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Résumé

Les parcellations cérébrales sont appliquées en neuroimagerie pour aider les chercheurs à ré-
duire la haute dimensionnalité des données d’IRM fonctionnelle. L’objectif principal est une
meilleure compréhension de l’organisation fonctionnelle du cerveau tant chez les sujets sains
que chez les sujets souffrant de troubles neurologiques, dont la maladie d’Alzheimer. Malgré
la vague d’approches de parcellations précédentes, les mesures de performance doivent en-
core être améliorées pour générer des parcellations fiables, même avec de longues acquisitions.
Autrement dit, une reproductibilité plus élevée qui permet aux chercheurs de reproduire des
parcellations et de comparer leurs études. Il est également important de minimiser la perte
d’informations entre les données compressées et les données brutes pour représenter avec
précision l’organisation d’un cerveau individuel. Dans cette thèse, j’ai développé une nou-
velle approche pour parcellaire le cerveau en reconfigurations spatiales distinctes appelées
«états dynamiques de parcellations». J’ai utilisé une méthode d’agrégation de cluster simple
DYPAC1.0 de parcelles basées sur des semences sur plusieurs fenêtres de temps. J’ai émis
l’hypothèse que cette nouvelle façon de formaliser le problème de parcellisation améliorera
les mesures de performance par rapport aux parcellations statiques. Le premier chapitre
de ce document est une introduction générale au contexte des réseaux à grande échelle du
cerveau humain. Je montre également l’importance des parcellations pour une meilleure
compréhension du cerveau humain à l’aide de connectomes fonctionnels afin de prédire les
schémas de progression de la maladie. Ensuite, j’explique pourquoi le problème de parcelli-
sation cérébrale est difficile et les différentes questions de recherche ouvertes associées à ce
domaine. Mes contributions à la recherche sont subdivisées en deux articles. Les deuxième
et troisième chapitres sont consacrés au premier article principal et à son supplément publié
dans Network Neuroscience Journal. Le quatrième chapitre représente le deuxième document
en préparation. Le cinquième chapitre conclut mes contributions et ses implications dans le
domaine de la neuroimagerie, ainsi que des orientations de recherche ouvertes. En un mot,
la principale conclusion de ce travail est l’existence de reconfigurations spatiales distinctes
dans tout le cerveau avec des scores de reproductibilité presque parfaits sur les données de
test-retest (jusqu’à 0,9 coefficient de corrélation de Pearson). Un algorithme d’agrégation
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de cluster simple et évolutif appelé DYPAC 1.0 est expliqué pour identifier ces reconfigu-
rations ou «états dynamiques de parcellations» pour des sous-réseaux de départ spécifiques
(deuxième chapitre). L’analyse de ces états a montré l’existence d’un répertoire plus riche
«d’états dynamiques» dans le cas des cortex hétéromodaux (ex: cortex cingulaire posté-
rieur et cortex cingulaire antérieur dorsal) par rapport aux cortex unimodaux (ex: cortex
visuel). En outre, les résultats de l’analyse de reproductibilité ont montré que DYPAC 1.0 a
de meilleurs résultats de reproductibilité (en termes de corrélation de Pearson) par rapport
aux parcelles statiques (deuxième chapitre). Plusieurs analyses démontrent que DYPAC 1.0
est robuste au choix de ses paramètres (troisième chapitre). Ces résultats et l’évolutivité
de DYPAC 1.0 ont motivé une analyse complète du niveau cérébral. Je présente DYPAC
2.0 comme une approche au niveau cérébral complet pour fragmenter le cerveau en «états
dynamiques de parcellations». Des reconfigurations spatiales distinctes et se chevauchant ou
«états dynamiques» sont identifiées pour différentes régions du cerveau (quatrième chapitre).
Ces états ont des scores de compression prometteurs qui montrent une faible perte d’infor-
mations entre les cartes de stabilité d’état réduit et les données d’origine dans les cortex
cérébraux, c’est-à-dire jusqu’à seulement 20% de perte de la variance expliquée. Cette thèse
présente ainsi de nouvelles contributions dans le domaine de la parcellisation fonctionnelle
qui pourraient avoir un impact sur la manière dont les chercheurs modélisent les interactions
riches et dynamiques entre les réseaux cérébraux dans la santé et la maladie.

Mots clés Imagerie par résonance magnétique fonctionnelle, Analyse spatiale, Régions
spécifiques au sujet, États dynamiques, Parcellisation du cerveau entier
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Abstract

Brain parcellations are applied in neuroimaging to help researchers reduce the high dimen-
sionality of the functional MRI data. The main objective is a better understanding of the
brain functional organization in both healthy subjects and subjects having neurological dis-
orders, including Alzheimer disease. Despite the flurry of previous parcellation approaches,
the performance measures still need improvement to generate reliable parcellations even with
long acquisitions. That is, a higher reproducibility that allows researchers to replicate par-
cellations and compare their studies. It is also important to minimize the information loss
between the compressed data and the raw data to accurately represent the organization of
an individual brain. In this thesis, I developed a new approach to parcellate the brain into
distinct spatial reconfigurations called “dynamic states of parcellations”. I used a simple
cluster aggregation method DYPAC1.0 of seed based parcels over multiple time windows. I
hypothesized this new way to formalize the parcellation problem will improve performance
measures over static parcellations. The first chapter of this document is a general context
introduction to the human brain large scale networks. I also show the importance of par-
cellations for a better understanding of the human brain using functional connectomes in
order to predict patterns of disease progression. Then, I explain why the brain parcellation
problem is hard and the different open research questions associated with this field. My
research contributions are subdivided into two papers. The second and the third chapters
are dedicated to the first main paper and its supplementary published in Network Neuro-
science Journal. The fourth chapter represents the second paper under preparation. The
fifth chapter concludes my contributions and its implications in the neuroimaging field, along
with open research directions. In a nutshell, the main finding of this work is the existence of
distinct spatial reconfigurations throughout the brain with near perfect reproducibility scores
across test-retest data (up to .9 Pearson correlation coefficient). A simple and scalable clus-
ter aggregation algorithm called DYPAC 1.0 is explained to identify these reconfigurations
or “dynamic states of parcellations” for specific seed subnetworks (second chapter). The
analysis of these states showed the existence of a richer repertoire of “dynamic states” in the
case of heteromodal cortices (e.g., posterior cingulate cortex and the dorsal anterior cingulate
cortex) compared to unimodal cortices (e.g., visual cortex). Also, the reproducibility analysis
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results showed that DYPAC 1.0 has better reproducibility results (in terms of Pearson corre-
lation) compared to static parcels (second chapter). Several analyses demonstrate DYPAC
1.0 is robust to the choice of its parameters (third chapter). These findings and the scalabil-
ity of DYPAC 1.0 motivated a full brain level analysis. I present DYPAC 2.0 as the full brain
level approach to parcellate the brain into “dynamic states of parcellations”. Distinct and
overlapping spatial reconfigurations or “dynamic states” are identified for different regions
throughout the brain (fourth chapter). These states have promising compression scores that
show low information loss between the reduced state stability maps and the original data
throughout the cerebral cortices, i.e. up to only 20% loss in explained variance. This thesis
thus presents new contributions in the functional parcellation field that may impact how
researchers model the rich and dynamic interactions between brain networks in health and
disease.

Keywords Functional magnetic resonance imaging, Spatial analysis, Subject specific re-
gions, dynamic states, Whole brain parcellation
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Chapter 1

Introduction

1.1. Rationale
Alzheimer disease result in the incurable degeneration of nerve cells and eventually

leads to a debilitating condition called dementia. It is among the most worrisome health
problems currently due to their rapid increase all over the world, with the aging of the
population. The number of people affected by Alzheimer’s dementia has indeed dramatically
increased in U.S. since 2010, and is predicted to reach 13.4 million by 2050 (See Fig. 1). The
costs associated with this upcoming epidemics are staggering, currently representing 184
billion and expected to reach 1.167 billions in 2050 [75]. Unfortunately, Alzheimer dementia
is currently incurable, by contrast to all other top ten causes of death in the U.S. A key
reason for the lack of effective treatment is that the diagnosis of Alzheimer is performed at
a very advanced stage of the disease, where the neuronal tissues have been damaged beyond
destroyed.

A major challenge for neurologists and clinical neuroscientists is therefore the early
and reliable identification of Alzheimer disease, before the apparition of clinical symptoms.
This challenge will likely only be addressed through unprecedented multidisciplinary
research. Neuroimaging, and in particular functional magnetic resonance imaging (fMRI),
is a promising tool to study the functional organization of the brain for an early, reliable
diagnosis of Alzheimer disease. A key step to reach that objective is to parcellate the brain
into functionally homogeneous networks, using fMRI data. This can be achieved for a
particular patient, or by combining the data of many patients to derive a parcellation which
describe common characteristics in a group.



Fig. 1. Federal government expenditures and number of affected people with
Alzheimer’s disease in U.S.A.
Sources: Alzheimer study group. A national Alzheimer strategic plan: The report of the
Alzheimer study group; Alzheimer association. National Institute of health office of the
budget [75].

The main outcome of my thesis will be new algorithms for brain parcellation at the
individual using longitudinal functional MRI data. I believe these algorithms will be useful
for the diagnosis of Alzheimer disease, and more generally for the study of neurological
disorders.

1.2. Resting state fMRI and its motivations
Functional magnetic resonance imaging (fMRI) provides an indirect measure of neuronal

activity, it acquires the blood-oxygen-level-dependent (BOLD) signal as an indirect measure
of neuronal activity. This signal is a set of complex changes that reflect the oxygen demand
and the blood flow at the proximity of neurons. The idea of fMRI is based on the relaxation
of the hydrogen nuclei, by using specific fMRI sequences consisting of T2* weighted
acquisitions that are sensitive to local distortions of the magnetic field. In fact, when a
neuron is internally activated by a stimulus, it needs energy to restore its electrical and
ionic concentration equilibrium. The mechanism that allows the generation of this energy
is the glucose oxidative metabolism. This leads to the increase of the deoxyhemoglobin
concentration (the hemoglobin without oxygen), a paramagnetic molecule, which creates
distortions in the magnetic field and thus the perturbation of the hydrogen nuclei. So the
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rationale behind the data acquired using fMRI stems from the idea that brain activity exists
in areas where there are changes in the oxygen consumption.

Despite its inability to directly measure the neuronal activity, many researchers have
studied the relationship between the fMRI recordings and the actual neuronal activity to
provide an empirical assertion of the validity of the provided BOLD signal to measure
the neuronal activity. For example, Logothetis et al. (2001) suggested that BOLD signal
actually reflected the input and the local intracortical processing. Still, there is a need, in
the future, for non-invasive neuroimaging techniques that are able to directly measure the
activity of the nerve cells.

1.3. Human brain large scale networks
1.3.1. History of the brain anatomy

Before analyzing the brain function and dynamics, anatomists observed the brain
organization at a structural level. One century before, Ramon y Cajal, a well-known
anatomist at that time, proposed the neuron doctrine. He suggested that the nervous
system was composed of neurons, which acted as independent functional entities. Cajal
discussed both the specificity and diversity of nerve cells in his neuron theory (See Fig. 2).
Neurons are individual cells that communicate information via junctions called synapses.
Michio Kaku said: "The human brain has 100 billion neurons, each neuron is connected
to 10 thousand other neurons. Sitting on your shoulders is the most complicated object in
the known universe" [47]. The central nervous system is responsible for actions related to
memory, cognition and behavior.

In the past, researchers looked at the human brain in detail to recognize the differ-
ent morphology of nerve cells, physiologic and metabolic phenomena. Recent trends of
modern research were rather oriented towards observing the large-scale architecture of the
brain as an integrative system. The antagonist of Ramón y Cajal, Camillo Golgi defended,
at that time, the reticulum theory in which he considered the brain as an ensemble of
non-dependent entities that were interacting collectively to give rise to coordinated states at
multiple scales. Small-scales go from neurons and their single paths, then it enlarges to more
elaborated local networks. These local networks are themselves connected to other spatially
distributed networks called large-scale networks. In the Nobel Lecture in 1906, Camillo
Golgi said: ...far from being able to accept the idea of the individuality and independence
of each nerve element, I never have reason, up to now, to give up the concept which I have
always stressed, that nerve cells, instead of working individually, act together [...]. However,
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opposed to the popular tendency to individualize the elements, I cannot abandon the idea of
a unitary action of the nervous system [...].

Fig. 2. The neuron theory suggested by Ramón y cajal.
Santiago Ramón y Cajal gained the Nobel prize for his neuron theory more than a century
ago. He explained the rules of space, time and material conservation and the morphological
adaptation of neurons in the human brain (1906). (a) Recordings of the data by pen and ink
drawings and their correspondents cells. (b-c) Cajal explained the way the retinal cone cells
works (A in the figure) and passed via the synaptic junctions to the ganglion cells (C in the
figure) and was projected after that to the axons (g in the figure) to end to the proximity
of neurons (H in the figure)(c). Example of cells, the Shepherd’s crook cell of the reptilian
optic lobe had a specific characteristic compared to other nerve cells. In fact, its axon has a
distinguished morphology since it do not emerge close to the cell body (A in this figure) (d)
[36].

1.3.2. Anatomical brain boundaries are different from the func-
tional brain boundaries

Studying the brain as a large-scale integrative system was crucial for brain functions such
as cognition and behavior.
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Fig. 3. Evolution of the long distance pathways of the arcuate fasciculus.
The left hand image illustrated an anatomical preparation showing the arcuate fasciculus
in the left cerebral hemisphere of the human brain. The right hand image illustrated the
connectivity in the arcuate fasciculus. It showed the large-scale aspect of brain networks. It
also illustrated the fact that the boundaries of functional connectivity were not restricted to
the boundaries of anatomy [71] .

These large-scale aspects of functional networks needed to be considered when subdivid-
ing the functional organization into regions based on a functional; parcellation approach.
Fig. 3 showed an example of the large-scale network of the arcuate fasciculus. In this thesis,
we were interested to develop new parcellation algorithms and our main objective was to
reduce the complex functional MRI into neurobiologically meaningful brain regions.

1.4. Brain regions changes their boundaries over time
Brain functional organization variability represented one of the most challenging issues

for more than two decades in neuroscience research both at the within- and the between-
subject level (See Fig. 4 and Fig. 5). There were two major factors at the origin of changes
in the structural and functional structure of the cerebral cortex, at the individual level.
These factors were the age and the learning processes. Learning contributed to acquiring
cognitive reserves that enhanced functional performances of the brain. These factors resulted
in changes in the boundaries of anatomical and functional regions. There was a difference in
the anatomical boundaries of regions for one subject both at the temporal and the between
subject level. Anatomical differences were also reflected in the differences associated with
the functional organization of the human brain [36]. This could be noticed, in reality, by
differences at the level of intelligence or reasoning between individuals.
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Fig. 4. Variability in boundaries of brain regions in longitudinal data.
We observed changes in the boundaries of brain regions over time [14].

Fig. 5. Between-subject variability in boundaries of cortical areas.
We observed five superimposed left-hemisphere reconstructions of the cortical areas 9 and 46
based on their cytoarchitectonic profile. The outlines of the two areas in individual brains
were marked by lines, and their overlap was indicated by the level of shading. The cortical
territory occupied by area 9 or area 46 in all five individual brains was filled in black [71].

1.5. Functional brain parcellations
1.5.1. Functional brain parcellation reduces the complex brain or-

ganization

Functional MRI parcellation aimed to simplify the complex organization of the brain
voxels by grouping them into regions/parcels. Each voxel represented a set of neurons in the
brain. A region or parcel represented a set of spatially connected voxels with functionally
homogeneous time series (i.e., these voxels correspond to neurons that interact together to
communicate pieces of information associated with a cognitive task). Spatially distributed re-
gions/parcels represented a cluster. The parcellation problem could be seen as a compromise
between redundancy minimization and segregation maximization. To minimize redundancy,
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all voxels associated with functionally homogeneous time series were grouped together in
the same parcel. To maximize segregation, only representative voxels of a specific/unique
functional pattern were grouped together within a parcel.

1.5.2. Applications of functional brain parcellations

Fig. 6. Generation of the functional connectome based on the functional parcel-
lation.
The functional connectome was the matrix that contained the correlations (e.g., Pearson
correlation) between each pair of regions (i.e., here 1191 regions/parcels). The average time
series of all the voxels included in one seed region was computed and correlated to the average
time series from other regions in the brain. The map of a seed region (or region of interest)
was shown in the right hand side [15].

Prior to the analysis of functional MRI data, researchers applied functional parcellation
as a dimensionality reduction. For instance, graph theory approaches used brain parcels
as nodes in the graph to represent human brain networks [72]. These networks were
then analyzed for a better understanding of the brain dynamics. Additionally, generating
connectomes based on brain parcellations was widely investigated (See Fig. 6). Recently,
the connectomics theory represented a promising area of research since it helped neurosci-
entists to have a better understanding of brain functional networks [36]. For instance, the
connectomics and graph-theory provided an attractive framework for mapping, tracking
and predicting patterns related to brain disorders (See Fig. 8 [36, p.28]). Another different
recent application of functional parcellations was the construction of subtypes [31]. The
main objective of functional subtypes was the amelioration of the accuracy of the prediction
of a neurological disease; e.g. Alzheimer disease.

Previous studies reported the choice of brain parcellations had a clear bias between
network measures for different brain parcellations depending on how well these brain regions
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were actually representative of the functional brain networks (See Fig. 7). This suggested a
cautious choice of brain parcellations was required to avoid such bias.

Fig. 7. Graph theory metrics were biased by the choice of the functional parcel-
lations.
An analogy to the brain networks (a-d) illustrated the parcellation applied on a geographical
map to show that the choice of erroneous boundaries lead to wrong identification of country
localization. Likewise, the brain parcellation map included multiscale features. Large-scale
features were, for instance, oceans and fine-grained features were cities. (e) showed parcel-
lations at different resolutions. Each brain network was constructed based on a parcellation
(f) demonstrating the effect of the different number of regions (nodes) on a graph-theory
metric called small worldness [36, p.76].

The development of computational models of large-scale network dynamics allowed the
simulation of the functional architecture of the brain. For instance, recently functional
connectomics emerged as a promising theory for representing, in a helpful way, the func-
tional patterns [72]. Once the architecture was established, the development of statistical
techniques and models for the inference of differences between patterns of functional con-
nectivity at the individual-level, as well as, the group level could be performed. Pathology
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Fig. 8. Using Brain Graph to map, track and predict patterns of disease propa-
gation across the connectome.
(a) Most studies related to the diagnosis of brain disorders compare differences between
brain regions for one or a group of suspect patients and a control group for some regions
of the cerebral cortex based on some measures. Here, regions 1 and 2 show abnormality in
the patient group. This comparison between brain regions helps in identifying abnormalities
localization. Then, (b-e) the mapping of brain connectivity allows us to understand the
context of the abnormal regions and the abnormal connexions with other regions suggesting
that these regions are subject to pathological processes [36, p.28].

in the brain could be associated with changes at the brain organization; i.e. regions shape
and size and connections between regions. These analysis had to be done at different levels
for the identification of the level of impairment and prospects of recovery following the ther-
apeutic intervention [36, p.28] (See Fig. 8). Another application by [31] was the prediction
of schizophrenia based on functional subtypes to ameliorate the accuracy of the detection of
heterogeneity in functional patterns between patients and controls. Overall, functional brain
parcellations represented the cornerstone of several neuroimaging applications to help reduce
and understand the functional complex brain organization. This allowed researchers to make
several discoveries towards the identification and the prevention of neurological diseases.

1.5.3. Anatomical parcellations

Earlier approaches in neuroscience, researchers focused on parcellating the human brain
into regions to understand its organization. Although many anatomists proposed different
parcellations, there existed no consensus related to anatomical regions. The underlying
heterogeneity was mainly due to differences in the morphology of cortical regions at the
intra- and between-subjects level added to the subjectivity of anatomists (See Fig. 9). Thus,
the parcellation could be considered as an ill-defined problem for which there existed many
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possible solutions. Another limitation of anatomical parcellations was the failure to parcellate
several regions in the brain including the precuneus and neighboring posterior cingulate.

Fig. 9. Anatomical parcellation of the cerebral cortex.
The left hand image corresponded to Alfred Campbell subdivision into 14 regions and the
right hand image was the Korbinian Broadmann subdivision into 44 regions [71].

1.5.4. Brain networks are spatially distributed across the brain

Many recent approaches relied on spatial contiguity of voxels to generate parcels.
Although this hypothesis was valid for many regions of the brain corresponding to con-
tiguous voxels, there existed spatially distributed voxels that were interrelated via indirect
connexions [71]. In 1909, Bordmann arms: One cannot think of their taking place in any
other way than through an infinitely complex and involved interaction and cooperation of
numerous elementary activities [...] we are dealing with a physiological process extending
widely over the whole cortical surface and not a localised function within a specific region
[71]. Imposing the commonly used spatial constraints, uniformly, for all cortical regions did
not correspond to the reality of the cerebral cortex.

Previous studies demonstrated that anatomical and functional subdivisions were con-
sistent [58]. However, BOLD correlations did not necessarily reflect the anatomical
connectivity. Some functional fMRI parcellation approaches identified, only, functional
parcels corresponding to fine-scales (i.e; functional sub-networks resulted from local nerve
cells interactions) such that large numbers of these functional parcels could match anatomi-
cal parcels. These coarse parcellations were insufficient to capture rich interactions between
large scale networks [58, 45]. It was also not representative for cognitive functions [36].
Fig. 10 illustrated the schematic linking between brain network topology and psychological
function. It suggested the existence of both fine scale and multiscale properties of brain
networks.
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Fig. 10. Schematic linking between brain network topology and psychological
function [36].
Depending on the psychological function, there existed some regions in the brain that were
involved either at the locally connected regions or the distributed regions throughout the
brain.

1.5.5. There is no consensus regarding the number of clusters

Due to the lack of theoretical directives and a ground truth to guide the choice of the
number of clusters, researchers estimated a range for meaningful values ranging between [5
.. 10 000] (e.g., [74])). Another more interesting way was to choose the number of clusters
according to performance measures. For example, the number of clusters was chosen based on
maximizing the stability contrast measure (derived from the silhouette criterion on the within
and between cluster variance). The impact of the number of clusters on the significance in
differences between groups measured for each connexion between parcels. Experimental
results showed that performance measures (i.e., sensitivity and specificity) were high and
consistent across scales inferior to 25. Surprisingly, in the case of schizophrenia, the highest
significance was found in the case of the basal ganglia for 55 parcels [13]. Other studies
reported that the choice of the number of clusters was a tradeoff between complexity of the
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reduced brain representation and analytic performance. That is, a higher number of clusters
had better analytic performances at the expense of higher complexity [66].

1.5.6. The functional parcellation algorithms has a high dimension-
ality in time and space

The dimensionality of functional fMRI data is a challenging issue in functional MRI par-
cellations. Recently, neuroimaging datasets had a dramatic increase in size. This increase
included either the number of scanned runs, the scans durations, the resolution of the ac-
quired data or the number of subjects. Up to date, one of the most massive online datasets
were the Human Connectome Project (HCP) [42], and the cneuromod dataset [28]. These
datasets had up to 20 TB of disk space. For instance, these data were acquired for 1200 sub-
jects in the case of HCP for two hours each. cneuromod dataset had up X hours per subject
for six subjects. Additionally, cneuromod and HCP had the same scanning protocol with 2
millimeters spatial resolution instead of the commonly scanning 3 or 4 millimeters and a fast
temporal resolution TR (TR=1.49s in the case of cneuromod dataset). Therefore, scalable
parcellation algorithms were highly needed to reduce the dimensionality of these fMRI ’Big
Data’ [77]. In parallel with the high demand in intensive computational resources, there
existed several grid computing servers adapting to this high demand. For instance, com-
pute canada had many servers with hundreds of computing cores available. These nodes
had at least 125G available memory [?]. Still, the scalability of neuroimaging algorithms
including the functional parcellation algorithms facilitates the replication of experiments on
different datasets and different computing environments from different researchers. Up to
date, this replication is still challenging for many state of the art functional parcellations and
thus, urgent scalable solutions for reducing the processing time and the memory demands of
neuroimaging Big Data processing.

1.6. Thesis objectives
1.6.1. First paper objectives

The first contribution of this thesis was the development of a new method that
captured reproducible dynamic states of parcellations at the individual level. These
dynamic states represented the spatial brain reconfigurations over time in the resting
state condition. This is very important in the context of ignoring the substantial dynamic
reorganization of the human brain by previous static parcellation approaches. Additionally,
our results suggested these static approaches were incorrectly averaging well defined and
distinct dynamic states. This brought important caution for any work based on static atlases.
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Paper accepted in Network Neuroscience journal: Boukhdhir, A., Zhang, Y., Mignotte,
M., Bellec, P. 2020. Unraveling reproducible dynamic states of individual brain functional
parcellation. Network Neuroscience journal.

1.6.2. First paper supplementary objectives

The second contribution of this thesis represented the supplementary materials of our first
published paper. We investigated different research questions associated with our proposed
dynamic parcellation approach. First, we validated our hypothesis regarding the inexistence
of a clear structured state in the whole brain parcellation. This is important because it
motivated us to the seed-based parcellations as a cornerstone of our dynamic parcellation
approach. Second, we showed it was possible to extend the dynamic parcellation algorithm
by considering both the spatially connected dynamic states and the spatially distributed
dynamic states. Third, we replicated all the experiments of chapter 2 (the main paper) with
different parameters to verify the robustness of our dynamic parcellation algorithm. Fourth,
we investigated the dynamic states reproducibility scores both at the within-session and
between sessions effect. This allowed us to know whether the acquisitions of functional MRI
data across days impacted the reproducibility of the dynamic states. Fifth, we quantified the
synchrony between the different states of parcellations. That allowed us to know whether
two different states were involved at the same time or not in a resting state condition.

1.6.3. Second paper objectives

The third contribution of this thesis is the extension of the seed-based dynamic parcella-
tion approach at the full brain level. To validate the goodness of the dynamic parcellations,
we aimed to test the compression of the functional MRI signal at the within-subject
level over the between subject level.We also aimed to quantify the reproducibility of the
full brain dynamic states and compare it at the within-subjects level over the between
subjects level. We used longitudinal functional MRI acquisitions in the context of movie data.

Paper in preparation: Boukhdhir, A., Boyle, J., Pensard, B., Mignotte, M., Bellec, P.
Dynamic states of parcellations are subject-specific at the full brain level.
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Abstract. Data-driven parcellations are widely used for exploring the functional organi-
zation of the brain, and also for reducing the high dimensionality of fMRI data. Despite the
flurry of methods proposed in the literature, functional brain parcellations are not highly
reproducible at the level of individual subjects, even with very long acquisitions. Some brain
areas are also more difficult to parcellate than others, with association heteromodal cortices
being the most challenging. An important limitation of classical parcellations is that they
are static, i.e. they neglect dynamic reconfigurations of brain networks. In this paper, we
proposed a new method to identify dynamic states of parcellations, which we hypothesized
would improve reproducibility over static parcellation approaches. For a series of seed voxels
in the brain, we applied a cluster analysis to regroup short (3 minutes) time windows into
“states” with highly similar seed parcels. We splitted individual time series of the Midnight
scan club sample into two independent sets of 2.5 hours (test and retest). We found that
average within-state parcellations, called stability maps, were highly reproducible (over .9
test-retest spatial correlation in many instances) and subject specific (fingerprinting accu-
racy over 70 percent on average) between test and retest. Consistent with our hypothesis,
seeds in heteromodal cortices (posterior and anterior cingulate) showed a richer repertoire
of states than unimodal (visual) cortex. Taken together, our results indicate that static
functional parcellations are incorrectly averaging well-defined and distinct dynamic states
of brain parcellations. This work calls to revisit previous methods based on static parcella-
tions, which includes the majority of published network analyses of fMRI data. Our method
may, thus, impact how researchers model the rich interactions between brain networks in
health and disease.
Keywords: data-driven brain parcellation, dynamic states of parcellation, seed-based
parcellation, spatial reproducibility, within-subject reproducibility, between-subject repro-
ducibility

1. Introduction
Brain parcellation is a tool for understanding the functional organization of the human

cerebral cortex, and also to reduce the dimensionality of fMRI data. Parcellations are
notably heavily used to characterize brain network properties. A brain parcellation
was defined as the entire subdivision of the brain into clusters (or spatially distributed
parcels/regions). A good parcellation should typically satisfy two conflicting objectives.
The first objective is to be reproducible enough to allow for replication and comparison
across studies. The second objective is to be flexible enough to accurately represent the
organization of an individual brain. Simultaneously achieving these two objectives is
challenging, in part due to inter-subject variability [19, 73, 61], which is also associated
with measures of cognitive performance [16]. In addition, it has also become apparent
that brain functional connectivity substantially reorganizes dynamically [79] according
to different cognitive states [67]. Our main objective in this work was to develop a new
method to capture reproducible dynamic states of parcellations at the individual level.
These dynamic states represent the spatial brain reconfigurations over time in the resting
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state condition.

A proliferation of approaches also exist in the literature to study the dynamics of
functional connectivity. These studies confirmed the spatio-temporal reconfiguration of the
brain networks [43, 1, 4] and associated it to dynamics of cognitive processing or mental
states dictated by tasks [9, 37, 20, 64, 54]. The co-activation patterns [24, 55], spatial
independent component analysis [69] were among the most widely applied techniques to
consider brain dynamics (see [25] for a review). These dynamic analyses of the brain,
using for instance sliding window correlation, have demonstrated better results compared
to stationary approaches in the detection of neurological disease [65, 44]. Other findings
confirmed the interaction between brain networks for different task states [81, 19, 23].
For instance, Braga and Buckner discovered that the default mode network could be
reliably subdivided into parallel networks within the same individual [19]. Chen and
colleagues modeled these states switching processes of resting state brain activities using
a hidden markov model [24]. Therefore, neuroscientists mentioned there is a need to have
neuroimaging tools to identify how brain parcels reconfigure spatially in the case of highly
cognitive regions over time and to evaluate the variability of brain parcels across time and
across individuals [54]. Even though dynamic functional connectivity is well studied, to
the best of our knowledge, the only parcellation approach that considered dynamic changes
of parcels was suggested by Salehi and colleagues. These authors demonstrated that the
brain functional parcellations are not spatially fixed, but reconfigure with task conditions
[67, 68]. These reconfigurations were used to reliably predict different task conditions.
Still, this approach only suggested a brain parcellation per task condition, and it neglected
brain parcel reconfigurations across short time durations, within each task. Dynamic
brain parcellation, thus represents a promising area of research to further investigate brain
dynamics.

In this paper, we build upon the findings of Salehi and colleagues [67, 68], and we
propose a novel approach to extract different dynamic states of functional parcellations at
the individual level. We define a dynamic state of parcellation as the spatial reconfiguration
of a given brain network that occurs for short time durations in the resting state condition.
We hypothesize the existence of homogeneous modes of spatial reconfigurations, or dynamic
states of parcellations, at the level of these short time windows and we propose a dynamic
cluster analysis for their identification. Our approach is based on aggregating sliding-window
parcellations for a given region to obtain stability maps of the different dynamic states
of parcellations. We generate these dynamic states for the ten subjects of the Midnight
scan club (MSC) resting-state dataset and we aim to study similarities and variations
within-state (across replication sets), across states (within-subject), and across subjects.
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We also aim to evaluate the reliability of the generated states maps in a "fingerprinting"
experiment, i.e. matching state maps generated from the same subjects within a group.

2. Methods
2.1. Dataset and preprocessing

The resting-state MSC dataset includes ten healthy subjects (female=5, male=5, their
age ranges between 24-34 years old [39]. Informed consent was obtained from all partic-
ipants. The study was approved by the Washington university school of medicine human
studies committee and institutional review board [39]. Each subject underwent a total of
five hours of resting state functional MRI data, with a series of 30 minutes contiguous ac-
quisitions, beginning at midnight for ten consecutive days. In each session, subjects visually
fixated on a white crosshair presented against a black background. All functional imaging
was performed using a gradient-echo EPI sequence (TR = 2.2s, TE = 27 ms, flip angle =
90°, voxel size = 4mm × 4mm × 4mm, 36 slices) on a Siemens TRIO 3T MRI scanner. An
EyeLink 1000 eye-tracking system allowed continuous monitoring of the eyes of the subjects
in order to check for periods of prolonged eye closure, potentially indicating sleep. Only
one subject (MSC08) demonstrated prolonged eye closures. For details about the data ac-
quisition parameters see [39]. The MSC dataset was preprocessed and analyzed using the
NeuroImaging Analysis Kitexecuted within a Ubuntu 16.0.4 Singularity container, running
GNU Octave version 4.2.1, and the MINC toolkit version 1.9.15. The first five volumes of
each run were suppressed to allow the magnetisation and reach equilibrium. Time series were
normalized to the zero mean and unit variance. Each fMRI session was corrected for inter-
slice difference in acquisition time and the parameters of a rigid-body motion was estimated
for each time frame. The "scrubbing" method of [63], was used to remove the volumes with
excessive motion (frame displacement greater than 0.5). No session was excluded due to
excessive motion. Each session had at least 420 volumes after scrubbing, across all subjects,
and with a maximum of 810 volumes available. Also, the nuisance parameters were regressed
out from the time series at each voxel i.e., slow time drifts, average signals in conservative
masks of the white matter and the lateral ventricles, as well as the first principal components
of the six rigid-body motion parameters and their squares. The fMRI volumes were spatially
smoothed with a 6 mm isotropic Gaussian blurring kernel. A more detailed description of
the preprocessing pipeline can be found on the NIAK [12].

2.2. Individual dynamic states of parcellation

We developed an algorithm which identifies dynamic states of brain parcellation at
the individual level called Dynamic Parcel Aggregation with Clustering (DYPAC). The
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algorithm is composed of four steps as illustrated in Fig. 1. In the first step (Fig. 1A), we
select a series of sliding time windows from individual fMRI time series (W=100 time points,
with O=10 time points of overlap, starting from the first time point), and we generate
parcellations for the whole cerebral cortex using a k-Means clustering algorithm (number of
clusters = 12) [62]. We select fMRI time windows from several runs, such that some time
series may combine signals from separate runs. The motivation behind this parcellation step
is the identification of brain regions with similar temporal activity for a given time window.
We choose the k-Means for its linear complexity and simplicity to run; i.e. no need for many
parameters to tune [56, 7]. Our algorithm is parallelized based on the multiprocessing
library to run computations on multiple cores. We also used k-Means using scikit-learn
implementation [62] to generate parcellations and used the k-Means++ method to choose
initial cluster centers in a strategic way in order to speed-up convergence. Although
the k-Means algorithm has the drawback of falling into local minima, the k-Means++
initialization helps overcome this limitation with a better exploration of the parcellation
solution search space. We also replicate the k-Means parcellations (repetition = 5) for each
window with different initializations of the random number generator. This helps identify
consistent solutions across different local minima. All the replicated solutions with different
seeds are pooled with the set of k-Means parcellations. That is, we simply used all the
K-Means based parcellations from different sliding windows as an input for the similarity
matrix of the Hierarchical clustering. The total number of K-Means parcellations used
in the similarity matrix equals the number of sliding windows multiplied by the number
of replications. This result is multiplied by the number of sessions (e.g. if the number of
replications=5, number of sliding windows=10, number of sessions=2 then the total number
of k-Means parcellations = 100).

In the second step (Fig. 1B), we identify for a particular seed voxel which parcel
this voxel is associated with. We thus obtain a binary representation called seed-based
parcellation. This step may contribute to the success of our approach, since it allows us to
simplify the complexity of the full brain parcellation problem by focusing on the functional
activity of one region of interest.

In the third step (Fig. 1C), we calculate the pairwise similarity of all seed-based
parcellations generated from different sliding windows. A seed-based parcellation was
defined as the subdivision of the entire subnetwork, associated with a given seed, into spatial
clusters (i.e., spatially distributed regions/parcels). This similarity is measured with the
so-called Dice similarity score. Then, we apply the Hierarchical clustering (here, with the
average linkage method) on the Dice-similarity matrix to group seed-based parcellations into
dynamic clusters or ‘states’, according to an empirical similarity threshold. This threshold
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constrains the clustering of seed-based parcellations by requiring a minimum Dice similarity
(here, 0.3) between these parcellations in the same dynamic state, which will in turn infer
the number of states in a data-driven way. Given the previously mentioned settings, we
hypothesize that some dynamic states of parcellations only appeared in few sliding windows,
i.e. inferior to 10% of the total number of available seed-based parcellations. These states
might be associated with spurious or non-reproducible spatial brain reconfigurations. Then,
we apply another threshold which filtered the identified states based on their number of
seed-based parcellations in order to keep only those with more than 10% of the total number
of seed-based parcellations. This second threshold will remove noisy states in order to
keep reproducible patterns over time. There should be a trade-off between the similarity
threshold imposed on the Dice similarity matrix and the threshold that constrains the
number of seed-based parcellations in a given state. In other words, a higher Dice score
threshold allows to obtain smaller states (i.e., the higher the Dice score, the lower the
number of seed-based parcellations of a given state) and thus, it requires a smaller number
of seed-based parcellations threshold. This allows us to avoid missing the most interesting
states.

In the last step (Fig. 1D), we averaged all seed-based parcellations for a given cluster
to get its state stability map. This provides a probability of each voxel to be assigned to
a given state as a measure of the stability of voxels with respect to their membership in
a particular area. Stability maps represent the spatial signature of each dynamic state of
brain parcellations, and the final outcome of the algorithm.

Our method generates dynamic states of parcellations as functionally distributed sub-
networks across the brain or local subnetworks surrounding the seed. We also suggest a
simple conversion to split subnetworks into multiple spatially contiguous/connected regions
instead of spatially distributed parcels. This can be useful in the context of graph theory by
considering contiguous regions as nodes in the graph. To this end, we apply a constraint that
separates out connected components and assigns to each region a unique state label, using
the Nilearn function implementation. We set the minimum region size in volume required
to keep after extraction to 50 voxels. This removes small or spurious regions.
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Fig. 1. Subject-specific dynamic parcellation approach (DYPAC).
(A) we generate multiple short time window parcellations for the whole cerebral cortex per subject. (B) Then, we identify the
parcel associated with a particular seed-voxel. (C) We calculate the pairwise similarity of these seed-based parcellations based
on the Dice similarity score. We apply a Hierarchical clustering on this similarity matrix to group these parcellations into a set
of clusters (or dynamic states of parcellations) according to a threshold imposed on the Dice similarity matrix, as well as the
number of sliding windows included in the state. (D) For each cluster and each seed, we average all of its seed-based parcellations
to obtain the final dynamic state stability maps.
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2.3. Choice of the studied subnetworks and their seed

To generate seed-based parcellations, we studied seed voxels from three regions of the
MIST parcellation. We picked MNI coordinates (0, -76, 10), (0, 20, 28) and (3, -43, 37)
as the respective medoids of the ROIs 90, 6 and 42 corresponding to the posterior medial
visual subnetwork (PM-VIS), the dorsal anterior cingulate cortex (dACC) and the posterior
cingulate cortex (PCC) subnetworks in the MIST atlas [76]. The choice of seeds was driven
by the properties of the networks in the literature. We first chose a seed from an area with
the least functional variability [38]: PM-VIS, a core visual area [39]. In the case of the
dACC, this region played a prominent role within the salience network, which is involved in
many functions including response selection, conflict resolution and cognitive control and it
is among the most highly dissimilar networks across subjects [38, 3, 60]. Finally, the PCC is
considered as a hub node in the default mode subnetwork. Previous findings reported it as a
highly heterogeneous network and suggested it may play a direct role in regulating the focus
of attention, memory retrieval, conscious awareness and future planning. Also, functional
interaction between the nodes of the salience seed and those of the default mode, including
the PCC, during moral reasoning is reported in previous studies [26, 46].

2.4. Spatial reproducibility analysis

To evaluate the quality of the dynamic states of parcellations, we conducted two quanti-
tative analyses. First, we compared the performances of the DYPAC algorithm with a static
parcellation algorithm; i.e. the k-Means algorithm. This allowed us to compare the goodness
of our dynamic states of parcellations with an existing static state of the art parcellations.
Second, we conducted a quantitative consistency analysis at the within-subject level. This
allowed us to identify, for a given subject, similarities and variations in the spatial reconfigu-
rations across states and seeds. We conducted a reproducibility analysis for the two analyses.

In both analyses, we half-split the Midnight scan club dataset into two equally sized sets
of five independent sessions (of a total of 2.5 hours each) per subject. Each half (about
2.5 hours per subject) was used to replicate several seed-based parcellations that we called
replication sets. Then, we generated dynamic states of parcellations based on our proposed
approach (See Fig. 1). We sorted the states by decreasing dwell time for the first replication
set (i.e. the cumulative durations of all sliding windows associated with a given state,
relative to the total duration of the scan). Accordingly, we labeled the states of the first
replication set into primary state, secondary state, tertiary state, etc. Prior to comparing
our state stability maps, we matched the first set maps to maps from the second set using
the Hungarian method [51] which used the Pearson correlation for the spatial matching
between state stability maps. The Hungarian method was applied to the within-subject and
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between-subjects analysis. A high correlation reflected a strong linear relationship between
states maps and is indicative of consistent spatial regions from the two sets of independent
data. We replicated these consistency analyses across all states and all subjects of the
Midnight scan club dataset. We run both our DYPAC algorithm and the k-Means algorithm
15 times per set with different random seeds due to the stochastic aspect of the k-Means
algorithm. This allowed us to verify the sensitivity of both algorithms to local minima.

2.5. Fingerprinting experiment

We finally evaluated the individual specificity of our dynamic states of parcellations
by attempting to match dynamic states maps generated from data acquired on the same
subjects, when these maps are mixed with maps generated from other subjects. To this end,
we cross-correlated a given state stability map with all state stability maps from all subjects.
The state stability maps were generated from the split half sets of the Midnight scan club
dataset and all these maps were pooled altogether in the fingerprinting. For a given map,
we looked for the map that matched the closest map from the pool of all maps. Each
seed subnetwork was analyzed separately. A fingerprinting was successful when maximal
correlation was observed between a pair of two state stability maps originating from the
same subject, otherwise it was considered as a failure. We repeated this experiment for all
state maps across all subjects and seeds. We denoted this procedure by the deterministic
fingerprinting. We computed the accuracy score as the number of correct states matching
over the total number of matched maps.A high accuracy score revealed that state stability
maps were reliable to differentiate subjects based on their specific spatial brain reconfigura-
tions. Inversely, a low accuracy score was associated with state stability maps which were
either very similar across subjects or unreliable within subjects.

To correct for the different number of identified states for each subject, we run a finger-
printing by chance experiment. To do that, we selected a state map, arbitrarily for each
subject. Second, we selected another second state map arbitrarily from the pool of state
stability maps of all subjects. If these two maps belonged to the same subject, then the
fingerprinting was successful, otherwise it was considered a failure. We repeated this process
1000 times. We computed the accuracy of the fingerprinting by chance and compared it to
the deterministic fingerprinting.

2.6. States dwell time reproducibility analysis

We aimed to get a better understanding of the dwell time reproducibility over time of
the dynamic states; i.e., the proportion of the total number of sliding windows that were
associated with a given state. To this end, we performed a spatial matching of states between
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two sets of independent sessions in terms of the Pearson correlation and we reported their
associated dwell times in Fig. 12. This matching was based on the Hungarian method.
Therefore, only the dwell times associated with spatially reproducible states were included.

2.7. Data records

Scripts used in this study are available on Github 1. The generation of state stability
maps can be executed online via a Jupyter notebook via the binder platform. We have also
made available online all the state stability maps for the ten subjects of the MSC dataset on
the neurovault website 2.

3. Results
3.1. Temporal cluster analysis reveals "dynamic parcellation states"

with highly homogeneous parcellations within a state, and
highly dissimilar parcellations across states

We first aimed to assess whether homogeneous parcellations can be extracted from
short time windows of about 3 minutes duration. We replicated seed-based parcellations
on 220 sliding-windows for this purpose. These time windows were extracted from a
pool of time samples, generated by randomly concatenating five sessions of imaging data
for the Midnight scan club sample, resulting in a total of 2.5 hours of fMRI signals per subject.

For a given seed voxel in the brain, we observed pairs of seed-based parcellations
with high homogeneity across different time windows: Dice coefficients between pairs
of seed-based parcellations were larger than 0.8, or 0.9 for some seeds and subjects, see
Fig. 2. We reported the Dice coefficients distributions for the identified states across the
studied subnetworks (see Supplementary Material 4). By contrast, many pairs of seed-based
parcellations associated with different sliding windows had very low Dice scores, close to
zero, despite being associated with the same seed. For example, in the similarity matrix of
subject MSC02, bright colors were associated with some highly homogeneous seed-based
parcellations across the diagonal, while the remaining pairs of seed-based parcellations were
associated with low Dice scores (blue color). This observation motivated us to develop
a "dynamic cluster analysis", grouping seed-based parcellations on sliding windows into
a number of homogeneous "dynamic states of parcellations", for a given seed voxel. This
approach allowed us to disentangle different dynamic states of parcellations based on the
variability of their spatial distribution over time, specifically for a given brain subnetwork.
1https://github.com/SIMEXP/dynamic-states-parcellations
2https://identifiers.org/neurovault.collection:6642
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Fig. 2. Dice similarity matrices of seed-based brain parcellations showed groups
of highly homogeneous seed-based parcellations and other groups of dissimilar
seed-based parcellations.
Each element in the similarity matrix represented the Dice score between a pair of seed-based
parcellations. This matrix was calculated, separately for each subject and each seed voxel.
Three subjects of the MSC dataset and three seeds were investigated, i.e. the Posterior Me-
dial Visual subnetwork (PM-VIS), the dorsal Anterior Cingulate (dACC) and the Posterior
Cingulate Cortex (PCC).

Moreover, our findings suggested the existence of different temporal dynamics for most of the
different states either associated with the same seed or different seeds (See Supplementary
Materials 7).

Each dynamic state was characterized by its dwell time relative to the total scan
duration, i.e. the proportion of the total number of sliding windows that were associated
with a given state. We applied two criteria to decide on the number of states for a seed
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Fig. 3. Subnetworks were multistate with a dominant primary state. We in-
cluded state dwell times for both sets of independent data.
Three seed subnetworks were investigated including the PM-VIS, the dACC and the PCC
subnetworks across ten subjects of the Midnight scan club dataset. The number of replica-
tions of seed-based parcellations per sliding window = 5. We reported dwell times from 30
replications of the DYPAC algorithm.

voxel: 1) seed-based parcellations within a state had to exhibit a minimal average level of
Dice similarity; i.e. Dice > 0.3, and 2) the dwell time of a given dynamic state needed to
be substantial, i.e. larger than 10%. For example, using these two criteria for the PCC
seed and subject MSC02, three separate dynamic states of parcellations were identified,
and together these dynamic states of parcellations added to about 75% dwell time of all
available sliding-windows, see Fig. 2.

For a better understanding of the dwell time distribution across dynamic states, we
showed its distribution across the ten subjects of the Midnight scan club dataset and the
DYPAC algorithm. The results showed the existence of a dominant state for the three
studied subnetworks. For instance, the primary states of the PM-VIS had a median dwell
time of 73% over only 11% median dwell time in the case of its secondary states. Similarly,
the primary states of the PCC had a median dwell time of 63% over only 20% median dwell
time in the case of its secondary states. Moreover, the dACC and the PCC subnetworks
were multistate with up to five states in the case of the dACC seed and up to four states in
the case of the PCC seed. Less states were observed in the case of PM-VIS with very low
dwell time, i.e. 10%. Therefore, the PM-VIS was monostate for most subjects even though
some subjects had multistate maps with a dominant primary state (See Fig. 3).

Taken together, these results showed that resting-state brain parcellations fall into a
number of highly homogeneous and distinct states over time, at an individual level. We also
investigated the impact of different parameters of our DYPAC algorithm on the states dwell
time including the window length (Supplementary Material 5.3), the cluster size threshold

44



(Supplementary Material 5.5) and the smoothing kernel size (Supplementary Material 5.6).
Our findings were consistent across different parameters.

3.2. Dynamic states of parcellations had better reproducibility
than static parcellations using long acquisitions

We aimed to compare the performance of the DYPAC algorithm to the performance of
the k-Means algorithm. DYPAC aggregated seed-based parcellations on short time windows
(of about 3 minutes duration) while the k-Means used long time series (about 2.5 hours
of resting state functional MRI signal). We compared the within-subject reproducibility
of DYPAC stability maps with the k-Means parcellations for three seed voxels associated
with the PM-VIS, the dACC and the PCC subnetworks. Our results showed that most
DYPAC parcellations outperformed the k-Means parcellations (with long time series) in
terms of reproducibility. Particularly, the reproducibility scores of the Dypac primary states
outperformed the k-Means parcellations across seeds. For instance, the dACC seed and the
DYPAC primary states had a median Pearson correlation of 0.84 over a median correlation
of 0.76 in the case of the k-Means parcellations. Similarly, the PCC seed and the DYPAC
primary states had a median correlation of 0.93 over a median correlation of 0.63 in the case
of the k-Means parcellations (See Fig. 4).

Fig. 4. DYPAC dynamic states of parcellations outperformed static parcellations
based on long acquisitions in terms of within-subjects reproducibility.
The within-subject reproducibility scores were computed between the two sets of five inde-
pendent sessions. Both our DYPAC parcellations and the k-Means parcellations used a total
of 2.5 hours per set. Each algorithm was replicated 15 times per set with different seeds. The
box plots represented the distribution of within-subject Pearson correlation scores. Dypac:1,
Dypac:2 and Dypac:3 denoted the primary, secondary and third states of our DYPAC algo-
rithm. The green dots represented the mean Pearson correlation score for each distribution.
We studied three seed voxels from the PM-VIS, the dACC and the PCC subnetworks. Ten
subjects of the Midnight scan club dataset were investigated.
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Also, DYPAC secondary states had better reproducibility scores compared to the k-Means
parcellations reproducibility in the cases of the dACC and the PCC seeds. For instance, the
dACC seed and the DYPAC secondary states had a median correlation of 0.79 over a median
correlation of 0.76 in the case of the k-Means parcellations. Likewise, the PCC seed and the
DYPAC secondary states had a median correlation of 0.84 over a median correlation of 0.63
in the case of the k-Means parcellations (See Fig. 4).

3.3. Visual evaluation of dynamic states of parcellations within-
and between-subjects

To assess the reproducibility of parcellations, the DYPAC dynamic parcellation method
was applied on independent datasets for each subject, each dataset was composed of five
sessions ( for a total duration of 2.5 hours of data per subject) available in the MSC sample.
We looked at the spatial reconfigurations of dynamic states of parcellations and tried to
identify similarities and variations within-state (across replication sets, within-subject),
across states (within-subject), and across subjects. We also added an extension for our
method to consider spatially contiguous regions, which lead to similar conclusions as
distributed parcellations (see Supplementary Material 3).

At the within-state level, we observed a high consistency between the dynamic states
of the two replication sets, for all seeds and subjects. For instance, in subject MSC04 and
the PM-VIS seed, the primary state maps showed high consistency in the left anterior insula
(AI) region (Fig. 5, X=-38) and the supragenual anterior cingulate cortex (sACC) region
(Fig. 5, X=-4). Similarly, the secondary state map of subject MSC02 and the dACC seed
had consistent dACC region (Fig. 6, X=-4) and left AI region (Fig. 6, X=-38). Finally, the
primary and the tertiary state maps of subject MSC02 and the PCC seed, had respectively
consistent TPJ (Fig. 7, X=-38) and MPFC (Fig. 7, X=2) across the two replication sets.

Across states, there existed different spatial reconfigurations within the same subject,
especially in the cases of the dACC and PCC seeds. We observed some differences locally, at
the level of a region surrounding the seed. For example, the region around the dACC seed
was circumscribed and anterior in the primary state of subject MSC02, while the region
shifted to the posterior direction in the secondary state (Fig. 6, X=-4). We also observed
differences involving multiple regions distributed throughout the brain. Using again the
example of subject MSC02 and the dACC seed, the entire AI was involved in the primary
state, while the secondary state included only the dorsal anterior insula region (dAI) and
the ventral anterior insula (vAI) regions (Fig. 6, X=-38). Similar local and distributed
variations were observed with the PCC seed, which had up to three states in the case of
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Fig. 5. PM-VIS dynamic state stability maps were similar across sets at the
within-subject level and variable across states and subjects.
A complete matching between states was applied using the Hungarian method by maximizing
the Pearson correlation between maps. The primary and secondary states were represented
in, respectively, blue and red colors. A threshold was applied to keep only stability scores
over 0.5.

subject MSC02 (Fig. 7). The primary state had a cortical region following the boundaries
of PCC (Fig. 7, X=-4), along with distributed regions in the cerebellum (Fig. 7, X=38) and
the left-temporoparietal junction (TPJ) (Fig. 7, X=-38). By contrast, the tertiary state
included the PCC core (Fig. 7, X=-4) along the MPFC (X=2). Finally, the secondary state
involved almost exclusively an extensive PCC region (Fig. 7, X=-4).

At the inter-subject level, we found some overlapping in regions as well as completely in-
consistent regions between subjects in their state spatial maps. As an example of overlapping
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Fig. 6. dACC dynamic state stability maps were similar across sets at the within-
subject level and variable across states and subjects.
A complete matching between states was applied using the Hungarian method by maximizing
the Pearson correlation between pairwise maps. The primary and secondary states were
represented in, respectively, blue and red colors. A threshold was applied to keep only
stability scores over 0.5.

regions, we found that the PM-VIS seed was characterized by highly similar visual cortex
regions for all subjects (Fig. 5). Only subject MSC04 had an inconsistent primary state map
that differed from other subjects maps. Here, we observed that the PM-VIS seed involved
AI regions (Fig. 5, X=-38) and sACC regions (Fig. 5, X=-4). It was worth mentioning that
no spatial matching was applied between state maps of two different subjects in Fig. 5, 6
and 7. Unlike the PM-VIS seed, the dACC and the PCC seeds had both overlapping and
non-overlapping regions when we compared their state maps across subjects. As an example,
we found some overlapping regions in the primary states of subjects MSC02 and MSC10 and
the dACC seed (Fig. 6), e.g. overlapping AI region (Fig. 6, X=-38) and dACC region (Fig. 6,
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X=-4). For the same dACC seed, some subjects had non-overlapping regions such as the
secondary states of subject MSC02 and subject MSC10 (Fig. 6). In the secondary state of
subject MSC02, the dACC region (Fig. 6, X=-4) occurred as a dominant region along with
AI regions (Fig. 6, X=-38). However, the secondary state of subject MSC10 was particularly
characterized by the existence of the visual region (Fig. 6, X=-9), the anterior hippocampus
(AH) and the sACC (Fig. 6, X=-4).

Fig. 7. PCC dynamic state stability maps were similar across sets at the within-
subject level.
A complete matching between states was applied using the Hungarian method by maximizing
the Pearson correlation between pairwise maps. The primary and secondary states were
represented in, respectively, blue and red colors. A threshold was applied to keep only
stability scores over 0.5.
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3.4. Dynamic states of parcellations are highly reproducible at the
intra-subject level

We quantified the reproducibility of our dynamic states of parcellations at the within-
subject level. First, we computed the within-subject consistency by means of a spatial
similarity measure (i.e. Pearson correlation) between state stability maps associated with two
sets of five sessions per subject. Each value in the stability map represented the probability
of a voxel to belong to the cluster of a given seed. In these maps, we observed high within-
subject reproducibility scores across states and seeds. For instance, most subjects had a
reproducibility score that exceeded 0.8 in terms of the Pearson correlation across seeds in
the cases of primary and secondary states. Although the third state rarely occurred, it had
a high reproducibility score with more than 0.75 reproducibility score, e.g. for the dACC
seed, both subjects MSC3 and MSC8 had, respectively, 0.78 and 0.75 Pearson correlation
scores. Similarly, in the case of the PCC seed, subject MSC2 had a 0.9 correlation score.
The PM-VIS seed was characterized by the highest reproducibility scores compared to the
dACC and the PCC with more than 0.9. Except subject MSC04, all subjects had only one
highly reproducible state (see Fig. 9). From one set, some states did not have a matched
map from the second set and had, therefore a zero correlation score. For example, in the
case of the PM-VIS seed and the primary state, subject MSC02 did not have a state in the
replication sample that matched the primary state of the discovery sample (see Fig. 9).

3.5. Within-subject reproducibility of dynamic states of parcel-
lations is substantially higher than between-subject repro-
ducibility

In this section, our purpose was to contrast the dynamic states reproducibility within and
between subjects. To this end, we cross-correlated their state stability maps as a measure
of reproducibility and compared the results at the between- and within-subject levels, where
the measures were derived from all the state maps simultaneously (i.e. pooling primary, sec-
ondary, etc). Our results showed that within-subject reproducibility scores outperformed the
between-subject reproducibility scores with almost two disjoint distributions of correlation
scores for all dynamic states and seeds, see Fig. 8. For example, the between-subject PCC-
related scores did not exceed 0.78 while most within-subject reproducibility scores exceeded
0.8. Similar findings were observed in the case of the dACC. Only a few cases of the within-
subject reproducibility scores fell within the distribution of between-subject reproducibility.
We also investigated the impact of different parameters of our DYPAC algorithm on the
reproducibility of the dynamic states. We compared the results with different clusters; i.e.
number of clusters in 12, 50 (see Supplementary Material 5.1), different window lengths in 30,
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Fig. 8. Within-subject reproducibility scores were higher than between-subject
reproducibility scores for most dynamic states of parcellations.
The DYPAC algorithm was replicated 15 times with different seeds for each half of the data
set. Number of replications of seed-based parcellations = 5. The green dots represented the
mean of the Pearson correlation. We studied the PM-VIS, the dACC and the PCC seeds.

50, 100, 200 (see Supplementary Material 5.2), different cluster size thresholds in 5%, 10%,
20% (see Supplementary Material 5.4), different smoothing kernels in 4mm, 6mm, 8mm (see
Supplementary Material 5.6), 15 different seed voxel coordinates from the visual network,
the dACC and PCC subnetworks (see Supplementary Material 5.8) and, finally, different
number of replications of seed-based parcellations with random seeds; i.e. number of repli-
cations in 1,5,30 (see Supplementary Material 5.9). Our conclusions on the reproducibility
of the dynamic states of parcellations were valid for different parameters of the algorithm.
That is, the within-subject reproducibility analysis robustly outperformed the inter-subject
reproducibility across all ranges of parameters that were investigated. Moreover, differences
in the distributions of within-subject reproducibility related to parameter changes were only
subtle.
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Fig. 9. High spatial reproducibility of dynamic states of parcellations across
subjects and seeds.
Most subjects had two dynamic states of parcellations and the highest reproducibility score
was found for the primary states of three subnetworks including the PM-VIS, the dACC
and the PCC seeds. These reproducibility scores represented the similarity between state
stability maps associated with two sets of data for each subject. Each set included five
independent sessions. A complete matching between states was applied using the Hungarian
method by maximizing the Pearson correlation between pairwise maps. States were sorted
and labeled (i.e., primary state, secondary state, third state, etc.) based on their dwell time
such that the primary state had the highest dwell time. Ten subjects of the MSC dataset
were investigated, i.e. MSC1, MSC2, MSC3, etc.
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Fig. 10. The deterministic fingerprinting had higher accuracy than the finger-
printing by chance.
The accuracy of the fingerprinting represented the ratio of the successful fingerprinting over
the total number of matchings both in the cases of the deterministic fingerprinting and
the fingerprinting by chance. The state stability maps were generated from the split half
sets of the Midnight scan club dataset and all these maps were pooled altogether in the
fingerprinting. For a given map, we looked for the map that matched the closest map from
the pool of all maps. In the case of a successful fingerprinting, the matched maps belonged
to the same subject. The PM-VIS, dACC and PCC seeds were analyzed separately. Ten
subjects of the Midnight scan club dataset were included.

3.6. Dynamic state stability maps can reliably identify subjects

We evaluated the reliability of our dynamic state stability maps in identifying a
particular subject among a pool of subjects using the fingerprinting experiment. Due
to differences in the number of states per subject, we set up a fingerprinting by chance
experiment as a baseline to verify the impact of these differences on the accuracy of the
fingerprinting. We evaluated the accuracy of the fingerprinting by chance, and we compared
it to the deterministic fingerprinting. Our results showed poor accuracy in the case of the
fingerprinting by chance with an average accuracy score of 0.3 compared to the deterministic
fingerprinting for which the average accuracy falled between 0.72 and 0.9 across seeds (See
Fig. 10). These results showed a low impact of the differences in the number of states on
the deterministic fingerprinting and, thus its accuracy scores were reliable.
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The results of the deterministic fingerprinting experiment showed high accuracy re-
sults across seeds, with more than 0.72 average accuracy scores. This confirmed that many
subjects were successfully fingerprinted based on one of their state maps. The highest
accuracy results were associated with the PCC seed with an average accuracy of 0.9 across
states. Also, the dACC state maps had a high average accuracy score of 0.72. Similarly, the
PM-VIS had an average accuracy of 0.78. In the case of a failure, two state stability maps
were highly correlated but their maps were not associated with the same subject. Most
failures were associated with the PM-VIS and the dACC. Overall, these findings confirmed
that our dynamic state stability maps were reliable in the delineation of subjects (See Fig. 10).

We further reported the Pearson correlation scores associated with the deterministic
fingerprinting experiment. The distribution of correlation scores across subjects allowed us
to quantify the spatial similarity across subjects. Most importantly, failed fingerprinting
allowed us to have a better understanding of the degree to which state maps were similar
across subjects. Our results showed that the successfully matched maps had high pearson
correlation scores. For instance, the dACC and the PCC seeds had, respectively 0.8 and 0.9
Pearson correlation scores. In the case of failures, the lowest scores were associated with the
PM-VIS seed with a 0.5 median correlation, while the highest scores were associated with
the PCC seed with a 0.7 median correlation (See Fig. 11). The high Pearson correlation
scores in the case of failures; correlation > 0.6, may be associated with spatially similar
maps across subjects. Here, the PCC had the highest spatially similar state maps between
subjects. Overall, the high accuracy and the high correlation measures confirmed the
reliability of the fingerprinting in identifying a given subject based on his dynamic state
map.

3.7. Dynamic state dwell times were not reproducible across repli-
cations for the dACC and the PCC seeds

We aimed to get a better understanding of the dwell time reproducibility over time. To
this end, we performed a spatial matching of states between two sets of independent sessions
in terms of the Pearson correlation. This matching was based on the Hungarian method.
Therefore, only the dwell times associated with spatially reproducible states were included.
Our results showed an inconsistency between states dwell time for most states between the
two sets in the cases of the dACC and the PCC seeds. For instance, the primary state and
the dACC seed had 43% median dwell times for the first set over 22% median dwell times
for the second set. Similarly, the PCC and the secondary states had 23% median dwell
times for the first set over 17% median dwell times for the second set. Unlike the dACC
and the PCC seeds, the dwell times of the PM-VIS had higher reproducibility across the
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Fig. 11. The fingerprinting experiment showed high reliability of state stability
maps in delineating subjects across seeds.
We showed the correlation scores for the deterministic fingerprinting experiment results. The
spatial similarity was computed between pairs of state stability maps in terms of Pearson
correlation. If the correlated maps were associated with the same subject, it was considered
a success fingerprinting (blue color). Otherwise, the correlated maps were associated with
different subjects. This was considered a failure (orange color). We studied three seeds
from three subnetworks including the PM-VIS, the dACC and the PCC. Ten subjects of the
Midnight scan club dataset were included.

two sets. For instance, the primary state and the PM-VIS seed had 62% dwell times for the
first set over 64% dwell times for the second set (See Fig. 12). Overall, the dynamic states
dwell times were not reproducible across the two sets of independent data for the dACC
and the PCC subnetworks. The PM-VIS showed higher levels of consistency between dwell
times of the two sets.

We also observed that some states might have a high dwell time but no matching in the
second set. For instance, in the case of subject MSC09 and the dACC seed, there existed five
states with the following dwell times for the first set: 31.11%, 12%, 11.11%, 10.66%, 10.22%.
However, this subject had only two states in the second set with the following dwell times
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Fig. 12. Dwell time of dynamic states of parcellations was inconsistent across
the two sets of independent data in the cases of the dACC and PCC seeds.
The dwell time across states was computed by summing durations of time-windows per state
from two sets of five independent sessions for each subject. Three seeds were investigated
including the PM-VIS, the dACC and the PCC. The seed-based parcellations number = 5.
The number of replications of the DYPAC algorithm = 30. The seed-based parcellations
were clustered into 12 clusters. The smoothing kernel = 6 mm, the cluster size threshold =
10%, the Dice threshold = 0.3. Number of timepoints in the window length = 100. All the
ten subjects of the Midnight scan club dataset were included. Green dots represented the
mean of the dwell time value.

22.22% and 13.33%. After the spatial matching, the matched primary states had 11.11%
and 22.22% dwell times for the first and second set, while the secondary state had 10.22%
and 13.33% for the first and second sets, respectively.

4. Discussion
In this paper, our overall objective was the identification of dynamic states of brain

parcellations in individual resting state fMRI data. Our first main finding was the existence
of highly similar spatial parcellations extracted from short time windows, sometimes
separated by several days. This led us to propose a dynamic cluster analysis to extract
dynamic states of parcellations. These dynamic states were markedly different in terms of
the brain regions involved, despite being derived from the same seed region and the same
subject. We also found that dynamic states of parcellations were subject-specific, highly
reproducible, and are reliable enough to successfully differentiate subjects in a fingerprinting
experiment with high accuracy.

In the literature of brain parcellation, the only approach that had consistent findings
with our approach was published by Salehi and colleagues [67, 68]. We both suggested an
approach that contradicts the notion of a fixed functional parcellation of the brain. The main
difference with our work is that Salehi and colleagues generated a different parcellation for
different cognitive states in a series of task datasets (i.e. motor task, working memory, rest,

56



etc.), while in our approach we identified different dynamic states of parcellations in short
windows of a single cognitive state (resting state). Our results on dynamic brain parcellation
is in line with several studies which showed that brain connectivity is highly dynamic, with
recurring spatiotemporal patterns of brain subnetworks [43, 1, 4, 33, 50] both in the
case of spatially distributed regions or even in the case of spatially contiguous regions (see
Supplementary Material 3). For instance, Iraji and colleagues demonstrated the existence of
spatial fluid interactions between intra- and inter-networks relationships, emphasizing the
dynamic interplay between segregation and integration [44]. Researchers raised the need for
new computational methods to reveal robust, interpretable reconfigurations in the complex
and high-dimensional feature space of dynamic fMRI data [25]. Such methods would allow
a better understanding of the individual differences in internal state changes over short
time scales [25]. In the brain parcellation literature, our approach is, to our knowledge, the
first attempt to shed light on this dynamic brain organization at fine temporal scale (in the
order of few minutes) and at a voxel level (i.e. without reducing the dimensionality in a
fine-grain parcellation).

To evaluate the quality of our dynamic states of parcellations, we relied mainly on a
reproducibility analysis. We found that our reproducibility scores markedly outperformed
static brain parcellation scores [49]. For instance, the reproducibility scores observed in
the case of our visual dynamic states of parcellations were near perfect (with an average
correlation scores of 0.95), while static visual parcels using about 2.5 hours of data had
0.85 correlation score in average (See Fig. 3). Moreover, visual static brain parcels reported
previously in the literature did not reach near perfect similarity scores (with an average
Dice score of 0.85) [49]. Such high reproducibility scores were also observed for all three
seeds such that dynamic states scores outperformed static parcels scores (See Fig. 4).
Another important consideration was that parcels reproducibility depended on the spatial
location in the brain in the case of static parcellations, while we observed the same ranges
of values for the three seeds. For instance, static parcellations reproducibility ranged
between 0.7 and 0.85 average Dice scores in the cases of temporal and visual cortices
regions, respectively [49]. Interestingly, our spatial correlation similarity measure exceeded
0.85 for the three seeds for the primary states, and exceeded 0.7 correlation score for
secondary and third states for almost all subjects and seeds (See Fig. 4). Recent attempts
towards better reproducibility scores of static connectivity measures relied on long fMRI
acquisitions [39]. Even though similarity measures were improved (with 10 minutes and 50
minutes of data, authors got, respectively 0.6 and 0.7 average Dice scores), these measures
plateaued after 40 minutes of acquired signal with a maximum average of 0.7 Dice score
across the ten subjects of MSC dataset. Using long acquisitions of functional MRI data,
the comparison of the k-Means parcellations with our dynamic states confirmed that a

57



dynamic approach of the parcellation problem resulted in improved reproducibility (See
Fig. 4). Moreover, higher Dice scores were observed for pairs of seed-based parcellations
as extracted from a few minutes ( 3 minutes) of fMRI data within a given dynamic state
(see Supplementary Material 4). Overall, many studies have aimed to derive static brain
parcellation approaches either at the group or the individual level (See [5] and [34] for
a review) and yet, no technique had highly reproducible individual parcels. This leads
to the conclusion that human brain parcellation is a hard ill-posed problem [5]. Our
results demonstrated that the main limitation associated with static brain parcellation
approaches is neither the quality of employed clustering algorithms, the quality of fMRI
data in specific brain regions nor the duration of fMRI acquisitions. The main issue was
the incorrect formalization of functional brain parcellation as a static problem, which did
not take into consideration the dynamic organization of the brain. Specifically, we showed
here that a very basic clustering algorithm, k-Means, leads to highly reproducible parcella-
tion maps when applied on short fMRI time series (a few minutes) with a dynamic approach.

Another important consideration was the comparison of the reproducibility scores
within and between subjects. Previous studies reported that within-subject similarity
of dynamic states of parcellations was substantially higher than inter-subject similarity
[49]. Our quantitative and qualitative evaluation were consistent with these findings (See
Fig. 4, 5, 6, 7 and Supplementary Material 5) and we suggest that dynamic states of
parcellations captured some of the variability between subjects. To further evaluate the
reliability of these dynamic state stability maps in identifying a particular subject from a
pool of ten subjects from the Midnight scan club dataset, we implemented a fingerprinting
experiment. Even though the fingerprinting failed in a few samples, results on the ten
subjects of the MSC dataset showed high scores with 0.6 and 0.7 average accuracy scores
for the PCC and the dACC seeds, respectively (See Fig. 11). Due to the small sample
size, in the MSC dataset, investigating and validating our results on larger samples in
the future, needs to be considered. Researchers already demonstrated the variability in
functional connectivity profiles as a reliable fingerprinting to identify subjects from a large
group [35]. Our state stability maps were derived from binary cluster maps that eliminated
a huge amount of the fine details present in a connectivity map. Despite such dramatic
dimensionality reduction in dynamic state maps, it preserved enough relevant information to
reliably delineate subjects, especially in the case of highly cognitive networks (i.e., the PCC
subnetwork). Our PCC and PM-VIS accuracy scores actually outperformed the accuracy
scores of connectivity maps-based fingerprinting in some networks (DMN and the salience),
as reported in [8], but this observation may also reflect the fact that we used much longer
individual fMRI time series and less subjects.
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In the context of our DYPAC algorithm, we showed that the reproducibility of the
dynamic states of parcellations were robust to the choice of different parameters (See
Supplementary Materials 5). Still, it is important to mention that the number of clusters
k is a critical parameter, and can be used to uncover the pseudo-hierarchy of brain
subnetworks. Here, we simply checked that “states” could be identified at two different
resolutions (i.e., 12 and 50), but it remains to be tested how the number of states vary with
resolution, and whether dynamic parcellation follows a pseudo-hierarchical organization as
was previously described by static parcellations [76].

Added to the spatial reproducibility analysis, our temporal analysis showed that the
dwell times of dynamic parcellations were inconsistent across the two sets of independent
data. This may either indicate algorithmic variability in the estimation of dwell times,
maybe linked to our choice of threshold on inter-parcel similarity to define states, or
physiological variability where a given subject expresses markedly different states over
long time scales. We believe the latter to be more plausible, but further validation of this
hypothesis would require data which directly manipulate cognitive states across replication
states, e.g. using tasks, and is outside of the scope of the present paper. We note however,
that the high variability of dwell times across replication sets is probably the factor that
drives the "glass ceiling" in reproducibility of static methods: even the definition of what
is the primary state can change over long time scales, so averaging across states is not
sufficient to stabilize parcel estimates.

Another important aspect of the evaluation of the dynamic states of parcellations was
their neurobiological validity. In the absence of brain organization ground truth, current
parcellation work capitalized on replication, robustness and convergence as criterias for
biological validity. However, the observed variations in the shape and position in the
spatial patterns across individuals suggest that these patterns are likely to be associated
with physiological or cognitive processes [34]. As pointed out in the previous section,
our quantitative results support the neurobiological validity of our dynamic states of
parcellations. Qualitatively, we observed that many regions from the dynamic states
of parcellations relate to previous literature when studying subnetwork dynamics. For
instance, the regions of the dACC state stability maps overlapped with the salience network
regions as reported by [3] including the insula and the anterior cingulate cortex (i.e., sACC).
Consistently with previous research, we frequently observed the AI and the dACC either in
the primary or the secondary states of parcellations. These regions were among the most
frequently activated regions in functional neuroimaging research [21, 80]. In some dynamic
states of parcellations, we observed a high stability around the motor and premotor regions
of the dACC maps (See Fig. 6). This may be explained by the existence of a functional
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coupling between the AI and the dACC that facilitates a rapid access to the motor system
[3]. Similarly to the dACC seed, we also observed that the PCC is multistate. In the
literature, researchers observed a high spatial heterogeneity in the PCC [53, 57], but in
our case dynamic states were observed from a single seed and subject. Dynamic states of
parcellation of the PCC seed identified, mainly ventromedial prefrontal cortex regions (i.e.,
including the MPFC), the superior parietal cortex regions and the precuneus. Leech and
Sharp surveyed the different studies that investigated the variations in PCC activity with
arousal state and its interactions with other brain networks. Authors suggested that the
high heterogeneity of the PCC activity was attributed to its important role in regulating
the balance between internal and external attentional focus [53]. While higher order seeds
revealed multistate maps including the dACC and the PCC seeds, our results showed the
PM-VIS was also multistate for some subjects (e.g. subject MSC04) even though most
subjects had a monostate PM-VIS subnetwork. Consistently to resting state functional
connectivity studies, the visual cortex was considered as a unimodal system since it had
a maximal distance along the principal gradient between the visual and the DMN which
was considered as a highly heteromodal network (Margulies et al., 2016). Overall, these
qualitative observations support our hypothesis that dynamic states are driven by biological
validity rather than methodological effects [34].

In addition to biological meaningful brain parcels, researchers hypothesized the existence
of some non-meaningful parcels that may occur due to physiological sources or other
non-neural effects such as head motion [25, 53]. For the scope of this paper, we did not
characterize these sources and we consider this an important follow up question to be
studied for more seed regions. However, with the proposed method, a large number of time
windows were not associated with a state, if no robust parcel configuration was identified.
This feature of the method may help to mitigate the influence of confounding effects on
dynamic brain parcellations. However, sources of physiological noise with highly consistent
spatial distribution, such as cardiac noise and motion artifacts, may still lead to robust
spatial parcellation states. We also showed there was no sessions effect on the identified
dynamic states (See Supplementary Material 6).

The main conclusion of this work is that stable brain parcellations emerge from a
dynamic analysis considering short time windows, which challenges the notion of a fixed,
static brain parcellation estimated from very long time series [39]. But this observation was
restricted to a few seed regions in the brain, and an important point of discussion is whether
the DYPAC algorithm could be generalized to the full brain ? The core generation of
brain parcellations was a simple k-Means algorithm applied on full brain data, and we trust
that our conclusions extend beyond the handful of seeds which we considered. We notably
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confirmed that our conclusions generalize to many neighboring voxels around selected seed
regions, see Supplementary Material 5.8. One way of conceptualizing k-Means as a sparse
spatial decomposition: each brain voxel is associated with only one brain parcel, which
naturally leads to parcels (or seed-based parcellation) that include only a small portion
of the brain (for a large number of clusters k). Similarly, our dynamic analysis can be
conceptualized as a sparse temporal decomposition: for each brain voxel, only a subset of
time points are associated with a single brain parcellation (or seed-based parcellation), and
many time points are associated with no brain parcellations at all. The DYPAC algorithm is,
thus a double sparse space-time decomposition technique, which focuses only on temporally
recurring and highly spatially similar brain parcels. DYPAC could, in theory, be applied on
the brain parcels associated with all brain voxels simultaneously, represented as a basis of
one-hot spatial encoding vectors, although the memory cost of the hierarchical clustering
step would become prohibitive. We are working on a modified DYPAC algorithm using
k-Means both for parcellations generation and aggregation, which scales to the full brain
even at high spatial and temporal resolutions. We would like to emphasize at this stage
that the idea of applying a space-time decomposition to fMRI data is old, at least as old
as spatial independent component analysis, ICA [59] which identified brain networks as a
temporal mixture of spatially independent components, including noise. This approach was
extensively applied for more than two decades in fMRI research (see survey of [11]). Some
more recent space-time decomposition of fMRI data explicitly included a spatial sparsity
constraint [29]. Based on a visual comparison of our dynamic states of parcellations and
ICA spatial maps, we identified overlapping patterns especially in the case of the visual and
the default mode network including the PCC/precuneus, the MPFC regions and regions of
the dorsal attentional subnetwork [10, 30, 84]. A major limitation of the ICA technique was
the variability of functional resting state signal at the individual level added to its random
initialization [10, 30, 84]. An intriguing possibility is that dynamic states of parcellations
would converge towards some similar spatial patterns as those identified by ICA, although
with superior spatial stability. This possibility will need to be further investigated. Such
observation would create a bridge between traditional cluster analysis and space-time de-
composition techniques such as ICA, even though the underlying formalism is quite different.

The existence of dynamic states of parcellation could have important implications for
graph-based analysis of brain networks. In such circumstances, building brain graphs using
these parcels remains a challenging question. As discussed in the preceding paragraph, a full-
brain extension of DYPAC would, in practice, be a new flavor of space-time decomposition of
fMRI data which may result in improved characterization of brain graphs compared to either
static clustering-based parcels or ICA techniques. Unlike traditional static brain parcellation,
and like an ICA, our dynamic states of parcellations have spatial overlap (if they associate
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with different states of the same voxel). Such types of decompositions are straightforward
to apply in a graph-based analysis, as indeed many graph analysis of fMRI data have relied
on ICA decomposition to define nodes [83]. The key difference between static parcellations
and space-time decomposition is how fMRI data are embedded in the parcels. For static
parcellation, the embedding is univariate in nature, as each parcel is treated separately: an
average time series is generated for each parcel, or a principal component analysis is applied
to the time series inside the parcel [34]. For space-time decomposition, the embedding is
multivariate in nature, as the parcels (or spatial modes of decomposition) are treated jointly
using a multivariate regression analysis to fit a full brain activity volume at each time point
[22]. When applied to traditional static parcellations generated by a cluster analysis, this
regression step is equivalent to extracting the average time series per parcel. However, in
the presence of overlap between brain parcels the regression solution is different. In this
paper, the implementation of DYPAC is a proof of concept and it is restricted to a seed
brain region, thus, it is not directly applicable to generate full brain graphs. As mentioned
earlier, we are working on a full brain extension of DYPAC. In this case, we intend in the
future to assess the practical advantages of DYPAC to study fMRI graph analysis.

5. Conclusion
To summarize, we show that a simple clustering technique such as k-Means can lead to

highly reproducible functional parcellation associated with a particular brain seed, even when
applied on short fMRI time series (a few minutes). We proposed a method to identify the
main states of these dynamic parcellations, and showed that their spatial distributions were
subject specific. The main limitation of previous work on functional brain parcellation may
be due to the over simplified static parcellation approaches. This limitation may be biasing
all neuroimaging analyses that rely on static parcellation as a dimensionality reduction step,
including many graph-based neuroimaging analyses. Therefore, we urge the neuroimaging
scientific community to replace static brain parcellations by dynamic parcellation approaches,
in order to properly capture the rich interactions between brain subnetworks. Dynamic
parcellations may thus impact widely applications of brain connectivity in health and disease.
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1. Introduction
Functional brain parcellation has been a very active topic of investigation for the past

two decades, yet there was no evidence to date of reproducible results at the individual level.
In the previous chapter, our cluster temporal analysis showed the existence of "dynamic
parcellation states" with highly homogeneous parcellations within a state, and highly
dissimilar parcellations across states. We also demonstrated that these dynamic states of
parcellations were highly reproducible at the within-subject level.

This chapter is supplementary materials for chapter 2 in which we address different
research questions around our proposed dynamic approach. First, our objective is to
investigate the hypothesis of the inexistence of a clear structured state in the whole
brain parcellation. The validity of this hypothesis shows the importance of applying the
seed-based parcellations in our dynamic parcellation approach. We investigate the similarity
scores between the whole brain parcellations and the seed-based parcellations associated
with three seed subnetworks. We also aim to extend the Dypac algorithm by considering the
spatially connected dynamic states instead of the spatially distributed dynamic states. We
then replicate all the experiments of Chapter 2 to verify the sensitivity of the parcellation
algorithm to its different parameters including the number of clusters, the window length,
the cluster size threshold, the smoothing kernels, seed coordinates and the number of
replications of the seed-based parcellations. Additionally, we investigate the within-sessions
versus the between sessions effect across days on the identified dynamic states. Also, we
aim to quantify the synchrony between the dynamics of the different states of parcellations.
We generate these dynamic states for the ten subjects of the Midnight scan club (MSC)
resting-state dataset.

2. Whole brain parcellations had no clear structured
states

We aimed to test the existence of structured states within the whole brain reconfigura-
tion. To this end, we proposed a whole brain parcellation approach across sliding windows.
First, we generated several whole brain k-Means parcellations across sliding windows. Then,
we computed the adjusted rand index similarity matrix between all pairs of sliding window
parcellations. Our results showed very low similarity scores between pairs of k-Means parcel-
lations and no clear structure was detected from the whole brain parcellation. For instance,
the adjusted rand index similarity matrix for subject MSC01 did not show any groups of
homogeneous sliding window parcellations (See left side Fig. 1). Also, the distribution of
the similarity scores between sliding window parcellations were very low; i.e. adjusted rand

71



index scores < 0.01 (See Fig. right side 1). This clearly showed that, although individual
brain subnetworks follow reproducible "states", there was no strong coupling across different
brain subnetworks which would lead to full-brain parcellation states.

Fig. 1. Similarity between full brain parcellations.
(A) The similarity matrix of the full brain parcellations were dissimilar across sliding windows
in the case of subject MSC01. (B) Distribution of the adjusted rand index scores across
subjects. The number of timepoints in the window length = 100. The number of sliding
window replications = 30. A total of 1349 brain parcellations were included across five
sessions. Three subjects of the Midnight scan club dataset were included (MSC01, MSC02,
MSC03).
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3. Dynamic states can be identified for spatially con-
tiguous regions

Fig. 2. The spatially contiguous regions were overlapping with the spatially dis-
tributed parcels surrounding the seed in the state stability maps of the dACC
seed.
The minimum size of regions in the spatially contiguous regions was fixed to 50 voxels. The
number of replications of seed-based parcellations = 30. The cluster size threshold = 5%.
The seed-based parcellations were clustered into 12 clusters. The smoothing kernel = 6 mm,
the cluster size threshold = 10%, the Dice threshold = 0.3, the number of timepoints in
the window length = 100. Subject MSC01 and Subject MSC10 of the Midnight scan club
dataset were included.

Our dynamic states of parcellations were generated by aggregating several seed-based
parcellations distributed over the brain. Many parcellation algorithms proposed in the
past have enforced the parcels to be spatially contiguous. In order to make our method
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more directly comparable to these prior works, we also implemented an extension in
which each distributed parcel was subdivided into spatially contiguous regions. To this
end, we extracted the regions having a minimum of 50 voxels. For the dACC and PCC
seed voxels, we reported, side-by-side, both the state stability maps associated with the
spatially contiguous regions and the distributed regions throughout the brain (see Fig. 2
and Fig. 3). Our results showed a good consistency between the distributed spatial parcels
(or clusters) surrounding the seed and the spatially contiguous regions. For instance,
the dACC primary state and subject MSC01 had a high overlap between the dACC
distributed parcel and the dACC contiguous regions (See Fig. 2, X=4). Also, the distributed
dACC parcel of the secondary state and subject MSC10 had a high overlap with the
spatially contiguous dACC region of the primary state (See Fig. 2, X=4). In the case
of the PCC, the primary states of subject MSC01 were highly overlapping for both the
spatially distributed parcel surrounding the seed and the contiguous region (See Fig. 3, X=4).

The aggregation of seed-based contiguous regions suppressed the distributed regions,
by construction. For instance, in the primary state and subject MSC10, the sACC region
only occured in the state map of the spatially distributed regions (See Fig. 2, X=4).
Also, in the case of subject MSC10 and the third state of the PCC seed, the dorsal atten-
tional regions only occured in the case of the spatially distributed regions (See Fig. 3, X=38).

Overall, these findings strongly support the existence of multiple states either in the
case of the spatially distributed parcels or the case of spatially contiguous regions.

74



Fig. 3. The spatially contiguous regions were overlapping with the spatially dis-
tributed parcels surrounding the seed in the state stability maps of the PCC
seed.
The minimum size of regions in the spatially contiguous regions was fixed to 50 voxels. The
number of replications of the seed-based parcellations = 30. The cluster size threshold = 5%.
The seed-based parcellations were clustered into 12 and 50 clusters. The smoothing kernel =
6 mm, the cluster size threshold = 10%, the Dice threshold = 0.3, the number of timepoints
in the window length = 100. Subject MSC01 and Subject MSC10 of the Midnight scan club
dataset were included.
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4. Spatial similarity of the seed-based parcellations

Fig. 4. Spatial similarity between seed-based parcellations in terms of Dice
scores.
We included the Dice scores associated with seed-based parcellations. We studied three seed
voxels from the PM-VIS, dACC and PCC subnetworks. The smoothing kernel = 6 mm.
Number of timepoints in the window length = 100. Ten subjects from the Midnight scan
club dataset were included.

We aimed to investigate the spatial similarity of the seed-based parcellations used to
generate the dynamic state stability maps. To this end, we reported the Dice scores be-
tween pairs of seed-based parcellations across seeds and subjects. Three seed voxels were
investigated including PM-VIS, dACC and PCC. Our results showed that some seed-based
parcellations were very highly correlated with near perfect Dice scores (around 1) and that
Dice scores were around the median 0.23 for the PM-VIS and the PCC seeds while the dACC
had a lower median with Dice score = 0.2 (See Fig. 4).
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5. The dynamic parcellation approach results are robust
to its parameters

5.1. Reproducibility of our dynamic states of parcellations was in-
sensitive to resolution, yet some spatial states were consistent
for some subjects and variable for others

We aimed to investigate the effect of the resolution; i.e. the number of clusters, in the
seed-based parcellations on the reproducibility of dynamic states of parcellations. To this
end, we computed the within- and the between-subject reproducibility. Our results showed
that the within-subject reproducibility of the dynamic states of parcellations was higher
than the between-subject reproducibility both in the cases of 12 and 50 clusters (See Fig. 5).
For instance, the PCC median of the within-subject reproducibility was about 0.9 in both
12 and 50 cluster cases. Moreover, the between-subject reproducibility distributions were
highly overlapping across the three seeds.

We also observed that the 50 cluster-based states had overlapping regions with the
12 cluster-based states at the level of voxels surrounding the seed for some subjects and
states. For instance, subject MSC01 and the dACC primary states overlapped for the dACC
regions surrounding the seed with a larger spatial distribution in the case of the 12 clusters
(Fig. 6, X=2). Similarly, the secondary dACC states and subject MSC03 had some overlap
in the dACC regions surrounding the seed even though the 12 clusters regions were more
lateralized toward the motor regions (See Fig. 7, X=2). Moreover, we observed that the
50 cluster-based states had an overlap with the 12 cluster-based states at the level of the
distributed regions throughout the brain. For instance, the dACC primary states and subject
MSC01 had an overlap at the level of the insular regions (See Fig. 6, X=38). Similarly, both
the dACC secondary states of subject MSC06 involved the insular regions (See Fig. 7, X=38).

Conversely, some subjects and states had either a negligible overlap, inconsistencies
in the regions or absence of the 12 clusters based-states. For instance, the 50-clusters
primary state in the case of the dACC and subject MSC07 had a very small dACC
region compared to the 12-clusters primary state (see Fig. 6, X=4). Also, the 12-clusters
secondary state and subject MSC08 had lateralized dACC regions towards the motor
regions while the 50-clusters secondary state involved regions from the visual cortex (See
Fig. 7, X=4). Also, most states of the third states were inconsistent across scales (See Fig. 8).

Overall, the reproducibility of our dynamic states of parcellations was insensitive to
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the scale, yet spatial states were consistent for some states and subjects and variable across
others.

Fig. 5. Within-subject reproducibility of dynamic states was higher at the
within-subject level than the between-subject level across scales.
We studied three seed voxels: PM-VIS, dACC and PCC. The number of replications of our
Dypac algorithm replications with different seeds = 30. Number of replications of seed-
based parcellations =30. The cluster size threshold = 5%. The seed-based parcellations
were clustered into 12 and 50 clusters. The smoothing kernel = 6 mm, the Dice threshold =
0.3. The number of timepoints in the window length = 100. Ten subjects of the Midnight
scan club dataset were included.
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Fig. 6. Primary states were overlapping across scales for some subjects in the
case of the dACC seed.
We studied three seed voxels: PM-VIS, dACC and PCC. The number of replications of our
Dypac algorithm replications with different seeds = 30. The number of replications of the
seed-based parcellations for each replication = 30. The cluster size threshold = 5%. The
seed-based parcellations were clustered into 12 and 50 clusters. The smoothing kernel = 6
mm, the Dice threshold = 0.3. The number of timepoints in the window length = 100. Ten
subjects of the Midnight scan club dataset were included.
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Fig. 7. Secondary states were overlapping across scales for some subjects and
states and variable across others in the case of the dACC seed.
We studied three seed voxels: PM-VIS, dACC and PCC. The number of replications of the
seed-based parcellations for each replication = 30. The cluster size threshold = 5%. The
seed-based parcellations were clustered into 12 and 50 clusters. The smoothing kernel = 6
mm, the Dice threshold = 0.3. The number of timepoints in the window length = 100. Ten
subjects of the Midnight scan club dataset were included.
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Fig. 8. Third dACC dynamic states were inconsistent across scales.
We studied three seed voxels: PM-VIS, dACC and PCC. The number of replications of our
Dypac algorithm replications with different seeds = 30. The number of replications of the
seed-based parcellations for each replication = 30. The cluster size threshold = 5%. The
seed-based parcellations were clustered into 12 and 50 clusters. The smoothing kernel =
6 mm, the Dice threshold = 0.3. The number of timepoints in the window length = 100
timepoints. Ten subjects of the Midnight scan club dataset were included.
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5.2. Dynamic states can be identified at different time scales

Fig. 9. Within-subject reproducibility scores were higher than between-subject
reproducibility scores for most dynamic states of parcellations.
In the case of 30 timepoints, some subjects did not capture any state. We studied three seed
voxels: PM-VIS, dACC and PCC. The number of replications of seed-based parcellations
= 30. The seed-based parcellations were clustered into 12 clusters. The smoothing kernel
= 6 mm, the cluster size threshold = 10%, the Dice threshold = 0.3. Ten subjects of the
Midnight scan club dataset were included.

We aimed to investigate the effect of the window length on the reproducibility of the
dynamic states of parcellations. Thus, we computed the within- and the between-subject
reproducibility for different window lengths; i.e. the number of timepoints = 30, 50, 100,
200 in window lengths for the ten subjects of the Midnight scan club dataset. Our results
showed that within-subject reproducibility was higher than between-subjects reproducibility
for all window length values (see Fig. 9). For instance, in the case of 50 timepoints,
within-subject reproducibility scores had a Pearson correlation median > 0.83 across seeds.
However, between-subjects reproducibility scores had a correlation median < 0.78 across
seeds (See Fig. 9). Similarly, in the case of 200 timepoints, within-subject reproducibility
scores had a Pearson correlation score > 0.7, however, between-subjects reproducibility
scores had a median correlation score < 0.7 (See Fig. 9).
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For different number of timepoints in the sliding windows, the studied subnetworks
were multistate in the case of the dACC and the PCC seeds while the PM-VIS was
monostate for most subjects and at multiple time scales. However, we observed the absence
of states for some subjects in the case of 30 timepoints. The sensitivity of the k-Means
algorithm to local minima due to few time samples may be at the origin of this limitation.

5.3. Subnetworks were multistate with a dominant primary state
for different window lengths

Fig. 10. The number of dynamic states and their dwell time was insensitive to
different window lengths.
We reported the dwell time from both sets of independent sessions. We studied three seed
voxels including the PM-VIS, the dACC and the PCC. The number of replications of seed-
based parcellations = 30. The seed-based parcellations were clustered into 12 clusters. The
smoothing kernel = 6 mm, the cluster size threshold = 10%, the Dice threshold = 0.3. Ten
subjects of the Midnight scan club dataset were included.

We investigated the distribution of the states dwell time for different number of timepoints
per window; i.e., number of timepoints = 30, 50, 100, 200. Three seeds from the PM-VIS,
the dACC and the PCC subnetworks were investigated. Our results showed that the dACC
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and the PCC seeds were multistate for different number of timepoints in a single window.
For instance, the dwell time of the dACC seed had a maximum of three states in the case
of 30 time points, three states in the case of 50 timepoints, five states in the case of 100
time points and four states in the case of 200 time points. Moreover, the primary state was
always a dominant state with an important difference between its dwell time and the dwell
time of the secondary state. For instance, in the case of 50 time points and the dACC seed,
the primary state had a dominant dwell time with a median = 38% over a median dwell time
equal to 11% in the case of the secondary state. Similarly, the dwell time of the PCC seed
had a maximum of three, four, four and three states, respectively for the 30, 50, 100 and 200
timepoints. The dominant primary state in the case of 50 timepoints and the PCC seed had
a median dwell time = 42% over a median dwell time = 11% in the case of its secondary
state. Unlike the dACC and the PCC, the PM-VIS seed was monostate for most subjects
and up to three states for few subjects. Its secondary and third states had very low dwell
time (around 10%) compared to the primary state (See Fig. 10). Altogether, these results
suggested that the dynamic states of parcellations were multistate for the dACC and the
PCC seeds and mono-state for the PM-VIS seed for most subjects and multistate for few
subjects, regardless of the window time length.

5.4. Dynamic states reproducibility was insensitive to low cluster
size thresholds

We aimed to investigate the impact of different cluster size thresholds on the reproducibil-
ity of dynamic states of parcellations. Thus, we reported the within- and between-subjects
reproducibility for different cluster size thresholds as the percentage of the seed-based par-
cellations included in a given state over their total number. The results of the lowest cluster
size threshold; i.e. score = 5%, showed large distribution of reproducibility scores both at
the within- and the between-subjects levels compared to higher cluster size thresholds; i.e.
score > 10%. Still, the median of the within-subject reproducibility was higher than the
between-subject reproducibility for all cluster size thresholds and all seeds (See Fig. 11).
These results demonstrated the insensitivity of the reproducibility of the dynamic states of
parcellations to the cluster size threshold.
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Fig. 11. Dynamic states reproducibility was insensitive to cluster size threshold.
We studied three seed voxels including the PM-VIS, the dACC and the PCC. The number
of replications of seed-based parcellations = 30. The seed-based parcellations were clustered
into 12 clusters, the smoothing kernel = 6 mm, the Dice score threshold = 0.3. The number
of timepoints per window = 100. Ten subjects of the Midnight scan club dataset were
included.

5.5. The PCC and the dACC subnetworks were multistate and
the PM-VIS was monostate for most subjects across different
cluster size thresholds

We investigated the distribution of the states dwell time for different values of cluster
size thresholds = 5%, 10%, 20%. Three seeds from the PM-VIS, the dACC and the PCC
subnetworks were investigated. Our results showed that the dACC and the PCC seeds were
multistate across cluster size thresholds. For instance, the dwell time of the dACC seed had
a maximum of five states in some subjects when the cluster size thresholds were equal to
5% and 10% while it had only up to three states in the case of 20% cluster size threshold.
Moreover, the primary state was always a dominant state with an important difference
between its dwell time and the dwell time of the secondary state of all the values of cluster
size thresholds. For instance, in the case of a cluster size threshold equal to 5%, the dACC
seed and the primary state had a dominant dwell time with a median = 43% over a median
dwell time = 13% in the case of the secondary state (See Fig. 12). Altogether, these results
suggested that the dynamic states of parcellations were multistate for the dACC and the
PCC seeds. Dynamic states of parcellations were mono-state in the case of the PM-VIS seed
for most subjects and multistate for few subjects, regardless of the cluster size threshold.
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Fig. 12. The number of dynamic states and their dwell time was insensitive to
different cluster size thresholds.
We studied three seed voxels including the PM-VIS, the dACC and the PCC. The number of
replications of the seed-based parcellations = 30. The seed-based parcellations were clustered
into 12 clusters. The smoothing kernel size = 6 mm, the Dice score threshold = 0.3. The
number of timepoints per window = 100. Ten subjects of the Midnight scan club dataset
were included.
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5.6. Reproducibility of dynamic states of parcellations in the case
of different smoothing kernels

We aimed to investigate the impact of the spatial smoothing on the spatial state maps.
Thus, we generated the dynamic states of parcellations for different smoothing kernels;
i.e., 4mm, 6mm and 8mm, and we reported the within- and between-subjects reproducibil-
ity. Our results showed that all within-subjects reproducibility were higher than between-
subjects reproducibility. For instance, the median of within-subject reproducibility scores
were higher than 0.8 Pearson correlation for all seeds across different smoothing kernels while
the between-subjects reproducibility were lower than 0.8 Pearson correlation for all seeds and
all smoothing kernels (See Fig. 13). These findings suggested the insensitivity of our dynamic
states of parcellations to the kernel size.

Fig. 13. The within- and between-subjects reproducibility of our dynamic states
of parcellations were insensitive to the smoothing kernel size.
We studied three seed voxels: PM-VIS, dACC and PCC. The number of replications of seed-
based parcellations for each replication=30. The seed-based parcellations were clustered
into 12 clusters, the cluster size threshold = 10%, the Dice threshold = 0.3. The number of
timepoints per window = 100. Ten subjects of the Midnight scan club dataset were included.

5.7. The PCC and the dACC subnetworks were multistate for dif-
ferent smoothing kernels and the PM-VIS was mono-state for
most subjects

We aimed to get a better understanding of the dwell time distribution of the dynamic
states of parcellations for different smoothing kernels. Our results showed the existence of
many states across the three studied subnetworks; i.e. dACC, PCC and PM-VIS seeds. For
instance, the PM-VIS had three, two and three states, respectively for 4mm, 6mm and 8mm
smoothing kernels. However, the dwell times of the secondary and the third states of the
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PM-VIS subnetwork occured for a few subjects and their dwell time was very low; i.e. dwell
time 10%. That suggested the PM-VIS was mono-state for most subjects and multistate for
some subjects with a dominant primary state. Conversely, the dACC and the PCC secondary
states had much lower dwell time than the primary state; i.e. dwell time > 10%, for different
smoothing kernels. These findings suggested the PCC and the dACC subnetworks were
multistate while the PM-VIS was mono-state for different smoothing kernels (See Fig. 14).
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Fig. 14. The number of dynamic states and their dwell time was insensitive to
the smoothing kernel.
We studied three seed voxels including the PM-VIS, the dACC and the PCC. The number
of replications of seed-based parcellations = 30. The cluster size threshold = 10%. The seed-
based parcellations were clustered into 12 clusters, the Dice threshold = 0.3, the number of
timepoints per window = 100. Ten subjects of the Midnight scan club dataset were included.
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5.8. The reproducibility of the dynamic states of parcellations was
not sensitive to changes in the seeds coordinates

We aimed to investigate the reproducibility of many seed voxels from the visual, the
dACC and the PCC subnetworks to verify the generalizability of the conclusions associated
with the studied subnetworks. We manually picked 15 different seeds from each subnetwork
including boundaries (See MNI coordinates of the chosen seeds in table 1). We computed
their within-subject and between-subjects reproducibility scores. Our results showed that
within-subject reproducibility outperformed the between-subjects reproducibility scores in
terms of the Pearson correlation. For instance, the within-subjects reproducibility scores
had a median correlation > 0.9 in the case of the PCC seed while all between-subjects
reproducibility scores had a median correlation < 0.79 (See Fig. 15). These results suggested
that within-subjects reproducibility of our dynamic states of parcellations was higher than
between-subjects reproducibility for all the studied seeds from the PM-VIS, the dACC and
the PCC subnetworks.

Fig. 15. Within- and between-subjects reproducibility of our dynamic states of
parcellations for 15 seeds per subnetwork.
We studied three seed voxels including the PM-VIS, the dACC and the PCC. The number of
replications of the seed-based parcellations was equal to five. The seed-based parcellations
were clustered into 12 clusters. The smoothing kernel size = 6 mm, the cluster size threshold
= 10%, the Dice threshold = 0.3, the number of timepoints per window = 100. Ten subjects
of the Midnight scan club dataset were included.

5.9. Within-subjects reproducibility was insensitive to the number
of replications of the seed-based parcellations

To evaluate the impact of the number of replications of the seed-based parcellations, we
computed the within-subjects reproducibility of the dynamic states of parcellations in the
case of 1, 5 and 30 seed-based parcellations. Different initializations of the random number
generator were used for different k-Means parcellations. Our results showed very similar
distributions across replications. For instance, the within-subjects reproducibility medians
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were all aligned to very close scores for all seeds (See Fig. 16). These findings suggested that
the variability across seeds in the k-Means parcellations were negligible in the context of our
Dypac algorithm.

Fig. 16. The within-subject reproducibility of our dynamic states of parcella-
tions was insensitive to the number of replications of the seed-based k-Means
parcellations.
We studied three seed voxels including the PM-VIS, the dACC and the PCC. The seed-based
parcellations were clustered into 12 clusters. The smoothing kernel = 6 mm, the cluster size
threshold = 10%, the Dice threshold = 0.3, the number of timepoints per window = 100.
Ten subjects of the Midnight scan club dataset were included.

6. Dynamic states suppressed differences within-
sessions versus across days in the case of resting
state functional MRI data

We aimed to investigate the within-sessions versus the between sessions effect across days
on the identified dynamic states. To this end, we computed the probability of a given state
to be associated with two sliding windows either from the same session or from different
sessions (across days). Our results showed highly overlapping probability distributions for
the sliding windows of the same state to fall into the same session or different sessions (See
Fig. 17). Thus, there was no substantial impact of the differences in the brain activity across
sessions on the identified dynamic states.
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Fig. 17. Dynamic states occurred with the same probability either across days
or across sessions.
For each state, we computed the probability of two sliding windows to be in the same session
or in different sessions. We studied three seed voxels including the PM-VIS, the dACC and
the PCC. The number of seed-based parcellations = 5. Ten subjects of the Midnight scan
club dataset were included.

7. Different dynamic states had different temporal dy-
namics

We aimed to quantify the synchrony between the dynamics of the different states of
parcellations, from different seeds and over time. To this end, we computed the Adjusted
Rand Index (ARI) similarity scores between one-hot encoding of states associated with seed-
based parcellations (over sliding windows) as a measure of the synchrony between spatial
states over time. The sliding windows were ordered chronologically. The seed-based one-hot
parcellation dynamics was the binary representation in which 1 value indicated the sliding
window was included in the state and 0 otherwise, for a given sliding window. We computed
the ARI between one-hot temporal dynamics associated with different seeds for five sets
of sessions (within-set) and between two sets of five independent sessions (between-sets).
This allowed us to quantify to which extent the spatial spatial patterns (states) associated
with different seed subnetworks were involved, at the same time (over sliding windows)
both within- and between-sets. No substantial association between sets was expected, as
these sessions were acquired independently making inter-set synchronization unlikely, with
the possible exception of habituation, fatigue or stress effects accruing systematically at the
beginning or the end of a session. The low ARI scores within- and between-sets showed there
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was no synchrony between the states of different pairs of seeds both at the within-set and
between-sets. That is, the states associated with one seed did not occur at the same time as
the states of another seed. Also, we observed that the within-set scores were slightly higher
than between-sets scores in the case of the PCC/PM-VIS pair. For instance, for the three
pairs of seeds (i.e. dACC/PCC, dACC/PM-VIS, PCC-PM-VIS), the average ARI score 0.02.
However, The PCC/PM-VIS pair had an average ARI of 0.05 (See Fig. 18). These findings
demonstrated the existence of different temporal dynamics for the states associated with
different seed subnetworks.

Fig. 18. Dynamic states of parcellations had different temporal dynamics.
The ARI similarity scores were computed between the seed-based parcellations associated
with different pairs of seed subnetworks. Each seed-based parcellation was a chronologically
ordered sliding window parcellation from the MSC sessions. We computed the ARI either
between the states from at the within-set level or at the between-sets level. We maximized
the ARI scores between two distinct states associated with two different seed subnetworks
(i.e. dACC/PCC, dACC/PM-VIS, PCC/PM-VIS). We replicated the Dypac algorithm 30
times. The number of seed-based parcellations = 5. The seed-based parcellations were
clustered into 12 clusters. The smoothing kernel = 6 mm, the cluster size threshold = 10%,
the Dice threshold = 0.3, the number of timepoints per window = 100. Ten subjects of the
Midnight scan club dataset were included.

8. Conclusion
To summarize, we show our dynamic parcellation algorithm had robust findings across

different parameters in the context of resting state functional MRI and long hours acquisi-
tions. These findings gave evidence of the reliability of our dynamic parcellation approach
and a proof of concept that motivates to conduct further research to extend it at the full
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brain level. This is a challenging area of research since more than two decades even in the
case of static parcellations due to the large dimensionality of the functional MRI data espe-
cially at a scanning high resolution. Another interesting area of research is the application
of the dynamic states of parcellation to reduce the functional MRI data with a minimized
information loss and use these reduced data for clinical applications including the prediction
of neurological disorders.
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Abstract. Functional brain parcellations are intensively used to reduce the high dimen-
sionality of functional MRI data into more compact representations. In the literature, there
exists no consensus regarding the best approach to parcellate individual brain parcellations,
despite more than two decades of investigation. The main limitation of previous approaches
was that functional parcellations were not highly reproducible and there was loss of infor-
mation between the original signal and the reduced data. Neglecting the dynamic recon-
figurations of these brain regions was among the main reasons for this poor performance
in some brain regions including, the heteromodal cortices. Some individual parcellation
approaches have recently proposed to improve these performance measures. Still, these ap-
proaches were either not scalable enough to replicate on large longitudinal datasets, or it
required terabytes of functional MRI data to generate brain parcels. In our previous work,
we formalized the parcellation problem as a dynamic approach that identified different spa-
tial reconfigurations or ‘dynamic states of parcellations’ for a given seed subnetwork called
DYPAC 1.0. The scalability of this cluster aggregation approach motivated us to extend it
to a full brain implementation called DYPAC 2.0. We used ten hours per subject of training
and test data from the cneuromod movie10 dataset. We found low information loss between
the reduced and the original data throughout the cerebral cortices, i.e. only 20% informa-
tion loss. We also found that average within-subject reproducibility reached high scores
for many dynamic states throughout the brain (over .9 training-test spatial correlation).
This work opens new research directions to studying the brain dynamics often neglected by
previous methods based on static parcellations, and may therefore improve the new clinical
applications studying differences in brain interactions in both healthy brains and disease.
Keywords: Full brain parcellation, dynamic parcellation, dynamic states, cognitive states,
cluster aggregation, soft parcellation

1. Introduction
Brain parcellation can be viewed and understood as a tool for compressing functional

MRI data. The main objective is to reduce the dimensionality of brain functional organi-
zation with a high fidelity. Functional brain parcellations are very useful and intensively
applied in the neuroscience field, and specifically network neuroscience. For instance,
different studies reported better accuracy in the prediction of mental states, neurological
disorders, etc., depending on the choice of a brain parcellation [?, 36]. Traditional static
brain parcellations subdivided the cerebral cortex into a single fixed parcellation composed
of “hard” binary assignment of voxels to a given parcel with well-defined boundaries [?].
Even though there existed several static functional approaches in the literature, there
was no consensus on which approach better reduce the high dimensionality of the func-
tional data [6]. That is, the compression rate of static parcellations seem to reflect
primarily the size of parcels (resolution), and state-of-the-art algorithms offer little to no
advantage compared to random brain parcellation (see Fig 7 of [76]). Additionally, the
evaluation of the goodness of functional parcellations was evaluated using reproducibility
on test-retest datasets. However, these reproducibility scores did not reach high scores

97



at the individual level and it plateaued at 0.7 dice score even in the context of over 30
minutes of resting state data [39]. Researchers associated this mainly, to within-subject or
between-subjects fMRI variability [19, 61, 73]. For instance, a recent study investigated
the variability in spatial functional boundaries of regions associated with different human
adults’ lifespan (20-93). Here, the authors explained the differences in parcellation bound-
aries by differences in cortical thickness and anatomical alignment due to age differences [40].

Another research direction formalized the parcellation problem as a space-time decom-
position using soft and dynamic parcellations. Soft parcellation meant that a given voxel
was attributed a weight of appartenance to a given parcel, e.g. a probability score [?].
Dynamic parcellation meant that different parcels could overlap, and the strength of
expression of a given parcel may vary over time. An important difference between static
and dynamic parcellations was how fMRI data were compressed in parcels. In the case
of a static parcellation, the compression was univariate. Each parcel represented the
average functional activity at a specific spatial location in the cerebral cortex. An average
signal was generated for each parcel, or a principal component analysis was applied to
the signal inside the parcel [?]. In the case of dynamic parcellations, the compression was
multivariate as the parcels (or spatial modes of decomposition) were used altogether using
a multivariate regression analysis to fit a full brain activity volumes over time [22] resulting
in spatially overlapping parcels, i.e., the same voxel was involved with different states. This
approach was applied by the Independent component analysis ICA for more than a decade.
Recently, some researchers showed the application of a dynamic approach improved the
fidelity of the compressed data to the actual neurobiological changes over time in space.
For instance, Dadi and colleagues used the spatial sparsity constraint to generate dynamic
brain parcels [?]. Authors showed the compression of activation maps was improved using
soft and dynamic parcellations over a range of classic static parcellations [?]. Here, authors
showed the existence of variability in temporal features that were not confounded with
spatial features [41]. Despite the existence of different attempts to apply the space-time
decomposition of fMRI data, there are still two main limitations of previous approaches.
First, the lack of scalability to the high dimensionality of functional MRI data (e.g., ICA
approach). This motivated the introduction of PROFUMO [17], a matrix factorisation
model that identified subject-specific spatial maps using a variational Bayesian approach
with spatiotemporal priors instead of ICA dual regression. Other previous approaches
required terabytes of functional data to converge to good quality solutions [?]. That
could be problematic, especially in the case of the clinical datasets; e.g. Alzheimer disease
datasets. Our previous seed-based implementation of DYPAC1.0 was based on a simple and
scalable cluster aggregation. This motivated us to see if it could be extended to a scalable
full brain analysis. We also wanted to see if we can reduce the information loss between the
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original and the reduced functional data using full brain state stability maps.
The main finding of DYPAC1.0 was the existence of high spatial reproducibility at the
within-subject level (between test-retest datasets) in short time series (about 3 minutes)
and using a very basic clustering algorithm. Across states, there existed different spatial
reconfigurations within the same subject, especially in the cases of the dACC and PCC
seed subnetworks. That is, there were some differences locally, at the level of a region
surrounding the seed subnetwork for some states. There were also differences in spatial
states involving multiple regions distributed throughout the brain. Similar local and
distributed variations were observed with the PCC seed subnetwork, which had up to three
states. In the literature, there existed a spatial overlapping pattern between space-time
decompositions generated by the ICA and the DYPAC1.0 approach even though the
underlying formalism was different. That spatial overlap was identified in the case of the
visual network, the default mode network, the MPFC regions and regions of the dorsal
attentional subnetwork [18, 30, 84].

In this paper, we build upon the findings of Boukhdhir and colleagues and we ex-
tend the dynamic parcellation approach to extract full brain dynamic states of functional
parcellations at the individual level [18]. We define a dynamic state of parcellation as
the time-space decomposition that occurs for short time durations in the resting state
condition. This approach is based on aggregating sliding-window parcellations for a given
region to obtain stability maps of the different dynamic states of parcellations. We generate
these dynamic states for the six subjects of the Courtois Neuromod dataset and we aim to
evaluate the compression quality of the state stability maps at the full brain level. We also
aim to study similarities and variations within-subject (between sets of independent data
for the same subject) and across subjects.
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2. Methods
2.1. DYPAC2.0

Fig. 1. Subject-specific dynamic parcellation approach at the full brain level
(DYPAC2.0).
The first step consists of running k-Means directly on the time series. Here, we generate a
family of parcels represented with one-hot encoders. The second-step aggregation clustering
procedure generates a set of state stability maps at the full brain level. The third step
consisted of clustering the state stability maps of the previous step into L clusters.

2.1.1. Overview. We implemented a new algorithm which identifies individual dynamic
states of brain parcellation at the full brain, using a multi-level ensemble clustering ap-
proach. This algorithm is an extension of the Dynamic Parcel Aggregation with Clustering
(DYPAC2.0) algorithm proposed by Boukhdhir and colleagues [18]. DYPAC2.0 uses a sim-
ple two level clustering, one on sliding time windows, and one-hot encoders aggregated over
many windows. A one-hot encoder is a binary vector of length V (number of voxels in a
brain mask), in which each voxel has a value one if it is included in a given cluster, and zero
otherwise.

2.1.2. First-level cluster analysis. The first level clustering consists of replicating a k-
Means analysis on R sliding windows of fixed size, uniformly distributed in a given fMRI
time series. The k-Means algorithm has a parameter K which sets the number of clusters
(parcels) in the brain. We generate an array of parcels represented with K one-hot encoders.
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K one-hot encoders of length V are generated for each sliding window, and one-hot vectors
are aggregated over R replications, as well as B fMRI datasets (or runs) collected on the
same individual (see Fig. 1).

2.1.3. Second-level cluster analysis. The second-level aggregation clustering procedure
groups the one-hot encoders into states. A traditional k-Means clustering with L states is
again applied at this step. Note that this parameter is set globally, i.e. it indicates the
overall number of possible states across all brain parcels. For each state cluster, the average
of all one-hot encoders in that state is generated, producing a state stability map. Stability
scores range from 0 to 1, with 0 indicating a voxel which was never associated with a brain
parcel in that state, and 1 indicating a voxel always included in the parcels of that state (see
Fig. 1).

2.1.4. State trimming. Because we had observed in DYPAC1.0 that many dynamic states
are noisy, and should not be included in a state, each state cluster is further "trimmed" using
the following approach. For each one-hot vector in a state cluster, the average value of the
stability map of that cluster is generated, over the voxels in the one-hot vector. Only one-
hot vectors which achieve an average stability over a threshold t=0.3 are assigned to a state
cluster. Final stability maps are generated after this trimming procedure, on the remaining
one-hot vectors. Some state clusters may end up empty because of the trimming procedure,
and will be excluded from further analysis, which means that the effective number of states
after trimming may be less than the specified L.

2.1.5. Memory requirements. Models were run using the following parameters: K=50
brain clusters, L=150 dynamic states and R=100 replications. Note that with the dataset
we used, V 150k and B 60. In total, the array of one-hot encoders can reach a very large size,
V x (K.R.B), but is tractable in memory because it is represented as a sparse boolean array.
As K one-hot encoders coding for a given brain parcel have exactly V non-zero elements,
the aggregated one-hot encoders use V.R.B bits of memory (independent of the number
of clusters K). With the values listed above, the aggregated one-hot encoder array will
have 150k.100.60=900M non-zero elements, which easily fits in memory even on commodity
hardware.

2.1.6. Processing time. We used the k-Means implementation of scikit-learn
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html for both
the first-level and second-level cluster analysis. This particular implementation supports
sparse data, so the large number of features (V 150k) is handled efficiently, as each one-hot
vector is very sparse, and the memory requirements are kept to a low level, as outlined in
the preceding paragraph. This implementation still has a quadratic run-time complexity as
a function of the number of measures to be clustered, which is here very large K.R.B=300k.
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In order to limit this computation time, we also implemented a version of DYPAC2.0 that
relies on batches of fMRI data. Additionally, we used the latest release of the k-Means
implementation in scikit-learn which runs this algorithm in parallel on multiple cores. This
further improves scalability on multiple cores. We rely on the parallel grid computing of
compute canada which allows us to allocate up to 32 cores per node 1.

2.1.7. Batch processing. To accommodate the large number of one-hot encoders size
across multiple states at the full brain level, we subdivided the overall one-hot encoders into
M batches (or subgroups) of one-hot encoders. Stability maps are generated independently
in each batch, and then aggregated into an array of size V x (M.L) 2. This array is entered
into a third-level cluster analysis that groups the state stability maps into meta-states clus-
ters. stability maps within a given meta-state are averaged to produce final stability maps.
The batch size directly impacts the reliability of the estimation of the state stability maps.
Therefore, there should be a compromise between the computational cost and the number
of one-hot encoders. The higher the number of one-hot encoders are within the same batch,
the better the state stability maps are. The lower the number of one-hot encoders is, the
lower the computational cost is. In the application proposed here, as each subject had a
large number of fMRI runs available (B 60), we used M=10.

2.1.8. Code implementation. The code for DYPAC2.0 is available via github3. The appli-
cation program interface is inherited from the base linear decomposition class of the nilearn
library [70], and is using nilearn tools for loading preprocessed fMRIprep data and generat-
ing a brain mask. The codebase includes unit testing covering all key methods, and separates
the ensemble clustering tools (bascpp.py), the fMRI interface (dypac.py) from the temporal
embeddings tools (embeddings.py, see section on fMRI compression below). Nilearn and
matplotlib were also used to generate all the figures in this paper.

2.2. Dataset and preprocessing

The cneuromod movie10 dataset included about ten hours of functional data per
participant. Six participants were included (female=3, male=3, their age ranges between
31-47 years old. Informed consent was obtained from all participants [28]. Each participant
watched four different movies in the MRI scanner, including Bourne supremacy movie
( 100 minutes duration), Wolf of wall street movie ( 170 minutes duration), Hidden figures
movie ( 120 minutes duration, presented twice) and Life movie ( 100 minutes duration,
presented twice). Each movie was cut into roughly ten minute segments presented in a
1https://docs.computecanada.ca/wiki/Cedar
2Strictly speaking, the second dimension of this array may be smaller than M.L, as some states are empty
following the trimming procedure.
3https://github.com/courtois-neuromod/dypac
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separate run. Exact cutting points were manually selected to not interrupt the narrative
flow. The cneuromod movie10 dataset included about ten hours of functional data per
participant. Six participants were included (female=3, male=3, their age ranges between
31-47 years old. Informed consent was obtained from all participants [28]. Each participant
watched four different movies in the MRI scanner, including Bourne supremacy movie ( 100
minutes duration), Wolf of wall street movie ( 170 minutes duration), Hidden figures movie
( 120 minutes duration, presented twice) and Life movie ( 100 minutes duration, presented
twice). Each movie was cut into roughly ten minute segments presented in a separate run.
The sequence is available on the Siemens PRISMA scanner at UNF through a concept
to production agreement, and was used with the following parameters:slice acceleration
factor=4, TR=1.49s, TE=37ms, flip angle=52 degrees, voxel size= 2mmX2mmX2mm,
60 slices, acquisition matrix 96X96. Exact cutting points were manually selected to not
interrupt the narrative flow.

For each functional MRI run, different steps of the fMRIPrep v20.1.1 preprocessing
pipeline were applied [2]. First, a reference volume and its skull-stripped version were
generated. To correct for susceptibility distortions, a deformation field was estimated
using 3dQwarp AFNI [2]. Using the susceptibility distortion, an unwarped functional
MRI reference run was computed to have a better co-registration with the anatomical
reference. The functional MRI reference run was then co-registered to the T1w reference
using flirt (i.e.; FSL 5.0.9). To correct the remaining distortions in the functional MRI
reference runs, we configured co-registration with nine degrees of freedom. Head-motion
parameters were also estimated before spatiotemporal filtering using mcflirt (i.e.; FSL
5.0.9, [2]). Each functional MRI run was resampled into standard space, to generate a
preprocessed functional BOLD signal the MNI152NLin2009cAsym space. We adapted the
P24 denoising strategy of [25] which included six motion parameters (i.e., six degrees of
freedom), six temporal derivatives, six quadratic terms, and six quadratic expansions of the
derivatives of motion estimates for a total 24 regressors [27]. We excluded the frames that
exceeded a threshold of 0.5 mm FD or 1.5 standardised DVARS. Volumetric resamplings
were performed using antsApplyTransforms (ANTs), configured with Lanczos interpolation
to minimize the smoothing effects of other kernels [52].

We used a reasonable preprocessing strategy that allowed us to capture clean well-
known dynamic states in the literature without aggressively removing neurobiological
signals. So it is important that a tradeoff is made, therefore, we intend to analyse the
effect of different denoising strategies to evaluate the impact of the preprocessing on the
performance measures in the case of brain parcellation.
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The load-confounds library is used to import confound factors generated by fmriprep
in nilearn. These confounds were regressed out of individual fMRI time series, which were
further standardized to a zero mean and unit variance and spatially smoothed with an 8 mm
smoothing kernel using nilearn MultiNiftiMasker method. Dypac2.0 analyses were restricted
to an individual-specific segmentation of the grey matter generated using freesurfer as part
of the fmriprep preprocessing pipeline.

2.3. Functional MRI loss of information analysis after compression

We aimed to quantify the quality of the compressed functional MRI data and whether it
was representative of these raw data. We separated the cneuromod movie10 into training and
test sets. The training set was composed of 44 runs ( 10 minutes each) from four different
movies, including Life (5 runs), Bourne supremacy (10 runs), Hidden figures (12 runs), Wolf
of wall street (17 runs). The test set was composed of only 17 runs ( 10 minutes each) from
two different movies, including Life (5 runs) and Hidden figures (12 runs). We generated
subject-specific parcellations on the training set, and then evaluated compression quality on
the test set. To quantify the compression quality of the functional MRI, we computed the R-
squared measure between the preprocessed time series at each voxel, and the compressed time
series using the DYPAC2.0 stability maps. Specifically, the fMRI time series were projected
in the vector basis of stability maps using an ordinary least-squares linear projection. This
resulted into a reduced set of time series, one per stability map. Then, the reduced time
series were multiplied with the stability maps, in order to generate a linear mixture of parcels
with same dimensionality as the original time series. The R-squared coefficient expressed
the percentage of variance of the original time series effectively captured by the compressed
time series. Note that the compression factor is very high (approximately 1000), as there
are originally about 150k voxels, which get projected into a space of dimension lower than
L=150 (the number of stability maps generated by DYPAC2.0). A higher R-squared score
indicated a better explained variance in the functional MRI signal, or in other words lower
information loss between the original signal and the compressed state stability map. We
compared the R-squared measure both at the within- and the between-subjects level. At the
within-subjects level, we computed the R-squared scores between each functional MRI run
and all its corresponding state stability maps from the same subject. At the between-subjects
level, the functional MRI runs were compressed using state stability maps associated with
different subjects. We reported the results in Fig. 2 and Fig. 3.

2.4. Reproducibility analysis

We also aimed to evaluate the reproducibility of the dynamic states of parcellations at
the full brain level. To this end, we conducted a quantitative consistency analysis both at
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the within- and the between-subject levels in the context of movie data. This allowed us to
quantify and identify similarities and variations in the spatial reconfigurations of the dynamic
states. We compared the spatial reproducibility at the within-subjects and the between-
subjects levels in terms of the Pearson correlation measure of spatial stability maps. We
matched the training set maps to the maps from the second set using the Hungarian method
[51]. A higher correlation showed a stronger linear relationship between two state stability
maps. This indicated high spatial consistency between the dynamic states of parcellations
from the two sets of independent data. We repeated these analyses at the full brain level
(here, 150 states) and the six subjects of the cneuromod movie10 dataset.

3. Results
3.1. State stability maps led to better compression within-subject

than between-subject

To evaluate the compression quality of the state stability maps, we quantified the infor-
mation loss between the original functional MRI signal and the state stability maps using the
R-squared measure. This measure could be perceived as the space-time decomposition ana-
logue of parcel homogeneity. We compared the within-subjects scores (individual time series
are compressed with state stability maps generated on the same subject) with the between-
subjects scores (individual time series are compressed with state stability maps generated
on a different subject). Our results demonstrated that within-subjects R-squared scores
outperformed the between-subjects R-squared scores. For instance, the average R-squared
median was 0.68 at the within-subjects level compared to 0.55 at the between-subjects level
(See Fig. 2). We reported the average R-squared maps scores both at the within- and the
between-subjects levels (See Fig. 3). We observed that the average R-squared map gener-
ated from the same subjects states and runs (row=1 and column=1 in Fig. 3) had brighter
colors than all the others maps generated from different subjects’ runs and states (row=2
and row=3 in Fig 3). We also noticed that subcortical regions had low R-squared scores for
all maps with red colors (See Fig. 3).
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Fig. 2. The functional MRI signal compression quality was higher within-subject
than between-subjects.
The average R-squared scores were computed between the functional MRI signal for each
run and the state stability maps at the full brain level. Higher R-squared scores revealed
that the loss between the real and the compressed data was minimized (e.g., If R-squared
score = 1, that showed there was no information loss in the compressed state map). At the
within-subjects level (blue), we computed the average R-squared score for each functional
MRI run such that the state stability maps and the fMRI signals were associated with the
same subject. At the between-subjects level (orange), we computed the average R-squared
score for each run such that the state stability map and the fMRI signal were associated with
different subjects. Six subjects from the cneuromod movie10 dataset were included. Each
subject had 150 state stability maps at the full brain level. 44 functional MRI runs were
used to compute the R-squared scores from different four movies, including Life (5 runs),
Bourne supremacy (10 runs), Hidden figures (12 runs), Wolf of wall street (17 runs).
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Fig. 3. The state stability maps had lower information loss when used for func-
tional MRI compression at the within-subject level compared to the between-
subject level.
We computed the average R-squared maps associated with the functional MRI runs of the
Hidden figures movie. The first (row,column) corresponded to the average R-squared map
of subject sub-03. This map was computed by averaging the 12 R-squared maps associated
with 12 functional runs and 150 state stability maps. The functional runs and the state
maps belong to the same subject sub-03 (within-subject level). The rest of the maps, in this
figure, were generated such that the functional data was associated with subject sub-03 and
the state stability maps were associated with the other five subjects from the cneuromod
movie10 dataset. Each subject had 12 functional MRI runs from the Hidden figures movie
and 150 dynamic states of parcellations at the full brain level.
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3.2. Within-subjects reproducibility was higher than between-
subjects, with some overlap in distribution

To assess the reproducibility of parcellations, we generated the dynamic states of parcel-
lations based on two sets of independent data, for each subject. This allowed us to quantify
and identify similarities and variations in the spatial reconfigurations of the dynamic states.
Our results showed that within-subjects reproducibility distribution highly overlapped with
between-subjects reproducibility distribution. There existed 75% overlap in the within-
subjects distribution such that the scores ranged between 0 and 0.87 (See Fig. 4). However,
the within-subjects median outperformed the between-subjects median with, respectively
0.68 and 0.37 scores (See Fig. 4).

Fig. 4. Within-subjects reproducibility distribution was highly overlapping with
the between-subjects reproducibility distribution in the case of movie data.
At the within-subjects level, we computed the Pearson correlation between the state stability
maps of the same subject and matched between the two independent sets; i.e. training set and
the test set. The training set was composed of 44 runs ( 10 minutes each) from four different
movies, including Life (5 runs), bourne supremacy (10 runs), Hidden figures (12 runs), Wolf
of wall street (17 runs). The test set was composed of only 17 runs from two different movies,
including Life (5 runs) and Hidden figures (12 runs). A complete matching between states
was applied using the Hungarian method by maximizing the Pearson correlation between
pairwise maps. 150 dynamic states of parcellations were generated at the full brain level.
Six subjects were investigated from the cneuromod movie10 dataset.
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3.3. Dynamic states of parcellations were reproducible for some
regions in the brain and inconsistent for others across the full
brain in the context of the movie data

3.3.1. Within-subject reproducibility. We aimed to compare the similarities and varia-
tions of the dynamic states of parcellations between the training and the test sets at the
within-subjects level. We classified the state stability maps according to their reproducibility
levels. To better organize the dynamic states of parcellations, we distinguished three groups
according to their reproducibility level: (1) high reproducibility level (Pearson correlation
coefficients > 0.7), (2) average reproducibility level (Pearson correlation coefficients <=
0.7 and Pearson correlation coefficients >=0.5) and (3) low reproducibility level (Pearson
correlation coefficients< 0.5 and Pearson correlation coefficients >= 0.3).

In the case of the high reproducibility level, we observed a high consistency between
the state stability maps of the training and the test sets associated with different regions in
the brain. For instance, the posterior cingulate cortex (PCC) regions had high similarity
between the state stability maps of the two sets (Fig. 5, map E versus map E’). Similarly,
the state stability maps of the visual network were very similar with higher stability scores
in the case of the test set with near perfect stability scores (Fig. 5, map I versus map I’).
Similarly, we observed a high consistency between the visual regions located between the
parietal and the occipital lobes (See Fig. 5, map K versus map K’). Cerebellar regions had
also very consistent state stability maps across the two independent sets (Fig. 5, map H
versus map H’). Moreover, the state stability maps associated with the insular regions were
very consistent across the two sets of independent data with high stability scores for most
voxels; i.e. stability scores > 0.75 (See Fig. 5, maps B versus map B’ and map D versus map
D’). The motor regions were also among the most reproducible regions across the two sets
of independent data (Fig. 5, map G versus map G’). Compared to other regions throughout
the brain, its state stability maps showed lower stability scores with less than 0.5 values
for most voxels. Overall, many distributed dynamic states of parcellations had a high level
of reproducibility across the training and the test sets in the context of movie data. Most
voxels within these states were also highly stable with, at least 0.75 stability score for most
voxels.

In the case of the average reproducibility, we observed that most state stability maps
had remarquable spatial overlap in the maps of the training and the test sets. For instance,
the state stability maps of the visual regions were spatially overlapping across the two sets
(See Fig. 6, map = A versus map A’). Also, the state stability map C’ of the test set in
Fig. 6 showed that the dorsal anterior cingulate cortex regions (dACC) overlapped with the
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dACC of map C associated with the training set (See Fig. 6). It also extended towards the
frontoparietal regions. Within the same group of maps, we observed that some regions of
the default mode network (DMN) had average stability scores; i.e. scores > 0.25, including
the frontoparietal regions (See Fig. 6, map F versus map F’). The dorsal attentional regions
appeared also in the averagely reproducible state maps (See Fig. 6, map I versus map I’
and map K versus map K’). Most voxels in those regions had average stability scores both
in the training and test sets. Overall, different maps across the full brain had average
reproducibility scores; i.e., reproducibility scores were superior to 0.5 and inferior to 0.7. At
the voxel level, most stability scores within regions had average stability scores; i.e. stability
scores were around 0.5.

Added to the highly and averagely reproducible state maps, we also observed that
some states had low reproducibility from different regions in the brain. We reported the
three map views such that the selected coordinates corresponded to the most stable regions
in the state map. For instance, we found very low reproducibility between the insular
regions in map C and the regions in map C’. Also, we observed low stability scores across
voxels in the state maps. These voxels corresponded most likely to noise patterns. For
instance, F and K maps corresponded clearly to noise. Even though some other state maps
were not reproducible, we recognized some well-known regions including the insular regions
in maps C, the dorsal attentional regions in map E (See Fig. 7).

Overall, we observed that different reproducible regions were identified in the state
stability maps, at the full brain level. These regions had higher to low stability scores.
Highly reproducible maps were more likely to include mostly stable voxels. Conversely, the
state maps associated with poor reproducibility had very noisy and low stability scores.
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Fig. 5. Highly reproducible state stability maps across the training and the test data at the within-subjects level
and across the whole brain.
We showed few state stability maps of subject sub-03 among the maps that were classified as highly reproducible with a
reproducibility score threshold > 0.7. The first and third columns were associated with the training set maps and the second
and fourth columns were associated with the test set maps. The color bars showed the stability scores ranging between 0.1 and
1 values.
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Fig. 6. Averagely reproducible state stability maps across the training and the test data at the within-subjects
level and across the whole brain in the context of movie data.
We showed a few state stability maps of subject sub-03 among the maps that were classified among the maps having reproducibility
score thresholds within [0.5 .. 0.7] scores. The first and third columns were associated with the training set maps and the second
and fourth columns were associated with the test set maps. The color bars showed the stability scores ranging between 0.1 and
1 values.
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Fig. 7. Some state stability maps had low reproducibility across the training and the test data at the within-
subjects level and across the whole brain.
A complete matching of the state maps from the training and the test data was applied using the Hungarian method by
maximizing the Pearson correlation between the maps of the same subject (here, subject sub-03). We only showed a few state
stability maps among the maps that were classified among the maps having reproducibility score thresholds within [0.3 .. 0.49]
scores. The first and third columns were associated with the training set maps and the second and fourth columns were associated
with the test set maps. The color bars showed the stability scores ranging between 0.1 and 1 values.
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3.3.2. Between-subjects reproducibility. We aimed to visually compare the similarities
and the differences between the dynamic states of parcellations between two subjects in the
context of the movie data. This allowed us to identify the spatial overlap between the state
stability maps across subjects. We distinguished between three groups of maps according
to their reproducibility scores across the two sets; i.e. training and test data. In the case
of highly reproducible maps, we observed a high spatial overlap between the state stability
maps of subjects for different regions in the brain and the movie data. For instance, the
insular regions were highly overlapping between the two subjects sub-02 and sub-03 (See
Fig. 8, map C versus map C’). Additionally, we found a very high spatial consistency in the
state stability maps of visual regions between subjects sub-02 and sub-03 (See Fig. 8, map
E versus map E’ and map F versus map F’). The cerebellum had also highly reproducible
state stability maps across subjects sub-02 and sub-03 and it involved different regions from
the cerebellum (See Fig. 8, map G versus map G’ and map I versus map I’).

Likewise the highly reproducible maps, we also observed that some regions overlapped
between the state stability maps of different subjects. We found that these maps had
some overlapping regions between two different subjects. For instance, the state stability
map associated with the DMN and subject sub-02 overlapped with the DMN of subject
sub-03 (See Fig. 9, map C versus map C’). In this case, map C’ of subject sub-03 had more
stable PCC voxels as part of the DMN compared to the PCC of subject sub-02 in map C
(See Fig. 9). The dorsal attentional network regions were also involved in the averagely
reproducible state maps between the two subjects sub-02 and sub-03 (See Fig. 9, map F
versus map F’). Even though the stability of voxels in map F and subject sub-02 were higher
than those in map F’ and subject sub-03, their spatial coverage had an important overlap.

Conversely to the previous reproducibility levels, in the group of poorly reproducible
state stability maps, we found mostly inconsistent regions in the state stability maps of two
different subjects. For instance, the PCC of subject sub-02 and map E had a slight overlap
with the PCC of subject sub-03 and map E’. Also, subcortical regions of subject sub-02 and
map H had a very poor overlap with the spatial regions of subject sub-03 and map H’ (See
Fig. 10).

Overall, we found that dynamic states of parcellations had different levels of reproducibil-
ity ranging from high to low reproducibility at the between-subjects level in the context of
movie data. We also observed that some well-known networks had different dynamic states
of parcellations involving overlapping regions that were associated with more than one level
of reproducibility at the between-subjects level (e.g., the visual regions).
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Fig. 8. Highly reproducible state stability maps across the training and the test data at the between-subjects
level and the movie data.
A complete matching of the state maps from the training and the test data was applied using the Hungarian method by
maximizing the Pearson correlation between the state stability maps of the same subject (here, subject sub-02 and sub-03).
That is, each subject state from the training set was matched to its most similar state in the test set. The matched states were
associated with different subjects. The first and third columns were associated with subject sub-02 and the second and fourth
columns were associated with subject sub-03. A threshold was applied to keep only stability scores over 0.7. The color bars
showed the stability scores ranging between 0.1 and 1 values.
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Fig. 9. Averagely reproducible state stability maps across the training and the test data at the between-subjects
level in the context of movie data.
The first and third columns were associated with subject sub-02 and the second and fourth columns were associated with subject
sub-03. A threshold was applied to keep only stability scores >= 0.5 and stability scores <= 0.7. The color bars showed the
stability scores ranging between 0.1 and 1 values.
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Fig. 10. Some state stability maps had low reproducibility scores at the between-subject level.
The first and third columns were associated with subject sub-02 and the second and fourth columns were associated with subject
sub-03. A threshold was applied to keep only stability scores >= 0.3 and stability scores < 0.5. The color bars showed the
stability scores ranging between 0.1 and 1 values.

117



4. Discussion
In this work, we aimed to generalize the identification of dynamic states of brain

parcellations at the full brain level for individuals. Our first main finding was the existence
of different dynamic states of parcellations across the brain. We also found its state stability
maps had promising compression quality of the reduced data. Some dynamic states were
markedly different in terms of the brain regions involved and some states were spatially
overlapping despite being derived from the same subject in the context of movie data.
We also distinguished three different levels of spatial reproducibility among the identified
dynamic states of parcellations, i.e. high, medium and low reproducibility both at the
within-subject level (between the two independent sets) and the between-subjects levels.
We also found better compression quality at the within-subject level compared to the
between-subject level. Another main finding of this paper was the existence of very high
spatial reproducibility for some state stability maps both at the within-between subjects
level; i.e. Pearson correlation > 0.7. Still, we found the reproducibility at the within-
subjects level outperformed the reproducibility at the between-subject level.

In the literature of brain parcellation, both our approach and Dadi and colleagues
2020 showed the existence of different modes of variations at the full brain level [?]. Also,
both approaches reported promising results by identifying different modes of variations
of the cerebral cortex [?, 18]. The main difference with our work was that Dadi and
colleagues used a collection of brain atlases with different resolutions; i.e. 64 to 1024
static brain parcels to extract soft parcels. These parcels were identified using a huge
dataset of 2.4TB. However, in our approach, few hours of data were enough to identify
time-space decomposition at the full brain level based simply on aggregating k-Means
one-hot encoders. These one-hot encoders were generated in short windows using functional
signals. Salehi and colleagues also shared with us their consistent theoretical formalization
of brain parcellations [67]. That is, authors suggested brain parcellation was not fixed and
showed the existence of parcellations for different cognitive states, including the motor task,
the working memory task and the resting state task [67]. The main difference with our
approach was the generation of static parcellation per task using several minutes of fMRI
data per parcellation [Salehi et al., 2018]. Before these approaches, many researchers studied
the rich dynamic architecture of brain networks using the dynamic functional connectivity
[44, 43, 1, 4, 33, 50]. These researchers suggested the neuroscience community needed
new computational methods to unravel the repetitive spatial patterns over time and develop
new methods for simplified representations in the context of complex and high-dimensional
feature space of dynamic fMRI data [25]. These methods would facilitate the analysis of
the individual differences in internal cognitive states over short time scales [25].
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To evaluate the quality of the space-time decomposition of the cerebral cortex into
dynamic states of parcellations, we evaluated the compression quality of the real functional
signal both at the within-subject and the between-subjects levels. We found that the
within-subject compression scores outperformed the between-subjects compression scores.
For instance, we observed some state stability maps had near perfect R-squared scores as
a compression measure (with an average R-squared score of 0.63), while between-subject
state stability maps had 0.39 average R-squared score (See Fig. 2). In the literature, the
compression quality scores were lower than our scores in terms of R-squares scores (with an
average R-squared measure of 0.55 in the case of 512 states), however, a direct comparison
is still required between our approach and state of the art approaches [?]. We also observed
that most voxels throughout the brain had high R-squared scores at the within-subject level
as shown in the R-squared map in Fig. 3 (Row=1, column=1). Only subcortical regions had
lower compression quality with lower R-squared scores. In the literature, for instance the
subcortical regions had challenging issues in fMRI scans, including the physiological noise
and the spatial resolution [48]. Therefore, we observed higher information loss (or lower R-
squared scores with around 0.5 scores, See Fig. 3) in the subcortical regions voxels compared
to the rest of the cerebral cortex (most voxels had > 0.7 R-squared measures). Overall,
promising findings showed that our approach generated a good representation of fMRI data
with high fidelity to the original signal and a lower loss of information in the reduced version.

We also conducted a reproducibility analysis to evaluate the goodness of the gener-
ated dynamic states of parcellations. We found different levels of reproducibility scores
going from high scores to low scores. We found that the average reproducibility scores at
the within-subject level (average score=0.62, See Fig. 4). In our previous work, we reported
higher average reproducibility scores associated with three seed subnetworks in a resting
state condition, including the PM-VIS, the dACC and the PCC with respectively 0.97, 0.82
and 0.9 average reproducibility scores. The differences in the average reproducibility scores
could be explained by the differences in reproducibility for different regions of the brain. We
distinguished three groups of state stability maps associated with different regions according
to their reproducibility scores. The visual maps showed different subnetworks could be
included in different groups, including the PCC regions, the visual regions and the salience
network regions. The existence of different levels of reproducibility could be associated
with the differences in the cognitive states of a given subject during the movie watching
and between the two replicated sets. Also, some dynamic states of parcellations had very
poor reproducibility with noisy state stability maps (scores > 0.5). In the future, we are
planning to provide further analysis to identify noisy patterns among other neurobiological

119



meaningful state stability maps. Still, these findings were consistent with ICA- based
components which in part were associated with noise patterns in fMRI data [10, 30, 84].
Another important finding in this work was that our within-subject reproducibility scores
distribution had a high overlap with the between-subjects reproducibility scores (only 25%
of within-subject reproducibility scores exceeded the between-subject reproducibility). In
a previous work, we showed there were two disjoint distributions between within- and
between-subject reproducibility scores in the case of three subnetworks and resting state
data [18]. Even though the theoretical basis was the same, the differences in reproducibility
distributions at the within- and the between-subjects levels differed in the cases of the
resting state and the movie data. These findings could be associated with the movie
watching fMRI. That is, the cognitive engagement of subnetworks across subjects was more
consistent due to the same stimuli in the movie which was not the case in the random
fluctuations of resting state data. Future interesting research directions could be to study
the differences in the spatial changes in dynamic states of parcellations across time and in
the context of movie data to quantify the alignment of spatial maps over time.

In the future, we are planning to compare the compression quality of our approach
with other existing approaches both in the cases of static and soft parcellations, including
the ICA and DIFUMO. This would allow us to position our contribution with respect to
other approaches to identify when it performed better and its limitations. We also aim to
generalize our approach to different datasets; i.e. hcptrt dataset, and generate performance
measures; i.e. the reproducibility and the compression quality. That would allow us to see
whether we still have the same performance results on other datasets in different contexts;
i.e., task state, resting state. Also, an interesting research area to investigate is to study
differences in state stability maps between healthy controls and psychiatric disorders. This
helps to isolate the specific changes in brain dynamics reflected on brain parcels over time
in both cases.

Neuroimaging research datasets were dramatically increasing in size during the past
five years. Additionally, there was an emergent trend of the application of deep learning
models in the neuroscience field. However, there were few guidelines in the literature
on how to handle the high dimensionality of neuroimaging data. In the field of brain
parcellation, few approaches suggested scalable algorithms to parcellate the brain. Thus,
the replication of brain parcellations on different datasets has been challenging for the past
two decades. For instance, Nilearn platforme hosted several brain atlases, including BASC
[15], Yeo’s atlas [82] to facilitate their use by other researchers. Most of these atlases were
generated at the group level. Altogether, this motivated neuroscientist researchers to have
practical guidelines to replicate parcellations at the subject level regardless of the dataset
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size. Therefore, we are planning to provide a technical report that describes our algorithm
implementation added to memory and time profiling to show its scalability and ease to run
on custom datasets.

5. Conclusion
In this work we used a simple clustering technique such as k-Means to identify highly

reproducible functional parcellation at the full brain level, even when applied on short fMRI
time series (a few minutes). We extended the DYPAC method to identify the main states
of these dynamic parcellations, and demonstrated that their spatial distributions had high
compression quality between the reduced and the raw signal. We also found different groups
of dynamic states grouped by their reproducibility. The formalization of the parcellation
problem as a dynamic problem would have further implications on the neuroimaging analyses,
including many graph-based neuroimaging analyses. This opens new research directions to
explore after replacing the static parcellations by the dynamic parcellations. Also, these
parcellations would help studying the rich dynamic interactions between functional brain
networks.
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Chapter 5

Discussion

5.1. Contributions
In this thesis, I developed a new method that accurately estimates individual dynamic

brain parcellation and that may help the neuroimaging community better understand the
rich dynamic interactions between brain subnetworks. The cornerstone of our method is the
existence of highly similar seed-based parcellations extracted (or one-hot encoders) from
short time windows, sometimes separated by several days. This was the key to generating
stable dynamic brain parcellations which challenged the notion of a fixed, static brain
parcellation estimated from a very long time series. We used a simple cluster aggregation
method that generated seed based parcels over multiple time windows. Our results
showed that dynamic states of parcellations were subject-specific, highly reproducible, and
reliable enough to successfully differentiate subjects in a fingerprinting experiment with
high accuracy. We investigated the sensitivity of the DYPAC1.0 algorithm to different
parameters and we found its robustness to these parameters. We then extend our original
method to work on the full brain, the DYPAC2.0 algorithm, and found that the resulting
parcels allowed to compress individual fMRI time series in very low dimension (from over
100k voxels down to 150 parcels), with high fidelity.

Recent approaches in the parcellation field questioned the idea of a fixed functional
organization of the human brain. The idea of space-time decomposition itself was applied
for more than two decades using ICA. Still, our approach was, to our knowledge, the first
attempt to shed light on this individual dynamic brain organization using a simpler, hard
clustering technique. Our work also considered a fine temporal scale (in the order of a
few minutes) and a voxel level of resolution (i.e. without reducing the dimensionality in a
fine-grain parcellation), which is not common in cluster-based analysis typically applied on
“super-voxels”. Also, we were the first to provide dynamic parcellations at the individual
level and to compare their state stability maps within- and between-subjects, extending the



individual static parcellation work of Gordon et al. (2017). In the first two chapters of this
work, we run our analysis on long scanning acquisitions from ten subjects of the resting
state data of the Midnight Scan club dataset. We found for each subject a rich repertoire
of dynamic states (up to three states) per subject, especially in the case of heteromodal
cortices, i.e. the PCC and the dACC subnetworks. The identified regions in the state
stability maps were reported by previous studies as biologically valid neural cognitive states
(e.g., high stability was observed around the motor and premotor regions of the dACC
maps was explained in the literature by the existence of a functional coupling between the
AI and the dACC that facilitates a rapid access to the motor system [3]. Also, we run
reproducibility analysis and the performance measures were consistent with the previous
results. I published this work in Network Neuroscience journal, that represented a key proof
of concept for a dynamic parcellation approach.

Overall, our visual and quantitative analysis showed promising results with potential
areas of improvements. First, DYPAC1.0 generated dynamic parcels for specific seed
subnetworks without scaling at the full brain level or Gigabytes of memory were required
to iterate over several seeds throughout the brain. Second, there were no guidelines on
how to evaluate the homogeneity of the dynamic parcels. The cluster aggregation method
used as a basis of DYPAC1.0 was simple and could be modified to scale to the high dimen-
sionality of the full brain level. This motivated us to extend the seed-based parcellation
method DYPAC1.0 to DYPAC2.0 as a full brain parcellation method, keeping the idea
of an ensemble clustering method building on top of a fast and scalable algorithm (K-means).

Due to the high increasing demand of the neuroimaging data (to Terabytes), we expect
DYPAC2.0 tool to be highly in demand for dimensionality reduction by the neuroimaging
community as an open-source and scalable tool. We run all our analysis on the cneuromod
movie10 dataset, providing several hours of high-resolution (in time and space) functional
MRI acquisitions. Up to date, we were using the movie data for six subjects but we are
planning to extend this to task data from the same subjects. To evaluate DYPAC2.0, we
evaluated the compression quality of the dynamic states at the voxel level as a homogeneity
measure. Our results showed that the state stability maps generated by DYPAC2.0 led
to better compression within-subject than between-subject. This validated again dynamic
parcels are subject specific. Also, we replicated the reproducibility analysis of the first
paper. Consistently to the results of DYPAC1.0 and resting state data, we found the
within-subject reproducibility scores were higher than the between-subject’s reproducibility
scores. Still, it is important to mention that the nature of the used functional signal
impacted the reproducibility scores. That is, we found a higher overlap between the within-
and the between-subjects distributions in the case of the movie data compared to the
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resting state data. This opened new research directions for investigation, in the future to
understand the differences in dynamic states underlying the differences in cognitive states
in resting state and movie signals. This may also be due to differences in acquisition
parameters between the cneuromod and midnight brain scan datasets, and our choices of
preprocessing strategies. These avenues need to be investigated further.

In both rest and movie data, the rich repertoire of dynamic states characterized the
heterogeneity of cognitive states in functional data. Investigating the association of these
dynamic states to their cognitive states could help a better understanding of how the
human brain reconfigures its subnetworks both in the cases of movie and rest signals. It
is also interesting to compare whether the same movie stimuli triggers the same dynamic
states between subjects. In our first paper, we ran a temporal analysis that confirmed the
non existence of temporal consistency in the dynamic states at rest. In the context of task
stimuli, we hypothesize the existence of temporal synchrony of dynamic states over time,
at the within-subject and the between-subject levels. It is therefore important to run a
temporal analysis in the case of the movie and task data to validate our hypothesis.

Another important future work would be to characterize the dynamic states through-
out the brain by differentiating which states were associated with neural cognitive processes
and which states were just noisy patterns, including the physiological noise. We are also
planning to investigate to which extent do the DYPAC2.0 states differ from ICA and
DIFUMO components (another scalable soft parcellation method proposed recently) ?
and whether DYPAC2.0 dynamic states offered important gains in reproducibility and
compression scores compared to DIFUMO and ICA.

Most importantly, we intend to show the usefulness of the generated state stability
maps in neuroimaging research as part of the cneuromod projects. For instance, we want
to know whether the dynamic states could be used to define the nodes of the artificial
neural networks and help to improve the training and the prediction of cognitive tasks using
artificial neural networks based on recordings of the activity of biological neural networks.
Another application of the dynamic states would be to generate connectome-based models
to accurately decode cognitive states. In this context, group dynamic states could be
identified as spatial and overlapping patterns across subjects. These states could be used,
for example, as subtypes to characterize groups of healthy subjects or groups of people with
neurological disorders.

In the litterature, different brain parcellation schemes was developed to identify the
nodes of the structural connectivity networks. The objective was to describe the Alzheimer
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disease related deterioration of structural connectivity networks.The results showed that
the topological examination of structural networks with different parcellation schemes
can provide important complementary Alzheimer disease related information and thus
contribute to a more accurate and earlier diagnosis [78]. In the context of the dynamic
states of parcellations, we found better performance measures in comparison with the
static brain parcellations and we hypothesize that the use of our parcels would improve the
identification of the disease.

Another interesting extension of our work is to look at the generalizability of the
compression quality of dynamic states with new datasets including the cneuromod movies
(with about 30 hours of data per subject for six subjects) and the cneuromod HCP
test-retest dataset (with 7 tasks including working memory, visual task, etc.). Also, it would
be interesting to evaluate to which extent our DYPAC states improves quality metrics
compared to group atlases, widely used in the literature.

5.2. Conclusion
The objective of this thesis was the generation of a new scalable tool to parcellate the

brain into dynamic states of parcellations DYPAC. We proceeded on stepwise contributions.
First, we presented DYPAC1.0, a seed-based parcellation method at the individual level, as
a proof of concept to show the dynamic parcellations represent an interesting tool to better
reduce the dimensionality of the brain compared to static parcelations. Our visual and
quantitative analysis showed promising results which encouraged us to extend this method
to the full brain. Second, we carefully investigated the impact of hyper-parameters on the
outputs of DYPAC1.0. Third, we proposed a scalable open-source dynamic parcellation at
the full brain and at the individual level called DYPAC2.0. We reported promising results
in terms of the reproducibility and the compression quality of functional signals. We expect
this tool to be widely used for the dimensionality reduction of big functional data in the
future and it opens new potential research directions in neuroimaging research.
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Supplementary Materials

.1. Supplement 1: The Dice score coeifficient

Dice score = 2 × ∑
x1==1 Part1(x1) ∑

x2==1 Part2(x2)∑
x1 Part1(x1) + ∑

x2 Part2(x2) (.1.1)

We used the Dice score coeifficient [32] to quantify the similarity between two seed-
based parcellations. The Dice score formula is illustrated in Eq. .1.1. Part1 and Part2
represent the two seed-based parcellations. x1 and x2 variables represent the voxels in,
respectively Part1 and Part2. This score ranges between 0 and 1. The higher this score is,
the more similar the two parcellations are.

.2. Supplement 2: The Adjusted Rand Index

rand index = a + b

a + b + c + d
(.2.1)

adjusted rand index = (rand index − expected rand index)
(max(rand index) − expected rand index) (.2.2)

We used the Adjusted Rand Index (ARI) as a temporal similarity measure between
two seed-based parcellations by considering all pairs of voxels and counting pairs that are
assigned or not in a state associated with a given time point in two different seed-based
parcellations. a and b represent the voxels falling in the state, at the same time points, for
two different seed-based parcellations. c and d represent the voxels not in the state, at the
same time points, for two different seed-based parcellations (See Eq. .2.1).

The adjusted Rand index is thus ensured to have a value close to 0.0 for random labeling
independently of the number of clusters and samples and exactly 1.0 when the seed-based
parcellations are identical (up to a permutation) (See Eq. .2.2).



.3. Supplement 3: The Hungarian algorithm

Algorithm 1 Hungarian algorithm
1: procedure Match(maps1, maps2)
2: Init states1 . Number of state stability maps in set1
3: Init states2 . Number of state stability maps in set2
4: for s1 in states1 do
5: for s2 in states2 do
6: dist = pearsonr(maps1(s1),maps2(s2))
7: costs(s1, s2) = (1 - dist)
8: distances(s1, s2) = dist

row_id, col_id = linear_sum_assignment(costs)
9: for s in max(states1, states2) do
10: distances_matched_maps(s) = distances(row_id(s), col_id(s))
11: matched_state_maps(s) = (row_id(s), col_id(s))
12: Return distances_matched_maps
13: Return matched_state_maps

Prior to quantifying the spatial reproducibility, we used the Hungarian method algorithm
to match the state stability maps both at the within- and the between-subjects levels [51].
We used this algorithm because it solved for us the assignment problem of state stability
maps in polynomial time. The MATCH procedure illustrated the Hungarian algorithm in
Alg. 1. In lines [4..8], we iterated over all pairs of state stability maps in set 1 (represented
by maps1) and set 2 (represented by maps2). We used the Pearson correlation score
quantify the spatial similarity distance dist between a pair of maps (See line 6). The cost
associated with a pair of map was computed in line 7. Then, we used the linear sum
assignment function to match state stability maps.

The linear sum assignment problem is also known as minimum weight matching in
bipartite graphs. A problem instance is described by a matrix C, where each costs(s1,s2)
is the cost of matching the state stability map s1 of the first set (considered to be the
"workers") and the state stability map s2 of the second set (considered to be the "jobs").
The goal was to find a complete assignment of the workers to jobs of minimal cost s.t. each
row is assignment to at most one column col_id, and each column to at most one row
row_id. Formally, let X be a boolean matrix where X[s1,s2] = 1. if row s1 is assigned to
column s2. Then the optimal assignment has cost as computed in Eq. .3.1.

cost = min(
∑
s1

s2
∑
s2

costs(s1), s2Xs1, s2) (.3.1)
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