ab+ ba. The Casimir operator for the algebra as presented

in (1.10) is given by

C = (K+K− −K0 + 1/2)R. (1.11)
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The irreducible positive-discrete series representations of osp(1|2) are then labeled by two

numbers (µ, ε) where µ ≥ 0 and ε = ±1. The actions of the generators on the orthonormal

basis vectors |n, µ, ε〉 with n ∈ N are

K0 |n, µ, ε〉 = (n+ µ+ 1/2) |n, µ, ε〉 , R |n, µ, ε〉 = ε (−1)n |n, µ, ε〉 ,

K+ |n, µ, ε〉 =
√

[n+ 1]µ |n+ 1, µ, ε〉 , K− |n, µ, ε〉 =
√

[n]µ |n− 1, µ, ε〉 ,
(1.12)

where [n]µ = n + µ(1 − (−1)n). In these representations, the Casimir (1.11) assumes the

value

C|n, µ, ε〉 = −εµ|n, µ, ε〉.

1.1.3. Realization as a dynamical algebra

The presentation (1.10) of osp(1|2) can be realized [6, 7] in terms of operators acting

on functions of a real variable x. Let Px denote the parity operator acting on functions as

Pxf(x) = f(−x). The Z2-Dunkl derivative is defined by

Dx = ∂x + µ

x
(1− Px).

The osp(1|2) algebra is realized under the following identification of the generators:

K0 = −1
2D

2
x + 1

2x
2, K± = 1√

2
(x∓Dx), R = Px. (1.13)

This casts osp(1|2) as the dynamical algebra of the parabose oscillator [10] whose Hamil-

tonian H is the operator that realizes K0. It follows that the position operator and its

associated eigenvectors are

X = 1√
2

(K+ +K−), X|x, µ, ε〉 = x|x, µ, ε〉. (1.14)

The representation basis (1.12) corresponds to the energy eigenstates with eigenvalues E =

n+ µ+ 1/2 and can be modeled by the wavefunctions Ψµ,ε
n (x) defined through

Ψµ,ε
n (x) = 〈x, µ, ε|n, µ, ε〉. (1.15)
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1.1.4. The Racah problem of osp(1|2)

The osp(1|2) algebra also forms a Hopf algebra [4] where the coproduct ∆ is given in the

presentation (1.10) as

∆(K0) = K0 ⊗ 1 + 1⊗K0, ∆(R) = R⊗R, ∆(K±) = K± ⊗R + 1⊗K±. (1.16)

This Hopf algebra structure induces an action of osp(1|2) on tensor products of modules.

Consider the following threefold tensor product of irreducible representations

(µ1, ε1)⊗ (µ2, ε2)⊗ (µ3, ε3). (1.17)

One can decompose this product of representations in a direct sum of irreducible represen-

tations in two different ways, corresponding to the order in which the coproduct is used to

induce an action of osp(1|2) on (1.17), either ∆ ⊗ 1 ◦ ∆ or 1 ⊗ ∆ ◦ ∆. Both cases specify

an algebra homomorphism osp(1|2)→ osp(1|2)⊗ osp(1|2)⊗ osp(1|2) and an associated de-

composition of threefold tensor products of representations into direct sums of irreducible

representations

(µ1, ε1)⊗ (µ2, ε2)⊗ (µ3, ε3)
∆⊗1◦∆∼=

⊕
u

(µ(12)3(u), ε(12)3(u)),

1⊗∆◦∆∼=
⊕
v

(µ1(23)(v), ε1(23)(v)).
(1.18)

In fact, by the coassociativity of the coproduct, we have that two irreducible representations

connected in such a way are isomorphic

(µ(12)3, ε(12)3) ∼= (µ1(23), ε1(23)) (1.19)

and thus, we will only keep the notation distinguishing the two in the labels when relevant.

The basis constructed as in (1.12) for these representations does not uniquely determine

the map (1.18) on the basis vectors themselves, but a canonical choice of supplementary labels

exists that removes the degeneracy. One demands that the basis vectors of (µ(12)3, ε(12)3),

(respectively (µ1(23), ε1(23))), diagonalize the intermediate Casimir operator C12 = ∆(C)⊗ 1,

(resp. C23 = 1⊗∆(C)). Thus, denoting the action of ∆⊗ 1 ◦∆ = 1⊗∆ ◦∆ on generators

A ∈ osp(1|2) by

∆⊗ 1 ◦∆ : A 7→ Â ∈ osp(1|2)⊗ osp(1|2)⊗ osp(1|2), (1.20)
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and knowing the two modules (µ(12)3, ε(12)3) and (µ1(23), ε1(23)) are identical as osp(1|2) re-

presentations, we have that basis vectors for both satisfy

K̂0 |n123〉 = (n123 + µ123 + 1/2) |n123〉 , R̂ |n123〉 = ε123 (−1)n123 |n123〉 ,

K̂+ |n123〉 =
√

[n123 + 1]µ123 |n123 + 1〉 , K̂− |n123〉 =
√

[n123]µ123 |n123 − 1〉 ,

Ĉ |n123〉 = −µ123 ε123 |n123〉 ,

(1.21)

where |n123〉 stands for either
∣∣∣n(12)3, µ(12)3, ε(12)3

〉
or
∣∣∣n1(23), µ1(23), ε1(23)

〉
. The degeneracy is

then lifted through the actions of the intermediate Casimirs

C12

∣∣∣n(12)3, µ(12)3, ε(12)3
〉

= −µ12 ε12

∣∣∣n(12)3, µ(12)3, ε(12)3
〉
, (1.22a)

C23

∣∣∣n1(23), µ1(23), ε1(23)
〉

= −µ23 ε23

∣∣∣n1(23), µ1(23), ε1(23)
〉
. (1.22b)

These bases are not the same since [C12, C23] 6= 0. The osp(1|2) Racah problem consists in

determining the overlaps R between the two bases (1.21)

R = 〈n(12)3, µ(12)3, ε(12)3

∣∣∣n1(23), µ1(23), ε1(23)
〉
. (1.23)

1.1.5. Outline

We will first explain the realization of the Racah problem in terms of a system of three

parabose harmonic oscillators and will indicate how this realization relates to generating

functions in section 2. Section 3 gives the explicit expressions of the angular wavefunctions

in each parity case of the parameters and a derivation of their asymptotic form in the relevant

limits. Finally, section 4 contains the derivation of the generating functions and is followed

by a brief conclusion.

1.2. Realization of the Racah decomposition

The Racah problem of osp(1|2) can be expressed within the dynamical algebra realization

by considering three uncoupled parabose oscillators in the Cartesian coordinates {x, y, z}.

The total Hamiltonian for this system is simply the sum of the separate Hamiltonians

Hxyz = Hx +Hy +Hz = K0 ⊗ 1⊗ 1 + 1⊗K0 ⊗ 1 + 1⊗ 1⊗K0 = K̂0.

The Schrödinger equation Hxyz|ψ〉 = Exyz|ψ〉 manifestly separates in the Cartesian coordi-

nates. In [7], it was shown that it also separates in spherical coordinates. This separation
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is associated to the symmetries generated by the intermediate Casimir operators C12 and

C23. In fact, the spherical wavefunctions are constructed [4] using the basis (1.21). Not

surprisingly then, the Racah problem is directly related to the different possible choices in

the construction of the spherical coordinates.

1.2.1. Spherical coordinates realization

The position operator X introduced in (1.14) can naturally be extended to a set of three

operators acting on threefold tensor product of irreducible representations as

X = X ⊗ 1⊗ 1, Y = 1⊗X ⊗ 1, Z = 1⊗ 1⊗X,

where the X operator in the right-hand side is the one defined in (1.14). From these, one can

define the radial operator X2 +Y 2 +Z2. It commutes [6] with the intermediate Casimirs C12

and C23. Thus, the two bases introduced in (1.21) do not differ in their radial parts and the

Racah problem is entirely determined by the angular wavefunctions. We may as well take

the radius to be fixed and consider the Racah problem on a fixed eigenspace of the radial

operator X̂2.

The angular wavefunctions will be defined as the functions satisfying (1.22a) or (1.22b)

under the action of the osp(1|2) algebra in the coordinate realization and under the constraint

x2+y2+z2 = 1, where x, y and z are the eigenvalues of theX, Y and Z operators, respectively.

As such, these functions are defined on the two-dimensional sphere and can be parametrized

by two angles θ and φ. We choose these angles to be related to the Cartesian coordinates as

usual through

x = sin θ cosφ, y = sin θ sinφ, z = cos θ. (1.24)

Using these relations, the realization (1.13) of osp(1|2) can be expressed as differential ope-

rators in the angular coordinates [7]. The angular wavefunctions are then given by

Yµ(12)3,ε(12)3
n(12)3 (θ, φ) = 〈θ, φ

∣∣∣n(12)3, µ(12)3, ε(12)3
〉
, with x2 + y2 + z2 = 1.

A similar expression is defined for the other basis with a different set of angular variables

{α, β} by

Zµ1(23),ε1(23)
n1(23) (α, β) = 〈α, β

∣∣∣n1(23), µ1(23), ε1(23)
〉
, with x2 + y2 + z2 = 1.
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It is possible to relate the second set of variables to the first by observing that a permutation

of the terms in the threefold tensor product of irreducible representations (1.17) maps the

basis (1.22a) to (1.22b). Explicitly, this permutation is the cycle ( 1 2 3 ) acting on the

Cartesian coordinates {x, y, z}. In terms of the angular variables, this corresponds to the

relations

sinα cos β = sin θ sinφ, sinα sin β = cos θ, cosα = sin θ cosφ. (1.25)

In view of (1.19), the decomposition of these angular wavefunctions onto each other exists

and will have the Racah coefficients as overlaps

Zµ1(23),ε1(23)
n1(23) (α(θ, φ), β(θ, φ)) =

∑
RYµ(12)3,ε(12)3

n(12)3 (θ, φ), (1.26)

where α(θ, φ) and β(θ, φ) are obtained from (1.25).

1.2.2. Exact form of the decomposition

Let us now make details explicit. First consider a basis vector of (1.17), which we here

denote by

|n1, µ1, ε1〉⊗ |n2, µ2, ε2〉⊗ |n3, µ3, ε3〉. In view of (1.18), we may write a decomposition of the

form

|n1, µ1, ε1〉 ⊗ |n2, µ2, ε2〉 ⊗ |n3, µ3, ε3〉 =
∑
u

Cu |n123, µ123, ε123〉u . (1.27)

For this equality to hold given the action of K̂0 and R̂ and knowing that the representation

parameters µ123 and ε123 cannot depend on the basis label n123 one obtains the following

relations

n123 = n1 + n2 + n3 −N, µ123 = µ1 + µ2 + µ3 + 1 +N, ε123 = ε1ε2ε3(−1)N , (1.28)

where N ∈ [0, n1 + n2 + n3] ⊂ N. The difference between the two bases (1.22a) and (1.22b)

arises when considering the operators C12 and C23. Being intermediate Casimirs, these

operators satisfy

[C12,∆(A)⊗ 1] = 0 = [C23, 1⊗∆(A)] ∀ A ∈ osp(1|2).

Demanding their diagonalisation as in (1.22a) or (1.22b) requires the decomposition (1.27)

to solve the Clebsch-Gordan problem [2], if one focuses only on the first or second pair

of terms in the tensor product (1.17). It is known that the parameters involved in the
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Clebsch-Gordan decomposition into the product representation (µi, εi)⊗ (µj, εj) must verify,

for ni + nj ≥ q ∈ N,

nij = ni + nj − q, µij = µi + µj + q + 1/2, εij = εiεj(−1)q, (1.29)

corresponding to the diagonalization of the intermediate Casimir Cij. Rewriting (1.28) in

view of (1.29), one has that the labels of basis vectors in (1.27) with non-vanishing overlap

and where |n123, µ123, ε123〉 diagonalizes Cij are related by the following equations

n123 = nij + nk − l, µ123 = µij + µk + 1/2 + l, ε123 = εijεk(−1)l, (1.30)

l = N − q, N ∈ [0, n1 + n2 + n3] ⊂ N, =⇒ q ∈ [0, N ] ⊂ N. (1.31)

where i, j ∈ {(1, 2), (2, 3)} and i, j 6= k ∈ {1, 2, 3} index the terms of the threefold tensor

product (1.17).

For given values of µ1, µ2, µ3, ε1, ε2, ε3 and N , the parameters µ123 and ε123 are fixed

and, since l ≥ 0, there are N + 1 ways of choosing q. Thus, the decomposition of the tensor

product of three irreducible osp(1|2) representations can be expressed as

(µ1, ε1)⊗ (µ2, ε2)⊗ (µ3, ε3) ∼=
∞⊕
N=0

N⊕
q=0

(µ123(N), ε123(N))q,

where q indexes as in (1.29) the possible eigenvalues of the intermediate Casimir Cij.

Consider now the Racah coefficients R as given in (1.23) where both basis vectors come

from one of the two different decompositions (1.18) of the same threefold tensor product

of irreducible representations (1.17). As the two modules in consideration are identical as

osp(1|2) modules, the Racah coefficients vanish if the labels of the basis vectors differ. The

only free parameter in non-zero coefficients is the value of the intermediate Casimirs. Thus,

writing as K and S those free parameters indexing the values of the intermediate Casimirs

for the two basis vectors in the overlap, the Racah decomposition will explicitly be written

as

|n123, µ123, ε123, µ12(S)〉 =
N∑
K=0
Rµ1,µ2,µ3
S,K,N |n123, µ123, ε123, µ23(K)〉 .
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This equation can be rewritten in terms of the wavefunctions. As said, the overlap between

two such wavefunctions is directly proportional to the Bannai-Ito polynomials [4]:

ZNS (α(θ, φ), β(θ, φ)) =
N∑
K=0
Rµ1,µ2,µ3
S,K,N YNK (θ, φ), (1.32)

Rµ1,µ2,µ3
S,K,N = ΦN

S

√
wS

hNu1u2...uK
BK(xS; ρ1, ρ2, r1, r2) (1.33)

with wS, xS and hN as in (1.7) and (1.9) and where the BK are the Bannai-Ito polynomials.

The ui are given by ui = an−1bn with an and bn as in (1.1) and (1.2). The choice of phase

ΦN
S is different than in [4]. In this work, writing N = 2n + t ∈ N and S = 2s + p with

p, t ∈ {0, 1} the phase is given by

ΦN
S = (−1)n+t(1−p). (1.34)

The connection between the parameters of the threefold tensor product (1.17) and the pa-

rameters of the Bannai-Ito polynomials in (1.33) is as follows

ρ1 = µ2 + µ3

2 , ρ2 = µ1 + µ

2 , r1 = µ3 − µ2

2 , r2 = µ− µ1

2
µ = (−1)N(N + 1 + µ1 + µ2 + µ3).

(1.35)

1.2.3. Generating function from the Racah problem

The wavefunction realization of the Racah decomposition (1.32) leads to a functional

decomposition with coefficients proportional to the Bannai-Ito polynomials [5]. To obtain

generating functions, one needs to reduce the right-hand side of (1.32) to a power series

of a single variable. As shall be explicit, the angular wavefunctions are polynomials of

trigonometric functions which reduces, under some asymptotic expansion, to their leading

terms. Monomials are obtained from the expansion by the simultaneous introduction of a

suitable relation between the angle variables. However, this procedure must be carried while

preventing the trivialization of the left-hand side of (1.32).

In view of the form of the wavefunctions given in section 3.1, one is led to consider the

expansion |θ| → 0. To prevent a trivialization we introduce, as follows, the finite variable

z = cosα and use (1.25) under the asymptotic expansion to obtain the following

sinα =
√

1− z2, sin β = 1√
1− z2

, cos β = i
z√

1− z2
, (1.36)
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The finiteness of z together with (1.25) implies Im(φ)→∞. With Im(φ) ≥ 0, one demands

that the following limits be defined and give

cosh Im(φ) sin θ → λ, sinh Im(φ) sin θ → λ,

such that compatibility with (1.25) and (1.36) is maintained and

z = λe−iRe(φ). (1.37)

Using (1.25) and (1.36), the following useful relation can be obtained under the asymptotic

limit

sinφ ≈ i cosφ. (1.38)

Under this asymptotic limit, the decomposition (1.32) will take the form of a generating

function for the sum of two Bannai-Ito polynomials

ZNS (z) =
N∑
K=0
Rµ1,µ2,µ3
S,K,N YNK (z), (1.39)

where YNK (z) is a sum of two monomials of the z variable. It should be noted, in view

of (1.37) and since the parameters λ and Re (φ) are not fixed, that z can be any complex

number.

1.3. Wavefunctions and their asymptotic forms

As the Racah problem is fully contained in the overlaps of angular wavefunctions, one

does not need a set of basis functions that reflects the full degeneracy of the Hamiltonian

Hxyz. We shall use instead functions of definite parity on which the total Casimir is diagonal.

This is justified by remembering that we have R 6= 0 only when the overlap is between two

basis vectors from the same eigenspace of the total Hamiltonian. These functions form a

basis of the irreducible representations (1.19) and are sufficient for our purpose but do not

reflect the full degeneracy of the initial Shrödinger equation. This can be seen from the fact

that the operators Ri , i ∈ {1, 2, 3} commute with the total Hamiltonian, but not with the

total Casimir, see [4].
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1.3.1. Angular Wavefunctions

The explicit form of the basis functions used in this work can be obtained by solving

the relevant system of Dunkl differential equations. We assume ε123 = 1 for the rest of this

work. In this case, the angular wavefunctions YNK (θ, φ) for K = 0, ..., N satisfy the following

equations

ĈR̂YNK (θ, φ) = −(N + µ1 + µ2 + µ3 + 1)YNK (θ, φ),

R̂YNK (θ, φ) = (−1)NYNK (θ, φ),

C12 YNK (θ, φ) = −(−1)K(K + µ1 + µ2)YNK (θ, φ),

where these operators are defined on (1.17) using (1.20) and the realization (1.13).

The solutions [4] correspond to (a subset of) the wavefunctions built on the basis (1.22a)

and are given, writing N = 2n+ t, n ∈ N and K = 2k + p ∈ {0, ..., N} with p, t ∈ {0, 1}, by

YNK (θ, φ) = AK

{
BK cost θ sin2k+2p θP

(2k+2p+µ1+µ2,µ3−1/2+t)
n−k−p (cos 2θ)F+

K(φ)

+ (−1)tB−1
K cos1−t θ sin2k+1 θP

(2k+1+µ1+µ2,µ3+1/2−t)
n−k−1 (cos 2θ)F−K(φ)

}
, (1.40)

where AK and BK are

AK = (−1)tK
√√√√ (n− k + p(t− 1))!Γ(n+ k + µ1 + µ2 + µ3 + 3/2 + pt)

Γ(n+ k + µ1 + µ2 + 1 + pt)Γ(n− k + µ3 + 1/2 + p(t− 1)) ,

BK =
(
n− k + µ3 − 1/2 + t

n+ k + µ1 + µ2 + 1

)(p−t)/2

.

and where the FK functions are as follows

F+
K(φ) = ξ+

K

{
EKP

(µ2−1/2,µ1−1/2)
k+p (cos 2φ)

− (−1)pE−1
K cosφ sinφP (µ2+1/2,µ1+1/2)

k+p−1 (cos 2φ)
}
,

(1.41)

F−K(φ) = ξ−K

{
FK sinφP (µ2+1/2,µ1−1/2)

k (cos 2φ)

+ (−1)pF−1
K cosφP (µ2−1/2,µ1+1/2)

k (cos 2φ)
}
,

(1.42)
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with

ξ+
K =

√√√√ (k + p)!Γ(k + µ1 + µ2 + 1 + p)
2Γ(k + µ1 + 1/2 + p)Γ(k + µ2 + 1/2 + p) , EK =

(
k + 1

k + µ1 + µ2 + 1

)p/2
,

ξ−K =

√√√√ k!Γ(k + µ1 + µ2 + 1)
2Γ(k + µ1 + 1/2)Γ(k + µ2 + 1/2) , FK =

(
k + µ1 + 1/2
k + µ2 + 1/2

)p/2
.

A second wavefunction basis is obtained by reparametrizing the sphere in terms of the

angular coordinates α, β as per (1.25). These wavefunctions, denoted ZNS (α, β) for S =

0, ..., N , now satisfy the following equations

ĈR̂ZNS (α, β) = −(N + µ1 + µ2 + µ3 + 1)ZNS (α, β),

R̂ZNS (α, β) = (−1)NZNS (α, β),

C23ZNS (α, β) = −(−1)S(S + µ2 + µ3)ZNS (α, β)

and realize the basis defined by (1.22b). They can be written [4] in terms of the first basis

of wavefunctions YNK as

ZNS (α, β) =


( 1 2 3 )YNK (π − α, β), for N even,

( 1 2 3 )YNK (α, β), for N odd.
(1.43)

where ( 1 2 3 ) is the permutation cycle acting on the parameters (µ1, µ2, µ3). This follows

from the fact that this permutation induces a mapping from the basis of (µ(12)3, ε(12)3) to the

basis of (µ1(23), ε1(23)) when acting on the terms of the threefold tensor product (1.17).

1.3.2. Asymptotic Expansion

We now derive the asymptotic expansion introduced in section 2.3 of the angular wave-

functions (1.40). One will need the leading term and the value at 1 of Jacobi polynomials

given by

P (a,b)
n (x)→ 2−n

(
2n+ a+ b

n

)
xn, P (a,b)

n (1) =
(
n+ a

n

)
.

The polynomials in the FK functions (1.41), (1.42) have for variable cos 2φ → ∞ and only

their leading terms will remain. Using (1.38) in (1.41) or (1.42) while considering only the
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leading term leads to

F+
K(φ)→ ξ+

KEK

(
2k + 2p+ µ2 + µ1 − 1

k + p

)
Ψ+ cos2k+2p φ, (1.44)

F−K(φ)→ ξ−KFK

(
2k + µ1 + µ2

k

)
Ψ− cos2k+1 φ, (1.45)

with Ψ+ and Ψ− given by

Ψ± =



[
1− i(−1)p k+p

k+p+µ1+µ2

(
k+µ1+µ2+1

k+1

)p]
for the case +,

[
i+ (−1)p

(
k+µ2+1/2
k+µ1+1/2

)p]
for the case − .

(1.46)

Consider now the full wavefunctions (1.40) under the asymptotic expansion. The remaining

Jacobi polynomials are evaluated at 1 as their arguments cos 2θ → 1. The remaining cosine

terms also simply become cos θ = 1. The sine terms approach zero, but will be compensated

by the FK functions which are divergent under the asymptotic expansion. Thus, leaving

the sine terms, one is led to the following expressions for the asymptotic wavefunctions for

N = 2n+ t

YNK (θ, φ)→ AK

{
BK

(
n+ k + p+ µ1 + µ2

n− k − p

)
F+
K(φ) sin2k+2p θ

+ (−1)tB−1
K

(
n+ t+ k + µ1 + µ2

n− k − 1 + t

)
F−K(φ) sin2k+1 θ

}
. (1.47)

We now remind the reader that from (1.25) and (1.36) we have cosφ sin θ = z. By construc-

tion, this z variable remains finite in the asymptotic expansion. Using (1.44) and (1.45) to

rewrite (1.47) in terms of the z variable leads to, for N = 2n+ t

YNK (z) = AK

{

ξ+
KBKEK

(
n+ k + p+ µ1 + µ2

n− k − p

)(
2k + 2p+ µ2 + µ1 − 1

k + p

)
Ψ+z

2k+2p

+ (−1)tξ−KB−1
K FK

(
n+ t+ k + µ1 + µ2

n+ t− k − 1

)(
2k + µ1 + µ2

k

)
Ψ−z2k+1

}
. (1.48)

1.4. Generating functions

In this section, we derive the main result, that is, the generating functions for the Bannai-

Ito orthogonal polynomials. The wavefunctions in their asymptotic form being the sum of
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two monomials have not quite been brought to a monomial form. Thus, two degrees of

the Bannai-Ito polynomials will appear in the coefficient of each power of the z variable.

This will not yield a proper generating function. However, once this intermediate result is

obtained, it proves possible to disentangle the resulting power series with a trick involving

analysis of the complex phase of each term. The next two subsections illustrate how the

proper generating functions can be found using this two-step approach.

1.4.1. Intermediate result

The asymptotic expansion given in section 2.3 is constructed so that the trigonometric

functions of the α and β variables remain finite1. Thus, there is no expansion to be made on

the left-hand side of (1.32) as defined in (1.43) to obtain (1.39). One only needs to rewrite

the functions in terms of the new variable z through the use of (1.36). Using standard

trigonometric relations for double angles and (1.36), we have

cos 2α = 2z2 − 1, cos 2β = z2 + 1
z2 − 1 .

The functions of β(z) in ZNS (z), amounting to the FK functions in (1.41) and (1.42),

now depend on the parameter S = 2s+ p ∈ {0, ..., N}, p ∈ {0, 1} and have their parameters

permuted by ( 1 2 3 ) acting on {µ1, µ2, µ3}. These functions are expressed in terms of the

new variable z as

F+
S (z) = ξ+

S

ESP (µ3−1/2,µ2−1/2)
s+p

(
z2 + 1
z2 − 1

)

− iz

1− z2 (−1)pE−1
S P

(µ3+1/2,µ2+1/2)
s+p−1

(
z2 + 1
z2 − 1

), (1.49)

F−S (z) = ξ−S√
1− z2

FSP (µ3+1/2,µ2−1/2)
s

(
z2 + 1
z2 − 1

)

+ iz(−1)pF−1
S P (µ3−1/2,µ2+1/2)

s

(
z2 + 1
z2 − 1

). (1.50)

1Omitting the two poles {z = 1, z = −1} of the trigonometric functions of β.

32



Similarly, permuting the parameters, the angular wavefunctions (1.43) are expressed in

terms of z when N = 2n+ t, n ∈ N and t ∈ {0, 1} as

ZNS (z) = AS

[
ztBSP

(2s+2p+µ2+µ3,µ1−1/2+t)
n−s−p (2z2 − 1)F+

S (z)(1− z2)s+p

− z1−tB−1
S P

(2s+1+µ2+µ3,µ1+1/2−t)
n+t−s−1 (2z2 − 1)F−S (z)(1− z2)s+1/2

]
, (1.51)

where one must not forget to introduce the reflection in the α coordinate when N is even.

1.4.2. Proper generating functions

We now turn to the problem of disentangling the quasi generating functions (1.51). As-

suming z to be a real variable, by observing (1.48) and (1.46), one can note that the phase

information of the asymptotic wavefunctions YNK (z) is given by Ψ+ for even powers of z and

Ψ− for odd powers of z.

To disentangle the generating functions, we want to keep only the powers of z coming

from values of K of the same parity. Thus, we only want to keep the terms with p = 0 for

the even powers of z and the terms with p = 1 for the odd powers of z. In this case, the

matched Ψ terms become

Ψ =



[
1− i k

k+µ1+µ2

]
for even powers of z,

[
i− k+µ2+1/2

k+µ1+1/2

]
for odd powers of z.

(1.52)

The remaining mismatched cases of Ψ are simply given by Ψ = [1 + i].

The disentangling procedure rests on the fact that an orthogonal coordinate system of

the complex plane can be devised such that one of the components of the vectors in these

coordinates is independent of the mismatched terms. More precisely, rotating the complex

plane under the multiplication by eiπ/4, one maps the matching terms to some vectors on

the unit circle and the remaining ones are purely imaginary. Taking the real part of the

result, we obtain an expression that only involves one degree of the Bannai-Ito polynomials

per power of z. Let us now calculate the change in the normalization of each asymptotic

function that this procedure induces. The rotation in the complex plane leads to

ei
π
4 : ΨU 7→ Ψ′U = i

√
2, ΨA 7→ Ψ′A = ei

π
4 ΨA.
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Taking the real part, the desired terms remain whereas the undesired ones vanish, leading

to the required disentanglement. The real part of the rotated ΨA is

Re
(
ei
π
4 ΨA

)
=



1√
2

(
1 + k

k + µ1 + µ2

)
for even powers of z,

−1√
2

(
1 + k + µ2 + 1/2

k + µ1 + 1/2

)
for odd powers of z.

Using the above, the transformed asymptotic wavefunctions, written ỸNK (z), are then mono-

mials in z

ỸNK (z) = Cµ1,µ2,µ3
K,N zK , (1.53)

where the coefficients are as follows, for K = 2k + p and N = 2n+ t with p, t ∈ {0, 1},

Cµ1,µ2,µ3
K,N = (−1)p

2
√
k!(n− k + pt− p)!

 Γ(n+ k + µ1 + µ2 + 1 + p+ t− pt)
Γ(k + µ1 + 1/2 + p)Γ(k + µ2 + 1/2 + p)

× Γ(n+ k + µ1 + µ2 + µ3 + 3/2 + pt)
Γ(n− k + µ3 + 1/2 + t(1− p))Γ(k + µ1 + µ2 + 1)

1/2

. (1.54)

Acting with the same transformation on (1.51) leads to the proper generating function.

Writing S = 2s + p ∈ {0, ..., N} with p ∈ {0, 1}, for N = 2n + t ∈ N with t ∈ {0, 1}, one

arrives at

Z̃NS (z) =
∑
u=0,1

zt+u(1− z2)s
[
(1− z2)p−u

× Uu
S P

(2s+2p+µ2+µ3,µ1−1/2+t)
n−s−p (2z2 − 1)P (µ3−1/2+u,µ2−1/2+u)

s+p−u

(
z2+1

z2−1

)
− z LuS P

(2s+1+µ2+µ3,µ1+1/2−t)
n+t−s−1 (2z2 − 1)P (µ3+1/2−u,µ2−1/2+u)

s

(
z2+1

z2−1

)]
. (1.55)

where

Uu
S = (−1)pu√

2
ASBSE

1−2u
S ξ+

S , LuS = (−1)u(p+1)
√

2
ASB

−1
S F 1−2u

S ξ−S .

The proper generating function decomposition is then expressed as

Z̃NS (z) =
N∑
K=0
Rµ1,µ2,µ3
S,K,N ỸNK (z) =

N∑
K=0
Rµ1,µ2,µ3
S,K,N Cµ1,µ2,µ3

K,N zK , (1.56)
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with Cµ1,µ2,µ3
K,N as in (1.54) and where the Racah coefficients Rµ1,µ2,µ3

S,K,N as given in (1.33) are

proportional to the Bannai-Ito polynomials.

1.5. Conclusion

We have derived generating functions for the Bannai-Ito orthogonal polynomials by ex-

ploiting the fact that these polynomials present themselves as the Racah coefficients for

the osp(1|2) Lie superalgebra. This derivation was done using an appropriate asymptotic

expansion of Dunkl oscillators wavefunctions.

As the Bannai-Ito polynomials can be obtained as a q → −1 limit of the Askey-Wilson

polynomials or q-Racah polynomials, one could ask if their generating functions admit as

limits the generating function derived here. However, all of the possible generating functions

for these polynomials have limits with different truncation conditions for the Bannai-Ito

polynomials than the ones used in this paper and do not correspond to to the result we

derived.

This generating function for the Bannai-Ito polynomials might have interesting combi-

natorial interpretations [1]. Various orthogonal polynomials are obtained as limits of the

Bannai-Ito polynomials. It would be interesting to investigate how generating functions for

these polynomials can be recovered from the one obtained here.
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Chapitre 2

SUq(3) corepresentations and bivariate

q-Krawtchouk polynomials

G. Bergeron, E. Koelink and L. Vinet (2019). SUq(3) corepresentations and bivariate q-

Krawtchouk polynomials. Journal of Mathematical Physics 60 (5), 051701.

Abstract

The matrix elements of unitary SUq(3) corepresentations, which are analogues of the

symmetric powers of the natural repesentation, are shown to be the bivariate q-Krawtchouk

orthogonal polynomials, thus providing an algebraic interpretation of these polynomials in

terms of quantum groups.

Introduction

A fruitful connection exists between Lie groups and algebras and the theory of orthogo-

nal polynomials. Algebraic interpretations for these orthogonal polynomials enable simple

derivations of their properties and often lead to new identities. Similar connections between

the theory of quantum groups and (mostly univariate) q-orthogonal polynomials have been

established [17]. The results of this paper pursue such a connection in multivariate situations

by giving an algebraic interpretations of the quantum bivariate q-Krawtchouk polynomials

in terms of the quantum group SUq(3).

In the classical case, the Krawtchouk polynomials of the Tratnik type form a family of

multivariate Krawtchouk polynomials constructed from univariate Krawtchouk polynomials

using a construction developed in [22] that applies to all polynomials of the (q = 1) Askey



scheme. These are orthogonal polynomials with respect to the multinomial distribution.

Many Lie-theoretic interpretations have been given for the Krawtchouk polynomials. The

multivariate Krawtchouk polynomials in d variables were shown [9] to be matrix elements

of the SO(d+ 1) Lie group and identified as well [12, 13] as overlaps of anti-automorphisms

of sl(d+ 1)-modules.

In the context of quantum groups and algebras, interpretations analogous to the classical

ones have been given for the q-Krawtchouk polynomials, which are orthogonal with respect

to the q-binomial distribution. Koornwinder obtained [16] the univariate q-Krawtchouk po-

lynomials as the matrix elements of unitary corepresentations of the SUq(2) quantum group.

In a complementary way based on the quantum algebras, the q-Krawtchouk polynomials

were seen [25, 8] to arise as matrix elements of a class of Uq(sl(2)) automorphisms. These

two approaches are essentially dual one to another [4].

A family of multivariate q-Krawtchouk polynomials were first derived by Gasper and

Rahman in [6] where they constructed q-deformations of Tratnik’s polynomials. We will

thus refer to these multivariate extensions of the q-Krawtchouk as being of the Tratnik type.

An interpretation of the bivariate and multivariate q-Krawtchouk polynomials based on the

quantum algebra viewpoint was obtained in [7]. With an eye to generalizations and in view

of the fact that for q = 1, Lie groups rather than algebras provide a most natural framework,

it seems appropriate to examine how the multivariate q-Krawtchouk polynomials can be

obtained and analyzed in a quantum group framework. In this paper, we build upon the

quantum group approach of Koornwinder to obtain the bivariate quantum q-Krawtchouk

polynomials of the Tratnik type as the matrix element of unitary SUq(3) corepresentations.

Within this quantum group approach, the structure of the unitary elements of Uq(sl(3))

constructed in [7] is explained from the representation theory of SUq(3).

This paper is organized as follows. In section 2.1, a presentation of the SUq(3) algebra

is first given and the construction of its unitary representations is reviewed. Symmetric

SUq(3) corepresentations are then constructed at the beginning of section 2.2, followed by

the derivation of their matrix elements and a proof of the unitarity of the corepresentations.

A generating function for the matrix elements is then obtained. In section 2.3, the matrix

elements are evaluated in irreducible SUq(3) representations and identified as bivariate q-

Krawtchouk polynomials, which follows from Soibelman’s tensor product theorem. Finally,
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section 2.4 illustrates how evaluating the matrix elements in reducible SUq(3) representations

leads to identities for orthogonal polynomials. This is followed by a brief conclusion.

2.1. The SUq(3) Hopf algebra and its representations

We first give in this section a presentation of the SUq(3) quantum group, a Hopf ∗-algebra,

and discuss how its representations are constructed.

2.1.1. The coordinate ring A(SUq(3))

The coordinate ring A(SLq(3;C)) is a C-algebra A = C[xij; 1 ≤ i, j ≤ 3] with the

relations

xikxjk = qxjkxik, xkixkj = qxkjxki, ∀ i < j, (2.1)

xilxjk = xjkxil, xikxjl − qxilxjk = xjlxik −
1
q
xjkxil, ∀ i < j, k < l,

∑
σ∈S3

(−q)l(σ)x1σ(1)x2σ(2)x3σ(3) = 1.

A Hopf algebra structure is given with the following coproduct ∆, counit ε and antipode S

∆(xij) =
3∑

k=1
xik ⊗ xkj, ε(xij) = δij, S(xij) = (−q)i−jξji, 1 ≤ i, j ≤ 3, (2.2)

where ξij denotes the (i, j) quantum minor, that is the quantum determinant of x with the

ith row and the jth column removed:

ξij =
∑
τ∈S2

(−q)l(τ)xi1jτ(1)xi2jτ(2) , i1 < i2 ∈ {1, 2, 3} \ {i}, j1 < j2 ∈ {1, 2, 3} \ {j}.

Morevover, a unique conjugate linear anti-homomorphism ∗ : A(SLq(3;C))→ A(SLq(3;C)) :

x 7→ x∗ exists such that

x∗ij = S(xji) = (−q)j−iξij, ∀ i, j. (2.3)

This ∗-operation makes A(SLq(3)) into the ∗-Hopf algebra A(SUq(3)) which we will refer to

as simply SUq(3).
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2.1.2. SUq(3) representations

The SUq(3) ∗-representations used in this paper were constructed in [1]. However, to

obtain our main results, we will make use of a theorem of Soibelman [21] on the construction

of modules over quantum groups. Thus, we review how ∗-representations of unitary quantum

groups are constructed [15] using this result. Following [19], one first defines [23] the

infinite dimensional representations τα with α ∈ U(1), of SUq(2) [24] where its generators

{tij : i, j = 1, 2} act on a Hilbert space H with orthonormal basis {|n〉 , n ∈ N} as follows

τα(t12) |n〉 = −qn+1α−1 |n〉 , τα(t21) |n〉 = qnα |n〉 ,

τα(t11) |n〉 =
√

1− q2n |n− 1〉 , τα(t11) |0〉 = 0, τα(t22) |n〉 =
√

1− q2(n+1) |n+ 1〉 .

From these representations, one can build SUq(3) representations. Indeed, consider the two

canonical embeddings ϕi : Uq(sl(2)) ↪→ Uq(sl(3)), i = 1, 2. These embeddings define by

duality the projections ϕ∗i : SUq(3) −→ SUq(2) such that irreducible ∗-representations of

SUq(3) are given by the maps πi ≡ τα ◦ϕ∗i with α = −1 acting on Vsi ∼= H. Explicitly, these

elementary representations are specified by

π1


x11 x12 x13

x21 x22 x23

x31 x32 x33

 · |k〉 =


√

1− q2k|k − 1〉 qk+1 |k〉 0

−qk|k〉
√

1− q2k+2|k + 1〉 0

0 0 |k〉

 , (2.4)

and

π2


x11 x12 x13

x21 x22 x23

x31 x32 x33

 · |k〉 =


|k〉 0 0

0
√

1− q2k|k − 1〉 qk+1 |k〉

0 −qk|k〉
√

1− q2k+2 |k + 1〉

 . (2.5)

All SUq(3) representations can be constructed from the elementary representations π1 and

π2 using the following tensor product theorem [19, Thm 6.2.7]. Denoting by C[G]q the

quantised algebra of functions [3] on G, a connected and simply connected simple compact

Lie group with associated Weyl group W , one has

Theorem 1 (Tensor product theorem). For any unitarizable irreducible C[G]q ∗-

representation V , there exists a unique element w ∈ W of the Weyl group and a unique
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element τ ∈ T of the distinguished maximal torus such that

V ∼= Vw ⊗ Vτ , Vw = Vsi1 ⊗ Vsi2 ⊗ · · · ⊗ Vsik ,

where w = si1si2 . . . sik is a reduced decomposition of w. The tensor product does not depend

(up to a unitary equivalence) on the choice of reduced decomposition for w.

The map πw : SUq(3)→ End(Vw) associated to the representation in the above theorem

is specified by

πw = (πi1 ⊗ πi2 ⊗ · · · ⊗ πik) ◦∆(k−1), w = si1si2 . . . sik ,

where the repeated coproduct ∆(k−1) is defined through

∆(1) = ∆, ∆(k) = 1⊗ · · · ⊗ 1︸ ︷︷ ︸
k−1 times

⊗∆ ◦∆(k−1).

The representation on Vτ is a one-dimensional representation of the form ρτ : SUq(3)→ C :

xij 7→ αi(τ)δij with αi(τ) ∈ U(1) such that α1(τ)α2(τ)α3(τ) = 1. Thus, it only contributes

a global phase to our result and will not be further considered. Take now the case where

w = s2s1. One has

π21 ≡ πs2s1 = (π2 ⊗ π1) ◦∆. (2.6)

The explicit action on the generators is easily obtained from (2.6) using (2.2), (2.4) and

(2.5).

The representation π121 is obtained similarly and, upon tensoring with one-dimensional

representations, is the most general representation in the sense that the intersection of the

kernels of these representation is trivial, c.f. e.g. [15, Sect. 5]. It follows from Theorem 1

that π121 and π212 are equivalent, so it suffices to consider one of them.

2.2. Unitary SUq(3) corepresentations

We now turn to the construction of unitary SUq(3) corepresentations in analogy with the

GL(3) coaction on functions on C3. Consider the space F (1)(C3) of linear functions on C3

with orthonormal basis {zi}i=1,2,3. By identifying these basis elements with a fixed column

of the SUq(3) quantum group as follows

zi = xij, for j fixed, (2.7)
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a natural [20] coaction is defined using the coproduct (2.2) as

∆ : F (1)(C3)→ SUq(3)⊗F (1)(C3) : zi 7→ ∆(xij) =
3∑

k=1
xik ⊗ xkj ≡

3∑
j=1

xik ⊗ zk. (2.8)

The algebra F(C3) of polynomial functions on C3 is identified with the tensor algebra of

F (1)(C3) as follows

F(C3) = T (F (1)(C3)), T (V ) ≡
∞⊕
n=0

V ⊗n, V ⊗n ≡ V ⊗ · · · ⊗ V︸ ︷︷ ︸
n times

, V ⊗0 ∼= C. (2.9)

The identification (2.7) together with (2.1) establishes the following relations

R = { zizj ∼ qzjzi | i < j, i, j = 1, 2, 3 }. (2.10)

Denote the quotient [3, Ch. 7] of the tensor algebra (2.9) by the relations (2.10) as Symq(C3).

A natural grading on Symq(C3) is inherited from the one of F(C3) as the relations (2.10)

preserve this grading. Explicitly,

Symq(C3) =
∞⊕
n=0
F (n)
q (C3), F (n)

q (C3) ≡
(
F (1)(C3)

)⊗n/
R . (2.11)

The coproduct being an homomorphism, the coaction (2.8) is extended to Symq(C3) as

follows

∆(zm1
1 zm2

2 zm3
3 ) = ∆(z1)m1∆(z2)m2∆(z3)m3 , ∀ zm1

1 zm2
2 zm3

3 ∈ Symq(C3). (2.12)

Being constructed from the coproduct, (2.12) defines an SUq(3) corepresentation. From (2.8),

it is easily seen that the coaction (2.12) preserves the natural grading (2.11) on Symq(C3).

Thus, Symq(C3) as an SUq(3) corepresentation decomposes as a direct sum of corepresenta-

tions as follows

∆ : Symq(C3) −→
∞⊕
n=0

∆
(
F (n)
q (C3)

)
.

In view of (2.10), a basis for F (N)
q (C3) is given by

BN =
{
z ~m

∣∣∣ |~m| = N
}
, for z ~m ≡ zm1

1 zm2
2 zm3

3 and |~m| ≡ m1 +m2 +m3. (2.13)
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2.2.1. Matrix elements

On the basis (2.13), the matrix elements of the corepresentation F (N)
q (C3) are given in

the following proposition.

Proposition 1 (Matrix elements). Let 0 < N ∈ N. The matrix elements h(N)
~m,~n of the SUq(3)

corepresentation F (N)
q (C3) with coaction ∆ are given in the basis BN by

∆(z ~m) =
∑
|~n|=N

h
(N)
~m,~n ⊗ z~n, h

(N)
~m,~n =

∑
|aj |=mj
|aj |=nj

Q(a)

~m
a


q−2

3∏
k=1

( 3∏
i=1

xaikik

)
, (2.14)

with |ai| ≡
∑3
j=1 aij, |aj| ≡

∑3
i=1 aji and~m

a


q

≡

m1

a1


q

m2

a2


q

m3

a3


q

,

m
ai


q

≡ (q; q)m
(q; q)ai1 (q; q)ai2 (q; q)ai3

,

and where

Q(a) = q−f(a), f(a) = a13(a21 + a22 + a32) + a31(a12 + a22 + a23)

+ a12a21 + a13a31 + a23a32 (2.15)

is a manifestly symmetric function of the matrix of indices.

Proof. First, compute the matrix elements of the coaction on powers of a single generator

of F (1)(C3). From (2.8) and (2.12), one has

∆(zmi ) = ∆(xij)m =
( 3∑
k=1

xik ⊗ xkj
)m

,

and, knowing that (xik ⊗ xkj)(xil ⊗ xlj) = q2(xil ⊗ xlj)(xik ⊗ xkj), ∀ k < l, one has that [16]

∆(zmi ) =
∑
|ai|=m

m
ai


q−2

xai1i1 x
ai2
i2 x

ai3
i3 ⊗ zai11 zai22 zai33 ,

with the understanding that ai = (ai1, ai2, ai3). The coaction (2.12) of a generic basis ele-

ments in (2.13), is then

∆(z ~m) =
3∏
i=1

∆(zmii ) =
∑

|a1|=m1
|a2|=m2
|a3|=m3

~m
a


q−2

3∏
i=1

( 3∏
k=1

(xik ⊗ xkj)aik
)
, (2.16)
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where all the products are to be expanded from left to right and from innermost to outermost.

Then, observe that

3∏
i=1

( 3∏
k=1

xaikik

)
= xa11

11 x
a12
12 x

a13
13 x

a21
21 x

a22
22 x

a23
23 x

a31
31 x

a32
32 x

a33
33

= xa11
11 x

a21
21 x

a31
31 x

a12
12 x

a22
22 x

a32
32 x

a13
13 x

a23
23 x

a33
33 =

3∏
k=1

( 3∏
i=1

xaikik

)
. (2.17)

Writing nk = ∑3
i=1 aik with |~n| = ∑3

k=1 nk, one finds with (2.15) that

3∏
i=1

( 3∏
k=1

xaikkj

)
= Q(a)

3∏
k=1

(
xa1k+a2k+a3k
kj

)
= Q(a)zn1

1 zn2
2 zn3

3 ≡ Q(a)z~n. (2.18)

Using (2.17) and (2.18) in (2.16) yields

∆(z ~m) =
∑
|~n|=N

∑
|aj |=mj
|aj |=nj

Q(a)

~m
a


q−2

3∏
k=1

( 3∏
i=1

xaikik

)⊗ 3∏
k=1

xnkkj ,

where we introduced aj = (a1j, a2j, a3j) with the sums over |aj| = mj and |aj| = nj are sums

over all the {aij}i,j=1,2,3 satisfying ∑3
i=1 aij = nj and ∑3

j=1 aij = mi. From this expression,

one directly identifies the matrix elements of F (N)
q (C3). �

2.2.2. Unitarity

Unitary corepresentations can be constructed from the above corepresentations through

normalization. We have:

Theorem 2 (Unitarity). The following SUq(3) corepresentation is unitary

∆ : z ~m
N
~m


1
2

q−2

7−→
∑
|~n|=N

t
(N)
~m,~n ⊗ z~n

N
~n


1
2

q−2

,

with the matrix elements given by

t
(N)
~m,~n =

√√√√√√√
N
~m


q−2

N
~n


−1

q−2

∑
|aj |=mj
|aj |=nj

Q(a)

~m
a


q−2

3∏
k=1

( 3∏
i=1

xaikik

)
, (2.19)

and Q(a) as in (2.15).
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Proof. A right SUq(3) comodule is constructed similarly as the left comodule constructed

in (2.12). Identifying the right comodule generators as wj = xij for i fixed, one has now

∆(w ~m) =
3∏
j=1

∆(xmjij ) =
∑
|bi|=mi

~m
b


q−2

3∏
j=1

( 3∏
k=1

(xik ⊗ xkj)bkj
)
,

where the notation for the indices b is the same as in Proposition 1. Writing nk = bk1+bk2+bk3

such that
3∏
j=1

( 3∏
k=1

x
bkj
ik

)
= Q(b>)

3∏
k=1

 3∏
j=1

x
bkj
ik

 = Q(b>)
3∏

k=1
xnkik = Q(b>)w~n,

to obtain, given that (2.15) is symmetric,

∆(w ~m) =
∑
|~n|=N

w~n ⊗ h̃(N)
~n,~m, h̃

(N)
~n,~m =

∑
|bi|=ni
|bi|=mi

Q(b)

~m
b


q−2

3∏
j=1

( 3∏
k=1

x
bkj
kj

)
. (2.20)

The generators of the left and right comodules are related by the ∗ operation in the following

way

(wj)∗ = (xij)∗ = S(xji) = S(zj) =⇒ (w ~m)∗ = S(z ~m).

Thus, knowing that ∆◦S(x) = (S⊗S)◦ τ ◦∆ for τ(x⊗ y) ≡ y⊗x, one has on the one hand

∆ (w ~m)∗ = ∆ ◦ S(z ~m) 7−→
∑
|~n|=N

S(z~n)⊗ S(h~m,~n) =
∑
|~n|=N

(w~n)∗ ⊗ S(h~m,~n). (2.21)

On the other hand, ∆ being a ∗-homomorphism, one has

∆(w ~m)∗ 7−→
∑
|~n|=N

(w~n)∗ ⊗ (h̃~n,~m)∗. (2.22)

Knowing that the w~n are linearly independent, it follows from (2.21) and (2.22) that

S
(
h

(N)
~m,~n

)
=
(
h̃

(N)
~n,~m

)∗
. (2.23)

Comparing (2.20) with the matrix elements h(N)
~n,~m of the left coaction (2.14), one can see that

they only differ by the q-trinomial coefficient. However, it is easy to show thatN
~m


q−2

~m
a


q−2

=

N
~n


q−2

~n
a


q−2

,
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so that with the proper normalization of the matrix elements, one has

t
(N)
~n,~m ≡

√√√√√√
N
~n


q−2

N
~m

−1

q−2

h
(N)
~n,~m =

∑
|aj |=nj
|aj |=mj

Q(a)

√√√√√√
~n
a


q−2

~m
a


q−2

3∏
k=1

( 3∏
i=1

xaikik

)

=

√√√√√√
N
~m


q−2

N
~n

−1

q−2

h̃
(N)
~n,~m ≡ t̃

(N)
~n,~m.

This normalization is equivalent to normalizing the basis elements of the left and right

corepresentations as follows

w ~m ≡

√√√√√√
N
~m


q−2

w ~m, z ~m ≡ z ~m

√√√√√√
N
~m


q−2

. (2.24)

With this normalization and (2.23), one has

S
(
t
(N)
~m,~n

)
=
(
t
(N)
~n,~m

)∗
, (2.25)

which establishes [3, Ch. 4.1] the unitarity of the corepresentations. �

A direct corollary of Theorem 2 is the orthonormality of the matrix elements. Indeed,

writing the SUq(3) product as ∇ : SUq(3)⊗ SUq(3)→ SUq(3), the hexagonal relation from

the Hopf algebra structure gives
∑
|~n|=N

t~m,~n S (t~n,~p) = ∇ ◦ (1⊗ S) ◦∆ (t~m,~p) = η ◦ ε (t~m,~p) = δ~m,~p, (2.26)

where the last equality relies on the fact that the counit ε vanishes on off-diagonal generators

of SUq(3) and also that the single term in (2.19) containing only diagonal generators has

coefficient one. Upon using (2.25) in (2.26), one obtains
∑
|~n|=N

t~m,~n t
∗
~p,~n = δ~m,~p,

∑
|~m|=N

t∗~m,~n t~m,~p = δ~n,~p, (2.27)

where a similar argument is used to obtain the second identity.

2.3. Matrix elements in SUq(3) representations

In this section, the matrix elements (2.19) are shown to be q-Krawtchouk polynomials.

Following [16], we first identify the matrix elements in the elementary representations π1

and π2 as univariate quantum q-Krawtchouk polynomials. Then, the matrix elements in
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the π21 representation are identified as the Tratnik type bivariate quantum q-Krawtchouk

polynomials. Finally, it is shown the matrix elements in the π121 can be expressed in terms

of the same polynomials.

2.3.1. Elementary representations

Consider the matrix elements (2.19) in the π1 and π2 representations. That these matrix

elements are given in terms of univariate quantum q-Krawtchouk polynomials is a corollary

of a previous result of Koornwinder [16], as these SUq(3) repesentations where constructed

from an SUq(2) representation. However, as we now work in an SUq(3) representation instead

of the algebra itself a derivation in the current context is given. The univariate quantum

q-Krawtchouk polynomials [14] are defined1 by

kn(x; p,N, q) = (−1)n
(
q−N ; q

)
n
qn(n−1)/2

2φ1

q−n, q−x
q−N

∣∣∣∣∣∣q
 pqn+1, (2.28)

and are orthogonal with respect to the weight wx(p)2 for x ∈ {0, · · · , N}, where

wx(p) =

(−1)N−xqx(x−1)/2

N
x


q

(pq; q)N−x
(q; q)N

p−Nq−N(N+1)/2


1/2

,

with normalization

Θn(p) = q−n(n−1)/2

(q−N ; q)n

(−1)nqn(n+1)/2−Nn

N
n


q

(q; q)N
(qp; q)n


1/2

.

One has the following proposition.

Proposition 2. The matrix elements (2.19) evaluated in the elementary representations πi
with i = 1, 2 as defined in (2.4) and (2.5), are shift operators given by

πi
(
t
(N)
~m,~n

)
|k〉 = (δi,2δm1,n1 + δi,1δN−m1−m2,N−n1−n2)tmi,ni,Ti(k) |k + Ti −mi − ni〉 , (2.29)

tm,n,T (k − T + n) ≡ (−1)n−mwn(q−2(k+1))Θm(q−2(k+1))km(q−2n; q−2(k+1), T, q2). (2.30)

1Part of the normalization of [14] is here included in the polynomial kn(x; p,N, q) themselves.
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Proof. Looking at (2.4), the monomials in the SUq(3) generators in (2.19) evaluate to

π1

 3∏
i,k=1

xaikik

 |k〉 = δa33,m3

2∏
i=1

δa3i,0 δai3,0

× (−1)a21qa12(k+a22+1)+a21(k+a22)
√

(q2k+2; q2)a22
(q2(k+a22); q−2)a11

|k + a22 − a11〉 .

Using the above and writing T = N −m3 = N − n3, the matrix elements simplifies to

π1
(
t
(N)
~m,~n

)
|k〉 =

m2∑
a21=0

m1

a11


q−2

m2

a21


q−2

q−a21(a12)(−1)a21qa12(k+a22+1)+a21(k+a22)

×

√√√√√√√
N
~m


q−2

N
~n


−1

q−2

√
(q2k+2; q2)a22

(q2(k+a22); q−2)a11
|k + a22 − a11〉 .

Taking the following parametrization of the summation indicesa11 a12

a21 a22

 =

T − n2 − i n2 −m2 + i

i m2 − i

 ,
one has

π1
(
t
(N)
~m,~n

)
|k〉 = (−1)T−n2q(n2−m2)(k+m2+1)+n1(n1+1)

×
√

(q2(k+1); q2)m2
(q2(k+m2−n1+1); q2)n1

(q−2m1 ; q2)n1

(q2; q2)n1

|k − n1 +m2〉

×

√√√√√√√
N
~m


q−2

N
~n


−1

q−2

m2∑
i=0

(q−2n1 ; q2)i (q−2m2 ; q2)i
(q2(n2−m2+1); q2)i (q−2(k+m2); q2)i (q2; q2)i

q2i.

Using Jackson’s identity [5, (III.5)], one can write the 3φ2 as a 2φ1. Then, reversing the

order of summation using [5, exer. 1.4 (ii)] , after shifting the parameter k by −n2 and using

q-Pochhammer symbol identities, leads to

π1
(
t
(N)
~m,~n

)
|k〉 = (−1)m2qk(n2+m2)+n2(m2+1)−2n1n2 |k − n1 +m2〉

×

T
n1


q2

√√√√√√√
N
~m


q−2

N
~n


−1

q−2

(q2(k−n1+1); q2)n1

(q2(k−n1+1); q2)m2

2φ1

q−2m2 , q−2n2

q−2(n1+n2)

∣∣∣∣∣∣q2

 q−2k.
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We now use one of Heine’s transformation formulas [5, (III.3)] to obtain

π1
(
t
(N)
~m,~n

)
|k − T + n1〉 = δN−m1−m2,N−n1−n2(−1)n1qn

2
1−n1T

×

(−1)T−n1+m1q2T (k+1)−T (T+1)−m1(m1−1)+n1(n1−1)

(
q−2k; q2

)
T−n1

(q−2k; q2)m1

1/2

×

T
n1


q2

√√√√√√√
N
~m


q−2

N
~n


−1

q−2

2φ1

q−2m1 , q−2n1

q−2T

∣∣∣∣∣∣q2

 q−2k+2m1 |k −m1〉 . (2.31)

Proceeding similarly, one obtains for π2

π2
(
t
(N)
~m,~n

)
|k − T + n2〉 = δm1,n1(−1)n2qn

2
2−n2T

T
n2


q2

√√√√√√√
N
~m


q−2

N
~n


−1

q−2

×

(−1)T−n2+m2q2T (k+1)−T (T+1)−m2(m2−1)+n2(n2−1)

(
q−2k; q2

)
T−n2

(q−2k; q2)m2

1/2

× 2φ1

q−2m2 , q−2n2

q−2T

∣∣∣∣∣∣q2

 q−2k+2m2 |k −m2〉 . (2.32)

From (2.31) and (2.32), one directly finds (2.29) and (2.30), which concludes the proof. �

2.3.2. Product representations

We now demonstrate that the matrix elements in the representation π21 are espressed in

terms of bivariate quantum q-Krawtchouk polynomials of the Tratnik type. These polyno-

mials are defined in [6] as

Kn,m(x, y;u, v,N, q) = kn(x; v−2, x+ y, q)km(x+ y − n;u−2, N − n, q), (2.33)

with kn(x; p,N, q) as in (2.28). They are orthogonal with respect to the weight W (N)
n1,n2(u, v)2

where

W (N)
n1,n2(u, v) =

(−1)N−n1q2v(n1+n2)qn1(n1−1)

×

N
~n


q2

(
q−2v; q2

)
n2

(
q−2u; q2

)
N−n1−n2

q2N(u+1)q−N(N+1)

1/2

, (2.34)
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with the normalization given by

N (N)
m1,m2(u, v) = q−m1(m1−1)−m2(m2−1)q−m1(u+1) (q2; q2)N−m1−m2

(q2; q2)N

×

(−1)m1+m2

N
~m


q2

q2N(m1+m2)+4m1+2m2−2m1m2−m1(m1−1)−m2(m2−1)

(q−2u; q2)m2
(q−2v; q2)m1


1/2

. (2.35)

With these notations, one has the following proposition.

Proposition 3. The matrix elements (2.19) evaluated in π21 as defined in (2.6) are shift

operators specified by

π21
(
t
(N)
~m,~n

)
|u, v〉 = t

(21)
~m,~n(u, v) |u−m2 +N − n1 − n2, v + n2 −m1〉 , (2.36)

where

t
(21)
~m,~n(u−N + n1 + n2, v − n2) = (−1)m1−n2

×W (N)
n1,n2(u, v)N (N)

m1,m2(u, v)Km1,m2(n1, n2; qu+1, qv+1, N, q2), (2.37)

are the normalized and weighted bivariate quantum q-Krawtchouk polynomials of the Tratnik

type.

Proof. From (2.6), one has

π21
(
t
(N)
~m,~n

)
|u, v〉 = (π2 ⊗ π1) ◦∆

(
t
(N)
~m,~n

)
|u, v〉 =

∑
|~k|=N

π2
(
t
(N)
~m,~k

)
|u〉 ⊗ π1

(
t
(N)
~k,~n

)
|v〉 . (2.38)

Using (2.29) of Proposition 2 in (2.38), one sees the Kronecker deltas δm1,k1 and δk1+k2,n1+n2

remove the sums and one has

k1 = m1, k2 = (n1 + n2 −m1),

which implies T1 = n1 + n2 and T2 = N − m1. One can thus identify (2.38) as the shift

operator in (2.36). Then, shifting u by n1 + n2 −N and v by n2 in (2.38) one has that

t
(21)
~m,~n(u−N + n1 + n2, v − n2) =

tm2,n1+n2−m1,N−m1(u−N + n1 + n2)tm1,n1,n1+n2(v − n2). (2.39)
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Using (2.30) from Proposition 2 in (2.39), one obtains by involved but direct computations

t
(21)
~m,~n(u−N + n1 + n2, v − n2) =

(−1)m1−n2 W (N)
n1,n2(u, v)N (N)

m1,m2(u, v)Km1,m2(n1, n2; qu+1, qv+1, N, q2),

which concludes the proof. �

The expression in (2.37) for the scalar factor of the matrix elements (2.19) evaluated in π21

has been obtained in a related but different approach in [9], see also [11]. There, (2.37) arises

as an expression for the matrix elements in symmetric representations of unitary elements of

Uq(su(3)) constructed from q-exponentials. This correspondance is expected in view of the

duality [2], [3, Ch. 7] between quantum algebras and groups and has been discussed [4] in

the context of q-special functions. The parameters of the polynomials in (2.37) is discrete.

However, one recovers the usual q-Krawtchouk polynomials with continuous parameters by

extension with analytic continuation.

2.3.3. Representation corresponding to the longest Weyl group ele-

ment

We now study the matrix elements in π121. In this case, one has

π121
(
t
(N)
~m,~n

)
|t, u, v〉 = (π1 ⊗ π21) ◦∆

(
t
(N)
~m,~n

)
|t, u, v〉

=
∑
|k|=N

π1
(
t
(N)
~m,~k

)
|t〉 ⊗ π21

(
t
(N)
~k,~n

)
|u, v〉 .

Using (2.29), (2.30), (2.36) and (2.37) in the above, one obtains

π121
(
t
(N)
~m,~n

)
|t, u, v〉 =

m1+m2∑
k1=0

(−1)k1−m1tm1,k1,T1(t)t(21)
~k,~n

(u, v)

× |t+m2 − k1, u+N −m1 −m2 − n1 − n2 + k1, v + n2 − k1〉 . (2.40)

As tm1,k1,T1(t) does not depend on the variables, one can identify the scalar coefficients of

(2.40) as bivariate q-Krawtchouk polynomials normalized by a factor expressed as a uni-

variate q-Krawtchouk polynomials. Thus, studying the matrix elements in π121 leads to

the same polynomials. Indeed, the unitarity of the corepresentations is equivalent to the

51



orthogonality relation of the Tratnik bivariate q-Krawtchouk polynomials (2.33):

δ~n,~p 〈a′, b′, c′| a, b, c〉 =
∑
|~m|=N

〈a′, b′, c′|π121
(
t
(N)
~m,~n

)∗
π121

(
t
(N)
~m,~p

)
|a, b, c〉 ,

which, after shifting b by p1 + p2 and c by −p2, is given by

δ~n,~p 〈a′, b′, c′| a, b+ p1 + p2, c− p2〉 =

∑
|~m|=N

m1+m2∑
k1=0

m1+m2∑
l1=0

(−1)k1+l1tm1,k1,T1(a)tm1,l1,T1(a− k1 + l1)

× t(21)
~k,~p

(b+ p1 + p2, c− p2)t(21)
~l,~n

(b+ n1 + n2 + k1 − l1, c− n2 − k1 + l1)

× 〈a′, b′, c′| a− k1 + l1, b+ n1 + n2 + k1 − l1, c− n2 − k1 + l1〉.

Noticing that the overlap 〈a′| a− k1 + l1〉 fixes the difference l1 − k1 ≡ s, one can rearrange

the sums to obtain

δ~n,~p 〈a− s, b′, c′| a, b+ p1 + p2, c− p2〉 =

∑
|~k|=N

k1+k2∑
m1=0

t
(21)
~k,~p

(b+ p1 + p2, c− p2)t(21)
~k+s(~e1−~e2),~n(b+ n1 + n2 − s, c− n2 + s)

× (−1)stm1,k1,T1(a)tm1,k1−s,T1(a− s)〈b′, c′|b+ n1 + n2 − s, c− n2 + s〉.

Using the univariate q-Krawtchouk dual orthogonality relation [14] in the sum overm1 forces

s to vanish so that one has

δ~n,~p〈b′, c′|b+ p1 + p2, c− p2〉 =∑
|~k|=N

t
(21)
~k,~p

(b+ p1 + p2, c− p2)t(21)
~k,~n

(b+ n1 + n2, c− n2)〈b′, c′|b+ n1 + n2, c− n2〉,

which one can recognize as the dual orthogonality relation of the bivariate q-Krawtchouk

polynomials of the Tratnik type.

2.4. Reducible tensor products

The algebraic interpretation of the multivariate q-Krawtchouk polynomials presented in

this paper can be used to derive identities for these polynomials. Consider for example the
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reducible tensor product of the SUq(2) representations τα ⊗ τβ with α, β ∈ S1. It is known

[18] to decompose into the direct integral

ρ =
⊕∫

S1

τγdγ,

with the intertwiner Λ : τα ⊗ τβ → ρ acting as follows on the basis vectors [10]

Λ |v, t〉 =
∑
w∈N

αt−wβw−v p̄v(q2w; q2|t−v|; q2) γ
−v
√

2π
⊗ |w〉 ,

where the Clebsch-Gordan coefficients, given by

p̄v(q2w; q2|t−v|; q2) = (−1)v+w

√√√√q2(w−v)(|t−v|+1) (q2|t−v|+2; q2)∞ (q2|t−v|+2; q2)v
(q2; q2)v (q2; q2)w

× 2φ1

 q−2v, 0

q2|t−v|+2

∣∣∣∣∣∣q2

 q2w+2,

are the weighted and normalized Wall polynomials [14]. This result can be used in two ways

to calculate the matrix elements in the π211 representation. One has, on the one hand,

π211
(
t
(N)
~m,~n

)
|u, v, t〉 =

⊕∫
S1

dκ
N∑

k1=0

∑
w′∈N

(
√

2π)−1/2 |u−m2 + n3, w
′〉

× αt+n2−k1−w′βw
′−v−n1−n2+k1+m1κm1+k1−n1−n2−vt

(21)
~m,(k1,n1+n2−k1)(u, v)tk1,n1,T1(t)

× p̄v+n1+n2−k1−m1(q2w′ ; q2|t+m1−v−n1|; q2),

and, on the other hand,

π211
(
t
(N)
~m,~n

)
|u, v, t〉 =

⊕∫
S1

dγ
∑
w∈N

αt−wβw−vγ−v√
2π

p̄v(q2w; q2|t−v|; q2) π21
(
t
(N)
~m,~n

)
|u,w〉 =

⊕∫
S1

dγ
∑
w∈N

αt−wβw−vγ−v√
2π

p̄v(q2w; q2|t−v|; q2) t(21)
~m,~n(u,w) |u−m2 + n3, w + n2 −m1〉 .
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Taking the inner product on S1 ⊗ Vα ⊗ Vγ of both expression with γ−v√
2π ⊗

|u−m2 + n3, w + n2 −m1〉 , for a fixed but arbitrary w, one gets

p̄v(q2w; q2|t−v|; q2) t(21)
~m,~n(u,w) =

N∑
k1=0

αm1−k1βk1−n1tk1,n1,n1+n2(t)

× p̄v+n1+n2−k1−m1(q2(w+n2−m1); q2|t+m1−v−n1|; q2)t(21)
~m,(k1,n1+n2−k1)(u, v).

Upon taking α = β = γ = −1 while shifting u by n1 +n2−N , v by −n1−n2, w by −n2 and

t by −n2, one can use (2.30) and (2.37) to express the above in terms of the polynomials,

obtaining

p̄v−n1−n2(q2w−2n2 ; q2|t+n1−v|; q2)Km1,m2(n1, n2; qu+1, qw+1, N, q2) =
N∑
j=0

C
(N)
~m,~n,j(u, v, t) p̄v−j−m1(q2(w−n2−m1); q2|t+m1−v|; q2)

× kj(q−2n1 ; q−2(t+1), n1 + n2, q
2)Km1,m2(j, n1 + n2 − j; qu+1, qv−j+1, N, q2), (2.41)

where

C
(N)
~m,~n,j(u, v, t) =

(−1)m1−n1 wn1(q−2(t+1))Θj(q−2(t+1))
W

(N)
j,n1+n2−j(u, v − j)
W

(N)
n1,n2(u,w)

√√√√ (q−2w; q2)m1

(q−2v+2j; q2)m1

.

It follows that (2.41) provides an identity for the product of a bivariate quantum q-

Krawtchouk polynomial and a Wall polynomial.

Conclusion

This paper identified the matrix elements of the SUq(3) symmetric corepresentations as

the bivariate quantum q-Krawtchouk polynomials of the Tratnik type. This was done by first

constructing the symmetric unitary corepresentations and obtaining abstract expressions for

the matrix elements and then evaluating these expressions in SUq(3) representations. These

results thus provide an algebraic interpretation for the bivariate q-Krawtchouk polynomials

within the quantum group setting. Moreover, this identification of the matrix elements

evaluated in SUq(3) representations is complete in the sense that it held for the most ge-

neral irreducible ∗-representation. Finally, this paper illustrated how the quantum group

interpretation could be exploited to obtain properties of the q-Krawtchouk polynomials.
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The results presented here should admit a generalization to the generic case of SUq(N),

that would yield a similar algebraic interpretation of the multivariate quantum q-Krawtchouk

polynomials of the Tratnik type with valuable outcomes. In view of the relation between

reducibility of SUq(3) representations and an identity for orthogonal polynomials, this alge-

braic interpretation might prove useful to obtain identities for the polynomials.
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Chapitre 3

Orthogonal polynomials and the deformed

Jordan plane

A. Beaudoin, G. Bergeron, A. Brillant, J. Gaboriaud, L. Vinet and A. Zhedanov (2021).

Orthogonal polynomials and the deformed Jordan plane. submitted to the Journal of Ma-

thematical Analysis and Applications.

Abstract

We consider the unital associative algebra A with two generators X , Z obeying the

defining relation [Z,X ] = Z2 + ∆. We construct irreducible tridiagonal representations of

A. Depending on the value of the parameter ∆, these representations are associated to the

Jacobi matrices of the para-Krawtchouk, continuous Hahn, Hahn or Jacobi polynomials.

3.1. Introduction

This paper is devoted to the study of irreducible tridiagonal representations of the two-

generated algebra A which is a deformation of the Jordan plane. It is shown how the

para-Krawtchouk polynomials appear quite naturally in this context, along with the other

families of classical orthogonal polynomials (OPs) of the Jacobi, continuous Hahn and Hahn

type.

The algebra A over R, with generators X , Z and satisfying

[Z,X ] = Z2 + ∆ (3.1)



with ∆ a parameter, is a special case of the most general two-generated quadratic algebra

Q with defining relation

α1X 2 + α2XZ + α3ZX + α4Z2 + α5X + α6Z + α7 = 0. (3.2)

This algebra has been of interest to various communities. Ring theorists have provided clas-

sifications [17, 8] of the special cases it entails and studied their properties. The algebra Q

has also been related to non-commutative probability theory [3] and is related to martingale

polynomials associated to quadratic harnesses [4]. On the physics side, Q describes various

1D asymmetric exclusion models [5, 6, 19].

Recently, the last two authors have begun connecting Q and its various isomorphism

classes to families of special functions. In [18], by studying tridiagonal representations of the

q-oscillator algebra XZ− qZX = 1, they have identified how they encompass the recurrence

relations of the big q-Jacobi, the q-Hahn and the q-para-Krawtchouk polynomials. The case

of the q-Weyl algebra XZ − qZX = 0 has also been studied in [22]. The present paper will

add to this program by considering an interesting special case of (3.2) and identifying the

orthogonal polynomials that can be interpreted from this algebra.

Since their introduction in [20], para-polynomials have been the object of growing inter-

est. Four families have been defined and studied offering para-versions of the polynomials

of Krawtchouk, q-Krawtchouk, Racah and q-Racah type. While they do not fall in the cate-

gory of classical orthogonal polynomials 1, they are understood as non-standard truncations

of infinite-dimensional families of classical OPs [11, 15, 16]. In addition to their natural

occurence in the study of perfect state transfer and fractional revival in quantum spin chains

[20, 12, 14], recent advances have identified these para-polynomials as the basis for finite-

dimensional representations of degenerations of the Sklyanin algebra [7, 1, 2]. They have

also appeared in the study of the Dunkl oscillator in the plane [9]. The main goal of this

paper is to show that these para-Krawtchouk polynomials as well as the Jacobi, continuous

Hahn and Hahn polynomials arise in representations of the two-generated algebra A.

When ∆ 6= 0, A as defined in (3.1) is a deformation of the Jordan plane (with X and

Z viewed as noncommutative coordinates). Three cases will be distinguished depending on

1They obey a three term recurrence relation but a higher order difference equation.
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whether ∆ = 0, ∆ > 0 or ∆ < 0. These three cases will be studied separately and provide a

complete picture of the connection between the algebra (3.1) and orthogonal polynomials.

The presentation is organized as follows. Section 3.2 will introduce the tridiagonal re-

presentations of the algebra A and the non-degeneracy condition. Standardized versions of

A corresponding to ∆ = 0, ∆ < 0, ∆ > 0 will then be examined in the following sections.

The case ∆ = 0 will be studied in section 3.3 and the Jacobi OPs will appear, while the

case ∆ > 0 and the continuous Hahn polynomials will be the object of section 3.4. Section

3.5 will focus on the case ∆ < 0 and will feature both the Hahn and the para-Krawtchouk

polynomials. Some concluding remarks and perspectives will close the paper.

3.2. Tridiagonal representations of the algebra A

Consider a tridiagonal representation of A where X 7→ X and Z 7→ Z. The actions of

X, Z on a semi-infinite orthonormal basis |n〉 , n = 0, 1, 2, . . . are taken to be of the form

X |n〉 = cn |n− 1〉+ bn |n〉+ an |n+ 1〉 , (3.3a)

Z |n〉 = un |n− 1〉+ vn |n〉+ wn |n+ 1〉 , (3.3b)

with c0 = u0 = 0. To ensure that such a representation is irreducible we shall assume that

the off-diagonal coefficients are non-zero for n > 0. Acting with (3.1) on the basis |n〉 and

using the above definitions, one obtains

(ZX −XZ − Z2 −∆) |n〉 = (cnun−1 − cn−1un − un−1un) |n− 2〉

+ (bnun − bn−1un + cnvn−1 − unvn−1 − cnvn − unvn) |n− 1〉

+ (−∆− an−1un + anun+1 − v2
n + cnwn−1 − unwn−1 − cn+1wn − un+1wn) |n〉

+ (anvn+1 − anvn + bnwn − bn+1wn − vnwn − vn+1wn) |n+ 1〉

+ (anwn+1 − an+1wn − wnwn+1) |n+ 2〉 . (3.4)

For the actions in (3.3) to define a representation of A, each side of the above equation must

vanish. As the basis vectors are orthonormal, one obtains the following conditions on the

59



coefficients of (3.3) that define the representations:

0 = cnun−1 − cn−1un − un−1un, (3.5)

0 = bnun − bn−1un + cnvn−1 − unvn−1 − cnvn − unvn, (3.6)

0 = −∆− an−1un + anun+1 − v2
n + cnwn−1 − unwn−1 − cn+1wn − un+1wn, (3.7)

0 = anvn+1 − anvn + bnwn − bn+1wn − vnwn − vn+1wn, (3.8)

0 = anwn+1 − an+1wn − wnwn+1. (3.9)

3.2.1. General solutions to the recurrence relations

We now determine the general solutions to the above system of recurrence equations.

Dividing (3.5) by unun−1, one obtains

cn
un
− cn−1

un−1
= 1.

This implies

φn = φ0 + n, φn ≡
cn
un
. (3.10)

Equation (3.9) can be solved similarly. Dividing by wnwn+1, one has

δn = δ0 − n, δn ≡
an
wn
. (3.11)

Rewriting (3.6) and (3.8) in terms of φn and δn and dividing by un or wn, respectively, one

obtains

bn−1 − bn = (φn − 1)vn−1 − (φn + 1)vn, (3.12)

bn+1 − bn = (δn − 1)vn+1 − (δn + 1)vn. (3.13)

To solve for vn, shift the index of (3.12) and add (3.13) to find

0 = (δn − φn+1 − 2)vn+1 − (δn − φn+1 + 2)vn. (3.14)

Substituting the solutions (3.10) and (3.11) in (3.14) leads to

0 = (δ0 − φ0 − 2(n+ 2) + 1)vn+1 − (δ0 − φ0 − 2n+ 1)vn (3.15)

= µn+2vn+1 − µnvn, (3.16)
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with µn ≡ (δ0 − φ0 − 2n + 1). Multiplying the above by µn+1 as an integrating factor, one

can solve the recurrence to obtain

vn = (δ0 − φ0 − 1)(δ0 − φ0 + 1)v0

(δ0 − φ0 − 2n+ 1)(δ0 − φ0 − 2n− 1) . (3.17)

To find bn, substract instead (3.12) with shifted index from (3.13) and get

bn+1 − bn = 1
2(δn + φn + 1)(vn+1 − vn), (3.18)

which, upon using (3.10) and (3.11), can be solved immediately and yields

bn = 1
2(δ0 + φ0 + 1)(vn − v0) + b0. (3.19)

Finally, (3.7) is written as follows in terms of φn and δn using (3.10) and (3.11), as

∆ + v2
n = (δ0 − φ0 − 2(n+ 1))κn+1 − (δ0 − φ0 − 2(n− 1))κn, (3.20)

with

κn ≡ unwn−1. (3.21)

Multipliying both sides by (δ0 − φ0 − 2n) as an integrating factor, one can reduce the above

to

(δ0 − φ0 − 2n)(δ0 − φ0 − 2n+ 2)κn = (δ0 − φ0)(δ0 − φ0 + 2)κ0 +
n−1∑
k=0

(∆ + v2
k)(δ0 − φ0 − 2k).

(3.22)

The sum over k in (3.22) can be reexpressed2 as

n−1∑
k=0

(∆ + v2
k)(δ0 − φ0 − 2k) = n(δ0 − φ0 − n+ 1)(∆(δ0 − φ0 − 2n+ 1)2 + v2

0(δ0 − φ0 − 1)2)
(δ0 − φ0 − 2n+ 1)2 .

(3.23)

From (3.22) and (3.23), recalling that u0 was required to vanish so that κ0 = u0w−1 = 0,

one has

κn = n(δ0 − φ0 − n+ 1)(∆(δ0 − φ0 − 2n+ 1)2 + v2
0(δ0 − φ0 − 1)2)

(δ0 − φ0 − 2n+ 1)2(δ0 − φ0 − 2n)(δ0 − φ0 − 2n+ 2) . (3.24)

2This is done by noticing the sum to be telescopic or via the polygamma function of the first order.
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3.2.2. The linear pencil X + µZ

The algebra A is invariant under the affine transformation

X 7−→ X + µZ, µ ∈ R.

As a result, one expects the transformed solutions for the coefficients in (3.3) to be given by

(3.10), (3.11) and (3.19) with modified parameters. Indeed one finds the parameters to be

replaced by

φ0 7−→ φ0 − µ, δ0 7−→ δ0 − µ, b0 7−→ b0 − µv0.

Thus, the diagonalization of the linear pencil X + µZ amounts to the diagonalization of X

up to a shift in the parameters.

3.2.3. Representations on polynomials

Denoting by 〈x| the dual eigenvectors:

〈x|X = x 〈x| ,

one can look for the polynomials qn(x) ≡ 〈x |n〉 that diagonalize X

Xqn(x) ≡ x qn(x) = cnqn−1(x) + bnqn(x) + anqn+1(x). (3.25)

By appropriate renormalization, one obtains a monic recurrence relation

Xpn(x) ≡ xpn(x) = an−1cnpn−1(x) + bnpn(x) + pn+1(x), pn(x) =
(
n−1∏
i=0

ai

)
qn(x).

(3.26)

The families of polynomials pn(x) that diagonalize X can be determined by identifying the

coefficients an−1cn and bn.

From (3.10), (3.11), (3.21) and (3.24), one has that

an−1cn = (n+ φ0)(n− δ0 − 1)n(n+ φ0 − δ0 − 1)(∆(2n+ φ0 − δ0 − 1)2 + v2
0(φ0 − δ0 + 1)2)

(2n+ φ0 − δ0 − 1)2(2n+ φ0 − δ0)(2n+ φ0 − δ0 − 2)
(3.27)
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and from (3.19) and (3.17), that

bn = 1
2

(δ0 + φ0 + 1)(φ0 − δ0 + 1)(φ0 − δ0 − 1)v0

(2n+ φ0 − δ0 − 1)(2n+ φ0 − δ0 + 1) + b̃0, b̃0 ≡ b0 −
1
2(δ0 + φ0 + 1)v0.

(3.28)

Finite-dimensional representations of dimension N+1 are obtained if wN = 0 since it follows

that aN = 0 from (3.9). This implies that κN+1 = 0. From (3.24), we see that this is achieved

for any value of ∆ by

N = (δ0 − φ0). (3.29)

If ∆ 6= 0, one finds an additionnal pair of solutions given by

N + 1 = −1
2
[
φ0 − δ0 − 1± (φ0 − δ0 + 1)v0

√
−∆−1

]
. (3.30)

3.3. The case ∆ = 0: Jacobi polynomials

With ∆ vanishing, the coefficient an−1cn (3.27) simplifies to

an−1cn = n(n+ φ0)(n− δ0 − 1)(n+ φ0 − δ0 − 1)(φ0 − δ0 + 1)2v2
0

(2n+ φ0 − δ0 − 1)2(2n+ φ0 − δ0)(2n+ φ0 − δ0 − 2) . (3.31)

Setting v0 = 2(φ0−δ0 +1)−1, one identifies the basis vector to be proportionnal to the Jacobi

polynomials P (α,β)
n (x) with parameters

α = −δ0 − 1, β = φ0. (3.32)

With b̃0 = 0, the coefficient bn of (3.28) is given by

bn = (β2 + α2)
(2n+ β + α)(2n+ β + α + 2) . (3.33)

Comparing the expressions (3.31) and (3.33) for the coefficients using for instance [13], we

conclude:

Proposition 4. In the case ∆ = 0, the eigenfunctions pn(x) of X (3.26) are the monic

Jacobi polynomials

p(α,β)
n (x) = 2nn!

(n+ α + β + 1)n
P (α,β)
n (x).

with parameters α, β given in (3.32).

The only truncation condition possible is (3.29). However, it yields singular expressions

in (3.31) and (3.33) for n ≤ N .
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3.4. The case ∆ > 0: Continuous Hahn polynomials

If ∆ 6= 0, upon scaling the generators of the algebra according to

X̃ = ΩX , Z̃ = ΩZ,

we obtain

[Z̃, X̃ ] = Z̃2 + Ω2∆. (3.34)

In view of (3.34), one can choose Ω so that ∆ = ±1
4 . In this section, we shall consider the

case ∆ = +1
4 . The coefficient an−1cn (3.27) is then given by

an−1cn = (n+ φ0)(n− δ0 − 1)n(n+ φ0 − δ0 − 1)((2n+ φ0 − δ0 − 1)2/4 + v2
0(φ0 − δ0 + 1)2)

(2n+ φ0 − δ0 − 1)2(2n+ φ0 − δ0)(2n+ φ0 − δ0 − 2) .

(3.35)

Writing

φ0 + 1 = a+ c, −δ0 = b+ d, v0 = −i (a− b− c+ d)
2(a+ b+ c+ d) , (3.36)

one can factorize the term with v0:

1
4(2n+ φ0 − δ0 − 1)2 + v2

0(φ0 − δ0 + 1)2 = (n+ a+ d− 1)(n+ b+ c− 1).

With (3.36) and the above, (3.35) becomes

an−1cn = (n+ a+ c− 1)(n+ b+ d− 1)

× n(n+ a+ b+ c+ d− 2)(n+ a+ d− 1)(n+ b+ c− 1)
(2n+ a+ b+ c+ d− 1)(2n+ a+ b+ c+ d− 2)2(2n+ a+ b+ c+ d− 3) . (3.37)

Using (3.36) and taking b̃0 = i
4(a+ b− c− d), the coefficient bn (3.28) is found to be

bn = i
[
− (n+ a+ b+ c+ d− 1)(n+ a+ c)(n+ a+ d)

(2n+ a+ b+ c+ d− 1)(2n+ a+ b+ c+ d)

+ n(n+ b+ c− 1)(n+ b+ d− 1)
(2n+ a+ b+ c+ d− 2)(2n+ a+ b+ c+ d− 1) + a

]
.

(3.38)

The coefficients (3.37) and (3.38) can be identified in [13] and one arrives at:

Proposition 5. In the case ∆ > 0, the eigenfunctions pn(x) of X (3.26) are the monic

continuous Hahn polynomials P (a,b,c,d)
n (x) with parameters given in (3.36).
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3.4.1. Finite-dimensional representations and orthogonal polyno-

mials

Using (3.36), condition (3.29) becomes

N − 1 = −a− c− b− d, (3.39)

which leads to expressions for (3.35) and (3.38) that are ill-defined for n < N . However, this

can be resolved using limits and one thus obtains the para-Krawtchouk polynomials [20].

Condition (3.30) reads

N + 1 = −1
2 [(a+ b+ c+ d− 2)± (a− b− c+ d)] =


−a− d+ 1

−b− c+ 1
(3.40)

and corresponds to the truncation of the continuous Hahn polynomials to Hahn polynomials.

However, for each of these truncations (3.39) and (3.40) to define real polynomials, the

operator X has to be scaled by an imaginary number; this is equivalent to setting ∆→ −∆

which corresponds to the situation ∆ < 0 that is the object of the next section.

3.5. The case ∆ < 0: Hahn and para-Krawtchouk polynomials

When ∆ < 0, polynomials of a real variable are obtained only if (3.29) or (3.30) are

satisfied. We begin by treating the latter case.

3.5.1. Hahn polynomials

In view of (3.34), we may take ∆ = −1
4 without loss of generality. Expressing the

parameters as follows

φ0 = β, −δ0 = α + 1, v0 = −(α + β + 2N + 2)
2(α + β + 2) , b̃0 = 1

4(2N − α + β), (3.41)

so that (3.30) is satisfied, one obtains

an−1cn = n(n+ α)(n+ β)(n+ α + β)(n+ α + β +N + 1)(N − n+ 1)
(2n+ α + β − 1)(2n+ α + β)2(2n+ α + β + 1) , (3.42)

as well as

bn = (n+ α + β + 1)(n+ α + 1)(N − n)
(2n+ α + β + 1)(2n+ α + β + 2) + n(n+ α + β +N + 1)(n+ β)

(2n+ α + β)(2n+ α + β + 1) . (3.43)

The coefficients given by (3.42) and (3.43) are found in [13].
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Proposition 6. In the case ∆ < 0, the eigenfunctions pn(x) of X (3.26) related to the

finite-dimensional representation condition (3.30) are given in terms of the monic Hahn

polynomials Q(α,β)
n (x) for the choice of parameters given in (3.41).

As previously mentionned, these polynomials can also be obtained as a truncation of the

recurrence defined by (3.35) and (3.38). Indeed, setting

α = a+ c− 1, β = b+ d− 1, (3.44)

with one of (3.40), the coefficient (3.35) and (3.38) become proportional to (3.42) and (3.43),

respectively. Hence, the action of iX when ∆ = +1
4 also leads to the recurrence relation of

the monic Hahn polynomials.

3.5.2. Para-Krawtchouk polynomials

We shall finally indicate how a family of finite-dimensional representations of A relates to

para-Krawtchouk polynomials. Consider the condition (3.29). Although leading to singular

expressions for certain values of n, well-defined polynomials are obtained by carefully taking

limits. Mindful of (3.34), it is convenient in this case to take ∆ = −1. Let N = 2j + p with

j an integer and p = 0, 1 depending on the parity of N , and set

φ0 + 1 = −j + e1t, −δ0 = −j + e2t+ 1− p, v0 = (γ+p−1)
(−2j+e1t+e2t−p+1) , e1 = e2 = 1.

(3.45)

The parameters e1 and e2 are chosen equal in order to simplify the expressions. The more

general solutions can be recovered using isospectral deformations [15, 10]. With the above

parametrization, it can be seen that (3.29) is verified in the limit where t → 0. With the

parameters as in (3.45), the coefficient an−1cn (3.27) becomes

an−1cn = (n− j + t− 1)(n− j + t− p)

× n(n− 2j + 2t− p− 1)(N − 2n+ p+ γ)(N − 2n− p+ 2− γ)
(2n− 2j + 2t− p− 1)2(2n− 2j + 2t− p)(2n− 2j + 2t− p− 2) . (3.46)

Taking the limit t → 0 and treating the cases for p = 0, 1 separately, one finds that the

results can be combined as follows

lim
t→0

an−1cn = n(N + 1− n)(N − 2n+ p+ γ)(N − 2n− p+ 2− γ)
4(2n−N + p− 1)(2n−N − p− 1) . (3.47)
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For the coefficient bn, setting b̃0 = 1
2(N + γ − 1) and inserting (3.45) in (3.28), one finds

bn = 1
2

(p− 1)(−2j − p+ 2t− 1)(γ + p− 1)
(2n− 2j − p+ 2t− 1)(2n− 2j − p+ 2t+ 1) + 1

2(N + γ − 1). (3.48)

Treating the cases p = 0 or p = 1 separately and taking the limit t → 0, one sees that the

results can be written jointly as

lim
t→0

bn = −(N − n)(N − 2n− 2 + p+ γ)
2(2n−N − p+ 1) − n(N − 2n+ 2− p− γ)

2(2n−N + p− 1) . (3.49)

The coefficients given by (3.47) and (3.49) are recognized in [15] as the coefficients for the

recurrence relation of the monic para-Krawtchouk polynomials.

Proposition 7. In the case ∆ < 0, the eigenfunctions pn(x) of X (3.26) in the finite-

dimensional representation (3.29) of A are the monic para-Krawtchouk polynomials.

3.6. Conclusion

We have studied tridiagonal representations of the algebra A with defining relation

[Z,X ] = Z2 + ∆. Depending on the value of ∆, in these representations, the linear pencil

X + µZ entailed the recurrence relations of the Jacobi (∆ = 0), continuous Hahn (∆ > 0),

Hahn and para-Krawtchouk (∆ < 0) polynomials.

In the wake of this work, two research avenues present themselves. One is the exploration

of the tridiagonal representations of the algebra [Z,X ] = Z2 + αX , another class of the

general quadratic algebra (3.2). It is expected that the tridiagonal representations will lead

to the Wilson, Racah and para-Racah polynomials in a similar fashion.

Another related direction is the study of the so-called meta algebras, poised to describe

both polynomial and rational functions of a given type., as shown in [21] for functions of

the Hahn type. The meta-Hahn algebra is in fact obtained by adjoining to A an additional

generator. As it turns out, the extra generator offers a rationale for considering tridiagonal

representations. This suggests in particular that the work on the q-oscillator algebra [18]

should be revisited in order to bring to the fore the associated rational functions.
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Partie 2

Opérateurs de Heun algébriques



Introduction

L’opérateur de Heun ordinaire est un opérateur différentiel du deuxième ordre définit par

M = x(x− 1)(x− d) d
2

dx2 + (ρ2x
2 + ρ1x+ ρ0) d

dx
+ r1x+ r0. (3.50)

Une propriété caractéristique de l’opérateur de Heun est d’agir sur les polynômes en x en

augmentant leur degré par un. En se basant sur cette observation, il est possible de généra-

liser l’opérateur de Heun. Ces opérateurs de Heun généralisés sont alors définis comme les

opérateurs différentiels ou aux différences du second ordre les plus généraux sur un domaine

donné qui satisfont la propriété d’agir sur les polynômes sur ce même domaine en augmentant

leur degré par un.

Chaque polynôme orthogonal du schéma d’Askey-Wilson est associé à un problème bis-

pectral. En effet, chacun de ces polynômes diagonalise un opérateur de récurrence X à trois

termes agissant sur le degré du polynôme, de même qu’un opérateur différentiel ou aux dif-

férences Y agissant sur la variable du polynôme. Ainsi, dans l’algèbre générée par ces deux

opérateurs, la combinaison quadratique la plus générale

W = τ1XY + τ2Y X + τ3X + τ4Y + τ0,

forme alors un opérateur du second ordre. Cet opérateur W est tridiagonal dans la base

des polynômes associés et agit sur ceux-ci en augmentant leur degré par un. L’opérateur W

généralise alors la propriété caractéristique de l’opérateur de Heun ordinaire. C’est ce qui

motive la notion d’opérateur de Heun algébrique, défini comme la combinaison quadratique

la plus générale de la paire d’opérateurs associée à tout problème bispectral.

Cette seconde partie de la thèse aborde le thème des opérateurs de Heun algébriques. Le

chapitre 4 introduit la notion d’opérateur de Heun algébrique et établit un rapprochement

avec la théorie de polynômes orthogonaux. Cette notion est ensuite mise à profit à l’étude



d’un problème classique en traitement de signal. Dans le chapitre 5, on se concentre sur

l’étude des structures algébriques associées aux opérateurs de Heun algébriques rattachés

aux polynômes de Racah et de Bannai-Ito. Finalement, les chapitres 6 et 7 examinent les

structures algébriques générées par une spécialisation des opérateurs de Heun algébriques

sans terme diagonal. Ces structures sont reconnues en tant qu’algèbres de type Sklyanin et

des représentations sont construites sur différentes familles de polynômes orthogonaux.
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Chapitre 4

Signal processing, orthogonal polynomials,

and Heun equations

G. Bergeron, L. Vinet and A. Zhedanov (2018). Signal processing, orthogonal polynomials,

and Heun equations. Proceedings of the AIMS-Volkswagen Stiftung Workshops, 195-214.

Abstract

A survey of recents advances in the theory of Heun operators is offered. Some of the topics

covered include: quadratic algebras and orthogonal polynomials, differential and difference

Heun operators associated to Jacobi and Hahn polynomials, connections with time and band

limiting problems in signal processing.

4.1. Introduction

This lecture aims to present an introduction to the algebraic approach to Heun equation.

To offer some motivation, we shall start with an overview of a central problem in signal

treatment, namely that of time and band limiting. Our stepping stone will be the fact that

Heun type operators play a central role in this analysis thanks to the work of Landau, Pollack

and Slepian [19], see also the nice overview in [6]. After reminding ourselves of the standard

Heun equation, we shall launch into our forays. We shall recall that all polynomials of the

Askey scheme are solutions to bispectral problems and we shall indicate that all their pro-

perties can be encoded into quadratic algebras that bear the name of these families. We shall

use the Jacobi polynomials as example. We shall then discuss the tridiagonalization proce-

dure designed to move from lower to higher families of polynomials in the Askey hierarchy.



This will be illustrated by obtaining the Wilson/Racah polynomials from the Jacobi ones or

equivalently by embedding the Racah algebra in the Jacobi algebra. We shall then show that

the standard Heun operator can be obtained from the most general tridiagonalization of the

hypergeometric (the Jacobi) operator. This will lead us to recognize that an algebraic Heun

operator can be associated to each of entries of the Askey tableau. We shall then proceed to

identify the Heun operator associated to the Hahn polynomials. It will be seen to provide a

difference version of the standard Heun operator. We shall have a look at the algebra this

operator forms with the Hahn operator and of its relation to the Racah algebra. We shall

then loop the loop by discussing the finite version of the time and band limiting problem

and by indicating how the Heun-Hahn operator naturally provides a tridiagonal operator

commuting with the non-local limiting operators. We shall conclude with a summary of the

lessons we will have learned.

4.2. Motivation and background

4.2.1. Time and band limiting

A central problem in signal processing is that of the optimal reconstruction of a signal

from limited observational data. Several physical constraints arise when sampling a signal.

We will here focus on those corresponding to a limited time window and to to a cap on the

detection of frequencies. Consider a signal represented as a function of time by

f : R −→ R,

and suppose f can only be observed for a finite time interval

W = [−T, T ] ⊂ R.

This time limiting can be expressed as multiplication by a step function W defined by

χ
W

(t) =


1, if − T ≤ t ≤ T,

0, otherwise.

Now, suppose the measurements are limited in their bandwidth. This corresponds to an

upper bound on accessible frequencies. Let us express this band limiting as multiplication
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by a step function χ
N
of the Fourier transform of the signal f , where

χ
N

(n) =


1, if 0 ≤ n ≤ N,

0, otherwise.

This defines the time limiting operator χ
W

χ
W

: C(R) −→ C(R),

acting by multiplication on functions of time and the band limiting operator χ
N

χ
N

: C(R) −→ C(R),

acting by multiplication on functions of frequencies. Thus, the available data on f is limited

to χ
N
F χ

W
f , where F denotes the Fourier transform. The time and band limiting problem

consists in the optimal reconstruction of f from the limited available data χ
N
F χ

W
f .

In this context, the best approximation of f requires finding the singular vectors of the

operator

E = χ
N
F χ

W
,

which amounts to the eigenvalue problems for the following operators

E∗E = χ
W
F−1χ

N
Fχ

W
, and EE∗ = χ

N
Fχ

W
F−1χ

N
.

For F the standard Fourier transform, one has

[
EE∗ f̃

]
(l) = χ

N

T∫
−T

eilt

 N∫
0

f̃(k)e−iktdk
 dt

= χ
N

N∫
0

f̃(k)

 T∫
−T

ei(l−k)tdt

 dk,
=
∫
KT (l, k)f̃(k)dk, (4.1)

where

KT (l, k) =
T∫
−T

ei(l−k)Tdt = sin(l − k)T
(l − k) ,

which is the integral operator with the well-known sinc kernel. It is known, that non local

operators such as E∗E have spectra that are not well-suited to numerical analysis. This

makes difficult obtaining solutions to the time and band limiting problem. However, a
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remarkable observation of Landau, Pollak and Slepian [20, 12, 13, 17, 18] is that there

is a differential operator D with a well-behaved spectrum that commutes with the integral

operator E∗E. This reduces the time and band limiting problem to the numerically tractable

eigenvalue problem of D. In the above example, this operator D is a special case of the Heun

operator. The algebraic approach presented here will give indications (in the discrete-discrete

case in particular) as to why this "miracle" happens.

4.2.2. The Heun operator

Let us first remind ourselves of basic facts regarding the usual Heun operator [9]. The

Heun equation is the Fuchsian differential equation with four regular singularities. The

standard form is obtained through homographic transformations by placing the singularities

at x = 0, 1, d and ∞ and is given by

d2

dx2ψ(x) +
(
γ

x
+ δ

x− 1 + ε

x− d

)
d

dx
ψ(x) + αβx− q

x(x− 1)(x− d)ψ(x) = 0,

where

α + β − γ − δ + 1 = 0,

to ensure regularity of the singular point at x = ∞. This Heun equation can be written in

the form

Mψ(x) = λψ(x)

with M the Heun operator given by

M = x(x− 1)(x− d) d
2

dx2 + (ρ2x
2 + ρ1x+ ρ0) d

dx
+ r1x+ r0, (4.2)

with

ρ2 = −(γ + δ + ε), ρ1 = (γ + δ)d+ γ + ε,

ρ0 = −γd,

r1 = −αβ, r0 = q + λ.

One can observe that M sends any polynomial of degree n to a polynomial of degree n+ 1.

Indeed, the Heun operator can be defined as the most general second order differential

operator with this property.
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4.3. The Askey scheme and bispectral problems

A pair of linear operators X and Y is said to be bispectral if there is a two-parameter

family of common eigenvectors ψ(x, n) such that one has

Xψ(x, n) = ω(x)ψ(x, n)

Y ψ(x, n) = λ(n)ψ(x, n),

where, X acts on the variable n and Y , on the variable x. One should note that the above

does not imply that [X, Y ] = 0 as the x and n variables constitute different representations.

Thus, one must be careful to use the same representation for all operators when computing

products of operators. For the band-time limiting problem associated to sinc kernel, one has

the two-parameter family of eigenfunctions given by ψ(t, n) = eitn with the bispectral pair

identified as

X = − d2

dn2 , ω(t) = t2,

Y = − d2

dt2
, λ(n) = n2.

In this case, both operators are differential operators. However, bispectral pairs are realized

in terms of various combinations of continuous and discrete operators. These bispectral

problems admit two representations, corresponding to the two spectral parameters x and n.

As X and Y do not commute, products of these operators must be taken within the same

representation for all terms in the product.

A key observation is that each family of hypergeometric polynomials of the Askey scheme

defines a bispectral problem. Indeed, these polynomials are the solution to both a recur-

rence relation and a differential or difference equation. By associating X with the recurrence

relation and Y with the differential or difference equation, one forms a bispectral problem

as follows. In the x-representation, X acts a multiplication by the variable and Y as the

differential or difference operator while in the n-representation, X acts as a three-term dif-

ference operator over n and Y as multiplication by the eigenvalue. The family of common

eigenvectors are the orthogonal polynomials.

As a relevant example, consider the (monic) Jacobi polynomials P̂ (α,β)
n (x) defined as

follows [10] These polynomials are the eigenvectors of the hypergeometric operator Dx given
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by

Dx ≡ x(x− 1) d
2

dx2 + (α + 1− (α + β + 2)x) d
dx
, (4.3)

such that

Dx P̂
(α,β)
n (x) = λn P̂

(α,β)
n (x),

with eigenvalues given by λn = −n(n+ α + β + 1). They form an orthogonal set:

1∫
0

P̂ (α,β)
n (x)P̂ (α,β)

m (x)xα(1− x)βdx = hnδn,m, (4.4)

where

hn = Γ(α + 1)Γ(β + 1)
Γ(α + β2) u1u2 · · ·un.

The Jacobi polynomials also satisfy the three-term recurrence relation given by

xP̂ (α,β)
n (x) = P̂

(α,β)
n+1 (x) + bnP̂

(α,β)
n (x) + unP̂

(α,β)
n−1 (x), (4.5)

where

un = n(n+ α)(n+ β)(n+ α + β)
(2n+ α + β − 1)(2n+ α + β)2(2n+ α + β + 1) ,

bn = 1
2 + α2 − β2

4

(
1

2n+ α + β
− 1

2n+ α + β + 2

)
.

Taking

X = x, Y = Dx,

for the x-representation and

X = T+
n + bn · 1 + unT

−
n , Y = λn, where T±n fn = fn±1,

for the n-representation, the Jacobi polynomials provide a two-parameter set of common

eigenvectors of X and Y and hence of the bispectral problem they define. This construction

arises similarly for all the orthogonal polynomials in the Askey scheme.
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4.3.1. An algebraic description

The properties of the orthogonal polynomials of the Askey scheme can be encoded in an

algebra as follows. For any such polynomials, take the X operator to be the multiplication

by the variable and the Y operator as the differential or difference equation they satisfy.

Consider then the associative algebra generated by K1, K2 and K3 where

K1 ≡ X, K2 ≡ Y, K3 ≡ [K1, K2]. (4.6)

Upon using these definitions for the generators, one can derive explicitly the commutation

relations to obtain that [K2, K3] and [K3, K1] are quadratic expressions in K1 and K2. Once

these relations have been identified, the algebra can be posited abstractly and the properties

of the corresponding polynomials follow from representation theory.

Sitting at the top of the Askey scheme, the Wilson and Racah polynomials [10] are the

most general ones and the algebra encoding their properties encompasses the other. As the

algebraic description is insensitive to truncation, both the Wilson and Racah polynomials

are associated to the same algebra. This algebra is known as the Racah-Wilson or Racah

algebra and is defined [5] as the associative algebra over C generated by {K1, K2, K3} with

relations

[K1, K2] = K3 (4.7)

[K2, K3] = a1{K1, K2}+ a2K
2
2 + bK2 + c1K1 + d1I (4.8)

[K3, K1] = a1K
2
1 + a2{K1, K2}+ bK1 + c2K2 + d2I, (4.9)

where a1, a2, b, c1, c2, d1 and d2 are structure parameters and where {A,B} = AB + BA

denotes the anti-commutator. One can show that the Jacobi identity is satisfied. The Racah

algebra naturally arises in the study of classical orthogonal polynomials but has proved useful

in the construction of integrable models and in representation theory [4, 5].

Other polynomials of the Askey scheme can be obtained from the Racah or Wilson

polynomials by limits and specializations. The associated algebras can be obtained from the

Racah algebra in the same way. In particular, the Jacobi algebra [3] constitutes one such
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specialization where a1, c1, d1, d2 → 0. Indeed, taking

A1 = Y = Dx ≡ x(x− 1) d
2

dx2 + (α + 1− (α + β + 2)x) d
dx
,

A2 = X = x, A3 ≡ [A1, A2] = 2x(x− 1) d
dx
− (α + β + 2)x+ α + 1,

(4.10)

one finds the following relations for the Jacobi algebra

[A1, A2] = A3 (4.11)

[A2, A3] = a2A
2
2 + dA2 (4.12)

[A3, A1] = a2{A1, A2}+ dA1 + c2A2 + e2, (4.13)

where a2 = 2, d = −2, c2 = −(α + β)(α + β + 2) and e2 = (α + 1)(α + β).

4.3.2. Duality

The bispectrality of the polynomials in the Askey scheme is related to a notion of dua-

lity where the variable and the degree are exchanged. In the algebraic description, this

corresponds to exchanging the X and Y operator. Let us make details explicit in the finite-

dimensional case where the polynomials satisfy both a second order difference equation and

a three-term recurrence relation [8].

In finite dimension, both the X and Y operator will admit a finite eigenbasis. Let us

denote the eigenbasis of X by {en} and the one of Y by {dn} for n = 0, 1, 2, . . . , N . One first

notices that Y will be tridiagonal in the X eigenbasis and likewise for X in the Y eigenbasis.

Explicitly, one has

Xen = λnen, Y dn = µndn, (4.14)

Xdn = an+1dn+1 + bndn + andn−1, Y en = ξn+1en+1 + ηnen + ξnen−1,

n = 0, 1, . . . , N

where {an}, {bn}, {ξn} and {ηn} for n = 0, 1, . . . , N are scalar coefficients. As both the X

and Y eigenbases span the same space, one can expand one basis onto the other as follows

es =
N∑
n=0

√
wsφn(λs)dn, (4.15)
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where φn(x) are the polynomials associated to the algebra defined by the following recurrence

relation

an+1φn+1(x) + bnφn(x) + anφn−1(x) = xφn(x), φ−1 = 0, φ0 = 1,

which verify the orthogonality relation

N∑
s=0

wsφn(λs)φm(λs) = δn,m,

so that the reverse expansion is easily seen to be

dn =
N∑
s=0

√
wsφn(λs)es.

Consider now the dual set of polynomials χn(x) defined by the following recurrence

relation

ξn+1χn+1(x) + ηnχn(x) + ξnχn−1(x) = xχn(x), χ−1 = 0, χ0 = 1,

which are orthogonal with respect to the dual weights w̃s :

N∑
s=0

w̃sχn(µs)χm(µs) = δn,m. (4.16)

These dual polynomials provide an alternative expansion of one basis onto the other. One

has

ds =
N∑
n=0

√
w̃sχn(µs)en. (4.17)

One readily verifies this expansion by applying Y to obtain

Y ds =
N∑
n=0

√
w̃sχn(µs)Y en =

N∑
n=0

√
w̃sχn(µs)[ξn+1en+1 + ηnen + ξnen−1]

=
N∑
n=0

√
w̃s[ξn+1χn+1(µs) + ηnχn(µs) + ξnχn−1(µs)]en = µsds.

Using the orthogonality of the polynomials {χn(µs)} given by (4.16), the expansion (4.17)

is inverted as

en =
N∑
s=0

√
w̃sχN (µs)ds.
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Comparing the above with the first expansion in (4.15), knowing the {dn} to be orthogonal,

one obtains

√
wsφn(λs) =

√
w̃nχs(µn), (4.18)

a property known as Leonard duality [14], see also [21] for an introduction to Leonard pairs.

4.4. Tridiagonalization of the hypergeometric operator

Tridiagonalization enables one to construct orthogonal polynomials with more parameters

from simpler ones and thus to build a bottom-up characterization of the families of the

Askey scheme from this bootstrapping. In particular, properties of the Wilson and Racah

polynomials can be found from the tridiagonalization of the hypergeometric operator [3].

Moreover, by considering the most general tridiagonalization, one recovers the complete

Heun operator [7].

4.4.1. The Wilson and Racah polynomials from the Jacobi polyno-

mials

In the canonical realization of the Jacobi algebra in terms of differential operators pre-

sented in (4.10), one of the generators is the hypergeometric operator (4.3) and the other

is the difference operator in the degree corresponding to the recurrence relation (4.5). We

consider the construction of an operator in the algebra which is tridiagonal in the eigenbases

of both operators.

Let Y = Dx be the hypergeometric operator and X = x be multiplication by the variable.

Define M in the Jacobi algebra as follows

M = τ1XY + τ2Y X + τ3X + τ0, (4.19)

where τi, i = 0, 1, 2, 3 are scalar parameters. Knowing that X leads to the three-term

recurrence relation of the Jacobi polynomials P̂ (α,β)
n (x):

X P̂ (α,β)
n (x) = xP̂ (α,β)

n (x) = P̂
(α,β)
n+1 (x) + bnP̂

(α,β)
n (x) + unP̂

(α,β)
n−1 (x),
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and is obviously tridiagonal, it is clear from (4.19) that M will also be tridiagonal in the

eigenbasis of Y that the Jacobi polynomials form. One has

MP̂ (α,β)
n (x) = ξn+1P̂

(α,β)
n+1 (x) + ηnP̂

(α,β)
n (x) + bnunP̂

(α,β)
n−1 (x), (4.20)

where

ξn = τ1λn−1 + τ2λn + τ3,

ηn = (τ1 + τ2)λnbn + τ3bn,

bn = τ1λn + τ2λn−1 + τ3.

If τ1 + τ2 = 0, then M simplifies to M = τ1[X, Y ] + τ3X, which is a first order differential

operator. In order for M to remain a second order operator, one demands that τ1 + τ2 6= 0.

In this case, normalizing M so that τ1 + τ2 = 1, one obtains explicitly

M = x2(x− 1) d
2

dx2 + x[α + 1− 2τ2 − (α + β − 2τ2)x] d
dx

− [τ2(α + β + 2)− τ3]x+ (α + 1)τ2 + τ0, (4.21)

We now construct a basis in whichM is diagonal. In the realization (4.10), where the algebra

acts on functions of x, X is multiplication by x and its inverse is defined by

X−1 : f(x) 7−→ 1
x
f(x).

With this definition, one can invert the expression for M given by (4.19) to obtain

Y = τ1X
−1M + τ2MX−1 + (2τ1τ2 − τ0)X−1 − (2τ1τ2 + τ3). (4.22)

Observing that (4.22) has the same structure as (4.19) under the transformation X 7→ X−1,

the eigenfunctions of M can be constructed as follows. Introduce the variable y = 1/x and

conjugate M and Y by a monomial in y to obtain

Ỹ = yν−1Y y1−ν , M̃ = yν−1My1−ν .

Then, by demanding that

τ3 = (4 + α + β − ν)(τ2 + ν − 1)− ντ2,
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the conjugated operators take the following form,

−Ỹ = y2(y − 1) d
2

dy2 + y(a1y + b1) d
dy

+ c1y + d1,

−M̃ = y(y − 1) d
2

dy2 + (a2y + b2) d
dy

+ d2,

with all the new parameters being simple expressions in terms of α, β, τ0, τ2 and ν. Up to a

global sign, one recognizes M̃ as the hypergeometric operator in terms of the variable y, while

Ỹ is similar to M . As the Jacobi polynomials diagonalizes the hypergeometric operator, the

eigenvectors satisfying

Mψn(x) = λ̃nψn(x) (4.23)

are easily found to be

ψn(x) = xν−1P̂ (α̃,β̃)
n (1/x) , λ̃n = n(n+ α̃ + β̃ + 1),

β̃ = β, α̃ = 2(τ2 + ν)− α− β − 7.

It follows from the recurrence relation of the Jacobi polynomials (4.5) that X−1 is tridiagonal

in the basis ψn(x) as it corresponds to multiplication by the variable. Thus, a glance at (4.22)

confirms that Y is tridiagonal in the ψn(x) basis.

In order to relate this result with the Wilson and Racah orthogonal polynomials, consider

the expansion of ψn(x) in terms of P̂ (α,β)
k (x). One has

ψn(x) =
∞∑
k=0

Gk(n)P̂ (α,β)
k (x). (4.24)

By factoring the expansion coefficients as Gk(n) = G0(n)ΞkQk(n), one finds using (4.20)

and (4.23) that, for a unique choice of Ξk, Qk satisfies the following three-term recurrence

relation

λ̃nQk(n) = BkQk+1(n) + UkQk(n) + FkQk−1(n),

where

Bk = uk+1(τ1λk+1 + τ2λk + τ3),

Uk = λkbk + τ3bk, (4.25)

Fk = τ1λk−1 + τ2λk + τ3.
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The recurrence relation allows to identify the factor Qk(n) of the expansion coefficient in

(4.24) as four parameters Wilson polynomials Wn(x; k1, k2, k3, k4). In this construction, two

of these parameters are inherited from the Jacobi polynomials while, after scaling, the tri-

diagonalisation introduced two free parameters.

The Racah polynomials occur in this setting when a supplementary restriction is intro-

duced. Indeed, a glance at (4.21) shows that the generic M operator maps polynomials of

degree n into polynomials of degree n+ 1. However, one can see from (4.20) that if

ξN+1 = τ1λN + τ2λN+1 + τ3 = 0,

both Y and M preserve the space of polynomials of degree less than or equal to N . This

truncation condition is satisfied when ν = N + 1 = 2− 2τ2. In this case, the eigenvectors of

M are

ψn(x) = xN P̂ (N−α−β−4,β)
n (1/x),

which are manifestly polynomials of degree N − n. One then considers again the expansion

of the basis element ψn(x) into P̂ (α,β)
k (x) to obtain

ψn(x) =
N∑
k=0

Rn,kP̂
(α,β)
k (x),

where the expansion coefficients Rn,k can be shown to be given in terms of the Racah poly-

nomials. Using the orthogonality of the Jacobi polynomials given in (4.4), one obtains

Rn,khk =
1∫

0

ψn(x)P̂ (α,β)
k (x)xα(1− x)βdx,

an analog of the Jacobi-Fourier transform of Koornwinder [11], giving an integral represen-

tation of the Racah polynomials.

It was stated earlier that the properties of the orthogonal polynomials in the Askey

scheme are encoded in their associated algebras. This can be seen from the construction of

the Wilson and Racah polynomials from the Jacobi polynomials by the tridiagonalization

procedure which corresponds algebraically to an embedding of the Racah algebra in the

Jacobi algebra. This is explicitly given by

K1 = A1, K2 = τ1A2A1 + τ2A1A2 + τ3A2, (4.26)
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where A1, A2 are the Jacobi algebra generators as in (4.10). One shows that K1 and K2 as

defined in (4.26) verify the relations (4.7) of the Racah algebra assuming that A1 and A2

verify those of the Jacobi relations as given in (4.11). Thus, the embedding (4.26) encodes

the tridiagonalization result abstractly.

The tridiagonalisation (4.19) used to derive higher polynomials from the Jacobi polyno-

mials is not the most general tridiagonal operator that can be constructed from the Jacobi

algebra generators. Indeed, consider the addition in (4.19) of a linear term in Y , given by

(4.3):

M = τ1XY + τ2Y X + τ3X + τ4Y + τ0. (4.27)

It is straightforward to see that M as given by (4.27) is equal to the Heun operator (4.2).

Expressed as in (4.27), the Heun operator is manifestly tridiagonal on the Jacobi polynomials,

which offers a simple derivation of a classical result. For the finite dimensional situation see

[15].

4.5. The Algebraic Heun operator

The emergence of the standard Heun operator from the tridiagonalization of the hy-

pergeometric operator suggests that Heun-type operators can be associated to bispectral

problems. In particular, knowing all polynomials in the Askey scheme to define bispectral

problems, there should be Heun-like operators associated to each of these families of po-

lynomials. Guided by this observation, consider a set of polynomials in the Askey scheme

and let X and Y be the generators of the associated algebra as in (4.6). As before, X is

the recurrence operator and Y , the difference or differential operator. The corresponding

Heun-type operator W is defined as

W = τ1XY + τ2Y X + τ3X + τ4Y + τ0, (4.28)

and will be referred to as an algebraic Heun operator [8]. The operator W associated to a

polynomial family will have features similar to those of the standard Heun operator which

arises in the context of the Jacobi polynomials. To illustrate this, a construction that parallels

the one made for the Jacobi polynomials is presented
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4.5.1. A discrete analog of the Heun operator

The standard Heun operator can be defined as the most general degree increasing second

order differential operator. In analogy with this, one defines the difference Heun operator

as:

Definition 3 (Difference Heun operator). The difference Heun operator is the most general

second order difference operator on a uniform grid which sends polynomials of degree n to

polynomials of degree n+ 1.

We now obtain an explicit expression for the difference Heun operator on the finite grid

G = {0, 1, . . . , N}. Let T± be shift operators defined by

T±f(x) = f(x± 1), (4.29)

and take W to be a generic second order difference operator with

W = A1(x)T+ + A2(x)T− + A0(x)I. (4.30)

By demanding that W acting on 1, x and x2 yields polynomials of one degree higher, one

obtains that

A0(x) = π̃1(x)− π̃3(x), A1(x) = π̃3(x)− π̃2(x)
2 , A2(x) = π̃3(x) + π̃2(x)

2 , (4.31)

where the π̃i(x) are arbitrary polynomials of degree i for i = 1, 2, 3. Thus, in general, Ai(x)

for i = 0, 1, 2 are third degree polynomials with A1(x) and A2(x) having the same leading

coefficient. Moreover, the restriction of the action of W to the finite grid G implies that A1

has (x−N) as a factor and A2 has x as a factor. Hence, one has

A1(x) = (x−N)(κx2 + µ1x+ µ0),

A2(x) = x(κx2 + ν1x+ ν0),

A0(x) = −A1(x)− A2(x) + r1x+ r0,

for µ0, µ1, ν0, ν1, r0, r1 and κ arbitrary parameters. Then, it is easy to see that

W [xn] = σn x
n+1 +O(xn),

for a certain σn depending on the parameters. We shall see next that this difference Heun

operator coincides with the algebraic Heun operator associated to the Hahn algebra.
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4.5.2. The algebraic Heun operator of the Hahn type

The Hahn polynomials Pn are orthogonal polynomials belonging to the Askey scheme.

As such, an algebra encoding their properties is obtained as a specialization of the Racah

algebra (4.7) by taking a2 → 0. One obtains the Hahn algebra, generated by {K1, K2, K3}

with the following relations

[K1, K2] = K3,

[K2, K3] = a{K1, k2}+ bK2 + c1K1 + d1I,

[K3, K1] = aK2
1 + bK1 + c2K2 + d2I. (4.32)

A natural realization of the Hahn algebra is given in terms of the bispectral operators asso-

ciated to the Hahn polynomials Pn, namely,

X = K1 = x, (4.33)

Y = K2 = B(x)T+ +D(x)T− − (B(x)−D(x))I,

with

B(x) = (x−N)(x+ α + 1), D(x) = x(x− β −N − 1),

and where T± is as in (4.29). The action of Y is diagonal in the basis given by the Hahn

polynomial Pn and is

Y Pn(x) = λPn(x), λn = n(n+ α + β + 1).

One checks that X and Y satisfy the Hahn algebra relations (4.32) with the structure

constants expressed in terms of α, β and N .

Upon identifying the algebra associated to the Hahn polynomials, one can introduce the

algebraic Heun operator W of the Hahn type [22] using the generic definition (4.28). In this

realization, one finds that W can be written as

W = A1(x)T+ + A2(x)T− + A0(x)I,
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where

A1(x) = (x−N)(x+ α + 1)((τ1 + τ2)x+ τ2 + τ4),

A2(x) = x(x− β −N − 1)((τ1 + τ2)x+ τ4 − τ2),

A0(x) = −A1(x)− A2(x) + ((α + β + 2)τ2 + τ3)x+ τ0 −N(α + 1)τ2.

As announced, the operator defined above coincides, upon identification of parameters, with

the difference Heun operator W given in (4.30) and (4.31) and defined through its degree

raising action on polynomials. That the difference Heun operator is tridiagonal on the Hahn

polynomials then follows as a direct result. This parallels the construction in the Jacobi

algebra that led to a simple proof of the standard Heun operator being tridiagonal on the

Jacobi polynomials. Moreover, in the limit N → ∞, the difference Heun operator W goes

to the standard Heun operator, which further supports the appropriateness of the abstract

definition (4.28) for the algebraic Heun operator.

To conclude this algebraic analysis, let us consider the algebra generated by Y and W

in the context of the Hahn algebra. By introducing a third generator given by [W,Y ] and

using the relation of the Hahn algebra in (4.32), one finds that the algebra thus generated

closes as a cubic algebra with relations given by

[Y, [W,Y ]] = g1Y
2 + g2{Y,W}+ g3Y + g4W + g5I,

[[W,Y ],W ] = e1Y
2 + e2Y

3 + g2W
2 + g1{Y,W}+ g3W + g6Y + g7I,

where the structure constants depend on the parameters of the Hahn polynomials and the

parameters of the tridiagonalization (4.28). One can recognize the above as a generalization

of the Racah algebra (4.7) with the following two additional terms:

e1Y
2 + e2Y

3.

The conditions for these terms to vanish are given by

τ1 + τ2 = 0, τ2 ± τ4 = 0.

When these equalities are satisfied, the operator W simplifies to W+ or W− with

W± = ±1
2[X, Y ]± γX − Y

2 ± εI.
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Moreover, any pair from the set {Y,W+,W−} satisfies the Racah algebra relations given

by (4.7). Thus, the choice of a pair of operators specifies an embedding of the Racah

algebra in the Hahn algebra, which is analogous to the embedding given in (4.26). These

embeddings encode abstractly the construction of the Racah polynomials starting from the

Hahn polynomials and provide another example where higher polynomials are constructed

from simpler ones.

4.6. Application to time and band limiting

We now return to the problem of time and band limiting. Consider a finite dimensional

bispectral problem as the one associated to the Hahn polynomials. Denote by {en} and {dn}

for n = 1, 2, . . . , N the two eigenbases of this bispectral problem such that

X : {en} → {en}, Xen = λnen,

Y : {dn} → {dn}, Y dn = µndn.

In this context, X can be thought of being associated to discrete time and Y to frequencies.

Suppose now that the spectrum of both X and Y are restricted. These restrictions can be

modelled as limiting operators in the form of two projections π1 and π2 given by

π1en =


en if n ≤ J1,

0 if n > J1,
π2dn =


dn if n ≤ J2,

0 if n > J2,
(4.34)

π2
1 = π1, π2

2 = π2,

Simultaneous restrictions on the eigensubspaces of X and Y accessible to sampling lead to

the two limiting operators

V1 = π1π2π1 = E1E2, V2 = π2π1π2 = E2E1,

with

E1 = π1π2, E2 = π2π1.

Here, the limiting operator V1 and V2 are symmetric and are diagonalizable. A few limit

cases are simple. When there are no restriction, J1 = J2 = N , in which case V1 = V2 = I.

If the restriction is on only one of the spectra, for instance if J2 = N , then V1 = V2 = π1
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having J1 + 1 unit eigenvalues and the other N − J1 equal to zero. However, the case where

J1 and J2 are arbitrary is much more complicated.

In the generic case, the eigenbasis expansions (4.15) and (4.17) can be used to evaluate

the action of π2 on an eigenvector of X. One has,

π2en =
J2∑
s=0

√
wnφs(λn)ds =

J2∑
s=0

N∑
t=0

√
wnw̃sφs(λn)χt(µs)et.

Similarly, one can evaluate the action of π1 on eigenvectors of Y and obtain

V1en = π1π2π1en =
J1∑
t=0

J2∑
s=0

√
wnw̃sφs(λn)χt(µs)et =

J1∑
t=0

Kt,net, (4.35)

with

Kt,n =
J2∑
s=0

√
wnw̃sφs(λn)χt(µs)

=
J2∑
s=0

√
wnwtφs(λn)φs(λt) (4.36)

=
J2∑
s=0

√
w̃sχn(µs)χt(µs),

where the Leonard duality relation (4.18) has been used to obtain the last two equalities. The

operator V1 in (4.35) is the discrete analog of the integral operator (4.1) that restricts both in

time and frequency, with (4.36) being the discrete kernel. As in the initial continuous case,

V1 and V2 are non-local operator and the problem of finding their eigenvectors is numerically

difficult. However, if there exists a tridiagonal matrix M that commutes with both V1 and

V2, then M would admit eigenvectors that are shared with V1 and V2. This renders the

discrete time and band limiting problem well controlled. In this context, the tridiagonal

matrix M is the discrete analog of a second order differential operator and plays the role of

the differential operator found by Landau, Pollak and Slepian for the continuous time and

band limiting problem.

Tridiagonal matrices that commute with the limiting operators π1 and π2 in (4.34) will

also commute with V1 and V2. One then wants to find for an M such that

[M,π1] = [M,π2] = 0. (4.37)

Taking M to be an algebraic Heun operator with

M = τ1XY + τ2Y X + τ3X + τ4Y,
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and using (4.37), one finds the following conditions

τ2 = τ1, τ1(λJ1 + λJ1+1) + τ4 = 0, τ1(µJ2 + µJ2+1) + τ3 = 0.

Except for the Bannai-Ito spectrum, it is always possible to find τ3 and τ4 satisfying the above

[8], see also [16]. Hence, the algebraic Heun operator provides the commuting operator that

enables efficient solutions to the time and band limiting.

Conclusion

This lecture has offered an introduction to the concept of algebraic Heun operators and

its applications. This construct stems from the observation that the standard Heun operator

can be obtained from the tridiagonalization of the hypergeometric operator.The key idea is

to focus on operators that are bilinear in the generators of the quadratic algebras associated

to orthogonal polynomials. The Heun type operators obtained in this algebraic fashion,

coincide with those arising from the definition that has Heun operators raising by one the

degree of arbitrary polynomials. This has been illustrated for the discrete Heun operator

in its connection to the Hahn polynomials. This notion of algebraic Heun operator tied to

bispectral problems has moreover been seen to shed light on the occurence of commuting

operators in band and time limiting analyses. The exploration of these algebraic Heun

operators and the associated algebras has just begun [22, 2, 1] but the results found so far

let us believe that it could lead to significant new advances.
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Chapitre 5

The Heun-Racah and Heun-Bannai-Ito

algebras

G. Bergeron, N. Crampé, S. Tsujimoto and A. Zhedanov (2020). The Heun–Racah and

Heun–Bannai–Ito algebras. Journal of Mathematical Physics 61 (8), 081701.

Abstract

The Heun-Racah and Heun-Bannai-Ito algebra are introduced. Specializations of these

algebras are seen to be realized by the operators obtained by applying the algebraic Heun

construct to the bispectral operators of the Racah and Bannai-Ito polynomials. The study

supplements the results on the Heun-Askey-Wilson algebra and completes the description of

the Heun algebras associated to the polynomial families at the top of the Askey scheme, its

q-analog and the Bannai-Ito one.

5.1. Introduction

Systematic generalizations of the standard Heun operator were recently introduced in

[18]. In this approach, an algebraic Heun operator is associated to any bispectral pair [16]

of operator. To do so, one considers the algebra generated by such a pair and defines the

algebraic Heun operator as the generic bilinear combination of the operators in the bispectral

pair. Such a construction has proved useful [9] in the theory of time and band limiting [23,

21] as well as in the study of entanglement in fermionic chains [7, 8] and the related algebraic

structures are now being studied. Of particular interest are the algebraic Heun operators

constructed from the bispectral problems arising in the theory of orthogonal polynomials.



This paper aims to introduce the Heun-Racah and the Heun-Bannai-Ito algebras and the

associated algebraic Heun operators. Let us first review the recent results in this setting.

Orthogonal polynomials of the Askey scheme [20] are naturally associated to bispectral

pairs. Indeed, all these polynomials are the eigenfunctions of both a three-term recurrence

operator X, acting on the degree, and a differential or difference operator Y , acting on the

variable. Thus, X and Y form a bispectral pair. One then considers the algebra generated by

the pair X and Y in either the variable or the degree representation. The resulting structures

are quadratic algebras canonically associated to each polynomials and after which they are

named. These provide an algebraic approach to the theory of orthogonal polynomials as one

recovers the properties of the corresponding polynomial through the representation theory of

the associated algebra. Furthermore, the structure of the Askey scheme with other families

of polynomials appearing as limits and specializations of higher polynomials is reflected

algebraically through specializations and contractions. It is in this algebraic setting that one

defines the associated algebraic Heun operator as

W = τ1XY + τ2Y X + τ3X + τ4Y + τ0, (5.1)

where τi ∈ C for i = 0, 1, 2, 3, 4 are arbitrary parameters. Following the naming convention

of the algebras associated to polynomials in the Askey scheme, operators constructed as in

(5.1) will be referred to in terms of the name of the associated polynomials. For instance, if

one considers the Racah polynomials and the associated Racah algebra, the algebraic Heun

operator W in this setting is referred to as the Heun-Racah operator.

The algebraic Heun operator can be seen to generalize the Heun operator in many ways. It

corresponds [17] to the standard Heun operator when constructed from the Jacobi algebra.

In this case, Y is the hypergeometric operator while X is multiplication by the variable.

Moreover, the standard Heun operator can be characterized as the most general second order

differential operator that sends polynomials to polynomials one degree higher. The algebraic

Heun operators constructed from the other entries in the Askey scheme are observed to satisfy

analogs of this property. The Heun-Hahn operator introduced in [27] corresponds to the most

general second-order difference operator on the uniform grid that sends polynomials on the

grid to polynomials one degree higher. Likewise, the most general degree raising second order

q-difference operator has been identified as an algebraic Heun operator in [4] and seen to

correspond to a q-deformed Heun operator as considered in [24]. Finally, a q-Heun operator
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on the Askey grid was introduced in [3]. Such operators has been diagonalized recently in

[2] by a generalization of the algebraic Bethe ansatz, called the modified algebraic Bethe

ansatz, introduced to solve spin chains with generic boundaries in [5, 6].

A relevant property of the algebraic Heun operator W is characterized as follows. Ta-

king the realization where X acts as the recurrence operator and Y , as multiplication by

the eigenvalue, it is easily seen that W , as given by (5.1), will be tridiagonal on the corres-

ponding orthogonal polynomials. Correspondingly, in the finite-dimensional setting where

the bispectral pair is taken to be a Leonard pair, it was proven in [22] that all tridiagonal

operators take the form of (5.1). There is a manifest relation between the construction (5.1)

of W and the tridiagonalization approach [19, 11] to the study of orthogonal polynomials.

From an algebra standpoint, tridiagonalization amounts to the construction of morphisms

between the algebras associated to the polynomials of the Askey scheme. By considering

the subalgebra generated by certain W and either X or Y , an embedding of the algebra of

higher polynomials into the algebra of lower ones can be found. Naturally, this identification

cannot be made when W is constructed from the algebra of a polynomial sitting at the top

of the Askey scheme as the resulting structures lie beyond the algebraic framework of the

Askey scheme. In general, one is lead to the study of algebras, referred to in terms of the

underlying polynomials, for instance, if X and Y are the generators of the Racah algebra,

the algebra generated by the pair X,W or Y,W shall be called the Heun-Racah algebra.

Characterizations of these Heun algebras have been done in [3] for the Heun-Askey-Wilson

algebra, in [27] for the Heun-Hahn algebra and in [9] for the Heun algebras of the Lie type

which encompasses the cases of the Krawtchouk, Meixner, Meixner-Pollaczek, Laguerre and

Charlier polynomials. In this paper, a similar characterization is made of the Heun-Racah

and the Heun-Bannai-Ito algebras.

The presentation is as follows. In section 5.2, the Racah algebra is introduced and some

key results are reviewed. The Heun-Racah operator is then constructed in section 5.3 as the

most general second degree difference operator on the Racah grid that sends polynomials

to polynomials one degree higher. As the algebraic Heun operator (5.1) of the Racah type

is a bilinear combination of the Racah operator, it can be realized as a difference operator

on the Racah grid using the canonical realization of the Racah algebra. This realization

is shown to coincide with the Heun-Racah operator. Section 5.4 defines the Heun-Racah
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algebra abstractly and gives the conditions on the parameters that define a specialization

that has an embedding in the Racah algebra. This embedding allows a realization of this

specialized Heun-Racah algebra to be induced from the canonical realization of the Racah

algebra. The realization thus obtained is seen to be in terms of the Heun-Racah operator.

Similarly, after reviewing the Bannai-Ito algebra in section 5.5, the Heun-Bannai-Ito algebra,

together with the Heun-Bannai-Ito operator, are introduced in section 5.6. It is shown that

there is a specialization, obtained by imposing conditions on the parameters, that can be

embedded in the Bannai-Ito algebra and realized in terms of the Heun-Bannai-Ito operator.

A brief conclusion follows.

5.2. The Racah algebra

The Racah algebra R is the quadratic algebra defined as a unital associative algebra over

C that is generated by {K1, K2, K3} with the following relations

[K1, K2] = K3,

[K2, K3] = a1{K1, K2}+ a2K
2
2 + bK2 + c1K1 + d1, (5.2)

[K3, K1] = a1K
2
1 + a2{K1, K2}+ bK1 + c2K2 + d2,

with ai, ci and for i = 1, 2 being arbitrary parameters in R and where b and di for i = 1, 2

are central elements. Throughout this paper, [A,B] ≡ AB − BA, {A,B} ≡ AB + BA

and I denote, respectively, the commutator, the anti-commutator and the identity element.

To simplify notations and allow the construction of a Poincaré-Birkhoff-Witt type basis,

a third generator K3 is introduced in this presentation, although it is not algebraically

independent from the others. A relevant observation is that the relations (5.2) are fixed [14]

by considering the most general quadratic associative algebra generated by an independent

pair of generators that admits ladder representations [13] and demanding compatibility with

the following Jacobi identity

[K1, [K2, K3]] + [K3, [K1, K2]] + [K2, [K3, K1]] = 0. (5.3)
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The Racah algebra is known to admit a cubic Casimir element C. In the above presentation,

this central element is given by

C = a1{K2
1 , K2}+ a2{K1, K

2
2}+ (a1a2 + b){K1, K2}

+ (a2
1 + c1)K2

1 + (a2
2 + c2)K2

2 +K2
3 + (a1b+ 2d1)K1 + (a2b+ 2d2)K2. (5.4)

5.2.1. The equitable presentation of the Racah algebra

The Racah algebra is known to admit another presentation that displays explicitly the

permutation symmetry of the generators. The relation between this second presentation

and the one given in (5.2) is built [13] upon the reduced form of the Racah algebra that

admits only three free parameters. The reduced Racah algebra R̃ can be defined as the

unital associative algebra generated by R1, R2 and R3 with the following relations

[R1, R2] = R3,

[R2, R3] = R2
2 + {R1, R2}+ dR2 + e1, (5.5)

[R3, R1] = R2
1 + {R1, R2}+ dR1 + e2,

where d and ei for i = 1, 2 are central elements. The associated Casimir element (5.4) is

given by

C = {R2
1, R2}+ {R1, R

2
2}+R2

1 +R2
2 +R2

3 + (d+ 1){R1, R2}+ (2e1 + d)R1 + (2e2 + d)R2.

Provided the parameters a1 and a2 in the Racah algebra (5.2) are non-vanishing, this reduced

form is arrived at under the following affine transformation of the generators

K1 7→ a2R1 −
c2

2a2
I, K2 7→ a1R2 −

c1

2a1
I, K3 7→ a1a2R3, (5.6)

where

d = a2a1b− a2
1c2 − a2

2c1

a2
1a

2
2

, e1 = −2a1c1b+ a2c
2
1 + 4a2

1d1

4a4
1a2

, e2 = −2a2bc2 + a1c
2
2 + 4a2

2d2

4a1a4
2

.

From the presentation (5.5) of the (reduced) Racah algebra, one obtains the equitable

presentation by introducing four generators as follows

V1 = −2R1, V2 = −2R2, V3 = 2(R1 +R2 + d), P = 2R3,
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such that one has that

V1 + V2 + V3 = 2d, and [V1, V2] = [V2, V3] = [V3, V1] = 2P. (5.7)

The relations (5.5) can be written in terms of the new generators as

[V1, P ] = V2V1 − V1V3 + 4e2, [V2, P ] = V3V2 − V2V1 − 4e1,

[V3, P ] = V1V3 − V3V2 + 4(e1 − e2). (5.8)

The presentation of the (reduced) Racah algebra given by (5.7) and (5.8) is referred to [15]

as the equitable presentation, as it makes manifest the Z3 symmetry of the Racah algebra

given by the cyclic permutations of the generators. One concludes that for non-vanishing a1

and a2 there is an isomorphism χ : R −→ R̃ that identifies the equitable presentation given

by (5.7) and (5.8) with the Racah algebra as presented in (5.2). Explicitly, this map is

χ : K1 7→ −
a2

2 V1 −
c2

2a2
I, K2 7→ −

a1

2 V2 −
c1

2a1
I, K3 7→

a1a2

2 P. (5.9)

5.2.2. Difference operator realization

The Racah grid λ is a two-parameter quadratic grid indexed by x given by

λ(x) = x(x+ γ + δ + 1), x = 0, 1, . . . , N, N ∈ N (5.10)

where γ and δ are real parameters. Defining the shift operators acting on functions of x as

T+f(x) 7→ f(x+ 1), T−f(x) 7→ f(x− 1), (5.11)

one introduces the forward and backward difference operators as

∆ = T+ − I, ∇ = I − T−. (5.12)

With these notations, the Racah operator Y takes the following form

Y = B(x)∆−D(x)∇, (5.13)

where

B(x) = (x+ α + 1)(x+ β + δ + 1)(x+ γ + 1)(x+ γ + δ + 1)
(2x+ γ + δ + 1)(2x+ γ + δ + 2) , (5.14)

D(x) = x(x− α + γ + δ)(x− β + γ)(x+ δ)
(2x+ γ + δ)(2x+ γ + δ + 1) . (5.15)
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This operator is diagonalized [20] by the four-parameters Racah polynomials

Rn(λ(x);α, β, γ, δ) defined for n = 0, 1, 2, . . . , N with N ∈ N and where either

α + 1 = −N, β + δ + 1 = −N or γ + 1 = −N.

The eigenvalue equation is then

(B(x)∆−D(x)∇) Rn(λ(x);α, β, γ, δ) = n(n+ α + β + 1)Rn(λ(x);α, β, γ, δ).

These Racah polynomials being orthogonal polynomials in the Askey scheme, they also

satisfy [20] a three-term recurrence relation of the following form

λ(x)Rn(λ(x)) = AnRn+1(λ(x))− (An + Cn)Rn(λ(x)) + CnRn−1(λ(x)),

where the coefficients An and Cn only depend [20] on the parameters α, β, γ, δ and the

degree n. The left-hand side of the above can be understood as an operator that acts by

multiplication on functions on λ. Denoting this recurrence operator as X

X = λ(x),

a realization of the Racah algebra (5.2) in terms of second-order difference operators is given

by

K1 7−→ Y, K2 7−→ X. (5.16)

In this realization, the central elements in the relations (5.2) are proportional to the identity

element. The scaling of these central elements and the parameters are determined by the

parameters of the associated Racah operator as follows

a1 = −2, c1 = −(γ + δ)(γ + δ + 2), d1 = −(α + 1)(γ + 1)(β + δ + 1)(γ + δ)I,

a2 = −2, c2 = −(α + β)(α + β + 2), d2 = −(α + 1)(γ + 1)(α + β)(β + δ + 1)I,

b = 2 [β(δ − α)− (α + β)(γ + δ + 2)− 2(γ + 1)(δ + 1)] I,

C = (α + 1)(γ + 1)(β + δ + 1)
[
2βδ − 2α + β(α + 1)(γ − 1) + (α− 1)(γ + 1)(δ + 1)

]
I.

With these observations, the bispectral problem associated to the Racah algebra is completely

specified. Moreover, the Racah polynomials are seen to span finite-dimensional representa-

tions of the Racah algebra under the realization (5.16).
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5.3. The Heun-Racah operator

This section is concerned with the construction of a generalization of the Heun differen-

tial operator on the Racah grid (5.10). The key property of the standard differential Heun

operator is that it is the most general second-order differential operator that sends polyno-

mials of degree n to polynomials of degree n + 1. By requiring an equivalent property for

operators on the Racah grid, one obtains the desired generalization.

Consider the vector space P of polynomials on the Racah grid λ(x) as given by (5.10).

One then considers difference operators expressed in terms of the shift operators (5.11). In

this setting, a generic second-order difference operator on P can be written as

W = A1(x)T+ + A2(x)T− + A0(x)I. (5.17)

With the forward ∆ and backward ∇ difference operators defined in (5.12), one can write

(5.17) as the second-order difference operator

W = A1(x)∆− A2(x)∇+ [A1(x) + A2(x) + A0(x)] I. (5.18)

The Heun-Racah operator is now defined as the most general degree increasing second-order

difference operator W such that

W : P → P : pn(λ) 7→ qn+1(λ), (5.19)

for pn and qn+1 arbitrary polynomials in P of degree n and n+ 1, respectively.

5.3.1. Parametrization of the Heun-Racah operator

The condition (5.19) determines the form of the functions Ai(x) for i = 0, 1, 2 in (5.18).

This can be seen by acting with W on monomials in P and demanding that (5.19) holds.

Observing that

∆ · λ(x) = 2x+ γ + δ + 2, ∇ · λ(x) = 2x+ γ + δ,
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one has

W · 1 = A0(x) + A1(x) + A2(x) = p1(λ(x)),

W · λ(x) = (λ(x) + 2x+ γ + δ + 2)A1(x) + (λ(x)− (2x+ γ + δ))A2(x) + λ(x)A0(x),

W · λ(x)2 = (λ(x) + 2x+ γ + δ + 2)2A1(x) + (λ(x)− (2x+ γ + δ))2A2(x) + λ(x)2A0(x),

(5.20)

with W · λ(x) = p2(λ(x)) and W · λ(x)2 = p3(λ(x)) where p1, p2 and p3 being arbitrary

polynomials of first, second and third degree, respectively. From (5.20), one finds that

A0(x) = p1(λ(x))− A2(x)− A1(x),

θ(x)(A1(x)− A2(x)) = p2(λ(x))− λ(x)p1(λ(x))− 2A1(x),

θ2(x)(A1(x) + A2(x)) = p3(λ(x))− 2λ(x)p2(λ(x)) + λ2(x)p1(λ(x))− 4(θ(x) + 1)A1(x),

where θ(x) = ∇λ(x) = 2x+ γ + δ. Introducing the polynomials π1, π2 and π3

π1(λ(x)) = p1(λ(x)), π2(λ(x)) = p2(λ(x))− λ(x)p1(λ(x))
2 ,

π3(λ(x)) = p3(λ(x))− 2λ(x)p2(λ(x)) + λ(x)2p1(λ(x))
2 ,

(5.21)

parametrized as follows

π1(z) =
1∑
i=0

tiz
i, π2(z) =

2∑
i=0

uiz
i, π3(z) =

3∑
i=0

viz
i, (5.22)

one solves for the Ai(x) to get

A1(x) = π3(λ(x)) + θ(x)π2(λ(x))
(θ(x) + 1)(θ(x) + 2) , A2(x) = π3(λ(x))− (θ(x) + 2)π2(λ(x))

θ(x)(θ(x) + 1) ,

A0(x) = π1(λ(x))− A1(x)− A2(x).
(5.23)

It follows from (5.23) that specifying the coefficients of the polynomials π1, π2 and π3 fully

determines the functions Ai(x), i = 0, 1, 2 in (5.18) upon fixing the the grid λ(x). Together,

these polynomials admit nine free parameters. However, in order for the Heun-Racah ope-

rator to act on the finite grid λ(x), one must have that (x − N) is a factor of A1(x) and x

is a factor of A2(x). The second condition is uniquely satisfied by demanding that

v0 = u0(γ + δ + 2).
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To satisfy the first one, one finds that the following must hold:

v1 = −2u0

N
− (N + γ + δ + 1)2N2v3 − (N + γ + δ + 1)Nv2

−
[
2N(N + 1) + (3N + γ + δ + 1)(γ + δ)

]
Nu2 − (2N + γ + δ)u1.

Thus, with these constraints and a fixed grid λ(x), the Heun-Racah operator admits seven

free parameters. In the parametrization (5.22) of (5.23), the remaining parameters are

t0, t1, u0, u1, u2, v2 and v3.

5.3.2. Sufficiency of the construction

It remains to show that the operator W specified by (5.18) and (5.23) satisfies the pro-

perty (5.19) in general. To do so, one first computes the action of W on a generic monomial

λ(x)n ∈ P to obtain

W · λ(x)n = (λ(x) + θ(x) + 2)nA1(x) + (λ(x)− θ(x))nA2(x) + λ(x)nA0(x). (5.24)

Expanding the binomials, the above can be written as

W · λ(x)n =
n∑
k=1

n
k

λ(x)n−kχk + λ(x)n π1(λ(x)), (5.25)

χk =
[
(θ(x) + 2)kA1(x) + (−θ(x))kA2(x)

]
, (5.26)

where the last term in (5.25) is manifestly a polynomial in λ(x) of degree n + 1 as π1 is a

linear function by construction. Using binomial expansions, one has that

(−θ(x))k−1 =
k−1∑
j=0

k − 1

j

 (−1)j(θ(x) + 1)j, (θ(x) + 2)k−1 =
k−1∑
j=0

k − 1

j

 (θ(x) + 1)j.

The above identities with (5.23) in (5.26), leads to

χk =
k−1∑
j=0

k − 1

j

 (θ(x) + 1)j−1
[[
π3(λ(x)) + θ(x)π2(λ(x))

]

+ (−1)j−1
[
π3(λ(x))− (θ(x) + 2)π2(λ(x))

]]
,
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=
∑
j even

0≤j≤k−1

k − 1

j

 2π2(λ(x))(θ(x) + 1)j

+
∑
j odd

0≤j≤k−1

k − 1

j

 2
[
π3(λ(x))− π2(λ(x))

]
(θ(x) + 1)j−1.

It is readily verified that (θ(x) + 1)2 = 4λ(x) + (c+ d+ 1)2 is a linear function of λ(x) such

that even powers of (θ(x) + 1) can be identified as polynomials in λ(x). Thus, it can be seen

that χk is a polynomial in λ(x) of degree

deg(χk) =


k
2 + 2 for k even,
k+3

2 for k odd.

In particular, the degree of χk is less than k+ 1 for k > 2. Thus, one can conclude from the

above and (5.25) that the operator W acts on monomials as follows

W · λ(x)n = (t1 + 2nu2 + n(n− 1) v3)λ(x)n+1 +O(λ(x)n), (5.27)

where t1, u2 and v3 are parameters of the Heun-Racah operator as labelled in (5.22). This

result implies that W as defined by (5.18) and (5.23) is the most generic second order

difference operator on the grid λ(x) that satisfies property (5.19) provided that

t1 6= 0, u2 6= 0, or v3 6= 0.

5.3.3. Specialization as the Racah operator

The Heun-Racah operator was constructed as the most general second-order operator on

the Racah grid that satisfies the degree raising property (5.19). We now consider specia-

lizations that preserve the space of polynomials of degree n in P . From (5.27), one easily

identifies the necessary constraints to be

t1 = u2 = v3 = 0. (5.28)

Furthermore, if the above constraints are satisfied, normalizing the Heun-Racah operator so

that the numerators of the functions A1(x) and A2(x) are monic polynomials corresponds to

setting

v2 = 1. (5.29)
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Finally, from (5.25), one can identify the term of W proportional to the identity as t0I. This

term vanishes if

t0 = 0. (5.30)

Upon demanding that (5.28), (5.29) and (5.30) are satisfied, the Heun-Racah operator (5.18)

takes the form of the Racah operator. The remaining free parameters in (5.22) can be

expressed in terms of those of the Racah operator on the same grid λ(x) of size N as follows

u0 = (α + 1)(γ + 1)(β + δ + 1)
2 , u1 = α + β + 2

2 .

5.3.4. Relation with the algebraic Heun operator

The Heun-Racah operator W given by (5.18) together with (5.23) can be written as

a bilinear combination of the Racah algebra generators in the canonical realization (5.16)

in terms of difference operators. This bilinear expression is shown to coincides with the

canonical construction of the algebraic Heun operator as follows. Recall, that the Racah

generators in this realization are given by

K2 = X = λ(x), K1 = Y = B(x)∆−D(x)∇,

where λ(x) is the Racah grid (5.10) of size N and the coefficients B(x) and D(x) are given

by (5.14). Consider the operator

W = τ1XY + τ2Y X + τ3X + τ4Y + τ0I, (5.31)

as in the introduction. A direct computation leads to

W =
[
λ(x)(τ1 + τ2) + τ4 + τ2(θ(x) + 2)

]
B(x)∆

−
[
λ(x)(τ1 + τ2) + τ4 − τ2θ(x)

]
D(x)∇

+ τ2

[
(θ(x) + 2)B(x)− θ(x)D(x)

]
+ τ3λ(x) + τ0, (5.32)

106



where, again, θ(x) = 2x+ γ+ δ. Equation (5.32) defines an operator of the form (5.18) with

A1(x) =
[
λ(x)(τ1 + τ2) + τ4 + τ2(θ(x) + 2)

]
B(x),

A2(x) =
[
λ(x)(τ1 + τ2) + τ4 − τ2θ(x)

]
D(x), (5.33)

A0(x) = τ3λ(x) + τ0 −
[
λ(x)(τ1 + τ2) + τ4

](
B(x) +D(x)

)
.

Using (5.23), one can express the polynomials π1, π2 and π3 in terms of Ai(x), i = 0, 1, 2 and

θ(x) as follows

π1(λ(x)) = A0(x) + A1(x) + A2(x), π3(λ(x)) = (θ(x) + 2)2A1(x) + θ2(x)A2(x)
2 ,

π2(λ(x)) = (θ(x) + 2)A1(x)− θ(x)A2(x)
2 .

(5.34)

The above allows one to relate the operator (5.32) with the Heun-Racah operator. Indeed,

comparing the terms, one finds that (5.32) can be identified with the Heun-Racah operator

defined by (5.18) and (5.23) provided the parameters (5.22) are given by

u0 = (τ2(γ + δ + 2) + τ4)φα,β,γ,δ t0 = 2τ2φα,β,γ,δ + τ0,

u1 = (τ1 + τ2)φα,β,γ,δ + τ2ψα,β,γ,δ + τ4(α + β + 2)/2 t1 = τ2(2 + α + β) + τ3,

u2 = (τ1 + τ2)(α + β + 2)/2 + τ2, v3 = τ1 + τ2,

v2 = (τ1 + τ2)ψα,β,γ,δ + 2τ2(α + β + 3) + τ4, (5.35)

where

φα,β,γ,δ = (α + 1)(γ + 1)(β + δ + 1)/2,

ψα,β,γ,δ = α

(
β + γ + δ

2 + 2
)

+ β

(
γ − δ

2 + 2
)

+ (γδ + γ + δ + 3).

We remind the reader that the realization (5.16) of the Racah algebra admits two free

parameters, once the grid λ(x) of size N is specified. Moreover, the construction (5.31)

for the algebraic Heun operator introduces five additional parameters. Thus, the seven free

parameters in (5.22) of the Heun-Racah operator (5.18) are in correspondence with those of

the algebraic Heun operator of the Racah type in the canonical realization (5.16)
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5.4. The Heun-Racah algebra

The Heun-Racah algebra HR is introduced as the unital associative algebra over C

generated by X,W,Z with the following relations

[W,X] = Z,

[X,Z] = x0 + x1X + x2X
2 + x3X

3 + x4W + x5{X,W},

[Z,W ] = y0 + y1X + y2X
2 + y3X

3 + (x1 − x3x4)W + x5W
2 + (x2 − x3x5){X,W}

+ 3x3XWX,

(5.36)

where xi ∈ R for i = 3, 4, 5 and y3 ∈ R are free parameters and where xi, yi for i = 0, 1, 2 are

central elements. The constraints on the last three coefficients in (5.36) ensure compatibility

with the following Jacobi identity

[[X,Z],W ] + [[Z,W ], X] + [[W,X], Z] = 0.

One readily notices that the relations (5.36) reduce to the relations (5.2) of the Racah algebra

if

x3 = y2 = y3 = 0, x2 ∝ I and y1 ∝ I. (5.37)

It is verified that the element Ω ∈ HR given by

Ω = e1X + e2W + e3{X,W}+ e4XWX + e5WXW + e6X
2 + e7W

2 − Z2

+ [XW,WX] + e8X
3 + e9X

4, (5.38)

is central when the coefficients are as follows

e1 = x5y1 + x4y2/3 + x4x5y3/6− y0, e4 = 4x3x5 − x2, e7 = −2x4,

e2 = x2x4 − 3x0 − x3x4x5, e5 = −3x5, e8 = (5x5y3 + y2)/3,

e3 = x3x4 + x2x5 − x3x
2
5 − x1, e9 = y3/2 ,

e6 = x2
5y3/6 + 4x5y2/3 + x4y3/.
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5.4.1. Embedding in the Racah algebra

An embedding of a specialization of the Heun-Racah algebra HR in the Racah algebra

R is possible. This specialization is obtained by imposing conditions on the parameters of

the Heun-Racah relations (5.36). Consider the mapping defined by

Φ : HR −→ R,

X 7−→ K2, (5.39)

W 7−→ τ1K2K1 + τ2K1K2 + τ3K2 + τ4K1 + τ0I.

The mapping Φ : HR → R is an algebra homomorphism provided, first, that the parameters

of the Heun-Racah algebra be the following functions of the parameters of the Racah

x3 = a2(τ1 + τ2), x4 = c1, x5 = a1,

y3 = 2a2
2 τ1τ2 − 4a2τ3 (τ1 + τ2) + 2c2 (τ1 + τ2)2 , (5.40)

and, second, that the central elements be mapped to those of the Racah algebra as follows

x0 7→ τ4d1−c1τ0, x1 7→ (τ1+τ2)d1+τ4b−2a1τ0−c1τ3, x2 7→ b(τ1+τ2)+τ4a2−2a1τ3,

y0 7→
[
a1C + bd1 + (a2

1 − c1)d2
]
τ1τ2 +

[
(a2c1 − d1) τ0 − (C + a2d1 + a1d2) τ4

]
(τ1 + τ2)

+ a1τ
2
0 + (d2τ4 − bτ0)τ4 + (c1τ0 − d1τ4)τ3,

y1 7→
[
b2 + a2

1c2 + 2a2d1 − c1c2 − a1(a2b+ 4d2)
]
τ1τ2 −

[
C + a2d1 + a1d2

]
(τ1 + τ2)2

+ (c2τ4 − 2a2τ0)τ4 +
[

(2a1a2 − 2b) τ0 + (4d2 − a1c2) τ4 + (a2c1 − 2d1)τ3
]
(τ1 + τ2)

+ (4a1τ0 − 2bτ4 + c1τ3) τ3,

y2 7→
[
3d2−a1c2

]
(τ1+τ2)2+

[
3a2b−3a1c2−a1a

2
2

]
τ1τ2+

[
(2a1a2 − 3b) τ3−3a2τ0+3c2τ4

]
(τ1+τ2)

+ 3(a1τ3 − a2τ4)τ3, (5.41)

The above specialization of the Heun-Racah algebra admits a realization in terms of the

Heun-Racah operator (5.18). Indeed, comparing (5.39) with (5.31), one can see that the

generator W of this specialized Heun-Racah algebra is embedded in the Racah algebra as

the algebraic Heun operator of the Racah type. A natural realization of the specialization
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(5.40) and (5.41) of the Heun-Racah algebra is obtained from the concatenation of the em-

bedding (5.39) and the canonical realization (5.16) of the Racah algebra. In this realization,

one finds that W takes the form of (5.32), which was identified as the Heun-Racah operator

with parameters given by (5.35). Moreover, it follows from the above that in the speciali-

zation (5.37) of the Heun-Racah algebra to the Racah algebra, the map (5.39) is an affine

transformation of the Racah algebra parametrized by τ0 and τ4.

With the parameters of the Heun-Racah algebra as in (5.40), one finds that the image of

the central element Ω given in (5.38) under the mapping Φ given by (5.39) and (5.41) is the

Casimir element (5.4) of the Racah algebra, up to a central element and scaling. Explicitly,

one has

Φ : Ω 7−→ uC + v,

where the coefficients u and v are given by

u =
[
(c1 − a2

1)τ1τ2 + a1 (τ1 + τ2) τ4 − τ 2
4

]−1
,

and

v = u
[
τ1τ2(a1bd1−a1c1d2−a2c1d1+a2a

2
1d1−d2

1)+
[
(a1a2c1−bc1)τ0+(c1d2−2a1a2d1)τ4

]
(τ1+τ2)

+ (2a1c1τ0 − 2a1d1τ4)τ3 +
(
2a2d1τ4 + (2d1 − a2c1)τ0

)
τ4 − c1τ

2
0

]
+ a2d1 − a1d2.

5.5. The Bannai-Ito algebra

The Bannai-Ito algebra B is defined [10] as the unital associative algebra over C generated

by B1, B2 and B3 with the following relations

{B1, B2} = B3 + ω1, {B2, B3} = B1 + ω2, {B1, B3} = B2 + ω3, (5.42)

where ωi for i = 1, 2, 3 are central elements. A natural Z2 grading is given by taking B1, B2 to

be odd, which implies that B3 is even. It is observed that this algebra satisfies the following

graded Jacobi identity

[B1, {B2, B3}] + [B2, {B1, B3}] + [B3, {B1, B2}] = 0.

In this presentation, the central Casimir operator is given by

Q = B2
1 +B2

2 +B2
3 . (5.43)
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5.5.1. Canonical realization

A realization of the Bannai-Ito algebra in terms of reflection operators acting on univa-

riate polynomials can be constructed [10] as follows. One first defines two reflection operators

R1 and R2 acting on univariate functions as

R1 f(x) = f(−x), R2 f(x) = f(−x− 1), =⇒ R2
1 = R2

2 = I.

The most general symmetrizable first order shift operator that contains reflections and pre-

serves the space of polynomials of a given degree is the Bannai-Ito operator [25] given by

B̃2 = (x− ρ1) (x− ρ2)
2x (1−R1) +

(
−r1 + x+ 1

2

) (
−r2 + x+ 1

2

)
2x+ 1 (R2 − 1). (5.44)

This operator is diagonalized by the four parameters Bannai-Ito polynomials [1, 26], denoted

Bn(x|ρ1, ρ2, r1, r2), with

B̃2Bn(x|ρ1, ρ2, r1, r2) = (−1)n(n+ ρ1 + ρ2 − r1 − r2 + 1/2)Bn(x|ρ1, ρ2, r1, r2). (5.45)

These polynomials are orthogonal on the finite Bannai-Ito grid xs defined [12], depending

on the truncation conditions used, as

xs =



(−1)s
(
s
2 + ρj + 1

4

)
− 1

4 , for N even, 2(ri + ρj) = N + 1, i, j = 1, 2,

(−1)s
(
s
2 + ρ2 + 1

4

)
− 1

4 , for N odd, 2(ρ1 + ρ2) = −N − 1,

(−1)s
(
r1 − s

2 −
1
4

)
− 1

4 , for N odd, 2(r1 + r2) = N + 1,

(5.46)

with s = 0, 1, . . . , N ∈ N. The Bannai-ito polynomials also satisfy a three-terms recurrence

relation of the following form

xBn(x) = Bn+1(x) + AnBn(x) + CnBn−1(x), (5.47)

where the coefficients depend only [25] on n and the parameters ρ1, ρ2, r1, r2 of the polyno-

mial. The left-hand side of this recurrence relation can be understood as an operator B̃1

that acts on functions by multiplication as follows

B̃1f(x) = xf(x). (5.48)

As defined in (5.44) and (5.48), the pair of operators B̃1, B̃2 acts on univariate functions of

x. Another realization can be given where both operators act on the degrees n. In this case,
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the action of B̃2 is given in (5.45) while the action of B̃1 is defined through the right-hand

side of (5.47). Thus, the operators B̃1, B̃2 form a bispectral pair.

Introducing the structure operator as B̃3 ≡ {B̃1, B̃2}, it can be seen that the algebra

generated by B̃1, B̃2 and B̃3 is the algebra (5.42), up to an affine transformation. Explicitly,

the following map

B1 7−→ 2B̃1 + 1/2, B2 7−→ 2B̃2 + (ρ1 + ρ2 − r1 − r2 + 1/2),

B3 7−→ 4{B̃1, B̃2}+ 2B̃2 + 4 (ρ1 + ρ2 − r1 − r2 + 1/2) B̃1 (5.49)

+ (ρ1 + ρ2 − 4ρ1ρ2 − r1 − r2 + 4r1r2 + 1/2) ,

is an homomorphism. In this realization, the Casimir operator (5.43), together with the

central elements in (5.42), are proportional to the identity element. One has

Q 7−→ 2 (ρ2
1 + ρ2

2 + r2
1 + r2

2 − 1/8) I,

ω1 7→ 4 (ρ1ρ2 − r1r2) I, ω2 7→ 2
(
ρ2

1 + ρ2
2 − r2

1 − r2
2

)
I, ω3 7→ 4 (ρ1ρ2 + r1r2) I.

5.5.2. Embedding of the Racah algebra in the Bannai-Ito algebra

An embedding of the (reduced) Racah algebra (5.5) into the Bannai-Ito algebra has been

shown to exists [15]. This embedding is constructed from quadratic combinations of the

Bannai-Ito generators as follows. One defines the generators A,B and C as

A = 1
4

(
B2

1 −B1 −
3
4

)
, B = 1

4

(
B2

2 −B2 −
3
4

)
, C = 1

4

(
B2

3 −B3 −
3
4

)
. (5.50)

A direct computation shows that in the sub-algebra generated by A,B and C as defined

above, the element

Γ ≡ B1 +B2 +B3 − 3/2, (5.51)

is central, as is the sum of the generators since it can be expressed as

A+B + C = 1
4(Q− Γ− 15/4),

where Q is the Casimir operator (5.43) of the Bannai-Ito algebra. The commutators between

distinct generators are seen to be equal and define a fourth generator P as follows

2P ≡ [A,B] = [B,C] = [C,A]. (5.52)
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From the relations (5.42) of the Bannai-Ito algebra, one obtains the closure of the algebra

generated by A,B,C and P as a quadratic algebra with the following relations:

[A,P ] = BA− AC + 1
16
ω3 − ω1

2

(
ω3 + ω1

2 − Γ
)
,

[B,P ] = CB −BA+ 1
16
ω1 − ω2

2

(
ω1 + ω2

2 − Γ
)
, (5.53)

[C,P ] = AC − CB + 1
16
ω2 − ω3

2

(
ω2 + ω3

2 − Γ
)
.

The relations (5.51), (5.52) and (5.53) can be seen to be identical to the equitable presentation

of the Racah algebra given in (5.7) and (5.8). Thus, one can define the embedding θ : R̃ −→

B of the reduced Racah algebra into the Bannai-Ito algebra as follows

θ : V1 7→ A, d 7→ 1
8(Q− Γ− 15/4),

V2 7→ B, e1 7→
1
64
ω3 − ω1

2

(
ω3 + ω1

2 − Γ
)
, (5.54)

V3 7→ C, e2 7→
1
64
ω1 − ω2

2

(
ω1 + ω2

2 − Γ
)
.

5.6. The Heun-Bannai-Ito algebra

We now introduce the Heun Bannai-Ito algebra HB abstractly as the unital associative

cubic algebra generated by X,W and Z with the following relations

{X,W} ≡ Z,

{Z,X} = x0I + x1X + x2X
2 + x3X

3 + x4W, (5.55)

{W,Z} = y0I + y1X + y2X
2 + y3X

3 + (x1 + x3x4)W + x2{X,W} − x3XWX,

where xi, yi for i = 0, 1, 2 are central elements and xi for i = 3, 4, together with y3, are

parameters in R. The constraints in the last three coefficients of (5.55) ensure compatibility

with the following graded Jacobi identity

[X, {Z,W}] + [W, {X,Z}] + [Z, {W,X}] = 0.
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A distinguished central element is identified in this presentation as

Λ = (x4y2 − y0)X + (x0 − x2x4)W − (x1 + x3x4)Z + 1
2x4y3X

2 + 2x4W
2 + Z2

+ [XW,WX]− x2XWX − y2X
3 − y3

2 X
4. (5.56)

5.6.1. Embedding in the Bannai-Ito algebra

A specialization of the Heun-Bannai-Ito algebra, obtained by imposing conditions on

the parameters, admits an embedding into the Bannai-Ito algebra. This embedding can be

constructed from the algebraic Heun operator (5.1) of the Bannai-Ito type. To do so, one

defines the map ψ on the generators as follows

ψ : HB −→ B,

X 7−→ B1,

W 7−→ τ1B1B2 + τ2B2B1 + τ3B1 + τ4B2 + τ0I, (5.57)

which is an homomorphism, provided that the parameters of the Heun-Bannai-Ito algebra

in (5.55) be as follows

x3 = 4τ3, x4 = 1, y3 = 8τ 2
3 − 2 (τ1 − τ2) 2, (5.58)

and that the central elements of the Heun-Bannai-Ito algebra be mapped to those of the

Bannai-Ito algebra as follows

x0 7→ τ4ω3−τ0, x1 7→ 2τ4ω1+(τ1 + τ2)ω3−τ3, x2 7→ 2 (τ1 + τ2)ω1+4τ0,

y0 7→ Q (τ1 + τ2) τ4 + τ4
(
−τ2ω

2
1 + τ4ω2 + 3τ3ω3

)
− τ0 (2τ4ω1 + (τ1 + τ2)ω3 + 3τ3)

+ τ1
(
τ2 (ω2 − 2ω1ω3)− τ4ω

2
1

)
,

y1 7→ Q (τ1 − τ2) 2 − 4 (τ1 + τ2) τ0ω1 − (τ1 + τ2) 2ω2
1 + 4τ3τ4ω1 + 2 (τ1 + τ2) τ3ω3

− 4τ 2
0 − 3τ 2

3 + τ 2
4 + τ1τ2,

y2 7→ τ 2
1 (−ω2)− τ1 (τ4 − 2τ2ω2) + 2 (τ1 + τ2) τ3ω1 − τ2 (τ2ω2 + τ4) + 4τ0τ3,

(5.59)
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where Q is the Casimir (5.43) of the Bannai-Ito algebra. Under the map ψ defined in (5.57)

and (5.59) with the parameters as in (5.58), the central element Λ given in (5.56) is mapped

to the Casimir of the Bannai-Ito algebra, up to a central element and a scaling, such that

ψ : Λ 7−→ uQ+ v,

where

u = τ 2
4 + τ1τ2, v = −2τ0 (τ1ω1 + τ2ω1 − τ4ω3) + τ1τ4ω2 + τ4

(
τ2ω2 − τ4ω

2
1

)
− τ1τ2

(
ω2

1 + ω2
3

)
− 3τ 2

0 .

5.6.2. The Heun-Bannai-Ito operator

The generalized Heun operatorW of the Bannai-Ito type can be introduced as the generic

first order reflection operator in the infinite dihedral group D∞ that has the degree raising

property:

Wpn(x) 7−→ qn+1(x), (5.60)

for pn and qn arbitrary polynomials of degree n and n+ 1, respectively. Consider the general

reflection operator W specified by

W = A1(x)R1 + A2(x)R2 + A0(x)I. (5.61)

Acting on the first three monomials in x and demanding that (5.60) holds fully determines

the form of the coefficients Ai(x) for i = 0, 1, 2. One has

p1(x) ≡ W · 1 = A1(x) + A2(x) + A0(x),

p2(x) ≡ W · x = x(A0(x)− A1(x))− (x+ 1)A2(x),

p3(x) ≡ W · x2 = x2(A0(x) + A1(x)) + (x+ 1)2A2(x),

(5.62)
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where p1(x), p2(x) and p3(x) are arbitrary polynomials of first, second and third degree,

respectively. One solves easily (5.62) for the coefficients Ai(x) to obtain

A0(x) = p3(x) + (2x+ 1)p2(x) + x(x+ 1)p1(x)
2x(2x+ 1) ,

A1(x) = x(x+ 1)p1(x)− p2(x)− p3(x)
2x ,

A2(x) = p3(x)− x2p1(x)
2x+ 1 .

(5.63)

From the above, one sees that the coefficients of the polynomials p1(x), p2(x) and p3(x)

constitute a parametrization of the Heun-Bannai-Ito operator. We will denote these nine

parameters as follows

p1(x) =
1∑
i=0

p
(i)
1 x

i, p2(x) =
2∑
i=0

p
(i)
2 x

i, p3(x) =
3∑
i=0

p
(i)
3 x

i. (5.64)

For the Heun-Bannai-Ito operator to act on the finite Bannai-Ito grid xs given in (5.46),

additional constraints exist on the parameters. Depending on the truncation conditions, one

has

A1(x) ∝ (x− ρj), A2(x) ∝ (x− ri + 1/2), for N even, 2(ri + ρj) = N + 1, i, j = 1, 2,

A1(x) ∝ (x− ρ1)(x− ρ2), for N odd, 2(ρ1 + ρ2) = −N − 1,

A2(x) ∝ (x− r1 + 1/2)(x− r2 + 1/2), for N odd, 2(r1 + r2) = N + 1.

(5.65)

These conditions can be expressed on the parameters (5.64) of the Heun-Bannai-Ito operator

as the following constraints. For any constants, a and b, one has that

A1 ∝ (x− a) =⇒ p
(0)
3 = a3(p(1)

1 − p
(3)
3 ) + a2(p(0)

1 − p
(2)
3 )− a p(1)

3 ,

A2 ∝ (x− b) =⇒ p
(0)
2 = b3(p(1)

1 − p
(3)
3 ) + b2(p(0)

1 + p
(1)
1 − p

(2)
2 − p

(2)
3 ) (5.66)

+ b(p(0)
1 − p

(1)
2 − p

(1)
3 )− p(0)

3 ,

and, conjunctly with the above, one also has

A1 ∝ (x− b) =⇒ p
(1)
3 = (a2 + b2)(p(1)

1 − p
(3)
3 ) + ab(p(1)

1 − p
(3)
3 ) + (a+ b)(p(0)

1 − p
(2)
3 ),

A2 ∝ (x− a) =⇒ p
(1)
2 = (a2 + b2)(p(1)

1 − p
(3)
3 ) + ab(p(1)

1 − p
(3)
3 ) (5.67)

+ (a+ b)(p(0)
1 + p

(1)
1 − p

(2)
2 − p

(2)
3 ) + p

(0)
1 − p

(1)
3 .

116



Using two of the above four constraints on the parameters, one can satisfy any case of the

truncation conditions displayed in (5.65). Thus, when constrained to the Bannai-Ito grid

(5.46), the Heun-Bannai-Ito operator has seven free parameters amongst those of (5.64).

5.6.3. Tridiagonalization in the Bannai-Ito algebra

The Heun-Bannai-Ito operator can be obtained from the tridiagonalization procedure

applied to the Bannai-Ito bispectral operators. Consider the following generic W ∈ B

W = τ1B1B2 + τ2B2B1 + τ3B1 + τ4B2 + τ0I. (5.68)

In the realization (5.49), it can be seen by direct calculations that the above operator takes

the form of the Heun-Bannai-Ito operator (5.61). Thus, the Heun-Bannai-Ito operator is

one of the generators in the realization of the Heun-Bannai-Ito algebra constructed from the

concatenation of the embedding map ψ defined in (5.57) with the realization given in (5.49).

Once the Bannai-Ito grid xs is specified as in (5.46), the realization (5.49) admits two free

parameters. Thus, as the definition (5.68) for W introduced five additional parameters, this

realization ofW has seven free parameters, as was the case for the Heun-Bannai-Ito operator

in (5.64) with (5.65), (5.66) and (5.67). In this case, the parameters of the Heun-Bannai-Ito

operator as given by (5.64) can be given in terms of those of the realization (5.49) of the

Bannai-Ito algebra together with those of the tridiagonalization (5.68). One obtains

p3
(3) = τ1 (2ρ1 + 2ρ2 − 2r1 − 2r2 + 5) + τ2 (−2ρ1 − 2ρ2 + 2r1 + 2r2 − 7) + 2τ3,

p3
(2) = 1

4
(
2ρ1τ2 + 16ρ1ρ2τ2 + 2ρ2τ2 + 4ρ1τ4 + 4ρ2τ4 + τ1 (2ρ1 + 2ρ2 − 18r1 − 18r2 + 21)

+ 22r1τ2 − 16r1r2τ2 + 22r2τ2 − 4r1τ4 − 4r2τ4 + 4τ0 − 31τ2 + 2τ3 + 10τ4
)
,

p3
(1) = (−3r2 + r1 (4r2 − 3) + 2) τ1 + (r1 (5− 4r2) + 5r2 − 4) τ2 − 2 (r1 + r2 − 1) τ4,

p3
(0) = 1

4 (2r1 − 1) (2r2 − 1) (τ1 − 3τ2 + 2τ4) ,

p2
(2) = τ1 (−2ρ1 − 2ρ2 + 2r1 + 2r2 − 3) + τ2 (2ρ1 + 2ρ2 − 2r1 − 2r2 + 5) + 2τ3,

p2
(1) = 1

4
(
− 2ρ1τ2 − 2ρ2τ2 + τ1 (−2ρ1 + 16ρ1ρ2 − 2ρ2 + 10r2 − 2r1 (8r2 − 5)− 7)

− 4ρ1τ4 − 4ρ2τ4 − 14r1τ2 − 14r2τ2 + 4r1τ4 + 4r2τ4 + 4τ0 + 13τ2 + 2τ3 − 6τ4
)
,
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p2
(0) = ρ1ρ2 (τ1 + τ2 + 2τ4)− 1

4 (2r1 − 1) (2r2 − 1) (τ1 − 3τ2 + 2τ4) ,

p1
(1) = τ1 (2ρ1 + 2ρ2 − 2r1 − 2r2 + 1) + τ2 (−2ρ1 − 2ρ2 + 2r1 + 2r2 − 3) + 2τ3,

p1
(0) = 1

4
(
2ρ1τ2 + 16ρ1ρ2τ2 + 2ρ2τ2 + 4ρ1τ4 + 4ρ2τ4 + τ1 (2ρ1 + 2ρ2 − 2r1 − 2r2 + 1) + 6r1τ2

− 16r1r2τ2 + 6r2τ2 − 4r1τ4 − 4r2τ4 + 4τ0 − 3τ2 + 2τ3 + 2τ4
)
.
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Conclusion

The recently introduced [18] notion of the algebraic Heun operator enables the construc-

tion of generalized Heun operators from a bispectral pair of operators. In particular, as each

polynomial families in the Askey scheme is associated to a bispectral problem, a correspon-

ding generalized Heun operator can be constructed. Furthermore, paralleling the algebraic

approach to the Askey scheme, one is lead to the study of algebraic structures that encode

the properties of these generalized Heun operators. This paper examined the Racah and

Bannai-Ito cases.

The Heun-Racah operator was first constructed as the most general operator on the

Racah grid satisfying the Heun property of sending polynomials to polynomials one degree

higher. This operator could be identified with the algebraic Heun operator of the Racah type

in the canonical realization of the Racah algebra. The Heun-Racah algebra associated to

the Racah polynomials was subsequently introduced. This algebra was defined in a generic

presentation and a central element was identified. The association with the Racah algebra

was made explicit by the identification of a map that embeds a specialization of the Heun-

Racah algebra, obtained from conditions on the parameters, as a subalgebra of the Racah

algebra. This embedding effectively maps the central element to the Casimir operator of the

Racah algebra. Moreover, using this embedding, a realization of the specialized Heun-Racah

algebra is induced by the canonical realization of the Racah algebra.

As the Racah polynomials are at the top of the Askey scheme, the algebraic structure

that result from the construction of the algebraic Heun operator does not correspond to an

algebra associated to polynomials of the Askey scheme. This motivates further examination

of the Heun-Racah algebra as a new algebraic structure. Moreover, in view of the limit q → 1

that relates the Askey-Wilson algebra to the Racah algebra, one would expect a similar limit

that relates the results in [3] with the results presented here.

An analogous examination was made for the Bannai-Ito case. The Heun-Bannai-Ito

algebra was first introduced abstractly and a specialization with conditions on the parameters

was shown to embed in the Bannai-Ito algebra. In the canonical realization of the Bannai-

Ito algebra, this specialization was demonstrated to be realized in terms of the associated

Heun-Bannai-Ito operator.
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In view of the embedding of the Racah algebra in the Bannai-Ito algebra presented in

section 5.5, one could ask if the relation between these two algebraic structures is reflected in

the associated Heun algebras. Indeed, this paper has illustrated the following maps between

these algebraic structures
R

HR R̃

HB B,

χφ

χ◦φ

Υ θ

ψ

where χ, φ, θ and ψ are defined in (5.9), (5.39), (5.54) and (5.57), respectively and Υ =

θ ◦ χ ◦ φ. Furthermore, it can be shown that

Υ(WHR) = b1ψ(WHB)2 + b2{Γ, ψ(WHB)}+ [ψ(XHB), ψ(WHB)] + b4[Γ, ψ(WHB)] + b5Q

b6{ψ(XHB), ψ(WHB)}+ b7{ψ(XHB),Γ}+ b8ψ(WHB),

where the subscripts HR and HB denote, respectively, generators in the Heun-Racah and

Heun-Bannai-Ito algebra and where bi for 1 ≤ i ≤ 8 are coefficients. Finding a specialization

of the Heun-Racah algebra that embeds in the Heun-Bannai-Ito algebra would enhance the

association between these new algebraic structures and the algebraic structures of the Askey

scheme.
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Chapitre 6

Sklyanin-like algebras for (q-)linear grids and

(q-)para-Krawtchouk polynomials

G. Bergeron, J. Gaboriaud, L. Vinet and A. Zhedanov (2021). Sklyanin-like algebras for

(q-)linear grids and (q-)para-Krawtchouk polynomials. Journal of Mathematical Physics 62

(1), 013505.

Abstract

S-Heun operators on linear and q-linear grids are introduced. These operators are special

cases of Heun operators and are related to Sklyanin-like algebras. The Continuous Hahn

and Big q-Jacobi polynomials are functions on which these S-Heun operators have natural

actions. We show that the S-Heun operators encompass both the bispectral operators and

Kalnins and Miller’s structure operators. These four structure operators realize special

limit cases of the trigonometric degeneration of the original Sklyanin algebra. Finite-

dimensional representations of these algebras are obtained from a truncation condition. The

corresponding representation bases are finite families of polynomials: the para-Krawtchouk

and q-para-Krawtchouk ones. A natural algebraic interpretation of these polynomials

that had been missing is thus obtained. We also recover the Heun operators attached

to the corresponding bispectral problems as quadratic combinations of the S-Heun operators.



6.1. Introduction

In the study of orthogonal polynomials (OPs), many of their properties are expressed as

structure relations between family members with different parameters, arguments or degrees,

examples are the three term recurrence relation, the differential/difference equation, the

backward/forward relation, etc. As it turns out, the operators involved in these formulas

realize algebras that synthesize much of the characterization of these polynomial ensembles.

The present paper relates to this framework.

One such instance that has proven very fruitful is the (algebraic) study of the two bis-

pectral operators associated to hypergeometric OPs. These operators are the recurrence

and the differential/difference operators. Let us focus on the developments related to the

Askey–Wilson polynomials; since these polynomials sit at the top of the Askey scheme, the

gist of their description descends onto all the lower families in the scheme. The two bis-

pectral operators for the Askey–Wilson polynomials do not commute: they form an algebra

whose relations have been found by Zhedanov in [60] and it is usually referred to as the

Askey–Wilson algebra.

This algebra has appeared in a great variety of contexts, such as knot theory [9], double

affine Hecke algebras and representation theory [33, 35, 43], Howe duality [14, 16], inte-

grable models [2, 1, 3, 57], algebraic combinatorics [53, 50, 51, 52], the Racah problem

for Uq(sl2) [21, 26], etc. The abovementioned connections have some specializations for all

entries of the Askey tableau.

The work of Kalnins and Miller [31, 30, 44] based on the use of four structure or

contiguity operators is another approach that illustrates the use of symmetry techniques

in the study of OPs. These operators that shall be referred to as structure operators in

the following correspond to the backward and forward operators, as well as to another

pair of operators that “factorize” [27] the differential/difference operator. It was recently

observed [34] that for the Askey–Wilson polynomials, these operators realize the relations

of the trigonometric degeneration [20] of the Sklyanin algebra [46]. To our knowledge, the

Sklyanin-like algebras similarly connected to other families of OPs have not been described

so far and will be the center of attention here.

The differential/difference operator of which the OPs are eigenfunctions belongs to the

intersection of the sets of operators involved in the two pictures. A natural question is the
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following: what is the most elementary set of operators that encompasses all operators in

both of the approaches above? In the case of the Askey–Wilson polynomials, this answer was

given in [15]: it is the set of so-called S-Heun operators on the Askey–Wilson grid (these

are special types of Heun operators that will be defined in the next section). Operators of

the Heun type are related to the tridiagonalization procedure [28, 24] and have been given

an algebraic formulation [23, 25]. They have been identified as Hamiltonians of quantum

Euler–Arnold tops [56], they have been connected to band-time limiting [47, 37] and to the

study of entanglement in spin chains [11, 12] and they have been studied quite a lot recently

[48, 49, 5, 4, 59, 13, 55, 6, 8, 7]. As will be shown below, the S-Heun operators allow

a factorization of these Heun operators. Let us note that in addition to the unification of

the two approaches described above, the S-Heun framework has also led to a novel algebraic

interpretation of the q-para-Racah polynomials. The goal of the present paper is to look

at the grids of linear type from the S-Heun operators point of view. As a byproduct, an

algebraic interpretation of the para-Krawtchouk and q-para-Krawtchouk polynomials will be

obtained. These polynomials were first identified in the context of perfect state transfer and

fractional revival on quantum spin chains [58, 41, 19, 61] and their algebraic interpretation

was still lacking.

We will introduce the S-Heun operators on linear grids in Section 6.2. The simplest

example of operators of this type will be worked out in Section 6.3 (this will involve diffe-

rential operators, the Jacobi polynomials and the ordinary Heun operator). Section 6.4 will

focus on the S-Heun operators on the discrete linear grid. A new degeneration of the Sklya-

nin algebra will be presented. Of relevance in this case, the Continuous Hahn polynomials

will be seen to truncate to the para-Krawtchouk polynomials under a special condition and

an algebraic interpretation of such a truncation will be given. The Heun operator on the

uniform grid will also be recovered. The q-linear grid will be examined in Section 6.5 and

the previous analysis will be repeated. The degeneration of the Sklyanin algebra that arises

will be identified as Uq(sl2). The Big q-Jacobi polynomials will be involved, and they will be

observed to reduce to the q-para-Krawtchouk polynomials under a certain condition. The

Big q-Jacobi Heun operator will also be recovered as well. Connections between the three

grids and the associated S-Heun operators and Sklyanin-type algebras will be presented in
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Section 6.6, followed by concluding remarks. The quadratic relations between the S-Heun

operators for the three different types of grids are listed in Appendix 6.7.

6.2. S-Heun operators on linear-type grids

S-Heun operators are defined as the most general second order differential/difference

operators without diagonal term that obey a degree raising condition. Like Heun operators,

they can be defined on different grids. We now introduce the three linear grids that we will

use and obtain the S-Heun operators associated to each.

6.2.1. The discrete linear grid

Consider the operator S

S = A1T+ + A2T− (6.1)

where

T+f(x) = f(x+ 1), T−f(x) = f(x− 1) (6.2)

are shift operators, and A1,2 are functions in the real variable x. Impose that S maps

polynomials of degree n onto polynomials of degree no higher than n+ 1, namely,

SPn(x) = P̃n+1(x) (6.3)

for all n = 0, 1, 2, . . . . This defines the S-Heun operators on the discrete linear grid.

It is sufficient to enforce this raising condition on monomials xn; for n = 0 and n = 1, it

reads

A1 + A2 = a00 + a01x, (6.4a)

A1(x+ 1) + A2(x− 1) = a10 + a11x+ a12x
2, (6.4b)

for some arbitrary parameters aij. This can be rewritten as

A1 + A2 = a00 + a01x, (6.5a)

A1 − A2 = a10 + (a11 − a00)x+ (a12 − a01)x2. (6.5b)
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Straightforward induction shows that in general one has

Sxn = A1(x+ 1)n + A2(x− 1)n =
n∑
k=0

(
n

k

)
xk[A1 + (−1)n−kA2], (6.6)

which is a polynomial of degree n+ 1. Thus, the functions A1, A2

A1 = 1
2

[
(−a01 + a12)x2 + (−a00 + a01 + a11)x+ (a00 + a10)

]
, (6.7a)

A2 = 1
2

[
(+a01 − a12)x2 + (+a00 + a01 − a11)x+ (a00 − a10)

]
(6.7b)

satisfy (6.5) and the operator (6.1) meets the degree raising condition.

Proposition 6.2.1. With the functions A1, A2 given by (6.7), the operator S in (6.1) is the

most general S-Heun operator on the linear grid. S depends on 5 free parameters and spans

a 5-dimensional linear space. The elements

L = 1
2 [T+ − T−] , (6.8a)

M1 = 1
2 [T+ + T−] , (6.8b)

M2 = 1
2x [T+ − T−] , (6.8c)

R1 = 1
2x [(1− 2x)T+ + (1 + 2x)T−] , (6.8d)

R2 = 1
2x [T+ + T−] . (6.8e)

form a basis for this space.

Using (6.6), one sees that the operator L is a lowering operator (it lowers by one the

degree of polynomials in x), the operators M1, M2 are stabilizing operators (they do not

change the degree) and the operators R1, R2 are raising operators (they raise it by one).

6.2.2. The q-linear grid

Condider now the q-linear grid z = qx (or exponential grid). The S-Heun operators Ŝ on

that grid are of the form

Ŝ = Â1(z, q)T̂+ + Â2(z, q)T̂−, (6.9)

with

T̂±f(z) = f(q±1z), (6.10)
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and are taken to map polynomials in z onto polynomials of at most one degree higher:

ŜPn(z) = P̃n+1(z). Imposing this degree raising condition on the first monomials 1 and z

yields

Â1(z, q) + Â2(z, q) = a00 + a01z, (6.11a)

Â1(z, q)q + Â2(z, q)q−1 = a10z
−1 + a11 + a12z. (6.11b)

Straightforward induction shows that in general one has

Ŝzn = (Â1q
n + Â2q

−n)zn = zn[Â1q + Â2q
−1]q

n − q−n

q − q−1 − z
n[Â1 + Â2]q

n−1 − q1−n

q − q−1 , (6.12)

which is a polynomial of degree n+1 in z. Thus, an operator Ŝ with Â1(z, q) and Â2(z, q) that

satisfies (6.11) will obey the degree raising condition on any monomial. We hence obtain:

Â1(z, q) = Â2(z, q−1) = 1
(q − q−1)z

[
a10 + (a11 − a00q

−1)z + (a12 − a01q
−1)z2

]
. (6.13)

Proposition 6.2.2. With the functions Â1(z, q), Â2(z, q) given by (6.13), the operator Ŝ

in (6.9) is the most general S-Heun operator on the q-linear grid. Ŝ depends on 5 free

parameters and spans a 5-dimensional linear space. The elements

L̂ = 1
(q − q−1)z

−1(T̂+ − T̂−), (6.14a)

M̂1 = 1
(q − q−1)(−q−1T̂+ + qT̂−), (6.14b)

M̂2 = 1
(q − q−1)(T̂+ − T̂−), (6.14c)

R̂1 = 1
(q − q−1)z(−q−1T̂+ + qT̂−), (6.14d)

R̂2 = 1
(q − q−1)z(T̂+ − T̂−). (6.14e)

can be chosen as a basis for this space.

Looking at (6.12) and (6.13), one sees that the operator L̂ lowers the degrees, and that

the M̂i’s and the R̂i’s are respectively stabilizing and raising operators.
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6.2.3. The simplest case: differential S-Heun operators

The definition of the S-Heun operators on the real line goes as follows. Consider the

first-order differential operator

S̄ = Ā1(x) d
dx

+ Ā2(x) (6.15)

and impose the raising condition S̄pn(x) = p̃n+1(x) which demands that S̄ sends polynomials

into polynomials of one degree higher. The general solution is given by

Ā1(x) = a10 + a11x+ a12x
2, Ā2(x) = a20 + a21x. (6.16)

This leads to the following set of five linearly independent S-Heun operators [56]

L̄ = d

dx
, M̄1 = 1, M̄2 = x

d

dx
, R̄1 = x, R̄2 = x2 d

dx
, (6.17)

which are once again labelled according to their property of lowering (L̄), stabilizing (M̄) or

raising (R̄) the degree of polynomials in the variable x.

These S-Heun operators can also be obtained as a q → 1 limit of the ones defined on the

q-linear grid. More precisely, writing q = e~ and letting ~→ 0, one obtains

lim
q→1

L̂ = L̄, lim
q→1

M̂1 = M̄1 − M̄2, lim
q→1

M̂2 = M̄2, lim
q→1

R̂1 = R̄1 − R̄2, lim
q→1

R̂2 = R̄2.

(6.18)

This connects with the definition of the continuous S-Heun operators. These S-Heun opera-

tors will also be related to the ordinary Heun operator introduced in the next section.

6.3. The continuous case

The goal of this section is to revisit (mostly known) results with a point of view that

will be adopted in the following sections. Here, we are interested in studying the OPs and

algebras related to the set of the five S-Heun operators defined in Section 6.2.3.

6.3.1. The stabilizing subalgebra

We first study the subset {L̄, M̄1, M̄2} of S-Heun operators that stabilize the set of po-

lynomials of a given degree. Let us denote by Q̄ the most general quadratic combination of
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these operators. Using the relations of Appendix 6.7, it is always possible to reduce Q̄ to an

expression of the form

Q̄ = α1L̄
2 + α2L̄M̄1 + α3L̄M̄2 + α4M̄1

2 + α5M̄1M̄2 + α6M̄2
2. (6.19)

Using the realizations (6.17), the eigenvalue equation for the second-order differential ope-

rator Q̄ can be brought in the form

D̄P (α,β)
n (x) = n(n+ α + β + 1)P (α,β)

n (x),

D̄ = (x2 − 1) d
2

dx2 + [(α− β) + (α + β + 2)x] d
dx
,

(6.20)

which is recognized as the differential equation satisfied by the Jacobi polynomials [32].

We have thus identified the family of OPs related to these (ordinary) S-Heun operators,

and as will be seen in the next subsection, certain combinations of these S-Heun operators

provide the structure relations of these polynomials.

6.3.2. Jacobi polynomials and their structure relations

Consider the forward and backward operators for the Jacobi polynomials

τ̄ = L̄, τ̄ (α,β)∗ = −L̄+ (α− β)M̄1 + (α + β)R̄1 + R̄2. (6.21a)

and the contiguity operators

µ̄(α) = −L̄+ αM̄1 + M̄2, µ̄(β)∗ = L̄+ βM̄1 + M̄2. (6.21b)

These four operators act very simply on the Jacobi polynomials:

τ̄P (α,β)
n (x) = 1

2(n+ α + β + 1)P (α+1,β+1)
n−1 (x), (6.22a)

τ̄ (α,β)∗P (α,β)
n (x) = 2(n+ 1)P (α−1,β−1)

n+1 (x), (6.22b)

µ̄(α)P (α,β)
n (x) = (n+ α)P (α−1,β+1)

n (x), (6.22c)

µ̄(β)∗P (α,β)
n (x) = (n+ β)P (α+1,β−1)

n (x). (6.22d)

The operators µ̄(α), µ̄(β)∗ , τ̄ , τ̄ (α,β)∗ built from linear combinations of S-Heun operators are

of the type studied by Kalnins and Miller [30].

We have mentioned in the introduction that S-Heun operators encompass both the struc-

ture operators of Kalnins and Miller and the bispectral operators. Let us indicate how the

latter operators appear in this context. First, as mentioned above, the Jacobi differential
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operator appears as a quadratic combination of the stabilizing generators. We can actually

provide a factorization of this operator either as a product of two contiguous operators or as

the product of the forward and backward operator:

D̄ = µ̄(α+1)µ̄(β)∗ − (α + 1)β

= µ̄(β+1)∗µ̄(α) − α(β + 1)

= τ̄ (α+1,β+1)∗ τ̄

= τ̄ τ̄ (α,β)∗ − (α + β).

(6.23)

The other bispectral operator X̄ is the multiplication by the variable x. It can be directly

expressed as R̄1, but since it will appear as a quadratic combination of the S-Heun operators

for other grids, we shall write it here as

X̄ = R̄1M̄1. (6.24)

We have thus recovered the two bispectral operators as quadratic combinations in the S-Heun

operators. This completes the observation that the S-Heun operators are the elementary

blocks behind the two factorizations.

6.3.3. The Sklyanin-like algebra realized by the structure operators

We now focus on the algebras that are realized by these sets of operators. On the one

hand the pair of bispectral Jacobi operators is known [17] to generate the Jacobi algebra

that has been well studied [22]. On the other hand, the algebra formed by the 4 linear

operators µ̄(α), µ̄(β)∗ , τ̄ , τ̄ (α,β)∗ can be seen to be a degeneration of the Sklyanin algebra [46].

We now give a presentation of this algebra. Denote ν = −1
2(α + β) and set

Ā = M̄2 − νM̄1, B̄ = R̄2 − 2νR̄1, C̄ = L̄, D̄ = M̄1. (6.25)

These linear combinations of µ̄(α), µ̄(β)∗ , τ̄ , τ̄ (α,β)∗ have been chosen in order to simplify the

relations.

Proposition 6.3.1. The operators Ā, B̄, C̄, D̄ obey the homogeneous quadratic relations

[C̄, D̄] = 0, [Ā, C̄] = −C̄D̄, [Ā, D̄] = 0,

[B̄, C̄] = −2ĀD̄, [Ā, B̄] = B̄D̄, [B̄, D̄] = 0.
(6.26)
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Remark 6.3.1. One will notice that these relations are actually the relations of the sl2

Lie algebra supplemented with a central element D (one recovers U(sl2) by quotienting the

above algebra (6.26) by the additional relation D = 1). The reason why we wrote these in

a quadratic fashion is to make easier the comparison with the other Sklyanin algebras that

will be obtained later.

One observes that if ν is an integer or half-integer, the realization (6.25) is associated to

a finite dimensional representation of dimension 2ν + 1.

6.3.4. Recovering the Heun operator

We now show how to recover the ordinary (differential) Heun operator from the knowledge

of the S-Heun operators.

The generic Heun operator W̄ can be expressed as the most general tridiagonalization of

the hypergeometric operator [24]. It has been known to be

W̄ = Q3(x) d
2

dx2 +Q2(x) d
dx

+Q1(x), (6.27)

where Q3(x), Q2(x) and Q1(x) are general polynomials of degree 3, 2 and 1 respectively.

Let us consider the most general quadratic combination of S-Heun operators that does

not raise the degree of polynomials by more than one. Using the quadratic homogeneous

relations of Appendix 6.7, it is always possible to simplify such an expression to

W̄ = α1L̄
2 + α2L̄M̄1 + α3L̄M̄2 + α4M̄1

2 + α5M̄1M̄2 + α6M̄2
2 + β1M̄1R̄2 + β2M̄2R̄1 + β3M̄2R̄2.

(6.28)

From the differential expressions of the generators we obtain

W̄ = Q3(x) d
2

dx2 +Q2(x) d
dx

+Q1(x)I,

Q3(x) = α1 + α3x+ α6x
2 + β3x

3,

Q2(x) = (α2 + α3) + (α5 + α6)x+ (β1 + β2 + 2β3)x2,

Q1(x) = α4 + β2x,

(6.29)

where I is the identity operator: If(x) = f(x).

Proposition 6.3.2. The generic Heun operator (6.27) can be obtained as the most general

quadratic combination in the S-Heun generators (6.17) that does not raise the degree of

polynomials by more than one.
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Calling upon the reordering relations of Appendix 6.7, it is seen that the Heun operator

generically factorizes as the product of a general S-Heun operator with a stabilizing S-Heun

operator:

W̄ = (ξ1L̄+ ξ2M̄1 + ξ3M̄2)(η1L̄+ η2M̄1 + η3M̄2 + η4R̄1 + η5R̄2) + κ. (6.30)

6.4. S-Heun operators on the linear grid

We now come to one of the main topics of the paper, namely the S-Heun operators defined

on the linear grid.

6.4.1. The stabilizing subset

The subset of S-Heun operators that stabilizes the polynomials of a given degree is

{L,M1,M2}. The most general quadratic combination of these operators can always be

reduced to an expression of the form

Q = α1L
2 + α2LM1 + α3LM2 + α4M1

2 + α5M1M2 + α6M2
2 (6.31)

using the relations of Appendix 6.7. Substituting the expressions (6.8), one sees that Q is a

second-order difference operator. By straightforward manipulations, the eigenvalue equation

for Q can be transformed into the difference equation of the Continuous Hahn polynomials

[32]

DPn(x̃; a, b, c, d) = n(n+ a+ b+ c+ d− 1)Pn(x̃; a, b, c, d),

D = B(x̃)T 2
+ − [B(x̃) +D(x̃)]I +D(x̃)T 2

−,

B(x) = (c− ix)(d− ix), D(x) = (a+ ix)(b+ ix),

(6.32)

with x̃ = ix2 and where a, b, c, d are given in terms of the αi. From this, we recognize that

the key family of OPs related to these S-Heun operators is the Continuous Hahn family.

6.4.2. Continuous Hahn polynomials and their structure relations

The following combinations of S-Heun operators

τ = 2L, (6.33a)

τ (a,b,c,d)∗ = µ1L+ µ2M1 + µ3M2 + µ4R1 + µ5R2, (6.33b)

133



with

µ1 = 1
2(1− (a+ b+ c+ d)) + (ab+ cd),

µ2 = 1
2(a+ b− c− d)− (ab− cd),

µ3 = 1
2(c+ d− a− b),

µ4 = −1
4 ,

µ5 = 1
2(a+ b+ c+ d)− 3

4

(6.33c)

turn out to be the forward and backward operators, while

µ(a,b,c,d) = (d− a)L+ (a+ d− 1)M1 +M2, (6.33d)

µ(a,b,c,d)∗ = (c− b)L+ (b+ c− 1)M1 +M2, (6.33e)

will act on polynomials as the contiguity relations. Indeed, these operators have the following

actions on the Continuous Hahn polynomials:

τ Pn
(
ix2 , a, b, c, d

)
= i(n+ a+ b+ c+ d− 1)Pn−1

(
ix2 , a+ 1

2 , b+ 1
2 , c+ 1

2 , d+ 1
2

)
,

(6.34a)

τ (a,b,c,d)∗ Pn
(
ix2 , a, b, c, d

)
= −i(n+ 1)Pn+1

(
ix2 , a−

1
2 , b−

1
2 , c−

1
2 , d−

1
2

)
, (6.34b)

µ(a,b,c,d) Pn
(
ix2 , a, b, c, d

)
= (n+ a+ d− 1)Pn

(
ix2 , a−

1
2 , b+ 1

2 , c+ 1
2 , d−

1
2

)
, (6.34c)

µ(a,b,c,d)∗ Pn
(
ix2 , a, b, c, d

)
= (n+ b+ c− 1)Pn

(
ix2 , a+ 1

2 , b−
1
2 , c−

1
2 , d+ 1

2

)
. (6.34d)

The 4 operators µ(a,b,c,d), µ(a,b,c,d)∗ , τ , τ (a,b,c,d)∗ have been studied by Kalnins and Miller in

[30].

We now indicate how the two bispectral operators are formed from the S-Heun operators.

As mentioned above, the Continuous Hahn difference operator can be formed by a quadratic

combination of the stabilizing generators. Moreover, we can provide factorizations of this

operator, either as a product of two contiguous operators or as the product of the backward

and forward operators:

D = µ(a+ 1
2 ,b−

1
2 ,c−

1
2 ,d+ 1

2 )µ(a,b,c,d)∗ − (a+ d)(b+ c− 1)

= µ(a− 1
2 ,b+

1
2 ,c+

1
2 ,d−

1
2 )∗µ(a,b,c,d) − (a+ d− 1)(b+ c)

= τ (a+ 1
2 ,b+

1
2 ,c+

1
2 ,d+ 1

2 )∗τ

= τ τ (a,b,c,d)∗ + 2− (a+ b+ c+ d).

(6.35)
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The remaining bispectral operator X is the multiplication by the variable x in this basis:

Xf(x) = xf(x). It appears as a quadratic combination in the S-Heun operators

X = [M2, R2]. (6.36)

The framework of S-Heun operators presented here is thus seen to unite the symmetry

techniques of Kalnins and Miller and the approach based on the bispectral operators (see

[18] for more general context).

6.4.3. The Sklyanin-like algebra realized by the structure operators

Let us now look at the algebraic relations obeyed by these operators. On the one hand,

the pair of bispectral Continuous Hahn operators realizes the Hahn algebra [59]. On the

other hand, the algebra formed by the 4 linear operators µ(a,b,c,d), µ(a,b,c,d)∗ , τ , τ (a,b,c,d)∗ can

be seen as a degeneration of the Sklyanin algebra.

This algebra can be presented as follows. Write ν = −1
2(a+ b+ c+ d) and take

A = 2(ν + 1)M1 − 2M2,

B = 1
2(2ν + 1)(2ν + 3)L−R1 − (4ν + 3)R2,

C = L,

D = M1.

(6.37)

These are linear combinations of µ(a,b,c,d), µ(a,b,c,d)∗ , τ , τ (a,b,c,d)∗ that have been chosen in order

to simplify the relations.

Proposition 6.4.1. The elements A, B, C, D obey the quadratic relations

[C,D] = 0, [A,C] = {C,D}, [A,D] = {C,C}, (6.38a)

[B,C] = {D,A}, [B,D] = {C,A}, [B,A] = {B,D}. (6.38b)

We shall refer to these relations as those of the Skl4 algebra.

The two quadratic Casimir elements are

Ω1 = D2 − C2, Ω2 = A2 +D2 − {B,C} (6.39)

and they take the following values in the realization:

Ω1 = 1, Ω2 = (2ν + 3)2. (6.40)
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Remark 6.4.1. The stabilizing subalgebra of Skl4 (6.38a), which we shall denote by Skl3,

has been identified in [29] as the algebra T7|(a,b)=(0,0) whose relations are isomorphic to

[x, y] = z2, [y, z] = 0, [x, z] = zy. (6.41)

It enjoys nice properties such as being Koszul, PBW, and being derived from a twisted

potential. That the above algebra is Skl3 is seen by setting x = 1
2A, y = D, z = C.

We now explain that Skl4 is a degeneration of the Sklyanin algebra. We rewrite the

τ (a,b,c,d)∗ in terms of A, B, C, D, using e1 = a+ b+ c+ d:

τ (a,b,c,d)∗ = 1
4(a+ b− c− d)A+ 1

4B +
[

1
8(1− e1)(1 + e1) + ab+ cd

]
C

+
[

1
4e1(a+ b− c− d)− ab+ cd

]
D. (6.42)

Two analogs of an identity due to Rains [45] can be obtained for τ (a,b,c,d)∗ . These are the

quasi-commutation relations:

τ (a+e,b,c,d−e)∗τ (a− 1
2 ,b+

1
2 ,c+

1
2 ,d−

1
2 )∗ = τ (a,b,c,d)∗τ (a− 1

2 +e,b+ 1
2 ,c+

1
2 ,d−

1
2−e)

∗
, (6.43)

τ (a,b+e,c−e,d)∗τ (a+ 1
2 ,b−

1
2 ,c−

1
2 ,d+ 1

2 )∗ = τ (a,b,c,d)∗τ (a+ 1
2 ,b−

1
2 +e,c− 1

2−e,d+ 1
2 )∗ . (6.44)

Proposition 6.4.2. Either of the quasi-commutation relation (6.43), (6.44) repackages the

relations (6.38) of the Skl4 algebra.

Proof: Substituting the relation (6.42) into (6.43) and bringing all terms to the rhs, one

obtains (u = b− c, v = a− b− c+ d):

0 = e
4

{
1
2(AB −BA) + u(CB −BC) + 1

2 [(2− v)BD + vDB]

+ u
[
(2− v)AD + vDA− 2(1− v)C2

]
− 1

4

[
(v2 + 4u2 − 4v + 3)AC − (v2 + 4u2 − 1)CA

]
,

+ 1
4

[
v3 − 4u2v + 8u2 − 2v2 − v + 2

]
CD − 1

4

[
v3 − 4u2v − 4v2 + 3v

]
DC

}
. (6.45)

The dependence on the free parameter e factors out. Taking v →∞, one obtains immediately

that

CD −DC = 0. (6.46)

Also, taking u→ 0 and v → 0, one gets

AB −BA = −2BD + 3
2AC + 1

2CA− CD. (6.47)
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Substituting these relations back in (6.45) leads to

0 = e
4

{
u(CB −BC) + v

2 [DB −BD] + u
[
(2− v)AD + vDA− 2(1− v)C2

]
− 1

4

[
(v2 + 4u2 − 4v)AC − (v2 + 4u2)CA

]
+ 1

4

[
8u2 + 2v2 − 4v

]
CD

}
.

(6.48)

Repeating a similar process, the remaining relations of (6.38) are found. A similar derivation

starting from (6.44) instead yields the same relations. �

6.4.4. Finite-dimensional representations

It is known that finite-dimensional representations of the Hahn algebra relate to the

Hahn polynomials [22]. We now wish to obtain finite-dimensional representations of the

Skl4 algebra; looking at (6.37), it is seen that one needs ν to be either an integer or half-

integer. It will be shown that this corresponds in fact to a truncation of the Jacobi matrix

of the Continuous Hahn polynomials.

Let us write the condition (ν is either an integer or half-integer) as

1− (a+ b+ c+ d) = N, (6.49)

where N is a positive integer that corresponds to the maximal degree of the truncated family

of polynomials.

This truncation condition is known [41] to be the one that takes the Wilson polynomials

to the para-Racah polynomials. In the present case, we start from the Continuous Hahn

OPs so the result of the truncation leads to a different family of para-polynomials.

Proposition 6.4.3. The polynomials that arise from the truncation condition (6.49) form a

basis that supports

(N + 1)-dimensional representations of the degenerate Sklyanin algebra Skl4 and are

identified as the para-Krawtchouk polynomials [58].

We indicate below how the recurrence relation of the para-Krawtchouk polynomials is

obtained from that of the Continuous Hahn polynomials by imposing (6.49).
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N = 2j + 1 odd

In the case where N = 2j + 1 is odd (j is a non-negative integer), we parametrize the

truncation condition as follows

c = −a− j + e1t, b = −d− j + e2t (6.50)

and then take the limit t→ 0. We shall choose e1 = e2: this will lead to simpler expressions.

The more general solutions corresponding to e1 6= e2 can be recovered from the simpler

solutions by the procedure of isospectral deformations, see for instance [40]. Using the chosen

parametrization, the recurrence coefficients An, Cn appearing in the recurrence relation of

the Continuous Hahn polynomials

(a+ ix)Pn(x; a, b, c, d) = AnPn+1(x; a, b, c, d) + CnPn−1(x; a, b, c, d)

− (An + Cn)Pn(x; a, b, c, d),

Pn(x; a, b, c, d) = n!
in(a+ c)n(a+ d)n

pn(x; a, b, c, d)

(6.51)

become in the limit t→ 0:

An = −(n−N)(n+ a+ d)
2(2n−N) , (6.52a)

Cn = +n(n−N − a− d)
2(2n−N) . (6.52b)

Now take γ to be

γ = (b+ c)− (a+ d), (6.53)

it follows that (6.52) can be rewritten in view of (6.49) as

An = −1
2

(N − n)(N − 1− 2n+ γ)
2(2n−N) , (6.54a)

Cn = −1
2
n(N + 1− 2n− γ)

2(2n−N) . (6.54b)

These are recognized as the recurrence coefficients of the para-Krawtchouk polynomials in

the variable −x
2 introduced in [58]. These polynomials are defined on the union of two linear

lattices and the parameter γ describes the displacement of one lattice with respect to the

other.
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N = 2j even

In the case where N = 2j is even, we use the parametrization

c = −a− j + e1t, b = −d− j + e1t+ 1 (6.55)

and then take the limit t → 0. The recurrence coefficients in the recurrence relation of the

Continuous Hahn polynomials become

An = −(n−N)(n+ a+ d)
2(2n−N + 1) , (6.56a)

Cn = +n(n−N − a− d)
2(2n−N − 1) , (6.56b)

and upon writing

γ = 1 + (b+ c)− (a+ d), (6.57)

we obtain

An = −1
2

(N − n)(N − 2− 2n+ γ)
2(2n−N + 1) , (6.58a)

Cn = −1
2
n(N + 2− 2n− γ)

2(2n−N − 1) . (6.58b)

These are the recurrence coefficients of the para-Krawtchouk polynomials in the variable −x
2 .

The expressions for the monic polynomials are given in [41].

A remark on the truncation condition

It can be checked that in the realization (6.37), applying the truncation condition (6.49)

seems to suggest that the raising operator B annihilates the monomial xN+1 and not xN . A

priori, this means that the truncation condition amounts to looking at (N + 2)-dimensional

representations of the algebra Skl4, which would seem to contradict the fact that the para-

Krawtchouk polynomials were truncated to have degrees at most N (and thus to span a

space of dimension N + 1).

Looking at the situation more closely, one observes that B indeed maps para-Krawtchouk

polynomial of maximal degree N to a certain polynomial of degree N + 1. But this polyno-

mial of degree N +1 corresponds to the characteristic polynomial of the (upper block of the)

truncated Jacobi matrix, hence it is null on the orthogonality grid points. Keeping in mind
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that the para-Krawtchouk polynomials are the basis vectors for the finite-dimensional repre-

sentation of Skl4, this characteristic polynomial thus corresponds to a null vector. Therefore

the dimension of the space on which the representation of the Skl4 algebra acts is indeed

N + 1.

6.4.5. Recovering the associated Heun operator

The Heun operator associated to the Continuous Hahn polynomials was implicitly defined

in [59]. This operatorWCH is the most general second order operator that acts on the discrete

linear grid and maps polynomials of degree n into polynomials of degree n + 1. It can be

expressed as

WCH = A1T+ +A0I +A2T−, (6.59)

where A1,2 are general polynomials of degree 3 with the same leading order coefficient, and

A0 +A1 +A2 = π1(x), with π1(x) a general polynomial of degree 1.

We now consider the most general quadratic combination of S-Heun operators that does

not raise the degree of polynomials by more than one. Upon using the quadratic homogeneous

relations of Appendix 6.7, this general combination can be brought into the form

W = α1L
2 + α2LM1 + α3LM2 + α4M1

2 + α5M1M2 + α6M2
2 + β1M1R2 + β2M2R1 + β3M2R2.

(6.60)

Substituting the expressions of the S-Heun basis operators (6.8), we obtain

W = A1T
2
+ +A0I +A2T

2
−,

A1 = 1
4 [−2β2x

3 + (α6 − 3β2 + β3)x2 + (α3 + α5 + α6 + β1 − β2 + β3)x

+ (α1 + α2 + α3 + α4 + α5 + β1)],

A2 = 1
4 [−2β2x

3 + (α6 + 3β2 − β3)x2 + (α3 − α5 − α6 + β1 − β2 + β3)x

+ (α1 − α2 − α3 + α4 + α5 − β1)],

A0 = (β1 + β2 + β3)x+ α4 − (A1 +A2).

(6.61)

Proposition 6.4.4. The generic Heun-Continuous Hahn operator (6.59) can be obtained as

the most general quadratic combination in the S-Heun generators (6.8) that does not raise

the degree of polynomials by more than one.
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Using the relations of Appendix 6.7, one can see that the Heun operator generically

factorizes as the product of a general S-Heun operator with a stabilizing S-Heun operator:

W = (ξ1L+ ξ2M1 + ξ3M2)(η1L+ η2M1 + η3M2 + η4R1 + η5R2) + κ. (6.62)

6.5. The case of the q-linear grid

We consider now the S-Heun operators associated to the q-linear (or exponential) grid.

6.5.1. The stabilizing subspace

The stabilizing subset of S-Heun operators is {L̂, M̂1, M̂2}. Using the relations of Ap-

pendix 6.7, it is always possible to reduce the most general quadratic combination of these

operators to

Q̂ = α1L̂
2 + α2L̂M̂1 + α3L̂M̂2 + α4M̂1

2 + α5M̂1M̂2 + α6M̂2
2. (6.63)

Substituting the expressions (6.14), one recognizes Q̂ as a second-order q-difference operator

whose eigenvalue problem can be cast as the difference equation

D̂Pn(z;α, β, γ; q̃) = (q̃−n − 1)(1− αβq̃n+1)Pn(z;α, β, γ; q̃),

D̂ = B(z)T̂ 2
+ − [B(z) +D(z)]I +D(z)T̂ 2

−,

B(z) = αq̃(z − 1)(βz − γ)
z2 , D(z) = (z − αq̃)(z − γq̃)

z2

(6.64)

of the Big q-Jacobi polynomials [32] in base q̃ = q2, making those the OPs associated

to S-Heun operators on the exponential lattice. We note that there is a duality between

the Continuous Dual q-Hahn and the Big q-Jacobi polynomials [36] that can be pictured as

follows: exchanging the degree with the variable in some way takes one family of polynomials

into the other (with transformed parameters). Thus, if we were to write the S-Heun operators

(6.14) by replacing the variable with the degree in the appropriate way, the Continuous Dual

q-Hahn polynomials would arise instead.

6.5.2. Big q-Jacobi polynomials and their structure relations

Focusing on the structure and contiguity relations of the Big q-Jacobi polynomials, we

shall show how the set of S-Heun operators spans a space that contains the relevant operators.
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Let

τ̂ = (q − q−1)L̂, (6.65a)

τ̂ (a,b,c,d)∗ = µ1L̂+ µ2M̂1 + µ3M̂2 + µ4R̂1 + µ5R̂2, (6.65b)

with

µ1 = −(q − q−1),

µ2 = (a+ b)q−1 − q(c−1 + d−1),

µ3 = (a+ b)− (c−1 + d−1),

µ4 = −abq−2 + q2c−1d−1,

µ5 = −abq−1 + qc−1d−1,

(6.65c)

and

µ̂(a,b,c,d) = (q − q−1)L− (aq−1 − qd−1)M1 − (a− d−1)M2, (6.65d)

µ̂(a,b,c,d)∗ = (q − q−1)L− (bq−1 − qc−1)M1 − (b− c−1)M2. (6.65e)

The actions of these operators on the Big q-Jacobi polynomials Pn(z;α, β, γ; q2) is best

presented as follows. Let

Φ(a,b,c,d)
n (z; q̃) = Pn(az; acq̃−1, bdq̃−1, adq̃−1; q̃). (6.66)

It is clear that the parameter a is redundant. One has Φ(1,β/γ,αq̃,γq̃)
n (z; q̃) = Pn(z;α, β, γ; q̃).

It is seen that

τ̂ Φ(a,b,c,d)
n (z; q̃) = aq(1− q−2n)(1− abcdq2n−2)

(1− ad)(1− ac) Φ(aq,bq,cq,dq)
n−1 (z; q̃), (6.67a)

τ̂ (a,b,c,d)∗ Φ(a,b,c,d)
n (z; q̃) = (ac− q2)(ad− q2)

acdq
Φ(aq−1,bq−1,cq−1,dq−1)
n+1 (z; q̃), (6.67b)

µ̂(a,b,c,d) Φ(a,b,c,d)
n (z; q̃) = q

d
(1− adq−2)Φ(aq−1,bq,cq,dq−1)

n (z; q̃), (6.67c)

µ̂(a,b,c,d)∗ Φ(a,b,c,d)
n (z; q̃) = −q(ad− q

−2n)(1− bcq2n−2)
c(1− ad) Φ(aq,bq−1,cq−1,dq)

n (z; q̃). (6.67d)

The 4 operators µ̂(a,b,c,d), µ̂(a,b,c,d)∗ , τ̂ , τ̂ (a,b,c,d)∗ built from linear combinations of S-Heun

operators have been studied by Kalnins and Miller in [30].

Let us further indicate how the bispectral operators show up in this context. As mentio-

ned above, the Big q-Jacobi difference operator appears as a quadratic combination of the
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stabilizing generators. Moreover, one can actually provide factorizations of this operator in

terms of contiguity operators as well as backward and forward operators:

D̂ = αγq3µ(q, β
γq
,αq,γq3)µ(1,β

γ
,αq2,γq2)∗ − (1− γq2)(1− αβ

γ
)

= αγq3µ(q−1,βq
γ
,αq3,γq)∗µ(1,β

γ
,αq2,γq2) − (1− γ)(1− αβq2

γ
)

= −αγq3τ̂ (q,βq
γ
,αq3,γq3)∗τ

= −αγq3τ̂ τ̂ (1,β
γ
,αq2,βq2)∗ − (1− q2)(1− αβ).

(6.68)

The second bispectral operator X̂ is the multiplication by the variable z: X̂f(z) = zf(z).

It also appears as the quadratic combination of S-Heun operators:

X̂ = M̂2R̂1 − M̂1R̂2. (6.69)

The S-Heun operators thus underscore much of the characterization of the Big q-Jacobi

operators.

6.5.3. The Sklyanin-type algebra realized by the structure opera-

tors

The pair of bispectral Big q-Jacobi operators is known to realize the Big q-Jacobi algebra

[54, 6]. The algebra generated by the 4 linear operators µ̂(a,b,c,d), µ̂(a,b,c,d)∗ , τ̂ , τ̂ (a,b,c,d)∗ is a

familiar degeneration of the Sklyanin algebra [46].

Denote q−ν = (abcd) 1
4 and form

Â = q−ν(M̂1 + qM̂2),

B̂ = 1
2(q − q−1) [q2ν(R̂1 + q−1R̂2)− q−2ν(R̂1 + qR̂2)],

Ĉ = 2L̂,

D̂ = qν(M̂1 + q−1M̂2).

(6.70)

Proposition 6.5.1. The operators Â, B̂, Ĉ, D̂ obey the quadratic relations

ÂB̂ = qB̂Â, B̂D̂ = qD̂B̂, ĈÂ = qÂĈ, D̂Ĉ = qĈD̂,

[B̂, Ĉ] = Â2 − D̂2

q − q−1 , [Â, D̂] = 0
(6.71a)
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along with the additional relation

ÂD̂ = D̂Â = 1 (6.71b)

which define Uq(sl2).

When ν is an integer or a half-integer, one obtains finite-dimensional representations of

Uq(sl2) of dimension 2ν + 1. In that case, the maximal degree of the polynomials obtained

from the action of the raising operator B̂ is N .

Remark 6.5.1. The q → 1 limit of this realization yields the sl2 commutation relations.

In fact (6.70) tends to the differential Bargmann realization of sl2. Under the limit, the

q-linear grid becomes the continuum, and the above combinations of shift operators turn

into differential operators.

Remark 6.5.2. The algebra (6.26) has been obtained in [38] as a so-called “homogenized

sl2 algebra” H(sl2). Many algebras of a similar type with 4 generators A, B, C, D, and

D central, have been studied in [39]. A quantization of H(sl2) which is isomorphic to the

algebra with relations (6.71a) and which can be seen as a homogenization of Uq(sl2) has been

studied in [10].

6.5.4. Finite-dimensional representations

We now wish to obtain finite-dimensional representations of Uq(sl2) corresponding to a

particular truncation of the Jacobi matrix of the Big q-Jacobi polynomials. As mentioned

previously, this can be accomplished by taking ν to be either an integer or a half-integer. In

order to do so, we are led to take [42]
√
abcd = q1−N , (6.72)

where N is a positive integer that corresponds to the maximal degree of the truncated family

of polynomials.

Proposition 6.5.2. The polynomials that arise from the truncation condition (6.72) form a

basis that supports

(N + 1)-dimensional representations of Uq(sl2) in the realization (6.70). The q-para-

Krawtchouk polynomials [54] are the ones that arise from this truncation condition.

We show below how their recurrence relation is obtained from the one of the Big q-Jacobi

polynomials.
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N = 2j + 1 odd

In the case where N = 2j + 1 is odd, we write

d = a−1q−2j+e1t, b = c−1q−2j+e1t (6.73)

and then take the limit t→ 0. Using this parametrization, the recurrence relation of the Big

q-Jacobi polynomials

zPn(z; a, b, c; q̃) = AnPn+1(z; a, b, c; q̃) + CnPn−1(z; a, b, c; q̃) + [1− (An + Cn)]Pn(z; a, b, c; q̃)

(6.74)

has for coefficients

An = + (1− acq2n)(1− q2n−2N)
(1 + q2n−N+1)(1− q4n−2N) , (6.75a)

Cn = −q
2n−N−1(1− q2n)(ac− q2n−2N)
(1 + q2n−N−1)(1− q4n−2N) (6.75b)

after the use of (6.73) and the limit t→ 0. Now letting

ac = c3q
2 (6.76)

it follows that (6.75) can be rewritten as

An = + (1− c3q
2n+2)(1− q2n−2N)

(1 + q2n−N+1)(1− q4n−2N) , (6.77a)

Cn = −q
2n−N+1(1− q2n)(c3 − q2n−2N−2)

(1 + q2n−N−1)(1− q4n−2N) , (6.77b)

and one recognizes the recurrence coefficients of the q-para-Krawtchouk polynomials in the

base q̃ = q2 introduced in [54] when N is odd. These polynomials are defined on the union

of two q-linear lattices and the parameter c3 describes the shift of one lattice with respect

to the other.

N = 2j even

In the case where N = 2j is even, we take

d = a−1q−2j+e1t, b = c−1q−2j+e2t+2 (6.78)
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which ensures (6.72) in the limit t→ 0. Using this parametrization and after letting t→ 0,

the recurrence coefficients of the Big q-Jacobi polynomials become

An = + (1− acq2n)(1− q2n−2N)
(1 + q2n−N)(1− q4n−2N+2) , (6.79a)

Cn = −q
2n−N−2(1− q2n)(ac− q2n−2N)
(1 + q2n−N)(1− q4n−2N−2) , (6.79b)

and upon letting

ac = c3q
2 (6.80)

An and Cn can be rewritten as

An = + (1− c3q
2n+2)(1− q2n−2N)

(1 + q2n−N)(1− q4n−2N+2) , (6.81a)

Cn = −q
2n−N(1− q2n)(c3 − q2n−2N−2)
(1 + q2n−N)(1− q4n−2N−2) . (6.81b)

These are the recurrence coefficients of the q-para-Krawtchouk polynomials in the base q̃ = q2

for N even. For more detail, see [54].

A remark on the truncation condition

There is once again an apparent mismatch in the dimensions of the representations of

the algebra and those of the representation basis. The same remark as the one made in the

preceding section applies here. It can be checked that in the realization (6.70), applying

the truncation condition (6.72) seems to suggest that the raising operator B̂ annihilates the

monomial zN+1 and not zN , which means that the truncation condition leads to represen-

tations of the algebra Uq(sl2) of dimension N + 2. This would contradict the fact that the

q-para-Krawtchouk polynomials were truncated to a maximal degree N (and thus span a

space of dimension N + 1).

It can be observed that B̂ maps the q-para-Krawtchouk polynomial of degree N to a

polynomial of degree N + 1. The resulting polynomial is the characteristic polynomial of

the (upper block of the) truncated Jacobi matrix, hence it is again null on the orthogonality

grid points. In the representation basis with which we are working (i.e. where the q-para-

Krawtchouk polynomials are the basis elements), this characteristic polynomial corresponds

to a null vector. Hence, the dimension of the space on which the realization of the Uq(sl2)

algebra acts is indeed N + 1.
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6.5.5. Recovering the related Heun operator

The Heun operator associated to the Big q-Jacobi polynomials is given in [6] and had

also been introduced previously in [49]. This operator WBJ is the most general second order

q-difference operator that acts on the q-linear grid and maps polynomials of degree n into

polynomials of degree n+ 1. Its expression is

WBJ = A1T̂+ +A0I +A2T̂−, (6.82)

where

A1 = π3(z)
z2 , A2 = q̃π3(z) + zπ2(z)

z2 (6.83)

and A0 +A1 +A2 = π1(z), with πk(z) a generic polynomial of degree k and q̃ the base.

Let us consider the most general quadratic combination of S-Heun operators that does

not raise the degree of polynomials by more than one. Using the quadratic homogeneous

relations of Appendix 6.7, we arrive at

W = α1L̂
2 + α2L̂M̂1 + α3L̂M̂2 + α4M̂1

2 + α5M̂1M̂2 + α6M̂2
2 + β1M̂1R̂2 + β2M̂2R̂1 + β3M̂2R̂2.

(6.84)

Substituting the expressions (6.14) for the generators we obtain

W = A1T̂
2
+ +A0I +A2T̂

2
−,

A1 = 1
z2(1− q2)2 [(qα1) + (q2α3 − qα2)z + (q2α6 − qα5 + α4)z2 + (q3β3 − q2β1 − q2β2)z3],

A2 = 1
z2(1− q2)2 [(q3α1) + (q2α3 − q3α2)z + (q2α6 − q3α5 + q4α4)z2 + (qβ3 − q2β1 − q2β2)z3],

A0 = β2z + α4 − (A1 +A2).

(6.85)

Proposition 6.5.3. The generic Heun-Big q-Jacobi operator (6.82) (with base q2) can be

obtained as the most general quadratic combination in the S-Heun generators (6.14) that

does not raise the degree of polynomials by more than one.

Moreover, using the relations of Appendix 6.7, we see that the Heun operator typically

factorizes as the product of a raising S-Heun operator with a stabilizing S-Heun operator:

Ŵ = (ξ1L̂+ ξ2M̂1 + ξ3M̂2)(η1L̂+ η2M̂1 + η3M̂2 + η4R̂1 + η5R̂2) + κ. (6.86)
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6.6. Connections between the different cases

It is well known that the three grids on which we have defined S-Heun operators can be

obtained as limiting cases or contractions of the Askey–Wilson grid. We now observe that

this translates into limits/contractions of the associated Sklyanin algebras.

Let us denote the points of the Askey–Wilson grid by

λs = zs + z−1
s , zs = qs. (6.87)

The associated Sklyanin algebra was introduced in [20] as the trigonometric degeneration of

the Sklyanin algebra [46] and was studied from the perspective of S-Heun operators in [15].

The defining relations read

DC = qCD, CA = qAC, [A,D] = (q − q−1)3

4 C2,

[B,C] = A2 −D2

q − q−1 ,

AB− qBA = qDB−BD = −q
2 − q−2

4 (DC−CA).

(6.88)

The q-linear (or exponential) grid

λs = zs, zs = qs (6.89)

is obtained from the Askey–Wilson one in the asymptotic expansion zs →∞ and the same

limit takes the Askey–Wilson polynomials into the Big q-Jacobi OPs. At the level of the

algebras, this corresponds to the following contraction. Writing

A = εÂ, B = B̂, C = ε2Ĉ, D = εD̂ (6.90)

and taking ε→ 0, one recovers Uq(sl2):

ÂB̂ = qB̂Â, B̂D̂ = qD̂B̂, ĈÂ = qÂĈ, D̂Ĉ = qĈD̂,

[B̂, Ĉ] = Â2 − D̂2

q − q−1 , [Â, D̂] = 0.
(6.91)

We now compare the discrete linear grid to the continuum. A rescaling similar to the

one discussed above takes this grid to the real line. This also takes the Continuous Hahn

polynomials into the Jacobi ones. From the perspective of the algebras, (6.90) will relate
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one algebra to the other. The Sklyanin algebra (6.38) associated to the discrete grid is

[C,D] = 0, [A,C] = {C,D}, [A,D] = {C,C},

[B,C] = {D,A}, [B,D] = {C,A}, [B,A] = {B,D}
(6.92)

and upon writing

A = εĀ, B = B̄, C = ε2C̄, D = εD̄ (6.93)

and taking ε→ 0, we recover

[C̄, D̄] = 0, [Ā, C̄] = −C̄D̄, [Ā, D̄] = 0,

[B̄, C̄] = −2ĀD̄, [Ā, B̄] = B̄D̄, [B̄, D̄] = 0.
(6.94)

We recall that the latter algebra is essentially the sl2 Lie algebra with a central element D.

We have so far discussed the following contractions, denoted by full arrows:

AW grid

q-linear grid

discrete linear grid

continuum

?

One could wonder if it is possible to complete the diagram with the dotted arrows. The

bottom arrow is easy to add: this amounts to taking the limit q → 1. This limit takes the

q-linear grid to the continuum, the Big q-Jacobi polynomials to the Jacobi polynomials, and

at the level of the algebra, it takes Uq(sl2) to sl2.

The details corresponding to the upper arrow remain to be worked out. It is likely that

an intermediary step related to the quadratic grid λs = s2 should be required. Indeed, it

is known that the q → 1 limit of the Askey–Wilson grid leads to the quadratic grid. It

should thus be possible to apply the S-Heun construction to the quadratic grid; the related

polynomials should be those of Wilson, and the related Sklyanin algebra would stand in

between the one of Askey–Wilson type (6.88) and the one of the discrete linear type (6.38).

6.7. Conclusion

The results of this paper are summarized as follows. We have introduced S-Heun ope-

rators on linear and q-linear grids. These operators are special cases of second order Heun

operators with no diagonal term. On the real line and the discrete and q-linear grids, the sets
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of five S-Heun operators were constructed and shown to be related to the Jacobi, Continuous

Hahn and Big q-Jacobi polynomials respectively. These S-Heun operators were also shown to

encompass the bispectral and structure operators for each family of orthogonal polynomials.

A presentation of the relations for the four structure operators of Kalnins and Miller was

given in each case and identified as realizing degenerations, contractions or limits of the Sk-

lyanin algebra. For the discrete and q-linear grids, the finite-dimensional representations of

the Sklyanin-type algebras were obtained from a truncation condition on the Jacobi matrix

of the associated polynomials; this yielded the para-Krawtchouk and q-para-Krawtchouk

polynomials as bases of the finite representations and provided algebraic interpretations of

these sets of OPs that had so far been missing.

The Sklyanin-like algebra related to the discrete linear grid (6.38) has a simple presen-

taton and a detailed study of its representation theory would be interesting. It would also

be instructive to examine the types of Sklyanin algebra that the S-Heun operators on the

quadratic grid would lead to. We plan on undertaking this in the near future. Note that we

have restricted ourselves to Heun operators defined by actions on polynomials. The explora-

tion of the generalizations that result from the extension to spaces of rational functions have

been initiated in [55] and should be actively pursued in the S-Heun framework in particular.
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The homogeneous quadratic algebraic relations

The 14 quadratic homogeneous relations associated to all three sets of 5 S-Heun operators

are collected here. One notes that all three sets of relations display a similar structure. These

relations can be thought of as reordering relations and are especially useful when considering

the most general quadratic combinations in the generators.
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The continuum

The relations between the S-Heun operators L̄, M̄1, M̄2, R̄1, R̄2 defined in (6.17) can be

presented as the fourteen following relations:

M̄1L̄ = L̄M̄1,

M̄2L̄ = L̄M̄2 − M̄1L̄,

M̄2M̄1 = M̄1M̄2,

M̄1
2 = 1,

L̄R̄1 = 1 + M̄1M̄2,

L̄R̄2 = M̄2
2 + M̄1M̄2,

R̄1L̄ = M̄1M̄2,

R̄2L̄ = M̄2
2 − M̄1M̄2,

R̄2R̄1 = R̄1R̄2 + R̄1
2,

R̄1M̄1 = M̄2R̄1 − M̄1R̄2,

R̄2M̄1 = M̄1R̄2,

R̄1M̄2 = M̄1R̄2,

R̄2M̄2 = M̄2R̄2 − M̄1R̄2,

M̄1R̄1 = M̄2R̄1 − M̄1R̄2.

(6.95)

The discrete linear grid

Here are the relations between the S-Heun operators L, M1, M2, R1, R2 that have been

defined in (6.8):

M1L = LM1,

M2L = LM2 − LM1,

M2M1 = M1M2 − L2,

M1
2 = 1 + L2,

LR1 = 1− 2M2
2 −M1M2,

LR2 = 1 +M1M2,

R1L = 3M1M2 − 3L2 − 2M2
2,

R2L = M1M2 − L2,

R2R1 = 2R2
2 +R1R2 − 4M2

2,

R1M1 = 3M1R2 − 2M2R2 − 3LM1,

R1M2 = 2M2R2 − 3M1R2 + 3LM2 +M2R1,

R2M1 = M1R2 − LM1,

R2M2 = M2R2 −M1R2 + LM2,

M1R1 = 3M1R2 − 2M2R2 − 4LM2.

(6.96)
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The q-linear grid

We remind the reader that the q-number 2 is written as [2]q = q + q−1. The S-Heun

operators L̂, M̂1, M̂2, R̂1, R̂2 defined in (6.14) obey the fourteen quadratic relations:

M̂1L̂ = [2]qL̂M̂1 + L̂M̂2,

M̂2L̂ = −L̂M̂1,

M̂2M̂1 = M̂1M̂2,

L̂R̂1 = 1− M̂2
2,

L̂R̂2 = [2]qM̂2
2 + M̂1M̂2,

R̂1L = 1− M̂1
2,

R̂2L̂ = −M̂1M̂2,

[2]qM̂1M̂2 = 1− M̂1
2 − M̂2

2,

[2]qR̂1R̂2 = −R̂1
2 − R̂2

2,

R̂1M̂1 = −[2]q2M̂1R̂2 − [2]qM̂2R̂2 + M̂2R̂1,

R̂1M̂2 = [2]qM̂1R̂2 + M̂2R̂2,

R̂2M̂1 = [2]qM̂1R̂2 + M̂2R̂2,

R̂2M̂2 = −M̂1R̂2,

M̂1R̂1 = −[2]qM̂1R̂2 − M̂2R̂2.

(6.97)
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Chapitre 7

The rational Sklyanin algebra and the Wilson

and para-Racah polynomials

G. Bergeron, J. Gaboriaud, L. Vinet and A. Zhedanov (2021). The rational Sklyanin algebra

and the Wilson and para-Racah polynomials. submitted to the Journal of Mathematical

Physics.

Abstract

The relation between Wilson and para-Racah polynomials and representations of the

degenerate rational Sklyanin algebra is established. Second order Heun operators on qua-

dratic grids with no diagonal terms are determined. These special or S–Heun operators lead

to the rational degeneration of the Sklyanin algebra; they also entail the contiguity and

structure operators of the Wilson polynomials. The finite-dimensional restriction yields a

representation that acts on the para-Racah polynomials.

7.1. Introduction

This paper pursues the exploration of the links between Heun operators, Sklyanin alge-

bras and orthogonal polynomials. Originally introduced in the context of quantum integrable

systems [25], Sklyanin algebras are typically presented in terms of generators verifying ho-

mogeneous quadratic relations. These algebras have been the object of much attention from

the perspective of algebraic geometry [28, 34, 18]. Classes of Heun operators can be defined

[17] from the property that they increase by no more than one the degree of polynomials

defined on certain continuous or discrete domains; they have been the focus of a continued



research effort [29, 2, 33, 10, 30, 3, 5] with many applications [26, 21, 7, 8, 9, 4, 1]. A

key observation for our purposes is that a special category of these operators, referred to as

S–Heun operators, offers a path towards the identification of interesting Sklyanin-like alge-

bras through the relations they realize. This connects with orthogonal polynomials as these

concrete S–Heun operators are recognized as ladder and structure operators for families of

bispectral polynomials belonging to the Askey scheme. It is thus observed that these sets

of orthogonal polynomials form representation bases for Sklyanin algebras. Furthermore,

the finite-dimensional representations of these Sklyanin algebras are found to provide the

algebraic setting that had so far been lacking for the orthogonal polynomials of the so-called

“para” type.

A first illustration of these connections was achieved in [11]. Building on results of Gorsky

and Zabrodin [14] on the one hand and of Kalnins and Miller [19] on the other, this paper

focused on S–Heun operators attached to the Askey–Wilson grid. The salient observations

were: i. that a subset of the S–Heun operators realize the trigonometric degeneration of the

original elliptic Sklyanin algebra and ii. that this Sklyanin algebra is a basic structure under-

neath the theory of Askey–Wilson polynomials. Indeed, as was stressed, the Askey–Wilson

operator admits a factorization in terms of the S–Heun operators realizing this degenerate

Sklyanin algebra and as was also pointed out, the ladder and structure operators for the

Askey–Wilson polynomials obtained by Kalnins and Miller actually realize this degenerate

algebra. In view of the fact that the Askey–Wilson algebra [35] accounts for the bispectra-

lity of the eponym polynomials, a parallel was thus drawn with the dynamical extension of

symmetry algebras by the inclusion of ladder operators in the set of generators. Finally, the

q-para Racah polynomials were seen to form a basis for the finite-dimensional representation

of the degenerate Sklyanin algebra. This set the course for the systematic examination of

the Sklyanin-like operators formed by S–Heun operators on lattices admitting orthogonal

polynomials.

The study of S–Heun operators on linear and exponential grid and of the Sklyanin al-

gebras they realize was carried out in [6]. It allowed to tie the representations of these

algebras to the continuous Hahn and big q-Jacobi polynomials and in finite dimensions to
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the para-Krawtchouk and q-para Krawtchouk polynomials. This analysis confirmed the im-

portant role that Sklyanin algebras play in the interpretation of hypergeometric orthogonal

polynomials.

We here address the connection that the Wilson polynomials have with Sklyanin algebras.

(We recall that these polynomials are at the top of the q = 1 part of the Askey scheme.)

This will call for the determination of the S–Heun operators on quadratic grids. The rational

degeneration of the Sklyanin algebra first found by Smirnov [27] will be seen to emerge and

to be realized by the structure and ladder operators [23] of the Wilson polynomials. This will

hence attach these polynomials to representations of the rational Sklyanin algebra. In keeping

with preceding observations, the finite-dimensional restrictions of these representations will

be seen to offer an algebraic interpretation of the para-Racah polynomials [22].

7.1.1. The Wilson polynomials and its truncations

As the Wilson polynomials will prove central in deriving subsequent results, some of

their known properties are summarized here. The four-parameter Wilson polynomials [20]

of degree n, denoted Wn(x2|a, b, c, d), are given by

Wn(x2|a, b, c, d) = (a+ b)n(a+ c)n(a+ d)n 4F3

−n, n+ a+ b+ c+ d− 1, a+ ix, a− ix

a+ b, a+ c, a+ d

∣∣∣∣∣∣1
 ,

where (a)n = a(a + 1)...(a + n − 1) are the Pochhammer symbols and 0 < a, b, c, d ∈ R.

These polynomials obey the orthogonality relation
∞∫
0

Wn(x2|a, b, c, d)Wm(x2|a, b, c, d)dω(x|a, b, c, d) = Nn(a, b, c, d)δn,m. (7.1)

The weight ω(x|a, b, c, d) and normalization Nn(a, b, c, d) are given explicitly in [20]. For

any admissible set of parameters, the Wilson polynomials form a basis of the space of po-

lynomials on the support of ω(x|a, b, c, d). Belonging to the Askey–Wilson scheme, they are

bispectral, that is, they diagonalize a three-term recurrence operator acting on the degree

and a difference operator acting on the variable.

The Wilson polynomials form an infinite set of orthogonal polynomials that can be trun-

cated [20] to a finite one by setting the parameters as follows

a = 1
2(γ + δ + 1), b = 1

2(2α− γ − δ + 1), c = 1
2(2β − γ + δ + 1), d = 1

2(γ − δ + 1),
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and imposing any of the conditions

α + 1 = −N, β + δ + 1 = −N, or γ + 1 = −N.

One thus obtains the Racah polynomials after taking

ix 7−→ x+ 1
2(γ + δ + 1).

An additional truncation can be obtained [22] by imposing

a+ b+ c+ d = −N + 1. (7.2)

Indeed, while one is at first sight led to singular expressions, well-defined orthogonal po-

lynomials can nonetheless be obtained through the use of limits and the resulting polyno-

mials, first introduced in [22], are the para-Racah polynomials. These polynomials form a

three-parameter set of orthogonal polynomials Pn(x2|a, c, w) of maximal degree N . Explicit

expressions can be found by setting N = 2j+ p, where j ∈ N and p = 0, 1, depending on the

parity of N . The para-Racah polynomial Pn(x2|a, c, w) obtained from the truncation (7.2)

of the Wilson polynomial Wn(x2|a, b, c, d) is given by

Pn(x2|a, c, w) = ηn
n∑
k=0

An,kϕk(x2), ϕk(x2) ≡ (a− ix)k(a+ ix)k, (7.3)

where

An,k =



(−n)k(n−N)k
(1)k(−j)k(a+c)k(a−c−j+1−p)k

k ≤ j

w−1(−n)k(n−N)N−n(1)n+k−1−N
(1)k(−j)j(1)k−j−1(a+c)k(a−c−j+1−p)k

k > j

0 k > n,

(7.4)

with the normalization given by

ηn =


(1)n(−j)n(a+c)n(a−c−j+1−p)n

(−n)n(n−N)n n ≤ j,

w(1)n(−j)j(1)n−j−1(a+c)n(a−c−j+1−p)n
(−n)n(n−N)N−n(1)2n−1−N

n > j.
(7.5)

These polynomials are orthogonal on a discrete measure that has support on the zeros of the

characteristic polynomial PN+1(x2|a, c, w). The corresponding lattice is a quadratic bi-lattice

given by

x2s+t =


−(s+ a)2 t = 0, s = 0, 1, . . . , j,

−(s+ c)2 t = 1, s = 0, 1, . . . , j − 1 + p,
(7.6)
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so that
N∑
s=0

Pn(x2|a, c, w)Pm(x2|a, c, w)ω̄s ∝ δn,m, (7.7)

where the weight ω̄s is given explicitly in [22]. They also satisfy a three-term recurrence

relation and a difference equation. However, they do not appear in classifications of classical

orthogonal polynomials as their spectrum is doubly-degenerate.

7.1.2. Outline

The remainder of the paper is organized as follows. In section 7.2, the S–Heun operators

are introduced and some of their properties are derived. The connection is made with

the algebraic Heun operator of the Wilson/Racah type. Section 7.3 focuses on a subset

of the S–Heun operators that preserves the degree of polynomials. A stabilizing algebra

is defined from the quadratic relations they obey and its representations are constructed.

This algebra is extended to a star algebra in section 7.4 for which a universal presentation

is obtained; it is subsequently recognized as a Sklyanin-type algebra. Finally, section 7.5

provides a presentation of the rational degenerate Sklyanin algebra introduced in [27] and

gives an isomorphism with the universal algebra of section 7.4. Using this isomorphism,

representations of the rational degenerate Sklyanin algebra on the Wilson and para-Racah

polynomials are constructed. A brief conclusion follows.

7.2. Sklyanin–Heun operators on a quadratic grid

The generic algebraic Heun operators on a domain λ have the property that, when

acting on polynomials over λ, they raise the degree by at most one. The S–Heun operators

are a specialization of these Heun operators without a diagonal term. In this section, we

first identify the S–Heun operators on the quadratic grid and then proceed with a brief

characterization.

7.2.1. Sklyanin–Heun operators

Let λ = λx be a discrete grid indexed by x and define the shift operators T± acting on

functions on λ as follows

T±f(λx) ≡ f(λx±1).
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Consider a second order operator S with no diagonal term

S = A1(λx)T+ + A2(λx)T−, (7.8)

where A1 and A2 are functions on λx. Demand that S satisfies the degree-raising property

S · pn(λx) = qn+1(λx), (7.9)

for pn and qn+1 arbitrary polynomials of degree n and n+1, respectively. One can determine

the coefficients A1 and A2 by acting on the first two monomials in λx as follows

S · 1 = u0 + u1λx, S · λx = u2 + u3λx + u4λ
2
x. (7.10)

One finds

A1(λx) = u2 + u3λx + u4λ
2
x − u0λx−1 − u1λx−1λx

λx+1 − λx−1
, (7.11)

A2(λx) = −u2 + u3λx + u4λ
2
x − u0λx+1 − u1λx+1λx

λx+1 − λx−1
.

The S–Heun operators are defined as the set of operators of the form (7.8) with the coeffi-

cients given in (7.11). As these coefficients admit five independent parameters, the S–Heun

operators form a five-dimensional vector space SH of operators on λ. A basis for this space

can be chosen as follows

L = N (λx)(T+ − T−),

M1 = N (λx)
[
(λx − λx−1)T+ + (λx+1 − λx)T−

]
,

M2 = N (λx)
[
(λx + λx−1)T+ − (λx+1 + λx)T−

]
, (7.12)

R1 = N (λx)λx
[
(λx − λx−1)T+ + (λx+1 − λx)T−

]
,

R2 = N (λx)λx
[
(λx + λx−1)T+ − (λx+1 + λx)T−

]
,

where

N (λx) ≡ [λx+1 − λx−1]−1 .

The naming conventions used in (7.12) will be explained in the next subsection.

Remark 1. Acting on the left with T+ for each of the operators in (7.12), it can be seen

that the set of operators SH can also be understood as the set of first order shift operators

of step two over λ that satisfies the property (7.9).
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7.2.2. Sufficiency of the construction

As established above, for an operator S of the form (7.8) to satisfy the property (7.9),

the expressions (7.11) are necessary conditions. The sufficiency of these conditions follows

from the ensuing proposition.

Proposition 8. A generic element S ∈ SH satisfies the property (7.9) if the grid λx is of

one of the following forms

λx = αqx + βq−x + κ, λx = αx2 + βx+ κ, or λx = (−1)x(αx+ β) + κ, (7.13)

for some constants α, β, κ.

Proof. An element S ∈ SH of the form (7.8) is specified by a set of parameters {ui}i=0,1,··· ,4

(7.11). The action of S on a monomial in λx can be reduced by linearity to the five cases

given by ui = δi,j for j = 0, 1, . . . , 4. Upon inspecting (7.11), one understands that only the

operators defined by ui = δi,0 or ui = δi,2 need to be analyzed; those remaining amount to

one of these two operators multiplied by some power of λx.

The first case we treat is ui = δi,2 and it corresponds to the operator we have denoted L.

It can be seen from (7.11) that when ui = δi,3 or ui = δi,4, the corresponding operator is λxL

or λx2L, respectively. It follows that for S to satisfy property (7.9), one must have that L

decreases the degree of polynomials in λx by one. Similarly, it follows from (7.11) that the

case ui = δi,1 will satisfy (7.9) if the case of ui = δi,0, corresponding to the S–Heun operator
1
2(M1 −M2), is an operator that stabilizes the set of polynomials of a given degree.

Thus, a generic element of the form (7.8) will satisfy (7.9) if the subset of operators

generated by the cases ui = δi,j for j = 0, 2, 3 preserves the degree of polynomials. As the

generators of this subset are all tridiagonal operators, the proposition follows from the results

in [31] which identifies (7.13) as the possible grids allowing second-order difference equations

diagonalized by polynomials. �

On the quadratic grid, it can be shown that a generic element of the vector space spanned

by (7.12) satisfies the property (7.9). Indeed, as derived above, the expressions (7.11) for

the coefficients are necessary conditions. The derivations so far were grid-independent, but

to proceed further, one needs to fix the grid. Let us consider the quadratic grid

λx = x2. (7.14)
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For this choice of grid, one has that proposition 8 holds and the sufficiency of the construction

is established.

The leading terms of the actions on monomials in λx are now computed for future refe-

rence. In the case of L, one obtains

L · λxn =
n∑
k=1

n
k

λn−kx

∑
j odd

0≤j≤k

k
j

 (4λx + p2)
j−1

2 = nλx
n−1 +O(λn−2

x ), (7.15)

which is verified to be a degree lowering operator. Moreover, one finds that

1
2(M1 −M2) · λxn =

n∑
k=0

0≤j≤k

n
k


k
j

λn−kx

[
1 + (−1)j

2 (4λx + p2)
j
2 − 1− (−1)j

2 (λx + 1)(4λx + p2)
j−1

2

]

= (1− n)λxn +O(λxn−1), (7.16)

which preserves the degree of polynomials. The actions of the other generators follow from

(7.15) and (7.16) by noting that

1
2(M1 +M2) = λx L, R1 = λxM1, R2 = λxM2. (7.17)

With the above observations, it follows that a generic linear combination of the basis elements

(7.12) displays the degree raising property (7.9). These calculations enable one to see that

the choice of basis (7.12) decomposes the generic special Heun operator into operators that

have a prescribed action on polynomials in λx. Indeed, L can be identified as a lowering

operator, M1 and M2 as stabilizing operators while R1 and R2 are raising operators.

7.2.3. S–Heun operators of the Wilson type and the Heun–Racah

operator

As the S–Heun operators are specialized algebraic Heun operators [17], they are related

to the general algebraic Heun operators associated to the same grid. The Heun–Racah

operator W on the quadratic grid introduced in [5] admits a quadratic embedding in the

set SH of S–Heun operators on the quadratic grid. In view of Remark 1, it will come as no

surprise that this embedding is obtained by first conjugating the Heun–Racah operator W
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by a scaling of the grid µ : x → 2x, such that the shift operators in W act with a step of

two. One obtains

µ−1 ◦W ◦ µ = R1(a1M1 + a2M2 + a3L) +R2(a4M1 + a5M2 + a6L) + a7LM2 + a8M2
2 + a9L

2,

(7.18)

where the coefficients ai, i = 1, 2, . . . , 9 are given in terms of the parameters

t0, t1, u0, u1, u2, v0, v1, v2 and v3 of W in [5] as

a1 = t1 + u2

4 − v3

16 , a2 = −t18 + 8u0 + u1 − 2v1 + v3

16 ,

a4 = u2

4 − a2, a5 = v3

16 , a6 = a3 − 2u1,

a9 = −t0 − 24u0 + 16v0. a7 = 8u0, a8 = t0,

a3 = 1
4 (−8t0 − t1 − 64u0 − 3u2 + 16v1 + 2v2) ,

The operator X that acts by multiplication by the grid variable λx can be written as a

quadratic expression in terms of the S–Heun generators:

X ≡ x2 = (R1 +R2)(M1 − L)− 1
2R1M2 −

1
2R2M1. (7.19)

7.3. The stabilizing subalgebra stab

By direct computations from the definitions (7.12), it can be seen that the S–Heun gene-

rators satisfy homogeneous quadratic relations, with the complete list given in the appendix

7.6.1. From these relations, it is observed that the subset of stabilizing S–Heun operators

generated by L,M1 and M2 closes as a quadratic algebra to be called stab whose relations

are

[L,M1] = 2L2, [L,M2] = {M1, L}, [M1,M2] = {M2, L} − 4L2. (7.20)

The Casimir element C is given by

C = M1
2 − {M2, L}+ 3L2, (7.21)

and is equal to the identity in the realization (7.12) in terms of shift operators. It will

prove fruitful to examine the stabilizing algebra (7.20) in this realization. Knowing that it

stabilizes polynomials in λx of a given degree, one may set up an eigenvalue problem on this

space.
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7.3.1. Diagonalization of a generic linear element

Consider a generic linear combination of the operators L,M1,M2

P (s, t) = uL+ vM1 + wM2, (7.22)

parametrized as follows

u = (1 + 2s)(1 + 2t)− 1
4 , v = 1

2(1 + s+ t), w = 1
2 ,

with 0 < s, t ∈ R being arbitrary parameters. It is straightforward to show that, under the

invertible transformation

ρ : x 7→ −ix,

the operator P is given by

P̃ ≡ ρ ◦ P ◦ ρ−1 = − 1
4ix

[
(t− ix)(s− ix)T̃+ − (s+ ix)(t+ ix)T̃−

]
,

with T̃± defined by T̃±f(x) 7→ f(x ± i). Multiplying each term in the above by (2ix ±

1)/(2ix± 1), one recognizes the off-diagonal terms of the difference operator diagonalized by

the continuous dual Hahn polynomials [20]. Denoting these polynomials as Sn(x2|1/2, s, t)

one has

P̃ Sn(x2|1/2, s, t) = (n− (s+ t)/2)Sn(x2|1/2, s, t).

Once an element is specified by (7.22), this defines an eigenbasis in terms of the continuous

dual Hahn polynomials. However, no meaningful action can be identified for the remaining

elements in stab. We consider instead quadratic combinations in the elements of the algebra.

7.3.2. Action on Wilson polynomials

A natural action of the stabilizing algebra stab on the Wilson polynomials arises from

the realization (7.12). Indeed, defining the following pair of operators from (7.22)

µ(a,b,c,d) = P (2a− 1, 2b− 1), µ∗(a,b,c,d) = P (2c, 2d), (7.23)

such that manifestly

µ∗(a,b,c,d) = µ(c+1/2,d+1/2,a−1/2,b−1/2),

one has the following proposition:

165



Proposition 9. The quadratic element Q ∈ stab defined by

Q ≡ µ∗(a,b,c,d)µ(a,b,c,d), (7.24)

where µ and µ∗ are given by (7.23) and with 0 < a, b ∈ R and 1/2 < c, d ∈ R is realized, up

to a constant term, by the Wilson operator conjugated by the grid scaling

φ : x 7→ −2ix. (7.25)

Proof. In the realization (7.12), conjugating Q by the scaling transformation (7.25), it can

be seen by direct calculations that the transformed operator Q̃ is given by

Q̃ ≡ φ◦Q◦φ−1 = (a− ix)(b− ix)(c− ix)(d− ix)
2ix(2ix− 1) T̃++ (a+ ix)(b+ ix)(c+ ix)(d+ ix)

2ix(2ix+ 1) T̃−

−
[

(a− ix)(b− ix)(c− ix)(d− ix)
2ix(2ix− 1) + (a+ ix)(b+ ix)(c+ ix)(d+ ix)

2ix(2ix+ 1)

]
+(a+b)(c+d−1).

The above operator is identified as the Wilson operator [20], up to a constant term. �

Remark 2. The operator X that acts by multiplication by the variable λx can be embedded

(7.19) in the set SH of S–Heun operators. In addition, with the operator Q identified as the

Wilson operator, the bispectral pair of operators that generates the Racah/Wilson algebra

[15, 13, 12] admits an embedding in the set SH of S–Heun operators. Moreover, a quartic

embedding of the Heun–Racah operator (7.18) is obtained from the construction of the

Heun–Racah operator [5] by the tridiagonalization [16] of the Racah operator.

The definition of Q in (7.24) naturally provides a factorization of the Wilson operator

in terms of µ∗(a,b,c,d) and µ(a,b,c,d). Moreover, it directly follows from proposition 9 that the

operator Q̃ is diagonalized by the Wilson polynomials:

Q̃Wn(x2|a, b, c, d) = [n(n+ a+ b+ c+ d− 1) + (c+ d)(a+ b− 1)] Wn(x2|a, b, c, d).

Introducing a third operator τ (a,b,c,d) defined by

τ (a,b,c,d) = 4L, (7.26)

a presentation of stab in terms of the generators µ(a,b,c,d), µ∗(a,b,c,d) and τ (a,b,c,d) can be given

for generic values of the parameters a, b, c, d. This allows to construct representations of stab

on the Wilson polynomials.
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Proposition 10. A representation of stab on the Wilson polynomials W̃ (see (7.28)) is given

by the following actions

µ(a,b,c,d)· W̃n(x2|a, b, c, d) = −(n+ a+ b− 1) W̃n

(
x2
∣∣∣a− 1

2 , b−
1
2 , c+ 1

2 , d+ 1
2

)
,

τ (a,b,c,d)· W̃n(x2|a, b, c, d) = n(n+ a+ b+ c+ d− 1) W̃n−1
(
x2
∣∣∣a+ 1

2 , b+ 1
2 , c+ 1

2 , d+ 1
2

)
,

µ∗(a,b,c,d)· W̃n(x2|a, b, c, d) = −σ(n+ a+ b− 1) W̃n

(
x2
∣∣∣a− 1

2 , b−
1
2 , c+ 1

2 , d+ 1
2

)
(7.27)

+
[
σ(ab− cd)− 1

2(c+ d)− 1
4

]
n(n+ e1 − 1) W̃n−1

(
x2
∣∣∣a+ 1

2 , b+ 1
2 , c+ 1

2 , d+ 1
2

)
,

− (1− σ)(n+ c+ d− 1) W̃n

(
x2
∣∣∣a+ 1

2 , b+ 1
2 , c−

1
2 , d−

1
2

)

σ ≡ (a+ b− c− d)−1, e1 ≡ a+ b+ c+ d,

with

W̃n(x2|a, b, c, d) ≡ φ−1 ·Wn(x2|a, b, c, d) = Wn

(
− x2

4

∣∣∣∣a, b, c, d), (7.28)

and φ defined in (7.25).

Proof. The conjugation of the three operators µ(a,b,c,d), µ∗(a,b,c,d) and τ (a,b,c,d) by the scaling

map (7.25) yields operators that are identified as the structure and forward shift operators

for the Wilson polynomials [20]. These structure operators have a known action on the

Wilson polynomials [23]. Using the identity

µ∗(a,b,c,d) = σ µ(a,b,c,d) + (1− σ)µ(c,d,a,b) +
[
σ(ab− cd)− 1

2(c+ d)− 1
4

]
τ (a,b,c,d), (7.29)

which is directly verified and applying the scaling (7.25) to the polynomials to get (7.28),

one obtains the actions (7.27). As one can use the orthogonality relation (7.1) of the Wilson

polynomials to express all polynomials with shifted parameters in (7.27) as sums of Wilson

polynomials with the initial parameters, these actions define representations of the stabilizing

algebra stab on the Wilson polynomials. �

7.4. Extension of stab to a star algebra

The construction laid out in the preceding section parallels the structural approach to

orthogonal polynomials due to Kalnins and Miller [23, 19]. In particular, Miller derives

in [23] the orthogonality (7.1) of the Wilson polynomials from the structural recurrence
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relations associated to µ(a,b,c,d) and τ (a,b,c,d) by identifying the operator µ∗(a,b,c,d) and deriving

an inner product such that this operator is the adjoint of µ(a,b,c,d). An operator τ ∗(a,b,c,d) is

then identified as the adjoint of τ (a,b,c,d). A similar approach in the context of the S–Heun

operators can be pursued at the algebraic level.

The representations defined through (7.27) are endowed with a natural inner product

inherited from the orthogonality relation (7.1). This enables one to define a star operation,

such that µ∗(a,b,c,d) is precisely the adjoint of µ(a,b,c,d) under the inner product. It follows that

Q̃ is a self-adjoint operator. However, the stabilizing algebra is not closed under the star

operation. This can be seen by taking the adjoint of τ (a,b,c,d), a lowering operator, which

would involve raising operators that are not contained in the stabilizing algebra stab. We

shall now extend stab to its closure under the star operation.

7.4.1. Star operation

With the help of (7.1), one constructs an operator as the adjoint of the forward shift

operator. This leads to the backward shift operator for the Wilson polynomials [20] with

action given by

(φ−1 ◦ τ ∗(a,b,c,d) ◦ φ) · Wn(x2|a, b, c, d) = Wn+1
(
x2
∣∣∣a− 1/2, b− 1/2, c− 1/2, d− 1/2

)
.

(7.30)

The operator τ ∗(a,b,c,d) can then be decomposed in terms of the S–Heun operators as follows

τ ∗(a,b,c,d) = a1L+ a2M1 + a3M2 + a4R1 + a5R2, (7.31)

with the coefficients given by

a1 = 4e4 − e3 + e1 − 1
4 , a2 = e3 −

e2

2 + e1

8 , a3 = e2

2 −
5e1

8 + 1
2 , a4 = e1

4 −
3
8 , a5 = −1

8 ,

where e1, e2, e3 and e4 are the elementary symmetric polynomials in the four parameters

a, b, c and d:

e1 = a+ b+ c+ d, e2 = ab+ ac+ ad+ bc+ bd+ cd,

e3 = abc+ abd+ acd+ bcd, e4 = abcd.
(7.32)

Introducing τ ∗(a,b,c,d) as a fourth generator together with those of the stabilizing algebra

stab leads to an algebra closed under the star operation.
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Proposition 11. The algebra stab∗ generated by µ(a,b,c,d), µ∗(a,b,c,d), τ (a,b,c,d) and τ ∗(a,b,c,d),

together with the relations induced from their definitions in terms of S–Heun operators given

in (7.23), (7.26) and (7.31) admits the natural star map defined from its canonical action on

the generators:

∗ : τ 7−→ τ ∗, (7.33)

µ 7−→ µ∗. (7.34)

Proof. The result follows from the results of [23] after conjugation of the generators by

the scaling map (7.25). �

7.4.2. A universal presentation of stab∗

The algebra stab∗ can be presented in terms of quadratic relations by making use of the

relations given in the appendix 7.6.1. However, such a presentation obfuscates the structure

of the algebra because the parameters a, b, c and d of the Wilson polynomial appear explicitly

in the relations. Thus, it does not define uniquely an algebra associated to the quadratic

grid.

Recall that the normalized Wilson polynomials are known [23] to be fully symmetric

under permutations of their four parameters. However, the definitions for the two stabilizing

generators given in (7.23) do not make this symmetry manifest, because they contain the

specific parameters of the representation. Nervertheless, the permutation symmetry of the

polynomials can be made manifest at the level of the algebra to obtain a universal presenta-

tion.

Proposition 12. The algebra stab∗ admits a presentation as a unital associative algebra

with four generators U, V, Y and R obeying the following relations

[V, Y ] = −{U, Y }, [U, Y ] = −{Y, Y }, [U, V ] = {V, Y } − 2{Y, Y },

[R, Y ] = {U,U} − {U, V }+ {V, Y }, [R, V ] = 2{V, Y } − {Y, Y } − {V, V } − {U,R},

(7.35)

[R,U ] = {U, V }+ 2{V, Y } − 2{U, Y } − {V, V } − {Y, Y } − {R, Y }.
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The two Casimir operators are given by

Q1 = U2 − {V, Y }+ 3Y 2, Q2 = U2 + V 2 − {U, V } − {U, Y } − {R, Y }. (7.36)

Proof. Consider the following generic linear combination of generators

uµ(a,b,c,d) + v µ∗(a,b,c,d).

Acting with the symmetric group S4 on the parameters (a, b, c, d), one constructs a fully

symmetric element in terms of the S–Heun operators as follows

1
|S4|

∑
σ∈S4

[
uµσ(a,b,c,d) + v µ∗σ(a,b,c,d)

]
=

1
2[(u− v)− e1(u+ v)]M1 −

1
2(u+ v)M2 +

[
e1

2 (u− v)− 2e2

3 (u+ v)
]
L.

Setting u = 1 and either u = v or u = −v in the above yields two independent generators that

are manifestly symmetric and can be used instead of µ and µ∗ to obtain another presentation

of stab∗. The relations in this new presentation now only involve the elementary symmetric

polynomials (7.32). Subsequently, it becomes straightforward to eliminate all remaining

parameters in the algebraic relations by further redefining the generators as

U = M1 + e1 L, V = M2 + e1M1 + 1
2e1

2L, Y = L, (7.37)

R = R2 + (2e1 − 3)R1 + 1
2(3e1

2 − 10e1 + 4)M2 + 1
2(e1 + 1)(e1

2 − 4e1 + 2)M1

+ 1
8(e1

4 − 4e1
3 − 8e1

2 + 24e1 − 8)L. (7.38)

Using the quadratic relations of the S–Heun operators given in the appendix 7.6.1, the

relations (7.35), as well as the centrality of the two operators in (7.36), are verified. �

In a realization in terms of S–Heun operators, the Casimir operators (7.36) are propor-

tionnal to the identity and the coefficients are functions of the parameters of the polynomials.

One has

Q1 = 1, Q2 = (e1 − 2)(e1 − 4), (7.39)

where e1 is given in (7.32).
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Remark 3. While a universal presentation of stab∗ has been given in proposition 12, the

star structure is not universal and depends explicitly on the representation parameters.

This is not surprising because the map (7.33) is constructed using the inner product (7.1)

corresponding to a specific realization with fixed parameters. Nevertheless, one can work in

a specific realization and write the generators in (7.35) in terms of the structural operators

(7.23), (7.26) and (7.31) as follows

U = 1
|S4|

∑
σ∈S4

[
µσ(a,b,c,d) − µ∗σ(a,b,c,d)

]
, V = 1

|S4|
∑
σ∈S4

[
−µσ(a,b,c,d) − µ∗σ(a,b,c,d)

]
+ αY,

Y = 1
4τ, R = 8τ ∗(e1,e2,e3,e4) − (2− 3α)V + (1− 3α + β)U + (1− β + γ)Y,

(7.40)

where

α = 1
2e1

2 − 4
3e2, β = −e1

3 + 4e2e1 − 8e3, and γ = 3
4α e1

2 − e1
2e2 + 8e1e3 − 32e4,

(7.41)

with e1, e2, e3 and e4 given in (7.32). With the above, one obtains

Y ∗ = 1
32 [R + (2− 3α)V − (1− 3α + β)U − (1− β + γ)Y ] ,

U∗ = −U, V ∗ = V + α (Y ∗ − Y ),

R∗ =
[
32 + α (2− 3α)

]
Y − (2− 3α)V − (1− 3α + β)U +

[
1− β + γ − α (2− 3α)

]
Y ∗.

7.4.3. The algebra stab∗ as a Sklyanin algebra

It can be seen from (7.37) and (7.38) that the generators of stab∗ only depend on the

parameters a, b, c, d via the elementary symmetric polynomial e1(a, b, c, d). Thus, they will be

invariant under a commensurate increase and decrease of any pair of parameters. A glance at

(7.31) indicates that this will not be the case for τ ∗(a,b,c,d). However, a pseudo-commutation

relation similar to the one introduced by Rains in [24] is obtained.

Proposition 13. In the realization (7.12) the identity

τ ∗(a,b,c+k,d−k) τ ∗(a+ 1
2 ,b+

1
2 ,c−

1
2 ,d−

1
2 ) = τ ∗(a,b,c,d) τ ∗(a+ 1

2 ,b+
1
2 ,c−

1
2 +k,d− 1

2−k), (7.42)

is satisfied. Moreover, at the abstract level (7.42) encodes the algebraic relations of the stab∗

algebra (7.35).
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Proof. Using the definition (7.31), the identity (7.42) is readily verified. The second sta-

tement is demonstrated by using (7.40) to express τ ∗(a,b,c,d) in terms of the generators (7.37)

and (7.38) as

8τ ∗(a,b,c,d) = R + (2− 3α)V − (1− 3α + β)U − (1− β + γ)Y,

where α, β and γ are given in (7.41). Upon using the above in (7.42), one can pick any

one of the parameters a, b, c, d and take the remaining ones to be vanishing. Equating the

coefficients of each power of the remaining non-zero parameter in the left- and right-hand

side of (7.42) yields a set of relations that is algebraically identical to the relations (7.35). �

That the relations of stab∗ are encoded in the identity (7.42) identifies the stab∗ algebra

as a Sklyanin-type algebra [24].

7.5. The rational degenerate Sklyanin algebra

The rational degenerate Sklyanin algebra sKr is obtained in [27] from the Sklyanin algebra

[25] and is associated to a rational degeneration of an elliptic R-matrix. A presentation can

be given as a unital associative algebra generated by four elements S0, S3, S+, S− obeying

the defining relations

[S0, S−] = −2{S−, S−}, [S0, S+] = 16{S3, S−} − 16{S−, S−}+ 2{S+, S−} − 4{S3, S3},

[S+, S−] = 2{S0, S3}, [S0, S3] = 2{S3, S−} − 8{S−, S−}, [S3, S±] = ±{S0, S±}.

(7.43)

The rational degenerate Sklyanin algebra admits two Casimir operators which are given in

the above presentation by

C1 = S2
0 + S2

3 + 1
2{S+, S−}, C2 = 1

2{S+, S−}+ 2{S−, S3}+ S2
3 − 6{S−, S−}. (7.44)

The presentation (7.43) is recovered from the one in [27] upon setting the free parameter

η = 1 and defining S± = S1 ± iS2. The following proposition identifies the stab∗ algebra

with the rational degenerate Sklyanin algebra.

Proposition 14. The sKr algebra defined in (7.43) is isomorphic to the stab∗ algebra defined

in (7.35).
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Proof. The following map is readily verified to be an isomorphism of algebras.

S0 = 4Y − 4U, S3 = 4U − 2Y − 4V, S+ = 16R− 14Y − 8U + 24V, S− = −2Y.

(7.45)

�

7.5.1. A realization in terms of difference operators

A realization of the rational degenerate Sklyanin algebra in terms of difference operators

is provided in [27]. The Casimir elements are realized as multiples of the identity and are

given by

C1 = 16(2s+ 1)2Id, C2 = 64s(s+ 1)Id.

The generators thus represented can be written in terms of the S–Heun operators (7.12) as

follows

S0 = 4(2s− 1)L− 4M1, S3 = −2(2s− 1)2L+ 4(2s− 1)M1 − 4M2, S1 − iS2 = −2L,

S1 + iS2 = −2(4s2 − 1)(4s2 − 8s− 1)L− 8(2s− 1)(4s2 − 4s− 1)M1 + 8(2s− 1)(6s+ 1)M2

− 16(4s− 1)R1 + 16R2.

It is immediate from the above that the realization in terms of S–Heun operators of the sKr
algebra involves coefficients that depend on the values of the Casimir operators. A similar

observation could be made for the case of the stab∗ algebra in (7.37) and (7.38). It follows

from proposition 14 that the parameters e1 and s are related by

e1 = 2− 2s.

7.5.2. A family of representations

The identification of the rational degenerate Sklyanin algebra sKr with the stab∗ algebra

directly leads to a family of representations of sKr on the Wilson polynomials.
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Proposition 15. A representation of the rational degenerate Sklyanin algebra sKr (7.43)

on the Wilson polynomials is defined by the following actions

S0 · W̃n

(
x2
∣∣∣a, b, c, d) = 4σ(n+ c+ d− 1) W̃n

(
x2
∣∣∣a+ 1

2 , b+ 1
2 , c−

1
2 , d−

1
2

)
+ (4σ(ab− cd)− e1)n(n+ e1 − 1) W̃n−1

(
x2
∣∣∣a+ 1

2 , b+ 1
2 , c+ 1

2 , d+ 1
2

)
− 4σ(n+ a+ b− 1) W̃n

(
x2
∣∣∣a− 1

2 , b−
1
2 , c+ 1

2 , d+ 1
2

)
,

S3 · W̃n

(
x2
∣∣∣a, b, c, d) = −4(n+ a+ b− 1) W̃n

(
x2
∣∣∣a− 1

2 , b−
1
2 , c+ 1

2 , d+ 1
2

)
+ 1

2(8(ab+ cd)− e1
2 − 1)n(n+ e1 − 1) W̃n−1

(
x2
∣∣∣a+ 1

2 , b+ 1
2 , c+ 1

2 , d+ 1
2

)
− 4(n+ c+ d− 1) W̃n

(
x2
∣∣∣a+ 1

2 , b+ 1
2 , c−

1
2 , d−

1
2

)
,

S− · W̃n

(
x2
∣∣∣a, b, c, d) = −1

2n(n+ e1 − 1) W̃n−1
(
x2
∣∣∣a+ 1

2 , b+ 1
2 , c+ 1

2 , d+ 1
2

)
,

S+ · W̃n

(
x2
∣∣∣a, b, c, d) = 128W̃n+1

(
x2
∣∣∣a− 1

2 , b−
1
2 , c−

1
2 , d−

1
2

)
+ 8(6α− 1 + 2βσ)(n+ a+ b− 1) W̃n

(
x2
∣∣∣a− 1

2 , b−
1
2 , c+ 1

2 , d+ 1
2

)
+ 8(6α− 1− 2βσ)(n+ c+ d− 1) W̃n

(
x2
∣∣∣a+ 1

2 , b+ 1
2 , c−

1
2 , d−

1
2

)
+8 [(1− 6α)(ab+ cd)− 2βσ(ab− cd) + ξ]n(n+e1−1) W̃n−1

(
x2
∣∣∣a+ 1

2 , b+ 1
2 , c+ 1

2 , d+ 1
2

)
,

where α, β and γ are defined in (7.41) and

ξ ≡ 1
2(1− 2e1

2 + e1
4 − 256e4),

with e1 and e4 defined in (7.32).

Proof. One first derives the action of the symmetrized structure operators on the Wilson

polynomials. It can be seen from (7.27) and (7.30) that the expressions in the case of τ

and τ ∗ are fully symmetric under permutations of the parameters such that their actions are

invariant under the symmetrization. To obtain similar expressions for µ and µ∗, one uses
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(7.29) to write

µ(a,b,c,d) ± µ∗(a,b,c,d) = (µ(a,b,c,d) ± µ(c,d,a,b))∓ 1
2
(
c+ d+ 1

2
)
τ (a,b,c,d)

± σ
[
µ(a,b,c,d) − µ(c,d,a,b) + (ab− cd)τ (a,b,c,d)

]
. (7.46)

The last term in the right-hand side of (7.46) is independent of the parameters as

σ
[
µ(a,b,c,d) − µ(c,d,a,b) + (ab− cd)τ (a,b,c,d)

]
= Y − U, (7.47)

and is thus invariant under the symmetrization. As it is verified that

1
|S4|

∑
π∈S4

(µπ(a,b,c,d) − µπ(c,d,a,b)) = 0,

one can use the invariance of τ under permutations of the parameters to obtain from (7.46)

using (7.47) that

1
|S4|

∑
π∈S4

(µπ(a,b,c,d) − µ∗π(a,b,c,d)) = σµ(c,d,a,b) − σµ(a,b,c,d) +
[1
4(e1 + 1)− σ(ab− cd)

]
τ (a,b,c,d).

Likewise, observing that µ(a,b,c,d)+µ(c,d,a,b)+(ab+cd)τ (a,b,c,d), is symmetric under permutations

of the parameters, one can use the invariance of τ and (7.47) in (7.46) to obtain

1
|S4|

∑
π∈S4

(µπ(a,b,c,d) + µ∗π(a,b,c,d)) = (1 + σ)µ(a,b,c,d) + (1− σ)µ(c,d,a,b)

+
[
(ab+ cd) + σ(ab− cd)− 1

3e2 −
1
4(e1 + 1)

]
τ (a,b,c,d).

The actions on the scaled Wilson polynomials (7.28) of τ, τ ∗ and of the operators in (7.46)

are obtained from (7.27) and found to be:

1
|S4|

∑
π∈S4

(µπ(a,b,c,d) − µ∗π(a,b,c,d)) · W̃n(x2|a, b, c, d) =

[1
4(e1 + 1)− σ(ab− cd)

]
n(n+ e1 − 1)W̃n−1(x2|a+ 1

2 , b+ 1
2 , c+ 1

2 , d+ 1
2)

+ σ(n+ a+ b− 1)W̃n(x2|a− 1
2 , b−

1
2 , c+ 1

2 , d+ 1
2)

− σ(n+ c+ d− 1)W̃n(x2|a+ 1
2 , b+ 1

2 , c−
1
2 , d−

1
2),
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1
|S4|

∑
π∈S4

(µπ(a,b,c,d) + µ∗π(a,b,c,d)) · W̃n(x2|a, b, c, d) =

[
(ab+ cd) + σ(ab− cd)− 1

3e2 −
1
4(e1 + 1)

]
n(n+ e1 − 1)W̃n−1(x2|a+ 1

2 , b+ 1
2 , c+ 1

2 , d+ 1
2)

+ (σ − 1)(n+ c+ d− 1)W̃n(x2|a+ 1
2 , b+ 1

2 , c−
1
2 , d−

1
2)

− (σ + 1)(n+ a+ b− 1)W̃n(x2|a− 1
2 , b−

1
2 , c+ 1

2 , d+ 1
2)

1
|S4|

∑
σ∈S4

τσ(a,b,c,d) · W̃n(x2|a, b, c, d) = n(n+ e1 − 1) W̃n−1
(
x2
∣∣∣a+ 1

2 , b+ 1
2 , c+ 1

2 , d+ 1
2

)
,

1
|S4|

∑
σ∈S4

τ ∗σ(a,b,c,d) · W̃n(x2|a, b, c, d) = W̃n+1
(
x2
∣∣∣a− 1

2 , b−
1
2 , c−

1
2 , d−

1
2

)
.

Using (7.40) and the above, one can construct a representation of (7.35) on the Wilson

polynomials (7.28). Proposition 15 then follows from proposition 14.

�

Finite-dimensional representations can be obtained by truncating the representations of

proposition 15.

Proposition 16. The finite-dimensional representations obtained from truncations of the

representations in proposition 15 act on the para-Racah polynomials.

Proof. Looking at the content of proposition 15, it is seen that the only generator that

raises the degree is S+. Using (7.45), (7.40) and (7.38) this degree-raising action can be

traced back to the following combination of S–Heun operators

R2 + (2e1 − 3)R1.

With the help of (7.17),(7.16) and (7.15), one can obtain the leading term of the action of

the above operator on a polynomial of degree N in λx:

R1 · λxN = λx
N+1 +O(λxN), R2 · λxN = (2N − 1)λxN+1 +O(λxN),

[R2 + (2e1 − 3)R1] · λxN = 2(N − 1 + e1)λxN+1 +O(λxN). (7.48)

Demanding that the leading term in the above vanishes is tantamount to truncating the

representation of proposition 15 at the degree N . This truncation condition is precisely the
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one that leads to the para-Racah polynomials (7.2). Thus, the finite-dimensional represen-

tations of the rational degenerate Sklyanin algebra obtained under this truncation have for

basis the para-Racah polynomials. �

The actions of the generators in these truncated representations are as given in propo-

sition 15, although one has to carry the appropriate limiting process described in [22] to

deal with the otherwise singular expressions. Proposition 16 provides for the algebraic in-

terpretation of the para-Racah polynomials as the basis elements of the finite-dimensional

representations of the rational degenerate Sklyanin algebra.

7.6. Conclusion

This paper has introduced the S–Heun operators associated to the quadratic grid as

a special case of the algebraic Heun operator. These operators were shown to form a five-

dimensional space. The subset of these operators which stabilizes the space of polynomials of

a given degree was identified and the algebra that they realize was examined. The extension

of this stabilizing algebra to a star algebra was identified as the rational degenerate Sklyanin

algebra. This definition of the rational degenerate Sklyanin algebra through S–Heun ope-

rators directly led to the construction of infinite-dimensional representations on the Wilson

polynomials as well as finite-dimensional representations on the para-Racah polynomials.

The rational degenerate Sklyanin algebra is known [27] to be a one parameter deforma-

tion of the Yangian Y (sl2). In the same way that the Yangian Y (sl2) is the quantum algebra

that encodes the symmetry of integrable XXX spin-half chains associated with the ordinary

rational R-matrix, the rational degenerate Sklyanin algebra can be understood as the sym-

metry algebra of a generalized XXX chain corresponding to a deformed rational R-matrix,

a new integrable model. Thus, it would be of interest to use the representations introduced

in section 7.5 to construct explicit realizations of this new integrable model in terms of finite

and infinite spin chains. In the finite case, one would expect the para-Racah polynomials

to appear as the basis of representations of the symmetry algebra. Interestingly, these para

polynomials were first introduced in the context of perfect state transfer on spin chains [32]

and the advances in this paper suggest they would also find applications as solutions to new

integrable spin chain models.
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Appendix

7.6.1. Quadratic relations of the S–Heun operators

The set of homogeneous quadratic algebraic relations satisfied by the S–Heun operators

is given below for reference:

[L,M1] = 2L2, [L,M2] = {M1, L}, [M1,M2] = {M2, L} − 4L2,

[L,R1] = M2
1 +L2+{M1, L}+

1
2{M2, L}, [L,R2] = M2

1 +L2+{M1, L}+
1
2{M2, L}+{M1,M2},

[M1, R1] = 2M2
1 − 3L2 + {M1,M2} −

1
2{M1, L} − {M2, L},

[M1, R2] = M2
1 +M2

2 + 7L2 + 2{R2, L} −
5
2{M1, L} − 5{M2, L},

[R1,M2] = 3L2−M2
1 −M2

2 + 2{R1 +R2, L}−{R1,M1}−{M1,M2}− 5{M1, L}−
9
2{M2, L},

[R2,M2] = Y 2 −M2
1 −M2

2 + {R1,M1 −M2} − {M1,M2}+ 1
2{M1, L},

[R2, R1] = 2R2
1 +M2

1 + 2M2
2 + 3L2 + 1

2{R2 −R1, L} −
3
2{R1 +R2,M2}+ {M1,M2}

+ 3
2{M1, L} −

1
2{M2, Y },

M2
1 − {M1,M2}+ 3L2 = 1, {R1 −R2, L}+M2

2 + {M2, L} − 3L2 = −3,

−2{R1, L} − 3L2 + {M1,M2}+ 2{M1 +M2, L} = 4,
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0 = M2
1 + 1

2L
2 + {R1,M1 −M2} −

5
2{R1, L} − 2{R2, L}+ {R1 +R2,M1}+ 1

4{M1,M2}

+ 6{M1, L}+ 4{M2, L}.
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Partie 3

Émergence et intégrabilité



Introduction

Cette dernière partie de la thèse comportant un unique chapitre a pour but la construction

d’un cadre théorique général permettant d’étudier et de quantifier la connexion entre la pré-

sence de structures dans un système physique et la capacité de le modéliser et de l’analyser.

Ce travail repose sur les outils de la théorie algorithmique de l’information. Cette théorie

peut être appréhendée comme une reformulation de la théorie de l’information de Shannon

et des statistiques en termes de la complexité algorithmique. La différence importante réside

en ce que la complexité de Kolmogorov joue le rôle de l’entropie de Shannon. Cette diffé-

rence permet de construire une théorie de l’information dans laquelle toutes les quantités

ne sont fonction que des échantillons obtenus, sans référence à une distribution de probabi-

lité sous-jacente. Lorsqu’utilisée en physique, cette approche offre également une solution à

l’ambiguïté dans la définition de l’entropie de Shannon provenant du degré de liberté dans

le choix de l’alphabet de symboles.

Ce cadre théorique permet par après de formuler une définition mathématique du concept

d’émergence. Cette approche comporte l’avantage de permettre une définition objective

et rigoureuse de phénomène d’émergence. Le chapitre se termine par plusieurs exemples

illustrant comment la définition proposée parvient à capturer la notion intuitive d’émergence.



Chapitre 8

An algorithmic approach to emergence

C. Bédard and G. Bergeron (2021). An algorithmic approach to emergence. in preparation.

Abstract

This article proposes a quantitative definition of emergence. Our proposal uses algorith-

mic information theory as a basis for an objective framework for the notion of emergence.

Emergence would be marked by sudden drops of the Kolmogorov structure function. Our

definition offers some theoretical results, in addition to an extension of the notions of coarse-

graining and boundary conditions. Finally, we confront our definition with applications to

dynamical systems and thermodynamics.

8.1. Introduction

Emergence is a concept often referred to in the study of complex systems. Coined in

1875 by the philosopher George H. Lewes in his book Problems of Life and Mind [21], the

term has ever since mainly been used in qualitative discussions [24, 6]. In most contexts,

emergence refers to the phenomenon by which properties of a complex system, composed

of a large quantity of simpler subsystems, are not exhibited by those simple systems by

themselves, but only through their collective interactions. The following citation from Wi-

kipedia [1] reflects this popular idea: “For instance, the phenomenon of life as studied in

biology is an emergent property of chemistry, and psychological phenomena emerge from the

neurobiological phenomena of living things”.



For claims such as the above to have any meaning, an agreed upon definition of emer-

gence must be provided. Current definitions are framed around a qualitative evaluation of

the “novelty” of properties exhibited by a system with respect to those of its constituent

subsystems. This state of matters renders generic use of the term ambiguous and subjective,

hence problematic within a scientific discussion. In this paper, we attempt to free the notion

of emergence from subjectivity by proposing a mathematical, operational and quantitative

notion of emergence.

8.1.1. Existing notions of emergence

We review a few of the many appeals to the notion of emergence. One of them goes all

the way back to Aristotle’s metaphysics [26]:

«The whole is something over and above its parts, and not just the sum of
them all... »

This common idea is revisited by the theoretical physicist Philip W. Anderson [2], who

claims that “[. . . ] the whole becomes not only more, but very different from the sum of its

parts”. In the same essay, he highlights the asymmetry between reducing and constructing:

«The ability to reduce everything to simple fundamental laws does not im-
ply the ability to start from those laws and reconstruct the universe. In
fact, the more elementary particle physicists tell us about the nature of the
fundamental laws, the less relevance they seem to have for the very real
problems of the rest of science, much less to those of society.

The constructionist hypothesis breaks down when confronted with the
twin difficulty of scale and complexity. [. . . ] at each level of complexity,
entirely new properties appear, and the understanding of the new behaviours
requires research which I think is as fundamental in its nature as any other.
[. . . ] At each stage, entirely new laws, concepts, and generalizations are
necessary, requiring inspiration and creativity to just as great a degree as
the previous one. Psychology is not applied biology, nor biology is applied
chemistry. »

More recently, David Wallace [34, Chapter 2] qualifies emergent entities to be “not di-

rectly definable in the language of microphysics (try defining a haircut within the Standard

Model) but that does not mean that they are somehow independent of that underlying mi-

crophysics”. The notion of structures, or patterns, often related to the concept of emergence

are specified by Dennett’s Criterion [12] (the criterion was named by Wallace in [33]).

«Dennett’s Criterion: An emergent object exhibits patterns. The existence
of patterns as real things depends on the usefulness — in particular the
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explanatory power and the predictive reliability — of theories which admit
those patterns in their ontology. »

Dennett’s criterion, when applied to the notion of temperature, tells us that it should be

thought to be an emergent but real concept because it is a useful pattern. As Wallace [34,

Chapter 2] observes, even if temperature is not a fundamental entity of the microphysics,

a full scientific description of a gas with no reference to the notion temperature completely

misses a fundamental aspect. In this spirit, temperature is as real as it is useful. This notion

of useful patterns, or structures, is a key concept that we shall formalize in our approach.

8.1.2. From systems to bit strings

Our proposed approach to emergence relies on algorithmic information theory. To better

justify this formalism, we present our epistemological standpoints. We take the realist view

that there is a world outside of our perception. This world is made of physical systems, and

the goal of science is to understand their properties, their dynamics and their possibilities.

This is done through an interplay between the formulation of theories and their experimental

challenges. Theories have the purpose of providing simple models to explain the data, a

concept which will be explored throughout the paper. Empirical observations, on the other

hand, collect data from physical systems. The main epistemological question that we want

to address here is how to get from a system, assumed to exist in reality, to a string of symbols

that we shall take binary.

Observation starts by an interaction between the physical system we care to learn about

and some measurement apparatus. The measurement apparatus then interacts with a com-

puting device (this can be the experimenter) that arranges its memory in a physical re-

presentation of a bit string x. However, a scientist who wants to get data about a system

will be left with an x, which, clearly, is not only determined by the investigated system.

The information in x could reflect properties of other systems with which it has previously

interacted, like the environment, the measurement apparatus and the scientist itself! As ob-

served by Gell-Mann and Lloyd [16], this introduces several sources of arbitrariness into x,

in addition to the level of details of the description and the coding convention that maps the

apparatus’s configuration into bits. Also, the knowledge and cognitive biases of the scientist

impacts what is being measured. For Gell-Mann and Lloyd, all this arbitrariness is to be

discarded in order to define the (algorithmic) information content of the object through that
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Fig. 1. From systems to algorithmic models

Systems are comprehended through experimentation and observation, which yield a bit

string. Models and their respective boundaries can then be defined for each string through

methods from algorithmic information theory.

of x. We don’t share this view, as we think that this arbitrariness inhibits a well-posed de-

finition. A subtlety of scientific investigation concerns what to probe of the system in order

to push into x the yet-to-be-understood features that it can exhibit. Upon deciding what is

to be measured, the ongoing challenge to the scientist lies in managing this arbitrariness so

that the string x reflects the relevant properties of the system under observation.

Nonetheless, this subjective connection between the system and the data does not exclude

an overall objective modelling of the world. For instance, if we ask a dishonest scientist to

give us data about a system, but he elects instead to give us bits at whim, then investigating

the data will lead to models of what was happening in that person’s brain, which is itself a

part of reality. Thus, the string x is always objective data from a real system, although not

necessarily the one that was presumed to be under investigation.

Once the data x is fixed, we face the mathematical problem of finding the best explana-

tions for it, which is related to finding its patterns or structures. This is the main investi-

gation of the paper. It can be done in the realm of algorithmic information theory (AIT),

a branch of mathematics and logic that offers similar tools as probability theory, but with

no need for unexplained randomness. Li and Vitányi, authors of the most cited textbook

[22] in the field, claim that “Science may be regarded as the art of data compression”. And

according to the pioneer Gregory Chaitin [11], “[A] scientific theory is a computer program

that enables you to compute or explain your experimental data”. Indeed, even theoretical

pen and paper work constitutes symbolic manipulations which are inherently algorithmic.

See Figure 1.
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A point remains to be addressed. Why work with classical information and computation

instead of their quantum counterparts? As quantum computation can be classically emu-

lated [13], the quantum gain is only in speed, and not fundamental in terms of what we

can or cannot compute. This work is grounded in computability theory, so by leaving aside

questions of time complexity, we also leave aside quantum computation.

8.1.3. Outline

This paper is organized as follows. In section 2, we give a review of the basic notions

of algorithmic information theory, with a particular focus on nonprobabilistic statistics and

connexions in physics. Building on those, we introduce in section 3 an algorithmic definition

of emergence and we derive from it some concepts and results. Finally, we illustrate the

relevance of the proposed definition by discussing its uses in section 4 through examples. A

brief conclusion follows.

8.2. A primer on algorithmic methods

Algorithmic information theory (AIT) originates [28, 18, 10] from the amalgamation of

Shannon’s theory of information [27] and Turing’s theory of computation [29]. Introduced

in his seminal paper titled “A Mathematical Theory of Communication”, Shannon’s theory

concerns the ability to communicate a message that comes from a random source. The

randomness, formalized in the probabilistic setting, represents ignorance, or unpredictability,

of the symbols to come. The entropy is then a functional on the underlying distribution that

quantifies an optimal compression of the message. Concretely, this underlying distribution

is often estimated through the observed biases in the frequency of the sequences of symbols

to transmit. However, noticing such biases is only a single way to compress a message.

For instance, if Alice were to communicate the 1010 first digits of π to Bob, a pragmatic

application of Shannon’s information theory would be of no help since the frequencies of the

symbols to transmit is uniform (if π is normal, which it is conjectured to be). However, Alice

could simply transmit:

‘The first 1010 digits of 4
∞∑
n=0

(−1)n
2n+ 1.’
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Bob then understands the received message as an instruction that he runs on a universal

computing device to obtain the desired message. Equipping information theory with uni-

versal computation enables message compression by all possible (computable) means. As

we will see, the length of the best compression of a message is a natural measure of the

information contained in the message.

8.2.1. Algorithmic Complexity

We give the basic definitions and properties of algorithmic complexity. See

Ref. [22, Chapters 1 – 3] for details, attributions and background on computability

theory.

The algorithmic complexity K(x) of a piece of data x is the length of the shortest compu-

table description of x. It can be understood as the minimum amount of information required

to produce x by any computable process. Per contra to Shannon’s notion of information,

which supposes an a priori random process from which the data has originated, algorithmic

complexity is an intrinsic measure of information. Because all discrete data can be binary

coded, we consider only finite binary strings (referred to as “strings” from now on), i.e.,

x ∈ {0, 1}∗ = {ε, 0, 1, 00, . . . } ,

where ε stands for the empty word. For a meaningful definition, we have to select a universal1

computing device U on which we execute the computation to obtain x from the description.

The latter is called the program p, and since it is itself a string, the length of p is well defined

and noted |p|. Therefore,

KU(x) ≡ min
p
{|p| : U(p) = x} .

Note that abstractly, U is any Turing-complete model of computation, such as Turing ma-

chines or recursive functions. Concretely, U could be thought of as a modern computer

or a human with pen and paper. This is the essence of the Church-Turing thesis, accor-

ding to which, all sufficiently generic approaches to symbolic manipulations are equivalent

and encompass physically realizable computations. The invariance theorem for algorith-

mic complexity guarantees that no other formal mechanism can yield an essentially shorter

1 In the realm of Turing machines, a universal device expects an input p encoding a pair p = 〈q, i〉 and

simulates the machine of program q on input i.
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description. This is because the reference universal computing device U can simulate any

other computing device V with a constant overhead in program length, i.e., there exists a

constant CUV such that

|KU(x)−KV(x)| ≤ CUV (8.1)

holds uniformly for all x. In such a case, it is customary in this field to use the big-O notation2

and write KU(x) = KV(x) +O(1). Since the ambiguity in the choice of computing devices

is lifted (up to an additive constant), we omit the subscript U in the notation. Algorithmic

complexity is in this sense a universal measure of the complexity of x.

The conditional algorithmic complexity K(x | y) of x relative to y is defined as the length

of the shortest program to compute x, if y is provided as an auxiliary input. Then one defines

K(x | y) ≡ min
p
{|p| : U(p, y) = x}.

Multiple strings x1, . . . , xn can be encoded into a single one denoted 〈x1, . . . , xn〉. The

algorithmic complexity K(x1, . . . xn) of multiple strings is then defined as

K(x1, . . . , xn) ≡ min
p
{|p| : U(p) = 〈x1, . . . , xn〉} .

For technical reasons, we restrict the set of programs resulting in a halting computation to

be such that no halting program is a prefix of another halting program, namely, the set of

halting programs is a prefix code. One way to impose such a constraint on the programs is

to have all programs to be self-delimiting, meaning that the computational device U halts

its computation after reading the last bit of the program p, but no further. This restriction

is not fundamentally needed for our purposes, but it entails an overall richer and cleaner

theory of algorithmic information. For instance, the upcoming relation (8.2) holds within an

additive constant only if self-delimitation is imposed.

A key property of entropy in Shannon’s theory is the chain rule that relates the entropy

of a pair to those of the constituents. This is also achieved in the realm of AIT. Let x∗

be the3 shortest program that computes x. Algorithmic complexity satisfies the important

2 In general, O(f(n)) denotes a quantity that does not exceed f(n) by more than a fixed multiplicative

factor.
3If there are more than one “shortest program”, then x∗ is the fastest, and if more than one have the

same running time, then x∗ is the first in lexicographic order.
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chain rule

K(x, y) = K(x) +K(y |x∗) +O(1) . (8.2)

One obvious procedure to compute the pair of strings x and y is to first compute x out of

its shortest program x∗, and then use x∗ to compute y, which proves the “≤” part of (8.2).

8.2.2. Nonprobabilistic Statistics

Standard statistics are founded upon probability theory. Curiously, the same person who

axiomatized probability theory managed to detach statistics and model selection from its

probabilisitic roots. Kolmogorov suggested [19] that AIT could serve as a basis for statistics

and model selection for individual data. See Ref. [30] for a modern review.

In this setting, a model of x is defined to be a finite set S ⊆ {0, 1}∗ such that x ∈ S.

It is also referred to as an algorithmic or nonprobabilistic statistic. Any model S can be

quantified by its cardinality, noted |S|, and by its algorithmic complexity K(S), yielding a

quantitative meaning of “simple” and “complex”. To define K(S) properly, let again U be

the reference universal computing device. Let p be a program that computes an encoding

〈x1, . . . , xN〉 of the lexicographical ordering of the elements of S and halts.

U(p) = 〈x1, . . . , xN〉 , where S = {x1, . . . , xN} .

Then, S∗ is the shortest such program and K(S) is its length. When S and S ′ are two models

of x of the same complexity α, we say that S is a better model than S ′ if it contains fewer

elements. This is because there is less ambiguity in specifying x within a model containing

fewer elements. In this sense, more of the distinguishing properties of x are reflected by such

a model. Indeed, among all models of complexity ≤ α, a model of smallest cardinality is

optimal for this fixed threshold of complexity.

Any string x of length n exhibits two canonical models shown in Table 1. The first is

simply SBabel ≡ {0, 1}n, which has small complexity as it is easy to describe — a program

producing it only requires the information about n. However, it is a large set, containing 2n

elements. It is intuitively a bad model since it does not capture any properties of x, except

its length. The other canonical example is Sx ≡ {x}. This time, Sx has large complexity,

namely, it is as hard to describe as x is, but it is a very tiny set with a single element. Sx is

a bad model, capturing everything about x, even the noise or incidental randomness. This
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Model S Complexity K(S) Cardinality log |S|

SBabel = {0, 1}n Small K(n) +O(1) Large n

Sx = {x} Large K(x) +O(1) Small 0

Tableau 1. Complexity and cardinality of SBabel and Sx

significantly weighs down the description of the model, and is commonly known as over-

fitting. A good map of Montreal is not Montreal itself!

If S is a model of x, then

K(x |S) ≤ log |S|+O(1) ,

because one way to compute x out of S is to give the dlog |S|e bit-long index of x in the

lexicographical ordering of the elements of S, where d·e denotes the ceiling function.4 This

trivial computation of x relative to S is known as the data-to-model code5. A string x is a

typical element of its model S if the data-to-model code is essentially the shortest program,

i.e., if

K(x |S) = log |S|+O(1) .

In such a case, there is no simple property that singles out x from the other elements of S.

Notice also that the data x can always be described by a two-part description: The model

description and the data-to-model code. Hence,

K(x) ≤ K(S) + log |S|+O(1) . (8.3)

In his seminal paper [14] on the foundations of theoretical (probabilistic) statistics, Fi-

scher stated: “The statistic chosen should summarize the whole of the relevant information

supplied by the sample. This may be called the Criterion of Sufficiency.”. Kolmogorov

suggested an algorithmic counterpart. A model S 3 x is sufficient for x if the two-part

4 Note that the program can be made self-delimiting at no extra cost because the length of the index

can be computed from the resource S provided.
5 Really, it should be called model-to-data.
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description with S as a model is an almost-shortest description, namely,

K(S) + log |S| ≤ K(x) +O(log n)6 .

Such models constrains the set of strings to those sharing “the whole of the relevant” pro-

perties that characterize x, which is then a typical element of those models.

Finally, a good model should not give more than the relevant information supplied by

the data. The simplest sufficient model displays all the relevant properties of the data, and

nothing more, thus preventing over-fitting. It is called the minimal sufficient model and

denoted SM .

Kolmogorov’s structure function

For a given string x, its associated Kolmogorov’s structure function explores trade-offs

between the complexity and cardinality of possible models. This function maps any com-

plexity threshold to the log-cardinality of the optimal model S within that threshold. It will

be applied to investigate more interesting models, between SBabel and Sx.

Definition 8.2.1 (Structure function). The Structure function of a string x, hx : N→ N, is

defined as

hx(α) = min
S3x
{dlog|S|e : K(S) ≤ α} .

We say that optimal models of α bits or less witness hx(α). Extremal points of hx(α) are

essentially determined by SBabel and Sx, as shown in Table 1. It follows that

hx(K(n) +O(1)) ≤ log |SBabel| = n and hx(K(x) +O(1)) ≤ log |Sx| = 0 .

An upper bound for hx is prescribed by noticing that a more complex model S ′, can be

built from a previously described one S by including into the description of S ′ the first bits

of index of x ∈ S. In this case, for each bit of index specified, the log-cardinality of the

resulting model reduces by one. This implies that the overall7 slope of the structure function

must be ≤ −1. Applying this argument to SBabel, we conclude that the graph of hx(α) is
6Here the O(logn) refers to K(K(S), log |S|) since the self-delimited 2-part code implicitly carry the

length of each part as its intrinsic information. The optimal one part code x∗ in general shall not know

about the size of each part.
7A knowledgeable reader may frown upon this simple and not-so-precise argument because prefix tech-

nicalities demand a more careful analysis as is done in [31]. Such an analysis shows that the linear relations

as presented here hold up to logarithmic fluctuations.
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hx(α)

α

n

K(x)K(n) αM

Sufficiency line

Sx

SBabel

SM

Fig. 2. Kolmogorov’s structure function of a string x of length |x| = n.

upper bounded by the line n+K(n)− α. A lower bound is obtained from applying (8.3) to

the model S witnessing hx(α). In such a case, K(S) ≤ α and log |S| = hx(α), so

K(x)− α ≤ hx(α) .

This means that the graph of hx(α) always sits above the line K(x) − α, known as the

sufficiency line. The above inequality turns into an equality (up to a logarithmic term) if

and only if the witness S is a sufficient model, by definition. Thus, this sufficiency line is

reached by the structure function when enough bits of model description are available to

formulate a sufficient statistics for x. Once the structure function reaches the sufficiency

line, it stays near it, within logarithmic precision, because it is then bounded by above and

by below by the −1 slope linear regime. The sufficiency line is always reached as Sx is such

a sufficient model.

For concreteness, a plot of hx(α), for some string x of length n, is given in Figure 2. In

this example, the string x is such that optimal models of complexity smaller than αM are

not teaching us much about x. Indeed, bits describing those models are used as inefficiently

as an enumeration of x. In sharp contrast, SM is exploiting complex structures in x to

efficiently constrain the size of the resulting set. It is fundamentally different from the

optimal model of αM − 1 bits as it does not recite trivial properties of x, but rather express

some distinguishing property of the data. Indeed, from αM bits of model, the uncertainty
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about x is decreased by much more than αM bits, as x is now known to belong to a much

smaller set. In this example, SM is the minimal sufficient statistics.

The complexity of the minimal sufficient statistics, αM , is known as the sophistication

of the string x, which captures the amount of algorithmic information needed to grasp all

structures — or regularities — of the string. Technically, here we refer to set-sophistication,

as defined in Ref. [3], since sophistication has been originally defined [20] through total

functions as model classes instead of finite sets. Importantly, Vitányi has investigated [32]

three different classes of model: Finite sets, probability distributions (or statistical ensembles,

c.f. the following section) and total functions. Although they may appear to be of increasing

generality, he shows that they are not. Any model of a particular class defines a model in

the other two classes of the same complexity (up to a logarithmic term) and log-cardinality

or its analogues.

8.2.3. Algorithmic information theory in physics

Ideas of using AIT and nonprobabilistic statistics to enhance the understanding of phy-

sical concepts are not new. For example, expanding on the famous Landauer principle [],

Bennett [7] suggested that thermodynamics is more a theory of computation than a theory

of probability, so better rooted in AIT than in Shannon information theory. Based on his

work, Zurek proposed [35] the notion of physical entropy, which generalizes thermodynamic

entropy to ensure consistency. In the case of a system with microstate x, the physical entropy

is defined based on the statistical ensemble P . The latter is very similar to an algorithmic

model for x, except that in general a non-uniform probability distribution governs the ele-

ments of P , so the amount of information needed to specify an element x′ ∈ P , on average,

is given by Shannon entropy H(P ) = −∑x′ P (x′) logP (x′). Important paradoxes, such as

the famous Maxwell’s demon [23, 7] or Gibbs’ paradox [17], appears when it is realized that

the ensemble P , and hence the entropy of the system, depends upon the knowledge d held

by the agent, i.e., P = Pd. Such knowledge is usually given by macroscopic observations

such as temperature, volume and pressure, and defines an ensemble Pd by the principle of

maximal ignorance [25]. However, a more knowledgeable — or better equipped — agent

shall gather more information d′ about the microstate, which in turn defines a more precise

ensemble P ′ 3 x. This leads to incompatible measures of entropy. Zurek’s physical entropy
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Sd includes the algorithmic information contained in d as an additional cost to the overall

entropy measure of the system,

Sd = K(d) +H(Pd) .

Note that the similarity with Equation (8.3) is not a mere coincidence. Zurek’s physical

complexity encompasses a two-part description of the microstate. First, describe a model —

or an ensemble — for it. Second, give the residual information to get from the ensemble to

the microstate, on average. In fact, when the ensemble takes a uniform distribution over all

its possible elements, Shannon’s entropy H(P ) reduces to the log-cardinality of the ensemble,

which is, up to a kB ln 2 factor, Boltzmann’s entropy.

With sufficient data d, the physical entropy Sd gets close to the complexity of the micro-

state K(x). The ensemble Pd is then analogous to a sufficient statistics. Indeed, Baumeler

and Wolf suggest [5] to take the minimal sufficient statistics as an objective — observer inde-

pendent — statistical ensemble (they call it the macrostate). Gell Man and Lloyd define [16]

the complexity K(Pd) of such a minimal sufficient ensemble to be the Effective Complexity

of x. Because of Vitányi’s aforementioned equivalence between model classes, effective com-

plexity is essentially the same as sophistication (See also [4, lemma 21]). Müller and Szkola

[4] show that strings of high effective complexity must have very large logical depth.

8.3. Defining emergence

The previous discussion of the Kolmogorov structure function made manifest the fact

that a drop, like displayed in Figure 2 at αm, was associated to distinguished models that

accounted for meaningful properties of the data. In this example, all such properties were

reflected in the description of Sm. In general, this does not have to be the case. In this

spirit, what should one think of a string whose structure function is as displayed in Figure

3? In fact, it is natural to inquire about the properties of a string with many drops in

its structure function. With only a few bits of model, not much can be apprehended of

x. With slightly more bits, there is a first model, S1, capturing some useful properties of

x, which leads to a more concise two-part description. Allowing even more bits, a second

model S2 is possible. While being more complex, this second model reflects more properties

of x in such a way as to yield an even smaller two-part description. This series of models

continues as the allowed complexity increases. Eventually, the structure function reaches the
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minimal sufficient statistics SM , after which more complex models are of no help in capturing

meaningful properties of x.

hx(α)

α

n

K(x)α1 α2
...
αM

S1

S2

Sx

SM

Fig. 3. A structure function with many drops.

Before going further, a points needs to be addressed: Do strings with such a structure

function exist? In Ref. [31], it is shown that all shapes are possible, i.e., for any graph

exhibiting the necessary properties mentioned in the previous section, there exists a string

whose structure function lies within logarithmic resolution of that graph.

These observations illustrate that models can prove useful when not displaying all relevant

properties of the data. Those “partial” models, while not sufficient, enable a more efficient

description of the data with respect to all models of lower complexity. Thus, in the same

way that a model witnessing the minimal sufficient statistics is understood to capture the

meaningful properties of the data, those intermediate models can be thought of as capturing

only some of those meaningful properties. It is from this notion that the proposed definition

of emergence is constructed.

The main idea of our proposal is to relate emergence to the phenomenon by which the

experimental data x exhibits a structure function with many drops. They feature regularities

that can be grasped at different levels of complexity and tractability.
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8.3.1. Towards a definition

In order to sharply define the models corresponding to drops of the structure function,

and to make precise in which sense these are “new” and “understand” more properties, we

construct a modified structure function upon which we formalize these notions.

Induced models

As discussed briefly in the previous section, one can construct models canonically from

a given model by appending to it bits of the index of the data x in that model.

Definition 8.3.1 (Induced models). For a model S 3 x and i ∈ {0, . . . , dlog |S|e}, the

induced model S[i] is given by the subset of S whose first i bits of index are the same as

those of x.

For concreteness, one way to produce such an S[i] is to first execute the (self-delimiting)

program that computes S, and then concatenate the following program:

The following program has i+ c bits.︸ ︷︷ ︸
K(i)+O(1) bits

(8.4)

Among the strings of S, keep those whose index start with︸ ︷︷ ︸
c bits

b1b2b3 . . . bi .

where the first line of the routine is only for the sake of self-delimitation. Note that this

concrete description of S[i] implies

K(S[i]) ≤ K(S) + i+K(i) +O(1).

Furthermore, for every bit of index given, the model S[i] 3 x so defined contains half-fewer

elements than S does. Hence,

log|S[i]| = log|S| − i.

As can be seen from the program (8.3.1), specifying i bits of index requires more than i

extra bits of model description. Thus, we define δ ≡ i+K(i) + c′, where c′ accounts for the

constant-size part of program (8.4). A unique inverse of the relation is defined as

ı̄(δ) = max
i
{i : i+K(i) + c′ = δ},

which represents the number of index bits that can be specified with δ extra bits of model

desciption. Note that the difference between δ and ı̄(δ) is of logarithmic magnitude. We
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denote the induced model S(δ) ≡ S [̄ı(δ)]. Thus, one has that

hx(K(S) + δ) ≤ log|S(δ)| = log|S| − ı̄(δ).

Induced structure function

We now introduce our modified structure function. First, we define, for each α, a model

of complexity less or equal to α, which has log cardinality very close to hx(α). Intuitively,

we do so by mapping α to the8 witness of hx(α) whenever α corresponds to a drop of the

structure function. And whenever the structure function is in a −1 slope regime, we map α

to an induced model that builds upon the last witness of hx(α). Formally, let α0 be the

smallest complexity threshold for which hx(α0) is defined. Define the sequence of models

{S(α)} recursively through

(S(α0), kα0) = (S, α0) with S a witness of hx(α0) (8.5)

(S(α), kα) =


(S(kα−1)(α− kα−1), kα−1) if log|S(kα−1)(α− kα−1)| − hx(α) < Q(α)

(S, α) with S a witness of hx(α) otherwise,

where the quantity Q(α) is determined precisely in the proof of Theorem 8.3.3 and can be

upper bounded9 by

K(hx(α)|α) +O(log log n) .

Note that the set of numbers {kα} corresponds to the set of α for which there are significant

drops in the structure function. As can be seen from the above definition, a “significant drop”

corresponds to a decrease of ε in the structure function, which is beyond what is naturally

entailed by inducing the model one bit further.

Definition 8.3.2 (Induced structure function). The induced structure function h̃x(α) is

defined as

h̃x(α) = log|S(α)|.

It follows from this definition that h̃x lies just above hx, within an additive term smaller

than ε. Why define an induced structure function h̃x, which is very close to the original

structure function hx? An important difference is that the construction of the induced

8 If the witness of hx(α) is not unique, we choose the fastest one produced by α-bit programs.
9The precise quantity is maxN>B(α−`∗(m)){K(m|α,N)}+ 2`∗(`∗(n)) +O(1) .
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structure function h̃x(α) in (8.5) keeps track of the actual models used at each complexity

threshold. This has two advantages. First, a “drop” of the structure function is clearly

identified: it corresponds to a point in the construction of the induced structure function

where the model used is updated rather than induced. Second, for two neighbouring points

α and β in a slope −1 regime, nothing guarantees that the model witnessing hx(α) and hx(β)

are not completely different. They could a priori be completely different models, capturing

completely different properties about the string x, but it just happens that the difference

of their log-cardinality is roughly β − α. On the other hand, the defining models of h̃x
are constructed in a way that the −1 slope forces the models to be induced from the same

original model. They simply contain more or less of the index of x. Finally, departure

from the slope −1 regime in the function h̃x indicates that a new model is used, one that

intuitively captures other properties of x.

Minimal Partial models as a signature of emergence

We have emphasized in the construction of the induced structure function a difference

between the slope −1 regime and the drops of the structure function. Indeed, while the

former amounts to induced models, the latter corresponds to relevant yet partial models.

These will be central to our proposed definition of emergence.

Definition 8.3.3 (Minimal partial models). The minimal partial models are defined as the

witnesses of the drops of h̃x, namely the models {S(kα)}α∈{α0,...,K(x)+O(1)} as defined in (8.5).

In what follows, we denote by S1, S2, . . . , SM the successive minimal partial models

with respective complexity α1 < α2 < . . . < αM . Minimal partial models are the interesting

models, out of all the optimal models witnessing the structure function.

Definition 8.3.4 (Emergence). Emergence is the phenomenon characterized by observation

data that display several minimal partial models.

It can be seen that the above definition maintains the generality expected of the notion

of emergence, allowing for it to be applied in many different contexts. Moreover, it will be

seen to allow for a mathematical treatment of various related notions.

In view of the comments of section 1.2, emergence is a function of the observation string x

and not necessarily of the real object that x is purported to represent. For instance, in the

case of the dishonest scientist who disregards the object under investigation to give bits at
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whim, any emergence displayed by x would arise from the system that produced those bits,

itself a part of reality.

8.3.2. Quantifying emergence

Under the proposed definition of emergence, we develop quantitative statements. In this

section, three theorems are presented. We do not claim complete originality, as these results

use ideas that have been previously developed in algorithmic statistics [15, 31, 30]. The

novelty lies in the formulation in terms of minimal partial models.

The data specifies the minimal partial models

The first theorem confirms a basic intuition. The minimal partial models should be

thought of as optimized ways to give the structural information about x. In particular, the

following theorem shows that most of their algorithmic information is in fact information

about x.

Theorem 8.3.1. The minimal partial models Si can be computed from x and a logarithmic

advice,

K(Si|x∗) = K(K(Si), dlog |Si|e |x∗) +O(1) = O(log n) .

Using the chain rule in Eq. (8.2) twice allows to expand K(x, Si) in two ways:

K(x, Si) = K(x) +K(Si|x∗) +O(1)

= K(Si) +K(x|S∗i ) +O(1) ,

so another way to phrase the theorem is

K(x) = K(Si) +K(x |S∗i ) +O(log n) ,

such that producing Si in order to get x is not a waste, in fact, it is almost completely a

part of the algorithmic information of x.

201



Proof. We give a program q of length K(K(Si), dlog |Si|e |x∗)+O(1) that computes Si out

of x∗.

q : Compute K(Si) and dlog|Si|e from x∗ (if useful)

Run all p of length K(Si) in parallel

If p halts with U(p) = 〈S〉:

If log|S| ≤ dlog|Si|e and U(x∗) = x ∈ S:

Print S and halt.

�

Partial understanding

We now justify the use of the term “partial” to qualify the non-sufficient minimal partial

models. Intuitively, sharp drops of the structure function should be in correspondance with

non-trivial properties of the underlying string. The minimal partial models at those points

should encompass an “understanding” of these properties. Naturally, the magnitude of this

understanding could be equated to the size of the drop. Theorem 8.3.2 confirms this idea,

when “understanding” holds the following meaning.

In the context of AIT, understanding amounts to reducing redundancy, as a good expla-

nation is a simple rule that accounts for a substantial specification of the data. For instance,

when one understands a grammar rule of some foreign language, that rule can be referred

to in order to explain its many different instantiations. Those instantiations are redundant,

and once the grammar rule is specified, this redundancy is reduced.

Definition 8.3.5. The Redundancy of a string x of length n is defined to be

Red(x) ≡ n−K(x|n) .

The redundancy of a string is thus the number of bits of a string that are not irreducible

algorithmic information. In other words, it is the compressible part of x. Redundancy could

then be thought of as a quantification of how much there is to be understood about x upon

learning x∗. Comparing x to x∗, however, is an all or nothing approach and the a purpose of

nonprobabilistic statistics is to make sense of partial understanding by studying (two-part)

programs for x that interpolate between the “Print x” and the x∗ explanations. The next

202



definition, in some sense, generalizes redundancy so that it can be relative to an algorithmic

model.

Definition 8.3.6. The Randomness deficiency of a string x, with respect to the model S is

δ(x|S) ≡ log |S| −K(x|S) .

It measures how far x is from being a typical element of the set. Indeed, a typical

element would have K(x|S) = log |S|+O(1) so that δ(x|S) essentially vanishes. Notice that

redundancy can be recovered from

δ(x|SBabel) = n−K(x|SBabel) = Red(x) +O(1) .

We can then explore how much each minimal partial model reduces the randomness deficiency

— or understands — the data x. Define di as the height of the drop just before getting to Si,

namely,

di ≡ h̃x(αi − 1)− h̃x(αi) .

Theorem 8.3.2. The height of the i-th drop measures how much more Si reduces the

randomness deficiency, compared to Si−1, i.e.,

δ(x|Si−1)− δ(x|Si) = di +O(log n) .

Proof. Using the chain rule in Eq. (8.2) twice, which amounts to a bayesian inversion, and

Theorem 8.3.1,

δ(x|Si) = log |Si| −K(x|Si)

= hx(αi)−K(x)−K(Si|x) +K(Si) +O(log n)

= hx(αi)−K(x) + αi +O(log n) . (8.6)

With the help of Figure 4, and recalling that if δ extra bits of model description are

given, ı̄(δ) = δ +O(log n) bits of index can be given, observe that

hx(αi−1)− hx(αi) = hx(αi−1)− hx(αi − 1) + hx(αi − 1)− hx(αi)

= ı̄(αi − 1− αi−1) + di

= αi − αi−1 + di +O(log n) .

203



αi−1 αi

Si−1

Si

hx(αi−1)

(!) αi−1 6= αi − 1

hx(αi)

hx(αi − 1)
ı̄

di

Fig. 4. A visual help for the proof of Thm 8.3.2.

Using Equation (8.6),

δ(x|Si−1)− δ(x|Si) = hx(αi−1)− hx(αi) + αi−1 − αi +O(log n)

= di +O(log n) .

�

We can then interpret the algorithmic information in the minimal partial models as being

parts of the algorithmic information of x that enables a reduction of the redundancy of x.

This reduction of redundancy can be quantified by the sum of all previous drops, and the

amount of redundancy left to be reduced is the sum of the drops to come. When the minimal

sufficient statistic is described, with only those αM bits of the algorithmic information in x,

the redundancy of x is completely reduced. The remaining information left to specify is then

the index of x ∈ SM , which is itself irreducible algorithmic information in x. However, this

information does not contain the relevant structural information about x.

Hierarchy of minimal partial models

The following theorem shows that the algorithmic information in the minimal partial

models is organized in a nested structure, namely, the complex minimal partial models can

compute the simpler ones with a logarithmic advice.

Theorem 8.3.3. For j > i,

K(Si|Sj) = αi − αi−1 +O(log n) .

Proof Sketch.
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For this proof we use the results of [3], which links set-sophistication with Busy Beaver

logical depth. This result implies that the shortest programs for the minimal partial models

will run for so long that they are mainly consisted of halting information. Once it is shown

that Si and Sj are made of i and j bits (up to logarithmic error), respectively, of irreducible

halting information, it becomes necessary that Si can be computed by Sj (within logarithmic

error).

The proof is relegated to Appendix A.

8.3.3. Extending concepts

We revisit the notions of coarse-graining and boundary conditions, broadening their

scope.

A notion of coarse-graining

Many approaches to emergence appeal to some notion of coarse-graining. For instance,

the relevant quantities of a physical system might correspond to functions over state space.

In this case, an important tool consists of averaging those quantities over regions of that

space, retaining only the large scale structures, as is done in the method of effective field

theories. In the context of algorithmic statistics, coarse-graining will be seen as a special case

of what we will call regraining. We begin by defining the notion of coarse-graining precisely.

In set theory, coarse-grainings are defined from some mother set Ω. A partition P of Ω is

a collection of disjoint and non-empty subsets such that their union gives back Ω. Let Pfine

and Pcoarse be two partitions of Ω. We say that Pfine is a refinement of Pcoarse if every element

in Pfine is a subset of some element of Pcoarse. We also say that Pcoarse is a coarse-graining

of Pfine. In physics, those partitions are usually specified through non-injective functions

globally defined on the state space via the pre-images.

The key point of nonprobabilistic statistics is to investigate an individual object x, wi-

thout needing to refer to other x′ in the set of bit strings. Hence, algorithmic models are

disconnected from the notion of partition, since a single set is defined specifically for x, with

no requirement to define a corresponding set for x′. As such, algorithmic models do not

partition bit strings. Still, an algorithmic model A 3 x could be qualified as a model coarse-

graining of a B 3 x if B ⊆ A. This type of “model coarse-graining” in fact occur in the
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regime of induced models. However, if we compare minimal partial models to each other,

even if they are of different cardinality, they are in general not subsets of one another10.

This motivates the extended notion of regraining, which is simply a change from some mo-

del A 3 x to B 3 x, where neither model needs to be a subset of the other. It is qualified

as a fine regraining if |B| < |A| and a coarse one if |B| > |A|. Model coarse-grainings are

particular cases of regrainings.

The optimal regraining corresponds to jumping along the minimal partial models. The

optimal coarse regraining occurs in the direction from SM to S1, and corresponds to modelling

less and less features of the data x to the benefit of having simpler and simpler models.

It is optimal in the sense that this procedure will yield the best possible models over all

complexity thresholds. As opposed to the usual approaches, where the coarse-graining occurs

by averaging over specific variables (space, momentum, time. . . ), our notion of regraining

is parametrized by theory size. Properties of a physical system could be such that the

optimal coarse regraining happens by averaging over space configurations, so the algorithmic

regraining would boil down to the usual methods.

Boundary conditions

Recall from §8.1.2 that an intrinsic difficulty of scientific investigation is that the re-

corded data x never perfectly reflects a single system. Even if we leave aside the effect

of the measurement apparatus and the scientist on the data, it remains that systems are

never completely isolated from an environment. As any interaction mediates an exchange

of information, the effect of a large and complex environment will be modelled as random

noise11 in models of small complexity. However, if the string x is sufficiently detailed, some

structures of the environmental “noise” shall be grasped by models complex enough. This

highlights that some information in x may be explained by models of large complexity but
10 Although nothing garanties that Sj ⊂ Si, for j > i, Sj cannot be almost entirely composed of elements

that are not in Si. In fact, Theorem 8.3.3 states that Si can be easily computed from Sj , so with slightly

more than αj bits of model size, an optimal model would be Si ∩ Sj 3 x, which, cannot be of too small

cardinality unless the structure function exhibits a drop right after αj .
11An example of this situation is given by the dissipation-fluctuation theorem [8] that relates dissipative

interactions in a system to the statistical fluctuations around its equilibrium point. Indeed, this theorem

relates dissipation, an irreversible process that does not preserve information, with noise in the form of

statistical fluctuations.
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remain unexplained by a simple model. Such information could be thought to reside outside

of such a simple model, namely, in its data-to-model code. This suggests to interpret the

data-to-model code as the boundary of the model.

Definition 8.3.7. The boundary conditions of the model S corresponding to the data x is

the index of x in S.

In this definition, the scope of the term is broadened from its physical meaning, so

that it can be thought as the boundary of a model S, namely, what from the system that

generated the observational data x ∈ S, is not modelled by S. The remaining structure in x

is then viewed as coming from non-typical boundary conditions forced by interactions with

an environment. In the case of the minimal sufficient statistics SM , the typicality of x in SM
captures the fact that the boundary conditions are arbitrary with respect to the model.

The traditional space-time boundary conditions of a system are an example of what is

usually relegated to the data-to-model code, as models usually dont aim at explaining them.

Another example are the precise values of mechanical friction coefficients. Within classical

mechanics, these values come from outside the theory and would thus be a part of the

boundary conditions when understood as per definition 8.3.7. However, with more precise

observations, one could explain the values of the coefficients from a more precise model that

encompasses molecular interactions. More example are provided in the following section.

8.4. Examples

The versatility of the proposed approach to emergence is now illustrated through some

examples. This section is not meant to be an exhaustive review of the possible uses of

these definitions, but should rather be understood as an illustrative complement to the main

exposition.

8.4.1. Simulation of a 2D gas toy model

As a first example, we consider a toy model for a non-interacting 2D gas on a lattice. The

gas is taken to be spatially confined on an L× L grid with a discrete time evolution. Using

a pseudorandom number generator, we choose an initial position and momentum for each of

the N particles. Each momentum is only a direction in the set {l, r, u, d}, corresponding to

left, right, up and down. The gas then evolves according to simple rules. A single particle,
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represented by a 1 in the lattice, just keeps its trajectory and momentum, as in Figure 5.

When it bounces off a boundary, its momentum gets flipped, as in Figure 6. Intersecting

trajectories are represented as displayed in Figure 7.

01 0 1

010 1

1
0

1
0

0
1

0
1

Fig. 5. A gas particle freely moving.

1 1

1 1

1 1

1 1

Fig. 6. A particle bouncing off walls.

1 11 1

1 010 1120 0

1

1

0
0

0 2
0

00

0

0
1

10

0

Fig. 7. Particles “collide” as if they go through one another.

At any time (including the initial time), if two or more particles are at the same site, we

simply write down the number of particles in the site and keep track of the momenta. As an
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observation x, we extract for each of the first T time steps the state in configuration space

(i.e. we ignore momentum). One visual way to encode the state in configuration space is to

write in each of the L2 sites a 0, and write to the left of it, in unary, the number of particles

in that site. For instance, a 3× 3 grid example of this coding is given in Figure 8.

1 0 00 1 20 0 0 10 0 00 10 1100 0 0 1000010110000

Fig. 8. Encoding of the configuration state into bits.

At each time step, the bit string corresponding to the configuration state has one 0

for each site of the grid, and one 1 for each particle, for a total length of L2 + N . By

concatenation, the observation x so generated is a bit string of length |x| = (L2 +N)T .

Because algorithmic complexity is uncomputable, so is the structure function. However,

it can be upper semi-computed, which means that there is an algorithm that keeps outputting

better upper bounds of the structure function until it eventually reaches the actual structure

function. When this happens, the algorithm does not halt, as it keeps looking for better upper

bounds, not knowing that this is in vain. In our generic context of finding explanations for

observation data, this upper semi-computation is done by scientific research finding simpler

and better models. In the specific case of the simulated 2D gas, we got x from the known

context of the simulation, which provides important clues to find models other than the

obvious SBabel and {x}.

A first model that comes from the simulation specifies the parameters L and N , external

to the gas, together with the final time T . Compared to {x} listing everything about the

simulation, simplicity is gained by leaving open the initial conditions. This defines the

set SL,N,TGas of all configuration histories of T iterations, for each possible initial conditions of N

particles confined to a L×L grid. The size of this program is smaller than K(L,N, T )+O(1),

since the evolution rules are of constant length.

Even simpler models can be made by pushing into the boundaries the particular values of

the external parameters L, N or T . For illustration, we make the argument only for T fully

specifying L and N . We now suppose T to be expressed by τ bits in a binary expansion.

The model SL,N,TGas can then be simplified by producing, for each possible initial condition,
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all histories of length smaller than 2τ . We denote this set as SL,N,<2τ
Gas . Its cardinality is 2τ

times bigger, thus adding τ to the log-cardinality axis, but if T were a random number,

K(T ) = τ +K(τ) +O(1) , (8.7)

exactly τ bits would be saved on the complexity axis, since only τ , as opposed to T would

be needed to compute the model. In general however, T is not algorithmically random,

but SL,N,<2τ
Gas only encodes a basic upper bound for T , leaving it outside of what is modelled.

In a similar fashion, other complexity thresholds can be introduced for L and N , pushing

again their information into the boundary conditions.

hx(α)

α
K(x)

K(L,N,τ)

K(L,N,T )

τ

SBabel

SL,N,<2τ
Gas

SL,N,TGas

SRNG

Sx

Possible structures about T

Bits of the initial conditions

Bits of the seed of the RNG

Fig. 9. In solid is the known upper bound of the structure function. In dashed is the

hypothesized real structure function.

As presented in Figure 9, the previously discussed upper bound of the structure function

is likely to be different from the real structure function. In particular, in the simulation

of the gas, the initial conditions were not algorithmically random, as they came from a

sufficiently shortly pseudorandom number generator, a program that on an input seed gives

a sufficiently long string. This means that this program, together with its seed, is shorter than

an enumeration of the initial conditions it generated, which the real structure function will

reflect through one more drop at a higher level of complexity. The witness of this drop, SRNG,

is a model that explains the initial conditions as coming from the pseudorandom number

generator. It is the set of all gas histories compatible with the dynamics previously described,
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and where the initial conditions have been generated with the pseudorandom program, the

seed being relegated to the data-to-model code. If the slope after SRNG remains in a −1

regime, it means that the seed is typical, among allowed seeds. However, this seed comes

from another physical system, for instance the programmer itself. Yet again, if the seed is

long enough, the structure function could potentially find more drops that again capture

more structures. This process will go on until all that can be explained has been explained.

This example makes clear that the notion of boundary conditions really refers to a theory

(or an algorithmic model), and are fixed somewhat arbitrarily, when the users of the theory

are satisfied with their notion of the system that is being modelled. In this case, if what

we wanted to model was the gas, then SL,N,TGas was good enough, and it was practical to

declare that the initial state was typical. But the reality may be quite different, and what

we prescribe as a boundary condition to our theory may in fact be explained by a more

complex, deeper theory.

8.4.2. Dynamical systems

In this second example, we review how the notions introduced in this paper appear in the

more general setting of dynamical systems. We begin by documenting how the concept of

integrability and chaos can be cast in the language of algorithmic information theory. This

is followed by an account of how thermodynamics can be seen to emerge, under the proposed

definition of emergence, from the application of statistical mechanics to complex dynamical

systems.

From integrability to chaos

Consider a generic classical system with Hamiltonian H and where the state space M

is indexed12 by a set of real coordinates X = {qi, pi}i∈{1,...,dimM/2} ∈ M . Solutions to the

dynamics are curves in M describing the evolution of the state in time. Specifying M , H

and an initial point X0 ∈ M singles out a unique solution curve Xt of the dynamics. As a

rudimentary formalization of some observation of the system, consider a bounded observable

represented by a function f with f : M → [0, 1]. A discrete sequence is constructed from

its evaluation {f(Xnτ )}n∈{1,...,N} at a regular time interval 0 < τ ∈ Q with negligible K(τ).

12More precisely, M is a symplectic manifold parametrized locally by real coordinates forming an atlas.
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As this sequence is to represent a series of measurements, one must restrict its resolution.

Indeed, in the laboratory, as well as in numerical simulations, the values measured are always

constrained to a finite resolution. For a real number α, we denote by [α]k the truncation of

its binary expansion after the first k bits beyond the decimal point, i.e., |[α]k − α| ≤ 2−k.

This truncation effectively restricts the resolution to k bits as the measurement function is

upper-bounded by 1. Denoting by fkn ≡ [f(Xnτ )]k the restricted measurements, the recorded

observational data string x is then an encoding of the sequence of measurements:

x ≡ 〈{fkn}n∈{1,...,N}〉.

We now wish to characterize the complexity of the data string x and study its asymptotic

behaviour when the length N of the measurement sequence is increasing. First, one must

formulate a meaningful upper bound for K(x). To that end, we require f to preserve

information, that is

K([f(X)]k | [X]k) = O(1).

A trivial bound is then given by the bit length of the encoded sequence of measurements,

thus

K(x) ≤ kN +O(log kN ).

However, the regularity provided by the laws of motion implies that this bound is not strict.

Indeed, given the Hamiltonian H and the manifoldM , the machinery of symplectic geometry

specifies the dynamical evolution as a set of differential equations that we will denote as

〈H,M〉. These equations can be integrated numerically from the initial conditions X0 to

obtain fn to a desired precision. These remarks, together with the stated condition on f ,

imply that

K(x) ≤ K(〈M,H〉, τ, k,N,X0) +O(1) .

The above can be further simplified in view of studying the asymptotic behaviour in N by

observing that the dynamical laws 〈M,H〉, the time interval τ and the resolution k are fixed

and independent of N . Thus, as the length of x is scaled by increasing N , they can be taken
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to be constant13. Hence, one has

K(x) ≤ K(N) +K(X0) +O(1) . (8.8)

Remembering that X0 encodes the initial conditions, which are a set of real numbers which

cannot be constructively specified in general, one is left with a conundrum. Indeed, if X0

encodes typical real numbers, the upper bound (8.8) is trivial as the right-hand side is infinite.

However, only a finite precision in the initial conditions is required in order to integrate the

system to a given precision in the final result. Thus, the resolution in X0 required is only as

much as is needed to compute {fkn}n∈{0,1,...,N}. As such, the asymptotic behaviour of K(x)

for N →∞ is determined by the scaling in the required resolution.

A chaotic dynamical system is often characterized by an exponential divergence in the

evolution of nearby initial configurations, namely
|X ′t −Xt|
|X ′0 −X0|

= eλt ,

Where | · | denotes a metric on M and λ is known as the Lyapunov exponent. In such a

chaotic system,

|X ′0 −X0| < 2−λ′n−k =⇒ |X ′nτ −Xnτ | < 2−k , with λ′ = λτ ln 2 ,

so k bits of precision on Xnτ can be achieved by k + λ′n bits of precision on X0. Therefore,

the computation of XNτ from the initial condition is more efficient, in terms of description

length, than straightforward enumeration if k + λ′N ≤ kN , which is

λ′ ≤ k − k

N
. (8.9)

This means that for some values of Lyapunov exponent λ and precision k, it could be

more efficient to simply recite the observed data {fn}n∈{1,...,N} as a genuinely random string.

However, no matter how large the Lyapunov exponent is, there will always be a regime of

precision for which it is more efficient to calculate {fn}n∈{1,...,N} from enough bits of initial

conditions. Concretely, the precision on the initial conditions that can be obtained is bounded

by the resolution of measurement devices. A more practical approach accounts for this with

a fixed resolution k′ > k in the initial conditions and is thus limited to the truncation [X0]k′ .

This, together with the Lyapunov exponent of the system under consideration, determines
13To simplify the analysis, it is tacitly assumed that the dynamical laws are simple in the sense that the

coefficients of the differential equations in 〈H,M〉 are rational numbers.
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an interval of predictability within which the observational data x can be compressed. To

preserve predictability beyond this interval, one is forced to update14 his knowledge of the

state of the system with a measurement. The phenomenon is well-known within chaos theory

and shows up as a fundamental limitation to the predictability of such systems, a common

exemple of which is weather.

Dynamical systems can generally be organized by considering the asymptotic of the

string of measurements x with N →∞. At one end of the spectrum lie integrable systems,

where k bits of knowledge of X0 can be used all the way through to compute k bits of fN .

Those are systems where integration can be carried symbolically without an accumulation of

errors. On the other side of this spectrum are chaotic systems, where k+ λ′N bits of X0 are

required to compute k bits of fN . Similar classification schemes for dynamical systems that

account for integrability and the appearance of chaos based on computational complexity

have been proposed previously [9]. An algorithmic perspective on dynamical systems brings

the possibility of considering other types of systems, where k + g(N) bits of X0 can be used

to compute k bits of fN , with g(N) some a priori generic function.

Thermodynamics and statistical mechanics

Statistical mechanics posits the ergodicity of a complex dynamical system in order to

obtain a partial, yet useful, description of its behaviour. This partial description is mostly

understood to refer to the macroscopic description of a system displaying intractable micro-

scopic descriptions. The generic approach is as follows. Starting again with a Hamiltonian

and the associated phase spaceM , one first investigates the quantities conserved by the time

evolution. By fixing those conserved quantities, one establishes constraints that restrict the

accessible phase space to a bounded region. Properly defined, those constraints effectively

decompose15 the phase space into a family of submanifolds F ⊆ M that are each preserved

by time evolution. The ergodic hypothesis now posits that the curves Xt produced by an

initial point X0 ∈ F under the time evolution are dense in each submanifold F such that the

time average value of an observable O : M → R, over such a curve is equal to the average of

14It is here assumed that the Lyapunov exponent is constant and unique, which is not always the case.
15More precisely, these constraints generate a foliation of phase space that is invariant under the Hamil-

tonian flow.
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the same quantity over a uniform measure on each submanifold F ,

lim
T→∞

1
T

t0+T∫
t0

O(Xt)dt =
∫

FX0⊆M

O(X)dµ(X),

for µ the uniform measure over F . This uniform measure over the submanifolds F is often

specified indirectly in terms of the Boltzmann weights of a state X ∈ M over the submani-

folds. With the above in mind, thermodynamics can be seen as the study of the interrelation

of a relevant collection of macroscopic observables {Oi}, expressing the change in the value

of some observables in terms of the change in the value of the others. Such a thermodynamic

description of a complex system is partial yet useful and relevant to the scale at which one

would like to investigate the system.

Let us now concentrate on how this very generic picture of statistical mechanics and

its relation to thermodynamics fits under our proposed definition of emergence. We first

define the truncation [F ]k of a submanifold F ⊂ M to resolution k as the truncation16 of

all coordinates of F to a k-bit resolution. Then, positing the ergodicity of the system under

study enables a direct reframing of statistical mechanics in terms of the ideas of this paper.

Indeed, the postulated uniform measure on submanifolds of the phase space M amounts

to postulating the corresponding microscopic states17 in a submanifold to be equally likely

under time evolution. In other words, for some large enough finite time interval τ , the

sequence

xN ≡ 〈{[X(i)
nτ ]k}i∈{1,...,dimF}, n∈{1,...,N}〉, for X(i)

i∈{1,...,dimF} coordinates on F,

is a typical sample of the truncated submanifold [F ]k. The lower bound on the time interval

τ that needs to be satisfied for the above to hold is related to the Lyapunov exponent of the

system. Indeed, such a bound corresponds to time intervals satisfying the converse of (8.9).

In such a case, xN is essentially an algorithmically random string. From this observation, it

follows that for a sufficiently large time interval, one has that

K(xN) = K([F ]k) +N log(|[F ]k|), (8.10)

16Technically this truncation depends on the chart, but we take an encoding of F to include an atlas

and one for [F ]k to include a prescription on the choice of chart in which truncate each points.
17Possibly with the exception of a measure zero set of states that are not relevant to the averaging of

observables.
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which indicates that the model [F ]k for the string xN is an algorithmic sufficient statistics.

The above discussion emphasized how thermodynamics, together with the ergodic hy-

pothesis, amount to postulating that the models in (8.10) associated to the decomposition

into invariant submanifolds are sufficient. Indeed, a thermodynamical description of the

system at equilibrium is in correspondence with such a decomposition of the phase space,

provided that the conserved quantities that define the submanifolds are taken to be the

thermodynamical variables.

8.5. Conclusion

We proposed a definition of emergence casted in the language of algorithmic information

theory. This field has many times shown its usefulness to mathematically address mathema-

tics itself.

Intuitively, emergence is the appearance of unforeseen dynamics or properties exhibited

by a complex system. In most discussions about emergence, the criteria of novelty highly

depends upon the field: The aerodynamicist may be stunned by new patterns in fluid dyna-

mics; The biochemist, by new ways in which enzymatic networks interact. In our proposed

definition, emergence occurs in “theory space” : the thresholds of emergence are marked by

the complexity of new models, which enable an over-all shorter expression of the observed

data. This is the essence of understanding new structures. These models (sets of finite bit

strings) are as general as they can be, since they are rooted in universal computation: Any

“new pattern in fluid dynamics” or “enzymatic networks interaction” that can be described

is amenable to a computational process and thus an algorithmic model.

The development of our proposal was done through the “locally best models” of Kolmo-

gorov’s structure function. We called them the minimal partial models. In §8.3, we proved

that:

(1) The data specifies almost everything about the minimal partial models;

(2) The magnitude of the drop measures the amount of “new understanding”;

(3) Deeper minimal partial models almost specify the shallower ones.

We also extended the notions of coarse-grainings and boundary conditions, freeing them

from any specific theory. In §8.4 we considered some applications to a toy model of a gas,

dynamical systems and thermodynamics.
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The absolute generality of algorithmic information theoretic methods come at the price

of uncomputability. For instance, the shapes of Figure 9, in §8.4.1, are only conjectured. No

program can return the structure function of a piece of data x. Nevertheless, the definition

provides a precise framework to discuss the notion of emergence. A relaxation to the context

of limited computational resources may be of interest in order to find concrete utility and

applications in real life computations. While some of the results obtained might not hold

anymore, the definition itself can still be applied within this limited computational context.

We recognize that the concepts involved in the proof of Theorem 8.3.3 challenge the

reconciliation between our mathematical proposal and the youth of our Universe. For a long

string, the deep models, namely those that occur at late drops of the structure function, are

likely the result of programs that terminate after an unthinkably long computation. They

have the largest finite running times among all programs no larger in size, so they solve

the halting problem for shorter programs. With a mere 14 billion years old, our Universe

seems too young to accommodate such computations unless the information was in the

initial conditions. However, assessing the actual computational capabilities of all physical

phenomenons in the entire Universe is problematic. It may also be the case that strings

that appear in nature are confined to the relatively shallow models. Even in the case of

deep emergent models that cannot realistically be modelled, the identification of a string as

having such models is not necessarily a deep model itself. This suggests the possibility of

structures one can recognize and yet never model.

Facing the realization that models witnessing drops of the structure functions are made

of halting information, Vereshchagin and Shen [30] wrote “This looks like a failure. [...] [I]f

we start with two old recordings, we may get the same information [about their minimal

sufficient statistic], which is not what we expect from a restoration procedure. Of course,

there is still a chance that some Ω-number [halting information] was recorded and therefore

the restoration process indeed should provide the information about it, but this looks like a

very special case that hardly should happen for any practical situation.” Facing this, they

suggest to consider models of more restricted classes or add some additional conditions and

look for “strong models”.

On the contrary, we think that that the minimal sufficient statistics of two recordings

should share information, as they inevitably share a very common origin, which the model

217



aims to capture. That this shared information is about the halting problem simply reflects

the fact that their plausible common origin is the fruit of a very long computation, and not

that the recording has anything to do with an Ω-number, or any representation of the halting

problem.

Acknowledgements

The authors are grateful to Philippe Allard Guérin, Charles Bennett, Gilles Brassard,

Xavier Coiteux Roy and Pierre McKenzie for fruitful discussions. They also wish to thank

the Institute for Quantum Optics and Quantum Information of Vienna, in particular, Mar-

cus Huber’s group, for support and discussions. The work of the authors is supported by

Canada’s Natural Sciences and Engineering Research Council (NSERC).

A. Appendix: proof of theorem 8.3.3

Theorem A.1. For j > i,

K(Si|Sj) = αi − αi−1 +O(log n) .

Proof.

Definition A.1. The busy beaver is a function B : N→ N defined by

B(n) ≡ max {RT(p) : U(p)↘ and |p| ≤ n} .

It is the maximal finite running time of a program of n bits or less.

We say that p is a (τ, `)-program for x if |p| = ` and B(τ − 1) < RT(p) ≤ B(τ). The

latter condition means that there is a τ -bit halting program that runs for at least as long

as p runs, but none of length τ − 1 or less. For a string x, define the time profile as the

boundary of the region

Lx = {(τ ′, `′) : τ ′ ≥ τ, `′ ≥ `, ∃(τ, `)-program for x} .

We say that S is a (α,m)-two part description for x if x ∈ S, log |S| = α and K(S)+log |S| =

m. For a string x, define the description profile as the boundary of the region

Λx = {(α′,m′) : α′ ≥ α, m′ ≥ m, ∃(α,m)-two part description for x} .
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The description profile is closely related to Kolmogorov’s structure function hx(α): it is the

largest monotonic decreasing lower bound of its affine transformation hx(α) + α.

Proposition A.1. ∃ a (α,m)-two part description =⇒ ∃ a (τ, `)-program, with τ ≤

α +O(1) and ` ≤ m+O(1).

Proof. A two-part description for x is almost a program for x. The first part is given by

S∗, the second part is ix, the index of x in S. To make a well-defined program from the

concatenation S∗ix, one needs only a O(1) instruction as a preamble. Note that the second

part of the code does not need any additional prefix for self-delimitation, since its length

|ixS| = dlog |S|e can be computed (by the preamble) from S∗. The resulting program has

length m+O(1).

A bound on the running time is obtained on the two parts of the code. The first part runs

for time ≤ B(α), the most conservative bound for an α-bit program. The second part is fast:

its running time is linear in |S|, so for more elaborated models than SBabel (i.e., α ≥ K(n))

the running time is at most exponential in n, so smaller than B(α). The conclusion follows

from 2B(α) ≤ B(α +O(1)). �

Proposition A.2. ∃ a (τ, `)-program =⇒ ∃ a (α,m)-two part description, with α ≤

τ + K(`|q̄τ ) and m ≤ ` + maxN>B(τ−1){K(τ |`,N)}, where q̄τ is the last halting program of

length τ .

Proof. From a (τ, `)-program p for x, we can define the set of programs

M ′ = {q : |q| = ` & B(τ − 1) < RT(q) ≤ B(τ)} 3 p ,

from which we define the model M = {U(q) : q ∈ M ′} 3 x serving as the (α,m)-two-part

description.

α = K(M) ≤ K(M ′) +O(1) ≤ K(`, q̄τ ) +O(1) ≤ τ +K(`|q̄τ ) +O(1) .

We used that K(q̄τ ) ≤ τ +O(1), which holds because q̄τ is already a self-delimiting program.
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Consider any program q ∈M ′. Using the chain rule18 in two different ways,

K(q, q̄τ , `) = K(q̄τ , `) +K(q|q̄τ , `,K(q̄τ , `))

= K(q) +K(q̄τ , `|q,K(q)) ,

so

K(q|q̄τ , `,K(q̄τ , `)) = K(q) +K(q̄τ , `|q,K(q))−K(q̄τ , `)

≤ `+K(τ |`,RT(q))−K(q̄τ , `)

≤ `+ max
N>B(τ−1)

{K(τ |`,N)} −K(q̄τ , `),

The second line was obtained by noticing again that q a `-bit self-delimiting program and

by observing that RT(q) can be computed from q, and if τ is given, q̄τ can be computed

from RT(q). In the third line, to obtain bounds as tight as possible, while liberating the

expression from a dependence in q, we take the largest majorant which still encompasses a

possible compression of τ from some halting knowledge, represented by a large number N .

A less precise expression would have simply been K(τ |`).

In general, the number of strings s with K(s|z) ≤ b is smaller than 2b+1 − 1, because

there are only this many programs short enough. Hence,

log |M | ≤ log |M ′| ≤ `−K(q̄τ , `) + max
N>B(τ−1)

{K(τ |`,N)} ,

and so

m = K(M) + log |M | ≤ `+ max
N>B(τ−1)

{K(τ |`,N)}.

�

Proposition A.2 is about the existence of a model not too far on the up-right of a program.

However, we would like to bound the region for the path of the time profile, given the

description profile. Given a (α,m)-two-part description that is optimal (i.e., of minimal m

for a given α), the time profile cannot admit programs too far on the lower-left of (α,m),

18Note that the chain rule as written in Equation (8.2) conditions on x∗. Here we condition on (x,K(x)),

which is informationally equivalent to x∗. In fact, (x,K(x)) is computed from x∗ and a O(1) advice which

measures x∗ before executing it, while x∗ can be computed from (x,K(x)) by running in parallel all programs

of length K(x) until one of them produces x. This program is x∗.
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otherwise, the aforementioned proposition would contradict the optimality the (α,m)-two-

part description. We know that “lower” is quantified by maxN>B(τ−1){K(τ |`,N)}, while

“left”, by K(`|q̄τ ). But these quantities are expressed in terms of τ and `, and need to be

bounded in terms of α and m:

Proposition A.3.

K(`|q̄τ ) ≤ max
N>B(α−`∗(m))

{K(α|m,N)} + 2`∗(`∗(m)) ≡ δ(α,m) ,

where `∗(m) ≡ logm + log logm + log log logm + ... + log∗m, with the sum taken over

non-negative terms only with log∗m defined as the number terms in the sum.

Proposition A.4.

max
N>B(τ−1)

{K(τ |`,N)} ≤ ε(α,m) ≤ max
N>B(α−`∗(m))

{K(m|α,N)}+ 2`∗(`∗(n)) ≡ ε(α,m) .

The course of the Λx-profile ensures that the Lx-profile is not too far away. In fact, for

each point (α,m) of the boundary of the Λx-profile can be drawn the course of (α+O(1),m+

O(1)), as well as (α − δ(α,m),m − ε(α,m)). A “drop” of the structure function is defined

precisely to ensure that the time profile has dropped of one. Therefore, there is a drop when

the description profile drops by more than ε(α,m) +O(1), compared to the previous model

settled on.

αj

Description profile

Bounds on time profile

αj−1 − δ(αj−1)

Fig. 10. A visual help for the proof of theorem 8.3.3
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A glance at Figure 10 indicates that the model Sj corresponding to the drop has its

running time lower bounded by B(αj−1 − δ(αj−1,m) + O(1)). Otherwise, the program (de-

termined by the two-part description) of length m+O(1) runs in a time that contradicts the

time profile. An upper bound on the running time for S∗j is easily obtained as B(αj).

Hence, for i < j, Si contains at least ξ ≡ αi−1 − δ(αi−1) bits of irreducible halting

information, namely, S∗i can be used to compute ωξ, the number of programs of length ξ or

less that halts. Using the fact that K(ωξ) = ξ,

αi+K(ξ|S∗i ) = K(Si)+K(ξ|S∗i ) = K(Si, ωξ) = K(ωξ)+K(Si|ωξ, ξ) = αi−1−δ(αi−1)+K(Si|ωξ, ξ) .

The model Sj contains more halting information than Si, so if ξ is given, S∗j can be used

to compute ωξ. Hence,

K(Si|S∗j ) ≤ K(ξ|S∗j )+K(Si|ωξ, ξ) = K(ξ|S∗j )+K(ξ|S∗i )+αi−αi−1+δ(αi−1) = αi−αi−1+O(log n) .

�
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Conclusion

Les travaux présentés dans cette thèse suggèrent plusieurs avenues de recherches intéressantes

qui sont regroupés ici.

• Les travaux réalisés au chapitre 2 suggère la possibilité d’obtenir une expression

pour les polynômes de q-Krawtchouk bivariés les plus généraux, en analogie avec les

cas classiques. En effet, une expression formelle peut-être obtenue. Cependant, le

résultat s’exprime comme un polynôme de variables non commutatives qui ne peut

pas être réexprimé en variables abéliennes avec les méthodes utilisées. Il est possible

que l’orthogonalité de l’expression, lorsqu’exprimée en termes de variables abéliennes,

puisse tout de même être évaluée directement.

• Les résultats du chapitre 3 suggèrent l’identification d’autres polynômes orthogonaux

dans les représentations d’algèbres simples. Un premier pas serait l’obtention des

polynômes en haut du schéma de Askey, tels que les polynômes de Wilson et de

Racah. La simplicité de la structure algébrique utilisée est prometteuse en ce qui a

trait à l’application de ces résultats.

• La notion d’opérateur de Heun algébrique s’est avérée d’une grande utilité. Comme

illustré au chapitre 4, les opérateurs de Heun généralisés et les nouvelles structures

algébriques associées mènent à des solutions numériquement efficaces aux problèmes

de limitation en bande et en fréquence. Il est alors d’un grand intérêt pratique

d’expliciter les problèmes de traitement de signal dont la solution s’obtient de ces

opérateurs de Heun algébriques et des nouvelles structures algébriques associées, telles

que celles présentées au chapitre 5.

• Les représentations construites aux chapitres 6 et 7 pour les algèbres de type Sklyanin

devraient permettre la diagonalisation de modèles intégrables sur des chaînes de spin.



En particulier, le modèle correspondant au cas du chapitre 7 est un nouveau système

intégrable introduit par Smirnov.

• Il serait pertinent de développer des approximations calculables aux méthodes intro-

duites dans le chapitre 8 pour en permettre l’application en pratique. En particulier,

une étude explorant quels résultats peuvent être maintenus dans un contexte de res-

sources de calcul limitées serait nécessaire. Ensuite, un modèle de calcul flexible, tel

que des réseaux de neurones, pourrait être utilisé en pratique.
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