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Résumé 
 

Les espèces végétales envahissantes sont l'un des principaux facteurs de changement de la 

biodiversité dans les écosystèmes terrestres. Une détection précise et précoce des espèces exotiques 

est donc cruciale pour surveiller les invasions en cours et pour prévenir leur propagation. 

Présentement, les méthodes de surveillance des invasions biologiques permettent de suivre la 

propagation des envahisseurs à travers les aires de répartition géographique, mais une attention 

moindre a été accordée à la surveillance des espèces envahissantes à travers le temps.  Les plates-

formes de télédétection, capables de fournir des informations détaillées sur les variations des traits 

foliaires dans le temps et l'espace, sont particulièrement bien placées pour surveiller les plantes 

envahissantes en temps réel. Les changements temporels des traits fonctionnels sont exprimés dans 

la signature spectrale des espèces par des caractéristiques d'absorption spécifiques de la lumière 

associés aux pigments photosynthétiques et aux constituants chimiques tous deux liés à la 

phénologie. Ainsi, les variations temporelles dans la réponse spectrale des plantes peuvent être 

utilisées afin de mieux identifier des espèces individuelles. 

L'un des envahisseurs les plus problématiques au Canada est le roseau commun, Phragmites 

australis (Cav.) Trin. ex Steudel sous-espèce australis, dont la propagation menace la biodiversité 

des écosystèmes de zones humides en Amérique du Nord. Déterminer la période de l'année où cet 

envahisseur se distingue d’avantage, du point de vue spectral et fonctionnel, des autres plantes de 

la communauté serait centrale dans une meilleure gestion du roseau commun. Pour ce faire, nous 

avons utilisé des traits fonctionnels et une série temporelle de données spectrales foliaires à haute 

résolution au cours d'une saison de croissance à Boucherville, Québec, Canada, afin de déterminer 

la séparabilité spectrale de l'envahisseur par rapport aux espèces co-occurrentes et comment cette 

dernière varie à travers le temps. Nos résultats ont révélé que la spectroscopie foliaire a permis de 

distinguer le phragmite des espèces co-occurrentes avec une précision de plus de 95% tout au long 

de la saison de croissance – un résultat prometteur pour le futur de la télédétection des espèces 

végétales envahissantes.  

Mots clés : spectroscopie foliaire, espèces végétales envahissantes, Phragmites, phénologie, zones 

humides. 
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Abstract 
 

Invasive plant species are one of the main drivers of biodiversity change in terrestrial 

ecosystems. Accurate detection of exotic species is critical to monitor on-going invasions and early 

detection of incipient invasions is necessary to prevent further spread. At present, surveillance 

methods of biological invasions allow to track the spread of invaders across geographic ranges, but 

less attention has been given to invasive species monitoring across time. Remote sensing platforms, 

capable of providing detailed information on foliar trait variations across time and space, are 

uniquely positioned for monitoring invasive plants in real time. Temporal changes in foliar traits 

are expressed in a species spectral profile through specific absorption features related to variation 

in photosynthetic pigments and chemical constituents driven by phenology. Thus, variations in a 

plant’s spectral response can be used to improve the identification of individual species.  

 

One of Canada’s most problematic invaders is the common reed, Phragmites australis 

(Cav.) Trin. ex Steudel subspecies australis, whose spread threatens biodiversity in wetland 

ecosystems in North America. Determining the time of year when the invader is spectrally and 

functionally more distinct from other plants in the community would be central to better 

management of common reed. To do so, we collected a time-series of foliar traits and high-

resolution leaf spectral data over the course of a growing season at Boucherville, Quebec, Canada, 

to determine the spectral separability of the invader from co-occurring species and how its detection 

varies over time. Our results revealed that leaf-level spectroscopy distinguished Phragmites and 

co-occurring species with > 95% accuracy throughout the growing season – a promising result for 

the future remote detection of invasive plant species. 

 

Keywords: leaf spectroscopy, invasive plant species, Phragmites, phenology, wetlands 
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Chapter 1 

Introduction 
Invasive plant species are one of the major drivers of biodiversity change in terrestrial 

ecosystems (Sala, 2000). Invasive species are those introduced to a novel environment with 

negative ecological, economic or social impacts (SCBD, 2001). Introduced species that do not 

spread substantially become naturalized but not invasive (Richardson & Pyšek, 2012). Therefore, 

invasive species are categorized as such in relation to their ability to sustain self-replacing 

populations over several life cycles, produce reproductive offspring, and their potential to spread 

considerably over long distances (Richardson & Pyšek, 2012). Biological invasions affect 

environmental systems at multiple scales ranging from evolutionary changes to organisms to 

altering whole ecosystems structure and function, and generate substantial costs to society 

(Ehrenfeld, 2010; Pimentel et al., 2005). 

Accurate and early detection of invasive species is critical to implement effective control 

actions that prevent the spread or facilitate the eradication of invaders (Larson et al., 2020; 

Rupasinghe & Chow-Fraser, 2021). Field surveys and distribution maps are useful to identify 

existing biological invasions and monitor the distribution of invaders. However, to monitor the 

progression of invasions and predict where they are likely to occur in order to prevent them, 

comprehensive spatial and temporal information on plant functional traits is needed (Asner et al., 

2015). At present, remote sensing platforms are uniquely capable of providing detailed spatial and 

temporal information on functional trait variations to monitor plant invasions in real-time and 

understand how plant communities and ecosystems are changing through time.  

Functional leaf traits influence how light is absorbed, reflected or transmitted in different 

regions of the electromagnetic spectrum, affecting optical properties of leaves that can be detected 

using spectroscopy (Asner et al., 2014a). Thus, the interaction of foliage with solar radiation can 

be quantified from foliar spectra as patterns of leaf reflectance and transmittance express 

information that can be related to photosynthetic pigment concentrations, leaf anatomy, 

morphology and chemistry (Asner et al., 2014a; Cavender-Bares et al., 2017). As such, leaf 

reflectance spectra are a valuable tool for species discrimination and are increasingly being used 
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for invasive species detection (Bradley, 2014). Regardless of all plants being spectrally similar 

given that they are composed of the same spectrally active components, more functionally different 

and more distantly related species are more spectrally dissimilar (Price, 1994; Schweiger et al., 

2018).  

There are three main regions in the optical spectrum: the visible range (VIS; 400-700 nm), 

the near-infrared (NIR; 700-1100 nm) and the short-wave infrared (SWIR; 1100 - 2400) (Fig. 1.1). 

In the visible region, pigments absorb most of the incident light in the red and blue wavelengths, 

while reflecting most of the green (Ustin et al., 2009). Pigment concentrations affect the amount of 

light absorbed and structural changes related to the spatial distribution and packaging of 

chloroplasts affect the probability of light absorption within leaf tissues (Jacquemoud & Ustin, 

2019). Absorption of non-pigment constituents such as water, nitrogen (N), cellulose and lignin 

have measurable absorption features in the NIR and SWIR spectral regions in wavelengths found 

beyond 700 nm (Kokaly et al., 2009). Absorption features of water are found throughout the 

electromagnetic spectrum, near 980, 1190, 1450, 1490 and 1920 nm (Kokaly et al., 2009; Yang et 

al., 2016) and those for nitrogen, cellulose and lignin are found near 1700, 2100 and 2300 nm 

(Curran, 1989; Kokaly et al., 2009). Nitrogen can be quantified from spectral measurements despite 

uncertainty on whether its detection is based on effects of N-containing compounds like proteins 

and chlorophylls (Jacquemoud et al., 1996), or the indirect effect of related leaf traits that influence 

overall patterns of scattering and reflectance such as leaf mass per area (LMA) and equivalent 

water content (EWT) (Curran, 1989; Jacquemoud et al., 1996; Kokaly et al., 2009). Cellulose and 

lignin, two important constituents of plant cell walls, contain common chemical bonds (C-H, N-H, 

C-O, O-H, etc.) in varying proportions that induce broad and overlapping absorption features in

their spectra (Jacquemoud et al., 1996; Kokaly et al., 2009).
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Figure 1.1. Electromagnetic reflectance spectrum and major absorption features (based on 
Cavender-Bares et al. (2017)) 
 

Varying concentrations of pigments and non-pigment constituents in plant leaves, changes 

the strength of the related absorption features directly through their individual absorption properties 

or indirectly through their relationship with leaf structural and biochemical attributes (Kokaly et 

al., 2009; Ollinger, 2011). For example, in the NIR region, plants are highly reflective because the 

effect of absorbers is weak or absent (Ollinger, 2011). Nevertheless, reflectance in this region is 

correlated with nitrogen and water content but is mostly affected by structural and anatomical 

parameters like mesophyll structure and leaf thickness that affect light scattering and the length of 

the path that light can travel inside a leaf (Jacquemoud & Ustin, 2019; Ollinger et al., 2008). On 

the other hand, reflectance in the SWIR region is determined mostly by the absorption of water and 

macromolecules like protein, cellulose and lignin as a result of vibrations and stretches of their 

chemical bonds (Curran, 1989; Kokaly et al., 2009). The relationship between spectral features and 

foliar traits varies considerably across the spectrum and the determination of leaf biochemical and 

physical properties from leaf spectra requires the use of particular bands and wavelength ranges 

(and corresponding absorption features) as different components of the spectrum are sensitive to 

different chemical constituents or leaf traits (Curran, 1989; Fourty et al., 1996; Kokaly et al., 2009). 

Important wavelengths for determination of traits do not always correspond to specific absorption 

features but instead could correlate with absorption features of other traits due to associations 
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among different traits or overlap in absorption features (Kokaly et al., 2009; Wang et al., 2020) 

(Table 1.1). 

Detecting invasive species using remote sensing can be most successful when differences are 

maximized between the invader and the background community (Brym et al., 2011). This can 

happen for instance when the invader is the dominant growth form in a landscape and could be 

easily observed in aerial imagery (Andrew & Ustin, 2008); has a unique chemistry or 

biophysiology and could be distinguished using high spectral resolution (Asner & Vitousek, 2005) 

or has a unique phenology and could be better distinguished from native plants better during a 

specific time of the year (Bolch et al., 2020; Boyte et al., 2015). Spectrally detectable variations in 

chemistry, function and structure between invasive and native species present an opportunity to 

detect non-natives given that they often posses traits that are novel to the colonized environment 

and therefore in certain opportunities become more easily distinguished from non-invasive species 

(Bradley, 2014; Brym et al., 2011). Consistent dissimilarity in functional traits of invasive species 

relative to the native communities they colonize suggests that invasive species take advantage of 

an empty ecological niche in the novel environment (Emery, 2007).  

Among mechanisms that promote invasiveness, extended leaf phenology (i.e. early leaf 

emergence or delayed senescence) has been proposed as a key feature driving events of invasion 

in northern-latitude, deciduous ecosystems (Fridley, 2012; Rejmánek, 2013; Smith, 2013). 

Phenological differences or mismatches between natives and invasive species are useful to 

discriminate invaders but also has been suggested that they can influence the invasion success of 

exotic species in native communities (Wolkovich & Cleland, 2011). As important traits of foliage 

vary throughout the course of a growing season, phenology (i.e. the timing of periodic events such 

as flowering and leaf emergence/senescence) should be considered as important as physiological 

or chemical traits in invaded systems as a driver of ecosystem change or as a driver of invasion 

itself (Ehrenfeld, 2010; Fridley, 2012; Liao et al., 2008; Willis et al., 2010).  
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Table 1.1. Spectral regions and bands of importance for determination of leaf biochemical and 
physical properties from spectra (from Wang et al., (2020)). 

 

 
 

Early leaf emergence or delayed senescence response is mediated by functional traits linked 

to phenology and resource-acquisition strategies (Papeš et al., 2013). Photosynthetic pigment 

concentrations, water content, specific leaf area (SLA) and nutrient concentrations are among a set 

of important traits that accompany morphological and chemical changes that occur as leaves 

transition from emergence to maturation and senescence during a growing season (Chavana-Bryant 

et al., 2017; Yang et al., 2016). Trait variations that are tied to phenology are expressed more 

strongly in spectral features in the VIS and NIR regions of the spectrum that have been shown to 

change in amplitude and shape throughout a growing season (Yang et al., 2016). In particular, the 

green peak, red-edge, NIR and water absorption features are highly age-sensitive spectral domains 

(Chavana-Bryant et al., 2017; Papeš et al., 2013).  

This mechanism may constitute an advantage for invasive species by enhancement of 

resource competition via nutrient pre-emption and extended carbon assimilation (Liao et al., 2008; 

Wang et al., 2013). Alternatively, it has been proposed that invasive species tend to be more 

responsive than natives to warming trends that have lengthened the duration of spring or autumn 

growth (Willis et al., 2010), suggesting that rather than an advantageous intrinsic competition 

Wavelength 
Range (nm)

Important bands (and absorption features) 
for spectroscopic determination (nm)

N (%) 400 - 2400
460 (chl b), 530, 900, 1270, 1730 (cellulose, protein), 1980 (protein), 2060 (protein), 2170, 2240 (protein), 

2300 (protein)

C (%) 1200 - 2400 775 (red-edge) 1130, 1200 (water, cellulose, starch, lignin), 1210, 1530 (starch), 1540 (starch, cellulose), 
1730 (cellulose, protein)

Chlorophyll ab (mg g-1) 400 - 760 690 (red edge), 740 (red edge), 1660 (phenolics), 1710, 1730 (cellulose, protein)

Carotenoids (mg g-1) 400 - 760 720 (red edge), 1130, 1200 (water, cellulose, starch, lignin), 1315, 2260 (lignin), 2300 (protein)

Chlorophyll ab (mg m-2) 400 - 760 740 (red edge), 1130, 1200 (water, cellulose, starch, lignin), 1510 (protein, nitrogen), 1980 (protein), 2280 
(starch, cellulose) 

Carotenoids (mg m-2) 400 - 760 720 (red edge), 1130, 1200 (water, cellulose, starch, lignin), 1270

LMA (g m2) 800 - 2400 940, 1150, 1180, 1190, 1200 (water, cellulose, starch, lignin), 1210, 1338, 1730 (cellulose, protein), 2100 
(starch, cellulose), 2260, 2300 (protein, nitrogen)

EWT (cm) 800 - 2400 740 (red edge), 990 (starch), 1110, 1190 (water), 1200 (water, cellulose, starch, lignin), 1270

Cellulose (%) 1200 - 2400
1130, 1210, 1730 (cellulose, protein), 1980 (protein), 2040, 2060 (protein), 2240 (protein), 2250 (starch), 

2260 (lignin), 2300 (protein)
Lignin (%) 1200 - 2400 720, 250, 770, 1270, 1670, 1980 (protein), 2210

Water 800 - 2400 980, 1130, 1140, 1160, 1330, 1510 (protein, nitrogen), 1520, 1530 (starch), 1540 (starch, cellulose)
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ability, invader performance is higher in avoiding environmental filtering (Asner et al., 2006; 

Fagúndez & Lema, 2019). In either case, prolonged greenness in plants is underpinned by a range 

of biochemical and physiological characteristics that control processes like photosynthesis and 

nutrient and water cycling that determine how an ecosystem functions(Keddy, 1992; Mcgill et al., 

2006). Physiological investments in photosynthesis, light harvesting, and water and nutrient 

acquisition are tied to a plant’s structural investments and are therefore resource-constrained at the 

ecosystem level (Wright et al., 2004). Given that environments with high and low abundance of 

resources are prone to invasion, albeit the former being more susceptible (Davis et al., 2000; Funk, 

2013), management of invasive species and prevention of their spread is critical to prevent 

deleterious effects on ecosystem functioning and loss of biodiversity on all natural systems. 

Developing accurate, temporally and spatially explicit records of invasion is a high priority 

in the field of invasion biology (Mack et al., 2007). Although traditional field sampling methods 

have thus far provided detailed information on plant functional traits and species distribution, their 

implementation requires a significant investment of time and human resources (Drake et al., 2003). 

In addition, ground-based surveys cannot comprehensively cover large areas and therefore have 

limited capacity to translate ecological understanding to broad geographical scales (Wang & 

Gamon, 2019). On the other hand, spectral information of moderate and high spectral resolution 

can be acquired relatively rapidly and frequently over large ranges, which is of central importance 

for effective management approaches (Asner et al., 2015; Mack et al., 2007; Rupasinghe & Chow-

Fraser, 2021).  

As conservation and control efforts regarding biological invasions represent a considerable 

cost to society, the use of drones, aircraft and satellites that capture spectral differences in plant 

species at the ecosystem level, allow the monitoring of biological invasions at large geographical 

and temporal scales in a repeatable manner at a reduced cost and time investments compared to 

traditional monitoring approaches. This has the potential to transform ecosystem monitoring 

through time and invasive species monitoring to better direct monetary and management efforts of 

conservation strategies mitigating the economic and ecological impact of invasive plant species. 
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Phragmites australis: a highly invasive plant species  
 The common reed (Phragmites australis) is a cosmopolitan species of grass with a wide 

geographic distribution (Chambers et al., 1999). It is present in every continent except Antarctica 

and has a complex history of introductions that make it a model species for studying 

biogeographical aspects of plant invasions (Meyerson et al., 2009; Pyšek et al., 2019). To this date, 

it is one of the most studied plant species due to perceived threats to ecosystem services upon 

establishment. Where it is introduced, it quickly becomes problematic as its spread results in loss 

of habitat, reduction in species richness and biodiversity, and alterations to biogeochemical cycles 

(Chambers et al., 1999). 

 Phragmites australis is a species complex that is made up of dozens of distinct genetic 

lineages, of which at least four are present in North America (Lambertini et al., 2008). Fossil 

records show that Phragmites has been present in tidal and non-tidal ecosystems for thousands of 

years, and for a long time it was considered to be a minor component of wetland plant communities. 

However, over the last 200 years, the relative abundance and distribution of Phragmites throughout 

the United States and Canada have increased dramatically (Chambers et al., 1999). Its recent 

invasive nature has been attributed to a cryptic invasion of a non-native Eurasian lineage introduced 

sometime in the 1800s, Phragmites australis subsp. australis (or haplotype M in the literature 

(Saltonstall, 2002)). Today, it is widespread in all of mainland United States and Southern Canada 

and is considered as an indicator of wetland disturbance (Saltonstall, 2002). 

The expansion of Phragmites has been explained as a result of eutrophication, disturbance 

(human and non-human) and increased genetic variation (Chambers et al., 1999; Guo et al., 2013). 

The introduced lineage is an aggressive competitor that outperforms native lineages of Phragmites 

in mixed populations (Mozdzer et al., 2013) and rapidly excludes co-occurring plant species upon 

invading a marsh, transforming diverse wetlands into low-diversity common reed stands 

(Chambers et al., 1999; Meyerson et al., 2000). As a result, invaded ecosystems experience 

reduction in biodiversity and in habitat for certain types of wetland fauna (Chambers et al., 1999). 

Some characteristics of Phragmites’ ecology that make it a successful invader are its dense and 

rapid growth, high biomass production and retention (alive and dead), and the use of vegetative 

and sexual reproduction (Albert et al., 2015; Meyerson et al., 2000; Pyšek et al., 2019).  
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 Phragmites uses seeds for establishing populations over large distances and vegetative 

reproduction to expand established stands and populations locally (Albert et al., 2015). Seed 

germination occurs in wet (non-flooded) bare soils. Germination and subsequent seedling 

establishment require mean daily temperatures above 10ºC for a period of at least 120 days 

(Tougas-Tellier et al., 2015). Low water-level conditions during summer or areas with 

anthropogenic disturbance favor the establishment of new colonies (Hudon et al., 2005). These 

conditions will likely be amplified by the effect of climate change on altering flooding regimes in 

wetlands, especially in the St. Lawrence-Great Lakes hydrographic system as high evaporation 

levels during winter due to a lack of extended ice cover (Croley II et al., 2003) could cause a 

reduction in the water supply from the Great Lakes into the St. Lawrence River which will increase 

the extent of suitable germination grounds for Phragmites (Tougas-Tellier et al., 2015). 

Germination and settlement of other plant species within established Phragmites stands is inhibited 

on account of high accumulation of above and below ground biomass that reduces available light 

penetration, limits access to resources and prevents growth from other species (Meyerson et al., 

2000).  

 The nutrient-use and allocation strategies of Phragmites are a result of the set of functional 

traits it displays, and the functional traits of an exotic species in the context of a native community 

determine its potential to become a successful invader (Asner et al., 2006; Brym et al., 2011). With 

regard to Phragmites, previous studies have shown that it outperforms co-occurring species on 

account of having superior performance-related traits (such as specific leaf area (SLA), chlorophyll 

content and N content) (Meyerson et al., 2000; Mozdzer & Zieman, 2010). In addition, an extended 

growing season, grants a competitive advantage of enhanced resource acquisition to Phragmites 

over native species (Farnsworth & Meyerson, 2003; Mozdzer & Zieman, 2010; Park & Blossey, 

2008; Saltonstall & Stevenson, 2007). The mechanism of extended leaf phenology is common 

among invaders and is an important driver of ecosystem change, as the timing of periodic events 

(such as budburst or senescence) impacts how species interact with one another and their 

environment, and therefore play a major role in structuring plant communities (Smith, 2013).  

 Numerous invasive species colonizing northern latitude ecosystems tend to leaf out earlier 

or retain leaves longer relative to native plants (Fridley, 2012; McEwan et al., 2009; O’Connell & 

Savage, 2020). Extended leaf phenology is thought to grant invasive species an advantage over 
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natives by enhancing access to light and resources and increasing carbon gains over a growing 

season (Liao et al., 2008). Where the invasive Phragmites exists, shoot emergence occurs early 

over a growing season and its leaves remain green and persist longer relative to other species on 

account of delayed senescence in the fall and therefore enjoys longer growing seasons than co-

occurring species (Farnsworth & Meyerson, 2003; Mozdzer & Zieman, 2010; Park & Blossey, 

2008; Saltonstall & Stevenson, 2007). Owing to this unique strategy, variations in traits affected 

by phenology could make it functionally more distinct from the native community at the beginning 

or the end of the growing season due to prompt leaf emergence and maturation or a late start of 

senescing. 

Absorption features related to pigment concentrations and other chemical constituents that 

describe foliar traits and their variation over time can be expressed in light reflectance and 

transmittance patterns across hundreds of contiguous spectral bands within the visible, near 

infrared and shortwave infrared regions of the electromagnetic spectrum (Asner et al., 2014a; Yang 

et al., 2016). Thus, spectral signatures of vegetation beyond providing a unique make-up of a 

plant’s condition, can also be used to differentiate individual species (Asner et al., 2014b). At 

present, emerging approaches for surveying and monitoring the spread of invasive use remote 

sensing techniques that rely on spectral differences between native and invasive species for their 

accurate detection (Bradley, 2014), and a number of studies have found critical time windows that 

capture the maximum differentiation between the invaders and the background community due to 

differing phenology (Boyte et al., 2015; Bradley & Mustard, 2005) and climatic conditions (Asner 

et al., 2006), providing key opportunities to detect them. 
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Plant species detection using spectroscopy 
With remotely sensed data, there are trade-offs between spatial extent (size of the image), 

spatial resolution (pixel size), spectral resolution (number and range of visible and infra-red bands) 

and temporal resolution (frequency of data acquisition) that must be considered when choosing a 

particular approach of remote sensing platform (Bradley, 2014). As there is no sensor that can 

achieve high spatial, spectral and temporal coverage over a broad spatial extent, the choice of 

remote sensing approach will always be limited by trade-offs in these domains (Bradley, 2014).  

Species-level mapping with imaging spectroscopy often requires high spatial and spectral 

resolution (Asner et al., 2017). Remote sensing platforms of high spatial and spectral resolution 

achieve reasonable to high success in species-level identification in wetlands: PROBE-1 80% 

accuracy to detect Phragmites and Typha (Lopez et al., 2004); HyMap 85% accuracy in identifying 

55 different species (Zhang & Xie, 2013); AVIRIS 95% accuracy to detect leafy spurge (Williams 

& Hunt, 2004). As well, moderate spectral and high spatial resolution sensors achieve high 

accuracy at mapping invaders: WorldView > 90% accuracy in Phragmites detection (Rupasinghe 

& Chow-Fraser, 2021). The downside of these platforms is that their relative high cost makes them 

unsuitable for frequent monitoring and routine mapping which is necessary for invasive species 

mapping in wetlands due to frequently changing environmental conditions brought about by the 

dynamic nature of these ecosystems that influence species detection (Andrew & Ustin, 2008; 

Pengra et al., 2007).  

Freely available and frequently acquired satellite imagery with high spectral resolution 

provide a means to achieve constant monitoring of extensive land coverage to produce accurate 

distribution maps of invaders (Huang & Asner, 2009; Zhang & Xie, 2013). Phragmites has been 

mapped with accuracy of over 80% using hyperspectral (Pengra et al., 2007) and multispectral data 

(Rupasinghe & Chow-Fraser, 2021; Tougas-Tellier et al., 2015). Rupasinghe & Chow-Fraser 

(2019) used a time series of freely available multispectral imagery with moderate spatial resolution 

and achieved accuracies as high as 89% to map Phragmites with images acquired during summer 

and fall seasons. They identified the best phenological state to differentiate Phragmites from co-

occurring species to occur during the months of July to September. As a result of prolonged 

greenness of the leaves, high concentrations of chlorophylls and high water content, Phragmites’ 

reflectance signal is most unique during this period of time when compared with co-occurring 
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vegetation in two wetland ecosystems in southern Ontario, Canada (Rupasinghe & Chow-Fraser, 

2019). The study also revealed that reflectance of bands in the green, NIR and SWIR of the 

spectrum contributed most to the unique signal that resulted in higher classification accuracy with 

respect to co-occurring species, showing that images acquired in a particular phenological state can 

increase accuracy in classification of a target species (Rupasinghe & Chow-Fraser, 2019).  

Nonetheless, considering the patch size of the invader relative to sensor resolution, 

platforms with moderate spatial resolution (< 10 m) prevent the detection of sparsely distributed 

patches, low density patches and small patches of Phragmites (< 2 m2) (Lopez et al., 2004; Pengra 

et al., 2007; Rupasinghe & Chow-Fraser, 2019, 2021; Tougas-Tellier et al., 2015). Detection of 

small patches and incipient populations at early stages of invasion is critical for successful invasion 

control given that management and eradication of large stands of Phragmites is considerably 

difficult as mechanical and chemical treatment are most effective when populations are small and 

sparsely distributed (Larson et al., 2020). In fact, in many cases, mechanical control cannot be 

implemented when the invaded area is too large (Gilbert et al., 2014; Rupasinghe & Chow-Fraser, 

2021). In addition, multispectral data of moderate spectral resolution could make the precise 

identification of unique spectral and absorption features difficult as multispectral devices collect 

discontinuous information of a few absorption bands (Garg, 2020), whereas hyperspectral imagers 

acquire information in hundreds of contiguous spectral bands throughout the electromagnetic 

spectrum (400-2500 nm) in which there are numerous absorption features and information that 

could be meaningful in regards to traits that have not been measured or are so far unknown to be 

important (Cavender-Bares et al., 2016; Goetz, 2009).  

With the acquisition of contiguous spectral bands, a reflectance spectrum can be derived 

for each pixel in a spectral image, which makes possible to create atmospheric correction factors 

from the data themselves and for each pixel as well (as atmospheric transmission changes across 

the image as a result of elevation and water vapour differences) (Goetz, 2009). This capability is 

not available with multispectral imagers and as a consequence, data acquisition is restricted to 

exclusive atmospheric windows. Moreover, contiguous sampling of spectral bands allows the use 

of least square techniques for statistical analyses and the use of correlation techniques to compare 

pixel spectra with spectral data bases improving the signal-to-noise ratio of the data by the square 
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root of the number of bands used in the analysis in contrast to comparisons of position of absorption 

bands with multispectral data (Asner & Martin, 2008; Clark et al., 2003; Goetz, 2009).  

When canopy-level data is unavailable, leaf-level hyperspectral data can be scaled up to the 

canopy level with the use of radiative transfer models (RTMs) to extract biophysical parameters of 

vegetation from spectra (Féret & Asner, 2011; Jacquemoud et al., 1995). A radiative transfer model 

is a physically based model of photon transport inside leaves developed using the laws of optics 

(Jacquemoud et al., 1996). RTMs relate light absorption and scattering to biochemical constituents 

to better the understanding of the interaction of light with leaves (Féret & Asner, 2011). These 

models can be used in the foreward mode to calculate reflectance and transmittance properties and 

in inversion to estimate leaf biophysical properties from high spectral resolution reflectance data 

(Jacquemoud et al., 1995, 1996). Promising results of retrieving canopy-level leaf biochemistry by 

inversion of RTMs using leaf-level spectral data has been documented mostly for agricultural fields 

and tropical forests (Asner & Martin, 2008; Asner et al., 2015; Jacquemoud et al., 1995, 1996) but 

as well for other ecosystems in Canada (Kalacska et al., 2015).  

Although shifting from leaf-level spectroscopy to remote sending approaches involves 

significant challenges, understanding how biochemicals are systematically expressed in 

hyperspectral measurements is a necessary condition to harness the potential of imaging 

spectroscopy to go beyond estimation of biophysical parameters to detection of taxonomic and 

genetic diversity at the canopy-level (Asner & Martin, 2008; Cavender-Bares et al., 2016). 

Therefore, this field of research warrants further exploration in multiple ecosystems and ecological 

contexts and demonstrates the importance of fine-scale leaf-level spectral measurements to 

interpret remote sensing data collected at broad geographic scales.  
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Objectives 

In the context of invasion by the invasive common reed (Phragmites australis subsp. 

australis) in wetlands in the province of Québec, Canada, my master’s project aims to test the 

ability of leaf-level hyperspectral data to detect the invader from co-occurring species and evaluate 

whether the accuracy of detection changes over the course of a growing season.  

My hypothesis was that Phragmites would be more distinct spectrally towards the end or 

the beginning of the growing season from other co-occurring species in the invaded community 

due to variations in functional traits affected by extended leaf phenology that can influence the 

invader’s reflectance signal in a way that it stands out from the background community. 

Alternatively, in the absence of major phenological differences, the invasive Phragmites should 

still be distinguished from co-occurring species if it is consistently chemically different from them.  

With the collection of a time-series of leaf traits and spectral data from five different species 

(including the invasive Phragmites) collected from June to September of 2019, this project 

answered the following questions: (1) how do foliar traits of co-occurring species change over the 

course of a growing season? (2) are species functional differences captured in spectra? (3) can the 

invasive Phragmites be discriminated from others using leaf spectra? (4) does species 

discrimination using spectroscopy vary during a growing season?   

I used analyses of variance (ANOVA) and Tukey HSD multiple comparison tests to 

evaluate foliar trait differences among species through time and the significance of the term 

time:species interaction. To evaluate whether foliar traits can be predicted accurately from leaf 

spectra, I used partial least square regression (PLSR) analyses. PLSR approach uses the continuum 

spectra as a single measurement rather than performing band by band analyses (Asner & Martin, 

2008). PLSR models are built using leaf traits as the response variable and spectral data as 

explanatory variables. It is designed for high-dimensional datasets in which explanatory variables 

are multicollinear, as is the case with spectral bands, and its utility lies in the fact that it establishes 

a quantitative link between spectral bands and functional and chemical traits(Asner & Martin, 

2008; Asner et al., 2014a). Lastly, to evaluate whether the invasive species can be discriminated 

from others, I built species classification models using partial least square discriminant analyses 
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(PLSDA) for each week of sampling. PLSDA is used for predictive and discriminative modelling 

with high dimensional datasets(Cavender-Bares et al., 2016; Schweiger et al., 2020). It trains a 

classification model from reference samples of spectra from different classes maximizing group 

differences and then it applies the model to unknown samples and gives for each sample the 

probability that it belongs to one of the classes. The accuracy of each model was compared to assess 

whether the ability of leaf spectra to distinguish the invader and co-occurring species changed 

throughout the course of the growing season. 

With the use of hyperspectral data across time, this project will build on previous work in 

the detection of the invasive Phragmites (Pengra et al., 2007; Rupasinghe & Chow-Fraser, 2019, 

2021; Samiappan et al., 2017; Tougas-Tellier et al., 2015). In particular, I expect that the foliar 

traits associated with the distinct phenological state of the invader over a growing season reported 

by Rupasinghe & Chow-Fraser (2019), that occurs during late summer and early fall (Rupasinghe 

& Chow-Fraser, 2019), will aid in the accurate classification of Phragmites with respect to the co-

occurring species. In addition, I expect that with the use of the full spectrum, this study will provide 

sufficient resolution to classify the invader with > 80% accuracy. Lastly, this project will contribute 

to efforts of conservation action by providing a high-quality and detailed hyperspectral library for 

an invaded ecosystem of great interest in Canada as a tool for biodiversity preservation and 

management of wetlands benefiting conservation practitioners in Canada and beyond.    

The results of my research project will be presented in the following chapter of this thesis 

in the form of a scientific article. The article titled “Foliar spectra accurately distinguished the 

invasive common reed from co-occurring plant species throughout a growing season” will be 

submitted to the journal of Remote Sensing in Ecology and Conservation for publication. The co-

authors of the article and their respective contributions are listed below; all authors will contribute 

to the final version of the manuscript before submission for publication.  

Juliana Pardo: development of ideas, data analysis, interpretation of results and writing original 

draft of the manuscript 

Xavier Guilbeault-Mayers: consultation in statistical analyses and collaboration in interpretation 

of results, development of ideas and theoretical concepts 
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Madeleine Trickey-Massé: development of ideas, sampling design and methodology, led data 

collection 

Anna K. Schweiger: provided the script for statistical analyses and consultation in interpretation of 

results, development of ideas and theoretical concepts 

Etienne Laliberté: development of ideas, sampling design and methodology, consultation in 

interpretation of results, collaboration on revisions of the manuscript 
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Chapter 2 
 

Foliar spectra accurately distinguish the invasive common 

reed from co-occurring plant species throughout a growing 

season 
Juliana Pardo1, Xavier Guilbeault-Mayers1, Madeleine Trickey-Massé1, Anna Schweiger2 & 

Etienne Laliberte1  

(1)  Département de sciences biologiques, Institut de recherche en biologie végétale, Université of Montréal, 4101 

East, Sherbrooke Street, Montreal, QC, Canada, H1X 2B2 

(2) Remote Sensing Laboratories, Dept. of Geography, University of Zurich, Winterthurerstrasse 190, CH – 8057 
Zurich, Switzerland 

 

In preparation to be submitted to the journal of Remote Sensing in Ecology and Conservation 

 

Introduction 
Human activities alter plant communities worldwide and facilitate biological invasions by 

intentional and accidental movement of species (Sala, 2000). An invasive species is defined as a 

non-native species that spreads rapidly and can have negative ecological, environmental, and 

economic effects on habitats where it has been introduced (Masters & Norgrove, 2010). Invasions 

often have long-term direct and indirect effects that might only become apparent after invaders are 

well established and have acquired large ranges and population sizes (Masters & Norgrove, 2010; 

Richardson & Pyšek, 2012). Accurate detection of invasive species is critical to understand their 

origins and monitor their distribution throughout the invasion process. Attempts to eradicate 

introduced species are most likely to succeed when detection of incipient populations occurs early 

in the invasion process. Tools for early detection are currently lacking but are critical to improve 

our ability to manage invasive species, prevent their spread and facilitate their eradication.  
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For plants, surveillance of biological invasions has relied on ground-based methods such as 

field surveys, updated inventories and distribution maps (Drake et al., 2003). Emerging approaches 

for surveying and monitoring the spread of invasive species include developments and advances in 

molecular biology (Saltonstall, 2002), chemical ecology (Macel et al., 2014), spatial analysis 

combined with invasion risk modeling (Bradley, 2013) and remote sensing using spectral data 

(Asner et al., 2008). In the field of invasion biology, the need for standardized and well-replicated 

monitoring studies that achieve comprehensive mapping over the long-term has been long 

recognized (Blossey, 1999). At present, remote sensing platforms can be used to identify location, 

cover, biomass and traits of invaders throughout large geographic ranges and across temporal scales 

in a rapid and repeatable manner (Ollinger, 2011). With routine monitoring, these tools can be used 

to identify sources of invasive species, routes of spread, predict invasion processes and document 

temporal changes in ecosystems (Asner et al., 2015; Bolch et al., 2020). However, in contrast to 

land cover classification which can be achieved using low to moderate spectral and spatial 

resolution data (Arino et al., 2012), successful species detection depends on high spectral and 

spatial resolution data (Asner et al., 2017).  

Spectral data, which describes the interaction of vegetation with sunlight across the 

electromagnetic spectrum (i.e. patterns of light absorbed, transmitted and reflected at different 

wavelengths), is a valuable tool for species discrimination and is increasingly being used to map 

invasive species (Bradley, 2014; Cavender-Bares et al., 2017). Leaf reflectance spectra are 

aggregate indicators of plant chemistry, physiology and internal and external structure that affect 

light absorption and scattering (Asner et al., 2014a; Kokaly et al., 2009). Regardless of all plants 

being spectrally similar given that they are composed of the same spectrally active components, 

more functionally different and more distantly related species are more spectrally dissimilar (Price, 

1994; Schweiger et al., 2018). With regard to invasive species, this presents an advantage for their 

detection given that they often posses traits that are novel to the colonized environment which 

makes them more easily distinguished from non-invasive species.  

As important traits of foliage vary throughout the course of a growing season, phenology 

(i.e. the timing of periodic events such as flowering and leaf emergence/senescence) is as important 

as physiological or chemical traits in invaded systems as a driver of ecosystem change or as a driver 

of invasion itself (Ehrenfeld, 2010; Fridley, 2012; Smith, 2013). As leaves transition through 
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different growth stages (i.e. juvenile, maturity and senescence), accompanying morphological and 

chemical changes affect their optical and spectral properties. Spectral properties that describe traits 

strongly tied to phenology, are expressed in variations in amplitude and shape in spectral features 

mostly in the visible (VIS) and near-infrared (NIR) regions of the spectrum (Knipling, 1970; Yang 

et al., 2016). In particular, the green peak, red-edge, NIR and water absorption features are highly 

age-sensitive spectral domains (Chavana-Bryant et al., 2017; Papeš et al., 2013). Phenological 

differences or mismatches between natives and invasive species timely captured using 

spectroscopy could present an opportunity to distinguish non-native species and monitor incipient 

invasions.  

One of Canada’s most prominent invaders is the common reed, Phragmites australis spp. 

australis; hereafter Phragmites (Chambers et al., 1999; Guo et al., 2013). Phragmites was 

introduced to the Eastern United States and southern Canada in the 19th century (Chambers et al., 

1999). Today it is found in wetlands and along the edges of water bodies (Guo et al., 2013). 

Phragmites spreads along transport corridors competing with native species and transforming 

diverse communities into low-diversity common reed stands, which constitutes a threat for 

biodiversity of wetland ecosystems (Lelong et al., 2007). It can establish itself from rhizome 

fragments and by sexual reproduction, and grows rapidly, forming tall and dense colonies (Albert 

et al., 2015). Its high productivity (above and belowground) coupled with the retention of live and 

dead tissue, alters nutrient cycles and flooding regimes, affecting wetland functioning and 

impacting wetland fauna (Meyerson et al., 1999, 2000, 2009). At present, climate models predict 

that the suitable but so far uninvaded area is considerably greater than the currently invaded one, 

which constitutes a threat for biodiversity of wetland ecosystems (Tougas-Tellier et al., 2015). 

Therefore, the spread of the common reed is a major conservation challenge and its management 

and eradication are a conservation priority (Gilbert et al., 2014).  

Dissimilarities in phenological patterns and functional traits of invasive species relative to 

native species, suggest that invasive species might take advantage of empty ecological niches in 

novel environments (Brym et al., 2011; Emery, 2007). In particular, extended leaf phenology (i.e. 

early leaf emergence or delayed senescence) has been proposed as a key feature driving events of 

invasion in northern-latitude, deciduous ecosystems (Fridley, 2012; Rejmánek, 2013; Smith, 2013). 

Variation in functional traits driven by phenology can thus make invasive species more distinct 
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from the native community at the beginning or at the end of the growing season. Therefore, 

detection of invaders should be facilitated when the differences in chemistry, function and structure 

that are affected by phenology and can be detected spectrally, are maximized between the invader 

and the background community. Alternatively, invasive and co-occurring plant species might still 

be distinguished spectrally from each other even in the absence of major phenological differences 

if invasive species consistently differ chemically from natives (van Kleunen et al., 2010). Thus, 

understanding chemical and phenological differences among invasive and co-occurring plant 

species is important to improve remote sensing of invasive plants using spectroscopy.  

In this study, we characterized the seasonal changes in foliar traits and spectra in 

Phragmites and co-occurring species to determine whether the invasive species can be 

discriminated using leaf spectra and how its detection varies over the course of a growing season. 

We predict that differences in foliar traits among Phragmites and the other species in the 

community will be most pronounced towards the end or the beginning of the growing season due 

to Phragmites’ extended leaf phenology (Mozdzer & Zieman, 2010; Park & Blossey, 2008). 

Further, we expect that leaf spectra capture these differences such that Phragmites can be spectrally 

differentiated form the other species using spectral species identification models. Determining the 

degree to which seasonal variation in foliar traits is captured spectrally will allow to determine the 

optimal time for the spectral detection of Phragmites (i.e. when the invasive is more distinct from 

co-occurring species and therefore better discriminated using spectroscopy). This information will 

be critical for detecting Phragmites remotely and will improve early detection and facilitate 

eradication.  
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Methods 

Site and species selection 
We conducted fieldwork in Parc des Îles-de-Boucherville (45.5967º N, 73.4700º W) and 

Parc de la Frayère (45.6454º N, 73.4435º W) located in Boucherville, Québec in Canada. The 

province of Québec is characterized by a humid continental temperate climate with four distinct 

seasons (Gérardin & McKenney, 2001). Temperatures vary between 5 and 20ºC in summer and 

from -25 to 10ºC in winter. The total annual precipitation of rain and snow fluctuates among the 

regions of the province and reaches between 500 and 1,200 mm annually (Doyon et al., 2008).  

Over six one-week periods between June and September 2019, we measured leaf spectral 

and foliar traits of five different species: Bromus inermis Leysser, Phalaris arundinacea Linnaeus, 

Phragmites australis (Cavanilles) Trinius ex Steudel subsp. australis, Solidago sp. Linnaeus and 

Typha latifolia Linnaeus; hereafter: Bromus, Phalaris, Phragmites, Solidago and Typha. Although 

Phalaris arundinacea is a non-native genotype colonizing wetlands in North America, we refer 

only to Phragmites as invasive in this study given that the presence of Phalaris is much less harmful 

than the invasive Phragmites. As well, we note that the subspecies of Phragmites australis that 

colonizes our study area is composed entirely of the European invasive lineage (Phragmites 

australis (Cavanilles) Trinius ex Steudel subsp. australis) and not the native subspecies 

(Phragmites australis subsp. americanus) that is found in North America (including parts of 

southern Québec) (Albert et al., 2015; Tougas-Tellier et al., 2015).  

Sampling sites were selected to minimize environmental variation among sampling 

locations allowing us to focus on temporal trait changes across species. We sampled plants from 

the same patch throughout the growing season to minimize differences among patches by species. 

 

Leaf sampling and chemical analyses 
A total of 300 plants from five species were sampled at six different time-points 

(approximately every three weeks) during summer 2019 to capture the seasonal variation of traits 

and spectra among co-occurring species throughout a growing season. Leaf samples of 10 

individuals per species were collected each day of every sampling week (except for Typha in the 

week of July 8th when we sampled 12 individuals and in the week of July 29th, we sampled 8 
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individuals), resulting in a total of 50 individuals per week and 60 individuals per species at the 

end. Fully expanded, sunlit and healthy-looking leaves were selected for spectral and foliar trait 

measurements. Leaves used in foliar trait analyses were weighed upon collection and rehydrated 

for at least 12 h before being weighed again and scanned for total leaf area using a CanonScan 

LIDE 220 scanner (Canon, Brampton, Canada) and the software WinFOLIA Reg 2016b (Regent 

Instruments Inc., Québec, Canada). The scanned leaves were oven-dried (72 h at 65 °C) and 

weighed to determine leaf dry matter content and leaf water content based on rehydrated and dry 

weights (Laliberté, 2018). Approximately 12 g of fresh leaves without petioles were dried and 

grounded to a fine powder using a cyclone mill (2-mm mesh) for chemical analyses. Total carbon 

(C) and nitrogen (N) concentrations (% dry mass) in ground leaf samples were determined using 

an elemental analyzer (Ayotte et al., 2019). Carbon fractions in ground leaf samples were measured 

using a ANKOM 2000 Fiber Analyzer (ANKOM Technology, Macedon, NY, USA). 

Concentration (% dry mass) of soluble C, hemicellulose, cellulose and lignin were determined by 

sequential digestion and inorganic recalcitrant materials (% dry mass) were determined from 

residues ashed in a muffle furnace (Ayotte & Laliberté, 2019). Photosynthetic pigments were 

determined from leaf disks stored at -80 °C (Girard et al., 2019). Concentrations of chlorophyll a, 

chlorophyll b, and total carotenoids (mg g-1) were extracted with methanol and measured with a 

spectrophotometer (SPECTROstar® Nano, BMG LABTECH, Guelph, Canada) using a plate 

reader. Additional leaf material from the bulk sample was used to keep herbarium vouchers of 

every individual sampled. 

 

Spectral measurements  
Foliar spectral measurements were performed using a Spectra Vista Corporation (SVC) 

DC-R/T integrating sphere fitted to a portable full-range field spectroradiometer (SVC HR-1021i, 

Spectra Vista Corp. Poughkeepsie, NY). Six mature, fully-developed, healthy looking leaves per 

individual were selected following Canadian Airborne Observatory (CABO) protocols for spectral 

measurements for large and narrow leaves (Laliberté & Soffer, 2018a, 2018b). Reflectance 

measurements were corrected for stray light and referenced to a calibrated Spectralon® disk. 

Sensor overlap in the spectra were removed and a 1-nm linear interpolation applied. The foliar 

spectra were trimmed to the 400-2400 nm range and smoothed with a Savitzky-Golay filter with 

different parameters for each region of the electromagnetic spectrum: visible (VIS), near-infrared 
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(NIR), short-wave infrared (SWIR). After completing spectral measurements, leaf disks for 

pigment analyses were punched out from the selected leaves for spectroscopy using a 7-mm cork 

borer. Disks were immediately placed in an Eppendorf tube inside an ice cooler box before being 

transferred to a -80 °C freezer. 
 

Statistical analyses 
Leaf spectra through time  

Partial least squares discriminant analysis (PLSDA) was used to assess the ability of leaf 

spectra to distinguish co-occurring plant species through time (model 1) and to distinguish the 

invasive Phragmites from co-occurring species (model 2). PLSDA is used for predictive and 

discriminative modelling with high dimensional datasets (Cavender-Bares et al., 2016; Schweiger 

et al., 2020). It trains a classification model from reference samples of spectra from different 

classes, maximizing group differences, and then it applies the model to unknown samples and gives 

for each sample the probability that it belongs to one of the classes. Using leaf-level reflectance, 

the dataset was iteratively separated into calibration (reference) and validation (prediction) data, 

using a 60:40 (1) and 70:30 (2) split per class for model calibration and validation, respectively. 

The models were run with 50 iterations and the optimal number of components was chosen based 

on significant differences in the Kappa score using Tukey tests (Girard et al., 2020). 

 

Functional traits through time 

Differences in functional traits among species through time were evaluated using ANOVA. 

Whenever significant differences were observed (P ≤ 0.05), Tukey HSD multiple comparison tests 

were performed. Significance of the time:species interaction was evaluated as well. A level of 

significance of P ≤ 0.05 for this interaction term means trait differences among species varied 

through time, or that temporal patterns in trait variation differed among species. 

 

Functional traits captured by spectra 

Partial least squares regression (PLSR) analysis was used to predict foliar traits from 

spectra. PLSR is designed for high-dimensional datasets in which explanatory variables are 

multicollinear as is the case with spectral bands. It establishes a quantitative link between spectral 

signatures and chemical and functional traits. The dataset was separated into calibration (reference) 
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and validation (prediction) groups using a 70:30 split, respectively. The models were trained with 

50 iterations, using leaf traits as the response and spectral data as the explanatory variables, 

respectively. The prediction residual error sum of squares (PRESS) statistic was used to prevent 

overfitting and to identify the optimal number of PLSR components (Asner & Martin, 2008; Asner 

et al., 2014a). Model accuracy was assessed using the root mean square standard error of prediction 

(RMSEP) and regression coefficient (R2). The variable importance of projections (VIP) metric was 

calculated on the final models to identify regions of the spectrum that were significant to the 

prediction of the foliar traits studied (Wold et al., 2001).  

 

All statistical analyses were performed in the R statistical environment (R Core Team 

2020). The following packages in R were used for data processing and statistical analyses: signal 

(Signal developers, 2015), caret (Kuhn, 2019), pls (Mevik et al., 2020), effects (Fox et al., 2020), 

spectrolab (Meireles et al., 2018).  
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Results 

The foliar spectral signatures of all species differed across much of the spectral range 

through time (Fig 2.1 and S2.1). For instance, Phragmites exhibited higher reflectance than other 

species in the VIS region (spectral domain: 400-700 nm) during August and September, 

particularly in the blue wavelengths (~450 nm; Fig 2.1 e and f). In the NIR region (spectral domain: 

700-1400 nm), Bromus showed consistently lower reflectance while Typha showed consistently 

higher reflectance than co-occurring species. In contrast to the NIR reflectance, Typha showed the 

lowest reflectance in the SWIR regions 1 & 2 (spectral domains: SWIR1 1400 – 1880 nm & SWIR2 

1800-2400 nm). Phragmites SWIR reflectance during mid-season (June and July) was second 

lowest to Typha (Fig 2.1 a, b, c). Bromus showed the highest temporal variability in reflectance 

across the spectrum, particularly in the VIS region during July and August (Fig S2.1 c, d, e). 

 

 
Figure 2.1. Reflectance spectra (mean ± standard deviation) of the studied species throughout the 
growing season (June to September) of 2019. Insets in each panel (a-f) show the visible (VIS) 
range in detail.  
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Classification accuracy of our PLSDA models was over 95% for all plant species measured 

from June to September 2019 (Fig 2.2). Discrimination of the invasive Phragmites from co-

occurring species based on foliar spectra was highly accurate throughout the growing season as 

well, with mid-June resulting in perfect classification of Phragmites (Fig 2.2 and Table 2.1). The 

PLSDA model for the beginning of June showed slightly higher sensitivity (highest rate of true 

positive classification for Phragmites) but slightly lowest specificity (lowest rate of true negative 

classification for Phragmites) (Table 2.1). The highest specificity was obtained during late mid-

season on the week of July 29th (Table 2.1). The rate of false negatives (i.e. misclassification of 

Phragmites) for PLSDA models was lowest in mid-June and consistently low across the growing 

season (Fig 2.2). Absolute wavelength loadings of PLSDA models revealed their contribution to 

species differentiation across time (Fig 2.3 and S2.2). The VIS and NIR regions of the spectrum 

were of particular importance for accurate classification as they consistently had high relative 

loadings in PLSDA models from June through September (Fig S2.2). Bands in the SWIR regions 

had higher relative loadings from the end of June and beginning of July (late beginning through 

mid-season).  

Foliar functional traits and carbon fractions displayed significant temporal variations among 

species (Figs. 2.4 and 2.5). The main observed patterns in leaf functional traits through time were: 

Nitrogen (N) concentrations (%) were highest in Phragmites during the growing season but also 

showed a marked and consistent drop through time, while N concentrations for the other species 

(except Solidago) increased modestly in August (Fig 2.4 a). Phragmites and Typha had high carbon 

(C) concentrations (%) throughout the growing season, followed by Solidago (Fig 2.4 b). Typha 

exhibited higher concentrations of pigments than all other species throughout the growing season 

(Fig 2.4 c, d, e). All species showed a decline in leaf pigments from June to August, consistent with 

chlorophyll breakdown as the leaves start to senesce (Fig 2.4 c, d, e). Solidago had the lowest 

concentrations of pigments and showed a slightly sharp decline towards the end of the season (Fig 

2.4 c, d, e). Leaf mass per area (LMA) was highest in Typha and followed by Phragmites (Fig 2.4 

f). All species increased gradually in LMA through time as leaves developed through time (Fig 2.4 

f). Typha exhibited the highest equivalent water thickness (EWT) throughout the season (Fig 2.4 

g). This was consistent with lower reflectance in the SWIR regions, suggesting high water content 

and high light absorption in those ranges (Fig 2.1), despite a gradual decline in EWT from July to 

September which we also found for all other species (Fig 2.4 g). Physical characteristics of leaf 
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structure were important as well, as thick-leaved Bromus showed consistently lower reflectance in 

the NIR region, where reflectance is affected by leaf anatomy and morphology; while Typha, that 

has more slender leaves, and presumably less compact mesophyll structure, showed consistently 

higher reflectance, indicating high internal light-scattering (Fig 2.1). 

 
Figure 2.2.  Classification accuracy per species across time in Model 1 of PLSDA. Number of 
components of PLSDA per week: June 3 - 4 components;  June 17 - 4 components; July 8 - 7 
components, July 29 - 7 components; Aug 19 - 8 components; Sept 9 - 5 components.  

 

Table 2.1. Specificity (true positive rate of classification) and Sensitivity (true negative rate of 
classification) to detect Phragmites from all other species (PLSDA Model 1). 
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Figure 2.3. Absolute wavelength loadings of PLSDA models. Shown here are loading for the week 
of July 8th, see Fig S2.2 for all weeks from June to September. 
 

Solidago exhibited the highest concentrations of soluble carbon and lowest concentrations 

of hemicellulose and cellulose throughout the growing season than the rest of the species (Fig 2.5 

a, b, c). Lignin concentrations were highest for Solidago and Typha, with Typha showing a gradual 

increase from the beginning of the season, while Solidago showed a sharp decline from the initially 

high concentrations until both species maintained similar concentrations from July onward (Fig 2.5 

d). Phragmites showed slightly higher concentrations of hemicellulose from the middle of the 

season onward (Fig 2.5 b). Inorganic recalcitrant materials increased consistently from the middle 

of the season onward for Bromus, Phalaris and Solidago, while Phragmites and Typha maintained 

stable concentrations throughout the growing season (Fig 2.5 e).  
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Foliar functional traits and carbon fractions were predicted with moderate to high accuracy 

from spectral data using partial least squares regression (PLSR) analysis (Figs 2.6 and 2.7; Tables 

2.2 and S2.1). Regression coefficients (R2) for PLSR models ranged from 0.36 to 0.92. Traits that 

were predicted with the highest accuracy (R2 ≥ 0.80) were EWT, LMA and concentrations of 

cellulose and soluble C (Fig 2.6 i and j; Fig 2.7 a and c). Traits predicted with the lowest accuracy 

(R2 ≤ 0.50) were concentrations of carbon, carotenoids, lignin and recalcitrants (Fig 2.6 b, e, f; Fig 

2.7 d and e). All traits were predicted with relatively high precision (RMSEP < 30%) by PLSR 

models except for lignin and recalcitrants (RMSEP values of 47% and 64%, respectively). Lastly, 

regions of particular importance for foliar trait predictions were consistent with known features of 

absorption reported in the literature for each trait studied (Asner et al., 2011; Curran, 1989; Kokaly 

et al., 2009; Ustin et al., 2009; Wang et al., 2020) (Fig S2.3).   
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Figure 2.4. Temporal changes in leaf functional traits by species. Asterisks indicate the statistical 
significance of the time:species interaction terms in linear models(*P ≤ 0.05, **P ≤ 0.01, ***P ≤ 
0.001). Each symbol is the mean value for every trait measured each week. Error bars are 95% 
confidence intervals. LMA: leaf mass per area; EWT: equivalent water thickness.  
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Figure 2.5. Temporal changes in leaf carbon fractions by species. Asterisks indicate the statistical 
significance of the time:species interaction terms in linear models (*P ≤ 0.05, **P ≤ 0.01, ***P ≤ 
0.001). Each symbol is the mean value for every trait measured each week. Error bars are 95% 
confidence intervals.  
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Figure 2.6. Relationships between measured and predicted leaf chemical and structural properties 
using leaf-level spectral data. Dashed lines indicate a 1:1 relationship, black solid lines indicate 
the linear relationship between measured and predicted values for all species and colored solid 
lines indicate the linear relationship between measured and predicted values per species. Measured 
values are on the y-axes; predicted values on the x-axes. Error bars indicate the mean standard 
deviation of the predictions. Statistics presented in the graphs are validation metrics. R2 is the 
regression coefficient. RMSEP is the mean root mean square error of prediction as a percentage 
of the leaf trait (%). Ncomps is the number of components per PLSR model. ChlA: chlorophyll a; 
ChlB: chlorophyll b; LMA: leaf mass per area; EWT: equivalent water thickness. 
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Figure 2.7. Relationships between measured and predicted leaf carbon fractions using leaf-level 
spectral data. Dashed lines indicate a 1:1 relationship, black solid lines indicate the linear relationship 
between measured and predicted values for all species and colored solid lines indicate the linear 
relationship between measured and predicted values per species. Measured values are on the y-axes; 
predicted values on the x-axes. Error bars indicate the mean standard deviation of the predictions. 
Statistics presented in the graphs are validation metrics. R2 is the regression coefficient. RMSEP is the 
mean root mean square error of prediction as a percentage of the leaf trait (%). Ncomps is the number 
of components per PLSR model. 
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Table 2.2. Statistics for partial least square regression (PLSR) models predicting functional traits 
from leaf spectra ordered by descending R2 for the validation dataset. The strength of the 
relationship (R2) indicates the absolute importance of each parameter in determining the spectral 
properties of species. RMSEP is the root mean square standard error of prediction in original 
measurement units and RSMEP (%) is the root mean square standard error of prediction as a 
percentage of the mean leaf trait. 

 

 

 

 

 

 

 

Mean (±SD) Wavelength 
Range (nm) R2 RMSEP RMSEP (%)

EWT (cm) 0.02 (0.01) 800 - 2400 0.92 0.00 21.34
LMA (g m-2) 64.6 (23.4) 800 - 2400 0.88 8.28 12.82
Cellulose (%) 23.0 (6.5) 1200 - 2400 0.85 2.52 10.96
Soluble C (%) 48.7 (12.0) 1200 - 2400 0.80 5.40 11.08

Hemicellulose (%) 24.5 (7.5) 1200 - 2400 0.74 3.84 15.66
N (%) 2.51 (0.61) 400 - 2400 0.64 0.37 14.87

Chlorophyll a (mg m-2) 549.3 (221.0) 400 - 760 0.59 143.13 26.06
Chlorophyll a (mg g-1) 8.7 (3.5) 400 - 760 0.59 2.26 26.08
Chlorophyll b (mg m-2) 179.5 (69.1) 400 - 760 0.54 47.93 26.70
Chlorophyll b (mg g-1) 2.8 (1.1) 400 - 760 0.53 0.76 26.77
Carotenoids (mg m-2) 120.1 (44.2) 400 - 760 0.50 31.70 26.30
Carotenoids (mg g-1) 1.89 (0.70) 400 - 760 0.50 0.50 26.40

Lignin (%) 3.1 (2.0) 1200 - 2400 0.50 1.48 47.46
C (%) 44.2 (1.3) 1200 - 2400 0.43 0.97 2.20

Recalcitrants (%) 0.61 (0.49) 1200 - 2400 0.36 0.39 64.37
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Discussion 

Our study revealed a near-perfect capacity to distinguish the invasive Phragmites from co-

occurring species using foliar reflectance spectra throughout June to September. As such, our 

results show that Phragmites is consistently different chemically from the community it is invading 

and therefore can be distinguished spectrally with high accuracy irrespectively of the timing of 

detection. Our study suggests a strong potential for detecting Phragmites using spectroscopy, but 

do not point toward an optimal time for detection during the growing season.  

Previous studies using time-series datasets of seasonal changes in leaf traits and spectra 

found critical time windows that capture the maximum differentiation amongst co-occurring 

species due to differing phenology (Boyte et al., 2015; Bradley & Mustard, 2005; Rupasinghe & 

Chow-Fraser, 2019) and climatic conditions (Asner et al., 2006). Although our results do not point 

to a specific time frame for better detection using spectroscopy, we found evidence of spectral 

domains of particular importance that contribute to species discrimination and the accurate 

detection of Phragmites. In particular, the unique blue-green color of the invasive Phragmites is a 

key feature (even if subjective) to differentiate native and exotic forms of the invader in the field 

(Mozdzer & Zieman, 2010; Swearingen & Saltonstall, 2012) that is captured with precision in the 

foliar spectra, especially later in the season. The importance of leaf anatomy and morphology to 

differentiate species confirmed in the high contribution of the NIR reflectance for species spectral 

separability at the leaf level also holds at the canopy level (Ollinger, 2011), and makes Phragmites 

detection well-suited for remote sensing approaches (Rupasinghe & Chow-Fraser, 2021).   

 Phragmites showed early and significantly higher N allocation to leaves compared to other 

species. Nitrogen is a key element in the Ribulose-1,5-biphosphate carboxylase/oxygenase 

(Rubisco), the enzyme responsible for carbon fixation in plants (Chapin et al., 1987). An early 

allocation of N to leaves that could precede later enhanced carbon gains, given that as much as 30-

50% of leaf N is tied to Rubisco, could be indicative of extended lead phenology in the invader 

pointing to enhanced carbon gains during a growing season (Chapin et al., 1987; Liao et al., 2008). 

At the same time, as N is also a key component of chlorophylls, the light-harvesting compounds in 

plants, a high allocation of N could translate to high concentrations of chlorophylls and 

consequently higher photosynthetic activity (Kokaly et al., 2009). However, C3 grasses, such as 
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Phragmites allocate about 70% of leaf N to molecules that support carbon fixation and only a small 

fraction to chlorophylls (Chapin et al., 1987; Evans, 1983), which explains the lack of a positive 

correlation between leaf N and chlorophyll content in our study (Fig 2.4 a, c and d). The range of 

biochemical and physiological characteristics that plants display in their functional traits have 

strong control over ecosystem functions given that they determine processes like photosynthesis 

and nutrient and water uptake (Keddy, 1992; Mcgill et al., 2006). In the case of Phragmites, its 

distinct phenology and accompanying traits grant the invader an advantage by enhancement of 

resource competition via nutrient pre-emption or extended carbon assimilation but is also an 

important driver of change in altering carbon and nitrogen cycles at the ecosystem level (Ehrenfeld, 

2010; Liao et al., 2008).  

 Successful invasive species often have higher trait values for performance-related traits 

(Asner et al., 2006; Farnsworth & Meyerson, 2003; Fridley, 2012; van Kleunen et al., 2010). Such 

physiological investments in photosynthesis, light-harvesting and water and nutrient acquisition 

are tied to structural investments and are therefore resource-constrained at the ecosystem level 

(Wright et al., 2004). Plants that grow where resource availability is high, can afford a life strategy 

that promotes rapid carbon gains and fast growth supported by high value traits (high nutrient 

concentrations, photosynthetic rates and specific leaf-area; SLA) (Reich, 2014; Wright et al., 

2004). On the other hand, plants that grow in resource-limited environments display traits related 

to resource conservation and longevity (lower nutrient concentrations, lower photosynthetic rates 

and higher investment in structural and defense compounds) (Reich, 2014; Wright et al., 2004). It 

follows then, that Phragmites might benefit from having extended leaf phenology if it grows in 

nutrient-rich environments as having an extended period of nutrient acquisition allows it to allocate 

nutrients in belowground biomass and store them as temperatures drop (Meyerson et al., 2000). 

Simultaneously, it could be expected that it would outperform co-occurring species in terms of 

displaying superior functional traits. In the context of the plant community studied, Phragmites 

exhibited intermediate trait values (with the exception of N and hemicellulose), which might be 

indicative of Phragmites’ strategy to succeed under conditions of high and low resource availability 

(Mozdzer & Megonigal, 2012). There is evidence that Phragmites has the ability to deploy different 

nutrient-use strategies facilitating successful invasion in both stressful and resource-rich 

environments, and suggesting that its invasiveness might intensify in the future (Mozdzer & 

Megonigal, 2012; Richards et al., 2006).  
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Long-term adaption of plants to particular environmental conditions may impart 

phylogenetic patterns in their chemical traits (Kursar et al., 2009). As such, species that grow in 

similar environments and are closely related tend to be functionally similar. A strong taxonomic 

pattern in the functional response of plants could translate to taxonomic patterns in foliar spectral 

properties since certain regions of the spectrum are sensitive to the independent effect of 

biochemical and structural traits (Asner et al., 2014b; Meireles et al., 2020). This could complicate 

the spectral separability of closely related species or species with similar life/growth forms since 

they might show considerable overlap in spectrally detectable leaf traits (Schweiger et al., 2017). 

Our results indicate that the use of hyperspectral data at the leaf level captures sufficiently detailed 

chemical and structural characteristics to differentiate species within the same family of grasses 

(Poaceae: Bromus, Phalaris, Phragmites), within the same order (Poales: Bromus, Phalaris, 

Phragmites and Typha) and within the same herbaceous life/growth form. Differentiating species 

with the same habit is especially important with respect to Phalaris, Phragmites and Typha, for 

example. These species are often co-occurring and in terms of being tall, unbranched and forming 

dense monospecific stands with similar leaf arrangement, are often confused by the broader public 

and to some extent by remote and sensing platforms as well (Rupasinghe & Chow-Fraser, 2021; 

Tougas-Tellier et al., 2015).  

The ability to accurately detect (i.e. high sensitivity) a problematic species is desirable in 

an ecological context of invasion (Andrew & Ustin, 2008). However, the ability to reduce false 

negatives (i.e. high specificity) is more important from a conservation perspective so as to not miss 

the presence of an invasive individual which may eventually form a large population. Our PLSDA 

models showed high sensitivity throughout the growing season, reflected in the near-perfect 

classification of individual plant species that is consistent through time. However, specificity was 

higher during mid-growing season around the week of July 29th. This is consistent with Rupasinghe 

& Chow-Fraser (2019) that report Phragmites’ most spectrally distinguishable phenological state 

to occur during the months of July and September (Rupasinghe & Chow-Fraser, 2019). Using a 

time-series of multispectral satellite imagery they achieved highest accuracies (89%) to map 

Phragmites with images acquired during late summer and early fall seasons as a result of prolonged 

greenness of the leaves, higher concentrations of chlorophylls and higher water content months of 

July-September (Rupasinghe & Chow-Fraser, 2019). The authors report as well that spectral bands 
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in the green, indicative of prolonged greenness, and NIR and SWIR regions contributed to the 

uniquely detectable signal of Phragmites during this period (Rupasinghe & Chow-Fraser, 2019).  

Our study is consistent with the aforementioned results, and it contributes to a growing 

body of knowledge in the detection of the invasive Phragmites. Mainly, with the use of 

hyperspectral data we found that Phragmites’ detection particularly in July would be advantageous 

on account of a higher probability to reduce the rate of false negatives according to our 

classification models. In addition, we identified a particular feature of interest in the higher 

reflectance in the blue wavelengths to distinguish the invasive Phragmites that was accurately 

detected by the spectra towards the end of the growing season, and with the use of high resolution 

spectral data, our models achieved consistently high classification accuracies for Phragmites of 

over 95% throughout the growing season. 

The functional differences in chemistry and structure that influence the spectral response of 

individual species, are also well predicted by spectroscopy with moderate to high accuracy, as 

shown in our PLSR models. The traits that were best retrieved from leaf spectra (i.e. EWT, LMA, 

cellulose, soluble C and hemicellulose) include important chemical and structural constituents and 

describe fundamental processes that mediate light capture, CO2 uptake and influence a variety of 

ecosystem processes (Reich, 2014; Wright et al., 2004). The less accurate spectroscopic 

determinations were for compounds involved in structure and defense like carbon and lignin and 

pigments such as chlorophylls and carotenoids which are critical for photosynthesis and excess 

light dissipation (Ustin et al., 2009). These results confirm that reflectance and transmittance 

patterns in leaf spectra are an expression of both the direct elemental and molecular composition 

of specific chemicals such as water, pigments, N, and C (Curran, 1989), making it possible to link 

plant functional and spectral responses (Schweiger et al., 2017).  

Using imaging spectroscopy to detect and track the spread of invaders has the potential to 

transform invasive species monitoring. To date, most control actions and management efforts of 

invasive species have been reactive, but the future of the field is in prevention (Bolch et al., 2020). 

Spectral data that captures vegetation properties indicative of ecosystem functioning might aid in 

the early and accurate detection of invaders, track their spread, and inform management and 

conservation strategies to predict when and how fast invasions occur. Moreover, future 

hyperspectral Earth imaging satellite missions rely on the application of spectroscopy to remote 
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sensing techniques (Asner & Martin, 2008; Ustin & Middleton, 2021). Currently available satellite 

platforms offer potential to improve mapping of invasive species on a global scale at rather coarse 

spatial resolution (Bradley, 2014; Cawse-Nicholson et al., 2021). Nevertheless, such systems 

provide high temporal and spectral resolution, and our work shows that accurate detection in the 

spectral domain is possible.  

Developing accurate early detection methods that target young individuals of Phragmites 

and incipient populations is critical for successful invasion control (Larson et al., 2020). In addition, 

time-series data that include more than one growing season allow characterizing the phenology of 

invasive species and the climate effects that influence their spread (Asner & Martin, 2008; Bolch 

et al., 2020; Yang et al., 2016). Lastly, invasive species monitoring with remote sensing is most 

successful when a proposed approach provides sufficiently high resolution in the spatial (pixel 

size), spectral (number and range of bands) and temporal (frequency of data acquisition) domains 

(Bradley, 2014). At the moment there is no sensor that achieves high coverage in all three, and in 

choosing an optimal remote sensing approach a trade-off along these axes must be carefully 

evaluated (Ollinger, 2011). Higher spectral resolution creates opportunities to differentiate subtle, 

yet significant, differences in chemistry and structure among species to discriminate them. For this 

reason, hyperspectral sensors in remote sensing platforms are commonly used for invasive plants 

detection. The downside is that typically they offer limited spatial and temporal coverage or can be 

costly to acquire (Bradley, 2014). The use of hyperspectral unmanned-aerial vehicles (UAV) of 

ultra-high spatial resolution provide a means to overcome limitations in the spatial domain as pixel 

size can approximate the width of a single leaf (> 5 cm) but the use of such platforms is still within 

the expensive range and require a large crew of people to be fully operational (Arroyo-Mora et al., 

2019). 
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Conclusion 

Our work illustrates the potential of leaf-level spectroscopy to translate information of 

reflected light into meaningful knowledge about a plant’s functional traits response. We showed 

that leaf-level spectra have the potential to accurately detect an invasive species that is functionally 

different from co-occurring species throughout a growing season. Management of invasive species 

is critical from a conservation perspective considering the substantial ecological and economic 

costs associated with plant invasions, and in the face of a persistent threat to natural ecosystems 

due to accelerated global change, the need for rapid monitoring and effective control of invasive 

species is ever more important. At present, the only way to provide timely and frequent monitoring 

at large temporal and geographic scales is with the use of remote sensing techniques that rely on 

the application of spectroscopy, highlighting the importance of building high-quality and detailed 

spectral libraries for invaded ecosystems.    
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Chapter 3 
 

General discussion 
The global objective of this MSc thesis was to test whether an invasive species could be 

accurately distinguished from other co-occuring species throughout the course of a growing season 

using leaf-level spectra, and whether its detection changed throughout this period. The ultimate 

goal of this research is to contribute to detection by remote sensing and spatial monitoring of the 

invasive Phragmites. 

The main chapter presented as a scientific article for publication explores variation in 

spectral and foliar traits of five different plant species found in the wetlands of Boucherville in 

Québec, Canada, including the invasive common reed Phragmites australis spp. australis. 

Throughout the development of this study the following questions were addresed: (1) how do foliar 

traits of co-occurring species change over the course of a growing season? (2) are species functional 

differences captured in spectra? (3) can the invasive Phragmites be discriminated from others using 

leaf spectra? (4) does species discrimination using spectroscopy vary during a growing season? 

Our study showed that the invasive Phragmites can be distinguished from co-occurring 

species using foliar reflectance spectra nearly perfectly throughout June to September. 

Concurrently, based on the links that exist between plant spectra, plant form and function, our 

results show that Phragmites is consistently different chemically from its co-occurring species and 

therefore can be distinguished spectrally with high accuracy irrespective of timing of detection. 

Our results also revealed that leaf hyperspectral data capture sufficiently detailed information to 

differentiate not only the invader from the background community but also species within the same 

family (i.e: Poaceae: Bromus, Phalaris and Phragmites), within the same order (i.e: Poales: 

Bromus, Phalaris, Phragmites and Typha) and within the same herbaceous life or growth from. 

Moreover, our study confirmed the remarkable capacity for detecting Phragmites using 

spectroscopy thanks to its particular phenological characteristics that make it stand out from the 

background plant community, as previous studies have found (Rupasinghe & Chow-Fraser, 2019).  

The invasion history of Phragmites in the United Stated and Canada, suggests that its 

current distribution is susceptible to expansion or shifting gradually over time, aided by the effects 
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of climate change (Guo et al., 2013). Therefore, predicting where and when invasions are likely to 

occur is critical to understand the ecological and evolutionary implications of the invasion and to 

plan appropriate control measures. Given the difficulty of eradicating introduced species like 

Phragmites after they have become established and acquired large ranges, there is an increasing 

need to develop better practices for early and accurate detection of invasive species (Gilbert et al., 

2014; Larson et al., 2020). Especially, early detection of young individuals and incipient 

populations is critical management strategies including eradication efforts if control actions are to 

be effective and affordable to preserve biodiversity in wetland ecosystems.  

An ideal monitoring program of invasive species at the ecosystem level takes into account 

different spatial, spectral and temporal scales. At present, the only way to obtain explicit and 

detailed information in these three domains is with the use high resolution sensors and remote 

sensing platforms that capture variation in functional traits at the individual level and document 

temporal changes in plant communities and at the ecosystem level. Thus, the coupling of high-

resolution spectroscopy and remote sensing techniques with the use of drones, aircraft and satellites 

to detect and track the spread of invaders has the potential to transform invasive species monitoring.   

Spatially and spectrally explicit distribution models are especially important for invasion 

risk analyses in order to predict future spread of invasive species. For example, using hyperspectral 

image data and a high-resolution light detection and ranging (LiDAR) digital elevation model, 

Andrew & Ustin (2009) mapped the invasive Lepidium latifolium in riparian and wetland areas in 

western US (Andrew & Ustin, 2009). The results showed that the current and predicted 

distributions indicate that the invader occurs in areas with low salinity and not prone to inundation 

(Andrew & Ustin, 2009). A recent study using remote sensing data of moderate spectral resolution, 

identified suitable germination grounds for the invasive Phragmites along the freshwater wetlands 

of the St Lawrence River in Québec, Canada (Tougas-Tellier et al., 2015). The resulting model 

suggests that current and future climate conditions create suitable germination grounds for 

Phragmites which could potentially offset the most extensive invasion of the common reed in North 

America (Tougas-Tellier et al., 2015). These studies showcase the utility of remote sensing in 

prevention as this information can inform conservation practitioners to better direct monetary and 

human efforts to implement better control actions in areas readily identified to be susceptible to 

future invasion in order to prevent them. 
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Beyond mapping invaders, a step needed to advance the role of remote sensing in canopy-

level research lies in developing the quantitative linkages between foliar chemical and spectral 

properties, as the spectroscopy of canopies is driven primarily by the chemical composition of 

foliage (Asner et al., 2014a; Asner & Martin, 2009). A variety of foliar characteristics such as 

nitrogen, pigment content, water and even SLA have been linked to spectral measurements and 

retrieved with accuracy using leaf-level spectral reflectance (Sims & Gamon, 2002; Ustin et al., 

2009). Canopy-level hyperspectral measurements have also been linked to plant chemistry, but it 

remains unclear as to how well leaf properties can be retrieved from spectral reflectance data 

acquired from airborne imaging spectrometers as many estimations are dependent on variable 

parameters like canopy structure, leaf angle of inclination, sun angle and atmospheric effects 

(Ollinger, 2011).    

In some cases, variable canopy structure can decrease the sensitivity of remote spectral 

measurements to leaf chemicals (Asner, 1998; Jacquemoud et al., 1996). But on the other hand, 

due to multiple scattering in upper canopy layers, biologically driven covariance among leaf 

chemical and canopy structural properties, may enhance the apparent sensitivity of spectral data to 

certain foliar properties and leaf biochemicals (Asner & Martin, 2008; Barrett et al., 1993). Given 

the lack of generalization in procedures to retrieve and monitor changes in canopy composition, 

physiology and chemistry in natural systems, leaf-level work is needed for the development of 

remote sensing techniques as it provides a basis from which to test the potential gains and losses 

incurred when scaling up to the canopy level (Asner & Martin, 2008). 

As the leaves are the most important plant surfaces interacting with solar energy, and the 

major ecological processes at the ecosystem-level like photosynthesis and primary production are 

related to nutritional status and growth conditions of vegetation, it is critical to understand the 

relationship between light absorption and scattering to biochemical constituents. Since quantifying 

multiple leaf properties is a challenge in any ecosystem, the fine-scale spectral library that our 

study provides constitutes a valuable contribution for conservation practitioners and biodiversity 

managers because it documents the chemical basis for the spectral differences we observed. 

Additionally, our results demonstrate potential for remote sensing applications with respect to what 

concerns the spectral domain. The use of full spectrum covering the 400 nm to 2500 nm spectral 

region increases the number of important spectral features available for analyses with respect to 
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multispectral data, but also allowed us to apply PLSR and PLSDA models that require the 

continuum spectrum as a single measurement rather than analyzing single band comparisons or 

band by band analyses (Asner & Martin, 2008; Schmidt & Skidmore, 2003). Our PLSR and 

PLSDA models showed that hyperspectral data capture sufficiently detailed information to 

accurately classify plants that might be taxonomically related or with similar morphological 

features, and that many of the foliar properties that underpin the differentiation among species can 

be accurately predicted from the spectra.  

As advances in the modeling of pigments and biophysical parameters at the leaf level can 

be incorporated into models suitable for imaging spectrometers with the use of radiative transfer 

models (Jacquemoud et al., 1995, 1996), it is essential to develop a solid coupling of leaf radiative 

transfer models with canopy scale models for the successful retrieval of biochemical parameters 

from airborne and spaceborne platforms since most remote sensing of ecosystems is done at the 

canopy level (Ustin et al., 2009). In this respect, it is critical to acquire information about the spatial 

distribution of invasive species for invasion research. Maps of spatial distribution of invaders are 

useful for land managers to implement conservation and control plans in natural ecosystems and 

the spatial resolution of the data (which refers to the pixel size in an image) is a critical 

consideration as the ratio of spatial resolution relative to the size of the objects being classified 

(whether it is at the patch-level or individual plant and leaf-level) plays an important role in 

achieving adequate classification (Nagendra, 2001).  

In general, high spatial resolution increases classification accuracy. However, with higher 

resolution, more and smaller pixels could increase spectral variance in the image, and as a result 

decrease spectral separability of target objects, whereas low spatial resolution can hardly 

discriminate objects on the ground (Nagendra & Rocchini, 2008). Remote sensing platforms of 

coarse spatial resolution like Landsat with a resolution of 30 m2, can be very effective in detecting 

areas of large infestations but might be too coarse to detect incipient populations (Rupasinghe & 

Chow-Fraser, 2019). For example, Pengra et al. (2007) captured few if any pure pixels of the 

invasive Phragmites along a 7.5 km swath in a study area located in mid-western US using 

Hyperion with a resolution of 30 m2. Given that early detection of individual plants and incipient 

populations is critical to accurately track Phragmites expansion and prevent further spread, high 

spatial resolution is critically important for its monitoring.  
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The use of hyperspectral unmanned-aerial vehicles (UAV) of ultra-high spatial resolution 

provide a means to overcome limitations in the spatial domain as pixel size can approximate the 

width of a single leaf (< 5 cm) (Arroyo-Mora et al., 2019). As an example, early results of the 

operation of the UAV-μCASI system in three sites across Canada with different biophysical 

characteristics and conservation challenges (including two ecosystems threatened by the 

establishment of invasive species), found a close agreement between reflectance derived in the 

imagery and the reflectance acquired by field measurements, suggesting that such platforms can be 

used to address research questions in contexts that require spectral fidelity (Arroyo-Mora et al., 

2019). Thus, the implementation of UAV-Hyperspectral imagers in ecological monitoring 

highlights the importance of supplementary field spectral data to verify fidelity of airborne spectral 

data and show potential to bridge the gap between field and airborne observations, yet the cost 

associated with acquiring and operating these platforms remains within the expensive range 

(Arroyo-Mora et al., 2019).     

Alternative and less expensive platforms such as consumer-grade UAVs hold promise to 

detect individual small plants by remote sensing at high spatial and temporal resolution (Dandois 

et al., 2015). In a recent study, a UAV collecting geo-referenced high resolution (5 cm2 pixels) 

visible imagery was employed to create a basin-wide distribution map of Phragmites along the 

Pearl River delta in Louisiana, US (Samiappan et al., 2017). An average of 85% accuracy in 

detection of the invasive Phragmites was achieved by applying a texture-based approach that 

differentiated Phragmites from all other land cover classes due to a particularity in roughness, 

granulation and regularity in the visible imagery (Samiappan et al., 2017). As well, UAVs equipped 

with high resolution RGB sensors and the use of computer vision algorithms (e.g. convolutional 

neural networks) could provide extremely detailed biophysical parameters at ultra-fine grain 

landscape scales (i.e. < 1 cm2) for individual plant detection (Cunliffe et al., 2016). In this case, 

detection would rely on structural parameters like differences in canopy architecture or spatial 

patterns rather than on spectral differences due to lower spectral resolution (given that RGB sensors 

are sensitive to only three bands in the VIS (Ashapure et al., 2019)). The results from our study 

showing that Phragmites could still be successfully distinguished from the surrounding vegetation 

from its higher reflectance in blue wavelengths, especially towards the end of the growing season, 

suggests that RGB imagery could potentially be used successfully to detect Phragmites, especially 

if its canopy architecture differs from other co-occurring species.  
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Moreover, the incorporation of phenology (i.e. the timing of periodic events such as 

flowering and leaf emergence or senescence) in invasion research is particularly useful for invasive 

species detection. Phenological differences or mismatches between native and invasive species 

have been documented in a variety of ecosystems and it has been suggested that they influence the 

invasion success of exotic species (Willis et al., 2010; Wolkovich & Cleland, 2011). The 

phenological uniqueness of certain invaders provides an outstanding opportunity for the 

characterization of spectral differences between the target species and the background vegetation 

(Boyte et al., 2015; Bradley & Mustard, 2005). Since the maximum differentiation between 

invaders and co-occurring species might occur only during a short period, and considering the 

potential high costs associated to the use of remote sensing platforms, before investing in an 

imaging spectroscopy campaign, it is important to get a sense of the expected efficiency of species 

discrimination and provisionally determine the best time to do so. For this purpose, the creation of 

spectral libraries of high temporal and spectral resolution is all-important as they can be used to 

address ecological and environmental question of various kinds.   

In an ecological context of invasion by an invader with distinct phenology, the temporal 

resolution or the frequency of data acquisition becomes a critical consideration in order to capture 

such specific time-windows in natural ecosystems (Boyte et al., 2015; Bradley & Mustard, 2005; 

Willis et al., 2010). In the US, the invasion pattern of an invasive species of grass (Bromus 

tectorum) was remotely mapped using multidate AVIRIS data (Noujdina & Ustin, 2008). The 

detectability of the invader was more accurate with the use of multidate data in comparison with 

single-date imagery, and the authors attributed the success of mapping accuracy to clear spectral 

differences controlled by phenological dissimilarities between the invader and the surrounding 

vegetation (Noujdina & Ustin, 2008). Moreover, imagery acquired during key phenological events 

(such as blooming) or key phenological states (such as prolonged greenness in leaves) improves 

overall mapping accuracy of target species (Rupasinghe & Chow-Fraser, 2019). 

High temporal resolution remote sensing data captures important aspects of ecosystem 

functioning to monitor changes in canopy composition, physiology, and chemistry through time. 

This has enormous value because understanding temporal dynamics of invasion can be useful to 

understand how an invader succeeds and to assess potential and real impacts of invasions in natural 

systems. In Hawaii, a time-series of Hyperion data was used to study the dynamics of rain forests 
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occupied by an invasive tree species (Myrica faya) and compared with forests occupied by a native 

one (Metrosideros polymorpha) (Asner et al., 2006). The authors were able to identify that warmer 

and drier times favor the spread of the invader which suggests that the invader’s success might be 

determined by its ability to grow and increase in abundance under environmental stress, 

underscoring the importance of furthering our understanding of vegetation-climate interactions 

through time in a context of invasion (Asner et al., 2006). 

Detailed spatial, temporal and spectral information on foliar trait variations and the 

scalability of their relationships to the canopy scale are much needed to monitor biodiversity at a 

global scale (Jetz et al., 2016). Deepening our understanding of spectral variation of vegetation is 

not only needed for biodiversity monitoring and trait mapping but is especially important 

considering current and future hyperspectral missions that rely on the application of spectroscopy 

to take the pulse of the planet everywhere and at all times, and constitute the only realistic way to 

document environmental changes and ecological processes, including biological invasions, at a 

global scale at a time when it is more urgent than ever (Ustin & Middleton, 2021). 
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Limitations and future research questions 

Given that it has been shown that leaf-level variation in foliar traits is detectable remotely 

and can be distinguished from canopy structure (Asner & Martin, 2008, p. 200; Asner et al., 2015; 

Townsend et al., 2013), we expect that the spectral library provided by our study would serve in 

future remote sensing studies of invaded ecosystems by the invasive Phragmites. Since we focused 

on leaf-level measurements of high temporal and spectral resolution, we expect that this study will 

be a valuable contribution to the remote sensing community. Nevertheless, the spatial scale, which 

is a critical aspect of remotely sensed data was not explored by us and therefore, the most 

immediate research question for future studies would be how to scale from leaf-level spectroscopy 

to imaging spectroscopy by applying the spectra-trait relationships reported in our study? In 

addition, spatial resolution is a critical consideration for future studies to address the early detection 

of incipient populations of the common reed to prevent further spread, especially considering that 

numerous remote sensing studies of detection of the common reed have shown that it is possible 

to detect the invader, but in general, most platforms fail to capture stands of small size (< 2 m2). 

Moreover, incorporating spectral variation by developmental stage, which was not addressed in 

this study, would greatly enrich this and future spectroscopy studies to address the detection of 

young individuals of Phragmites that would be suitable for eradication strategies.  
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Supplements 
 

 

Figure S2.1. Spectral coefficients of variation (CV, %) across time. Colored lines represent CV 
across the spectral range (400-2400 nm) per species and the black dashed lines represents mean 
CV for all species studied.  
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Figure S2.2. Absolute wavelength loadings of PLSDA model 1 through time. 
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Figure S2.3. Variable importance of predictors (VIP) of wavelengths from PLSR models indicate 
their contribution to the predictions of the foliar traits studied.  
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Table S2.1. Statistics for partial least square regression (PLSR) models predicting functional traits 
from spectra ordered by descending R2 for the calibration (cal) and validation (val) datasets. The 
strength of the relationship (R2) indicates the absolute importance of each parameter in determining 
the spectral properties of species. RMSEP is the root mean square standard error of prediction in 
original measurement units. RSMEP (%) is the root mean square standard error of prediction as a 
percentage of the mean leaf trait. NRMSEP (%) is the normalized root mean square standard error 
of prediction (RMSEP/mean of measured values). 

 

Range Mean (±SD) Wavelength 
Range (nm)

Number of 
components

R2 RMSEP RMSEP (%) NRMSEP (%)

cal val cal val cal val cal val

EWT (cm) 0.01 - 0.05 0.02 (0.01) 800 - 2400 4 0.92 0.92 0.00 0.00 20.63 21.34 0.21 0.21

LMA (g m-2) 30.6 - 130.3 64.6 (23.4) 800 - 2400 8 0.91 0.88 7.15 8.28 11.06 12.82 0.11 0.13
Cellulose (%) 9.0 - 34.3 23.0 (6.5) 1200 - 2400 12 0.89 0.85 2.09 2.52 9.07 10.96 0.09 0.11
Soluble C (%) 23.7 - 79.3 48.7 (12.0) 1200 - 2400 8 0.83 0.80 4.89 5.40 10.03 11.08 0.10 0.11

Hemicellulose (%) 7.1 - 42.9 24.5 (7.5) 1200 - 2400 8 0.78 0.74 3.46 3.84 14.14 15.66 0.14 0.16
N (%) 1.23 - 4.43 2.51 (0.61) 400 - 2400 9 0.70 0.64 0.33 0.37 13.10 14.87 0.13 0.15

Chlorophyll a (mg m-2) 174.1 - 1560.9 549.3 (221.0) 400 - 760 6 0.61 0.59 137.60 143.13 25.05 26.06 0.25 0.26
Chlorophyll a (mg g-1) 2.7 - 24.5 8.7 (3.5) 400 - 760 6 0.60 0.59 2.17 2.26 25.07 26.08 0.25 0.26
Chlorophyll b (mg m-2) 55.9 - 502.5 179.5 (69.1) 400 - 760 6 0.55 0.54 45.96 47.93 25.61 26.70 0.26 0.27
Chlorophyll b (mg g-1) 0.9 - 7.9 2.8 (1.1) 400 - 760 6 0.55 0.53 0.73 0.76 25.66 26.77 0.26 0.27
Carotenoids (mg m-2) 36.8 - 311.2 120.1 (44.2) 400 - 760 7 0.52 0.50 30.37 31.70 25.19 26.30 0.25 0.26
Carotenoids (mg g-1) 0.58 - 4.89 1.89 (0.70) 400 - 760 7 0.53 0.50 0.48 0.50 25.29 26.40 0.25 0.26

Lignin (%) 0.6 - 11.0 3.1 (2.0) 1200 - 2400 8 0.58 0.50 1.29 1.48 41.31 47.46 0.41 0.47
C (%) 40.0 - 46.9 44.2 (1.3) 1200 - 2400 6 0.48 0.43 0.92 0.97 2.09 2.20 0.02 0.02

Recalcitrants (%) 0.02 - 2.59 0.61 (0.49) 1200 - 2400 7 0.45 0.36 0.36 0.39 58.51 64.37 0.59 0.64


