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Résumé

La conception assistée par ordinateur (CAO), les effets visuels, la robotique et de nombreux
autres domaines tels que la biologie computationnelle, le génie aérospatial, etc. reposent
sur la résolution de problèmes mathématiques. Dans la plupart des cas, des méthodes de
calcul sont utilisées pour résoudre ces problèmes. Le choix et la construction de la méthode
de calcul ont un impact important sur les résultats et l’efficacité du calcul. La structure
du problème peut être utilisée pour créer des méthodes, qui sont plus rapides et produisent
des résultats qualitativement meilleurs que les méthodes qui n’utilisent pas la structure.
Cette thèse présente trois articles avec trois nouvelles méthodes de calcul s’attaquant à des
problèmes de simulation et d’optimisation contraints par des équations aux dérivées partielles
(EDP).

Dans le premier article, nous abordons le problème de la dissipation d’énergie des solveurs
fluides courants dans les effets visuels. Les solveurs de fluides sont omniprésents dans la
création d’effets dans les courts et longs métrages d’animation. Nous présentons un schéma
d’intégration temporelle pour la dynamique des fluides incompressibles qui préserve mieux
l’énergie comparé aux nombreuses méthodes précédentes. La méthode présentée présente une
faible surcharge et peut être intégrée à un large éventail de méthodes existantes. L’amélioration
de la conservation de l’énergie permet la création d’animations nettement plus dynamiques.

Nous abordons ensuite la conception computationelle dont le but est d’exploiter l’outils
computationnel dans le but d’améliorer le processus de conception. Plus précisément, nous
examinons l’analyse de sensibilité, qui calcule les sensibilités du résultat de la simulation par
rapport aux paramètres de conception afin d’optimiser automatiquement la conception. Dans
ce contexte, nous présentons une méthode efficace de calcul de la direction de recherche de
Gauss-Newton, en tirant parti des solveurs linéaires directs épars modernes. Notre méthode
réduit considérablement le coût de calcul du processus d’optimisation pour une certaine classe
de problèmes de conception inverse.

Enfin, nous examinons l’optimisation de la topologie à l’aide de techniques d’apprentissage
automatique. Nous posons deux questions : Pouvons-nous faire de l’optimisation topologique
sans maillage et pouvons-nous apprendre un espace de solutions d’optimisation topologique.
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Nous appliquons des représentations neuronales implicites et obtenons des résultats struc-
turellement sensibles pour l’optimisation topologique sans maillage en guidant le réseau
neuronal pendant le processus d’optimisation et en adaptant les méthodes d’optimisation
topologique par éléments finis. Notre méthode produit une représentation continue du
champ de densité. De plus, nous présentons des espaces de solution appris en utilisant la
représentation neuronale implicite.

Mots-clés: simulation de fluides, advection-réflexion, analyse de sensibilité, Gauss-
Newton, conception computationnelle, représentations neuronales implicites, optimisation
topologique, espace des solutions
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Abstract

Computer-aided design (CAD), visual effects, robotics and many other fields such as
computational biology, aerospace engineering etc. rely on the solution of mathematical
problems. In most cases, computational methods are used to solve these problems. The
choice and construction of the computational method has large impact on the results and
the computational efficiency. The structure of the problem can be used to create methods,
that are faster and produce qualitatively better results than methods that do not use the
structure. This thesis presents three articles with three new computational methods tackling
partial differential equation (PDE) constrained simulation and optimization problems.

In the first article, we tackle the problem of energy dissipation of common fluid solvers
in visual effects. Fluid solvers are ubiquitously used to create effects in animated shorts
and feature films. We present a time integration scheme for incompressible fluid dynamics
which preserves energy better than many previous methods. The presented method has low
overhead and can be integrated into a wide range of existing methods. The improved energy
conservation leads to noticeably more dynamic animations.

We then move on to computational design whose goal is to harnesses computational
techniques for the design process. Specifically, we look at sensitivity analysis, which computes
the sensitivities of the simulation result with respect to the design parameters to automatically
optimize the design. In this context, we present an efficient way to compute the Gauss-Newton
search direction, leveraging modern sparse direct linear solvers. Our method reduces the
computational cost of the optimization process greatly for a certain class of inverse design
problems.

Finally, we look at topology optimization using machine learning techniques. We ask two
questions: Can we do mesh-free topology optimization and can we learn a space of topology
optimization solutions. We apply implicit neural representations and obtain structurally
sensible results for mesh-free topology optimization by guiding the neural network during
optimization process and adapting methods from finite element based topology optimization.
Our method produces a continuous representation of the density field. Additionally, we
present learned solution spaces using the implicit neural representation.

7



Keywords: fluid simulation, advection-reflection, sensitivity analysis, Gauss-Newton,
computational design, implicit neural representations, topology optimization, solution space
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Chapter 1

Introduction

Crafting designs and animations is at the heart of what engineers, visual artists and
many other practitioners do. This demand has led to much research and development for
better tools and computers. Originally the design and animation work was done using
analytic methods or by running computational methods by hand, i.e., first a method was
devised that would compute the desired numerical result and then humans would carry the
method out using pen and paper. However, such an approach has the severe limitation of
the computational speed of humans. In recent decades running computational methods on
silicone hardware have superseded manual approaches in many areas. An early example of
this is the Sydney Opera House for which structural analysis was done for the shell roof using
computers [Jones et al., 2006].

But structural engineering is only one of many applications nowadays where computational
models are used to create better results faster. Whether it is visual effects, animatronics,
sculptures or other intricate designs, these computational models empower users to bring
their ideas to life. Without computational methods, the work involved would be too time
consuming. However, even with great advances in hardware power, solving certain problems
using computational methods remains overly costly. The computational method’s qualities
have a large impact on accuracy and robustness which directly relates to its usefulness.

Qualitatively better results can be obtained at lower cost by using the structure of the
problem at hand. A classic example of this is symplectic integration which preserves energy
and momentum better over time. A generalization of this is geometric integration, which
uses the underlying structure of the problem to preserve geometric properties better and
thus are of special interest to many areas of science. Similarly for optimization problems,
more efficient optimization methods can be derived by using the structure of the involved
quantities, phenomena, objectives, etc., resulting in faster convergence.

In this thesis we present multiple computational methods related to two different topics,
i.e., constrained simulation for fluids and constrained optimization. Hence, we first give two



separate introductions and motivations to these two topics. Then three articles are presented,
each with its own introduction, related work, and result sections as submitted for publication.
Finally, we make conclusions based on the three articles.

1.1. Constrained Simulation for Incompressible Fluids
Physics simulations are ubiquitous in visual effects nowadays. They help artists create

believable animations without the need of manually key framing every moving element in
a scene. These simulations include many different types of phenomena such as fluids, rigid
bodies, elastic bodies, light and many more. To keep running costs as low as possible these
phenomena are modeled differently and often are simulated with separate numerical methods.
For visual effects one of the most important aspects is plausibility; do the movement and
appearance match the audience’s expectation. Plausible results are created by applying
or approximating the laws of physics. One common approach of creating a model is by
first modeling the phenomenon using time-dependent partial differential equations (PDEs).
Time-dependent PDEs tell us how the state of a system changes over time. They are
formulated with a notion of a continuous system in mind, but computers currently cannot
run continuum-based computations. Thus, the model has to be discretized. This includes
choosing how to represent the state of the system and how to advance the state in time.

Liquids and smoke are often fully or partially modeled using the incompressible Navier-
Stokes equations:

∂u
∂t

= −(u · ∇)u−∇p+ ν∇2u + f

∇ · u = 0
(1.1.1)

where u(x) is the velocity vector of the fluid at position x. The first set of equations tells us
how the velocity field u evolves in time, including advection and forces (pressure p, viscous and
external forces f). The second set of equations constrains the evolution of the pressure force
∇p to act on the velocity field such that the velocity field stays divergence free. Divergence
measures at a specific point in space how much the field u acts as a source, positive divergence,
or a sink, negative divergence. Incompressibility is therefore synonymous with the velocity
field having zero divergence inside the fluid.

There are many ways in which the Navier-Stokes equations can be discretized. Here we
focus on one common way in computer graphics, which is the advection-projection method.
The advection-projection method has two main steps as the name suggests. The advection
step moves material according to its velocity, but this step introduces errors in the velocity
field in terms of divergence. The projection step restores zero divergence, making sure that
the result looks like an incompressible fluid.

However, this method has a lot of numerical diffusion, which can give the fluid an overly
viscous look. There are two main reasons for the viscous look in this scheme. First, the
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Figure 1.1 – Three possible ways of doing time integration on a constraint manifold: Left:
A penalty force f is added to an unconstrained time integrator T which pulls the state q
towards the constraint manifold M , e.g., applied in weakly compressible smoothed particle
hydrodynamics [Metaxas and Popovic, 2007]. Middle: Advection-projection method [Chorin,
1968; Stam, 1999] where a projection method P is applied after each unconstrained step.
Right: Symmetric projection method which adds similar perturbations at the beginning and
end of a symmetric integrator T . Symmetric methods are known to preserve the structure of
the dynamics well [Hairer et al., 2006].

semi-Lagrangian advection step introduces artificial diffusion due to it relying on interpolation.
And second, the projection step discards divergent velocity modes and this directly removes
energy [Zhang et al., 2015]. We focus on the second problem in our article in Chapter 2.

As a straightforward solution, one might try to reduce the time step in the integration
method, which would reduce the energy loss in the projection step. However as this is only a
first order method, it can require a very small time step, which would be computationally
very costly and could increase the artificial diffusion from the advection step on the other
hand, making this often impractical.

To reduce the energy loss due to the projection, we were interested in applying a second-
order symmetric time integration method due to their success in other applications. However,
in our tests they were unstable when combined with a semi-Lagrangian advection. Therefore,
we propose an alternative solution called advection-reflection, which is quasi second-order in
the sense that it is inspired by the structure of a second-order symmetric method and reduces
divergence and its associated energy loss to a large degree without the instabilities we have
observed with fully symmetric methods.

1.2. Computational Design using Constrained Optimiza-
tion

Humans have been designing and fabricating objects for a variety of reasons for millennia.
Classical manufacturing methods are very efficient and optimized for mass production at low
costs and high reliability. However, these methods have a long implementation time from
design to manufacturing.

Additive manufacturing brings many new fabrication processes. It allows for faster
prototyping, shortening the time to market. Increasing the complexity of the geometry comes
with little additional cost. But additive manufacturing does not come without its problems.
Often the prototypes from additive manufacturing do not have the same material properties
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Figure 1.2 – Left: A classical way of creating designs. Each test requires a new physical
prototype. Right: An optimization-in-the-loop approach where the simulation acts as PDE
constraints on the optimization.

as the ones fabricated with the large-scale manufacturing process. Wrong conclusions can
therefore be drawn about the design’s performance.

Virtual prototyping is an answer to these issues. It involves validating the design virtually,
which is useful and necessary in today’s fast moving markets. Using simulation, engineers can
test thousands of designs for their performance before even manufacturing a single prototype,
thus reducing its development cost. This allows the engineer to improve the design before
manufacturing a prototype and thus reducing cost.

In practice it is difficult to estimate the impact of design parameters since the result of
the simulation follows the laws of physics and the complexity arising from it. This leads
to the requirement of expert knowledge, which takes a long time to acquire. Since modern
manufacturing techniques allow for more complex geometries, the number of design parameters
may be too large for manual adjustment, even for an expert.

For many applications, the objectives are known. Such objectives can include accuracy,
failure resistance and efficiency. Using the objectives and the simulation, a performance-driven
design process is possible. Every run of the simulation maps the design to its performance,
allowing the engineer to easily select the best design.

For this reason, we want to augment the human designer with optimization-in-the-loop
tools. For example, the user could define requirements for the design while the optimization
takes care of unrelated design variables and load case parameters. However, to not hamper
the design process the optimization needs to be fast enough. Thus, one of our goals is to
make the optimization faster. Optimization problems derived for inverse design are very large
in practice, requiring the algorithms to be scalable. The methods must be able to handle
abstract goals and constraints. To this end we explored and present two new numerical
methods in Chapters 3 and 4 to tackle this interesting class of problems.
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Figure 2.1 – Our new reflection solver applied to a vortex leap-frogging problem (top row).
During 10s of simulation the two vortex rings move through each other multiple times and stay
well separated. By contrast, in a standard advection-projection method with MacCormack
advection (bottom row), the two vortices merge immediately and never separate afterwards.

Abstract. Advection-projection methods for fluid animation are widely appreciated for
their stability and efficiency. However, the projection step dissipates energy from the system,
leading to artificial viscosity and suppression of small-scale details. We propose an alternative
approach for detail-preserving fluid animation that is surprisingly simple and effective. We
replace the energy-dissipating projection operator applied at the end of a simulation step by
an energy-preserving reflection operator applied at mid-step. We show that doing so leads
to two orders of magnitude reduction in energy loss, which in turn yields vastly improved
detail-preservation. We evaluate our reflection solver on a set of 2D and 3D numerical
experiments and show that it compares favorably to state-of-the-art methods. Finally, our
method integrates seamlessly with existing projection-advection solvers and requires very
little additional implementation.
Keywords: fluid simulation, advection, reflection, energy conservation

2.1. Introduction
Advection-projection methods are widely used for fluid animations in computer graphics.

Splitting mass transport and conservation into different steps allows for stable and efficient
integration, and advances in higher-order advection schemes (e.g. [Selle et al., 2008]) have
greatly reduced the well-known numerical diffusion caused by the semi-Lagrangian advection
step. However, the splitting of the time integration scheme itself induces numerical dissipation,
as kinetic energy is transferred to divergent modes during advection and then lost after
projection. This numerical dissipation manifests as rapid decay of large vortices and leads
to suppression of small-scale swirling motion. Since visual complexity is a central goal in
fluid animation, much effort has been spent on combating numerical dissipation: apart from
higher-order advection schemes mentioned above, energy-preserving integration [Mullen et al.,
2009], a posteriori correction of the velocity field [Fedkiw et al., 2001; Zhang et al., 2015],
and injection of procedurally-generated detail [Kim et al., 2008b] are among the strategies
that have been pursued so far.
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Figure 2.2 – A geometric interpretation of our method. Left: In a standard advection-pro-
jection solver, projection to the divergence-free subspace causes kinetic energy loss (red).
Middle: Our reflection solver uses an energy-preserving reflection (yellow) halfway through
the advection step, dramatically reducing the energy loss caused by the final projection. Our
method has effectively identical computational cost to an advection-projection solver with
half the time step (right), but loses less energy.

In this work, we propose an alternative approach to detail-preserving fluid animation that
is surprisingly simple and effective: we replace the energy-dissipating projection operator
applied at the end of a simulation step by an energy-preserving reflection operator applied
at mid-step; see Fig 2.2. We show that doing so leads to an order of magnitude reduction
in divergent kinetic energy, which in turn leads to vastly improved preservation of vortices
and small-scale detail. This analysis also exposes our method to be first-order structurally
symmetric, which motivates an analogy to (and comparison with) symmetric projection
methods for structure-preserving integration of constrained mechanical systems [Hairer et al.,
2006]. We show that even the simplest methods from this category are computationally much
more expensive and less stable. By contrast, our method preserves the appreciable splitting
property of advection-projection methods while offering energy and detail preservation similar
to fully-symmetric methods.

Our method integrates seamlessly with existing advection-projection solvers and is agnostic
to the choice of advection scheme and pressure discretization. Furthermore, it uses the basic
advection and projection steps as primitives, and therefore requires very little additional
implementation. We evaluate our reflection solver on an extensive set of 2D and 3D examples
and compare its behavior to a number of alternative methods. The results of these comparisons
indicate that, for equal computational costs, our method leads to vastly improved energy and
vorticity preservation.

2.2. Related Work
Our review of related works focuses primarily on Eulerian fluid simulation methods, as our

approach does not apply to Lagrangian particle-based methods like SPH [Ihmsen et al., 2014].
Also, we will only discuss schemes for solving the core Navier-Stokes equations, omitting the
diversity of techniques in graphics for artificially injecting detail such as vorticity confinement
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[Fedkiw et al., 2001], vortex particles [Selle et al., 2005], and turbulence synthesis [Thuerey
et al., 2013].

Most Eulerian methods in graphics follow a Chorin-style advection-projection scheme
[Chorin, 1968] introduced to graphics by Stam [1999]. The effectiveness of the advection-
projection approach stems from three main ingredients: (i) operator splitting decouples the
pressure term from the remaining inertial and internal forces, (ii) semi-Lagrangian advection
[Robert, 1981] permits large time steps unimpeded by the CFL condition, and (iii) staggered
grids [Harlow and Welch, 1965; Foster and Metaxas, 1996] allow for accurate computation of
the pressure projection. While this approach is unconditionally stable, it exhibits noticeable
energy loss over time even for inviscid flows. Small-scale vortices and turbulent flows tend
to decay especially rapidly, leading to a loss of visually interesting detail. Much work in
computer graphics has focused on minimizing this numerical dissipation.

As discussed in the introduction, there are two main reasons for the loss of energy in
an advection-projection method: the discretization error in the semi-Lagrangian advection
step, which manifests as artificial diffusion, and the splitting error caused by decoupling of
the advection and projection steps. To reduce the diffusion in semi-Lagrangian advection,
Fedkiw et al. [2001] and Kim et al. [2008a] have proposed higher-order interpolation schemes
to improve spatial accuracy. Kim et al. [2005, 2007] introduced the BFECC method which
performed multiple backward and forward advection steps to correct both spatial and temporal
error. This approach was simplified by Selle et al. [2008], who proposed a semi-Lagrangian
variation of the MacCormack method and demonstrated second-order accuracy in space and
time. Molemaker et al. [2008] proposed the use of the QUICK advection scheme [Leonard,
1979] for low-dissipation advection, although it is limited by the CFL condition for stability.
In this context, hybrid particle-and-grid methods like FLIP [Zhu and Bridson, 2005] and
APIC [Jiang et al., 2015] are very attractive as they exhibit little numerical diffusion of this
form, because they track the advected quantities on Lagrangian particles which are largely
unaffected by the grid interpolation.

In contrast to the improvements in low-diffusion advection
schemes, much less attention has been paid to the error introduced by the splitting
scheme itself. In graphics, this has been pointed out by Elcott et al. [2007] and Zhang
et al. [2015], who noted that semi-Lagrangian advection transfers energy into divergent
modes which are then annihilated by the projection step. This is true even for the FLIP and
APIC methods, which employ the same advection-projection splitting. Elcott et al. instead
adopted the vorticity formulation of the fluid equations, in which the primary variable is the
vorticity rather than the velocity field. Other vorticity-based methods in graphics include
Park and Kim [2005]; Angelidis and Neyret [2005]; Weißmann and Pinkall [2010]. Since the
vorticity representation automatically yields a divergence-free velocity field, such methods
do not require a projection step, and consequently do not suffer the associated energy
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loss. Particularly notable is the method of Mullen et al. [2009], which is time-reversible
and offers exact energy preservation through the use of a symplectic integrator, albeit at
the cost of requiring the solution to a nonlinear system at each time step. Nevertheless,
advection-projection methods continue to enjoy widespread use in industry and academic
research, possibly due to their relative simplicity, efficiency, and flexibility in comparison
to vorticity methods [Zhang et al., 2015]. Therefore, we believe that advances in energy
preservation for advection-projection methods are still highly desirable.

Remaining within the advection-projection framework, Zhang et al. [2015] counteracted the
artificial dissipation caused by the projection step by explicitly tracking the lost vorticity and
re-injecting it into the fluid. Thus, their work seeks to preserve vorticity but not necessarily
the energy of the fluid. In contrast, we propose a simple modification to the splitting scheme
which reduces the projection error without requiring explicit tracking and correction. We
also provide a simple proof that our scheme preserves kinetic energy to a higher degree than
traditional advection-projection methods.

2.3. Theory
To set the stage for our theoretical developments, we start with a minimal review of

advection projection methods before we introduce our reflection solver. For context and
comparison, we subsequently introduce two fully-symmetric projection methods.

For notational convenience, we will refer to the velocity field at the beginning and end
of the time step as u0 and u1 respectively, instead of un and un+1. We will also adopt the
convention that divergence-free velocity fields are undecorated, e.g. u1/2, while velocity fields
with nonzero divergence are denoted ũ (before projection) or û (after reflection).

2.3.1. Advection-Projection Solvers

The starting point for our developments are the inviscid, incompressible Navier-Stokes
equations

∂u
∂t

+ (u · ∇)u = −1
ρ
∇p+ f (2.3.1)

∇ · u = 0 , (2.3.2)

where u is the continuous velocity field of the fluid, p is the pressure, ρ the density and f
denote external forces such as buoyancy and gravity. Advection-projection methods discretize
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the velocities on a Eulerian grid and split the equations into three (or more) different steps:

Advection ũ1 = A(u0; u0,∆t)

Forcing ũ1 += ∆t f

Projection u1 = P ũ1 .

In the above expressions, A(u; u0,∆t) is an advection operator that implements a semi-
Lagrangian discretization of the advection equation, ∂u

∂t
+ (u0 · ∇)u = 0. Furthermore, P

is a projection operator that maps a given velocity field to its closest divergence-free field
(under the kinetic energy metric). This operator uses the Helmholtz-Hodge decomposition,
which splits any vector field u = v + ~w into a curl-free part v and a divergence-free part ~w.
P simply discards the curl-free part, Pu = ~w, by solving a Poisson problem.

For conciseness, we will neglect the forcing step in the following and focus on the central
advection and projection steps. In practice, we apply external forces immediately after each
advection.
Lemma 2.3.1. If a vector field ũ has divergence Θ(∆tk), the kinetic energy loss due to
projection, 1

2‖ũ‖
2 − 1

2‖P ũ‖2, is Θ(∆t2k).

Proof. The pressure projection can be interpreted as decomposing the post-advection
velocity ũ into two orthogonal components, ũ = P ũ + v, where v is the curl-free part. Due
to the orthogonality of the Helmholtz-Hodge decomposition, we have ‖ũ‖2 = ‖P ũ‖2 + ‖v‖2.
Therefore, the energy loss 1

2‖ũ‖
2 − 1

2‖P ũ‖2 is precisely the kinetic energy of the curl-free
part, 1

2‖v‖
2. Furthermore, the curl-free part v is determined by the divergence of ũ and

depends linearly on it; that is, we can write v = H(∇ · ũ) for some linear operator H. 1 If
∇ · ũ = Θ(∆tk), it can be expressed as ∇ · ũ = δ∆tk + o(∆tk) for some scalar field δ. Thus
we have 1

2‖v‖
2 = 1

2‖Hδ‖
2∆t2k + o(∆t2k) = Θ(∆t2k). �

Using this result, we show that an advection-projection solver can at best only preserve
energy to first order in time.
Theorem 2.3.2. The kinetic energy loss due to the projection step of the advection-projection
method is Θ(∆t2).

Proof. Expanding the advection operator into its Taylor series,

ũ1 = u0 − (u0 · ∇)u0∆t+O(∆t2). (2.3.3)

1. In particular, H = ∇∆−1, where ∆−1 denotes the inverse of the Laplace operator with the appropriate
problem-defined boundary conditions.
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we find that the divergence of the advected velocity field is

∇ · ũ1 = ∇ · u0 −∇ · ((u0 · ∇)u0)∆t+O(∆t2) (2.3.4)

= −∇ · ((u0 · ∇)u0)︸ ︷︷ ︸
δ(u0)

∆t+O(∆t2). (2.3.5)

For a divergence-free velocity field u, it can be shown that the rate of divergence δ(u) is
proportional to the second invariant of the velocity gradient, ∑ij

∂ui

∂xj

∂uj

∂xi
, and is not in general

zero. Therefore, we have ∇ · ũ1 = Θ(∆t), resulting in an energy loss of order Θ(∆t2). �

2.3.2. Reflection Solver

We would like to avoid the second-order energy loss during projection while still achieving
zero divergence at the end of the time step. The intuition for our approach is that, instead of
correcting the velocity at the end of the time step, we can over-compensate in the middle: we
advect to the middle of the time interval and apply twice the correction needed to obtain
a divergence-free field such as to anticipate the divergence incurred during the second half.
Geometrically, this operation can be interpreted as symmetrically changing from one side of
the divergence-free manifold to the other, hence the term reflection; see Fig. 2.2. Concretely,
the reflection solver proceeds as follows:

ũ1/2 = A(u0; u0, 1
2∆t)

u1/2 = P ũ1/2

û1/2 = 2u1/2 − ũ1/2

ũ1 = A(û1/2; u1/2, 1
2∆t)

u1 = P ũ1 .

As it is preferable to perform semi-Lagrangian advection using a divergence-free velocity field
(otherwise the advection equation does not correspond to a conservation law for the advected
quantity), we use the projected mid-step velocity u1/2 in the second semi-Lagrangian advection
step. Note that the reflection velocity û1/2 can also be written directly as û1/2 = Rũ1/2,
where R = 2P − I is the reflection operator. The final projection u1 = P ũ1 guarantees
divergence-free velocity at the end of the time step. However, if the rate of divergence does
not vary much across the time step, then ũ1 will already be close to divergence-free. Indeed,
this intuition is confirmed by the following statement.
Theorem 2.3.3. The kinetic energy loss due to the projection step of the reflection solver is
O(∆t4).
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Proof. Using the Taylor series expansion of the advection operator, we approximate the
mid-step velocities as

ũ1/2 = u0 − (u0 · ∇)u0∆t/2 +O(∆t2) , (2.3.6)

û1/2 = u0 −R(u0 · ∇)u0∆t/2 +O(∆t2) , (2.3.7)

where we have used the fact that Ru0 = u0 since u0 is already divergence-free. An analogous
first-order approximation of the end-of-step velocity before projection, ũ1, yields

ũ1 = û1/2 − (u1/2 · ∇)û1/2∆t/2 +O(∆t2) (2.3.8)

=
(
u0 −R(u0 · ∇)u0∆t/2

)
(2.3.9)

−
(
(u0 +O(∆t)) · ∇

)(
u0 +O(∆t)

)
∆t/2 +O(∆t2) (2.3.10)

= u0 −R(u0 · ∇)u0∆t/2− (u0 · ∇)u0∆t/2 +O(∆t2) (2.3.11)

= u0 − 2P
(
(u0 · ∇)u0

)
∆t/2 +O(∆t2) . (2.3.12)

From this, it is evident that ũ1 is divergence-free to first order, i.e. ∇· ũ1 = O(∆t2). Therefore,
the resulting energy loss is of order O(∆t4). �

The good energy-preserving properties of our reflection solver are further assured by the
fact that
Theorem 2.3.4. The reflection operator preserves kinetic energy.

Proof. The pressure projection ~w = Pu can be interpreted as finding ~w as the closest point
to u in the space of divergence-free vector fields, under the metric defined by kinetic energy
[Batty et al., 2007]. Consequently, P is an orthogonal projection with respect to kinetic energy,
and v and ~w are orthogonal to each other in the sense that 〈v, ~w〉 =

∫∫∫
ρv·~w dV = 0. Using the

definition of the reflection operator, we have for the reflected velocity field Ru = 2~w−u = ~w−v.
Comparing the kinetic energies, we find that

1
2〈Ru,Ru〉 = 1

2(〈~w,~w〉+ 〈v,v〉) = 1
2〈u,u〉. (2.3.13)

�

These results also point to the stability of our method, since the reflection operator
preserves energy, while the final projection can only reduce it. In conjuction with the stability
of semi-Lagrangian advection operations, one would like to argue that the reflection method is
unconditionally stable. This argument does not go through smoothly, however, as advection
is stable in a slightly different sense: it is monotonic in the field values, not necessarily in
energy. However, the same caveat applies to all other advection-projection solvers used in
graphics. As such we expect to see unconditional stability in practice, independent of the
time step size.

34



It is worth noting here that the reflection solver does not necessarily improve the accuracy
of the solution over projection solvers, since it still incurs error due to self-advection using a
“frozen” velocity field. For time-varying flows the method remains only first-order accurate in
time, as we show in Section 2.4.3. Instead, the benefit of the reflection approach is a higher
degree of energy conservation. This is analogous to how BDF2 and implicit midpoint are
both second-order accurate integration schemes, but implicit midpoint has significantly better
conservation properties.

2.3.3. Symmetric Projection Methods

The results of the previous section suggest that our reflection solver is first-order struc-
turally symmetric: even though the advection operator itself is not, the structure of the
advection-reflection-advection sequence is symmetric. This observation prompted us to draw
the analogy to symmetric manifold projection methods, a class of integrators for conser-
vative mechanical systems known for their excellent long-term energy conservation [Hairer
et al., 2006]. Indeed, by composing the advection-projection step with its adjoint—and
vice-versa—we obtain two immediate candidates for symmetric advection-projection schemes.

We start by defining some key terms, following Hairer et al. [2006]. The adjoint of a
time-stepping scheme Φ( · ,h) is the inverse of its time reversal, Φ∗( · ,h) = Φ−1( · ,− h). A
time-stepping scheme is symmetric, or time-reversible, if it is equal to its adjoint. Composing
any consistent first-order scheme Φ with its adjoint yields a symmetric second-order scheme,
Ψ( · ,h) = Φ∗( · ,h/2) ◦ Φ( · ,h/2).

Strictly speaking, the adjoint of the pressure step does not exist because P as a linear
operator is not invertible. In this section, we interpret P as an arbitrary perturbation normal
to the divergence-free manifold, defining P (u; p) = u − ∇p for any pressure field p. This
operation is self-adjoint: P ∗(u; p) = P−1(u;−p) = P (u; p).
APA∗. The first scheme is obtained by composing the advection-projection step, AP , with
its adjoint PA∗. Geometrically, we first advect to the middle of the time step to obtain ũ1/2

and project onto the divergence-zero manifold. To implement PA∗, we solve for a pressure
field p used to compute velocity perturbations ∆up = −∇p normal to the manifold, as well
as divergence-free end-of-time-step velocities u1 such that, when advecting u1 backward in
time, we end up at the perturbed mid-step velocities û1/2 = ũ1/2 − ∇p. This sequence of
coupled operations translates into a system of nonlinear equations, A(u1; u1,−1

2∆t)− (A(u0; u0, 1
2∆t)−∇p) = 0

∇ · u1 = 0

 . (2.3.14)

in which the projection and perturbation steps combine into a single operation, which is why
we mnemonically refer to this scheme as APA∗. We note that this system is similar to the
one derived by Mullen et al. [2009]. We solve (2.3.14) with Newton’s method and, as do
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Figure 2.3 – 2D vortex sheet example: comparison of the density distribution (top) and
the vorticity magnitude (bottom) for a fixed point in time (10s) as obtained for the various
solvers. Far right: kinetic energy as a function of time.

Mullen et al., approximate the Jacobian of the advection operator with the identity matrix.
When applying block Gaussian elimination to the resulting saddle-point systems, we recover
the same Poisson problem encountered in standard advection-projection methods,

∇2(∆p) = ∇ · rAPA∗ , (2.3.15)

albeit with a different right hand side rAPA∗ that we omit here for brevity. This pressure
solve must be performed once per Newton iteration, providing us with updated perturbations
∆p and corresponding velocity updates.
PA∗AP . The second scheme is obtained by composing the adjoint of the advection-projection
step with itself, leading to the mnemonic sequence PA∗AP . As a geometric interpretation,
we solve for perturbations p and mid-step velocities u1/2 such that 1) advecting from the
middle to the end and applying the correction −∇p leads to divergence-free velocities, and
2) advecting from the middle backwards leads to the perturbed initial velocities u0 −∇p.
Combining these operations together leads to a system of nonlinear equations, A(u1/2; u1/2,−1

2∆t)− (u0 −∇p) = 0
∇ ·

(
A(u1/2; u1/2, 1

2∆t)−∇p
)

= 0
(2.3.16)

that we solve for the mid-step velocities u1/2 and the unknown perturbation field p using
Newton’s method. This scheme is analogous to the symmetric projection method describe by
Hairer et al. [2006] and, upon approximation of the Jacobian with the identity matrix and
block Gaussian elimination, leads again to a standard pressure solve (the details of which we
leave out for conciseness).
Discussion. We provide qualitative and quantitative evaluations for these symmetric pro-
jection methods in Section 2.4 and compare them to our reflection solver. But even before
further analysis, we can already expect these methods to have much higher computational cost
than our reflection solver: solving the systems to sufficient accuracy requires several Newton
iterations, each with one (resp. two) advection steps and a pressure solve. Furthermore, while
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the use of an approximate Jacobian is justified by the difficulty of computing the full Hessian,
it warrants the use of line search for convergence control. However, since the systems of
equations do not derive from a minimization problem with associated objective function, we
can only monitor the norm of the residual—a poor measure of progress that can even prevent
convergence.

2.4. Results
We investigated the qualitative and quantitative behavior of our reflection solver on a set

of 2D and 3D experiments commonly used in the literature. We compare our results to those
obtained for conventional advection-projection solvers and report our findings below.
Solvers & Setup. For the 2D experiments, we use our own solver based on a MAC grid
discretization. To implement internal obstacles in the flow, we use the method of Batty et al.
[2007] and apply corresponding modifications to the matrix of the pressure solves. The 3D
examples are based on the Mantaflow library [Thuerey and Pfaff, 2016], which we modified
slightly to implement our reflection solver.

We compare the following solvers: stable fluids with first-order semi-Lagrangian advection
(SF) as described by Stam [1999], stable fluids with MacCormack advection (MC ) [Selle
et al., 2008], our reflection solver (R), as well as the symmetric projection methods (APA∗)
and (PA∗AP ). Statistics on all experiments and solvers—including step size, grid size, and
computation time—are listed in Table 2.1. Since our reflection solver requires two advection
operations and two pressure solves per time step, we use twice the step size when comparing
to SF and MC, giving us essentially identical computation time.

Table 2.1 – (1) 2D Vortex Sheet, (2) Taylor Vortices, (3) Vortex Shedding, (4) Spiral Maze,
(5) Vortex Leap-Frogging, (6) Ink Drop, (7) Smoke Plume, (8) Smoke Plume with Sphere
The time step was doubled for the reflection solver when producing the results to keep cost
similar to the projection method. The time step was reduced for PA∗AP and APA∗ to
satisfy the CFL condition.

Resolution Domain size ∆t Iter. time (s)
MC MC+R

1 256× 256 1× 1 0.025 0.0281 0.055
2 256× 256 1× 1 0.025 0.0285 0.055
3 512× 128 1× 0.25 0.0025 0.0322 0.0638
4 256× 256 0.75× 0.75 0.025 0.0558 0.1107
5 256× 128× 128 256× 128× 128 0.25 5.59 10.43
6 128× 64× 64 128× 64× 64 1 0.27 0.57
7 128× 256× 128 128× 256× 128 1 5.73 10.66
8 128× 256× 128 128× 256× 128 1 7.97 13.48
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2.4.1. 2D Results

Since two-dimensional flows are generally easier to interpret and compare, we begin our
analysis in the 2D setting.
2D Vortex Sheet. We initialize a disc-shaped region in the center of the scene with a rigid
rotation as the initial velocity field. After initialization, no additional energy is injected into
the system, allowing us to investigate the (long-term) energy conservation properties of the
different solvers.

Fig. 2.3 shows an overview of density and vorticity magnitude fields obtained for the
various solvers applied to this problem. While the differences in dynamic behavior are best
observed in the accompanying video, it can be seen that our reflection solver MC+R shows
slightly better detail preservation in the density field than MC and much less vorticity
diffusion. Moreover, the temporal evolution of kinetic energy shown in Fig. 2.3 (right) speaks
a very clear language: SF rapidly dissipates energy, which drops to two thirds of its initial
value after roughly 6s. MC performs better, but still loses one third of its energy after 13s.
By contrast, our reflection solver preserves energy much better, losing less than 3% over the
entire animation (20s). For reference, the symmetric projection methods both preserve energy
perfectly, but they require roughly 10 times more computation time. What is worse, however,
is that both methods lead to visually disturbing artifacts in the density field and very noisy
vorticity (see Fig. 2.3). We have investigated this behavior intensively but could not find
a problem with our implementation. We conjecture that the reason for these artifacts lies
in the semi-Lagrangian advection operator: the interpolations performed when tracing back
through the velocity field act as a low-pass filter, i.e., information is lost due to interpolation.
Although the continuity of the flow provides some amount of regularization, the effective
inversion of this low-pass filter during A∗ is numerically unstable, explaining both the artifacts
and the intermittent convergence problems that we observed. Although we intended these
symmetric methods to be reference solutions, we found them to be unusable in practice and
will therefore not discuss them further.
Taylor Vortices. Another frequently used 2D example is that of two vortices of the same
sign placed at a given initial distance. Depending on this initial distance, the analytical
solution for this problem will lead to the vortices either merging or separating. Following
Mullen et al. [2009], we choose the initial distance slightly larger than the critical value and
investigate the behavior of the solvers. For both SF and MC, the vortices merge shortly after
the beginning of the simulation, whereas they separate as predicted by the analytical solution
using our reflection solver.
Vortex Shedding. This example investigates the behavior of the different solvers in com-
bination with internal boundaries, leading to dynamic and visually rich vortex shedding.
As can be seen from Fig. 2.5, MC initially produces similar behavior in the sense that
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Figure 2.4 – 2D Taylor vortices. Left: initial vorticity magnitude and results for the three
solvers after 10s. Right: kinetic energy as a function of time.

Figure 2.5 – 2D vortex shedding: comparison of the vorticity magnitude distributions for
SF, MC, and MC+R for a fixed point in time (6s).

roughly the same number of vortices is shed during the first 6 seconds. However, whereas our
reflection solver approximately preserves the vorticity of the shed vortices, there is a clear
decay in vorticity (from left to right) for MC. The video also shows that the behavior for SF
is qualitatively very different and the numerical viscosity is clearly visible.
Spiral Maze. An example introduced by Mullen et al. [2009] contains a pair of vortices in a
2D domain with many boundaries forming a spiral maze. In the absence of dissipation, one
of the vortices should advect itself to the center of the maze. As shown in Figure 2.6, our
method produces the expected behavior. Interestingly, unlike the results of Mullen et al., we
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Figure 2.6 – A vortex in a spiral maze (left) correctly advects itself to the center (right).

also observe additional vortex shedding due to flow separation at the convex corners of the
maze.

2.4.2. 3D Results

To investigate the behavior of our reflection solver in 3D, we chose a set of examples
frequently used in the literature.
Vortex Leap-Frogging. This classical example is initialized with two concentric vortex
rings of different radii but equal circulations. In the analytical solution for the completely
inviscid, conservative case, the two vortices will produce a leap-frogging motion that continues
indefinitely. However, reproducing this behavior with Eulerian methods has been a challenging
problem due to the tendency for numerical dissipation to diffuse the vortices into each other.
As can be seen in Fig. 2.1, when using the MC solver, the vortex rings merge into a single
one during the first leap-through motion. By contrast, our solver successfully produces
several leap-frogging moves in which the rings remain clearly separated. We refer to the
accompanying video for a better illustration of this fascinating phenomenon.
Ink Drop. A spherical density field is initialized with constant horizontal velocity. Using
our reflection solver, the velocity gradient at the sphere’s interface immediately leads to the
formation of a large vortex, leaving behind it a trail of turbulent fluid that develops into
increasingly complex patterns. While the MC solver can reproduce the vortex formation, the
flow has much more viscosity and the trail it leaves behind is devoid of any detail. Please
refer to the accompanying video.
Smoke Plume. As another classical example, we simulate a smoke plume by modeling a
spherical density source subject to a constant density-proportional buoyancy. The action of
buoyancy leads to the formation of a characteristic vortex front, followed by turbulent breakup
of the rising smoke column; see Fig. 2.7. We have compared the standard advection-projection
scheme with our advection-reflection solver with three different advection schemes: SF, MC,
and FLIP [Zhu and Bridson, 2005]. While the overall qualitative behavior is similar for most
cases, our reflection solver uniformly yields more pronounced vortical motion and stronger
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SF MC FLIP

Figure 2.7 – 3D smoke plume with different advection schemes. In each pair, we compare the
same simulation frame computed using a standard projection solver (left) and our reflection
solver (right).

turbulence due to the reduced artificial dissipation. In the accompanying video, we also show
an example with a spherical obstacle in the path of the plume.

2.4.3. Convergence Analysis

In order to validate our theoretical result for the improved order of accuracy of our method,
we compared different solvers with different parameters on a 2D smoke plume example. We
let the simulation run for 2s such that an interesting flow field develops, and compute the
divergence before projection at the end of a given time step. Fig. 2.8 shows a log-log plot
of this pre-projection divergence as a function of the step size. It can be seen that, for the
SF and MC methods, the divergence decreases linearly with the step size. For our reflection
solver, however, the decrease is indeed quadratic, irrespective of whether it is combined with
first order or MacCormack advection. Another observation that we made in this context is
that because in this test we only increased the resolution in time, not in space, clamping the
interpolated field value in the MacCormack scheme slows the convergence of the norm of the
divergence.
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Figure 2.8 – Norm of the divergence before the projection step for different step sizes and
different solvers. Reverse Limiter refers to the clamping of the interpolated field value in the
MacCormack scheme.

To evaluate the accuracy of our method, we performed a convergence test using a 2D
Taylor-Green vortex with initial conditions

uTG = (sin(2πx) cos(2πy),− cos(2πx) sin(2πy)).

In the inviscid case, this is a steady flow with u constant over time. We also simulated an
example with initial velocity u = uTG + (1,0) and periodic boundary conditions, which should
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Figure 2.9 – RMS error in velocity after one second for (left) the 2D Taylor-Green vortex,
and (middle) the Taylor-Green vortex with added translation. “Extrapolation” denotes
advection with the velocity field 2u1/2 − u0 in the second half-step. Right: Initial velocity
fields for both cases are visualized.
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result in a pure translation of the vortex. We ran both examples to 1s, and computed the RMS
error in velocity with respect to the analytical solution. Figure 2.9 shows a log-log plot of this
error as a function of time step. For the steady flow, our reflection solver exhibits third-order
convergence, since energy loss is the only source of error in this case. For the unsteady flow,
the error caused by the use of the “frozen” velocity field in self-advection dominates, and we
observe similar first-order convergence for both projection and reflection methods. However,
when performing this test we noticed that convergence appears to be improved to second
order by performing the second advection half-step using an “extrapolated” velocity field
2u1/2 − u0, as a first-order approximation of u1. We leave a detailed investigation of this
effect to future work.

2.5. Conclusions
We presented a new method for detail-preserving fluid animation that improves on current

advection-projection solver: it replaces the energy-dissipating projection applied at the end
of a simulation step with an energy-preserving reflection in the middle of the interval.

Compared to existing advection-projection methods, the central advantages of our re-
flection solver are that i) it has provably better energy-conservation properties, and ii) it
empirically leads to much less vorticity diffusion and preserves more detail for equal compu-
tational costs. Furthermore, our method integrates readily with existing grid-based solvers
and is very easy to implement.

2.5.1. Limitations & Future Work

While our reflection solver preserves energy and vorticity very well, it does not do so
perfectly. One reason is that the semi-Lagrangian advection step is itself not energy-preserving.
Another one is that the projection at the end still removes energy from the system, albeit at
a much smaller rate than current advection-projection solvers.

While the improved energy and vorticity behavior generally lead to visually richer an-
imations, our solver does not introduce detail where none should arise according to the
true solution. In visual effects, however, it is often desirable to artificially enhance results,
e.g., by amplifying vorticity or injecting turbulence. Our solver can, in principle, be used
on conjunction with such methods and it would be interesting to investigate its behavior
in this context. Furthermore, we also like to combine our reflection solver with the recent
advection-enhancing methods of Zhang et al. [2015] and Chern et al. [2016].

Extensions to simplicial grids are another direction worth exploring. Finally, we would like
to apply the reflection solver to other constraint-projection applications such as inextensible
cloth [Goldenthal et al., 2007] and volume-preserving solids [Irving et al., 2007] that have so
far relied on the step-and-project approach.
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Abstract. We present a sparse Gauss-Newton solver for accelerated sensitivity analysis
with applications to a wide range of equilibrium-constrained optimization problems. Dense
Gauss-Newton solvers have shown promising convergence rates for inverse problems, but the
cost of assembling and factorizing the associated matrices has so far been a major stumbling
block. In this work, we show how the dense Gauss-Newton Hessian can be transformed
into an equivalent sparse matrix that can be assembled and factorized much more efficiently.
This leads to drastically reduced computation times for many inverse problems, which we
demonstrate on a diverse set of examples. We furthermore show links between sensitivity
analysis and nonlinear programming approaches based on Lagrange multipliers and prove
equivalence under specific assumptions that apply for our problem setting.
Keywords: sensitivity analysis, Gauss-Newton

3.1. Introduction
Many design tasks in engineering involve the solution of inverse problems, where the goal

is to find design parameters for a mechanical system such that the corresponding equilibrium
state is optimal with respect to given objectives. As an alternative to conventional nonlinear
programming, an approach that has recently seen increasing attention in the visual computing
community is to eliminate the equilibrium constraints using sensitivity analysis. Removing
redundant degrees of freedom decreases not only the problem size, it also transforms a difficult
nonlinear constrained optimization problem into an unconstrained minimization problem.

Solving such minimization problems efficiently requires derivatives of the map between
parameters and state, which is given implicitly via the solution of the forward simulation
problem. While the gradient can be computed efficiently with the adjoint method, using only
first-order derivative information often leads to unsatisfying convergence, even if acceleration
techniques such as L-BFGS are used. Second-order sensitivity analysis promises faster
convergence by requiring fewer iterations but comes at the price of dense and potentially
indefinite system matrices. The second problem can be resolved by resorting to the Gauss-
Newton method, which replaces the full Hessian with a positive-definite approximation.
However, its dense nature greatly impedes the potential of second-order sensitivity analysis.

In this paper, we show how the dense Gauss-Newton Hessian can be transformed into an
equivalent sparse matrix that can be assembled and factorized much more efficiently than its
dense counterpart. Whereas the asymptotic complexity for dense solvers is approximately
O(n3) for an n × n matrix, the cost of factorizing sparse systems depends on the sparsity
pattern, which is itself problem-dependent. While meaningful asymptotic bounds for sparse
factorization are hard to obtain [Peng and Vempala, 2020], our extensive numerical examples
indicate drastically reduced computation times for a wide range of inverse design problems. We
furthermore establish links between sensitivity analysis and general nonlinear programming
approaches based on Lagrange multipliers and prove equivalence under specific assumptions.
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Figure 3.1 – Comparison between dense Gauss-Newton and our sparse formulation on
a shape optimization problem for a concrete shell. Left: shell roof before (top) and after
(bottom) optimization. Right: average timings for computing the search direction with sparse
Gauss-Newton, dense Gauss-Newton and the CG method as a function of the number of
design parameters np.

3.2. Related Work
Since fabrication-oriented design moved into the focus of the visual computing community,

inverse problems have received a surge of attention. While an exhaustive review of applications
is beyond the scope of this work, many different methods have been proposed for solving
inverse design problems ranging from musical instruments [Bharaj et al., 2015; Musialski et al.,
2016; Umetani et al., 2016] and balloons [Skouras et al., 2014, 2012], to deployable structures
[Guseinov et al., 2017; Kilian et al., 2017; Panetta et al., 2019] and architectural-scale surfaces
[Vouga et al., 2012] and frameworks [Jiang et al., 2017; Gauge et al., 2014; Pietroni et al.,
2017]. While some of these works propose formulations tailored to specific applications, we
target general inverse problems that can be cast as constrained minimization problems with
continuous parameter and state variables that are subject to equality constraints derived
from physical principles.

One natural approach to solving such problems is via sequential quadratic programming
(SQP), which uses states and parameters as problem variables while introducing Lagrange
multipliers to enforce equilibrium constraints; see, e.g., [Skouras et al., 2014]. As an alternative
that avoids challenges associated with Lagrange multiplier formulations, the augmented
Lagrangian method (ALM) has been applied to shape [Skouras et al., 2012] and multi-
material [Skouras et al., 2013] optimization problems. Another approach that has recently
seen increasing attention is sensitivity analysis, which eliminates state variables and constraints
such as to obtain an unconstrained minimization problem with design parameters as only
variables. Sensitivity analysis is a powerful method that has been used for inverse design
of mechanisms [Coros et al., 2013; Megaro et al., 2017], clothing [Wang, 2018], material
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optimization [Yan et al., 2018; Zehnder et al., 2017] as well as for optimization-based forward
design [Umetani et al., 2011; Pérez et al., 2017].

First-order sensitivity analysis provides the gradient of the objective function with respect
to design parameters, which can be computed efficiently using the adjoint method (see, e.g.,
[Bletzinger et al., 2010]). While gradient descent typically performs poorly, faster convergence
for the corresponding minimization problem can be achieved using, e.g., Anderson acceleration
[Peng et al., 2018], or Quasi-Newton methods such as L-BFGS [Liu et al., 2017]. Kovalsky
et al. [2016] improve convergence for mesh optimization by combining acceleration with
Laplacian preconditioning for the gradient. Using the same preconditioner, Zhu et al. [2018]
instead propose a modified L-BFGS method to accelerate convergence. These methods mostly
aim at geometry deformation tasks for which the cost of evaluating the objective is relatively
low. For physics-constrained design problems, however, the costs per step are significantly
higher since each evaluation of the objective function requires simulation.

Recent work has started to investigate ways of exploiting second-order derivative infor-
mation for sensitivity analysis. Panetta et al. [2019] use Newton’s method with a trust
region approach on the reduced Hessian resulting from second-order sensitivity analysis.
Zimmermann et al. [2019] propose a Generalized Gauss-Newton solver with Hessian con-
tributions selected such as to avoid indefinite matrices. However, while this method has
led to promising convergence in terms of the number of required iterations, assembling
and factorizing the dense Hessian undoes this potential advantage to a large extent. This
impression is further substantiated by Wang [2018], who benchmarked sensitivity analysis
with generalized Gauss-Newton against exact and inexact gradient descent methods.

Our method overcomes these problems through a sparse reformulation of Gauss-Newton
that yields the same search direction but drastically decreases the time required for assembling
and factorizing the linear system. Although sparse Gauss-Newton formulations for sensitivity
analysis have, to the best of our knowledge, not been investigated before, there are connections
to so-called projected SQP methods based on reduced Hessians that have been studied in the
optimization community [Heinkenschloss, 1996]. We use these insights to show equivalence
between sensitivity analysis and nonlinear programming with Lagrange multipliers for specific
equilibrium-constrained optimization problems.

3.3. Background
We consider constrained optimization problems of the form

min
x,p

f(x,p) s.t. c(x,p) = 0 , (3.3.1)

where x denotes the equilibrium state of a mechanical system described by a set of design
parameters p. The state x is coupled to the design parameters p through a set of constraints
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c requiring that x must be an equilibrium configuration for p. While the exact form of these
equilibrium constraints depends on the problem, we will focus on static and dynamic force
balance in this work.

3.3.1. Sensitivity Analysis

We exclusively consider the special but common case of problems which exhibit exactly as
many equality constraints as state variables, i.e., nc = nx. Furthermore, we assume that the
constraint Jacobian ∂c

∂x has full rank. Under these conditions, the implicit function theorem
asserts that any choice of p in a local neighborhood uniquely determines the corresponding
equilibrium state x and we therefore write x = x(p). Given a state-parameter pair (x,p) that
satisfies the equilibrium constraints, we require that any change to the design parameters
induces a corresponding change in state such that the system is again at equilibrium. Formally,
we have

dc
dp

= ∂c
∂p

+ ∂c
∂x

dx
dp

= 0 , (3.3.2)

from which we directly obtain the so called sensitivity matrix

S = dx
dp

= −
(
∂c
∂x

)−1
∂c
∂p

. (3.3.3)

Using this relation, the gradient of the objective function with respect to the parameters is
obtained as

df(x(p),p)
dp

= ∂f

∂p
+ ∂f

∂x
S . (3.3.4)

We note that, by using (3.3.2) in the above expression and rearranging terms, computing the
gradient requires only the solution of a single linear system.

3.3.2. Gauss-Newton

With the gradient defined through (3.3.4), we can minimize f using steepest descent in
parameter space. Every step amounts to updating p along the search direction, computing
an equilibrium configuration x through simulation, and evaluating the objective to accept or
reject the step. Though simple, the convergence of steepest descent is typically very slow.
Using the Hessian of the objective function, Newton’s method promises quadratic convergence
close to the solution. However, Newton’s method is often plagued by indefiniteness on the
road towards the optimum, requiring expensive regularization and other advanced strategies.
As a promising middle ground, Gauss-Newton retains parts of the Hessian information but is
guaranteed to never encounter indefiniteness.
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Gauss-Newton in its original form is a minimization algorithm for objective functions in
nonlinear least-squares form,

f(x,p) =
∑
i

wi
2 ri(x,p)2 , (3.3.5)

where ~w = (w1, . . . , wn) is a vector of weights and ri are residuals. Instead of using the full
Hessian

H =
∑
i

wi
dri
dp

T dri
dp

+
∑
i

wiri
d2ri
dp2 , (3.3.6)

Gauss-Newton drops the second term to define an approximate but positive-definite Hessian.
Writing out dri/dp we arrive at

HGN =
[
dx
dp
T

I
]∑

i

wi

∂ri

∂x
T ∂ri

∂x
∂ri

∂x
T ∂ri

∂p
∂ri

∂p
T ∂ri

∂x
∂ri

∂p
T ∂ri

∂p

 dx
dp

I

 . (3.3.7)

A Gauss-Newton step can then be computed by solving the system of linear equations

HGN · δp = − df
dp

T

. (3.3.8)

In practice, however, computing, assembling, and factorizing this reduced Hessian matrix is
exceedingly expensive: it requires the complete sensitivity matrix, products between sparse
matrices with incompatible sparsity patterns, and leads to a dense matrix that is expensive
to factorize.

3.4. Sparse Gauss-Newton
To arrive at a more efficient formulation, we start by rewriting the Gauss-Newton Hessian

as
HGN = dx

dp

T

A
dx
dp

+B
dx
dp

+ dx
dp

T

BT + C (3.4.1)

with
A =

∑
i

wi
∂ri
∂x

T ∂ri
∂x

, B =
∑
i

wi
∂ri
∂p

T ∂ri
∂x

, and C =
∑
i

wi
∂ri
∂p

T ∂ri
∂p

.

Since dx
dp = −

[
∂c
∂x

]−1
∂c
∂p , the inverse of the constraint Jacobian appears inside the definition

of HGN . We can remove this inverse by reformulating the problem with additional variables
δx = dx

dpδp, which is equivalent to ∂c
∂pδp + ∂c

∂xδx = 0,dxT

dp A+B C + dxT

dp B
T

∂c
∂x

∂c
∂p

δx
δp

 =
− df

dp
T

0

 . (3.4.2)
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However, the transpose of the sensitivity matrix still appears in this system. To also remove
this occurrence, we introduce additional variables δλ defined as

∂c
∂x

T

δλ +BT δp + Aδx = 0 , (3.4.3)

and arrive at the extended system
A BT ∂c

∂x
T

B C ∂c
∂p

T

∂c
∂x

∂c
∂p 0



δx
δp
δλ

 =


0
− df
dp
T

0

 . (3.4.4)

Note that the first row enforces (3.4.3), whereas the second row is obtained by using (3.4.3)
and (3.3.3) in the first row of (3.4.2). The resulting system is sparse and it requires neither
the inverse of the constraint Jacobian, nor the sensitivity matrix. We emphasize that, by
construction, the solution δp obtained when solving this system is exactly identical to the
one obtained when factorizing the dense Hessian. Although this new system is larger than
the reduced one, its sparsity allows us to leverage specialized linear solvers. The exact time
complexity of common sparse direct solvers is only known for specific sparsity patterns and
can range from O(n) for, e.g., a diagonal matrix to O(n3) for a quasi-dense matrix [Peng and
Vempala, 2020]. Nevertheless, our experiments show that the cost of factorizing the larger
sparse system is asymptotically lower than the cost of factorizing the reduced dense system
for many problems; see Fig. 3.1 for an example. This result translates into dramatically
improved performance for a large range of problems, as we demonstrate with our examples.

3.4.1. Discussion and Generalization

Relation to Sequential Quadratic Programming. System (3.4.4) is in the form of a
saddle-point problem that is characteristic for first-order optimality conditions in nonlinear
programming. Indeed, it can be shown that second-order sensitivity analysis on general
objectives is equivalent to so called reduced SQP methods when using a particular definition
for the Lagrange multipliers; see [De los Reyes, 2015] and our derivations in Appendix 3.A.1.
Generalization to Arbitrary Objectives. Our construction can be extended to general
objectives f(x(p),p) for which the Hessian reads

d2f

dp2 =dx
dp

T ∂2f

∂x2
dx
dp

+ ∂2f

∂x∂p
dx
dp

+ dx
dp

T ∂2f

∂p∂x
+ ∂2f

∂p2

+
∑
i

∂f

∂xi
d2xi
dp2 .

(3.4.5)

In particular, when dropping only second-order sensitivities to obtain the Generalized Gauss-
Newton approximation [Zimmermann et al., 2019], our formulation applies directly with
blocks defined as A = ∂2f

∂x2 , B = ∂2f
∂x∂p , and C = ∂2f

∂p2 . The extension to the full-Hessian case
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and its relation to nonlinear programming is described in Appendix 3.A.1. It should be noted,
however, that neither Generalized Gauss-Newton nor full Newton offer any guarantees on the
positive-definiteness of the blocks. In our experiments, the additional measures required for
detecting and treating indefiniteness can easily undo the potential advantage of using more
accurate Hessian information.
Combination with L-BFGS. As we show in Sec. 3.5, Gauss-Newton leads to very good
convergence in many cases and our sparse formulation makes this approach highly efficient.
Nevertheless, Gauss-Newton is not a true second-order method and, depending on the problem,
the missing derivative information can slow down convergence. For such cases, combining
Sparse Gauss-Newton with L-BFGS can be an attractive alternative: even though L-BFGS
requires only first-order derivatives, it approximates second-order information in its inverse
Hessian from rank-one updates with past gradients. Similar in spirit to [Kovalsky et al.,
2016; Liu et al., 2017; Zhu et al., 2018], we use Sparse Gauss-Newton to initialize the inverse
Hessian approximation in L-BFGS. This amounts to solving a linear system each time a new
search direction is computed. We provide an evaluation of this approach in Sec. 3.5.
Block Solve. If the objective f does not directly depend on the design parameters, the block
structure for (3.4.4) simplifies to B = 0 and C = 0. If the constraint Jacobian ∂c/∂p is
invertible , upon block substitution, the solution δp is obtained by solving the linear system

∂c
∂p

δp = −∂c
∂x

δ~y , with δ~y = A−1∂f

∂x

T

. (3.4.6)

See Appendix 3.A.2 for a detailed derivation. If the objective is not a simple L2 distance,
then A 6= I and we must solve an additional linear system to obtain δ~y. We show in Sec. 3.5
that, where applicable, this block solve can accelerate the computation of the search direction
by another 30% and more compared to the Sparse Gauss-Newton baseline.

3.5. Results
We evaluate the performance of our Sparse Gauss-Newton (SGN) solver on a set of

inverse design problems. Besides illustrating different applications, each of these problems
differs in terms of the ratio between parameters and state variables, the connectivity among
variables, as well as their degree of nonlinearity and convexity. We are primarily interested
in assessing the relative performance of SGN and dense Gauss-Newton (DGN), and how
this ratio evolves as a function of problem size. Since both methods give the same results,
we only provide average computation times for computing search directions in most cases.
Additionally, we also provide total computation times on selected examples and compare to
alternative approaches. We measure convergence in terms of suboptimality, which we define
as the objective function value minus its value at the minimum.
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Solving the saddle point problem. We used the PARDISO LU direct solver from Intel’s
Math Kernel Library (MKL) for solving the indefinite sparse linear systems. This solver
performed robustly and efficiently for all problem types and resolutions except for the cloth
example, where it returned solutions of insufficient accuracy. Instead of tweaking solver
parameters per problem, we opted for a robust fall-back strategy based on the iterative
BiCGSTAB method [Van der Vorst, 1992], using PARDISO’s LDLTdecomposition of the
stabilized matrix as preconditioner. Specifically, we add the vector [εx1Tnx

, 0Tnp
,−ελ1Tnc

]T to
the diagonal of the matrix with εx = 10−6 and ελ = 10−6 . We found this strategy to
work well in practice, requiring only a few BiCGSTAB iterations to solve the system to high
accuracy. It should be noted that the optimal stabilization of the lower right block is scale
dependent and should be chosen according to the norm of the constraint Jacobian. See [Benzi
et al., 2005] for more details on stabilization, and on the numerical solution of saddle point
problems in general.

We also experimented with iterative solvers such as BiCGSTAB and GMRES with a
variety of commonly used preconditioners, ranging from simple diagonal scaling (Jacobi) to
incomplete factorization (ILUT) methods. For the problems considered in this work, however,
these iterative methods were either much slower or failed to converge at all. Though we
expect iterative solvers to eventually outperform direct solvers for increasingly large problems
sizes, we consider this topic beyond the scope of this work. For Sparse Newton and Sparse
GGN we used the inertia revealing feature of PARDISO’s LDLTdecomposition to test for
positive-definiteness on the nullspace of the constraint Jacobian (i.e., second-order optimality
conditions) and added diagonal regularization if necessary [Han and Fujiwara, 1985]. For the
trust region method we used trlib [Lenders et al., 2018] to solve the trust region subproblem.
We solve the reduced linear systems (DGN) using Eigen’s built-in Cholesky decomposition.
All measurements that we present here were done on an Intel i7-6700K quad-core with 16GB
of RAM.
Computing Equilibrium States. All methods based on sensitivity analysis must recompute
the equilibrium state through forward simulation after each parameter update. Forward
simulation amounts to a nonlinear minimization problem, whose objective function depends
on the application. In each case, we ensure monotonicity in the objective using a backtracking
line search. We use standard computational models described in the literature. Derivatives
with respect to state and design parameters are computed analytically using pre-compile-time
automatic differentiation.

3.5.1. Inverse Elastic Design

Our first example considers gravity compensation for a simple elastic bar clamped on one
side and subjected to gravity; see Fig. 3.2. The goal is to find a rest state mesh such that
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Figure 3.2 – Performance comparison for different solvers on an inverse elastic design
problem. Top left: initial rest shape (green) and corresponding deformed state (purple). Top
middle: target shape. Top right: optimized rest shape (green) and corresponding deformed
state (purple). Bottom left: objective value vs. computation time for a mesh size of 3228
vertices. Bottom right: computation time vs. problem size.

the resulting equilibrium state is as close as possible to a given target shape,

f(x,p) = 1
2nx
‖x− xtarget‖2 +R(p) . (3.5.1)

To prevent inversions in the rest shape p, we add a nonlinear least-squares regularizer R(p)
that penalizes per-element volume changes. For the forward simulation, we use standard
linear tetrahedron elements and a Neo-Hookean material with Young’s modulus E = 106Pa
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Figure 3.3 – Convergence of different solvers for the shell roof example with 15,443 vertices.
Dense Gauss-Newton is not listed since the linear solver ran out of memory when computing
the reduced Hessian. The sparsity pattern of the saddle point system, shown on the bottom-
right, reveals a repetitive structure resulting from similar stencils for objective and constraints.
The dense hessian contains 2.13 ·109 entries whereas the sparse KKT matrix contains 1.77 ·107

nonzero entries. PARDISO reported 2.18 · 108 nonzero entries in the decomposition.

and Poisson’s ratio ν = 0.45. As termination criterion we used ‖df/dp‖ ≤ 10−5 where the
gradient norm at the beginning of the optimization was close to 2 · 10−2 for all resolutions.

While there are specialized solvers for gravity compensation problems [Mukherjee et al.,
2018; Chen et al., 2014; Ly et al., 2018], we use this example as a benchmark for evaluating the
relative performance of SGN, DGN, as well as sparse versions of full Newton and Generalized
Gauss-Newton (GGN). For comparison, we also add alternative approaches based on sensitivity
analysis that have recently been introduced or used in the visual computing community:
the trust region solver by Panetta et al. [2019], as well as standard Gradient Descent and
L-BFGS. We also include performance data for our implementation of Sequential Quadratic
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Programming (SQP) using Newton’s method on the KKT-conditions (see Appendix 3.A.1)
and an exact L1 merit function. As a further reference point, we also compare to the
conjugate gradient method (CG) applied directly to Equation 3.4.1 and use back-substitutions
to avoid forming the dense matrix. We refer to this alternative as CG + GN. As termination
criterion for CG, we use a relative residual threshold η of 10−3 for all examples. We
furthermore note that, when dropping the regularizer, the shape objective does not directly
involve the design parameters, allowing us to apply the block Gauss-Newton (BGN) method
described in Sec. 3.4.1. Interestingly, we found that the Gauss-Newton methods produce
smooth rest state deformations even without regularizer, whereas all other methods led to
inversions in that case. In the case of CG + GN, the default value of the threshold η was
not low enough to avoid inversions and thus this method was not included.

From Fig. 3.2 (left) it can be seen that sparse methods without regularizer, i.e., our SGN
solver and its block-solve version (BGN, outperform all other solvers by a relatively large
margin. Sparse GGN and the trust region solver rank first among the alternative approaches,
keeping track with SGN when using regularization. Gradient descent and L-BFGS initially
perform well but progress quickly slows down. The remaining methods are not competitive on
this example. The superior scaling behavior of BGN and SGN without regularizer becomes
evident from Fig. 3.2 (right). Although the difference between BGN and SGN is small
compared to the other methods, the block-solve version still offers about 30% performance
increase for lower resolutions and more than 50% for higher resolutions .

3.5.2. Shell Form Finding

For the solid bar example, the objective was a simple L2-distance on the equilibrium
state which, even with regularization, did not directly couple parameters and state. In our
second example, we investigate a case in which these quantities are strongly coupled—a
form finding problem for a 50m× 50m concrete shell roof, inspired by the works of architect
Félix Candela; see [Tomas and Martí-Montrull, 2010] and Fig. 3.1. We model the roof using
discrete shells [Grinspun et al., 2003] with material parameters corresponding to E = 28GPa,
ν = 0.2 as well as a density of 2500kg/m3. The design task consists in finding a rest shape
for the shell such that the equilibrium state under gravity minimizes a stress objective in
nonlinear least squares form. We use a stress model following [Gingold et al., 2004]. To
encourage smooth solutions, we additionally use a regularizer R(p) that penalizes curvature
in the rest state and per-triangle deformations. The resulting objective is

f(x,p) =
∑
i

||σi(x,p)||2 +R(p) , (3.5.2)

where σi denotes the Cauchy stress for element i. We note that this objective couples x and p,
meaning that we cannot apply BGN, and its Hessian is not guaranteed to be positive-definite.
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Figure 3.4 – Time to compute the search direction for the rod dome as a function of state
size nx. We subdivide the edges to add more state variables and compare timings for different
numbers of parameters.

As can be seen from Fig. 3.3 (left), SGN clearly outperforms all other methods. Interestingly,
the sparse Generalized Gauss-Newton performs similar to Gradient Descent and far worse
than L-BFGS, which can be attributed to the Hessian approximation becoming indefinite.

Although SGN rapidly decreases the initial objective by almost two orders of magnitude,
the log-scale plot in Fig. 3.3 (right) reveals that convergence slows down afterwards. However,
the combination of SGN with L-BFGS as described in Sec. 3.4 is able to sustain rapid
convergence in this case.

For this example, dense Gauss-Newton ran out of memory when trying to compute the
dense reduced Hessian. Fig. 3.1 nevertheless compares timings between SGN and DGN for
smaller problem sizes, indicating that, due to its different asymptotic complexity, SGN breaks
even already for problem sizes beyond a few hundred parameters.

We note that, in order to allow for larger geometry changes, we used a lower regularization
weight for the result shown in Fig. 3.1 than for the comparison shown in Fig. 3.3 since
otherwise, not all methods would converge to the same solution.

3.5.3. Rod Dome

In the third example, we consider an inverse design problem for a hemispherical dome
made from interconnected elastic rods. The dome is subject to a force applied at the top and
we impose Dirichlet boundary conditions on the bottom. The design parameters are radii
for the rods that are prescribed at connection points and interpolated along the rods. The
goal, then, is to find parameters that minimize a weighted combination of the total mass of
the structure—approximated as the L2 norm of the parameter vector—and its displacement
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under load. We define the design objective in nonlinear least-squares form as

f(x,p) = 1
2 ‖x− xundef‖2 + 1

2 ‖p‖
2
V + fbounds(p) , (3.5.3)

where fbounds(p) is a log-barrier term enforcing lower and upper limits on the radii. The
mapping ‖·‖2

V approximates the volume of the structure using conical frustums. As simulation
model, we used discrete elastic rods [Bergou et al., 2010] together with the extension to rod
networks by Zehnder et al. [2016] and set material parameters to E = 69GPa and ν = 0.33
such as to emulate aluminum rods.

The problem setup as described above allows us to independently vary the number
of parameters and state variables. As can be seen from Fig. 3.4, for small numbers of
parameters, DGN outperforms SGN. However, for a given number of state variables, SGN
shows only a slight growth in computation time when the number of parameters is increased.
The situation is very different for DGN and the break even point for this example is at
around 200 parameters. It is worth noting that both dense and sparse Gauss-Newton show a
similar increase in computation time with increasing number of state variables. For SGN, we
conjecture that the linear scaling is due to the particular sparsity structure induced by the
rod dome, which—except for the connecting nodes—exhibits a band-diagonal structure.

3.5.4. Car Control

The examples studied so far investigated the performance and scalability of our method for
static equilibrium problems. We now turn to inverse dynamics problems in which we seek to
optimize for control parameters such that the resulting dynamic equilibrium motion optimizes
given design goals. For the first of two examples, we consider the problem of steering a
simple self-driving car such as to move from a given starting position to a prescribed goal
configuration. The state of the car x = (px,py,θ) is described by three variables representing
its position (px, py) on the plane and angle θ with respect to the first coordinate axis. The
parameters p are control variables that include the speed v in forward direction and the
steering angle s relative to the forward direction. The motion of the car is described by the
simple first-order ODE ẋ = (v cos θ, v sin θ, v tan s), which we formulate in constraint form as

cti(x,p) = xti − IEE(xti−1 ,pti) , (3.5.4)

where the time integration routine IEE takes state variables xti−1 and control variables pti

at the beginning of a given time step and returns the corresponding new state xti . We use
explicit Euler integration with a step size of 1

30s and run the simulation for N steps. The total
number of state and problem variables is therefore 3N and 2N , respectively. The objective
that we minimize measures the difference between final and target states as

f(x,p) = wpos

2 ||x
N − xtarget||2 + wdir

2 ||d(xN)− dtarget||2 +R(p) , (3.5.5)
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Figure 3.5 – Performance comparison for different solvers on the car example using 5000
time steps.

where d is the vector that points in the forward direction of the car and R(p) is a smoothness
term that penalizes differences in control variables over time. Except for L-BFGS-B, we
additionally enforce bounds on the maximum velocity and steering angle by filtering the
search direction.

For this relatively simple and non-stiff problem, Gradient Descent performs comparatively
well and is only slightly slower than Sparse Gauss-Newton. While CG + GN outperforms
all other methods in this example, the difference between sparse and dense Gauss-Newton is
again substantial.

3.5.5. Cloth Control

In our second inverse dynamics example we use the method by Geilinger et al. [2020] to
find time-varying handle positions for two corners of a sheet of cloth such that it moves from
a given start configuration to a target state with prescribed positions. As best seen in the
accompanying video, the optimized handle motion leads to two flip-overs, one in place and
one with horizontal movement. As simulation model, we use a standard mass-spring system
together with implicit Euler for time integration. To define the map between parameters and
state for sensitivity analysis, we express the corresponding update rule in constraint form as

cti = xti − IIE(xti−1 ,pti−1 ,pti) (3.5.6)

where, given vertex positions xti−1 as well as control forces pti−1 and pti , the implicit Euler
rule IIE returns the new state xti . The cloth comprises 100 vertices and we perform N

simulation steps, leading to a total of 300N state and 6N control variables. We simulate for
1.66s of virtual time and set the step size accordingly. The goal of matching the target state
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Figure 3.6 – Average time for computing Gauss-Newton search directions for the car (left)
and cloth (right) control examples using the dense vs. our sparse Hessian and the CG method
. Left: we increase the number of time steps, thus increasing problem size in terms of both
state variable and parameters. Right: we increase the number of vertices for the cloth while
keeping the number of time steps fixed and thus the number of control variables constant.
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Figure 3.7 – Time required to compute the search direction for the cloth control problem.
Right: we increase the number of time steps while keeping mesh resolution constant such
that the problem size increases in terms of both state variables and parameters. The dense
solution strategy ran out of memory for nx > 1.8 · 105.

is expressed as
f(x,p) = 1

2
∑
j∈S

∥∥∥xj − x̃j
∥∥∥2

+R(p) , (3.5.7)

where S is a set of keyframes and R(p) is a regularizer that penalizes deviations from initial
handle positions, handle velocities, and cloth velocities.
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For this example, we additionally provide break downs for the cost of DGN. Somewhat
surprisingly, the factorization of the dense system only accounts for a fraction of the total
time, which is dominated by the computation of the sensitivity matrix. Fig. 3.7 shows that
SGN outperforms DGN for all problem instances, whose size we control by the number of
time steps used for forward simulation.

As shown in Fig. 3.6 (right), when changing only the state size but keeping the number of
parameters fixed, DGN scales better than SGN but breaks even only for very large problem
sizes that are intractable for dense solvers on current desktop machines. The difference in
scaling between SGN and DGN can be explained by the fact that, unlike for the rod dome,
the cost of solving the sparse system scales quadratically with state size which, in turn, can
be attributed to the higher connectivity among state variables.

3.6. Conclusions
We presented a sparse Gauss-Newton solver for sensitivity analysis that eliminates the

poor performance and scaling of the dense formulation. We have shown on a diverse set of
examples that SGN scales asymptotically better than its dense counterpart in almost all
cases. We have furthermore provided numerical evidence that SGN outperforms existing
solvers for equilibrium-constrained optimization problems on many examples.

3.6.1. Limitations & Future Work

All of our performance tests use a sparse direct solver, which imposes certain limits on
the maximum problem size. One potential option for extending SGN to very large problems
would be to use iterative saddle-point solvers such as the Uzawa algorithm.

Sparse Gauss-Newton transforms a dense np×np system into a sparse system of dimension
(2nx + np)× (2nx + np), where nx and np denote the number of state and design variables,
respectively. This transformation is only advantageous if the number of parameters is suffi-
ciently large. For example, when optimizing for the Young’s modulus of a homogeneous elastic
solid, the dense 1×1 Hessian will always be faster to invert than its sparse counterpart. At the
other extreme, SGN will generally be much faster when optimizing for per-element material
coefficients. While the exact break-even point depends on the problem, our experiments show
that already for small to moderate np, SGN outperforms DGN.

Problems with sequential dependence between state variables (resulting, e.g., from time
discretization) lead to a special block structure that can be leveraged to accelerate computation
of the dense sensitivity matrix. We did not consider such problem-specific optimizations here.

Using a CG-based solver can be an attractive alternative, especially when fast back-
substitutions are available. A disadvantage is that, for optimal performance, residual thresh-
olds must be tweaked for each example. Furthermore, the convergence rate of CG depends
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strongly on the problem. Developing specialized pre-conditioners for Eq. 3.4.1 might be an
interesting option for future work.

Our formulation assumes that the objective function can be expressed in nonlinear
least squares form. While not all problems exhibit this particular form, they can often be
reformulated or reasonably well approximated in this way.

Some of our examples include bound constraints on the parameters, which we enforced
through log-barrier penalties or by simple projection of the search direction. The latter
approach, however, is neither efficient nor guaranteed to converge in the general case. Incor-
porating bound and inequality constraints in our formulation is an interesting direction for
future work.

We did not directly analyze the impact of the cost per simulation on optimization
performance. In general, problems for which forward simulation is fast will benefit more
from solvers that rely only on first-order derivative information but require more function
evaluations. However, we believe that our selection of examples is representative for a large
range of stiff inverse problems encountered in practice. For the case of non-stiff problems, on
the other hand, inexact descent methods can be an attractive alternative [Yan et al., 2018].

Finally, it would be interesting to extend our approach to efficiently compute second-
order sensitivity information in the context of design space exploration for multi-objective
optimization problems [Schulz et al., 2018].
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3.A. Appendix
3.A.1. Equivalence Result

We show that, for general objectives, using the dense system obtained for second-order
sensitivity analysis and the sparse system (3.4.4) lead to the same search direction. This proof
also shows the equivalence between sensitivity analysis and sequential quadratic programming
for the special case of equality constraints that are enforced to stay satisfied at all times.
Theorem 3.A.1. Let A,B,C, ∂c

∂x
, ∂c
∂p

denote sparse matrices with the correct dimensions and
let H = dx

dp
T
A dx
dp + B dx

dp + dx
dp
T
BT + C. To compute the solution to the dense linear system

H · δp = − df
dp
T , we can equivalently solve the larger sparse system (3.4.4).
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Proof. See construction in Sec. 3.4. �

We next introduce the Lagrangian for the optimization problem (3.3.1) as

L(x,p,λ) = f(x,p) + λTc(x,p) (3.A.1)

whose gradient is

∇L(x,p,λ) =


∇xf +∇xcT · λ
∇pf +∇pcT · λ

c

 , (3.A.2)

where λ are the Lagrange multipliers. The first-order optimality (or KKT) conditions
correspond to ∇L(x,p,λ) = 0. Solving these conditions with Newton’s method leads to the
so-called KKT system

∇2
xxf +∇2

xxc : λ ∇2
xpf +∇2

xpc : λ ∇xcT

∇2
pxf +∇2

pxc : λ ∇2
ppf +∇2

ppc : λ ∇pcT

∇xc ∇pc 0



δx
δp
δλ

 = −


∇xL
∇pL

c

 ,

where we used the shorthand ∇2
~yzc : λ = ∑

i λi∇2
~yzci.

Theorem 3.A.2. When using the adjoint variables as Lagrange multipliers

λc=0 = −
[
∂c
∂x

]−T
∂f

∂x

T

, (3.A.3)

the KKT system and the system for second-order sensitivity analysis, df2

dp2 δp = − df
dp
T , give the

same search direction δp.

Proof. We show that, for λ = λc=0, we have
df 2

dp2 = dxT

dp
∂2f

∂x2
dx
dp

+ ∂2f

∂x∂p
dx
dp

+ dxT

dp
∂2f

∂p∂x
+ ∂2f

∂p2 +
∑
i

∂f

∂xi
d2xi
dp2

= dxT

dp
∇2

xxL
dx
dp

+∇2
xpL

dx
dp

+ dxT

dp
∇2

pxL+∇2
ppL (3.A.4)

Only the term involving second-order sensitivities is non-obvious. Using basic transformations,
we obtain∑

k

∂f

∂xk

d2xk

dpjdpi
= (3.A.5)

= −
∑

k

∂f

∂xk

[(
∂c
∂x

)−1
(
dxm

dpj

∂2c
∂xm∂xl

dxl

dpi
+

∂2c
∂xm∂pi

dxm

dpj
+
dxl

dpi

∂2c
∂pj∂xl

+
∂2c

∂pj∂pi

)]
k

= −
∑

k

((
∂c
∂x

)−T ∂f

∂x

T
)

k

(
dxm

dpj

∂2ck

∂xm∂xl

dxl

dpi
+

∂2ck

∂xm∂pi

dxm

dpj
+
dxl

dpi

∂2ck

∂pj∂xl
+

∂2ck

∂pj∂pi

)
=
∑

k

λc=0
k

(
dxm

dpj

∂2ck

dxm∂xl

dxl

dpi
+

∂2ck

∂xm∂pi

dxm

dpj
+
dxl

dpi

∂2ck

∂pj∂xl
+

∂2ck

∂pj∂pi

)
. (3.A.6)

Eq. (3.A.4) thus holds and, using Theorem 3.A.1, the result follows directly. �
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3.A.2. Block Solve

Using B = 0 and C = 0 in (3.4.4), we have

δλ = − ∂c
∂p

−T df

dp

T

, and δx = −A−1 ∂c
∂x

T

δλ .

Using these definitions in the third row of (3.4.4), we obtain

δp = − ∂c
∂p

−1 ∂c
∂x

δx = ∂c
∂p

−1 ∂c
∂x

A−1 ∂c
∂x

T

δλ

= − ∂c
∂p

−1 ∂c
∂x

A−1 ∂c
∂x

T ∂c
∂p

−T df

dp

T

,

and using (3.3.4) with ∂f
∂p = 0, we finally have

δp = ∂c
∂p

−1 ∂c
∂x

A−1 ∂c
∂x

T ∂c
∂p

−T ( ∂c
∂p

T ∂c
∂x

−T) ∂f
∂x

T

= ∂c
∂p

−1 ∂c
∂x

A−1∂f

∂x

T

.
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3.S. Supplementary Material
3.S.1. Accuracy of linear system solves

We investigate how accurately the linear systems were solved when applying the solution
strategies described in Sec. 5 of the main paper inside SGN. We track the relative residual
‖r‖ / ‖b‖, where b is the right-hand side, and the weighted residual ρ [von Petersdorff, 2020]
using the 1−matrix norm. ρ provides insight on whether the residual is stemming from the
condition number or from the computational method used to solve the linear system. ρ being
close to or below machine precision indicates that the system has been solved without great
numerical issues, in this case the relative residual can still be large because of the condition
number of the matrix. The results can be seen below.
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Figure 3.8 – The solution accuracy for the first 20 iterations across an optimization using
SGN, from top-left to top-right, bottom-left to bottom-right: Inverse Elastic Design, Shell
Form Finding, Rod Dome and Cloth Control

65





Chapter 4

NTopo: Mesh-free Topology
Optimization using Implicit
Neural Representations

by

Jonas Zehnder1, Yue Li2, Stelian Coros2, and Bernhard Thomaszewski1,2

(1) Université de Montréal
(2) ETH Zürich

Publication
This article has been submitted to the Conference on Neural Information Processing

Systems (NeurIPS 2021) and has been accepted to be presented at a poster session. The
article was reformatted to fit the style of this thesis.

Jonas Zehnder and Yue Li are the two principal authors of this project. They both
contributed to the method, implementation and collection of results. All authors collaborated
on the writing of the article.



Abstract. Recent advances in implicit neural representations show great promise when
it comes to generating numerical solutions to partial differential equations. Compared
to conventional alternatives, such representations employ parameterized neural networks
to define, in a mesh-free manner, signals that are highly-detailed, continuous, and fully
differentiable. In this work, we present a novel machine learning approach for topology
optimization—an important class of inverse problems with high-dimensional parameter spaces
and highly nonlinear objective landscapes. To effectively leverage neural representations in
the context of mesh-free topology optimization, we use multilayer perceptrons to parameterize
both density and displacement fields. Our experiments indicate that our method is highly
competitive for minimizing structural compliance objectives, and it enables self-supervised
learning of continuous solution spaces for topology optimization problems.
Keywords: implicit representations, topology optimization, neural networks, multilayer
perceptrons, mesh-free

4.1. Introduction
Deep neural networks are starting to show their potential for solving partial differential

equations (PDEs) in a variety of problem domains, including turbulent flow, heat transfer,
elastodynamics, and many more [Hennigh et al., 2020; Raissi et al., 2019; Rao et al., 2020;
Sitzmann et al., 2020; Lu et al., 2019]. Thanks to their smooth and analytically-differentiable
nature, implicit neural representations with periodic activation functions are emerging as
a particularly attractive and powerful option in this context [Sitzmann et al., 2020]. In
this work, we explore the potential of implicit neural representations for structural topology
optimization—a challenging inverse elasticity problem with widespread application in many
fields of engineering [Bendsoe and Sigmund, 2013].

Topology optimization (TO) methods seek to find designs for physical structures that
are as stiff as possible (i.e. least compliant) with respect to known boundary conditions
and loading forces while adhering to a given material budget. While TO with mesh-based
finite element analysis is a well-studied problem [Bendsøe and Sigmund, 1995], we argue
that mesh-free methods provide unique opportunities for machine learning. We propose
the first self-supervised, fully mesh-free method based on implicit neural representations
for topology optimization. The core of our approach is formed by two neural networks: a
displacement network representing force-equilibrium configurations that solve the forward
problem, and a density network that learns optimal material distributions in the domain
of interests. To leverage the power of these representations, we cast TO as a stochastic
optimization problem using Monte Carlo sampling. Compared to conventional mesh-based
TO, this setting introduces new challenges that we must address. To account for the nonlinear
nature of implicit neural representations, we introduce a convex density-space objective that
guides the neural network towards desirable solutions. We furthermore introduce several
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concepts from FEM-based topology optimization methods into our learning-based Monte
Carlo setting to stabilize the training process and to avoid poor local minima.

We evaluate our method on a set of standard TO problems in two and three dimensions.
Our results indicate that neural topology optimization with implicit representations is able to
match the performance of state-of-the-art mesh-based solvers. To further explore the potential
advantages of this approach over conventional methods, we show how our formulation enables
self-supervised learning of continuous solution spaces for this challenging class of problems.

Figure 4.1 – Neural topology optimization pipeline. We compute optimal material dis-
tributions by alternately training two neural networks: the displacement network Φu and
the density network Φρ, mapping spatial coordinates ω to equilibrium displacements u and
optimal densities ρ, respectively. In each iteration, we first update Φu by minimizing the total
potential energy of the system. We then perform sensitivity analysis to compute density-space
gradients which, after applying our sensitivity filtering, give rise to target density fields ρ̂.
Finally, we update Φρ by minimizing the convex objective Ltopo based on mean squared error
between current and target densities.

4.2. Related work
Neural Networks for Solving PDEs. Deep neural networks have been widely used in
different fields to provide solutions for partial differential equations for both forward simulation
and inverse design problems [Hennigh et al., 2020; Sitzmann et al., 2020; Raissi et al., 2020].
In this context, PDEs can be solved either in their strong form [Dissanayake and Phan-Thien,
1994; Lagaris et al., 1998; Sirignano and Spiliopoulos, 2018] or variational form [He et al.,
2018; Weinan and Yu, 2018]. We refer to DeepXDE [Lu et al., 2019] for a detailed review.
Explorations into using deep learning alongside conventional solvers for simulation have
been conducted with the goal of accelerating computations [Xue et al., 2020] or learning
the governing physics [Holl et al., 2020; Battaglia et al., 2016; Sanchez-Gonzalez et al.,
2020; Pfaff et al., 2020; Grzeszczuk et al., 1998; Holden et al., 2019]. With their continuous
and analytically-differentiable solution fields, neural implicit representations with periodic
activation functions [Sitzmann et al., 2020] offer a promising alternative to mesh-based finite
element analysis. We leverage this new representation to solve high-dimensional inverse
elasticity problems in a fully mesh-free manner.
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Differentiable Simulation for Machine Learning. There is growing interest in differen-
tiable simulation methods that enable physics-based supervision in learning frameworks [Hu
et al., 2019b; Liang et al., 2019; Hu et al., 2019a; Geilinger et al., 2020; Um et al., 2020;
Holl et al., 2020]. Liang et al. [Liang et al., 2019] proposed a differentiable cloth simulation
method for optimizing material properties, external forces, and control parameters. Hu et
al. [Hu et al., 2019b] targets reinforcement learning problems with applications in soft robotics.
Geilinger et al. [Geilinger et al., 2020] proposed an analytically differentiable simulation
framework that handles frictional contacts for both rigid and deformable bodies. To reduce
numerical errors in a traditional solver Um et al. [Um et al., 2020] leverage a differentiable
fluid simulator inside the training loop. Similar to these existing methods, our approach
relies on differentiable simulation at its core, but targets mesh-free, stochastic integration for
elasticity problems.
Neural Representations. Using implicit neural representation for complex signals has been
an on-going topic of research in computer vision [Saito et al., 2020; Park et al., 2019], computer
graphics [Mildenhall et al., 2020; Tancik et al., 2020], and engineering [Sitzmann et al., 2020;
Hennigh et al., 2020]. PIFu [Saito et al., 2020] learns implicit representations of human
bodies for monocular shape estimation. Sitzmann et al. [Sitzmann et al., 2020] use MLPs
with sinusoidal activation functions to represent signed distance fields in a fully-differentiable
manner. Takikawa et al. [Takikawa et al., 2021] introduced an efficient neural representation
that enables real-time rendering of high-quality surface reconstructions. Mildenhall et
al. [Mildenhall et al., 2020] describe a neural radiance field representation for novel view
synthesis. We leverage the advantages of implicit neural representations, demonstrated
in these previous works, to learn the high-dimensional solutions of topology optimization
problems.
Topology Optimization with Deep Learning. Topology optimization methods aim to
find an optimal material distribution of a design domain given a material budget, boundary
conditions, and applied forces. Building on a large body of finite-element based meth-
ods [Bendsoe and Kikuchi, 1988; Bendsoe and Sigmund, 2013; Wang et al., 2003; Sigmund,
2007; Bendsøe and Sigmund, 1999; Bendsøe, 1989; Andreassen et al., 2011; Sigmund, 2001;
Allaire et al., 2004, 2005; Guo et al., 2014; Zhang et al., 2016, 2018; Luo et al., 2008; van Dijk
et al., 2013], recent efforts have explored the use of deep learning techniques in this context.
One line of work leverages mesh-based simulation data and convolutional neural networks
(CNNs) to accelerate the optimization process [Zhang et al., 2019; Yu et al., 2019; Banga
et al., 2018; Ulu et al., 2016; Nie et al., 2020; Lei et al., 2019; Lin et al., 2018]. Perhaps
closest to our work is the method by Hoyer et al. [Hoyer et al., 2019], who reparameterize
design variables with CNNs, but use mesh-based finite element analysis for simulation. While
Hoyer et al. [Hoyer et al., 2019] map latent vectors to discrete grid densities, Chandrasekhar
et al. [Chandrasekhar and Suresh, 2020] use multilayer perceptrons to learn a continuous
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mapping from spatial locations to density values. However, as we show in our comparisons,
their choice of using ReLU activation functions leads to overly simplified solutions whose
structural performance is not on par with results from conventional methods [Liu et al., 2018;
Li et al., 2021; Aage et al., 2017]. In addition, both methods use an explicit mesh for forward
simulation and sensitivity analysis, whereas our method is entirely based on neural implicit
representations.

4.3. Problem Statement and Overview
Given applied forces, boundary conditions, and a target material volume ratio V̂ , the

goal of topology optimization is to find the material distribution that leads to the stiffest
structure. This task can be formulated as a constrained bilevel minimization problem,

Lcomp(ρ) =
∫

Ω
e(ρ, u, ω) dω

s. t. u(ρ) = arg min
u′

Lsim(u′, ρ), ρ(ω) ∈ {0, 1}, 1
|Ω|

∫
Ω
ρ dω = V̂ ,

(4.3.1)

where the loss Lcomp measures how compliant the material is, ρ is the material density field,
ω runs over the domain Ω and |Ω| is the volume of Ω. The displacement u is a result of
minimizing the simulation loss Lsim, ensuring the configuration is in force equilibrium. e
is the pointwise compliance, which is equivalent to the internal energy up to a constant
factor and is measuring how much the material is deformed under load; see Section 4.4.1 for
details. Although manufacturing typically demands binary material distributions, densities
are often allowed to take on continuous values while convergence to binary solutions is
encouraged. We follow the same strategy and parameterize densities ρ and displacements
u using implicit neural representations, Φρ(ω; θ) and Φu(ω; γ), respectively. By sampling a
batch of locations ωb and ρb = ρ(ωb), we compute an estimate of Lcomp using Monte Carlo
integration, Lcomp ≈ |Ω|

n

∑n
i e(ωbi ) . If u is a displacement in force equilibrium, we can compute

the total gradient of the compliance loss with respect to the densities of the batch as

s = dLcomp

dρ
= ∂Lcomp

∂ρ
+ ∂Lcomp

∂u

du

dρ
= −∂Lcomp

∂ρ
. (4.3.2)

We will refer to this expression as the density-space gradient; see the supplemental document
for a detailed derivation. The density-space gradient indicates how the compliance loss
changes w.r.t. the density values, assuming that the force equilibrium constraints remain
satisfied. On this basis, we compute the total gradient of the compliance loss with respect to
the neural network parameters as dLcomp

dθ
= dLcomp

dρ
∂ρ
∂θ
.

Using this gradient together with a penalty on the volume constraint would be one
potential option for solving Equation (4.3.1). In practice, however, we observed that this
approach does not lead to satisfying behavior. We elaborate on this problem below. TO is a
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Figure 4.2 – Failure of naive gradient descent. Left: negative density-space gradient on the
domain for the beam example in the first iteration. Log-scale coloring is used to emphasize
structure. Right: after one step of gradient descent (learning rate 10−5), the neural network
output has lost all structure from the density-space gradient.

non-convex optimization problem, whose solutions depend on the optimization method [Hoyer
et al., 2019] and the path density values take. Much research has been done on developing
optimization strategies that converge to good local minima for FEM-based solvers. The density-
space gradient is generally considered a good update direction for mesh-based approaches.
However, when using standard optimizers to update the parameters for our density network,
the resulting change in densities is not at all aligned with the density-space gradient; see
Figure 4.2. We tested both ADAM [Kingma and Ba, 2014] and SGD with little difference in
the results—eventually, both approaches converge to local minima that are meaningless from
a structural point of view; see Section 4.5.4.

To analyze this unexpected behavior, we consider the change in densities induced by a
step in the negative direction of the density-space gradient ∆ρ = −αdLcomp

dρ
, where α is the

learning rate. The corresponding first-order change in network parameters ∆θ is −αdLcomp
dρ

∂ρ
∂θ
.

However, using this parameter change in the Taylor series expansion of the network output,
we obtain

∆ρ′ = ρ(θ + ∆θ)− ρ(θ) = −αdLcomp

dρ

∂ρ

∂θ

∂ρ

∂θ

T

+O(α2) . (4.3.3)

It is evident that, unless the Jacobian ∂ρ/∂θ of the neural network is a unitary matrix, the
direction of density change ∆ρ′ is different from ∆ρ even as α→ 0.

To avoid converging to bad local minima, we seek to update the network parameters such
that the network output changes along the density-space gradient. To this end, we define
point-wise density targets ρ̂b indicating how the network output should change. We then
minimize the convex loss function

Ltopo(θ) = 1
nbn

nb∑
b

n∑
j

∥∥∥ρ(ωbj ; θ)− ρ̂(ωbj)
∥∥∥2

. (4.3.4)

While our density-space optimization strategy greatly improves results, we have still observed
convergence to minima with undesirable artefacts. Drawing inspiration from mesh-based
TO methods [Bourdin, 2001], we solve this problem with a sensitivity filtering approach
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(termed FT in Algorithm 1). To further accelerate convergence, we also adapt the optimality
criterion method [Bendsøe and Sigmund, 1995] to our setting (OC in Algorithm 1). Our
resulting neural topology optimization algorithm, which we dubbed NTopo, is summarized in
Algorithm 1 and further explained in the following Section.

Algorithm 1 NTopo: Neural topology optimization.
1: Initialize γ(−1), θ(0) for Φρ, Φu; Initialize two optimizers: optθ, optγ
2: Run initial simulation: γ(0) ← arg minγ Lsim(γ, θ(0))
3: for nopt iterations do
4: for nsim iterations do γ(l+1) ← optγ.step(γ(l), ∂Lsim/∂γ) end for
5: for batch b = 1, .., nb do compute ρb, sb end for
6: ŝ← FT (ρ1,...,nb , s1,...,nb)
7: ρ̂← OC(ρ1,...,nb ,ŝ1,...,nb , V̂ )
8: for batch b = 1, .., nb do θ(l+1) ← optθ.step(θ(l), ρ̂b, ∂Ltopo/∂θ) end for
9: end for
10: return Φρ

4.4. Neural Topology Optimization
We start the technical description of our algorithm with a brief overview of the neural

representation that we use. We then explain how to compute equilibrium configurations
and how to update the density field. Finally, we introduce an extension of our method from
individual solutions to entire solution spaces for a given continuous parameter range.

We use SIREN [Sitzmann et al., 2020] as neural representation, which is a dense multilayer
perceptron (MLP) with sinusoidal activation functions. A SIREN-MLP with l layers, l − 1
hidden layers, and h neurons in each hidden layer is defined as

Φ(x) = Wl(φl−1 ◦ φl−2 ◦ . . . ◦ φ0)(ω0x) + bl, φi(x) = sin(Wixi + bi) (4.4.1)

where x is the input vector, y is the output vector, Wi are weight matrices, bi are biases, and
ω0 is a frequency dependent factor. We use a standard five-layer MLP with residual links
and no regularization. The weights of all layers are initialized as suggested by Sitzmann et
al. [Sitzmann et al., 2020].

4.4.1. Computing Static Equilibrium Solutions

We parametrize the displacement field u using a neural network Φu(ω; γ) with network
weights γ. To find the displacement field u in static equilibrium, we minimize the variational
form of linear elasticity which is given by

min
γ
Lsim(u(γ)) = min

γ

∫
Ω

1
2ε(u) : σ(u)− uTf dω s.t. u|∂ΩD

= uD (4.4.2)
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where ∂ΩD is the part of the boundary of the domain with prescribed displacement uD. The
internal energy in linear elasticity is given through 1

2 ε : σ, where the tensor contraction ":" is
defined as ε : σ = ∑

ij εijσij. In two dimensions we compute the stress tensor under plane
stress assumption σ = (E/ (1− ν2)) ((1− ν)ε+ ν trace(ε)I ) where ν is Poisson’s ratio, E is
the Young’s modulus, I ∈ R2×2 is the identity matrix and ε =

(
∇u+∇uT

)
/2 is the linear

Cauchy strain. In 3D we use Hooke’s law σ = λ trace(ε)I+2µε where λ = Eν/((1+ν)(1−2ν))
and µ = E/(2(1+ν)). Following SIMP [Sigmund, 2001], we parameterize the Young’s modulus
E using the density field as E(ρ) = ρpE1. Larger values for the exponent p together with the
volume constraint encourage binary solutions.
Sampling. To evaluate the integral in Equation (4.4.2) we resort to a Quasi-Monte Carlo
sampling approach. We generate stratified samples on a grid with nx × ny cells in 2D (and
nx × ny × nz in 3D). We adjust nx, ny, nz to match the aspect ratio of the domain.
Enforcing Dirichlet Boundary Conditions. By constructing a function d that is zero on
the fixed boundary and an interpolator of the function uD, we enforce the displacement field
u(ω) = d(ω)Φu(ω; γ) + (I ◦ uD)(ω) to always satisfy the essential boundary conditions, thus
turning the constrained problem into an unconstrained one [McFall and Mahan, 2009]. We
use simple boundaries in our examples for which analytic functions d are readily available;
see the supplemental document for more details.

4.4.2. Density Field Optimization

We reparameterize the density field using a neural network Φρ which maps spatial
locations to their corresponding density values. The bound constraints on the densities are
enforced by applying a scaled logistic sigmoid function to the network output, specifically
ρ(ω) = sigmoid(5 Φρ(ω)). The total volume constraint is satisfied by the optimality criterion
method described below.
Moving Mean Squared Error (MMSE).. Equation (4.3.4) can be interpreted as a mean
squared error

1
|Ω|

∫
Ω
||ρ(ω; θ)− ρ̂(ω)||2 dω . (4.4.3)

We minimize this loss using a mini-batch gradient descent strategy, where we use every batch
only once. We collect multiple batches of data from ρ̂ before we update ρ and ρ̂, specifically
ρ̂ changes once every outer iteration. For this reason, we refer to this updating scheme as
moving mean squared error in the following.
Sensitivity filtering FT . In conventional TO algorithms, filtering is an essential component
for discovering desirable minima that avoid artefacts such as checkerboarding [Sigmund, 2007].
While our neural representation does not suffer from the same discretization limitations that
give rise to checkerboard patterns, we have nevertheless observed convergence to undesirable
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minima. Indeed, the neural representation alone does not remove the inherent reason for
such artefacts: TO is an underconstrained optimization problem with a high-dimensional
null-space. Isolating good solutions from this null-space requires additional priors, filters, or
other regularizing information.

In order to address this problem, we propose a continuous sensitivity filtering approach
that, instead of using discrete approximations [Bourdin, 2001], is based on continuous
convolutions. Following this strategy, we obtain filtered sensitivities as

ŝ(ω) =
∫
H(∆ω)ρ(ω + ∆ω)s(ω + ∆ω) d∆ω

max(ε, ρ(ω))
∫
H(∆ω) d∆ω (4.4.4)

where ε is set to 10−3 and H is the kernel H(∆ω) = max (0, r − ‖∆ω‖), with radius r.
Since the samples ωi are distributed inside a grid, we can compute an approximation to the
continuous filter as

ŝij =
∑
k∈Nj H(ωij − ωik)ρiksik

max(ε, ρij)
∑
k∈Nj H(ωij − ωik)

(4.4.5)

where the neighborhood N is defined by cell sizes and radius r such that points inside the
footprint of the kernel H are in the neighborhood N . Although this approximation is not an
unbiased estimator of Equation (4.4.4), it led to satisfying results in all our experiments.
Multi Batch-based Optimality Criterion Method OC. We leverage the optimality
criterion method [Andreassen et al., 2011] to compute density targets that automatically
satisfy volume constraints, thus avoiding penalty functions or other constraint enforcement
mechanisms. To this end, we extend the discrete, mesh-based formulation to the continuous
Monte-Carlo setting. One chooses a Lagrange multiplier λ such that the volume constraint
is satisfied after the variables have been updated. Since it is computationally infeasible to
compute the constraint exactly, we choose to satisfy the constraint in terms of its estimator
using the collected batches. Additionally, we adopt a heuristic updating scheme very similar
to the ones proposed by other authors [Andreassen et al., 2011], which leads to the following
scheme: First a set of multiplicative updates Bi are computed, which then are applied to
compute the target densities ρ̂i = clamp(ρi(Bi)η,max(0, ρi −m),min(1, ρi +m)), where m
limits the maximum movement of a specific target density and η is a damping parameter.
We used m = 0.2 and η = 0.5. The updated Bi are computed using Bi = −ŝi/(λ ∂V

∂ρi )
where λ is found using a binary search such that the estimated volume of the updated
densities using Monte Carlo integration matches the desired volume ratio across all batches

1
nbn

∑nb
b

∑n
j ρ̂

b
j = V̂ .

4.4.3. Continuous Solution Space

Apart from solving individual TO problems for fixed boundary conditions and material
budgets, our method can be readily extended to learn entire spaces of optimal solutions, e.g.,
a continuous range of material volume constraints {V̂ i} or boundary conditions such as force
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locations. To this end, we seek to find a density function ρ(ω, q) which yields the optimal
density at any point ω in the domain for any parameter vector q representing, e.g., material
volume ratio q := V̂ in the target range Q = [V , V ]. In a supervised setting, a common
approach is to first compute k solutions corresponding to different parameters {qk} and then
fit the neural network using a mean squared error. By contrast, our formulation invites a
fully self-supervised approach based on a modified moving mean squared error,

1
|Q||Ω|

∫
Q

∫
Ω
‖ρ(ω, q; θ)− ρ̂(ω, q)‖2 dωdq . (4.4.6)

We minimize this loss by sampling q at random and then update the density network using
the same method as described for the single target volume case.

4.5. Results
To analyze our method and evaluate its results, we start by comparing material distribu-

tions obtained with our approach on a set of 2D examples. We demonstrate the effectiveness
of our method through comparisons to a state-of-the-art FEM solver (Section 4.5.1). We
then investigate the ability of our formulation to learn continuous spaces of solutions in a
fully self-supervised manner. Comparisons to a data-driven, supervised approach indicate
better efficiency for our method, suggesting that our approach opens new opportunities for
design exploration in engineering applications (Section 4.5.2). We then turn to TO problems
with non-trivial boundary conditions and demonstrate generalization to 3D examples (Sec-
tion 4.5.3). An ablation study justifies our choices of using sensitivity filtering and casting
the nonlinear topology objective into an MMSE form (Section 4.5.4). We further compare
the impact of different activation functions and provide detailed descriptions of our learning
settings (Section 4.5.5).

4.5.1. Comparisons with FEM Solutions

We demonstrate that our results are competitive to those produced by a SIMP, a reference
FEM approach [Andreassen et al., 2011] for mesh-based topology optimization. As can
be seen in Figure 4.3, results are qualitatively similar, but our method often finds more
complex supporting structures that lead to lower compliance values (see Table 4.1). To
put these results in perspective, there is no topology optimization method fundamentally
better than SIMP, despite decades of research. For fair comparisons, the compliance values
of these structures are evaluated using the FEM solver and we consistently use fewer degrees
of freedom (DoFs). The DoFs in these two methods are the number of network weights
and the number of finite element cells, respectively. As can be seen, our method is more
computationally expensive, but we would like to emphasize that the goal of our approach
is not to outperform conventional solvers for single-solution cases, but rather find insight
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for a learning-based and fully mesh-free approach to topology optimization that allows for
self-supervised learning of solution spaces. We refer to the supplemental material for further
details of these examples.

Figure 4.3 – 2D comparison on four example problems. Solutions produced by our method
are qualitatively equivalent to corresponding FEM solutions. Force and Dirichlet boundary
conditions are visualized in the top-row images.

Table 4.1 – Statistics of 2D comparisons. Our results achieve quantitatively lower compliance
values (Comp.) than the reference solver (SIMP) for all examples.

FEM Ours
Exp. Comp. DoFs Iter. Time Comp. DoFs Iter. Time

ShortBeam 1.173× 10−3 30,000 122 34 s 1.166× 10−3 28,300 200 33 min
LongBeam 2.595× 10−4 31,250 155 47 s 2.592× 10−4 28,300 200 33 min
Distributed 2.026× 101 30,000 454 114 s 2.012× 101 28,300 400 66 min
Bridge 4.441× 100 31,250 233 72 s 4.385× 100 28,300 200 33 min

4.5.2. Learning Continuous Solution Spaces

Optimal designs for different volume constraints. Here we demonstrate the capability
of our method to learn continuous spaces of optimal density distributions for a continuous
range of material volume constraints. We minimize the objective defined in Equation (4.4.6)
for volume constraint samples drawn randomly from the range [30%, 70%]. To evaluate
the accuracy of our learned solutions, we apply our single-volume algorithm for 11 discrete
material volume constraints sampled uniformly across the target range. As can be seen in
Figure 4.5, our solution space network does not compromise the quality of individual designs.
The mean and maximum errors in compliance and volume violation are 0.75%, 3.83%, 0.5%
and 2.83%, respectively. We therefore conclude that our model successfully learned the
continuous solution space. Furthermore, we argue that the level of accuracy is acceptable for
design exploration in many engineering applications.
Different solution spaces. To further analyze the behavior of our solution space approach,
we conducted two additional experiments: the beam example with fixed volume but varying
location for the applied forces and the bridge example with varying density constraint; see
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Figure 4.4. Both examples confirmed our initial observations, showing smoothly evolving
topology and compliance values close to the single-solution reference. For both examples, we
sample 25 volume fractions/force locations during each iteration using stratified sampling.
In addition to our single solution setup, we shuffle the density pairs randomly during the
MMSE fitting step. The training takes 280 iterations in total, leading to 37.3 hours. Once
trained, the inference enables real-time exploration of the solution space (0.014s/71.4FPS for
300× 100 samples).

Figure 4.4 – Different solution spaces. Here we show additional results varying the volume
fraction constraints for the bridge example (first row) as well as varying the applied force
location for the cantilever beam (second row). See Figure 4.3 for boundary conditions.

Comparison with supervised setting. We further compare our self-supervised training
techniques with a supervised setting under the same computational budget. The cost of
performing 1,000 optimization steps (5.25h) with our larger solution space network is similar to
(but somewhat lower than) the cost of computing 11 solutions under single volume constraints.
We select 11 volume constraint values uniformly and train the network from these solutions
in a supervised fashion. As can be seen in Figure 4.6, the network performs poorly for unseen
data leading to infeasible designs and significant volume violations. On the contrary, our
self-supervised approach leads to physically valid material distributions.

4.5.3. Irregular BCs and 3D Results

Our formulation extends to more complex boundaries, which we illustrate on a set of
additional examples. Figure 4.7 shows multiple examples where densities are constrained
on circular sub-domains and the Dirichlet boundary ∂ΩD is also circular in one of the two
examples. Our method shows promise in 3D, as demonstrated on the two examples shown
in Figure 4.8. Due to the symmetry of the configuration, we apply symmetric boundary
conditions to reduce the domain of interests to half and quarter for the cantilever beam and
bridge example respectively to save computational cost and memory usage. Our method
finds smooth solutions with various supporting features for the two tasks.

4.5.4. Ablation Studies

Here we provide evidence for the necessity of using a sensitivity filter, our moving mean
squared error loss during the optimization process, and the influence of different neural
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Figure 4.5 – Results and compliance com-
parisons between evaluating our solution
space network at discrete volume locations
and the reference solution produced by our
method in the single volume constraint case.
As can be seen, the learned solution space
does not compromise the quality of individ-
ual solutions.

Figure 4.6 – Comparisons with supervised
setting. Our self-supervised learning meth-
ods outperforms its supervised counterparts
with less computational cost. The target vol-
ume constraint is shown on the x-axis and
the constraint violation (in percentage) of
the resulting structures is given on the y-
axis.

Figure 4.7 – Curved boundaries: In the left example 3 holes have been put in the design
using constraints on the density field. On the right, the density field is constrained to have a
hole in the middle.

Figure 4.8 – The solutions for two 3D examples demonstrate the promise of our method in
3D. A 3D cantilever beam (left) and a 3D bridge (right). The mesh has been generated using
a marching-cubes algorithm [Lewiner et al., 2003].

networks. In the first test, we do not rely on the optimality criterion method to compute the
target density field nor do we use the mean squared error. Rather, we add a soft penalty
term to satisfy the volume constraint and update the neural network only once per iteration.
In the second test, we adopt the proposed method without filtering. Comparing with our
reference solutions at different iterations, the alternatives either converge significantly slower
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or arrive at poor local minima with many artefacts, such as disconnected struts or rough
boundaries. We further compare our network structure with a ReLU-MLP as proposed in
TOuNN [Chandrasekhar and Suresh, 2020]. As can be seen from Figure 4.10, this approach
fails to capture much of the geometric features that our method (and SIMP) produce, leading
to more compliant (i.e., less optimal) designs (compliance: 0.001196). The Fourier feature
network [Tancik et al., 2020] leads to comparable results (compliance: 0.001172) and is thus
also a valid option for our method.

Figure 4.9 – Ablation studies on the beam example. 1st column: without moving mean
squared error and optimality criterion—the density-space gradient is directly applied to the
network, which is updated once per optimization iteration. 2nd column: proposed method
without filtering. 3rd column: proposed method using ReLU-MLP as the density network,
SIREN is adopted as simulation network to obtain accurate equilibrium displacement. 4th
column: Proposed method with Fourier feature network. 5th column: Proposed method
with SIREN network. We verify that our moving mean squared error, filtering, and choice of
activation function are all quintessential.

Figure 4.10 – We use different network architectures to parameterize both the density
and displacement field. Since the ReLU-MLP fails to capture the high-frequency details,
its solution for the forward problem is far from being accurate, resulting in meaningless
structures for the inverse problems. Fourier feature and SIREN networks produced similar
results, thus, suitable for our method.

4.5.5. Training Details.

We use Adam [Kingma and Ba, 2014] as our optimizer for both displacement and density
networks and the learning rate of both is set to be 3 · 10−4 for all experiments. We use
ω0 = 60 for the first layer and 60 neurons in each hidden layer in 2D, and 180 hidden neurons
in 3D. For the solution space learning setup, we use 256 neurons in each hidden layer in the
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density network to represent the larger solution space. For all experiments, we initialize the
output of the density network close to a uniform density distribution of the target volume
constraint by initializing the weights of the last layer close to zero and adjusting the bias
accordingly. We used E1 = 1, ν = 0.3, p = 3, nb = 50 and [nx, ny] = [150, 50] in 2D and
[nx, ny, nz] = [80, 40, 20] in 3D. The training iterations for the 3D examples are 100 with a
per iteration cost of 131.7s. All timings in the paper are reported on a GeForce RTX 2060
SUPER graphics card.

4.6. Conclusion
We propose a novel, fully mesh-free TO method using implicit neural representations. At

the heart of our method lie two neural networks that represent force-equilibrium configurations
and optimal material distribution, respectively. Experiments demonstrate that our solutions
are qualitatively on par with the standard FEMmethod for structural compliance minimization
problems, yet further enables self-supervised learning of solution spaces. The proposed method
can handle irregular boundary conditions due to its mesh-free nature and is applicable to 3D
problems as well. As such we consider it a steppingstone towards solving many varieties of
inverse design problems using neural networks.
Limitations and Future Works. As we adopted the sigmoid function to enforce box
constraints, it naturally leads to small gradients when approaching 0 or 1. Although it did
not lead to convergence issue for us in practice, better ways of enforcing box constraints in
density space is an interesting avenue for future work. Like for other Monte Carlo-based
methods, advanced sampling strategies, e.g., importance sampling can also be explored to
speed up the optimization process.
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4.S. Supplementary Material
4.S.1. Additional Results Obtained with our Method

We show more results obtained using our mesh-free topology optimization approach.

Top-left: Two point locations are fixed on the right with a point-wise force applied on the
left. Top-right The structure is held on the top and a point-wise force is applied on the
bottom right. The top right of the density field is constrained to be empty. Bottom-left: The
structure is held on the bottom and a distributed force field is applied across a half-circle.
Bottom-right: The structure is held in the middle and four tangential forces are applied on
an outer annulus of material. The target volume ratios in the same order are 30%, 20%, 25%
and 40%.

4.S.2. Sensitivity Analysis.

Here we provide the derivation of the total gradient dLcomp/dθ for the density network
weights θ, taking into account that when we change θ the displacement u changes, such that
it stays in static equilibrium.

First, we would like to note that there are two different perspectives on the optimization
problem in Eq. (4.3.1). The difference in formulations is due to the choice of

(1) eliminating constraints and keeping just one set of variables (ρ), in this case
u = Simulation(ρ)

(2) using separate variables, ρ and u, and introducing explicit equilibrium constraints
∇Lsim = 0

Formulation (1) is used in the main paper, as it is in our opinion more easily readable.
Formulation (2) corresponds to the standard formulation of constrained optimization problems
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using Lagrange multipliers. In the Lagrangian L, all arguments (u, ρ and the Lagrange
multipliers) are independent and are only coupled through the solution condition ∇L = 0.
Here, the derivation of the gradient will rely on formulation (2).

One way of computing the total gradient of the compliance objective is to solve for the
discrete adjoint variables. Solving the discretized adjoint problem takes the form of

∂2Lsim

∂γ2 λ = −∂Lcomp

∂γ
(4.S.1)

however this is a very large dense linear system which would be costly to solve, instead we
rely on a point-wise argument to derive the adjoint gradient. We apply the chain rule with
the neural network to get the total gradient

dLcomp

dθ
=
∫

Ω

de(ω)
dρ(ω)

∂ρ(ω)
∂θ

dω (4.S.2)

where de(ω)/dρ(ω) is the point-wise total gradient of the point-wise compliance e. To derive
this point-wise gradient we start by introducing the Lagrangian

L(u, ρ, λ, µ) =
∫

Ω
e+ λT (∇ · σ(u)− f) dω +

∫
∂Ω
µT (σ(u)n) dω (4.S.3)

=
∫

Ω
e−∇λ : σ(u) dω − λTf dω +

∫
∂Ω
−λT (σ(u)n) + µT (σ(u)n) dω (4.S.4)

=
∫

Ω
e− ε(λ) : C : ε(u)− λTf dω +

∫
∂Ω

(µ− λ)T (σ(u)n) dω (4.S.5)

where we used integration by parts and leveraged the fact that ∇λ : σ = ε(λ) : σ due to the
symmetry of the stress tensor σ. C is the stiffness tensor in Hooke’s law, that is, σ = C : ε
and σij = ∑

kl Cijklεkl.
In the case of topology optimization for linear elasticity the adjoint variables are readily

available through λ = µ = u [Allaire et al., 2004; Luo et al., 2005]. Here we briefly show the
derivation:

We denote the directional derivative of F w.r.t.x in the direction of h as

Dx,hF (x) = lim
t→0

F (x+ th)− F (x)
t

(4.S.6)

with which the adjoint variables are defined by [Tröltzsch, 2010]

∀h ∈ (H1)2 : Du,hL(u, ρ, λ, µ) = 0 . (4.S.7)

and by applying the definition of the directional derivative, this leads to

∀h ∈ (H1)2 : Du,hL(u, ρ, λ, µ) =
∫
ε(h) : C : ε(u)− ε(h) : C : ε(λ) dω = 0 (4.S.8)

which is true for λ = u.
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We can then plugin the adjoint variables into the Lagrangian to get the point-wise gradient
of the compliance with respect to the density as

∀δρ ∈ H1 : Dρ,δρL(u, ρ, λ, µ) =
∫

Ω
−δρ 1

2ε(u) : ∂C
∂ρ

: ε(u) dω (4.S.9)

Since this holds for all functions δρ in H1 we can conclude that the point-wise gradient is
de(ω)
dρ(ω) := −1

2ε(ω) : ∂C(ω)
∂ρ(ω) : ε(ω) = −∂e(ω)

∂ρ(ω) (4.S.10)

which notably has the opposite sign of the partial gradient ∂e/∂ρ where the implicit change
in the displacement u is not taken into account.
Batch density-space gradient. By sampling a batch of ωb and ρb = ρ(ωb) we can approxi-
mate the integrals and get a discrete version of the loss

Lcomp =
∫

Ω
e dω ≈ L′comp = |Ω|

n

n∑
i

e(ωbi ) (4.S.11)

using the derivations above we arrive at
dLcomp

dθ
=
∫

Ω

de(ω)
dρ(ω)

∂ρ(ω)
∂θ

dω = −
∫

Ω

∂e(ω)
∂ρ(ω)

∂ρ(ω)
∂θ

dω (4.S.12)

≈ −|Ω|
n

n∑
i

∂e(ωbi )
∂ρ(ωbi )

∂ρ(ωbi )
∂θ

= −
∂L′comp

∂ρb
∂ρb

∂θ
(4.S.13)

=
dL′comp

dρb
∂ρb

∂θ
. (4.S.14)

4.S.3. Additional Information for the Results

Here we provide more detailed descriptions of the results in the main paper. See the
following table for the domain sizes and boundary condition enforcements.

Ω V̂ dx(ω) dy(ω) dz(ω)

Short Beam 1.5× 0.5 0.5 ωx ωx —
Distributed 1.5× 0.5 0.4 ωx ωx —
Long Beam 1.0× 0.5 0.4 ωx(ωx − 1.0) ωx —

Bridge 1.0× 0.5 0.4 ωx(ωx − 1.0) ωx —
3D Beam 1.0× 0.5× 0.25 0.2 ωx ωx ωx(ωz − 0.25)
3D Bridge 1.0× 0.5× 0.25 0.2 ωx(ωx − 1.0) ωx ωx(ωz − 0.25)

We apply a concentrated force at the bottom right corner for the Short Beam example
and distributed forces on the top boundary for the Distributed example, all along the negative
y-axis. A concentrated force is applied at the bottom right corner of the new design domain
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for the Long Beam example and distributed loading forces are added to the bottom boundary
for the Bridge example.

The design domains for both the Long Beam and the Bridge are 2.0× 0.5, however, due
to the symmetric configuration, we only perform simulation and optimization on half of the
domain to avoid unnecessary computations. The domains are then 1.0×0.5. For visualization,
we mirror the other half. We use the term ωx(ωx− 1) in dx(ω), this enforces the left boundary
to have no displacement in x direction and the normal displacements of the right boundary
to vanish, similar constructions are used in the other examples.

For the 3D Beam example, we run our method only on half of the design domain along
z-axis, due to symmetry and the actual design domain is 1.0× 0.5× 0.25. Distributed forces
are applied at x = 1.0, y = 0 and z ∈ [0.0, 0.25].

For the 3D Bridge example our method is only performed on a quarter of the design
domain 2.0× 0.5× 0.5, where both x and z dimension are reduced to half. Forces are applied
to the bottom plane where y = 0, x ∈ [0.0, 1.0] and z ∈ [0.0, 0.25]. All forces applied are
along the negative y-axis.

4.S.3.1. Curved Boundaries. We have used two additional types of constraints in these
examples, constraining densities and constraining displacements on curved boundary. Since
derivatives of the density field ρ(ω) do no appear in the objectives directly, constraining
densities is rather straight forward. We just overwrite the density when the point ω falls into
a constraint region Ωc

ρ:

ρ̃(ω) =

ρ(ω) if ω /∈ Ωc
ρ

ρc(ω) if ω ∈ Ωc
ρ

(4.S.15)

and use the resulting field ρ̃ in place of ρ. For the displacement u, applying constraints
is more difficult since its derivatives appear in the objectives, requiring that the field u is
sufficiently smooth inside the domain. We use a length factor d [McFall and Mahan, 2009],
to define the constrained displacement field

u(ω) = d(ω)Φu(ω) (4.S.16)

where d has to be zero on the boundary and have non-zero first-order derivatives on the
boundary (otherwise the first-order derivatives are also constrained to zero on the boundary,
which we do not want). Here we show a simple analytic method for defining the length
factor and is accurate on the whole primitives not only on sampled points: we allow for
n primitives that require the ability to compute a C1 continuous distance function, giving
d2

1, . . . d
2
n squared distances. We then combine them to construct a smooth length factor

d(ω) =
√

mix(d2
1, . . . , d

2
n) (4.S.17)
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Figure 4.11 – Left: Length factor d(ω) of the curved boundary example. Right: Norm of
gradient of length factor, ‖∂d/∂ω‖

where mix repeatedly merges two distances by applying a function m(·, ·) in a tree like fashion,
where we use the following function

m(d2
1, d

2
2) = d2

1d
2
2

d2
1 + d2

2 + ε
ε = 10−4 (4.S.18)

This function is basically the power smooth min [Quilez] with k = 2 plus ε, notably
this function is zero when either distance d1 or distance d2 is zero and seems to have nice
first-order derivative properties.
Data of curved boundary examples. The domain for both examples is 1.5× 0.5.

Three-hole-design: The bottom left of the domain is [0,0]. The holes have inner radius
0.035 and outer radius 0.075, they are located at {[0.075, 0.425], [0.075, 0.075], [1.425, 0.075]}.
The force is applied at [1.425, 0.04]. The length factor of one circle was defined using

d(ω) =

0 if ‖c− ω‖ < r

‖c− ω‖ − r otherwise
(4.S.19)

where c is the center and r is the radius, and then the length factors of two circles were
combined using the procedure explained above.

Hole in the middle-design: The radius of the circle is 0.2 and the center of the circle is at
the center of the domain.
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Chapter 5

Conclusion

We conclude by summarizing the hypotheses of the articles and by presenting ideas for
future directions of research.

This thesis addresses the question whether we can create better computational tools by
leveraging problem-specific structure. We have presented new methods in multiple different
domains that both simulate and optimize the corresponding physical system in a more effective
way. The first two articles present methods which empower users to get better results faster,
while the third article allows for an effective exploration of the solution space.

In the first article, Chapter 2, we have looked at the energy dissipation in the simulation
of incompressible fluids. We aimed at reducing the dissipation as it has a noticeable visual
impact on the end result. We presented a new time integration method for incompressible
fluids based on reflections, effectively reducing the amount of dissipation due to the constraint
projection. This change is simple to apply to existing code. The resulting animations are
more dynamic. Our method does not have higher order accuracy, but since the publication,
we [Narain et al., 2019] have improved the method to be second order accurate. The resulting
method is effective both in terms of computational speed and reducing the energy dissipation.

In Chapter 3, we presented how to apply Gauss-Newton effectively in the sensitivity
analysis context. We use the structure of the non-linear least squares objective to find a
search direction, which is always descending. Additionally, by algebraically reformulating
the search direction computation, we presented a more efficient way to compute the search
direction for a class of problems with certain sparsity patterns. We applied the method to
multiple problems including inverse elastic design, shell design and optimal control. The
results are promising and the connection we make between sensitivity analysis and constrained
optimization opens the path to efficient computation of second order sensitivities. Our method
is easily understandable and easily interpretable.

Finally, in the third article, Chapter 4, we have focused on the optimization of material
distributions, generating minimally compliant designs under load. Our method pushes the



boundaries of what is possible using neural networks by showcasing inverse design only
using implicit representations without relying on meshes. Our tests showed that a naive
implementation of this concept turns out to be not competitive, however we improved the
results over the baseline approach by guiding the neural network during the optimization to
ensure convergence to a desirable solution. Additionally, we adapted multiple approaches
from the mesh-based to the mesh free paradigm to improve robustness and speed. We also
showed that we can learn whole spaces of solutions using our method, allowing users to easily
examine different solutions in real-time.

5.1. Research directions
In the first article we have presented a numerical method to decrease energy dissipation

in the simulation of incompressible fluids. Part of the goal was to improve the visual look,
but measuring whether the visual look is better is difficult, since audiences’ visual taste arises
in a complex fashion. Um et al. [2017] did a perceptual study of liquids and it would be
interesting to see whether one can extend this and learn a perceptual metric from human data.
A machine based estimate of how good a fluid simulation looks would allow to automatically
tune a simulation model according to the perceptual metric.

An alternative path for compelling results may be derived from the idea of adding more
constraints related to vorticity. Along these lines Dinev et al. [2018] presented a projection
method for elastic bodies which both can improve energy preservation and robustness against
numerical "explosions". A similar approach for other phenomena may produce very desirable
results.

In Chapter 3, we have looked at accelerating sensitivity analysis based optimization for
problems for which sparse direct solvers are efficient. However, for problem classes for which
this is not the case, iterative solvers can be very efficient (see e.g. [Yan et al., 2018]) when
the problem is not numerically stiff. But the case of difficult sparsity patterns and numerical
stiffness often arises in inverse design problems and so far seem to have eluded researchers. A
solution to this problem class would be widely applicable.

While sparse Gauss-Newton relies on the fact that the objective has a non-linear least
squares form, it may be worthwhile to look into using other structures at hand, such as
separability of objectives, collections of objectives which on their own are easy to optimize
but as a sum are difficult to optimize (see ADMM), smoothness of the solution or element
hierarchies.

We have computed the search direction using the Gauss-Newton approximation. In
general, it is an unsolved problem what the optimal convex approximation to the objective is.
Majorization-minimization is another method of computing the search direction based on the
idea of putting convex bounds on the non-convex objective. In practice, it would very useful
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if one could automatically find a very good Hessian approximation in terms of convergence
and/or to what kind of local minimum the algorithm converges.

Recently, large advances in machine learning have been made. This raises the question
whether there are machine learning methods and techniques, which can help solve problems
similar in spirit of this thesis. We ask ourselves how machine learning can be used in simulation
and optimizations, and at least a few major categories of how to apply machine learning
come to mind. First, and probably the most common one is prediction, i.e. computing
guesses for initializations and storing solutions spaces. One obvious application is predicting
initializations to reduce overall computational cost. In practice, the more impact-full research
direction may be to look into computing guesses which are closer to global optima, which
are in general especially difficult to find. Neural networks or other machine learning based
techniques might help encoding heuristics and expertise. Additionally, one could try to
develop design tools which are based on natural language or intent, which seemed impossible
just a few decades ago. Second, machine learning based techniques have led to much progress
in stylization, as they seem to be able to capture visual similarity much better than previous
methods. This could be directly applied to inverse design to measure style-alikeness and to
create more intuitive design tools involving stylization. Third, machine learning can be used
to discover structure in data. In our experience applying machine learning based techniques,
such as non-linear dimensionality reduction, to simulation is very difficult as many machine
learning techniques have a lot of overhead compared to analytic methods. In practice, it seems
advantageous to capture as much as possible at once of the simulation to reduce overhead and
it is more challenging for instances where we look for concise models. Recently Cranmer et al.
[2020] have demonstrated an interesting approach, which takes in particle trajectories and
produces symbolic models for the forces between the particles. Applying similar, non-exact
techniques to automatically find symbolic models may have applications in topics such as
geometric multi grid, non-linear homogenization and developing new discrete elements.

In conclusion, we have presented multiple computational methods which improve on
previous methods in important ways. We have discussed their advantages and disadvantages.
In doing so, we hope to have created new useful tools, created better understanding and
inspired future research.
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