
Université de Montréal

Towards Computationally Efficient Neural Networks
with Adaptive and Dynamic Computations

par

Taesup Kim

Département d’informatique et de recherche opérationnelle
Faculté des arts et des sciences

Thèse présentée à la Faculté des arts et des sciences
en vue de l’obtention du grade de Philosophiæ Doctor (Ph.D.)

en informatique

Orientation intelligence artificielle

Août 2021

c© Taesup Kim, 2021





Université de Montréal
Faculté des arts et des sciences

Cette thèse intitulée

Towards Computationally Efficient Neural Networks
with Adaptive and Dynamic Computations

présentée par

Taesup Kim

a été évaluée par un jury composé des personnes suivantes :

Simon Lacoste-Julien
(président-rapporteur)

Yoshua Bengio
(directeur de recherche)

Aaron Courville
(membre du jury)

Chelsea Finn
(examinateur externe)

Guillaume Lajoie
(représentant du doyen de la FESP)





Résumé

Ces dernières années, l’intelligence artificielle a été considérablement avancée et
l’apprentissage en profondeur, où des réseaux de neurones profonds sont utilisés pour
tenter d’imiter vaguement le cerveau humain, y a contribué de manière significative. Les
réseaux de neurones profonds sont désormais capables d’obtenir un grand succès sur la base
d’une grande quantité de données et de ressources de calcul suffisantes. Malgré leur succès,
leur capacité à s’adapter rapidement à de nouveaux concepts, tâches et environnements
est assez limitée voire inexistante. Dans cette thèse, nous nous intéressons à la façon
dont les réseaux de neurones profonds peuvent s’adapter à des circonstances en constante
évolution ou totalement nouvelles, de la même manière que l’intelligence humaine, et
introduisons en outre des modules architecturaux adaptatifs et dynamiques ou des cadres de
méta-apprentissage pour que cela se produise de manière efficace sur le plan informatique.
Cette thèse consiste en une série d’études proposant des méthodes pour utiliser des calculs
adaptatifs et dynamiques pour aborder les problèmes d’adaptation qui sont étudiés sous
différentes perspectives telles que les adaptations au niveau de la tâche, au niveau temporel
et au niveau du contexte.

Dans le premier article, nous nous concentrons sur l’adaptation rapide des tâches basée
sur un cadre de méta-apprentissage. Plus précisément, nous étudions l’incertitude du modèle
induite par l’adaptation rapide à une nouvelle tâche avec quelques exemples. Ce problème
est atténué en combinant un méta-apprentissage efficace basé sur des gradients avec une
inférence variationnelle non paramétrique dans un cadre probabiliste fondé sur des principes.
C’est une étape importante vers un méta-apprentissage robuste que nous développons une
méthode d’apprentissage bayésienne à quelques exemples pour éviter le surapprentissage au
niveau des tâches.

Dans le deuxième article, nous essayons d’améliorer les performances de la prédiction de
la séquence (c’est-à-dire du futur) en introduisant une prédiction du futur sauteur basée sur
la taille du pas adaptatif. C’est une capacité critique pour un agent intelligent d’explorer
un environnement qui permet un apprentissage efficace avec une imagination sauteur futur.
Nous rendons cela possible en introduisant le modèle hiérarchique d’espace d’état récurrent
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(HRSSM) qui peut découvrir la structure temporelle latente (par exemple, les sous-séquences)
tout en modélisant ses transitions d’état stochastiques de manière hiérarchique.

Enfin, dans le dernier article, nous étudions un cadre qui peut capturer le contexte global
dans les données d’image de manière adaptative et traiter davantage les données en fonction
de ces informations. Nous implémentons ce cadre en extrayant des concepts visuels de haut
niveau à travers des modules d’attention et en utilisant un raisonnement basé sur des graphes
pour en saisir le contexte global. De plus, des transformations au niveau des caractéristiques
sont utilisées pour propager le contexte global à tous les descripteurs locaux de manière
adaptative.

mots-clés: l’apprentissage en profondeur, réseaux de neurones profonds, réseaux de neu-
rones adaptatifs, calcul adaptatif, calcul dynamique, apprentissage quelques-shot, méta-
apprentissage, apprendre pour apprendre, mécanisme d’attention, modulation de feature,
raisonnement concept, abstraction temporelle.
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Summary

Over the past few years, artificial intelligence has been greatly advanced, and deep learning,
where deep neural networks are used to attempt to loosely emulate the human brain, has
significantly contributed to it. Deep neural networks are now able to achieve great success
based on a large amount of data and sufficient computational resources. Despite their success,
their ability to quickly adapt to new concepts, tasks, and environments is quite limited
or even non-existent. In this thesis, we are interested in how deep neural networks can
become adaptive to continually changing or totally new circumstances, similarly to human
intelligence, and further introduce adaptive and dynamic architectural modules or meta-
learning frameworks to make it happen in computationally efficient ways. This thesis consists
of a series of studies proposing methods to utilize adaptive and dynamic computations to
tackle adaptation problems that are investigated from different perspectives such as task-
level, temporal-level, and context-level adaptations.

In the first article, we focus on task-level fast adaptation based on a meta-learning frame-
work. More specifically, we investigate the inherent model uncertainty that is induced from
quickly adapting to a new task with a few examples. This problem is alleviated by com-
bining the efficient gradient-based meta-learning with nonparametric variational inference in
a principled probabilistic framework. It is an important step towards robust meta-learning
that we develop a Bayesian few-shot learning method to prevent task-level overfitting.

In the second article, we attempt to improve the performance of sequence (i.e. future)
prediction by introducing a jumpy future prediction that is based on the adaptive step size.
It is a critical ability for an intelligent agent to explore an environment that enables efficient
option-learning and jumpy future imagination. We make this possible by introducing the
Hierarchical Recurrent State Space Model (HRSSM) that can discover the latent temporal
structure (e.g. subsequences) while also modeling its stochastic state transitions hierarchi-
cally.

Finally, in the last article, we investigate a framework that can capture the global context
in image data in an adaptive way and further process the data based on that information.
We implement this framework by extracting high-level visual concepts through attention
modules and using graph-based reasoning to capture the global context from them. In
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addition, feature-wise transformations are used to propagate the global context to all local
descriptors in an adaptive way.

Keywords: deep learning, deep neural networks, adaptive neural networks, adaptive com-
putation, dynamic computation, few-shot learning, meta-learning, learn-to-learn, attention
mechanism, feature modulation, concept reasoning, temporal abstraction.
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Chapter 1

Introduction

Human intelligence can be simply described by a very general mental capability that involves
the ability to reason, plan, and solve problems. By attempting to emulate this human
intelligence with a large amount of data and sufficient computational resources, deep learning
methods have shown significant practical successes in many different applications such as
computer vision, speech recognition, natural language processing, and robotics. For example,
convolutional neural networks may have the ability to recognize thousands of objects with
superhuman accuracy (He et al., 2016; Simonyan and Zisserman, 2015; Tan and Le, 2019),
and artificial agents can play many Atari games and also Go at the superhuman level (Mnih
et al., 2016; Silver et al., 2016). In general, these methods are limited to the use of deep neural
networks only to learn specific pre-defined settings or tasks without having any adaptability
or flexibility. This can unfortunately lead to performance degradation due to unexpected
changes in data or requiring additional computation to adapt to them.

Interestingly, in many different definitions of human intelligence, learning and adaption
are also commonly and strongly emphasized as one of the defining features of it, and this
implies that humans are mostly able to deal with the environment that is only partially
known. In other words, humans can easily and quickly learn or adapt so as to perform as
well as possible over a wide range of environments, situations, and tasks, even though they
are unseen or unexperienced before (Gottfredson, 1997; Legg and Hutter, 2007). Inspired by
this context of human intelligence, there have been many research efforts carried out to make
deep neural networks adaptive and flexible in many different circumstances by introducing
some adaptive and dynamic computations such as attention mechanisms (Bahdanau et al.,
2015; Vaswani et al., 2017) or learning frameworks such as meta-learning (Bengio et al.,
1991; Vinyals et al., 2016; Finn et al., 2017). In many practical applications, these are
critical components to make deep neural networks be computationally efficient in terms
of the learning and adaptation procedures and also be robust to unexpected circumstance
changes.



This thesis explores and focuses deeply on this topic to answer the question about how
deep neural networks can have the ability to quickly learn new tasks or easily adapt to differ-
ent circumstances in computationally efficient ways. By investigating adaptation problems
from different perspectives such as task-level, temporal-level, and context-level adaptations,
the thesis attempts to provide specific solutions that apply to each of the perspectives.

Outline of Thesis. In Chapter 2, we explain adaptation methods in the deep learn-
ing literature and categorize them into three different categories corresponding to different
perspectives such as (1) task-level, (2) temporal-level, and (3) context-level. It will provide
the necessary background details on adaptation methods to understand this thesis. More-
over, the motivations are also provided to explain why adaptation methods are required in
different settings and how they can improve deep neural networks in terms of not only pre-
diction performance, but also computational efficiency. After that, each chapter covers an
adaptation method that applies to a specific perspective on adaptation problems.

Chapter 3 discusses task-level adaptation based on a meta-learning framework. In par-
ticular, we investigate the uncertainty induced during fast-adaptation with a few examples
and present a Bayesian meta-learning framework that is able to approximate the complex
multimodal task-posterior distribution using particle filters.

In Chapter 4, temporal abstraction is discussed, which is referred to as temporal-level
adaptation. To improve long-term future prediction, we introduce a jumpy prediction that
can adaptively define the optimal step size to predict forward by learning a temporally
hierarchical structure in sequence data.

Chapter 5, we investigate context-level adaptation particularly in visual recognition tasks.
Attention mechanism and graph neural network are used to adaptively extract the global
context, and feature-wise transformations give feedback to local descriptors to update them
according to the global context.

Finally, the last chapter concludes the thesis by summarizing the contributions and out-
lining some future research directions in the context of this thesis.
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Chapter 2

Background: Adaptation in Deep Learning

In this chapter, we provide the background on adaptation methods in deep learning, with
deep neural networks specially designed to learn or adapt so as to perform as well as possible
over a wide range of environments, situations, and tasks, even though they are unseen or
unexperienced before. More specifically, we investigate adaptation problems from different
perspectives such as task-level, temporal-level, and context-level by providing motivations
and related works.

2.1. Task-Level Adaptation
The general setting in deep learning is to learn a single specific task from scratch using

a supervised learning framework. It necessarily requires a large amount of data, which is
expected to be collected or simulated with label information, and also huge computational
power to train potentially large and deep neural networks. This severely constrains the per-
formance of deep neural networks, although the goal is to learn only a single task. Moreover,
in this setting, trained models are not able to seamlessly adapt to unexpected changes or
rapidly learn new tasks using only a few examples. For example, robots in the real-world
are typically deployed with pre-defined behaviors or skills to make them succeed in specific
tasks or environments, and this leads to failure in unexpected changes. Another example is
object detection systems that are only able to detect objects provided during the learning
phase, and the whole system has to be retrained from scratch if a new class of objects is
additionally provided to be detected as well.

In contrast, humans are successful in quickly adapting to new environments and learning
new concepts and tasks. For example, two-year-old children can infer a new category from
only one instance (Smith and Slone, 2017). This is presumed to be because during early
learning a human brain develops foundational structures such as the “shape bias” in order
to learn the learning procedure (Landau et al., 1988). This ability is also described as one of
the defining features of human intelligence that humans can efficiently leverage knowledge



acquired from past experiences to easily learn new things with fewer examples or less trial-
and-error (Jankowski et al., 2013; Lake et al., 2015) . It is known as learning to learn
or meta-learning (Biggs, 1985; Bengio et al., 1990) in machine learning literature that has
recently obtained much attention by formulating it as few-shot learning (Lake et al., 2015;
Vinyals et al., 2016). In this thesis, we also describe this ability as task-level adaptation.

In the following section, we introduce meta-learning more formally and categorize meta-
learning methods into (1) metric-based, (2) model-based, and (3) optimization-based meth-
ods. In particular, the methods are explained by focusing on the setting of few-shot learning.

2.1.1. Meta-Learning

Meta-learning provides an alternative learning paradigm that a machine learning model
(in this thesis, we are specifically interested in deep neural networks) is trained by learning
how to learn, where it acquires experiences from multiple tasks and utilizes them to improve
the learning of unseen tasks. In other words, during the learning phase, the model extracts
meaningful task-agnostic knowledge from a given distribution of tasks and learns how to
leverage it to improve the efficiency of learning new tasks. In this setting, which is differ-
ent from the general learning setting, the learning is primarily defined on task-level (e.g.
episodes) rather than instance-level (e.g. data samples), and it is conducted in two different
levels: (1) inner-level and (2) outer-level.

The inner-level can be exactly considered as the general learning setting that is defined
to learn a single task τ (i.e. regular supervised learning) and it is described by optimizing:

θ∗τ = argmin
θ
L (fθ,Dτ ;φ) , (2.1.1)

where the loss function L measures the prediction error of the model fθ that is trained for
the task τ with its dataset Dτ . This is optimized by the meta-knowledge φ that can be
referred to as ‘how to learn’ (Hospedales et al., 2020). It can be characterized not only by
optimization methods such as initialization method for model parameters, cross-validation
setting, and optimizer, but also by the type of models such as a model architecture. In the
general learning setting, the meta-knowledge φ is hand-crafted or pre-specified without any
learning procedure, but it can possibly be optimized through hyper-parameter searching.

One of the main goals of meta-learning is to find the optimal meta-knowledge φ∗, which
is learned from multiple tasks, that can improve both data and computational efficiency of
learning of new tasks. The meta-knowledge φ is therefore optimized at the outer-level as:

φ∗ = argmin
φ

Eτ∼p(T )
[
Lmeta

(
fθ∗τ (φ),Dval

τ

)]
(outer-level),

where θ∗τ (φ) = argmin
θ
L
(
fθ,Dtrn

τ ;φ
)

(inner-level).
(2.1.2)
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Fig. 2.1. Few-shot learning: N -way, K-shot classification (N = 5, K = 1). The dataset is
defined on task-level, where each task consists of support and query set.

This optimizes the meta loss Lmeta such as a generalization (validation) performance over
multiple tasks p(T ), where each task τ is optimized in the inner-level. Note that this is
considered as a bi-level optimization problem that the inner-level is conditioned on the meta-
knowledge φ defined by the outer-level, and the outer-level is conversely conditioned on the
models {θ∗(φ)}τ∼p(T ) optimized by the inner-level. In general, both levels are sequentially
optimized: the inner-level is first optimized over multiple tasks, and the outer-level is subse-
quently optimized upon the results from it, and this procedure is iteratively carried out until
convergence. This optimization is referred to as a meta-train stage, where the meta-learning
algorithm is mainly applied to learn how to learn. Meta-validation and meta-test stages are
also defined to measure the meta-generalization performance to tune hyper-parameters and
evaluate the final performance, respectively. Here, each stage is conducted by a separate
dataset with disjoint tasks (e.g. labels), but all tasks are presumably sampled from the com-
mon task distribution p(T ). A general formulation of this meta-learning setting is few-shot
learning, and we further describe meta-learning in the context of it.

Few-Shot Learning. Few-shot classification involves learning a classifier when only
a few training samples per each class are given. Therefore, each few-shot classification task
τ contains a support set Sτ (= Dtrn

τ ), a labeled set of input-label pairs, and a query set
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Qτ (= Dval
τ ), an unlabeled set on which the learned classifier is evaluated. If the support set

Sτ contains K labeled samples for each of N unique classes, the problem is called N-way
K-shot classification problem.

As an efficient way of meta-learning, episodic training (Santoro et al., 2016a; Vinyals
et al., 2016) is commonly employed in the literature (Snell et al., 2017; Finn and Levine,
2017; Yang et al., 2018). Given a relatively large class-labeled training dataset, the idea
of episodic training is to sample training tasks (episodes) that mimic the few-shot learning
setting of test tasks. Since the distribution of training tasks is assumed to be similar to that
of test tasks, the performances of the test tasks can be improved by learning a model to
work well on the training tasks.

More concretely, in episodic training, all training, validation, and test datasets of the
N -way K-shot problem are formed as follows so that each task τ has a dataset Dτ :

Dτ = Sτ
⋃
Qτ

where Sτ = Dtrn
τ = {(xτi , yτi )}N×Ki=1 and Qτ = Dval

τ = {(xτi , yτi )}N×K+|Qτ |
i=N×K+1 .

(2.1.3)

Here, xτi is the ith input data and yτi ∈ {Cτ
1 , · · · , Cτ

N} = Cτ ⊂ C is its label, where C is the
set of all classes from training, validation, and test datasets. The classes from all datasets
are mutually exclusive ( i.e. Ctrain ∩ Cvalid = ∅, Ctrain ∩ Ctest = ∅, and Cvalid ∩ Ctest = ∅).

2.1.2. Metric-Based Meta-learning

The metric-based meta-learning mainly aims to learn a meaningful feature space that
can be useful to discriminate between different classes. That way, the meta-knowledge φ in
Equation 2.1.2 is described by the meta-learned feature space, and the model parameter θ is
non-parametric that is defined by samples (xτi , yτi ) in the support set Sτ .

The few-shot classifier is based on a probability distribution over classes in task τ that
is defined by the support set Sτ as:

P (y|x,Sτ ;φ) ∝
∑

(xτi ,y
τ
i )∈Sτ

k (fφ(xτi ), fφ(x)) yτi , (2.1.4)

where the label yτj is one-hot encoded and the kernel k (·, ·) is defined by a similarity kernel,
such as cosine similarity. The inner-level is straightforward and simply defines the classifier as
described in Equation 2.1.4 and it doesn’t require any optimization. The exact optimization
only occurs at the outer-level, where the feature space is optimized with the similarity kernel
to improve the meta-generalization. This simplicity is the main strength of metric-based
approaches.

A siamese neural network (Bromley et al., 1993; Koch et al., 2015) is a simple example
of metric-based methods that consists of feature extractor and distance layer to extract
feature vectors and measure the similarity between a pair of them, respectively. Matching

30



Fig. 2.2. Edge-labeling graph neural network (EGNN) with alternative node and edge fea-
ture updates. (source: Kim et al. (2019))

networks (Vinyals et al., 2016) are similar to siamese neural networks, but using an attention
mechanism to compute normalized similarities, and the model is optimized by using the
episodic training framework. Prototypical networks (Snell et al., 2017) derive class-wise
prototypes (centroids), which are aggregated representations of classes, and the prediction
becomes simpler as it is done by computing the similarity with N prototypes instead of
N ×K samples in the support set.

Graph neural networks (GNN) can be used to extract task-specific feature vectors by
iteratively propagating task-specific information to the nodes in a graph (Garcia and Bruna,
2017). An edge-labeling GNN (EGNN, Kim et al. (2019)2.1) works similarly, but instead
predicts the edge-labels in the graph by jointly learning the intra-cluster similarity and
the inter-cluster dissimilarity. In this way, as shown in Figure 2.2, the edge features are
adjusted reflecting both similarity and dissimilarity between nodes, and the node feature is
also updated accordingly.

2.1.3. Model-Based Meta-Learning

Model-based meta-learning is based on models that are designed to rapidly adapt to a
new task via some internal adaptive computations. More specifically, each task is encoded
into some internal states capturing task-specific knowledge, and they are used to control the
adaptive computations to enable fast task adaption. The internal states can be treated as
2.1“Edge-Labeling Graph Neural Network for Few-shot Learning”. Jongmin Kim, Taesup Kim, Sungwoong
Kim, and Chang D. Yoo. Appeared in Proceedings of IEEE Conference on Computer Vision and Pattern
Recognition (CVPR 2019). I contributed significantly to this article as the second author by implementing
the codes and also formulating the proposed method.
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the task-specific knowledge that is extracted from the support set Sτ . As the model-based
approaches do prediction based on internal mechanisms, which are not externally exposed,
they are also called black-box methods.

The few-shot classifier is directly defined by the model fφ that is considered as a deep
neural network parameterized by φ:

P (y|x,Sτ ;φ) = fφ (x;Sτ ) . (2.1.5)

Inside the model fφ, the support set Sτ is used to extract task-specific knowledge, and this
is internally combined and jointly processed with input data x to get the prediction. In this
way, the inner-level is considered to only compute the internal states based on the support set,
and the outer-level is to optimize the model parameter φ to improve the overall adaptation
power. This introduces more flexibility and broader applicability of meta-learning than other
metric-based and optimization-based methods.

Memory-augmented neural networks (Santoro et al., 2016b) are using an external mem-
ory with a controller to store and read task-specific knowledge that will be used for making
predictions. Simple neural attentive meta-learner (SNAIL, Mishra et al. (2017)) also possess
an external memory and consists of temporal convolutions and attention modules that are
efficient to extract and read task-specific knowledge. In contrast to previous methods, con-
ditional neural process (CNP, Garnelo et al. (2018)) and neural statistician (Edwards and
Storkey, 2016) do not rely on external memory, but instead use a compact latent represen-
tation to encode task-specific knowledge.

2.1.4. Optimization-Based Meta-Learning

The core idea in optimization-based meta-learning is to improve task adaptation by learn-
ing the optimization procedures of it. The learned optimization procedures are considered
as the meta-knowledge φ and are expected to be simpler and more computationally efficient
than the general gradient-based optimizer. In general, optimization-based methods are ex-
actly based on the bi-level optimization as described in Equation 2.1.2. The inner-level is
defined to derive task-specific models with the learned optimizer φ, which is optimized over
multiple tasks at the outer-level, and the classifier is defined as:

P (y|x,Sτ ;φ) = fθ(Sτ ,φ) (x) (2.1.6)

where the model parameter θ(Sτ , φ) is derived by the learned optimization method φ with
the support set Sτ . This leads to achieving better generalization than other metric-based
and model-based methods (Finn and Levine, 2017), but it is computational less efficient as
task-specific models are only obtainable through the learned optimization procedure.

The LSTM meta-learner (Ravi and Larochelle, 2017) is a good example of optimization-
based method that explicitly learns a meta-optimizer. It is based on an LSTM recurrent
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Fig. 2.3. Comparison between optimization-based meta-learning methods based on MAML:
all methods learn initialization parameters, but differently handle uncertainty. (a) MAML:
point estimate, (b) LLAMA: Gaussian approximation, (c) BMAML: complex multimodal

network, where the cell state defines the task-specific model parameters θ, and its update
rule is used to optimize task-specific models. Model-agnostic meta-learning (MAML, Finn
et al. (2017)) is a fairly general optimization-based method as it is simple and generally
applicable to any model as long as the gradient can be estimated. It works purely by
gradient-based optimization without requiring any additional parameter or model modifica-
tion. Reptile (Nichol et al., 2018) is another optimization-based method similar to MAML,
but attempts to learn a good initialization of the model parameters θ in a simpler way.

In Chapter 3, we propose an extended version of MAML, Bayesian model-agnostics meta-
learning (BMAML), that improves the performance by taking into account the uncertainty
induced during fast task adaptation with a few examples. Instead of approximating the
task-posterior with point estimates or local Laplace approximation (LLAMA, Grant et al.
(2018)), it is able to approximate the complex multimodal task-posterior using particles, as
illustrated in Figure 2.3

2.2. Temporal-Level Adaptation
Sequential data includes text streams, audio and video clips, and also any type of time-

series data and it is becoming more ubiquitous in a wide spectrum of application scenarios.
Most commonly, it is assumed to be collected or sampled at successive equally spaced points
in time and the data points or frames are indexed in time order.

Many practical applications including speech recognition, video prediction, machine com-
prehension, and many others are fundamentally based on the definition of sequential problems
that are formulated as sequential data processing. That way, a system is designed to receive
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sequence data with an arbitrary length and process input data xt at every time step t and
also optionally produce prediction data yt if necessary. Here, the prediction data yt can be
a word label as in language modeling, image data as in video prediction, or an action in the
context of sequential decision making based on reinforcement learning. Both input data xt
and output data yt might depend on any of the previous time step t′ < t or even all of the
previous time steps. This makes the sequential problems particularly more challenging than
the standard prediction problems handling non-sequential data. It is therefore important to
learn and understand the dynamic behavior and the causality relationships across sequential
data.

In deep learning, recurrent neural networks (RNNs) are a type of neural network archi-
tectures that are a temporal generalization of classical feed-forward neural networks. RNNs
have some hidden-to-hidden recurrent connections that enable them to aggregate informa-
tion over time and store it in the hidden state acting as a memory. In general, all input
data in a sequence are sequentially processed through RNNs one by one and summarized
by iteratively updating the hidden state in RNNs. However, as the length of the sequence
increases, this setting can unfortunately cause some potential problems degrading the pre-
diction performance.

• Due to the problem of vanishing and exploding gradients, RNNs can fail to prop-
erly capture long-term dependencies across sequential data (Hochreiter, 1991; Bengio
et al., 1994).
• The issue of error accumulation can become severe in some sequence prediction prob-
lems, when the output influences or is the next input (e.g. video prediction, speech
recognition/synthesis, machine translation, long-term forecast).
• The computational cost linearly increases with the length of the sequence.

There exist some solutions for these problems. For example, certain recurrent architectures
such as long short-term memory networks (LSTM, Hochreiter and Schmidhuber (1997)) and
gated recurrent units (GRU, Cho et al. (2014)) can mitigate the problem of vanishing and
exploding gradients by controlling the information flow by gating units. By modifying the
training process or objective of RNNs, the error accumulation can also be alleviated, and this
results in more robust long-term predictions (Bengio et al., 2015b; Lamb et al., 2016). The
computational cost clearly depends on the length of the sequence, and therefore a solution
is to reduce the length of it by skipping some steps or frames under certain rules.

In this thesis, we investigate these problems by introducing the concept of temporal-level
adaptation. This requires learning the underlying structure and dynamics in the sequence
so that we can expect models that can adaptively skip some unnecessary steps to process
and predict only necessary steps. This is also referred to as temporal abstraction, which is
inspired by human intelligence and adaptability. For example, humans are able to do skim
reading that fixates on some words and skips others during reading some long text. Another

34



Fig. 2.4. Static vs. dynamic frame skipping. Dynamic frame skipping is proposed to
adaptively skip frames by ensuring the alignment with the temporal structure in the label
sequence.

example is that making a plan for one-hour driving from one point to another does not
involve predictions at the scale of every second. These examples suggest that we should look
for models that can do temporal-level adaptation to improve the processing of sequential
data.

In the following sections, we introduce two methods, (1) adaptive skipping and (2) jumpy
future imagination, that are based on the temporal-level adaptation.

2.2.1. Adaptive Skipping

In this section, we introduce methods that learn to adaptively skip steps or frames in
sequence data or reduce the length of it in other ways. Especially for speech recognition
systems, it is critical to reducing the computational cost as it is generally used in real-
time applications or on mobile devices. Frame skipping has been broadly used in neural
acoustic models by lowering the frame rate and interpolating the predicted labels in the
sequence (Vanhoucke et al., 2013; Miao et al., 2016). This approach is referred to as static
frame skipping, where the skip size is predefined and fixed without considering any informa-
tion variability in speech signals as shown in Figure 2.4. It can reduce the computational
cost but can not avoid performance degradation. The more adaptive strategy is dynamic
frame skipping (Song et al., 2018) 2.2. A neural acoustic model using dynamic frame skipping
2.2“Dynamic Frame Skipping for Fast Speech Recognition in Recurrent Neural Network Based Acoustic
Models”. Inchul Song, Junyoung Chung, Taesup Kim, and Yoshua Bengio. Appeared in Proceedings of IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP 2018). I contributed as the
main proposer of using the concept of adaptive frame skipping.
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Fig. 2.5. Dynamic frame skipping is based on a skip-policy network. It is implemented on
the last layer of RNNs so that the model can jointly predict the label and also the size of a
segment (i.e. skip size). (source: Song et al. (2018))

can adaptively skip frames by predicting label changes as shown in Figure 2.4. It is based on
a skip-policy network that samples the skip size as shown in Figure 2.5 and is jointly trained
with the neural acoustic model. It tries to avoid reading redundant frames, and therefore
the computational cost can be reduced while preserving performance.

The concept of dynamic frame skipping is also used in reinforcement learning particularly
for deep Q-networks (Srinivas et al., 2016). Here, the Q-network is designed with a larger
action space, where the actions are decomposed into an executive action and the duration
(i.e. repeating times) of it, and thus can improve the computational efficiency by avoiding
the redundant action sampling procedure.

In a similar way, several methods have been proposed in natural language processing to
learn to skim as humans do during reading long texts. It is based on making a sequence of
decisions whether to fixate or skip words in the text. Hahn and Keller (2016) introduced a
method that trains a model in a completely unsupervised manner only requiring unlabeled
text during training. Here, an attention network is defined to sample binary actions that
indicate whether to read or skip each of the words in the text sequence. This can reduce the
number of updates in RNNs, but the binary action has to be sampled at every step. The
overall network is based on an auto-encoder framework with an objective to minimize the
reconstruction cost and also maximize the number of skipped words. Another work is based
on a strategy that learns when to skim and when to read (Johansen and Socher, 2017), but
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does not use a skipping mechanism. It is based on two models having different computational
complexities, and they are adaptively used not only to reduce the computational cost but also
to improve prediction power. If the given text sequence is determined to be easily processed,
a computationally cheap bag-of-words model is used to process it as a form of skimming.
Otherwise, a model based on RNNs is used to carefully read words one by one. Lei et al.
(2016) use a hard attention mechanism to select candidate rationales from a text and only
take them for the final prediction rather than using the full text. This can be treated as a
pre-processing to reduce the size of the text, and it also provides some interpretability of the
prediction process.

2.2.2. Jumpy Future Imagination

For an intelligent agent exploring complex environments, we assume that it should have
an imagination module or a mental simulator of the environment to act and plan in a model-
based fashion. It is critical to learn and operate on compact and abstract state represen-
tations to make predictions about the future of the environment efficiently and accurately.
However, in general, the planning based on long-term predictions is implemented in a way
that all future moments or steps are sequentially predicted one by one without any temporal
abstraction. This is not cognitively and computationally sensible and not only increases
computational cost but also degrades prediction performance.

In this section, we provide more explanations of models that can make jumpy predic-
tions to improve long-term predictions with less computational complexity. Temporally
sub-sampled sequence data can be used to build state-space models with jumpy state tran-
sitions (Buesing et al., 2018), but it only works for a fixed (static) jump size and performs
poorly due to dropping the information contained in the skipped steps. The temporal differ-
ence variational auto-encoder (TDVAE, Gregor et al. (2019)) is similarly based on stochastic
state-space models, but with a modified evidence lower bound (ELBO). It is formulated with
a deterministic belief state to ensure that all the observed information is being used during
prediction. Moreover, temporal abstraction is realized in the model by extending the loss to
relate not only neighboring time steps but also arbitrarily distant time steps in the sequence.
Although this allows the model to predict arbitrary future steps that are defined in some
finite range, the optimal step size at each time step cannot be obtained and therefore has to
be preset for the future prediction.

Both adaptive skip intervals (ASI, Neitz et al. (2018)) and time-agnostic predictors
(TAP, Jayaraman et al. (2019)) allow the model to dynamically adjust the step size based on
the input data by defining the target as the most predictable future frame. The models learn
to converge to nearly deterministic state transitions that are the easiest to predict and also
considered to have the lowest uncertainty (see Figure 2.6). This is implemented by using a
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Fig. 2.6. Uncertainty profiles corresponding to various scenarios. Adaptive skip intervals
(ASI) and time-agnostic predictors (TAP) are designed to learn transitions between moments
with less uncertainty. (source: Jayaraman et al. (2019))

minimum-over-time loss so that the penalty for predictions G(xt) is adaptively determined
based on its closest matching over a set of future time steps {t+ δ}δ∈T=[1,2,...]:

G∗ = argmin
G
L (G) = argmin

G
Ext

[
min
δ∈T

dx (G(xt), xt+δ)
]

(2.2.1)

where the function dx measures a distance between prediction G(xt) and xt+δ such as the
mean squared error (MSE). Additionally, ASI uses an exploration curriculum strategy to
soften the winner-takes-all optimization setting. However, both approaches are based on
predictions directly on the observation-level without learning state representations and this
potentially cannot capture the full context from the previous observations.

A model can also be designed by a different perspective, where sequence data can be
decomposed into a set of time steps representing moments of interest, which are highly
stochastic, and other steps in between them as described in Figure 2.7. That way, a hierar-
chical keyframe intermediate model (KEYIN, Pertsch et al. (2019)) stochastically predicts
keyframes in image sequences and then uses these predicted keyframes to deterministically
predict the intermediate frames.

In Chapter 4, we propose a hierarchical recurrent state-space model, Variational Temporal
Abstraction (VTA), that is also based on the same assumption of KEYIN. It is a fully
stochastic sequence model that is able to discover the latent temporal abstraction structure
by decomposing the sequence data into non-overlapping subsequences. The inference of the
hierarchical state representations, which are decomposed into frame-level and subsequence-
level, is conducted by using the discovered temporal structure. The jumpy future prediction
is then implemented by the state transitions, where the states represent subsequences.

2.3. Context-Level Adaptation
Deep neural networks are mainly composed of two types of variables that are activation

and weight variables. The activation variables represent the internal status or activities based
on the input data and are dynamically computed or extracted rather than being learned. On
the other hand, in general, the weight variables are learned to capture consistent regularities
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Fig. 2.7. Sequence data can be decomposed into subsequences that are defined by some
keyframes with high uncertainty. Trajectories with dotted lines are considered to be nearly
deterministic. The model then learns to do jumpy prediction by discovering keyframes and
learning the state transitions between them. (source: Pertsch et al. (2019))

among input data, output data, and some others. They are treated as static variables that are
not modified after the learning phase, and this is based on the assumption that the learned
regularities can be well-generalized also to unseen data. However, input data may have
many different characteristics that have to be processed in different ways. This suggests
that deep neural networks might benefit from some weight variables that can adaptively
change as the activation variables. This concept is also known as fast weights (Schmidhuber,
1992, 1993), where one network dynamically generates context-dependent weight variables
for the main target network. In this thesis, we define this concept as context-level adaptation
and investigate methods that are able to dynamically modify the weight variables or select
the subset of them to rapidly adapt to some conditional context. Here, the context can be
defined by some auxiliary conditional data or extracted from input data.

A mixture of experts (MoE, Jacobs et al. (1991)) takes advantage of using multiple
models (i.e. experts), where each model is assumed to respond to particular characteristics
with greater specialization. Most importantly, a set of experts is differently and adaptively
combined based on input data so that the aggregated output data is obtained in an adaptive
manner. Here, the weighting factors of experts are considered as fast weights that realize
the context-level adaptation. Conditional computation (Bengio et al., 2013, 2015a; Shazeer
et al., 2017) is a special case of MoE, where the weighting factors of experts are sparse and
discrete to ensure that only a few expert models are activated. This is to efficiently increase
the total model capacity without a proportional increase in computation.

Attention mechanism and feature-wise transformation are more generalized frameworks of
context-level adaptation that are broadly used with deep neural networks in many application
settings, and in the following sections, we focus on these methods by providing more details
and related works.
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2.3.1. Attention Mechanism

Standard deep neural networks can be considered computationally expensive and ineffi-
cient, because they examine all hidden units or all local positions at the same level of detail.
Although such brute-force approaches have shown impressive results so far, they are less
interpretable and potentially become ineffective as both network and dataset sizes rapidly
increase. Interestingly, humans are able to process a large amount of visual information in
sequence through a visual system that is based on a biological attention mechanism (Rensink,
2000; Shulman and Corbetta, 2002). Rather than processing an entire image simultaneously,
it selectively attends to the most informative parts of it. In other words, it dynamically
allocates computation resources to the most informative parts.

Inspired by this human visual system, there have been many ways to integrate attention
mechanisms into deep neural networks. In general, attention modules are designed to aggre-
gate or summarize a set of information (e.g. representations) by differently weighting them,
where the attention weights are adaptively computed by some conditional data, and learned
in an end-to-end manner. More specifically, the weights can be deterministically computed
in a soft way using a softmax function, and this allows the model to be easily optimized
with back-propagation as usual. Otherwise, the weights are binary random variables that
are stochastically sampled, and this makes the optimization difficult requiring some tricks
such as REINFORCE (Williams, 1992), straight-through (ST, Bengio et al. (2013)) and
categorical reparameterization (Jang et al., 2017; Maddison et al., 2017).

In the context of neural machine translation, the decoder generates each target word
differently and adaptively aggregating the encoded source sequence (Bahdanau et al., 2015).
That way, the alignment between source and target sequences can be learned in an adaptive
manner that is described by attention weights. Also in computer vision problems such as
image captioning (Xu et al., 2015), the source image is iteratively attended in different
ways, where different objects are being focused at different steps, to generate a caption in a
sequential manner.

Attention mechanisms furthermore have become an integral part of the compelling se-
quence and image models in various tasks that can efficiently model the internal dependencies
in an adaptive manner without regard to their distance in the data. Especially, self-attention
modules are mostly used to process input data X ∈ RN×d, where N is the number of ele-
ments (e.g. the number of pixels or the sequence length) and d is the feature size, by using
the following operation:

Attention (K,Q, V ) = softmax
(
QK>√

d

)
V,

where K = XW k, Q = XW q, and V = XW v.

(2.3.1)
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Fig. 2.8. Self-attention for image data. Input data X is mapped to keys K, queries Q, and
values V by using 1 × 1 convolutions. Attention maps are computed for each of pixels and
used to compute output data.

The weights W k,W q ∈ Rd×d̃, and W v ∈ Rd×d̂ are learned linear transformations that map
input data X into keys K, queries Q, and values V (see Figure 2.8).

The transformer (Vaswani et al., 2017) is the model that entirely consists of self-attention
operations to compute representations without using any typical sequence-aligned recurrent
neural networks or convolution neural networks with local connectivity. Its advantages are
characterized not only by capturing the long-term dependencies, but also by relaxing the
weight-sharing property in RNNs and CNNs. In this way, transformers are broadly used in
various tasks by taking the place of RNNs and CNNs (Parmar et al., 2018; Dong et al., 2018;
Devlin et al., 2019; Bello et al., 2019; Dosovitskiy et al., 2020; Carion et al., 2020).

2.3.2. Feature-wise Transformations

In this section, we investigate a specific type of model that defines context-based pro-
cessing by doing feature modulation based on information extracted from some conditional
data (i.e. the conditional context data). In general, context-based computations can be
implemented by simply concatenating, adding, or multiplying the conditional context data
to hidden representations in the model. This can be further generalized into a single uni-
fied framework as a conditional affine transformation, which is also well known as feature-
wise transformations, that was shown in feature-wise linear modulation (FiLM, Perez et al.
(2018)).

h̃ = α(c)� h+ β(c) (2.3.2)

where the hidden representation h ∈ Rd is scaled and shifted by α(c) ∈ Rd and β(c) ∈ Rd,
respectively, before a non-linearity is applied. Moreover, both α and β are functions of the
conditional context data c that directly generates affine parameters. We have two networks
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that one is the main (target) network and the other is the parameter generating (auxiliary)
network. That way, in the Hyper-NEAT framework (Stanley et al., 2009), compositional
pattern producing networks (CPPNs) are evolved to generate the weight structure of the
much larger main network. In a similar way, Ha et al. (2016) introduced a hyper-network,
which particularly generates some parameters in recurrent networks to relax their weight
sharing property, that is jointly trained with the main network in an end-to-end manner.
Feature-wise transformations have been broadly applied in many different problem settings
thanks to their simplicity and effectiveness. In the following, we explain some examples in
the deep learning literature.

In neural style transfer, a style transfer network is conditioned on a chosen style image,
and the network has to learn the style-specific parameters of it. Instead of learning them,
a conditional instance normalization (Dumoulin et al., 2017), which is based on the feature-
wise transformations, allows the style transfer network to use dynamically generated affine
parameters that are based on the embedding of the chosen style image.

Visual reasoning models are generally conditioned on linguistic questions to obtain the
corresponding answers, and there are a series of works that showcased the effectiveness of the
feature-wise transformations. Conditional batch normalizations (de Vries et al., 2017) are
implemented in a pre-trained residual network (ResNet) to modulate convolutional feature
maps by generating the related parameters conditioned on a linguistic embedding to solve
visual question answering (VQA) tasks. Furthermore, Perez et al. (2018) proposed FiLM
that is defined in a more generalized way.

Similarly, but in a self-conditioning manner, typical convolutional neural networks such
as ResNet have been improved by augmenting some modules that are able to adaptively mod-
ulate feature responses. For example, squeeze-and-excitation (SE) blocks (Hu et al., 2018)
utilize global information, which is simply extracted from a pooling operation, to adaptively
adjust inter-dependencies between channels by implementing a self-gating mechanism on the
channel-wise feature maps. Moreover, convolutional block attention modules (CBAM, Woo
et al. (2018)) adaptively modulate the feature maps along not only a channel dimension but
also spatial dimensions.

In speech recognition, Kim et al. (2017)2.3 introduced the feature-wise transformations
into neural acoustic modeling to efficiently handle acoustic variabilities arising from various
factors such as speakers, channel noises, and environments. These variabilities are generally
handled by explicitly learning them from some auxiliary labeled data (e.g. speaker rep-
resentation and identity). This inefficiency is resolved by implementing the dynamic layer

2.3“Dynamic Layer Normalization for Adaptive Neural Acoustic Modeling in Speech Recognition”. Taesup
Kim, Inchul Song, and Yoshua Bengio. Appeared in Proceedings of Conference of the International Speech
Communication Association (INTERSPEECH 2017).I contributed as the first author that proposed the main
concept and implemented the proposed method.
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Fig. 2.9. Dynamic layer normalization (DLN) for adaptive neural acoustic modeling (Kim
et al., 2017). The utterance summarization feature is used as the conditional context data
and it modulates the hidden states in LSTM cells. (source: Kim et al. (2017) and Dumoulin
et al. (2018))

normalization (DLN) in deep bidirectional LSTM networks as depicted in Figure 2.9. It does
not require any auxiliary or external data, but internally extracts an utterance summariza-
tion feature to dynamically adjust the main network in a self-conditioning manner.

In Chapter 5, we also propose a convolutional neural network, Visual Concept Reasoning
Networks (VCRNet), that is based on both attention mechanisms and feature-wise trans-
formations to further enhance the ability of context-level adaption. This network is able to
dynamically extract the global context in the input image and adaptively refine the local fea-
tures based on it. That way, it makes the network do some kind of visual concept reasoning
that is based on interactions between high-level visual concepts.
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Chapter 3

Bayesian Model-Agnostic Meta-Learning

Taesup Kim, Jaesik Yoon, Ousmane Dia, Sungwoong Kim, Yoshua Bengio and
Sungjin Ahn
Appeared in:

- Proceedings of Advances in Neural Information Processing Systems 31 (NeurIPS 2018)

Personal Contribution. Sungjin Ahn initially proposed an idea to combine gradient-
based meta-learning (MAML) with nonparametric variational inference (SVGD) to model
uncertainty during meta-learning, and he also set up the initial framework of it. To make
this work, I and Sungjin Ahn came up with several types of novel meta-loss functions,
which was also discussed with Sungwoong Kim, and I implemented all related codes to run
all experiments to validate those loss functions. Based on the initial experimental results,
we formulated a chaser loss as our meta-loss shown in the paper. I particularly ran all
supervised learning and active learning experiments based on it. Ousmane Dia supported
us by initiating the experimental setup at the beginning to make the project move forward
smoothly. Jaesik Yoon, who is also the first and equal author/contributor, mainly focused on
the reinforcement learning part, and he made our method properly work with reinforcement
learning tasks. He also ran all those related experiments by himself. I also participated
heavily in the writing with Sungjin Ahn, who contributed significantly to the introductory
part, and Yoshua Bengio did the final editing. Furthermore, this paper was selected as a
spotlight presentation, and I mainly prepared and gave the presentation for it.

Context. Due to inherent model uncertainty, learning to infer a Bayesian posterior from
a few-shot dataset is an important step towards robust meta-learning (i.e task-level adap-
tation). However, at that moment, most of the related works were focusing on the meta-
learning learning framework without considering the uncertainty. For this reason, we pro-
posed a novel Bayesian model-agnostic meta-learning method. The proposed method com-
bines efficient gradient-based meta-learning with nonparametric variational inference in a
principled probabilistic framework. Unlike previous methods, during fast adaptation, the



method is capable of learning complex uncertainty structure beyond a simple Gaussian ap-
proximation, and during meta-update, a novel Bayesian mechanism prevents meta-level over-
fitting. As our method remains a gradient-based method, it is also a Bayesian model-agnostic
method applicable to various tasks including reinforcement learning. Experimental results
show the accuracy and robustness of the proposed method in sinusoidal regression, image
classification, active learning, and reinforcement learning.

Keywords: meta-learning, few-shot learning, fast task adaptation, uncertainty, Bayesian
inference, MAML, SVGD
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3.1. Introduction
Two-year-old children can infer a new category from only one instance (Smith and Slone,

2017). This is presumed to be because during early learning, a human brain develops foun-
dational structures such as the “shape bias” in order to learn the learning procedure (Landau
et al., 1988). This ability, also known as learning to learn or meta-learning (Biggs, 1985;
Bengio et al., 1990), has recently obtained much attention in machine learning by formulat-
ing it as few-shot learning (Lake et al., 2015; Vinyals et al., 2016). Because, initiating the
learning from scratch, a neural network can hardly learn anything meaningful from such a
few data points, a learning algorithm should be able to extract the statistical regularity from
past tasks to enable warm-start for subsequent tasks.

Learning a new task from a few examples inherently induces a significant amount of un-
certainty. This is apparent when we train a complex model such as a neural network using
only a few examples. It is also empirically supported by the fact that a challenge in existing
few-shot learning algorithms is their tendency to overfit (Mishra et al., 2017). A robust meta-
learning algorithm therefore must be able to systematically deal with such uncertainty in
order to be applicable to critical problems such as healthcare and self-driving cars. Bayesian
inference provides a principled way to address this issue. It brings us not only robustness
to overfitting but also numerous benefits such as improved prediction accuracy by Bayesian
ensembling (Balan et al., 2015), active learning (Gal et al., 2016), and principled/safe explo-
ration in reinforcement learning (Houthooft et al., 2016). Therefore, developing a Bayesian
few-shot learning method is an important step towards robust meta-learning.

Motivated by the above arguments, in this paper we propose a Bayesian meta-learning
method, called Bayesian MAML. By introducing Bayesian methods for both fast adaptation
and meta-update, the proposed method learns to quickly obtain an approximate posterior
of a given unseen task and provides the benefits of having access to uncertainty. Being an
efficient and scalable gradient-based meta-learner which encodes the meta-level statistical
regularity in the initial model parameters, our method remains a model-agnostic method
applicable to various tasks including reinforcement learning. Combining an efficient non-
parametric variational inference method with gradient-based meta-learning in a principled
probabilistic framework, it can learn complex uncertainty structures while remaining simple
to implement.

The main contributions of the paper are as follows. We propose a novel Bayesian method
for meta-learning. The proposed method is based on a novel Bayesian fast adaptation method
and a new meta-update loss called the Chaser loss. To our knowledge, the Bayesian fast adap-
tation is the first in meta-learning that provides flexible capability to capture the complex
uncertainty curvature of the task-posterior beyond a simple Gaussian approximation. Fur-
thermore, unlike the previous methods, the Chaser loss prevents meta-level overfitting. In
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experiments, we show that our method is efficient, accurate, robust, and applicable to vari-
ous problems: sinusoidal regression, image classification, reinforcement learning, and active
learning.

3.2. Preliminaries
Consider a model y = fθ(x) parameterized by and differentiable w.r.t. θ. Task τ is speci-

fied by aK-shot datasetDτ that consists of a small number of training examples, e.g.,K pairs
(xk,yk) per class for classification. We assume that tasks are sampled from a task distribution
τ ∼ p(T ) such that the sampled tasks share the statistical regularity of the task distribution.
A meta-learning algorithm leverages this regularity to improve the learning efficiency of sub-
sequent tasks. The whole dataset of tasks is divided into training/validation/test tasksets,
and the dataset of each task is further divided into task-training/task-validation/task-test
datasets.

Model-Agnostic Meta Learning (MAML) proposed by Finn et al. (2017) is a
gradient-based meta-learning framework. Because it works purely by gradient-based opti-
mization without requiring additional parameters or a problem specialized model, it is simple
and generally applicable to any model as long as the gradient can be estimated.

Algorithm 3.1 MAML
Sample a mini-batch of tasks Tt from p(T )
for each task τ ∈ Tt do
θτ ← GDn(θ0;Dtrn

τ , α)
end for
θ0 ← θ0 − β∇θ0

∑
τ∈Tt L(θτ ;Dval

τ )

In Algorithm 3.1, we briefly review MAML. At each meta-train iteration t, it performs:
(1) Task-Sampling: a mini-batch Tt of tasks is sampled from the task distribution p(T ).

Each task τ ∈ Tt provides task-train data Dtrn
τ and task-validation data Dval

τ .
(2) Fast Adaptation (or Inner-Update): the parameter for each task τ in Tt is updated

by starting from the current generic initial model θ0 and then performing n gradient
descent steps on the task-train loss, an operation which we denote by GDn (θ0;Dtrn

τ ,α)
with α being a step size.

(3) Meta-Update (or Outer-Update): the generic initial parameter θ0 is updated by gra-
dient descent. The meta-loss is the summation of task-validation losses for all tasks
in Tt, i.e.,

∑L (θτ ;Dval
τ

)
where the summation is over all τ ∈ Tt.

At meta-test time, given an unseen test-task τ̄ ∼ p(T ), starting from the optimized initial
model θ∗0, we obtain a model θτ̄ by taking a small number of inner-update steps using K-shot
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task-training data Dtrn
τ̄ . Then, the learned model θτ̄ is evaluated on the task-test dataset

Dtst
τ̄ .

Stein Variational Gradient Descent (SVGD) (Liu and Wang, 2016) is a recently
proposed nonparametric variational inference method. SVGD combines the strengths of
MCMC and variational inference. Unlike traditional variational inference, SVGD does not
confine the family of approximate distributions within tractable parametric distributions
while remaining a simple algorithm. Also, it converges faster than MCMC because its update
rule is deterministic and leverages the gradient of the target distribution. Specifically, to
obtain M samples from target distribution p(θ), SVGD maintains M instances of model
parameters, called particles. We denote the particles by Θ = {θm}Mm=1. At iteration t, each
particle θt ∈ Θt is updated by the following rule:

θt+1 ← θt + εtφ(θt),

where φ(θt) = 1
M

M∑
j=1

[
k(θjt , θt)∇θjt

log p(θjt ) +∇θjt
k(θjt , θt)

]
,

(3.2.1)

εt is step-size and k(x,x′) is a positive-definite kernel. We can see that a particle consults with
other particles by asking their gradients, and thereby determines its own update direction.
The importance of other particles is weighted according to the kernel distance, relying more
on closer particles. The last term ∇θjk(θj, θm) enforces repulsive force between particles
so that they do not collapse to a point. The resulting particles can be used to obtain the
posterior predictive distribution as:

p(y|x,Dτ ) =
∫
p(y|x,θ)p(θ|Dτ )dθ ≈ 1

M

∑
m

p(y|x,θm). (3.2.2)

where each particle θm is sampled from p(θ|Dτ ).
A few properties of SVGD are particularly relevant to the proposed method: (i) when the

number of particles M equals 1, SVGD becomes standard gradient ascent on the objective
log p(θ), (ii) under a certain condition, an SVGD-update increasingly reduces the distance
between the approximate distribution defined by the particles and the target distribution,
in the sense of Kullback-Leibler (KL) divergence (Liu and Wang, 2016), and finally (iii) it is
straightforward to apply to reinforcement learning by using Stein Variational Policy Gradient
(SVPG) (Liu et al., 2017).

3.3. Proposed Method
3.3.1. Bayesian Fast Adaptation

Our goal is to learn to infer by developing an efficient Bayesian gradient-based meta-
learning method to efficiently obtain the task-posterior p(θτ |Dtrn

τ ) of a novel task. As our
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method is in the same class as MAML—in the sense that it encodes the meta-knowledge in
the initial model by gradient-based optimization—we first consider the following probabilistic
interpretation of MAML with one inner-update step,

p(Dval
T | θ0,Dtrn

T ) =
∏
τ∈T

p(Dval
τ | θ′τ = θ0 + α∇θ0 log p(Dtrn

τ | θ0)), (3.3.1)

where p(Dval
τ |θ′τ ) = ∏|Dval

τ |
i=1 p(yi|xi,θ′τ ), Dtrn

T denotes all task-train sets in training taskset T ,
and Dval

T has the same meaning but for task-validation sets. From the above, we can see that
the inner-update step of MAML amounts to obtaining task model θ′τ from which the likeli-
hood of the task-validation set Dval

τ is computed. The meta-update step is then to perform
maximum likelihood estimation of this model w.r.t. the initial parameter θ0. This proba-
bilistic interpretation can be extended further to applying empirical Bayes to a hierarchical
probabilistic model (Grant et al., 2018) as follows:

p(Dval
T | θ0,Dtrn

T ) =
∏
τ∈T

(∫
p(Dval

τ | θτ )p(θτ | Dtrn
τ , θ0)dθτ

)
. (3.3.2)

We see that the probabilistic MAML model in Equation 3.3.1 is a special case of Equa-
tion 3.3.2 that approximates the task-train posterior p(θτ |θ0,Dtrn

τ ) by a point estimate
θ′τ . That is, p(θτ |Dtrn

τ , θ0) = δθ′τ (θτ ) where δy(x) = 1 if x = y, and 0 otherwise. To model the
task-train posterior which also becomes the prior of task-validation set, Grant et al. (2018)
used an isotropic Gaussian distribution with a fixed variance.

“Can we use a more flexible task-train posterior than a point estimate or a simple Gauss-
ian distribution while maintaining the efficiency of gradient-based meta-learning?” This is
an important question because as discussed in Grant et al. (2018), the task-train posterior of
a Bayesian neural network (BNN) trained with a few-shot dataset would have a significant
amount of uncertainty which, according to the Bayesian central limit theorem (Le Cam,
1986; Ahn et al., 2012), cannot be well approximated by a Gaussian distribution.

Our first step for designing such an algorithm starts by noticing that SVGD performs
deterministic updates and thus gradients can be backpropagated through the particles. This
means that we now maintain M initial particles Θ0 and by obtaining samples from the task-
train posterior p(θτ |Dtrn

τ ,Θ0) using SVGD (which is now conditioned on Θ0 instead of θ0),
we can optimize the following Monte Carlo approximation of Equation 3.3.2 by computing
the gradient of the meta-loss log p(Dval

T |Θ0,Dtrn
T ) w.r.t. Θ0,

p(Dval
T | Θ0,Dtrn

T ) ≈
∏
τ∈T

(
1
M

M∑
m=1

p(Dval
τ | θmτ )

)
,

where θmτ ∼ p(θτ | Dtrn
τ ,Θ0).

(3.3.3)
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Algorithm 3.2 Bayesian Fast Adaptation
Sample a mini-batch of tasks Tt from p(T )
for each task τ ∈ Tt do

Θτ (Θ0)← SVGDn(Θ0;Dtrn
τ , α)

end for
Θ0 ← Θ0 − β∇Θ0

∑
τ∈Tt LBFA

(
Θτ (Θ0);Dval

τ

)

Being updated by gradient descent, it hence remains an efficient meta-learning method while
providing a more flexible way to capture the complex uncertainty structure of the task-train
posterior than a point estimate or a simple Gaussian approximation.

Algorithm 3.2 describes an implementation of the above model. Specifically, at iteration
t, for each task τ in a sampled mini-batch Tt, the particles initialized to Θ0 are updated for n
steps by applying the SVGD updater, denoted by SVGDn(Θ0;Dtrn

τ ) – the target distribution
(the p(θjt ) in Equation 3.2.1 is set to the task-train posterior p(θτ |Dtrn

τ ) ∝ p(Dtrn
τ |θτ )p(θτ ) 3.1.

This results in task-wise particles Θτ for each task τ ∈ Tt. Then, for the meta-update, we
can use the following meta-loss:

log p(Dval
Tt |Θ0,Dtrn

Tt ) ≈
∑
τ∈Tt
LBFA(Θτ (Θ0);Dval

τ ),

where LBFA(Θτ (Θ0);Dval
τ ) = log

[
1
M

M∑
m=1

p(Dval
τ |θmτ )

]
.

(3.3.4)

Here, we use Θτ (Θ0) to explicitly denote that Θτ is a function of Θ0. Note that, by the
above model, all the initial particles in Θ0 are jointly updated in such a way as to find the
best joint-formation among them. From this optimized initial particles, the task-posterior
of a new task can be obtained quickly, i.e., by taking a small number of update steps, and
efficiently, i.e, with a small number of samples. We call this Bayesian Fast Adaptation (BFA).
The method can be considered a Bayesian ensemble in which, unlike non-Bayesian ensemble
methods, the particles interact with each other to find the best formation representing the
task-train posterior. Because SVGD with a single particle, i.e., M = 1, is equal to gradient
ascent, Algorithm 3.2 reduces to MAML when M = 1.

Although the above algorithm brings the power of Bayesian inference to fast adaptation,
it can be numerically unstable due to the product of the task-validation likelihood terms.
More importantly, for meta-update it is not performing Bayesian inference. Instead, it looks
for the initial prior Θ0 such that SVGD-updates lead to minimizing the empirical loss on
task-validation sets. Therefore, like other meta-learning methods, the BFA model can still
suffer from overfitting despite the fact that we use a flexible Bayesian inference in the inner

3.1In our experiments, we put hyperprior on the variance of the prior (mean is set to 0). Thus, the posterior of
hyperparameter is automatically learned also by SVGD, i.e., the particle vectors include the prior parameters.
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update. The reason is somewhat apparent. Because we perform only a small number of inner-
updates while the meta-update is based on empirical risk minimization, the initial model Θ0

can overfit to the task-validation sets when we use highly complex models like deep neural
networks. Therefore, to become a fully robust meta-learning approach, it is desired for the
method to retain the uncertainty during the meta-update as well while remaining an efficient
gradient-based method.

3.3.2. Bayesian Meta-Learning with Chaser Loss

Motivated by the above observation, we propose a novel meta-loss. For this, we start
by defining the loss as the dissimilarity between approximate task-train posterior pnτ ≡
pn(θτ |Dtrn

τ ; Θ0) and true task-posterior p∞τ ≡ p(θτ |Dtrn
τ ∪ Dval

τ ). Note that pnτ is obtained by
taking n fast-adaptation steps from the initial model. Assuming that we can obtain samples
Θn
τ and Θ∞τ respectively from these two distributions, the new meta-learning objective can

be written as

argmin
Θ0

∑
τ

dp(pnτ ‖ p∞τ ) ≈ argmin
Θ0

∑
τ

ds(Θn
τ (Θ0) ‖ Θ∞τ ). (3.3.5)

Here, dp(p‖q) is a dissimilarity between two distributions p and q, and ds(s1‖s2) a dis-
tance between two sample sets. We then want to minimize this distance using gradient
w.r.t. Θ0. This is to find optimized Θ0 from which the task-train posterior can be obtained
quickly and closely to the true task-posterior. However, this is intractable because we neither
have access to the true posterior p∞τ nor its samples Θ∞τ .

To this end, we approximate Θ∞τ by Θn+s
τ . This is done by (i) obtaining Θn

τ from
pn(θτ |Dtrn

τ ; Θ0) and then (ii) taking s additional SVGD steps with the updated target dis-
tribution p(θτ |Dtrn

τ ∪ Dval
τ ), i.e., augmented with additional observation Dval

τ . Although it is
valid in theory not to augment the leader with the validation set, to help fast convergence we
take advantage of it like other meta-learning methods. Note that, because SVGD-updates
provide increasingly better approximations of the target distribution as s increases, the leader
Θn+s
τ becomes closer to the target distribution Θ∞τ than the chaser Θn

τ . This gives us the
following meta-loss:

LBMAML(Θ0) =
∑
τ∈Tt

ds(Θn
τ ‖ Θn+s

τ ) =
∑
τ∈Tt

M∑
m=1
‖θn,mτ − θn+s,m

τ ‖2
2. (3.3.6)

Here, to compute the distance between the two sample sets, we make a one-to-one mapping
between the leader particles and the chaser particles and compute the Euclidean distance
between the paired particles. Note that we do not back-propagate through the leader par-
ticles because we use them as targets that the chaser particles follow. A more sophisticated
method like maximum mean discrepancy (Borgwardt et al., 2006) can also be used here. In
our experiments, setting n and s to a small number like n = s = 1 worked well.
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Algorithm 3.3 Bayesian Meta-Learning with Chaser Loss (BMAML)
Initialize Θ0
for t = 0, . . . until converge do
Sample a mini-batch of tasks Tt from p(T )
for each task τ ∈ Tt do
Compute chaser Θn

τ (Θ0) = SVGDn(Θ0;Dtrn
τ , α)

Compute leader Θn+s
τ (Θ0) = SVGDs(Θn

τ (Θ0);Dtrn
τ ∪ Dval

τ , α)
end for
Θ0 ← Θ0 − β∇Θ0

∑
τ∈Tt ds (Θn

τ (Θ0) ‖ stopgrad(Θn+s
τ (Θ0)))

end for

Minimizing the above loss w.r.t. Θ0 places Θ0 in a region where the chaser Θn
τ can

efficiently chase the leader Θn+s
τ in n SVGD-update steps starting from Θ0. Thus, we call

this meta-loss the Chaser loss. Because the leader converges to the posterior distribution
instead of doing empirical risk minimization, it retains a proper level of uncertainty and
thus prevents from meta-level overfitting. In Algorithm 3.3, we describe the algorithm for
supervised learning. One limitation of the method is that, like other ensemble methods,
it needs to maintain M model instances. Because this could sometimes be an issue when
training a large model, in the Experiment section we introduce a way to share parameters
among the particles.

3.4. Related Works
There have been many studies in the past that formulate meta-learning and learning-

to-learn from a probabilistic modeling perspective (Tenenbaum, 1999; Fe-Fei et al., 2003;
Lawrence and Platt, 2004; Daumé III, 2009). Since then, the remarkable advances in deep
neural networks (Krizhevsky et al., 2012; Goodfellow et al., 2016) and the introduction of new
few-shot learning datasets (Lake et al., 2015; Ravi and Larochelle, 2017), have rekindled the
interest in this problem from the perspective of deep networks for few-shot learning (Santoro
et al., 2016b; Vinyals et al., 2016; Snell et al., 2017; Duan et al., 2016; Finn et al., 2017;
Mishra et al., 2017). Among these, Finn et al. (2017) proposed MAML that formulates
meta-learning as gradient-based optimization.

Grant et al. (2018) reinterpreted MAML as a hierarchical Bayesian model, and pro-
posed a way to perform an implicit posterior inference. However, unlike our proposed model,
the posterior on validation set is approximated by local Laplace approximation and used a
relatively complex 2nd-order optimization using K-FAC (Martens and Grosse, 2015). The
fast adaptation is also approximated by a simple isotropic Gaussian with fixed variance. As
pointed by Grant et al. (2018), this approximation would not work well for skewed distribu-
tions, which is likely to be the case of BNNs trained on a few-shot dataset. The authors also
pointed that their method is limited in that the predictive distribution over new data-points
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is approximated by a point estimate. Our method resolves these limitations. Although it can
be expensive when training many large networks, we mitigate this cost by parameter sharing
among the particles. In addition, Bauer et al. (2017) also proposed Gaussian approximation
of the task-posterior and a scheme of splitting the feature network and the classifier which
is similar to what we used for the image classification task. Lacoste et al. (2017) proposed
learning a distribution of stochastic input noise while fixing the BNN model parameter.

3.5. Experiments
We evaluated our proposed model (BMAML) in various few-shot learning tasks: sinu-

soidal regression, image classification, active learning, and reinforcement learning. Because
our method is a Bayesian ensemble, as a baseline model we used an ensemble of independent
MAML models (EMAML) from which we can easily recover regular MAML by setting the
number of particles to 1. In all our experiments, we configured BMAML and EMAML to
have the same network architecture and used the RBF kernel. The experiments are designed
in such a way to see the effects of uncertainty in various ways such as accuracy, robustness,
and efficient exploration.

3.5.1. Regression

The population of the tasks is defined by a sinusoidal function y = A sin(wx + b) + ε

which is parameterized by amplitude A, frequency w, and phase b, and observation noise ε.
To sample a task, we sample the parameters uniformly randomly A ∈ [0.1, 5.0], b ∈ [0.0, 2π],
w ∈ [0.5, 2.0] and add observation noise from ε ∼ N (0, (0.01A)2). The K-shot dataset is
obtained by sampling x from [−5.0, 5.0] and then by computing its corresponding y with
noise ε. Note that, because of the highly varying frequency and observation noise, this is
a more challenging setting containing more uncertainty than the setting used in Finn et al.
(2017). For the regression model, we used a neural network with 3 layers each of which
consists of 40 hidden units.

In Figure 3.1, we show the mean squared error (MSE) performance on the test tasks.
To see the effect of the degree of uncertainty, we controlled the number of training tasks
|T | to 100 and 1000, and the number of observation shots K to 5 and 10. The lower
number of training tasks and observation shots is expected to induce a larger degree of
uncertainty. We observe, as we claimed, that both MAML (which is EMAML with M = 1)
and EMAML overfit severely in the settings with high uncertainty although EMAML with
multiple particles seems to be slightly better than MAML. BMAML with the same number of
particles provides significantly better robustness and accuracy for all settings. Also, having
more particles tends to improve further.
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Fig. 3.1. Sinusoidal regression experimental results (meta-testing performance) by varying
the number of examples (K-shot) given for each task and the number of tasks |T | used for
meta-training.
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3.5.2. Classification

To evaluate the proposed method on a more complex model, we test the performance on
the miniImagenet classification task (Vinyals et al., 2016) involving task adaptation of 5-way
classification with 1 shot. The dataset consists of 60,000 color images of 84×84 dimension.
The images consist of total 100 classes and each of the classes contains 600 examples. The
entire classes are split into 64, 12, and 24 classes for meta-train, meta-validation, and meta-
test, respectively. We generated the tasks following the same procedure as in Finn et al.
(2017).

In order to reduce the space and time complexity of the ensemble models (i.e., BMAML
and EMAML) in this large network setting, we used the following parameter sharing scheme
among the particles, similarly to Bauer et al. (2017). We split the network architecture into
the feature extractor layers and the classifier. The feature extractor is a convolutional network
with 5 hidden layers with 64 filters. The classifier is a single-layer fully-connected network
with softmax output. The output of the feature extractor which has 256 dimensions is input
to the classifier. We share the feature extractor across all the particles while each particle has
its own classifier. Therefore, the space complexity of the network is O(|θfeature|+M |θclassifier|).
Both the classifier and feature extractor are updated during meta-update, but for inner-
update only the classifier is updated. The baseline models are updated in the same manner.
We describe more details of the setting in Appendix.

We can see from Figure 3.2 (a) that for both M = 5 and M = 10 BMAML provides
more accurate predictions than EMAML. However, the performance of both BMAML and
EMAML with 10 particles is slightly lower than having 5 particles3.2. Because a similar
instability is also observed in the SVGD paper (Liu and Wang, 2016), we presume that one
possible reason is the instability of SVGD such as sensitivity to kernel function parameters. To
increase the inherent uncertainty further, in Figure 3.2 (b), we reduced the number of training
tasks |T | from 800K to 10K. We see that BMAML provides robust predictions even for such
a small number of training tasks while EMAML overfits easily.

3.5.3. Active Learning

In addition to the ensembled prediction accuracy, we can also evaluate the effectiveness
of the measured uncertainty by applying it to active learning. To demonstrate, we use the
miniImagenet classification task. To do this, given an unseen task τ at test time, we first run
a fast adaptation from the meta-trained initial particles Θ∗0 to obtain Θτ of the task-train
posterior p(θτ |Dτ ; Θ∗0). For this we used 5-way 1-shot labeled dataset. Then, from a pool of
unlabeled data Xτ = {x1, . . . , x20}, we choose an item x∗ that has the maximum predictive

3.2We found a similar instability in the relationship between the number of particles and the prediction
accuracy from the original implementation by the authors of the SVGD paper.
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(a) Few-shot image classification using different number of particles.

(b) Few-shot image classification using different number of tasks for meta-training.

(c) Active learning setting.

Fig. 3.2. Experimental results in miniImagenet dataset.
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entropy as:
x∗ = argmax

x∈Xτ
H[y|x,Dτ ] = −

∑
y′
p(y′|x,Dτ ) log p(y′|x,Dτ ). (3.5.1)

The chosen item x∗ is then removed from Xτ and added to Dτ along with its label. We
repeat this process until we consume all the data in Xτ . We set M to 5. As we can see
from Figure 3.2 (c), active learning using the Bayesian fast adaptation provides consistently
better results than EMAML. Particularly, the performance gap increases as more examples
are added. This shows that the examples picked by BMAML so as to reduce the uncertainty,
provides proper discriminative information by capturing a reasonable approximation of the
task-posterior. We presume that the performance degradation observed in the early stage
might be due to the class imbalance induced by choosing examples without considering the
class balance.

3.5.4. Reinforcement Learning

SVPG is a simple way to apply SVGD to policy optimization. Liu et al. (2017) showed
that the maximum entropy policy optimization can be recast to Bayesian inference. In this
framework, the particle update rule (a particle is now parameters of a policy) is simply to
replace the target distribution log p(θ) in Equation 3.2.1 with the objective of the maximum
entropy policy optimization, i.e., Eq(θ)[J(θ)] + ηH[q]] where q(θ) is a distribution of policies,
J(θ) is the expected return of policy θ, and η is a parameter for exploration control. De-
ploying multiple agents (particles) with a principled Bayesian exploration mechanism, SVPG
encourages generating diverse policy behaviours while being easy to parallelize.

We test and compare the models on the same MuJoCo continuous control tasks (Todorov
et al., 2012) as are used in Finn et al. (2017). In the goal velocity task, the agent receives
higher rewards as its current velocity approaches the goal velocity of the task. In the goal
direction task, the reward is the magnitude of the velocity in either the forward or backward
direction. We tested these tasks for two simulated robots, the ant and the cheetah. The goal
velocity is sampled uniformly at random from [0.0, 2.0] for the cheetah and from [0.0,3.0]
for the ant. As the goal velocity and the goal direction change per task, a meta learner is
required to learn a given unseen task after trying K episodes. We implemented the policy
network with two hidden-layers each with 100 ReLU units. We tested the number of particles
for M ∈ {1, 5, 10} with M = 1 only for non-ensembled MAML. We describe more details of
the experiment setting in Appendix.

For meta-update, MAML uses TRPO (Schulman et al., 2015) which is designed with a
special purpose to apply for reinforcement learning and uses a rather expensive 2nd-order
optimization. However, the meta-update by the chaser loss is general-purpose and based on
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Fig. 3.3. Locomotion comparison results of SVPG-TRPO and VPG-TRPO
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Fig. 3.4. Locomotion comparison results of SVPG-Chaser and VPG-Reptile
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1st-order optimization3.3. Thus, for a fair comparison, we consider the following two experi-
ment designs. First, in order to evaluate the performance of the inner updates using Bayesian
fast adaptation, we compare the standard MAML, which uses vanilla policy gradient (REIN-
FORCE, Williams (1992)) for inner-updates and TRPO for meta-updates, with the Bayesian
fast adaptation with TRPO meta-update. We label the former as VPG-TRPO and the later
as SVPG-TRPO. Second, we compare SVPG-Chaser with VPG-Reptile. Because, similarly
to the chaser loss, Reptile (Nichol et al., 2018) performs 1st-order gradient optimization based
on the distance in the model parameter space, this provides us a fair baseline to evaluate the
chaser loss in RL. The VPG-TRPO and VPG-Reptile are implemented with independent
multiple agents. We tested the comparing methods for M = [1,5,10]. More details of the
experimental setting is provided in Appendix.

As shown in Figure 3.3 and Figure 3.4, we can see that overall, BMAML shows superior
performance to EMAML. In particular, BMAML performs significantly and consistently
better than EMAML in the case of using TRPO meta-updater. In addition, we can see that
BMAML performs much better than EMAML for the goal direction tasks. We presume that
this is because in the goal direction task, there is no goal velocity and thus a higher reward
can always be obtained by searching for a better policy. This, therefore, demonstrates that
BMAML can learn a better exploration policy than EMAML. In contrast, in the goal velocity
task, exploration becomes less effective because it is not desired once a policy reaches the
given goal velocity. This thus explains the results on the goal velocity task in which BMAML
provides slightly better performance than EMAML. For some experiments, we also see that
having more particles do not necessarily provides further improvements. As in the case
of classification, we hypothesize that one of the reasons could be due to the instability of
SVGD. In Appendix , we also provide the results on 2D Navigation task, where we observe
similar superiority of BMAML to EMAML.

3.6. Discussions
BMAML is tied to SVGD? In principle, it could actually be more generally appli-

cable to any inference algorithm that can provide differentiable samples. Gradient-based
MCMC methods like HMC (Neal et al., 2011) or SGLD (Welling and Teh, 2011) are such
methods. We however chose SVGD specifically for BMAML because jointly updating the
particles altogether is more efficient for capturing the distribution quickly by a small number
of update steps. In contrast, MCMC would require to wait for much more iterations until
the chain mixes enough and a long backpropagation steps through the chain.

3.3When considering the inner update together, TRPO, Chaser and Reptile are 3rd/2nd/1st-order, respec-
tively.
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Parameter space v.s. prediction space?We defined the chaser loss by the distance in
the model parameter space although it is also possible to define it in the prediction distance,
i.e., by prediction error. We chose the parameter space because (1) we can save computation
for the forward-pass for predictions, and (2) it empirically showed better performance for RL
and similar performance for other tasks. The advantages of working in the parameter space
is also discussed in Nichol et al. (2018).

Do the small number of SVGD steps converge to the posterior? In our small-
data-big-network setting, a large area of a true task-posterior will be meaningless for other
tasks. Thus, it is not desired to fully capture the task-posterior but instead we need to find
an area which will be broadly useful for many tasks. This is the goal of hierarchical Bayes
which our method approximate by finding such area and putting Θ0 there. In theory, the
task-posterior can be fully captured with infinite number of particles and update-steps, and
thus dilute the initialization effect. In practice, the full coverage would, however, not be
achievable (and not desired) because SVGD or MCMC would have difficulties in covering all
areas of the complex multimodal task-posterior like that of a neural network.

3.7. Conclusion
Motivated by the hierarchical probabilistic modeling perspective to gradient-based meta-

learning, we proposed a Bayesian gradient-based meta learning method. To do this, we
combined the Stein Variational Gradient Descent with gradient-based meta learning in a
probabilistic framework, and proposed the Bayesian Fast Adaptation and the Chaser loss
for meta-update. As it remains a model-agnostic model, in experiments, we evaluated the
method in various types of learning tasks including supervised learning, active learning,
and reinforcement learning, and showed its superior performance in prediction accuracy,
robustness to overfitting, and efficient exploration.

As a Bayesian ensemble method, along with its advantages, the proposed method also
inherits the generic shortcomings of ensemble methods, particularly the space/time com-
plexity proportional to the number of particles. Although we showed that our parameter
sharing scheme is effective to mitigate this issue, it would still be interesting to improve the
efficiency further in this direction. In addition, because the performance of SVGD can be
sensitive to the parameters of the kernel function, incorporating the fast-adaptation of the
kernel parameter into a part of meta-learning would also be an interesting future direction.
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3.8. Appendix
3.8.1. Supervised Learning

Regression. We used 10 tasks for each meta-batch and the meta-validation dataset
Dval
τ is set to have the same size of the meta-training dataset Dtrn

τ (|Dtrn
τ | = |Dval

τ | = K).
During training, the number of steps n for chaser is set to n = 1 and also the number of
steps s for leader is set to s = 1. We used different step sizes α for computing chaser and
leader, 0.01 and 0.001, respectively. This allows the leader to stay nearby the chaser but
toward the target posterior and stabilized the training. The models were trained with using
different size of training dataset |T |, the number of tasks observable during training, and
we trained the model over 10000 epochs for |T | = 100 and 1000 epochs for |T | = 1000. In
Figure 3.5, we show the qualitative results on randomly sampled sinusoid task and we used 5
update steps. The task-train posterior p(θτ |Dtrn

τ ) decomposes into the train data likelihood
and parameter prior as p(θτ |Dtrn

τ ) ∝ p(Dtrn
τ |θτ )p(θτ ) and this is formulated as:

p(θτ |Dtrn
τ ) ∝

∏
(x,y)∈Dtrn

τ

N (y|fW (x), γ−1)
∏
w∈W
N (w|0, λ−1)Gamma(γ|a, b)Gamma(λ|a′, b′)

where θτ consists of network parameters W and scaling parameters γ, λ. In all experiments,
we set Gamma distribution hyper-parameters as a = 2.0, b = 0.2 and a′ = 2.0, b′ = 2.0.
During meta-update with chaser-loss, we used Adam optimizer (Kingma and Ba, 2014) with
learning rate β = 0.001.

Classification. All models and experiments on the miniImagenet classification task
are trained with using the same network architecture and 16 tasks are used for each meta-
batch during training. Each task is defined by randomly selected 5 classes with one instance
of each class to adapt the model and it is evaluated on unseen instances within the selected
5 classes. We used the meta-validation dataset Dval

τ containing one example per each class
for the 5-way 1-shot setting. This reduced the computational cost and also improved the
performance of all models. During training, the number of steps for chaser and leader both
are set to 1 (n = s = 1). The chaser and leader used step size α = 0.01 and α = 0.005,
respectively. The meta-update was done by using Adam optimizer (β = 0.0005). The models
were trained with using different size of training dataset |T | and we trained the model with
|T | = 800000 and 1 epoch. With |T | = 10000, the model was trained over 40 epochs. The
task-train posterior p(θτ |Dtrn

τ ) for classification is slightly different to the regression task due
to using softmax for the data likelihood.

p(θτ |Dtrn
τ ) ∝

∏
(x,y)∈Dtrn

τ

p(y|fW (x))
∏
w∈W
N (w|0, λ−1)Gamma(λ|a, b)
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Fig. 3.5. Regression qualitative examples: randomly sampled tasks with 10 examples (10-
shot) and 10 gradient updates for adaptation
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where the hyper-parameters for Gamma distribution were set as a = 2.0, b = 0.2 or a =
1.0, b = 0.1 in our experiments.

3.8.2. Active Learning

Here we describe our algorithm for active learning, which is based on our BMAML and
also EMAML. The details are shown in Algorithm 3.4.

Algorithm 3.4 Active Learning on Image Classification
Sample a few-shot labeled dataset Dτ and a pool of unlabeled dataset Xτ of task τ
Initialize Θτ ← Θ∗0
Update Θτ ← SVGDn(Θτ ;Dτ , α)
while Xτ is not empty do
Select x′ ← argmaxx∈Xτ H[y|x,Θτ ] and remove x′ from Xτ
Request y′ of x′
Update Dτ ← Dτ ∪ {(x′, y′)}
Update Θτ ← SVGDn(Θτ ;Dτ , α)

end while

3.8.3. Reinforcement Learning: Locomotion

The locomotion experiments require two simulated robots, a planar cheetah and 3D
quadruped ones (called as ant), and two individual goals, to run in a particular direction or
at a particular velocity. For the ant goal velocity, a positive bonus reward at each timestep
is added to prevent the ant from ending the episode. In those experiments, the timestep
in each episodes is 200, the number of episode per each inner update, K is 10 except the
ant goal direction task, in which 40 episodes for each inner update is used, because of task
complexity. The number of tasks per each meta update is 20, and the models are trained for
up to 200 meta iterations.

We evaluate our proposed method on two cases, SVPG-TRPO vs VPG-TRPO and
SVPG-Chaser vs VPG-Reptile. We describe the methods in this subsection, except VPG-
TRPO, because this is MAML when M = 1.

SVPG-TRPO. This method is to use SVPG as inner update and TRPO as meta up-
date, which is following to a simple Bayesian meta-learning manner. InK-shot reinforcement
learning on this method, K episodes from each policy particles and task τ (total number of
episode is KM), and the corresponding rewards are used for task learning on the task. This
method gets the above data (Dtrn

τ ) from Θ0, and updates the parameters Θ0 to Θn
τ with Dtrn

τ

and SVPG. After getting few-shot learned parameters (Θn
τ ), our method get new data (Dval

τ )
from Θn

τ . After all the materials for meta learning have been collected, our method finds the
meta loss with few-shot learned particles and task-validation set, Dvalτ . On meta-learning,
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TRPO (Schulman et al., 2015) is used as MAML (Finn et al., 2017) for validating inner
Bayesian learning performance. The overall algorithm is described in Algorithm 3.5.

Algorithm 3.5 Simple Bayesian Meta-Learning for Reinforcement Learning
Initialize Θ0
for t = 0, . . . until converge do
Sample a mini-batch of tasks Tt from p(T )
for each task τ ∈ Tt do
Sample trajectories Dtrn

τ with Θ0 in τ
Compute chaser Θn

τ = SVPG(Θ0;Dtrn
τ )

Sample trajectories Dval
τ with Θn

τ in τ
end for
Θ0 ← Θ0 − β∇Θ0

∑
τ∈Tt Lmetaτ (Θn

τ ;Dval
τ )

end for

SVPG-Chaser. This method is to use SVPG as inner-update and chaser loss for meta-
update to maintain uncertainty. Different to supervised learning, this method updates leader
particles just with Dval

τ in policy gradient update manner. Same chaser loss to supervised
learning ones is consistently applied to evaluating the chaser loss extensibility. The chaser
loss in RL changes the meta update from a policy gradient problem to a problem similar
to imitation learning. Unlike conventional imitation learning with given expert agent, this
method keeps the uncertainty provided by the SVPG by following one more updated agent,
and ultimately ensures that the chaser agent is close to the expert. Compared to Algorithm
3.5, this method adds updating the leader and changes the method of meta update like
Algorithm 3.6.

Algorithm 3.6 Bayesian Meta-Learning for Reinforcement Learning with Chaser Loss
Initialize Θ0
for t = 0, . . . until converge do
Sample a mini-batch of tasks Tt from p(T )
for each task τ ∈ Tt do
Sample trajectories Dtrn

τ with Θ0 in τ
Compute chaser Θn

τ = SVPG(Θ0;Dtrn
τ )

Sample trajectories Dval
τ with Θn

τ in τ
Compute leader Θn+s

τ = SVPG(Θn
τ ;Dval

τ )
end for
Θ0 ← Θ0 − β∇Θ0

∑
τ∈Tt ds(Θn

τ ||stopgrad(Θn+s
τ ))

end for

VPG-Reptile. Reptile (Nichol et al., 2018) solved meta learning problem by using only
1st-order derivatives, and used meta update in parameter space. We design a version of meta
loss similar to Reptile to verify the performance of chaser loss in RL problem. This method
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computes the chaser Θn
τ using Dtrn

τ and then calculates the euclidean distance between this
parameter and the global parameter as a meta loss (to prevent the gradient from being
calculated through the chaser parameter to maintain the 1st-order derivatives). The overall
algorithm is described in Algorithm 3.7.

Algorithm 3.7 VPG-Reptile
Initialize Θ0
for t = 0, . . . until converge do
Sample a mini-batch of tasks Tt from p(T )
for each task τ ∈ Tt do
Sample trajectories Dtrn

τ with Θ0 in τ
Compute chaser Θn

τ = VPG(Θ0;Dtrn
τ )

end for
Θ0 ← Θ0 − β∇Θ0

∑
τ∈Tt ds(Θ0||stopgrad(Θn

τ ))
end for

Experimental Details. Inner update learning rate and the number of inner update
are set as 0.1 and 1 for all experiments, which are locomotion (ant/cheetah goal velocity
and ant/cheetah goal direction) and 2D-Navigation experiments. Meta update learning rate
is set as 0.1 for ant goal direction and 0.01 for other experiments. η, the parameter that
controls the strength of exploration in SVPG is set as 0.1 for ant velocity experiment with
SVPG-Chaser, ant goal direction and 2D Navigation with SVPG-Chaser, and 1.0 for other
experiments. Each plots are based on an mean and a standard deviation from three different
random seed. The subsumed results are plotted with the average reward of maximum task
rewards in during of particles.

3.8.4. Reinforcement Learning: 2D Navigation

We also compare the models on the toy experiment designed in previous work (Finn
et al., 2017), 2D Navigation. This experiment is a set of tasks where agent must move to
different goal positions in 2D, which is randomly set for each task within a unit square. The
observation is the current 2D position, and actions correspond to velocity clipped to be in
the range [-0.1, 0.1]. The reward is the negative squared distance between the goal and
the current position, and episodes terminate when the agent is within 0.01 of the goal or
at the timestep = 100. We used 10 episodes per each inner update (K = 10) and 20 tasks
per each meta update. The models are trained for up to 100 meta iterations. The policy
network has two hidden layers each with 100 ReLU units. We tested the number of particles
for M ∈ {1, 5, 10} with M = 1 only for non-ensembled MAML. Same to above locomotion
experiments, we compare the models as SVPG-TRPO vs VPG-TRPO and SVPG-Chaser vs
VPG-Reptile. As shown in Figure 3.6, BMAML showed better performance than EMAML
on both comparisons.
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(a) SVPG-TRPO vs. VPG-TRPO

(b) SVPG-Chaser vs. VPG-Reptile

Fig. 3.6. 2D Navigation results (with three different random seeds).
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Chapter 4

Variational Temporal Abstraction

Taesup Kim, Sungjin Ahn and Yoshua Bengio
Appeared in:

- Proceedings of Advances in Neural Information Processing Systems 32 (NeurIPS 2019)

Personal Contribution. I was interested in video prediction with adaptive frame skipping,
which is highly related to my previous work in neural acoustic modeling (Song et al., 2018),
and Sungjin Ahn was trying to find a better video prediction model that can improve the
imagination-augmented agent learning. In the end, we came up with an idea to implement
a model with jumpy future predictions. Most of our proposed methods were designed by
myself with guidance from Sungjin Ahn and Yoshua Bengio. Sungjin Ahn also worked hard
to design our experiments that could properly show the efficiency of our proposed methods.
In this work, I was the only person, who implemented and performed all of the experiments.
Sungjin Ahn significantly contributed to writing the introductory part and Yoshua Bengio
did the final editing. This work was also presented in ICML Generative Modeling and
Model-Based Reasoning for Robotics and AI workshop 2019, and I prepared and gave the
presentation for it.

Context. At this stage, while model-based reinforcement learning (RL) may not have clear
commercial applications, its potential impact is enormous as an environment becomes more
complex and adaptive. A key challenge in model-based RL is to synthesize computationally
efficient and accurate environment models. That way, we mainly focused on the topic to
make models computationally efficient by implementing jumpy future predictions based on
the concept of temporal-level adaptation (temporal abstraction). We introduced a variational
approach to learning and inference of temporally hierarchical structure and representation
for sequential data by proposing the Variational Temporal Abstraction (VTA). It is a hier-
archical recurrent state-space model that can infer the latent temporal structure and thus
perform the stochastic state transition hierarchically. Furthermore, we applied this model
to implement a jumpy imagination ability in imagination-augmented agent-learning in order



to improve the efficiency of the imagination. In experiments, we demonstrated that our
proposed method can model 2D and 3D visual sequence datasets with interpretable tempo-
ral structure discovery and that its application to jumpy imagination enables more efficient
agent-learning in a 3D navigation task.

Keywords: representation learning, temporal abstraction, temporally hierarchical
structure, variational inference, imagination, agent-learning, model-based reinforcement
learning (RL)

70



4.1. Introduction
Discovering temporally hierarchical structure and representation in sequential data is the

key to many problems in machine learning. In particular, for an intelligent agent exploring
an environment, it is critical to learn such spatio-temporal structure hierarchically because
it can, for instance, enable efficient option-learning and jumpy future imagination, abilities
critical to resolving the sample efficiency problem (Hamrick, 2019). Without such temporal
abstraction, imagination would easily become inefficient; imagine a person planning one-hour
driving from her office to home with future imagination at the scale of every second. It is also
biologically evidenced that future imagination is the very fundamental function of the human
brain (Mullally and Maguire, 2014; Buckner, 2010) which is believed to be implemented via
hierarchical coding of the grid cells (Wei et al., 2015).

There have been approaches to learn such hierarchical structure in sequences such as the
HMRNN (Chung et al., 2016). However, as a deterministic model, it has the main limitation
that it cannot capture the stochastic nature prevailing in the data. In particular, this is
a critical limitation to imagination-augmented agents because exploring various possible
futures according to the uncertainty is what makes the imagination meaningful in many
cases. There have been also many probabilistic sequence models that can deal with such
stochastic nature in the sequential data (Chung et al., 2015; Krishnan et al., 2017; Fraccaro
et al., 2017). However, unlike HMRNN, these models cannot automatically discover the
temporal structure in the data.

In this paper, we propose the Hierarchical Recurrent State Space Model (HRSSM) that
combines the advantages of both worlds: it can discover the latent temporal structure (e.g.,
subsequences) while also modeling its stochastic state transitions hierarchically. For its
learning and inference, we introduce a variational approximate inference approach to deal
with the intractability of the true posterior. We also propose to apply the HRSSM to
implement efficient jumpy imagination for imagination-augmented agents. We note that the
proposed HRSSM is a generic generative sequence model that is not tied to the specific
application to the imagination-augmented agent but can be applied to any sequential data.
In experiments, on 2D bouncing balls and 3D maze exploration, we show that the proposed
model can model sequential data with interpretable temporal abstraction discovery. Then,
we show that the model can be applied to improve the efficiency of imagination-augmented
agent-learning.

The main contributions of the paper are:
• We propose the Hierarchical Recurrent State Space Model (HRSSM) that is the first
stochastic sequence model that discovers the temporal abstraction structure.
• We propose the application of HRSSM to imagination-augmented agent so that it
can perform efficient jumpy future imagination.
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• In experiments, we showcase the temporal structure discovery and the benefit of
HRSSM for agent learning.

4.2. Proposed Model
4.2.1. Hierarchical Recurrent State Space Models

In our model, we assume that a sequence X = x1:T = (x1, . . . ,xT ) has a latent structure of
temporal abstraction that can partition the sequence into N non-overlapping subsequences
X = (X1, . . . ,XN). A subsequenceXi = xi1:li has length li such that T = ∑T

i=1 li and L = {li}.
Unlike previous works (Serban et al., 2017), we treat the number of subsequences N and the
lengths of subsequences L as discrete latent variables rather than given parameters. This
makes our model discover the underlying temporal structure adaptively and stochastically.

We also assume that a subsequence Xi is generated from a temporal abstraction zi and
an observation xt has observation abstraction st. The temporal abstraction and observation
abstraction have a hierarchical structure in such a way that all observations in Xi are gov-
erned by the temporal abstraction zi in addition to the local observation abstraction st. As
a temporal model, the two abstractions take temporal transitions. The transition of tem-
poral abstraction occurs only at the subsequence scale while the observation transition is
performed at every time step. This generative process can then be written as follows:

p(X,S,L,Z,N) = p(N)
N∏
i=1

p(Xi, Si|zi, li)p(li|zi)p(zi|z<i) (4.2.1)

where S = {sij} and Z = {zi} and the subsequence joint distribution p(Xi, Si|zi, li) is:

p(Xi, Si|zi,li) =
li∏
j=1

p(xij|sij)p(sij|si<j,zi). (4.2.2)

We note that it is also possible to use the traditional Markovian state space model in Equa-
tion 4.2.1 and Equation 4.2.2 which has some desirable properties such as modularity and
interpretability as well as having a closed-form solution for a limited class of models like the
linear Gaussian model. However, it is known that this Markovian model has difficulties in
practice in capturing complex long-term dependencies (Auger-Méthé et al., 2016). Thus, in
our model, we take the recurrent state space model (RSSM) approach (Zheng et al., 2017;
Buesing et al., 2018; Hafner et al., 2018) which resolves this problem by adding a deterministic
RNN path that can effectively encode the complex nonlinear long-term dependencies in the
past, i.e., z<i and si<j in our model. Specifically, the transition is performed by the following
updates: ci = fz-rnn(zi−1, ci−1), zi ∼ p(zi|ci) for zi, and hij = fs-rnn(sij−1||zi, hij−1), sij ∼ p(sij|hij)
for sij.

72



Fig. 4.1. Sequence generative procedure (recurrent deterministic paths are excluded). Left:
The model with the boundary indicators M = {0, 1, 0, 0}. Right: The corresponding gen-
erative procedure with a temporal structure derived from the boundary indicators M

4.2.2. Binary Subsequence Indicator

Although the above modeling intuitively explains the actual generation process, the dis-
crete latent random variables N and {li}—whose realization is an integer—raise difficulties
in learning and inference. To alleviate this problem, we reformulate the model by replac-
ing the integer latent variables by a sequence of binary random variables M = m1:T , called
the boundary indicator. As the name implies, the role of this binary variable is to indicate
whether a new subsequence should start at the next time step or not. In other words, it
specifies the end of a subsequence. This is a similar operation to the FLUSH operation in
the HMRNN model (Chung et al., 2016). With the binary indicators, the generative process
can be rewritten as follows:

p(X,Z,S,M) =
T∏
t=1

p(xt|st)p(mt|st)p(st|s<t, zt,mt−1)p(zt|z<t,mt−1). (4.2.3)

In this representation of the generative process, we can remove the subsequence hierarchy and
make both transitions perform at every time step. Although this seemingly looks different to
our original generation process, the control of the binary indicator—selecting either COPY
or UPDATE—can make this equivalent to the original generation process, which we explain
later in more detail. In Figure 4.1, we provide an illustration on how the binary indicators
induce an equivalent structure represented by the discrete random variables N and L.

This reformulation has the following advantages. First, we do not need to treat the
two different types of discrete random variables N and L separately but instead can unify
them by using only one type of random variables M . Second, we do not need to deal with
the variable range of N and L because each time step has finite states {0,1} while N and
L depend on T that can be changed across sequences. Lastly, the decision can be made
adaptively while observing the progress of the subsequence, instead of making a decision
governing the whole subsequence.
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4.2.3. Prior on Temporal Structure

We model the binary indicator p(mt|st) by a Bernoulli distribution parameterized by
σ(fm-mlp(st)) with a multi-layer perceptron (MLP) fm-mlp and a sigmoid function σ. In
addition, it is convenient to explicitly express our prior knowledge or constraint on the
temporal structure using the boundary distribution. For instance, it is convenient to specify
the maximum number of subsequences Nmax or the longest subsequence lengths lmax when
we do not want too many or too long subsequences. To implement, at each time step t, we
can compute the number of subsequences discovered so far by using a counter n(m<t) as well
as the length of current subsequence with another counter l(m<t). Based on this, we can
design the boundary distribution with our prior knowledge as follows:

p (mt = 1|st) =


0 if n (m<t) ≥ Nmax,

1 elseif l (m<t) ≥ lmax,

σ (fm-mlp (st)) otherwise.

(4.2.4)

4.2.4. Hierarchical Transitions

The transition of temporal abstraction should occur only a subsequence is completed.
This timing is indicated by the boundary indicator. Specifically, the transition of temporal
abstraction is implemented as follows:

p (zt|z<t,mt−1) =

δ(zt = zt−1) if mt−1 = 0 (COPY),
p̃(zt|ct) otherwise (UPDATE)

(4.2.5)

where ct is the following RNN encoding of all previous temporal abstractions z<t (and m<t):

ct =

ct−1 if mt−1 = 0 (COPY),
fz-rnn (zt−1, ct−1) otherwise (UPDATE).

(4.2.6)

Specifically, having mt−1 = 0 indicates that the time step t is still in the same subsequence
as the previous time step t−1 and thus the temporal abstraction should not be updated but
copied. Otherwise, it indicates that the time step t − 1 was the end of the previous subse-
quence and thus the temporal abstraction should be updated. This transition is implemented
as a Gaussian distribution N (zt|µz(ct), σz(ct)) where both µz and σz are implemented with
MLPs.

At test time, we can use this transition of temporal abstraction without the COPY mode,
i.e., every transition is UPDATE. This implements the jumpy future imagination which do
not require to rollout at every raw time step and thus is computationally efficient.

The observation transition is similar to the transition of temporal abstraction except
that we want to implement the fact that given the temporal abstraction zi, a subsequence
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is independent of other subsequences. The observation transition is implemented as follows:

p(st|s<t, zt,mt−1) = p̃(st|ht),

where ht =

fs-rnn (st−1‖zt, ht−1) if mt−1 = 0 (UPDATE),
fs-mlp (zt) otherwise (INIT).

(4.2.7)

Here, ht is computed by using an RNN fs-rnn to update (UPDATE), and a MLP fs-mlp

to initialize (INIT). The concatenation is denoted by ‖. Note that if the subsequence is
finished, i.e., mt−1 = 1, we sample a new observational abstraction st without conditioning
on ht. That is, the underlying RNN is initialized.

4.3. Learning and Inference
As the true posterior is intractable, we apply variational approximation which gives the

following evidence lower bound (ELBO) objective:

log p (X) ≥
∑
M

∫
Z,S

qφ (Z,S,M |X) log pθ (X,Z,S,M)
qφ (Z,S,M |X)dZdS. (4.3.1)

This is optimized w.r.t. θ and φ using the reparameterization trick (Kingma and Welling,
2014). In particular, we use the Gumbel-softmax (Jang et al., 2017; Maddison et al., 2017)
with straight-through estimators (Bengio et al., 2013) for the discrete variables M . For the
approximate posterior, we use the following factorization:

qφ(Z,S,M |X) = q(M |X)q(Z|M,X)q(S|Z,M,X). (4.3.2)

That is, by sequence decomposition q(M |X), we first infer the boundary indicators inde-
pendent of Z and S. Then, given the discovered boundary structure, we infer the two
abstractions via the state inference q(Z|M,X) and q(S|Z,M,X).

Sequence Decomposition. Inferring the subsequence structure is important because
the other state inference can be decomposed into independent subsequences. This sequence
decomposition is implemented by the following decomposition:

q(M |X) =
T∏
t=1

q(mt|X) =
T∏
t=1

Bern (mt|σ(ϕ(X))) , (4.3.3)

where ϕ is a convolutional neural network (CNN) applying convolutions over the temporal
axis to extract dependencies between neighboring observations. This enables to sample all
indicators M independently and simultaneously. Empirically, we found this CNN-based
architecture working better than an RNN-based architecture.

State Inference. State inference is also performed hierarchically. The temporal
abstraction predictor q(Z|M,X) = ∏T

t=1 q(zt|M,X) does inference by encoding subsequences
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(a) Temporal abstraction

(b) Observation abstraction

Fig. 4.2. State transitions: inference and generation with a given hierarchical temporal
structure based on the boundary indicators M .
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determined by M and X. To use the same temporal abstraction across the time steps of a
subsequence, the distribution q(zt|M,X) is also conditioned on the boundary indicator mt−1:

q(zt|M,X) =

δ(zt = zt−1) if mt−1 = 0 (COPY),
q̃(zt|ψfwd

t−1, ψ
bwd
t ) otherwise (UPDATE).

(4.3.4)

We use the distribution q̃(zt|ψfwd
t−1, ψ

bwd
t ) to update the state zt. It is conditioned on all

previous observations x<t and this is represented by a feature ψfwd
t−1 extracted from a forward

RNN ψfwd (X). The other is a feature ψbwd
t representing the current step’s subsequence that

is extracted from a backward (masked) RNN ψbwd (X,M). In particular, this RNN depends
on M , which is used as a masking variable, to ensure independence between subsequences.

The observation abstraction predictor q(S|Z,M,X) = ∏T
t=1 q(st|zt,M,X) is factorized

and each observational abstraction st is sampled from the distribution q(st|zt,M,X) =
q̃
(
st|zt, φfwdt

)
. The feature φfwdt is extracted from a forward (masked) RNN φfwd(X,M)

that encodes the observation sequence X and resets hidden states when a new subsequence
starts.

4.4. Related Works
The most similar work with our model is the HMRNN (Chung et al., 2016). While it is

similar in the sense that both models discover the hierarchical temporal structure, HMRNN
is a deterministic model and thus has a severe limitation to use for an imagination module. In
the switching state-space model (Ghahramani and Hinton, 2000), the upper layer is a Hidden
Markov Model (HMM) and the behavior of the lower layer is modulated by the discrete state
of the upper layer, and thus gives hierarchical temporal structure. Linderman et al. (2016)
proposed a new class of switching state-space models that discovers the dynamical units and
also explains the switching behavior depending on observations or continuous latent states.
The authors used inference based on message-passing. The hidden semi-Markov models
(Yu, 2010; Dai et al., 2016) perform similar segmentation with discrete states. However,
unlike our model, there is no states for temporal abstraction. Kipf et al. (2018) proposed
soft-segmentation of sequence for compositional imitation learning.

The variational recurrent neural networks (VRNN) (Chung et al., 2015) is a latent vari-
able RNN but uses auto-regressive state transition taking inputs from the observation. Thus,
this can be computationally expensive to use as an imagination module. Also, the error can
accumulate more severely in the high dimensional rollout. To resolve this problem, Krish-
nan et al. (2017) and Buesing et al. (2018) proposes to combine the traditional Markovian
State Space Models with deep neural networks. Zheng et al. (2017) and Hafner et al. (2018)
proposed to use an RNN path to encode the past making non-Markovian state-space models
which can alleviate the limitation of the traditional SSMs. Serban et al. (2017) proposed
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a hierarchical version of VRNN called Variational Hierarchical Recurrent Encoder-Decoder
(VHRED) which results in a similar model as ours. However, it is a significant difference that
our model learns the segment while VHRED uses a given structure. A closely related work
is TDVAE (Gregor et al., 2019). TDVAE is trained on pairs of temporally separated time
points. Jayaraman et al. (2019) and Neitz et al. (2018) proposed models that predict the
future frames that, unlike our approach, have the lowest uncertainty. The resulting models
predict a small number of easily predictable “bottleneck” frames through which any possible
prediction must pass. Pertsch et al. (2019) proposed to predict the keyframes with their tem-
poral offsets using stochastic prediction and deterministically interpolate the intermediate
frames.

4.5. Experiments
We demonstrate our model on visual sequence datasets to show (1) how sequence data

is decomposed into perceptually plausible subsequences without any supervision, (2) how
jumpy future prediction is done with temporal abstraction and (3) how this jumpy future
prediction can improve the planning as an imagination module in a navigation problem.
Moreover, we test conditional generation p(X|Xctx) where Xctx = x−(Tctx−1):0 is the context
observation of length Tctx. With the context, we preset the state transition of the tempo-
ral abstraction by deterministically initializing c0 = fctx (Xctx) with fctx implemented by a
forward RNN.

4.5.1. Bouncing Balls

We generated a synthetic 2D visual sequence dataset called bouncing balls. The dataset
is composed of two colored balls that are designed to bounce in hitting the walls of a square
box. Each ball is independently characterized with certain rules: (1) The color of each ball
is randomly changed when it hits a wall and (2) the velocity (2D vector) is also slightly
changed at every time steps with a small amount of noise. We trained a model to learn 1D
state representations and all observation data xt ∈ R32×32×3 are encoded and decoded by
convolutional neural networks. During training, the length of observation sequence data X
is set to T = 20 and the context length is Tctx = 5. Hyper-parameters related to sequence
decomposition are set as Nmax = 5 and lmax = 10.

Our results in Figure 4.3 show that the sequence decomposer q(M |X) predicts reasonable
subsequences by setting a new subsequence when the color of balls is changed or the ball
is bounced. At the beginning of training, the sequence decomposer is unstable with having
large entropy and tends to define subsequences with a small number of frames. It then
began to learn to increase the length of subsequences and this is controlled by annealing the
temperature τ of Gumbel-softmax towards small values from 1.0 to 0.1. However, without our
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Fig. 4.3. Left: Previously observed (context) data Xctx. Right: Each first row is the input observation sequence X and the
second row is the corresponding reconstruction. The sequence decomposer q(M |X) predicts the starting frames of subsequences
and it is indicated by arrows (red squared frames). Subsequences are newly defined when a ball hits the wall by changing the
color.
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Fig. 4.4. Left: Bird’s-eye view (map) of the 3D maze with generated navigation paths. White dotted lines indicate the given
context path Xctx and the corresponding frames are depicted below the map. Solid lines are the generated paths (blue: top,
red: bottom) conditioned on the same context. Circles are the starting points of subsequences where the temporal abstract
transitions exactly take place. Right: The generated sequence data is shown with its temporal structure. Both generations are
conditioned on the same context but different input actions as indicated. Frame samples on each bottom row are generated with
the temporal abstract transition p̃ (zt′|ct′) with ct′ = fz-rnn (zt′−1, ct′−1) and this shows how the jumpy future prediction is done.
Other samples on top rows, which are not necessarily required for future prediction with our proposed HRSSM, are generated
from the observation abstraction transition p̃ (st|ht) with ht = fs-rnn (st−1‖zt, ht−1). The boundaries between subsequences are
determined by p (mt|st).
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Fig. 4.5. The learning curve of RSSM and HRSSM: ELBO, KL-divergence and reconstruc-
tion loss.

proposed prior on temporal structure, the sequence decomposer fails to properly decompose
sequences and our proposed model consequently converges into RSSM.

4.5.2. Navigation in 3D Maze

Another sequence dataset is generated from the 3D maze environment by an agent that
navigates the maze. Each observation data xt ∈ R32×32×3 is defined as a partially observed
view observed by the agent. The maze consists of hallways with colored walls and is defined
on a 26 × 18 grid map as shown in Figure 4.4. The agent is set to navigate around this
environment and the viewpoint of the agent is constantly jittered with some noise. We set
some constraints on the agent’s action (forward, left-turn, right-turn) that the agent is not
allowed to turn around when it is located on the hallway. However, it can turn around when
it arrives nearby intersections between hallways. Due to these constraints, the agent without
a policy can randomly navigate the maze environment and collect meaningful data.

To train an environment model, we collected 1M steps (frames) from the randomly nav-
igating agent and used it to train both RSSM and our proposed HRSSM. For HRSSM, we
used the same training setting as bouncing balls but different Nmax = 5 and lmax = 8 for the
sequence decomposition. The corresponding learning curves are shown in Figure 4.5 that
both reached a similar ELBO. This suggests that our model does not lose the reconstruc-
tion performance while discovering the hierarchical structure. We trained state transitions
to be action-conditioned and therefore this allows to perform action-controlled imagination.
For HRSSM, only the temporal abstraction state transition is action-conditioned as we aim
to execute the imagination only with the jumpy future prediction. The overall sequence
generation procedure is described in Figure 4.4. The temporal structure of the generated
sequence shows how the jumpy future prediction works and where the transitions of temporal
abstraction occur. We see that our model learns to set each hallway as a subsequence and
consequently to perform jumpy transitions between hallways without repeating or skipping
a hallway. In Figure 4.6, a set of jumpy predicted sequences from the same context Xctx and
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Fig. 4.6. Jumpy future prediction conditioned on the same context Xctx and different input actions

Fig. 4.7. Fully generate sequences conditioned on the same context Xctx and same input actions: generated paths are equal but
the viewpoint and the lengths of subsequences are varied (red squared frames are jumpy future predictions).
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different input actions are shown and this can be interpreted as imaginations the agent can
use for planning.

Goal-Oriented Navigation. We further use the trained model as an imagination
module by augmenting it to an agent to perform the goal-oriented navigation. In this ex-
periment, the task is to navigate to a randomly selected goal position within the given life
steps. The goal position in the grid map is not provided to the agent, but a 3 × 3-cropped
image around the goal position is given. To reach the goal fast, the agent is augmented with
the imagination model and allowed to execute a rollout over a number of imagination tra-
jectories (i.e., a sequence of temporal abstractions) by varying the input actions. Afterward,
it decides the best trajectory that helps to reach the goal faster. To find the best trajectory,
we use a simple strategy: a cosine-similarity based matching between all imagined state
representations in imaginations and the feature of the goal image. The feature extractor for
the goal image is jointly trained with the model. 4.1 This way, at every time step we let the
agent choose the first action resulting in the best trajectory. This approach can be consid-
ered as a simple variant of the Monte Carlo Tree Search (MCTS) and the detailed overall
procedure can be found in Appendix. Each episode is defined by randomly initializing the
agent position and the goal position. The agent is allowed maximum 100 steps to reach the
goal and the final reward is defined as the number of remaining steps when the agent reaches
the goal or consumes all life-steps. The performance highly depends on the accuracy and
the computationally efficiency of the model and we therefore compare between RSSM and
HRSSM with varying the length of imagined trajectories. We measure the performance by
randomly generated 5000 episodes and show how each setting performs across the episodes
by plotting the reward distribution in Figure 4.8. It is shown that the HRSSM significantly
improves the performance compared to the RSSM by having the same computational budget.

HRSSM showed consistent performance over different lengths of imagined trajectories
and most episodes were solved within 50 steps. We believe that this is because HRSSM
is able to abstract multiple time steps within a single state transition and this enables to
reduce the computational cost for imaginations. The results also show that finding the
best trajectory becomes difficult as the imagination length gets larger, i.e., the number of
possible imagination trajectories increases. This suggests that imaginations with temporal
abstraction can benefit both the accuracy and the computationally efficiency in effective
ways.

4.1During training, the 3 × 3 window (image) around the agent position is always given as additional ob-
servation data and we trained feature extractor by maximizing the cosine-similarity between the extracted
feature and the corresponding time step state representation.
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Fig. 4.8. Goal-oriented navigation with different lengths of imagined trajectories.
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4.6. Conclusion
In this paper, we introduce the Variational Temporal Abstraction (VTA), a generic gen-

erative temporal model that can discover the hierarchical temporal structure and its sto-
chastic hierarchical state transitions. We also propose to use this temporal abstraction for
temporally-extended future imagination in imagination-augmented agent-learning. Experi-
ment results shows that in general sequential data modeling, the proposed model discovers
plausible latent temporal structures and perform hierarchical stochastic state transitions.
Also, in connection to the model-based imagination-augmented agent for a 3D navigation
task, we demonstrate the potential of the proposed model in improving the efficiency of
agent-learning.
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4.7. Appendix
4.7.1. Goal-Oriented Navigation

The Algorithm 4.1 describe the procedure of goal-oriented navigation with imagination.
This is based on the imagination-based planner that is shown in Algorithm 4.2.

Algorithm 4.1 Goal-oriented navigation with imagination (single episode)
Input: environment env, environment model E , max length of imagined trajectories limg
Output: reward r
Initialize reward r ← 100
Initialize environment x← env.reset()
Initialize context Xctx ← [x]
Sample goal position and extract goal map feature g
while r > 0 do
Sample action a from imagination-based planner given E , Xctx, g, limg (Algorithm 4.2)
Do action x← env.step(a)
Update context Xctx ← Xctx + [x]
Update reward r ← r − 1
if current position is at the goal position then
break

end if
end while
return reward r

Algorithm 4.2 Imagination-based planner
Input: environment model E , previously observed sequence (context) Xctx, maximum
length of imagined trajectories limg, goal map feature g
Output: action amax

Initialize model E with c0 = fctx (Xctx)
Initialize dmax ← −∞
Initialize amax ← None
Set a list A of all possible action sequences based on limg
for each action seuqence A in A do
Get a sequence of states S ∈ Rlimg×d by doing imagination with model E conditioned on
A
Compute cosine-similarity D ∈ Rlimg between all states S and goal map feature g
if max (D) > dmax then
Update dmax ← max (D)
Update amax ← A[0]

end if
end for
return action amax
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4.7.2. Implementation Details

For bouncing balls, we define the reconstruction loss (data likelihood) by using binary
cross-entropy. The images from 3D maze are pre-processed by reducing the bit depth to
5 bits (Kingma and Dhariwal, 2018) and therefore the reconstruction loss is computed by
using Gaussian distribution. We used the AMSGrad (Reddi et al., 2018), a variant of Adam,
optimizer with learning rate 5e − 4 and all mini-batchs are with 64 sequences with length
T = 20. Both CNN-based encoder and decoder are composed of 4 convolution layers with
ELU activations (Clevert et al., 2016). A GRU (Cho et al., 2014) is used for all RNNs
with 128 hidden units. The state representations of temporal abstraction and observation
abstraction are sampled from 8-dimensional diagional Gaussian distributions.

4.7.3. Action-Conditioned Temporal Abstraction State Transition

We implement action-conditioned state transition as:

p (zt|at, z<t,m<t) =

δ(zt = zt−1) if mt−1 = 0 (COPY),
p̃(zt|ct) otherwise (UPDATE)

where the action input at is only affecting the UPDATE operation and we feed it into the
deterministic path as the following:

ct =

ct−1 if mt−1 = 0 (COPY),
fz (zt−1‖at, ct−1) otherwise (UPDATE).

4.7.4. Evidence Lower Bound (ELBO)

Log-likelihood log p (X).

log p (X) = log
∑
M

∫
Z,S

p (X,Z, S,M)

≥
∑
M

∫
Z,S

q (Z,S,M |X) log p (X,Z,S,M)
q (Z,S,M |X)

=
∑
M

∫
Z,S

q (Z,S,M |X) log p (X|Z,S) p (Z,S,M)
q (Z,S,M |X)

=
∑
M

∫
Z,S

q (Z,S,M |X)
[
log p (X|Z,S) + log p (Z,S,M)

q (Z,S,M |X)

]

= Eq(Z,S,M |X) [log p (X|Z,S)]︸ ︷︷ ︸
reconstruction

−KL [q (Z,S,M |X) ||p (Z,S,M)]︸ ︷︷ ︸
KL divergence
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Decomposing p (X|Z,S) and p (Z,S,M).

p (X|Z,S) =
∏
t

p (xt|st)︸ ︷︷ ︸
decoder

p (Z,S,M) =
∏
t

p (zt|zt−1,mt−1)︸ ︷︷ ︸
temporal abstract transition

p (st|st−1, zt,mt−1)︸ ︷︷ ︸
observation abstract transition

p (mt|st)︸ ︷︷ ︸
boundary prior

Decomposing q (Z,S,M |X).

q (Z,S,M |X) = q (M |X) q (Z,S|M,X)

= q (M |X) q (Z|M,X) q (S|Z,M,X)

= q (M |X)
∏
t

q (zt|M,X) q (st|zt,M,X)

q(M |X) =
∏
t

q(mt|X) =
∏
t

Bern (mt|σ(ϕ(X)))

Reconstruction Term in ELBO.∑
M

∫
Z,S

q (Z,S,M |X) log p (X|Z,S)

=
∑
M

q (M |X)︸ ︷︷ ︸
sample M

∫
Z,S

q (Z,S|M,X) log p (X|Z,S)

≈
∫
Z,S

q (Z,S|M,X)
∑
t

log p (xt|st)

=
∫
Z,S

∑
t

q (zt,st|M,X) log p (xt|st)

=
∫
Z,S

∑
t

q (zt|M,X) q (st|zt,M,X)︸ ︷︷ ︸
sampling zt and st

log p (xt|zt, st)

≈
∑
t

log p (xt|st)

KL Term in ELBO.

log q (Z,S,M |X)− log p (Z,S,M)

= log q (M |X) + log q (Z,S|M,X)− log p (Z,S,M)

= log q (M |X) + log q (Z|M,X) + log q (S|Z,M,X)− log p (Z,S,M)

= log q (M |X) +
∑
t

log q (zt|M,X) q (st|zt,M,X)
p (zt|zt−1,mt−1) p (st|st−1, zt,mt−1) p (mt|st)

= log q (M |X) +
∑
t

log q (zt|M,X)
p (zt|zt−1,mt−1) + log q (st|zt,M,X)

p (st|st−1,zt,mt−1) + log 1
p (mt|st)
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∑
M

∫
Z,S

q (Z,S,M |X) [log q (Z,S,M |X)− log p (Z,S,M)]

=
∑
M

q (M |X)
∫
Z,S

q (Z,S|M,X) [log q (Z,S,M |X)− log p (Z,S,M)]

=
∑
M

q (M |X)
∫
Z,S

q (Z,S|M,X)
[
log q (M |X) +

∑
t

log q (zt|M,X) q (st|zt,M,X)
p (zt|zt−1,mt−1) p (st|st−1,zt,mt−1) p (mt|st)

]

=
∑
M

q (M |X)
[
log q (M |X) +

∑
t

∫
Z,S

q (Z,S|M,X) log q (zt|M,X) q (st|zt,M,X)
p (zt|zt−1,mt−1) p (st|st−1,zt,mt−1) p (mt|st)

]

=
∑
M

q (M |X)
[
log q (M |X) +

∑
t

∫
zt,st

q (zt, st|M,X) log q (zt|M,X) q (st|zt,M,X)
p (zt|zt−1,mt−1) p (st|st−1,zt,mt−1) p (mt|st)

]

=
∑
M

q (M |X)
[
log q (M |X) +

∑
t

KL (q′(zt)||p′(zt)) +
∫
zt,st

q (zt, st|M,X) log q (st|zt,M,X)
p (st|st−1,zt,mt−1) p (mt|st)

]

=
∑
M

q (M |X)

log q (M |X) +
∑
t

KL (q′(zt)||p′(zt)) +
∫
zt
q′ (zt)︸ ︷︷ ︸
sample zt

[KL (q′(st)||p′(st))− log p (mt|st)]


≈
∑
M

q (M |X)
[
log q (M |X) +

∑
t

KL (q′(zt)||p′(zt)) + KL (q′(st)||p′(st))− log p (mt|st)
]

=
∑
M

q (M |X)
[
log

∏
t q (mt|X)∏
t p (mt|st)

+
∑
t

KL (q′(zt)||p′(zt)) + KL (q′(st)||p′(st))
]

=
∑
t′

KL (q′ (mt′) ||p′ (mt′)) +
∑
M

q (M |X)︸ ︷︷ ︸
sample M

[∑
t

KL (q′ (zt) ||p′ (zt)) + KL (q′ (st) ||p′ (st))
]

≈
∑
t

KL (q′ (mt) ||p′ (mt))︸ ︷︷ ︸
sequence decomposer

+ KL (q′ (zt) ||p′ (zt))︸ ︷︷ ︸
temporal abstraction

+ KL (q′ (st) ||p′ (st))︸ ︷︷ ︸
observation abstraction

where p′(mt) = p(mt|st), p′(zt) = p (zt|zt−1,mt−1) , p′(st) = p (st|st−1,zt,mt−1)

q′(mt) = q(mt|X), q′(zt) = q (zt, st|M,X) , q′(st) = q (st|zt,M,X)
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Chapter 5

Visual Concept Reasoning Networks

Taesup Kim, Sungwoong Kim and Yoshua Bengio
Appeared in:

- Proceedings of the 35th AAAI Conference on Artificial Intelligence (AAAI 2021)

Personal Contribution. Based on Yoshua Bengio’s consciousness prior (Bengio, 2017),
I came up with an idea to apply its concept to convolutional neural networks for visual
recognition tasks. In particular, Sungwoong Kim and I were also interested in the topic of
global reasoning for visual recognition tasks that we had heavily discussed for a while. Then, I
discovered the fact that ResNeXt (Xie et al., 2017) had an interesting architecture that could
handle multiple visual concepts with its multiple branches and be implemented in a compact
way. I tried to modify the ResNeXt by introducing some additional modules to enable
high-level global reasoning. Kakao Brain members also supported us by providing some
implementations to run a large number of experiments on visual recognition tasks. Yoshua
Bengio advised me by providing some meaningful comments to improve the performance. I
was the main writer for this article, and Sungwoong Kim and Yoshua Bengio did the final
editing.

Context. A split-transform-merge strategy has been broadly used as an architectural
constraint in convolutional neural networks for visual recognition tasks. It approximates
sparsely connected networks by explicitly defining multiple branches to simultaneously learn
representations with different visual concepts or properties. However, dependencies or in-
teractions between these representations are typically implemented by dense and local op-
erations, and also any adaptiveness or high-level reasoning is lacking. In this paper, we
therefore introduced the concept of context-level adaptation to improve over existing strate-
gies. We combined it with our Visual Concept Reasoning Networks (VCRNet) to enable
reasoning between high-level visual concepts. We softly associated each branch with a visual
concept and derived a compact concept state by selecting a few local descriptors through



an attention module. We described our proposed model in terms of split-transform-attend-
interact-modulate-merge stages, which are implemented by opting for a highly modularized
architecture. Extensive experiments on visual recognition tasks such as image classification,
semantic segmentation, object detection, scene recognition, and action recognition showed
that our proposed model, VCRNet, can consistently improve performance by increasing the
number of parameters by less than 1%.

Keywords: visual concepts, multi-branch architecture, visual recognition, attention,
reasoning, global context, feature-wise modulation
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5.1. Introduction
Convolutional neural networks have shown notable success in visual recognition tasks by

learning hierarchical representations. The main properties of convolutional operations, which
are local connectivity and weight sharing, are the key factors that make it more efficient than
fully-connected networks for processing images. The local connectivity particularly comes
up with a fundamental concept, receptive field, that defines how far the local descriptor can
capture the context in the input image. In principle, the receptive field can be expanded by
stacking multiple convolutional layers or increasing their kernel size. However, it is known
that the effective receptive field only covers a fraction of the theoretical size of it (Luo et al.,
2016). This eventually prevents convolutional neural network from capturing the global
context based on long-range dependencies. On the other hand, most convolutional neural
networks are characterized by dense and local operations that take advantage of the weight
sharing property. Hence, it hence typically lacks internal mechanism for high-level reasoning
based on abstract semantic concepts such as those humans manipulate with natural language
and inspiring inductive biases based on modern theories of consciousness (Bengio, 2017; Goyal
et al., 2020). It is related to system 2 cognitive abilities, which include things like reasoning,
planning, and imagination, that are assumed to capture the global context from interactions
each involving a few abstract factors and accordingly give feedback to the local descriptor
for decision-making.

There have been approaches to enhance capturing long-range dependencies such as
non-local networks (Wang et al., 2018). The main concept of it, which is related to self-
attention (Vaswani et al., 2017), is to compute a local descriptor by adaptively aggregating
other descriptors from all positions, regardless of relative spatial distance. In this setting,
the image feature map is plugged into a fully-connected graph neural network, where all lo-
cal positions are fully connected to all others. It is able to capture long-range dependencies
and extract the global context, but it still works with dense operations and lacks high-level
reasoning. Both LatentGNN (Zhang et al., 2019) and GloRe (Chen et al., 2019) alleviate
these issues by introducing compact graph neural networks with some latent nodes designed
to aggregate local descriptors.

In this work, we propose Visual Concept Reasoning Networks (VCRNet) to enable reason-
ing between high-level visual concepts. We exploit a modularized multi-branch architecture
that follows a split-transform-merge strategy (Xie et al., 2017). While it explicitly has multi-
ple branches to simultaneously learn multiple visual concepts or properties, it only considers
the dependencies or interactions between them by using dense and local operations. We
extend the architecture by split-transform-attend-interact-modulate-merge stages, and this
allows the model to capture the global context by reasoning with sparse interactions between
high-level visual concepts from different branches.

93



The main contributions of the paper are as follows:
• We propose Visual Concept Reasoning Networks (VCRNet) that efficiently capture
the global context by reasoning over high-level visual concepts.
• We compactly implement our proposed model by exploiting a modularized multi-
branch architecture composed of split-transform-attend-interact-modulate-merge
stages.
• We show that our proposed model improves the performance more than other mod-
els while increasing the number of parameters by less than 1% on multiple visual
recognition tasks.

5.2. Related Works
Multi-branch architectures are carefully designed with multiple branches characterized by

different dense operations, and split-transform-merge stages are used as the building blocks.
The Inception models (Szegedy et al., 2015) are one of the successful multi-branch archi-
tectures that define branches with different scales to handle multiple scales. ResNeXt (Xie
et al., 2017) is another version of ResNet (He et al., 2016) having multiple branches with the
same topology in residual blocks, and it is efficiently implemented by grouped convolutions.
In this work, we utilize this residual block and associate each branch of it with a visual
concept.

There have been several works to adaptively modulate the feature maps based on the ex-
ternal context or the global context of input data. Squeeze-and-Excitation networks (SE, Hu
et al. (2018)) use a gating mechanism to do channel-wise re-scaling in accordance with the
channel dependencies based on the global context. Gather-Excite networks (GE, Hu et al.
(2018)) further re-scale locally and are able to finely redistribute the global context to the
local descriptors. Convolutional block attention module (CBAM, Woo et al. (2018)) indepen-
dently and sequentially applies channel-wise and spatial-wise gating networks to modulate
the feature maps. All these approaches extract the global context by using the global average
pooling, which equally attends all local positions. Dynamic layer normalization (DLN, Kim
et al. (2017)) and Feature-wise Linear Modulation (FiLM, Perez et al. (2018)) present a
method of feature modulation on normalization layers by conditioning on the global context
and the external context, respectively.

Content-based soft-attention mechanisms (Bahdanau et al., 2015) have been broadly used
on neural networks to operate on a set of interchangeable objects and aggregate it. Partic-
ularly, Transformer models (Vaswani et al., 2017) have shown impressive results by using
multi-head self-attention modules to improve the ability of capturing long-range dependen-
cies. Non-local networks (NL, Wang et al. (2018)) use this framework in pixel-level self-
attention blocks to implement non-local operations. There are some additional related works,
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including one that augments the self-attention modules with convolutional operations (Bello
et al., 2019), and another that replaces all of them with a form of self-attention (Ramachan-
dran et al., 2019). Global-context networks (GC, Cao et al. (2019)) simplify the non-local
networks by replacing the pixel-level self-attention with an attention module having a sin-
gle fixed query that is globally shared and learned. Attention-augmented convolutional
networks (Bello et al., 2019) similarly augment convolutional operators with self-attention
modules as the non-local networks, but concatenate feature maps from the convolution path
and self-attention path. LatentGNN (Zhang et al., 2019) and the global reasoning module
(GloRe, Chen et al. (2019)) differently simplify the non-local networks: they first map local
descriptors into latent nodes, where the number of nodes is smaller than the number of local
positions, and they capture long-range dependencies from interactions between the latent
nodes. Our proposed model is similar to these two models, but we take the advantage of the
multi-branch architecture and the attention mechanism to efficiently extract a set of distinct
visual concept states from the input data.

5.3. Methods
In this section, we introduce our proposed model, Visual Concept Reasoning Networks

(VCRNet), and describe the overall architecture and its components in detail. The proposed
model is designed to reason over high-level visual concepts and accordingly modulate feature
maps based on its result. In the following, we assume the input data X ∈ RHW×d is a 2D
tensor as an image feature map, whereH,W , and d refer to the height, width, and feature size
of X, respectively. Moreover, for simplicity, we denote all modules by a function Ffunc(·; θ),
where θ is a learnable parameter and the subscript ‘func’ briefly explains the functionality
of the module.

5.3.1. Modularized Multi-Branch Residual Block

Residual blocks are composed of a skip connection and multiple convolutional layers (He
et al., 2016). We especially take advantage of using a residual block of ResNeXt (Xie et al.,
2017) that operates by grouped convolutions. This block is explicable by a split-transform-
merge strategy and a highly modularized multi-branch architecture. It has an additional
dimension of cardinality to define the number of branches used in the block. The branches
are defined by separate networks, which are based on the same topology and implemented
by grouped convolutions, processing non-overlapping low-dimensional feature maps. In this
work, we use this block by regarding each branch as a network learning a representation
of a specific visual concept and, therefore, refer to the cardinality as the number of visuals
concepts C.
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Fig. 5.1. A residual block with visual concept reasoning modules: (1) concept sampler, (2)
concept reasoner, and (3) concept modulator. Multiple concepts are processed in parallel by
implementing each modules with group convolutions.

The split-transform-merge strategy can be described by visual concept processing as
follows. Each concept c has a compact concept-wise feature map Zc ∈ RHW×p, where p is a
lot smaller than d. It is initially extracted from the input data X by splitting it into a low-
dimensional feature map X̃c ∈ RHW×p with a 1 × 1 convolution Fsplit(X; θsplitc ). Afterward,
it is followed by a concept-wise transformation based on a 3× 3 convolution Ftrans(X̃c; θtransc )
while keeping the feature size compact. The extracted concept-wise feature maps {Zc}Cc=1

are then projected back into the input space to be merged as Y = X+∑C
c=1 Fmerge(Zc; θmerge

c ).
This overall multi-branch procedure interestingly can be highly modularized and parallelized
by grouped convolutions. However, it lacks the ability of reasoning over the high-level visual
concepts that capture both local and global contexts.

We propose to extend this approach by introducing additional modules to enable visual
concept reasoning. Our proposed model is based on a new strategy with split-transform-
attend-interact-modulate-merge stages. The new stages completely work inside the residual
block with the following modules: (a) concept sampler, (b) concept reasoner, and (c) concept
modulator. The overall architecture is depicted in Figure 5.1 showing how it is highly
modularized, sharing the topology across different concepts. We refer to networks having
residual blocks with these modules, as Visual Concept Reasoning Networks (VCRNet).

5.3.2. Concept Sampler

The concept-wise feature maps {Zc}Cc=1 are composed of all possible pixel-level local de-
scriptors, which contain spatially local feature information, as sets of vectors. To do efficient
reasoning over the visual concepts, it first requires a set of abstract feature vectors represent-
ing the visual concepts. Therefore, a form of aggregation mechanism is necessary to derive
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Fig. 5.2. Concept samplers with different approaches (⊗ is a weighted-sum operation).

a set of visual concept states, where each state is a vector, from the concept-wise feature
maps. We implement this by presenting a concept sampler (CS) module. Each concept c has
a separate concept sampler FCS(Zc; θCSc ) that aggregates the set of local descriptors in Zc and
converts it into a concept state hc ∈ R1×p̃, where we set p̃ = min(p/4, 4). We introduce two
types of concept samplers that are based on pooling and attention operations, respectively.

Pooling-based Sampler. Global average pooling is one of the simplest ways to extract
the global context from a feature map without explicitly capturing long-range dependencies.
It equally and densely attends all local positions to aggregate the local descriptors. Our
pooling-based sampler adopts this operation to compute the concept state hc as shown in
Figure 5.2.a, and it is formulated as:

hc = FGAP(Zc)W v
c =

 1
HW

H∑
i=1

W∑
j=1

Zc[i, j]
W v

c , (5.3.1)

where Zc[i,j] ∈ R1×p is a local descriptor at position (i, j), and W v
c ∈ Rp×p̃ is a learnable

projection weight. In comparison with the attention-based sampler, it is simple and compact
having a small number of parameters, but there is no data-adaptive process. Due to its
simplicity, similar approaches have been broadly used in previous works such as SENet (Hu
et al., 2018) and CBAM (Woo et al., 2018).

97



Attention-based Sampler. The attention mechanism operates by mapping a query
vector and a set of interchangeable key-value vector pairs into a single vector, which is
a weighted sum of value vectors. It allows us to aggregate a set of local descriptors by
sparsely and adaptively selecting them. We hence apply this approach to our concept sam-
pler. For each concept c, the query vector qc ∈ R1×p̃ describes what to focus on during
aggregation. The concept-wise feature map Zc converts into a set of key-value vector pairs
that we separately project into a key map Kc = ZcW

k
c and a value map Vc = ZcW

v
c , where

W k
c ,W

v
c ∈ Rp×p̃ are learnable projection weights. The concept state hc is derived by comput-

ing the dot products of the query vector qc with the key map Kc and subsequently applying
a softmax function to obtain the attention weights over the value map Vc as:

hc = softmax

qc
(
ZcW

k
c

)>
√
p̃

 (ZcW v
c ) . (5.3.2)

The query vector qc can be either learned as a model parameter or computed by a function
of the feature map Zc. The former approach defines a static query that is shared globally
over all data. GCNet (Cao et al., 2019) uses this approach, instead of global average pooling,
to extract the global context. It can be simplified and implemented by replacing the term
qc
(
ZcW

k
c

)>
in Equation 5.3.2 with a 1 × 1 convolution as depicted in Figure 5.2.b. The

latter approach, in contrast, uses a dynamic query that varies according to Zc. We set the
query as an output of a function as qc = FGAP(Zc)W q

c , where FGAP is equal to the pool-based
sampler, as shown in Equation 5.3.1.

Difference with Multi-head Self-attention. The concept samplers can be viewed
as multi-head attention modules in Transformer models (Vaswani et al., 2017), where we
set each concept to be operated by a single-head attention module. However, our concept
samplers don’t process the same input feature map as Transformers do. Each concept is
only accessible to its corresponding feature map, and this encourages the concept samplers
to attend and process different features. Moreover, we explicitly define concept-wise queries
to aggregate pixel-wise (low-level) descriptors and obtain global descriptors (high-level con-
cepts) rather than only capturing long-range dependencies as non-local networks (Wang
et al., 2018), which work with pixel-level dense self-attention operations.

5.3.3. Concept Reasoner

The visual concept states are extracted independently from separate branches among
which no communication exists. Therefore, we introduce a reasoning module, the Concept
Reasoner (CR), to make the visual concept states interact with each other and accordingly
update them. We opt for using a graph-based method by defining a fully-connected graph
G = (V , E) with nodes V and directional edges E . The node vc ∈ V corresponds to a single
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Fig. 5.3. Concept reasoner.

visual concept c and is described by the visual concept state hc. The edge ecc′ ∈ E defines
the relationship or dependency between visual concepts c and c′. It is further specified by
an adjacency matrix A ∈ RC×C to represent edge weight values in a matrix form. Based on
this setting, we describe the update rule of the visual concept states as:

h̃c = ReLU
(
BN

(
hc +

C∑
c′=1

A[c, c′]hc′
))

, (5.3.3)

where A[c, c′] ∈ R is a edge weight value, and batch normalization (BN) and ReLU activation
are used. This can also be implemented in a matrix form as H̃ = ReLU(BN(H+AH)), where
H = [h1;h2; ...;hC ] ∈ RC×p̃ is vertically stacked concept states. The adjacency matrix A can
be treated as a module parameter that is learned during training. This sets the edges to be
static so that all relationships between visual concepts are consistently applied to all data.
However, we relax this constraint by dynamically computing the edge weights based on the
concept states. A function A[c, :] = Fedge(hc;W edge) = tanh(hcW edge), where W edge ∈ Rp̃×C

is a learnable projection weight, is used to get all edge weights A[c, :] related to the concept
c as shown in Figure 5.3. This function learns how each concept adaptively relates to the
others based on its state.

5.3.4. Concept Modulator

The updated concept states are regarding not only a single concept, but also the others as
a result of reasoning based on interactions. This information has to be further propagated to
local concept features, which are extracted from the main stream of the network. However,
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Fig. 5.4. Concept modulator.

this is a non-trivial problem due to dimensional mismatch, since the concept states are vectors
not containing any explicit spatial information. We alleviate this issue by implementing a
module, the Concept Modulator (CM), which is based on a feature modulation approach.
It modulates the concept-wise feature maps by channel-wise scaling and shifting operations.
These operations are conditioned on the updated concept states to fine-tune the feature
maps based on the result of reasoning. We design this module based on DLN (Kim et al.,
2017) and FiLM (Perez et al., 2018). Both models use feature-wise affine transformations
on normalization layers by dynamically generating the affine parameters instead of learning
them. In this way, we define separate modules for the visual concepts as shown in Figure 5.4.
Each concept-wise feature map Xc is modulated as:

X̃c = FCM(h̃c, Xc; θCMc ) = ReLU (αc �Xc + βc) ,

αc = h̃cW
scale
c + bscalec , βc = h̃cW

shift
c + bshiftc ,

(5.3.4)

where � indicates channel-wise multiplication. αc, βc ∈ R1×p are scaling and shifting param-
eters, respectively, which are adaptively computed by linearly mapping the updated concept
state h̃c.

Pixel-level Modulator. We further implement pixel-level concept modulators to
propagate the global context adaptively and differently into local descriptors. Each concept
state hc is derived by computing the attention map Mc ∈ RHW×1 from the concept sampler
as shown in Equation 5.3.2, and we assume it contains the spatial information related to the
concept c. Therefore, we utilize this attention map for the pixel-level concept modulator.
We first re-normalize the attention map by its maximum value:

M̃c = Mc

max(Mc)
,

where Mc = softmax

qc
(
ZcW

k
c

)>
√
p̃

 . (5.3.5)
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Table 5.1. Comprehensive results of image classification on the ImageNet validation set

Model Error (%) # of
Params GFLOPsTop-1 Top-5

ResNeXt-50 (Xie et al., 2017) 21.10 5.59 25.03M 4.24
ResNeXt-50 + SE (Hu et al., 2018) 20.79 5.38 27.56M 4.25
ResNeXt-50 + CBAM (Woo et al., 2018) 20.73 5.36 27.56M 4.25
ResNeXt-50 + GC (Cao et al., 2019) 20.44 5.34 27.58M 4.25
ResNeXt-50 + GloRe (Chen et al., 2019) 20.15 5.14 30.79M 5.86
ResNeXt-50 + VCR (ours) 19.97 5.03 25.26M 4.26
ResNeXt-50 + VCR (ours, pixel-level) 19.94 5.18 25.26M 4.29
ResNeXt-101 (Xie et al., 2017) 19.82 4.96 44.18M 7.99
ResNeXt-101 + SE (Hu et al., 2018) 19.39 4.73 48.96M 8.00
ResNeXt-101 + CBAM (Woo et al., 2018) 19.60 4.87 48.96M 8.00
ResNeXt-101 + GC (Cao et al., 2019) 19.52 5.03 48.99M 8.00
ResNeXt-101 + GloRe (Chen et al., 2019) 19.56 4.85 49.93M 9.61
ResNeXt-101 + VCR (ours) 18.84 4.48 44.60M 8.01

Without this re-normalization, the learning doesn’t work properly. The re-normalized at-
tention map M̃c is used to project the updated concept state h̃c into all local positions by
projection M̃ch̃c ∈ RHW×p̃. Based on this projection, we are able to do pixel-level feature
modulation as:

X̃c = FCM(h̃c, M̃c, Xc; θCMc ) = ReLU (αc ·Xc + βc)

αc =
(
M̃ch̃c

)
W scale
c + bscalec , βc =

(
M̃ch̃c

)
W shift
c + bshiftc ,

(5.3.6)

where · is an element-wise multiplication. Both αc and βc have the same size as the feature
map Xc so that all local positions have separate scaling and shifting parameters.

5.4. Experiments
In this section, we describe our experimental settings on visual recognition tasks such as

image classification, object detection/segmentation, scene recognition, and action recognition
with large-scale datasets. In all experiments, we use ResNeXt (Xie et al., 2017), which
performs better than ResNet (He et al., 2016) with less parameters, as a base architecture
with cardinality = 32 and base width = 4d. As our main contribution is to exploit the multi-
branch architecture to enable high-level concept reasoning by implementing split-transform-
attend-interact-modulate-merge stages, we only use the ResNeXt as a backbone network,
because it is the only one already having the split-transform-merge stages allowing us to
seamlessly implement our VCRNet. Furthermore, our proposed model, VCRNet, is also
defined by C = 32 concepts in all residual blocks. We also compare VCRNet against other
networks (modules), which have a form of attention or reasoning modules, such as Squeeze-
and-Excitation (SE, Hu et al. (2018)), Convolutional Block Attention Module (CBAM, Woo
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Table 5.2. Comprehensive results of object detection and instance segmentation on the
COCO 2017 validation set

Backbone Network APbbox APbbox
50 APbbox

75 APmask APmask
50 APmask

75 # Params
ResNeXt-50 (Xie et al., 2017) 40.70 62.02 44.49 36.75 58.89 39.03 43.94M
ResNeXt-50 + SE (Hu et al., 2018) 41.04 62.61 44.45 37.13 59.53 39.79 46.47M
ResNeXt-50 + CBAM (Woo et al., 2018) 41.69 63.54 45.17 37.48 60.27 39.71 46.47M
ResNeXt-50 + GC (Cao et al., 2019) 41.66 63.76 45.29 37.58 60.36 39.92 46.48M
ResNeXt-50 + GloRe (Chen et al., 2019) 42.31 64.18 46.13 37.83 60.63 40.17 49.71M
ResNeXt-50 + VCR (ours) 41.81 63.93 45.67 37.71 60.36 40.25 44.18M
ResNeXt-50 + VCR (ours, pixel-level) 42.02 64.15 45.87 37.75 60.62 40.22 44.18M

et al. (2018)), Global Context block (GC, Cao et al. (2019)), and Global Reasoning unit
(GloRe, Chen et al. (2019)). All networks are implemented in all residual blocks in the
ResNeXt except GloRe, which is partially adopted in the second and third residual stages.
In all experiments, we mainly set VCRNet with using (1) attention-based concept samplers
with dynamic queries, (2) concept reasoners with dynamic edge weights, and (3) concept
modulators with channel-level feature map scaling and shifting.

5.4.1. Image Classification

We conduct experiments on the large-scale image classification task of the ImageNet
dataset (Russakovsky et al., 2015). The dataset consists of 1.28M training images and 50K
validation images from 1000 different classes. All networks are trained on the training set
and evaluated on the validation set by reporting the top-1 and top-5 errors with single center-
cropping. Our training setting is explained in detail in Appendix. The overall experimental
results are shown in Table 5.1, where all results are reproduced by our training setting
for a fair comparison. For evaluation, we always take the final model, which is obtained
by exponential moving average (EMA) with the decay value 0.9999. VCRNet consistently
outperforms other networks in both ResNeXt-50 and ResNeXt-101 settings. Moreover, it is
more compact than the others as it only increases the number of parameters by less than
1%(≈ 0.95%). In contrast, GloRe (Chen et al., 2019), which also does high-level reasoning,
requires more parameters than ours, although it is partially applied in the selected blocks of
ResNeXt. In addition, we test the pixel-level concept modulators to reuse the attention maps
extracted from the concept samplers to modulate local descriptors at pixel-level as GloRe
has a pixel-level re-projection mechanism. The modification slightly improves the top-1
performance by using the same number of parameters, but it increases the computational
cost (GFLOPs).

5.4.2. Object Detection and Segmentation

We further do some experiments on object detection and instance segmentation on the
MSCOCO 2017 dataset (Lin et al., 2014). The MSCOCO dataset contains 115K images
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Table 5.3. Results of scene recognition on Places-365 validation set

Model Error (%) # of
ParamsTop-1 Top-5

ResNeXt-50 (Xie et al., 2017) 43.49 13.54 23.73M
ResNeXt-50 + SE (Hu et al., 2018) 43.18 13.41 26.26M
ResNeXt-50 + CBAM (Woo et al., 2018) 43.18 13.45 26.26M
ResNeXt-50 + GC (Cao et al., 2019) 43.07 13.34 26.28M
ResNeXt-50 + GloRe (Chen et al., 2019) 42.94 13.22 29.48M
ResNeXt-50 + VCR (ours) 42.92 12.96 23.96M

Table 5.4. Results of action recognition on Kinetics-400 validation set

Backbone network
(Slow-only pathway)

Error (%) # of
ParamsTop-1 Top-5

ResNeXt-50 (Xie et al., 2017) 26.41 9.43 40.07M
ResNeXt-50 + SE (Hu et al., 2018) 25.06 8.70 42.58M
ResNeXt-50 + CBAM (Woo et al., 2018) 24.87 8.81 42.59M
ResNeXt-50 + GC (Cao et al., 2019) 25.31 9.32 42.60M
ResNeXt-50 + GloRe (Chen et al., 2019) 25.52 9.23 45.81M
ResNeXt-50 + VCR(ours) 24.73 8.39 40.28M

over 80 categories for training, and 5K images for validation. Our experiments are based on
the Detectron2 (Wu et al., 2019). All backbone networks are based on the ResNeXt-50 and
pre-trained on the ImageNet dataset by default. We employ and train the Mask R-CNN
with FPN (He et al., 2017). We follow the training procedure of the Detectron2 and use
the 1× schedule setting. Furthermore, synchronized batch normalization is used instead of
freezing all related parameters. For evaluation, we use the standard setting of evaluating
object detection and instance segmentation via the standard mean average-precision scores
at different boxes and the mask IoUs, respectively. Table 5.2 is the list of results by only
varying the backbone network. It shows similar tendencies to the results of ImageNet.
However, GloRe (Chen et al., 2019) is showing the best performance, and our pixel-level
model comes as the second best. We assume that this result is from two factors. One is the
additional capacity, which is relatively larger than other models, used by Glore. The other
is that GloRe uses a pixel-level re-projection mechanism that applies the result of reasoning
by re-computing all local descriptors. Especially this task requires to do prediction on
pixel-level so that it would be beneficial to do so. Therefore, we also make our model to
use pixel-level feature modulation. It further improves the performance without requiring
additional parameters.
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Table 5.5. Ablation study on VCRNet

(a) Concept Sampler
Model

(ResNeXt-50)
Top-1 # of

ParamsError (%)
pool 20.21 25.17M
static attn 20.18 25.17M
dynamic attn 19.97 25.26M

(b) Concept Reasoner
Model

(ResNeXt-50)
Top-1 # of

ParamsError (%)
no edge 20.23 25.26M
static edge 20.02 25.28M
dynamic edge 19.97 25.26M

(c) Concept Modulator
Model

(ResNeXt-50)
Top-1 # of

ParamsError (%)
only scale 20.13 25.22M
only shift 20.05 25.22M
scale + shift 19.97 25.26M

5.4.3. Scene and Action Recognition

Places365 (Zhou et al., 2017) is a dataset labeled with scene semantic categories for the
scene recognition task. This task is challenging due to the ambiguity between classes, and
several scene classes may share some similar objects causing confusion among classes. We
specifically use the Places365-Standard setting that the train set has up to 1.8M images
from 365 scene classes, and the validation set has 50 images per class. All networks are
trained from random initialization and evaluated on the validation set by following the
setting used in our ImageNet experiments. Additionally, we insert Dropout (Srivastava
et al., 2014) layers in residual blocks with p = 0.02 to avoid some over-fitting. The human
action recognition task is another task appropriate to demonstrate how the network can
generalize well not only to 2D image data, but also to 3D video data. We use the Kinetics-400
dataset (Kay et al., 2017) including 400 human action categories with 235K training videos
and 20K validation videos. We follow the slow-only experiment setting used in Feichtenhofer
et al. (2019) that simply takes the ImageNet pre-trained model with a parameter inflating
approach (Carreira and Zisserman, 2017). Both tasks are classification tasks similar to the
ImageNet image classification, and the results shown in Table 5.3 and 5.4 explain that our
approach are generally performing better than other baselines in various visual classification
tasks. Moreover, action recognition results suggest that our model can be generally applied
to all types of data.

5.4.4. Ablation Study

Concept Sampler. We have proposed different approaches for the concept sampler
(pooling-based and attention based samplers). To compare these approaches, we train our
proposed networks (ResNeXt-50 + VCR) by having different concept samplers and keeping
all other modules fixed. Table 5.5.(a) compares the performance of these approaches on
the ImageNet image classification task. The attention-based approach with dynamic queries
(dynamic attn) outperforms the others, and we assume that this is due to having more
adaptive power. Furthermore, the results interestingly show that our models consistently
perform better than other baseline networks except a network with GloRe, which are shown
in Table 5.1, regardless of the type of concept sampler.
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Fig. 5.5. t-SNE plots of visual concept states. C = 32 concepts are distinguished by 32
colors.

Concept Reasoner. To investigate the effectiveness of reasoning based on interactions
between concepts, we conduct some experiments by modifying the concept reasoner. We
first remove the concept interaction term in Equation 5.3.3 and evaluate it to measure the
effectiveness of reasoning. Moreover, we also compare the performance between learned static
edges and computed dynamic edges. In Table 5.5.(b), the results show that the reasoning
module is beneficial in terms of the performance. Notably, it also reveals that using dynamic
edges can improve the reasoning and reduce the number of parameters.

Concept Modulator. Our feature modulation consists of both channel-wise scaling
and shifting operations. Previous works have used only scaling (gating) (Hu et al., 2018;
Woo et al., 2018; Hu et al., 2018) or only shifting (Cao et al., 2019). We compare different
settings of the feature modulation as shown in Table 5.5.(c). Using only shifting performs
better than using only scaling, and combining both operations is recommended as the best
option.

5.4.5. Visualization

We use t-SNE (van der Maaten and Hinton, 2008; Chan et al., 2019) to visualize how
visual concept states are represented in the feature space. We collect a set of concept states,
which are all extracted from the same concept sampler, by doing inference with the ImageNet
validation set. In Figure 5.5, it is shown that the concept states are clustered and separated
by concepts.
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Fig. 5.6. Visualization of attention (projection) maps from VCRNet, GCNet, and GloRe.

Fig. 5.7. Visualization of interactions between concepts (the adjacency matrix A with
source concept c and target concept c′ in Equation 5.3.3). Each figure is generated from
a different image in the ImageNet validation set.
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This result can be further explained by observing the attention maps computed from
the concept samplers. Interestingly, they reveal the fact that the concept samplers sparsely
attend different regions or objects, and this would result in clustered concept states. This
also suggests that our proposed architecture is able to learn distinct concepts without any
supervision that explicitly associates branches with certain labeled concepts. We also visu-
alize attention (projection) maps from other networks such as GCNet (Cao et al., 2019) and
GloRe (Chen et al., 2019) in Figure 5.6. GCNet only produces a single attention map, and
it tends to sparsely attend foreground objects. GloRe similarly computes projection maps as
our approach, but the maps are densely attending regions with some redundancies between
them.

We furthermore extract edge absolute values (interactions) between concepts from differ-
ent images and visualize them in Figure 5.7. It shows that each image has different interac-
tions between concepts, and concepts are interacting sparsely so that most edge values are
near zero.

5.5. Conclusion
In this work, we propose Visual Concept Reasoning Networks (VCRNet) that efficiently

capture the global context by reasoning over high-level visual concepts. Our proposed model
precisely fits into a modularized multi-branch architecture by having split-transform-attend-
interact-modulate-merge stages. The experimental results shows that it consistently out-
performs other baseline models on multiple visual recognition tasks and only increases the
number of parameters by less than 1%. We strongly believe research in these approaches
will provide notable improvements on more difficult visual recognition tasks in the future.
As future works, we are looking forward to remove dense interactions between branches to
encourage more specialized concept-wise representation learning and improve the reason-
ing process. Moreover, we expect to have consistent and specialized visual concepts that
are shared and updated over all stages in the network by removing dense interactions be-
tween different branches as possible. Explicitly associating branches in the networks with
labeled concepts, such as human languages, may also improve the learning of tasks requiring
high-level reasoning.
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5.6. Appendix
5.6.1. Implementation Details

Our proposed model is based on a modularized multi-branch architecture. Each branch
can be described as a separate network that is associated to a single concept as shown in
Figure 5.8. The concept reasoner is only shared between branches to make different concepts
to interact. At the end, all branches are merged into a single output by summation. By
using grouped convolutional operations, the overall architecture can be viewed as a single
branch, but internally operates by separate networks in parallel.

Fig. 5.8. Both architectures are equivalent. Left: Each branch is associated to a single
concept c, and the concept reasoner is shared between branches. Right : By using grouped
convolutions, the architecture can be implemented as a single-branch network. Reshaping
operations are omitted in this figure.

5.6.2. Image Classification Training Setting

For training the networks, we follow the standard data loader that uses data augmentation
with resizing and random flipping and cropping to get images with the size of 224× 224. All
images are also normalized into [0, 1] by using the RGB-wise mean and standard deviation.
We train all networks from scratch on distributed learning system using synchronous SGD
optimizer with weight decay 0.0001 and momentum 0.9. The learning rate is warmed up
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for the initial 5 epochs that is linearly increased from 0.0 to 1.6 (Loshchilov and Hutter,
2017). This is the setting when the mini-batch size is 4096 with 32 GPUs (128 images per
each GPU) for both ResNeXt-50 and ResNeXt-101. Afterward, we use the cosine learning
rate scheduler for 115 epochs that decays the learning rate from 1.6 to 0.0001. Moreover, we
apply label-smoothing regularization (Szegedy et al., 2016) during training.

5.6.3. Additional Experimental Results

We do some additional experiments to investigate the effectiveness of normalization layers
in our proposed modules. In our main implementation, we use batch normalization (BN)
layers in concept samplers and reasoners. However, the effectiveness of batch normalization
layers highly depends on the mini-batch size or the image size. In image classification
experiments, we set the mini-batch size significantly large, which is 4096, and the batch
normalization layers seem to properly improve the performance as shown in Table 5.6.

Table 5.6. The effectiveness of BN on image classification

Setting
(Model: ResNeXt-50 + VCR)

Error (%) # of
Params GFLOPsTop-1 Top-5

remove BN (channel-level) 20.15 5.12 25.25M 4.26
remove BN (pixel-level) 20.17 5.06 25.25M 4.29
use BN (channel-level) 19.97 5.03 25.26M 4.26
use BN (pixel-level) 19.94 5.18 25.26M 4.29

We further run experiments on object detection and instance segmentation on the
MSCOCO dataset. All experiments are initialized by using the pre-trained models and
trained with the mini-batch size 16 that is relatively smaller than the setting of image clas-
sification. The results show that the batch normalization layers conversely degrade the
performance in some cases (see Table 5.7).

Table 5.7. The effectiveness of BN on object detection and instance segmentation

Setting APbbox APbbox
50 APbbox

75 APmask APmask
50 APmask

75 # Params
remove BN (channel-level) 41.68 63.63 45.45 37.46 60.20 39.94 44.15M
remove BN (pixel-level) 42.11 64.24 45.89 37.80 60.72 40.12 44.15M
use BN (channel-level) 41.81 63.93 45.67 37.71 60.36 40.25 44.18M
use BN (pixel-level) 42.02 64.15 45.87 37.75 60.62 40.22 44.18M

5.6.4. Visualization: Class Activation Mapping

We visualize class activation mapping (CAM, Zhou et al. (2016)) to localize class-specific
regions in images. The visualization results are shown in Figure 5.9.
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Fig. 5.9. Visualizations of class activation mapping (CAM) from different networks
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Chapter 6

Conclusion

In this thesis, we have proposed a series of methods to make deep neural networks adap-
tive to different circumstances in computationally efficient ways. We first categorized the
adaption in deep learning into 3 different levels as explained in Chapter 2. Based on differ-
ent perspectives, we defined them as (1) task-level, (2) temporal-level, and (3) context-level
adaptations and explained each of them in detail by providing some motivations and related
works.

The first category is a task-level adaptation, where deep neural networks are expected
to learn a distribution over tasks to quickly adapt to new tasks. This task-level adaptation
can be explained by a meta-learning framework, and in Chapter 3, we proposed a Bayesian
meta-learning framework to model the uncertainty induced during fast task adaptation with
a few examples. It is based on an optimization-based meta-learning framework, where we
combined efficient gradient-based meta-learning with nonparametric variational inference
in a principled probabilistic framework. That way, it is able to approximate the complex
multimodal task posterior in a flexible way that uses a number of particles. Moreover, as
it is broadly applicable, we showed our method in various types of learning tasks including
supervised learning, active learning, and reinforcement learning.

In the second category, we explained temporal-level adaptation, which is also referred
to as temporal abstraction. Specifically, we focused on models that are able to do jumpy
future predictions to improve long-term predictions of the future with less computational
complexity. In Chapter 4, we introduced a variational approach to learning and inference
of temporally hierarchical structure and representation for sequential data. This allows the
model to learn to decompose sequential data into some subsequences in an unsupervised
manner. Here, time steps included in the same subsequence are assumed to share a high-
level (i.e. global) representation, and each time step is further described in detail with a
local representation. That way, we proposed to implement the jumpy future predictions by
state transitions between subsequences. We also showed the potential of our proposed model



in improving the efficiency of agent learning, which can be characterized by a model-based
imagination-augmented agent.

Lastly, we investigated context-level adaptation, where deep neural networks can adap-
tively change or modify some weight variables according to some conditional context. This
can be implemented by attention mechanisms and feature-wise transformations, and in Chap-
ter 5, we proposed a convolutional neural network that is based on both methods. It can
extract the global context from image data in an adaptive way and also propagate that
information to local descriptors (e.g. feature maps) by modulating them. Moreover, these
features can be compactly implemented in a modularized multi-branch architecture, where
group convolutional operations are mainly used.

Along with our contributions in this thesis, we further expect some future works to
improve the adaptation power in deep neural networks as described in the following:

• Conditional Computation. This can be achieved by modular approaches, where
models are composed of a set of modules. Here, the main goal is to learn not only
these modules, but also how to combine them to improve the generalization on unseen
concepts or tasks. In other words, this can be referred to as modular meta-learning.
• Neural Architecture Search (NAS). Recent works in NAS are mostly focusing
on typical problem settings, which do not require any adaptation. By introduc-
ing some components with adaptive computations such as attention mechanisms or
feature-wise transformations, it would allow the discovered model to better handle
unexpected circumstances. Additionally, a meta-learning framework can be adopted
to enable task-level adaptation.
• Ensemble Modeling. Ensemble modeling can be interpreted as a mixture of
experts (MoE), where each base model is an expert with its own specialty. Rather
than simply averaging the results from all base models, we can define an auxiliary
model that learns to adaptively combine the base models. That way, the final results
are differently computed by conditioning on the context extracted from input data.
• Transformers. Transformers with multi-head self-attention modules are now
broadly used as fundamental building blocks in deep neural networks. Based on
its adaptability and flexibility, RNNs and CNNs are replaced by Transformers or
hybrid models are used. In this regard, it would be important to reformulate the
existing adaption methods to the setting of Transformers.

As we discussed and highlighted at the beginning of this thesis, the ability to quickly
learn or adapt to new concepts, tasks, and environments is a critical feature for deep neural
networks being deployed in real-world complex applications. For this reason, we strongly
believe that our proposed approaches could be an important step towards computationally
efficient adaptable deep neural networks.
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