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Résumé

Les modèles de langue pré-entraînés ont montré leur efficacité dans beaucoup de tâches de
traitement de la langue naturelle. Ces modèles peuvent capter des régularités générales d’une
langue à partir d’un grand ensemble de textes, qui sont utiles dans la plupart des applications
en traitement de langue naturelle. Dans ce mémoire, nous étudions les problèmes de dialogue,
i.e. générer une réponse à un énoncé de l’utilisateur. Nous exploitons les modèles de langue
pré-entraînés pour traiter différents aspects des systèmes de dialogue.

Premièrement, les modèles de langue pré-entraînés sont entraînés and utilisés dans les
systèmes de dialogue de différentes façons. Il n’est pas clair quelle façon est la plus appro-
priée. Pour le dialogue orienté-tâche, l’approche de l’état de l’art pour le suivi de l’état de
dialogue (Dialogue State Tracking) utilise BERT comme encodeur et empile un autre réseau
de neurones récurrent (RNN) sur les sorties de BERT comme décodeur. Dans ce cas, seul
l’encodeur peut bénéficier des modèles de langue pré-entraînés. Dans la première partie de
ce mémoire, nous proposons une méthode qui utilise un seul modèle BERT pour l’encodeur
et le décodeur, permettant ainsi un ajustement de paramètres plus efficace. Notre méthode
atteint une performance qui dépasse l’état de l’art.

Pour la tâche de génération de réponses dans un chatbot, nous comparons 4 approches
communément utilisées. Elles sont basées sur des modèles pré-entraînés et utilisent des ob-
jectifs et des mécanismes d’attention différents. En nous appuyant sur des expérimentations,
nous observons l’impact de deux types de disparité qui sont largement ignorées dans la lit-
térature: disparité entre pré-entraînement et peaufinage, et disparité entre peaufinage et
génération de réponse. Nous montrons que l’impact de ces disparités devient évident quand
le volume de données d’entraînement est limité. Afin de remédier à ce problème, nous pro-
posons deux méthodes qui réduisent les disparités, permettant d’améliorer la performance.

Deuxièmement, même si les méthodes basées sur des modèles pré-entraînés ont connu
de grands succès en dialogue général, nous devons de plus en plus traiter le problème de
dialogue conditionné, c’est-à-dire dialogue en relation à une certaine condition (qui peut
désigner un personnage, un sujet, etc.). Des chercheurs se sont aussi intéressés aux systèmes
de chatbot avec des habiletés de conversation multiples, i.e. chatbot capable de confronter
différentes situations de dialogues conditionnés. Ainsi, dans la seconde partie de ce mémoire,
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nous étudions le problème de génération de dialogue conditionné. D’abord, nous proposons
une méthode générale qui exploite non seulement des données de dialogues conditionnées,
mais aussi des données non-dialogues (textes) conditionnées. Ces dernières sont beaucoup
plus faciles à acquérir en pratique. Ceci nous permet d’atténuer le problème de rareté de
données. Ensuite, nous proposons des méthodes qui utilisent le concept d’adaptateur proposé
récemment dans la littérature. Un adaptateur permet de renforcer un système de dialogue
général en lui donnant une habileté spécifique. Nous montrons que les adaptateurs peuvent
encoder des habiletés de dialogue conditionné de façon stricte ou flexible, tout en utilisant
seulement 6% plus de paramètres.

Ce mémoire contient 4 travaux sur deux grands problèmes de dialogue: l’architecture
inhérente du modèle de dialogue basé sur des modèles de langue pré-entraînés, et l’enrichis-
sement d’un système de dialogue général pour avoir des habiletés spécifiques. Ces travaux
non seulement nous permettent d’obtenir des performances dépassant de l’état de l’art, mais
aussi soulignent l’importance de concevoir l’architecture du modèle pour bien correspondre
à la tâche, plutôt que simplement augmenter le volume de données d’entraînement et la
puissance de calcul brute.

Mots clés: Système de dialogue, génération de réponse conditionnée, Modèle de langue
pré-entraîné, Apprentissage par transfert, peaufinage, adaptateur de dialogue
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Abstract

Pre-trained language models (LMs) have shown to be effective in many NLP tasks. They can
capture general language regularities from a large amount of texts, which are useful for most
applications related to natural languages. In this thesis, we study the problems of dialogue,
i.e. to generate a response to a user’s utterance. We exploit pre-trained language models to
deal with different aspects of dialogue systems.

First, pre-trained language models have been trained and used in different ways in di-
alogue systems and it is unclear what is the best way to use pre-trained language models
in dialogue. For task-oriented dialogue systems, the state-of-the-art framework for Dialogue
State Tracking (DST) uses BERT as the encoder and stacks an RNN upon BERT outputs
as the decoder. Pre-trained language models are only leveraged for the encoder. In the first
part of the thesis, we investigate methods using a single BERT model for both the encoder
and the decoder, allowing for more effective parameter updating. Our method achieves new
state-of-the-art performance.

For the task of response generation in generative chatbot systems, we further compare the
4 commonly used frameworks based on pre-trained LMs, which use different training objec-
tives and attention mechanisms. Through extensive experiments, we observe the impact of
two types of discrepancy: pretrain-finetune discrepancy and finetune-generation discrepancy
(i.e. differences between pre-training and fine-tuning, and between fine-tuning and genera-
tion), which have not been paid attention to. We show that the impact of the discrepancies
will surface when limited amount of training data is available. To alleviate the problem, we
propose two methods to reduce discrepancies, yielding improved performance.

Second, even though pre-training based methods have shown excellent performance in
general dialogue generation, we are more and more faced with the problem of conditioned
conversation, i.e. conversation in relation with some condition (persona, topic, etc.). Re-
searchers are also interested in multi-skill chatbot systems, namely equipping a chatbot with
abilities to confront different conditioned generation tasks. Therefore, in the second part of
the thesis, we investigate the problem of conditioned dialogue generation. First, we propose
a general method that leverages not only conditioned dialogue data, but also conditioned
non-dialogue text data, which are much easier to collect, in order to alleviate the data
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scarcity issue of conditioned dialogue generation. Second, the concept of Adapter has been
recently proposed, which adapts a general dialogue system to enhance some dialogue skill.
We investigate the ways to learn a dialogue skill. We show that Adapter has enough capac-
ity to model a dialogue skill for either loosely-conditioned or strictly-conditioned response
generation, while using only 6% more parameters.

This thesis contains 4 pieces of work relating to the two general problems in dialogue
systems: the inherent architecture for dialogue systems based on pre-trained LMs, and
enhancement of a general dialogue system for some specific skills. The studies not only
propose new approaches that outperform the current state of the art, but also stress the
importance of carefully designing the model architecture to fit the task, instead of simply
increasing the amount of training data and the raw computation power.

Keywords: dialogue system, conditioned response generation, pre-trained language
model, transfer learning, fine-tuning, dialogue adapter
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Introduction

The rise of pre-trained language models
Deep learning methods have been successfully applied to many natural language process-

ing (NLP) tasks. Many architectures have been proposed, such as recurrent neural networks
(RNN), transformer, etc. A specific deep learning architecture can be used on a set of data
to build a model for an NLP task. However, the training process is known to be time-,
resource- and data-intensive: it usually requires a large amount of training data (texts) and
high computation power due to the complexity of the model (the number of parameters
involved). Many research work cannot afford to have the necessary data and resources to
build a large neural model for the NLP task at hand. This naturally limits the capability of
the resulting model.

Recently, a new paradigm, pre-training then fine-tuning, emerged in NLP research. It
exploits a model that has been already trained on a large amount of texts in advance, resulting
in what we call a pre-trained language model (LM). Then the pre-trained language model is
adapted or fine-tuned for the specific NLP tasks. This new paradigm has shown to be very
effective in various NLP tasks. Recently, several large pre-trained language models have been
made publicly available by Google 1, OpenAI 2, etc. These pre-trained models are the results
of training on a large amount of texts (e.g. Wikipedia, Google books) in an unsupervised
manner, following different deep learning architectures. For example, GPT [65] is a large
general language model capable of predicting the next words from the previous ones. It has
been shown to benefit many generative tasks. BERT 3 [15] is another powerful model based
on transformer and attention mechanism that helps in many natural language understanding
tasks. The advantage of a large pre-trained language model stems from the large amount
of data used in the training: Based on a large amount of texts, it is expected that a large
pre-trained LM such as BERT can capture much of the regularities in a language such as
word order or context dependencies. Such models can be used as the base models in many
1BERT: https://github.com/google-research/bert
2GPT: https://openai.com/blog/gpt-2-1-5b-release/
3BERT can mean a specific way to build a language model, or the model pre-trained on a large set of texts.
In this thesis, we generally refer to the second meaning when we talk about pre-trained LM.



of the applications in natural language processing (NLP). The tremendous success of pre-
trained LMs leads to the new paradigm of “pre-training then fine-tuning” in NLP research,
including in both task-oriented and open-domain dialogue generation. In this paradigm,
one takes a pre-trained language model (e.g. BERT) as the starting model, then uses a set
of domain-dependent data to further fine-tune the model. The fine-tuning process aims to
adapt the model (its parameters) to the specific task at hand (e.g. dialogue generation).

To show the impact of pre-trained LMs, we can notice that before the rise of pre-trained
Transformer-based language models, studies in dialogue generation were all based on Recur-
rent Neural Networks (RNN) and Seq2Seq framework. Many methods have been specifically
designed for the tasks and achieved good performance. For example, hierarchical RNN
[81] for multi-turn response generation, CVAE [110] to generate diverse responses, CCM
[114] leveraging knowledge graph for response, generation under different conditions, and
so on. However, once pre-trained models are used, none of the above methods can compete
with a vanilla pre-trained model that does not exploit extra knowledge. This is an obvi-
ous sign that pre-trained LMs can be powerful for the dialogue task. Furthermore, many
previous ideas that worked well in RNN-based systems might not bring similar improve-
ment to a Transformer-based approaches. For example, multi-turn response generation in a
Transformer-based system does not apply a hierarchical model structure. Instead, it simply
concatenates multi-turn dialogue history as the input of Transformer. This shows that the
brute force of a pre-trained LM can be superior to some finely designed RNN models. The
above observations make it clear that any state-of-the-art approach today should exploit pre-
trained LMs. Therefore, this dissertation investigates the utilization of pre-trained language
models for dialogue systems.

Hidden questions in pre-trained language models
Despite the success of pre-trained LMs in dialogue, we observe that people usually exploit

their brute-force power without carefully analyzing if a utilization (an architecture) is appro-
priate for the task. In many cases, a simple utilization of a large pre-trained LM (e.g. GPT)
can outperform many carefully designed methods that exploit less data. However, this does
not mean that it is useless to care about the adequate design of model. Behind the success
of pre-trained LMs, many questions remain unanswered.

The first set of questions are related to model architecture. For example, a pre-trained
LM is trained in some way determined in the pre-training process. How could such a pre-
trained model be used in encoder and decoder of a dialogue task? Would a pre-trained
LM more appropriate than another for a task due to the inherent nature of the task? For
example, some pre-trained LMs such as BERT are pre-trained using bidirectional attention,
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while the task requires a unidirectional attention (left-to-right). Would this difference hinder
the adequacy of the pre-trained LM for the task?

To address these questions, we study different architectures to use pre-trained LMs in
different tasks. First, for task-oriented dialogue systems, recent works on Dialogue State
Tracking (DST) [107, 74, 37] replace previous RNN encoder with BERT, and achieve
better performance than RNN-only framework (RNN encoder and decoder) [99] by leveraging
the rich general linguistic features encoded in BERT. However, the BERT model cannot
be directly used for the decoder due to the fact that the decoder cannot use the same
bidirectional attention as in BERT (i.e. when generating a word, one can only see the words
generated before using left-to-right attention). Therefore, an RNN decoder is stacked upon
BERT encoder for the generation step. This RNN is to be trained on the dialogue data
from scratch, and it does not fully leverage the pre-trained LM. To fully exploit a pre-
trained LM, we propose a framework consisting of a single BERT that works as both the
encoder and the decoder, which has a flat encoder-decoder architecture allowing for more
effective parameter updating. Our method achieves new state-of-the-art performance and
can converge to its best performance much faster and in a more stable manner than the
existing framework. This framework can also be extended to build a task-oriented dialogue
system when applying the idea of “text-to-text” of Google T5 to incorporate the other two
tasks of task-oriented dialogue.

Second, for generative chatbot systems (i.e. to generate responses of chit-chat), some
researchers believe that fine-tuning GPT, a left-to-right language model, corresponds well to
the dialogue generation task [109, 50], while some others [18, 4] show that fine-tuning BERT
can also achieve state-of-the-art performance. It is unclear what pre-training architecture
should be used for response generation. To figure out how to best exploit a pre-trained LM
for dialogue generation, we compare 4 widely used frameworks on 3 public datasets, each
in large and small scale. This reveals that all the 4 frameworks contain some discrepancy:
pretrain-finetune discrepancy meaning that the LM is pre-trained in a way, but fine-tuned in
a different way; and finetune-generation discrepancy, meaning that the model is fine-tuned in
a way different from its utilization in generation. The extensive experiments on the datasets,
especially on small-scale datasets, will show the impact of discrepancies. Therefore, some
adjustments are required to make the process more adequate. To this end, we propose two
methods to reduce discrepancies, both yielding improved performance.

The second set of questions are related to specific utilization of pre-trained LMs in spe-
cific dialogue situations. Even though pre-training based methods have shown excellent
performance in general dialogue generation, we are more and more faced with the prob-
lem of conditioned conversation in order to control the style[44], topic[100], emotion[113],
situation[78], knowledge[17] of the generated responses. Conditioned dialogue means that
we have to tune the dialogue to meet the condition, i.e. to correspond to a dialogue style,
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a topic, and so on. Researchers are also interested in multi-skill chatbot systems, namely
equipping a chatbot with abilities to confront different conditioned generation tasks. There-
fore, beyond the pre-trained Transformer-based frameworks for general dialogue systems, we
will investigate how a general dialogue system can be tuned toward conditioned dialogue
generation.

There are two categories of conditioned dialogue, i.e. loosely-conditioned response gener-
ation and strictly-conditioned response generation. For the former, a clear label designating
the type of the response is required. For example, persona labels [44] designate the speaking
styles of the responses, and topic labels [100] or emotion labels [113] specify topic-related
or emotion-related vocabularies. For the latter, extra knowledge is generally required to de-
termine the content of the response, such as a persona profile [108], a situation description
[70], or a wikipedia paragraph [17]. Enhancing a general dialogue system with strictly-
conditioned dialogue could be easy: a state-of-the-art strictly-conditioned method [97] can
be easily added in other models as well [86, 57], by simply concatenating the extra knowledge
with the dialogue history as the model input. However, in many practical situations, we have
to deal with loosely-conditioned dialogue, where the system should dynamically determine
the content of response given dialogue context and condition. Loosely-conditioned dialogue
takes an important part in open-domain conversation [111]. An acute problem we encounter
in loosely-conditioned dialogue is the scarcity of labeled responses, i.e. we can expect to have
limited amount of dialogue data with conditions clearly labeled. In this dissertation, to alle-
viate the problem, we exploit labeled non-dialogue text data related to the condition, which
are much easier to collect. These data can be, for example, texts written by the same person
(for a persona condition), within the same topic domain (for a topic condition), etc. We
propose a multi-task learning approach to leverage both labeled dialogue and text data. The
3 tasks jointly optimize the same pre-trained Transformer – conditioned dialogue generation
task on the labeled dialogue data, conditioned language encoding task and conditioned lan-
guage generation task on the labeled text data. Experimental results show that our approach
outperforms the state-of-the-art models by leveraging the labeled texts, and it also obtains
larger improvement in performance compared to the previous methods to leverage text data.

Pushing the conditioned dialogue further, one can expect that a general dialogue system
can be adapted to have some specific skill. The Adapter approach aims to construct such
conditioned dialogue system with light-weight adapters. In this dissertation, we study differ-
ent ways to learn dialogue skills: 1) using auxiliary loss specifically designed for the skill; 2)
using multi-task learning to learn the common part, i.e. skill, of several tasks; 3) using the
concept of Adapter to decrease model capacity avoiding to learn diverse styles. The concept
of adapter has been proposed in a recent study [73, 33]. We will show that Adapter has
enough capacity to model a dialogue skill for either loosely-conditioned or strictly-conditioned
generation. Meanwhile, an Adapter only uses 6% more parameters on top of a pre-trained
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dialogue model. Thus, it is possible to build a multi-skill model by using a fixed base di-
alogue model, e.g. a large pre-trained model, and multiple small Adapters. Then, given a
dialogue history, a system only needs to switch among skills using elaborate rules or a more
explainable model. We believe that this framework could be a promising avenue for future
generative dialogue systems.

In summary, this dissertation deals with two sets of questions that have not been exten-
sively investigated in the literature relating to dialogue based on pre-trained LMs. The main
contributions of our studies are as follows: (1) Our study sheds light on the hidden problems
in the utilization of pre-trained LMs in dialogue systems. We show that it is important to
consider the adequacy of an architecture for a task in order to avoid discrepancies. (2) In
addition to general dialogue, we show that it is possible to generate dialogues for specific
conditions. This paves the way for more purpose-oriented open-domain dialogue.

Thesis Structure
The rest of the dissertation is organized as follows:

• Chapter 1: Foundational Work
This chapter gives an overview of the prior research that lays the foundation for this
dissertation, including both work about dialog system and related methods in deep
learning.
• Chapter 2: Leveraging Pre-trained LM for Task-oriented Dialogue State
Tracking
This chapter presents methods to leverage pre-trained language model for dialogue
state tracking, a core component in task-oriented dialogue systems. We propose a
novel method to use a single BERT to work as both the encoder and the decoder.
• Chapter 3: Leveraging Pre-trained LM for Generative Chatbots
This chapter compares the 4 widely used frameworks that utilize pre-trained lan-
guage models for open-domain dialogue generation on 3 public datasets each in
large and small scale, and we analyze each framework based on the experimental re-
sults. Through extensive experiments, we observe pretrain-finetune discrepancy and
finetune-generation discrepancy of each framework. Then, we propose two methods
to reduce discrepancies that lead to improved performance.
• Chapter 4: Multi-Task Learning based on Pre-trained LM for Conditioned
Dialogue Generation
In the following two chapters, we focus on conditioned dialogue for generative chatbot
systems. Specifically, this chapter proposes a simple and efficient multi-task learning
approach based on pre-trained Transformer that leverages different labeled data, i.e. ,
dialogue and text, for conditioned response generation.
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• Chapter 5: Adapter based on Pre-trained Model for Dialogue Skill Learn-
ing
This chapter shows that previous works in dialogue skill learning mainly learn un-
transferable dialogue styles instead of skills. We propose several ways to learn di-
alogue skills. Based on our approach, it is possible to build a multi-skill model by
using a fixed base dialogue model and multiple small Adapters.

Except the introductory Chapter 1, the works described in the other chapters have been
published/submitted to conferences, or published on ArXiv. The description will be many
in the same format as a research paper. The references to the publications are as follows:

Jointly Optimizing State Operation Prediction and Value Generation
for Dialogue State Tracking
Yan Zeng, Jian-Yun Nie
paper: https://arxiv.org/abs/2010.14061
code: https://github.com/zengyan-97/Transformer-DST
(Corresponding to Chapter 2)
An Investigation of Suitability of Pre-Trained Language Models
for Dialogue Generation – Avoiding Discrepancies
Yan Zeng, Jian-Yun Nie
paper: https://arxiv.org/abs/2010.12780
code: https://github.com/zengyan-97/Transformer-MLM-DiffFree
note: accepted by ACL 2021 (findings).
(Corresponding to Chapter 3)
A Simple and Efficient Multi-Task Learning Approach
for Conditioned Dialogue Generation
Yan Zeng, Jian-Yun Nie
paper: https://arxiv.org/abs/2010.11140
code: https://github.com/zengyan-97/MultiT-C-Dialog
note: accepted by NAACL 2021 (oral).
(Corresponding to Chapter 4)
Learning Transferable Dialogue Skills
Yan Zeng, Jian-Yun Nie
note: in double-blind period
(Corresponding to Chapter 5)

Table 0.1. List of our publications.
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Chapter 1

Foundational Work

This chapter presents an overview of the prior research that paves the foundation for this dis-
sertation. We will first go over the background of dialogue systems. Then we will summarize
deep learning techniques that the rest of this dissertation will build on.

1.1. Dialogue Systems
There are two ways to implement dialogue systems, namely retrieval-based and

generation-based. The former uses a dialogue history as query to search in a database of
dialogue histories and returns the best matched response as the answer. In contrast, the
generation-based approach builds on templates or encoder-decoder networks to generate a
new response to the given dialogue utterance.

Although in retrieval-based systems, the retrieved responses are human generated so
that always grammatical and diverse, they are limited in the following aspects comparing
to generation-based systems: (1) they cannot generate novel responses that are not in the
database, leading to poor generalization given a limited database; (2) the query time may
become larger as the database becomes bigger, slowing down the response speed at testing
time.

In this dissertation, we focus on generation-based systems. With the help of pre-training,
recent generation-based systems can generate grammatical and diverse responses similar to
retrieval-based systems. Meanwhile, they are able to generate novel responses that are more
suited to the dialogue contexts.

1.1.1. Task-oriented Dialogue Systems

There has been a long history of task-oriented (/goal-directed) dialogue systems. Task-
oriented dialogue is designed to accomplish some specific task such as hotel booking. This
type of systems often use a pipeline approach [88]. The pipeline requires natural language



understanding (NLU) for dialogue state tracking (also known as belief state tracking), di-
alogue management for deciding which actions to take based on those beliefs, and natural
language generation (NLG) for generating responses.

Traditionally, each component of task-oriented dialogue systems is trained independently
with different supervision. The NLU module is trained on domain and intent labels. The dia-
logue management module employs dialogue belief and dialogue act labels. The NLG module
accesses templatized or natural responses. The modular dependencies of these components,
however, can lead to error propagation when information is not provided to subsequent mod-
ules in the pipeline [52], i.e. when an error is made in a module, the subsequent modules
will be unable to correct it.

Particularly, for the NLG module, previous systems [72, 69] rely on either canned re-
sponses or templates for generation. It is difficult to design the rules and templates. Besides,
these methods have been shown to generate utterances that sound very unnatural in context
[10]. An improvement is the use of data-driven methods, e.g. Statistical Machine Translation
(SMT) in translating internal dialogue state into natural language [38].

Recent studies in deep learning, e.g. based on RNN [96] or Transformer [32], suggest
a much simpler way to build a task-oriented system. For example, recent work based on
pre-trained language model [32] has shown superior performance by adapting the idea of
“text-to-text” approach [66, 67, 36] specifically for task-oriented dialogue. Specifically,
they fine-tune a pre-trained language model by multi-task learning on the 3 subtasks of
task-oriented dialogue. Then the response is generated end-to-end given an input text.
Such an approach allows for a better integration of the three sub-tasks and avoids error
propagation.

1.1.2. Open-domain Chatbots

“Chatterbots” [94, 35] as called in history attempt to engage users, typically by leading
the topic of conversation. These systems usually limit interactions to a specific scenario
(e.g. a Rogerian psychotherapist), and use a set of template rules for generating responses.
It is difficult to extend such an approach to conversations in general domains.

Data-driven approaches are currently more used in chatbot. This is due to the fact that
we have much more informal, public conversations on social media websites such as Reddit
and Twitter, making it possible to train models for conversational tasks. For example, one
can train a statistical machine translation model (SMT) [76] to generate a response from an
input, or a RNN-based encoder-decoder model [81]. These modern chatbot systems focus
on making chit-chat, open-ended, open-domain conversations with humans.

However, end-to-end generative neural networks [89, 81, 110, 114] still have weaknesses
that prevent them from being generally useful: they often respond to open-ended input in
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Fig. 1.1. (a) Neural network language model with 3rd Markov assumption; (b) RNN lan-
guage model; (c) Transformer based language model. In this figure, these language models
all apply auto-regressive training objective. “sos” is a special token representing “start of
string”. xi is the i-th word of the text.

ways that do not make sense, or with replies that are vague and generic. Therefore, some
open-domain chatbots such as MILABOT [80], XiaoIce [115], Gunrock [12] use hybrid, more
complex frameworks, containing dialog managers coupled with knowledge-based, retrieval-
based, rule-based, or generation-based systems.

Nevertheless, with progress in language pre-training on web text corpus and dialogue pre-
training on large-scale data from social media, e.g. Twitter and Reddit, recent pre-training
based methods [109, 1, 77] have shown excellent performance in generating fluent and
diverse responses.

1.2. Deep Learning Foundations
1.2.1. Language Model (LM)

Architecture A statistical model of language can be represented by the conditional
probability of the next word given all the previous ones,

P (wt) = P (wt|wt−1, wt−2, ..., w1) (1.2.1)

To train a language model, we maximize the likelihood of:

P (w1, ..., wT ) =
T∏
t=1

P (wt|wt−1, wt−2, ..., w1) (1.2.2)

Thus, we minimize the loss function:

L = −
L∑
t=1

logP (wt|wt−1, wt−2, ..., w1), (1.2.3)

Neural Network LM Figure 1.1 gives the overview of the neural network language
model [7]. Figure 1.1(a) is a simple neural language model architecture, which sum up the
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embedding vectors 1 of input words. Then a non-linear layer is added on top of it to predict
the output (the next word). In general, the neural network language model makes the n-th
order Markov assumption:

P (wt) = P (wt|wt−1, ..., wt−(n−1)) (1.2.4)

Otherwise, if using the full previous context, the sum of the embedding vectors will be too
generic and meaningless.

Recurrent Neural Network RNN language model uses the full previous context as
shown in Figure 1.1(b). It reads the input words one by one, and combine the corresponding
word embedding with the previous representation to produce the next representation. At
the end, once all the input words have been used, the final representation is used as the one
that represents the whole sentence. As the input sequence is processed sequencially, RNN is
time-consuming. Besides, previous work has shown that it (e.g. LSTM) can only consider
up to ∼ 100 words, otherwise, the model will fail to capture the meaning of the sentence.

Transformer Recent models in NLP usually consist of multiple Transformer layers. In
Chapter 3, Figure 3.1 gives detailed architecture of a Transformer layer. Transformer is based
on self-attention mechanism. Self-attention allows the tokens in a sequent to pay a certain
amount of attention to any other tokens, depending on a weight determined by the similarity
between the token and other tokens. According to the attention weights, the representation
of the token at the next layer is produced by aggregating the other token’s information. It
reads words all together instead of one by one as shown in Figure 1.1(c). Therefore, unlike
recurrent neural network, self-attention mechanism does not naturally incorporate position
information. Thus, the input of Transformer is the sum of the word embeddings and the
position embeddings [91]2. In the current research, transformer is widely used to produce
contexualized representations of tokens and sentences.

Given different self-attention masks that decides for each position which other positions
can be attended to, Transformer can work as a bi-directional language model, e.g. BERT, or
a left-to-right generative language model, e.g. GPT. Transformer has much larger capacity
than RNN of the same number of parameters, and it is now state-of-the-art framework in
NLP tasks.

1A word embedding is a real-valued vector that encodes the meaning of a word such that the words that are
closer in the vector space are expected to be similar in meaning.
2Position embedding converts a relative position to a vector, aiming at distinguishing the word appearing at
different positions. For example, the words at the first position all add the same position vector, and words
at the n-th position add another vector. These vectors for different positions can be fixed or learned.
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1.2.2. Pre-training Methods for LM

All the following language models are based on Transformer, and they are pre-trained 3

on large-scale text corpus. The largest difference among them is the self-attention mask and
accordingly training objective.

GPT [65, 66] Generative Pre-trained Transformer is a generative language model that
applies left-to-right self-attention, i.e. a word can only attend to previous words. GPT applies
auto-regressive training objective. It is widely used when fine-tuning for a generation task,
e.g. dialogue generation.

BERT [15] Bidirectional Encoder Representations from Transformers is a bi-directional
language model, where a word can attend to every word in the input. Because of the bi-
directional self-attention, BERT cannot apply auto-regressive training objective. Otherwise,
there will be information leak. Thus, BERT applies Masked Language Modeling (MLM),
an auto-encoding objective. A certain percentage of the words in the input are masked,
i.e. replaced by a special token [MASK]. Then, the model is required to predict which word
the masked token is given the bi-directional context. BERT is usually used as a pre-trained
encoder, and it has been shown to have superior performance in many natural language
understanding tasks. Nevertheless, we will show in Chapter 3 that fine-tuning BERT for
generation task can also achieve state-of-the-art performance.

XLNet [103] is an extension of the Transformer-XL model pre-trained using an au-
toregressive method. It claims to incorporate all advantages of GPT and BERT. However,
Roberta [54], a fully-trained BERT, has shown to outperform XLNet. Nevertheless, the
motivation of XLNet is interesting, and thus we briefly introduce this approach here.

XLNet argues that BERT outperforms GPT since BERT considers bi-directional context.
However, BERT using masked language modeling objective neglects dependency between
the masked positions and suffers from a pretrain-finetune discrepancy 4 (because during fine-
tuning, the input does not contain [MASK]). Therefore, the core idea of XLNet is not to use
MLM objective but to use auto-regressive objective while considering bi-directional context.
As mentioned above, MLM objective is necessary to avoid information leak when using bi-
directional attention. Therefore, XLNet applies a trick: using auto-regressive objective and
for each input text using all possible permutations of the factorization order. In expectation,
each position learns to utilize contextual information from all positions, i.e. , capturing
bidirectional context. To define a factorization order, they do not actually disorganize the
input text. Instead, they apply a specific self-attention mask: by setting which tokens a
given token can attend to, the self-attention mask then decides the position of the token.
3This process is named “pre-training” since people will further train, i.e. fine-tune, these language models
on some other datasets.
4That is mismatch between the pre-training process and the fine-tuning process. We will discuss in detail
pretrain-finetune and finetune-generation discrepancy in Chapter 3.
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Fig. 1.2. (a) RNN based encoder-decoder framework; (b) Transformer encoder-decoder
framework; (c) Transformer based decoder-only framework using different type embeddings
(and self-attention masks) for the source side and the target side. For dialogue data, xi is
the i-th word of a dialogue history, and yi is the i-th word of the ground-truth response.
As mentioned before, “sos” represents “start of string”, which is utilized to predict the first
word in the response.

1.2.3. Sequence-to-Sequence Model

Encoder-Decoder Framework The encoder-decoder architecture encodes the input
and then generates the output with decoder. There are two typical implementations: RNN-
based and Transformer-based Seq2Seq models. For the former, the final hidden state of RNN
encoder, a vector encoding the context of full input, is passed to the RNN decoder. For the
latter, the output hidden states of Transformer encoder, |L| vectors, are all passed into the
Transformer decoder. Figure 1.2 (a) and (b) give an overview of these two frameworks.
There are also frameworks consisting of Transformer encoder (BERT) and RNN decoder as
we will introduced in Chapter 2.

Decoder-Only Framework This type of framework (see Figure 1.2 (c)) only uses a
decoder to model a sequence-to-sequence task. We are not aware of RNN-based decoder-
only framework probably because of the low capacity of RNN. In contrast, Transformer-
based decoder-only framework has shown to have superior performance in many sequence-
to-sequence tasks, including summarization [53] and dialogue generation (we will further
introduce this framework in Chapter 3). For Transformer, an explicit encoder may be re-
dundant, and we can concatenate the source and the target as the input of Transformer and
apply different types of embedding to distinguish them. In Chapter 3, we will also show that
when fine-tuning a pre-trained language model, a stacked encoder-decoder framework is less
efficient, and performs worse than a decoder-only framework.

1.2.4. Transfer Learning Methods

Sequential Training (Pre-training and Fine-tuning) Pre-training and fine-tuning
is of this type. The method starts from a pre-trained language model and sequentially,
i.e. one by one, fine-tunes it on each of the tasks, i.e. datasets. However, when subsequently
fine-tuning the model weights on new tasks, the problem of catastrophic forgetting [58] can
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arise, which results in loss of knowledge already learned from all previous tasks. Besides, it
is non-trivial to decide the order of tasks to be fine-tuned. In Chapter 4, we will explore
sequential training in details.

Multi-task Learning In this case, the model is trained for several tasks simultane-
ously, i.e. combing all the datasets into one for training, with the aim of learning a shared
representation that will enable the model to generalize well on each task.

However, multi-task learning requires access to all the tasks at the same time, making it
difficult to add more tasks on the fly. Furthermore, it is difficult to balance multiple tasks
and train a model that solves each task equally well. As has been shown in previous work
[41], these models often overfit on low resource tasks and underfit on high resource tasks.

Adapter Recently, Adapter [73, 33] has emerged as a solution that overcomes the
problems of catastrophic forgetting and imbalanced size of training sets. Adapter is a small
set of task-specific parameters upon a fixed base model. This is different from the pre-training
then fine-tuning paradigm, which modified the parameters of the whole model. Instead, an
adapter will create a small adapter model on top of the base model. A typical adapter layer
is a down projection (a linear layer) to a bottleneck dimension followed by an up projection
(another linear layer) to the initial dimension. For multi-task learning, since Adapters for
multiple tasks all share the same underlying base model, we can separately (then can be
parallel) train them. Notice that we cannot train an adapter together with a pre-trained
language model, but use the adapter upon another language model.

Many Adapter variants have been applied to diverse tasks including visual domain learn-
ing [73], language adaptation [6, 63], and knowledge infusion [93]. In Chapter 5, we will
show that Adapter can be applied to build a multi-skill dialogue model.

In this chapter, we have described briefly the basic neural network architectures used in
neural language modeling and dialogue systems. The description is intended to provide a
background to understand more easily our studies on different aspects of dialogue described in
the following chapters. We have not included all the technical details and refer the interested
readers to the specific papers for them.

33





Chapter 2

Leveraging Pre-trained LM for Task-oriented
Systems

This chapter presents methods to leverage pre-trained language model for Dialogue State
Tracking (DST), a core component in task-oriented dialogue systems. DST aims at determin-
ing the current dialogue state once a user input an utterance. Figure 2.1 shows an example
of dialogue state. The dialogue has some history (previous dialogue rounds), together with
the previous dialogue state detected (S1). Once the user inputs a new utterance (Usr in
D2), the goal of DST is to determine the dialogue state S2. In this example, we can see
that a dialogue state is composed of a set of triples (domain, slot, value). DST is critical to
task-oriented dialogue which aims to help the user to accomplish a task such as booking a
taxi or a restaurant. Only when the dialogue state is correctly determined can the task be
accomplished correctly.

In previous works, BERT only worked as an encoder, and an RNN decoder is then
stacked on it. Differently, we propose to use a single BERT model as both the encoder and
the decoder 1. It also has a flat encoder-decoder architecture allowing for more effective
parameter updating. Experimental results show that our approach achieves state-of-the-art
performance, and can converge to its best performance much faster and in a more stable
manner than the existing framework. Furthermore, as discussed in Chapter 1, such a gener-
ative framework can be extended to build a task-oriented dialogue system if employing the
idea of “text-to-text” to incorporate the other two tasks of task-oriented dialogue.

2.1. The Challenges of Dialogue State Tracking
DST is a core component in task-oriented dialogue systems. It aims at estimating the

user’s goal behind his utterance as the dialogue progresses. Accurate DST is crucial for
appropriate dialogue management, where the user intention is an important factor that

1The code is available at https://github.com/zengyan-97/Transformer-DST/

https://github.com/zengyan-97/Transformer-DST/


Fig. 2.1. An example of multi-domain DST.

determines the next system action. There are three challenges to build a DST model. First,
the conversation can relate to multiple domains, e.g. restaurant booking and taxi. Second, we
cannot pre-define slot values, e.g. the time when a taxi leaves a place, and thus an extractive
or generative model is necessary to determine the slot value dynamically. Third, DST is not
a genuine generative task, and we need to modify the generative framework to better adapt
to this task.

Figure 2.1 shows an example of multi-domain DST [8], where the goal is to predict the
dialog state, i.e. (domain, slot, value) tuples given the dialogue history and previous dialog
state. The state S1 corresponds to the utterance D1. Given the new user’s utterance in D2,
we aim at generating S2. This example is from the MultiWoz 2.0 and 2.1 datasets, which
will be used in our experiments.

Investigations on DST have started with ontology-based DST [31, 59], where all slots
and possible values are predefined in the ontology. However, it is often difficult to obtain a
large ontology in a real scenario [101]. Thus, recent studies focus on the open-vocabulary
setting [25, 107, 99], where the possible values are not pre-defined and need to be directly
extracted / generated from the input. The existing state-of-the-art generative framework
[37, 118, 105] decomposes DST into two sub-tasks: State Operation Prediction (SOP) and
Value Generation (VG). First, the encoder reads the dialogue history and previous dialogue
state, and decides whether the value of a (domain, slot) pair needs to be updated. Then, the
decoder generates a slot value for the (domain, slot) pair. This approach employs BERT [15]
as the encoder and stacks an RNN-based decoder upon BERT outputs. By exploiting BERT
as the encoder, this approach has substantially outperformed previous RNN-only framework
(RNN encoder and decoder) [99], and achieved new state-of-the-art performance.

However, in this generative framework, the two sub-tasks of DST, i.e. state operation
prediction and value generation, are not jointly optimized, which may lead to a sub-optimal
model. Specifically, the SOP objective only affects the BERT encoder, while the VG objective
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mainly affects the RNN decoder since the stacked encoder-decoder structure makes it less
effective in updating the BERT encoder parameters [53]. Besides, in the framework, the
encoder is pre-trained while the decoder is not. This second problem has been observed in
previous work [37], and the proposed solution is to employ two different optimizers for the
encoder and the decoder in the training process. The solution further separates the encoder
and the decoder, or the SOP and VG process, making it even more difficult to make a global
optimization. We will solve these problems in our work.

Third, when directly employing a powerful generative framework to DST, we observe,
however, that the model performance drops sharply. The possible reason is that DST is not
a genuine generation task that usually needs to cope with the entire input. For example,
generating a dialogue response needs to be consistent with the dialogue history, or translating
a sentence usually needs to translate each word on the encoder (input) side. In contrast, in
DST, the value to be generated is only related to a very small fraction of the model input
(within dialogue history and previous dialogue state) that usually consists of one or a few
tokens. In this case, asking the decoder to take into account all the encoder outputs may
blur the focus.

To solve this problem, we make the following adaptation by borrowing ideas from the
existing state-of-the-art framework of DST: For a specific (domain, slot) pair, our decoder
only re-uses the hidden states of the most relevant inputs. After an exhaustive search, our
experiments show that re-using dialogue of the current turn and the slot state for the specific
(domain, slot) pair yields the best performance, which substantially outperforms the previous
framework and only needs a half of the training iterations.

2.2. Related Work
Traditional DST approaches rely on ontology. They assume that the possible values

for each slot are pre-defined in an ontology and the problem of DST can be simplified
into a value classification/ranking task for each slot [31, 59, 112, 75, 68]. These studies
showed the great impact of ontology on DST. A recent work [83] combining ontology and
contextual hierarchical attention has achieved high performance on MultiWOZ 2.1. In real
application situations, however, one cannot always assume that an ontology is available
[101, 99]. In many cases, slot values are discovered through the conversation rather than
predefined (e.g. taxi departure time).

Open-vocabulary DST addresses this problem: it tries to extract or generate a slot value
from the dialogue history [42, 25, 74]. In this work, we focus on open-vocabulary DST.
However, many of the existing approaches did not efficiently perform DST since they generate
a value for each slot at every dialogue turn [99]. In contrast, some works [74, 37] used a
more efficient approach that decomposes DST into two successive sub-tasks: state operation
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Fig. 2.2. (a) Overview of the RNN-based framework. (b) The SOTA generative framework
that employs a BERT encoder and a RNN decoder. In both frameworks, the decoder is
stacked upon the encoder outputs.

prediction and value generation. Many recent works [118, 105] are built upon this approach.
However, these models do not jointly optimize the two sub-tasks, which may lead to a sub-
optimal model since the performance of one process directly influences the performance of
another process. For example, only when a slot indeed needs updating would generating a
new value for it be meaningful. We will solve this problem in this work.

Studies on open-vocabulary DST have started with RNN-based encoder-decoder archi-
tecture as shown in Figure 2.2 (a). For example, previous work [99] encodes the dialogue
history using a bi-directional GRU and decodes the value using a copy-based GRU decoder.
Some recent studies have used pre-trained BERT as the encoder [107, 74, 37] to leverage
the rich general linguistic features encoded in BERT as shown in Figure 2.2 (b). The ex-
isting state-of-art generative framework, SOM-DST[37], utilizes BERT as the encoder to
predict state operations, and an RNN decoder stacked upon BERT to generate values. This
gives rise to the separate training problems of the two processes we discussed earlier. Dif-
ferent from this approach, we use a single BERT as both the encoder and the decoder, and
jointly optimize it with the SOP and VG objective. Furthermore, we also propose a flat
encoder-decoder structure instead of stacked encoder-decoder, by re-using hidden states of
the encoder in the self-attention mechanism of the corresponding decoder layers. This will
lead to more effective updating of the encoder parameters [53].

Recently, Tripy [30], an extractive approach with 2 memory networks, and SimpleTOD
[32], a language model, have also achieved high performance on MultiWoz 2.1. SimpleTOD
adapts the idea of “text-to-text” [66, 67, 36] specifically to task-oriented dialogue, and
applies multi-task learning on 3 subtasks of task-oriented dialogue including DST. DST can
thus benefit from the two other sub-tasks. In addition, a much larger pre-trained language
model (GPT-2) is used. In our work, we aim at developing a DST model that does not
require a large amount of extra resource and can operate efficiently. This is because DST is
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Fig. 2.3. (Left) The state operation prediction process, where the model (as the encoder)
applies bi-directional self-attention mask. (Right) The value generation process for j-th
(domain, slot) pair, where the model (as the decoder) applies left-to-right attention and
re-uses the hidden states of the encoder in the corresponding decoder layers. The training
objective is the sum of the state operation prediction loss and the value generation loss.

an intermediate task serving another end task (conversation). To be usable in real scenarios,
the DST model should be both time- and memory-efficient.

2.3. Purely Transformer-based Framework
To solve the problems in previous works, we propose a purely Transformer-based frame-

work for DST that exploits a single BERT as both the encoder and the decoder. When used
as encoder, it processes state operation prediction as in previous works. When using it as
decoder, we utilize different input representations to denote the target (decoding) side and
left-to-right self-attention mask (i.e. attention is allowed only to previous positions) to avoid
information leak. Therefore, the SOP objective and the VG objective affect both the en-
coder and the decoder, i.e. jointly fine-tuning this BERT for DST. Furthermore, instead of a
stacked encoder-decoder structure as in previous studies, whose parameters cannot be effec-
tively updated, we propose a flat structure by re-using the hidden states of the encoder in the
self-attention mechanism of the corresponding decoder layers to make parameter updating
in encoder more effective. Figure 2.3 gives an overview of our framework.

For multi-domain DST, a conversation with T turns can be represented as
(D1, S1), (D2, S2), ..., (DT , ST ), where Dt is the t-th dialogue turn consisting of a sys-
tem utterance and a user response, St is the corresponding dialogue state. We define St as
a set of (dj, sj, vj)|1 ≤ j ≤ J , where J is the total number of (domain, slot) pairs, i.e. St
records slot values of all (domain, slot) pairs. If no information is given about (dj, sj), vj
is NULL. The goal of DST is to predict St given {(D1, S1), ..., (Dt−1, St−1), (Dt)}, i.e. we
want to generate the state for the current turn t of dialogue, given the dialogue history and
previous dialogue state. Following previous work [37], we only use Dt−1, Dt, and St−1 to
predict St.
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2.3.1. State Operation Prediction

Encoder The input to the encoder is the concatenation of Dt−1, Dt, and St−1. Each
(dj, sj, vj) tuple in St−1 is represented by [SLOT]⊕dj ⊕ − ⊕ sj ⊕ − ⊕ vj, where ⊕ denotes
token concatenation, and [SLOT] and − are separation symbols. Notice that sj and vj might
consist of several tokens. As illustrated in Figure 2.3, the representations at [SLOT] position
{xLslj |1 ≤ j ≤ J} are used for state operation prediction. Then, we expect the hidden states
at [SLOT] positions are able to aggregate the information from the corresponding (d, s, v)
tuples. For example, each xlslj aggregates information of (dj, sj, vj).

The input representation, i.e. X0, is the sum of token embedding, position embedding,
and type embedding at each position. We apply type embeddings to introduce a separation
between encoder side and decoder side. The multi-layer Transformer updates hidden states
via: Xi = Transi(Xi−1), i ∈ [1,L]. Specifically, within a Transformer Block, the multi-head
self-attention mechanism is:

Cl = Concat(head1, ...,headh) (2.3.1)

headj = softmax(
QjKT

j√
dk

+ Mx)Vj (2.3.2)

where Qj,Kj,Vj ∈ Rn×dk are obtained by transforming Xl−1 ∈ R|x|×dh using
WQ

j ,WK
j ,WV

j ∈ Rdh×dk respectively. The self-attention mask matrix Mx ∈ R|x|×|x|

(with Mx
ij ∈ {0,−∞}) determines whether a position can attend to other positions.

Namely, Mx
ij = 0 allows the i-th position to attend to j-th position and Mx

ij = −∞ prevents
from it. In the state operation prediction process, Mx

ij = 0 ∀i, j.
Some hidden states of the encoder will be re-used in the decoder. The outputs of encoder

are denoted as XL = [xLcls,xL1 , ...,xLsl1 , ...,x
L
slJ
, ...], which will be used for operation prediction.

Objective Following previous works [25, 37], we use four discrete state operations:
CARRYOVER, DELETE, DONTCARE, and UPDATE. Based on the encoder outputs
{xLslj |1 ≤ j ≤ J}, a MLP layer performs operation classification for each [SLOT]. Specifi-
cally, CARRYOVER means to keep the slot value unchanged; DELETE changes the value
to NULL; and DONTCARE changes the value to DONTCARE, which means that the slot
neither needs to be tracked nor considered important at this turn [99]. Only when UPDATE
is predicted does the decoder generate a new slot value for the (domain, slot) pair.

2.3.2. Slot Value Generation

Decoder It applies different type embeddings to represent its input and left-to-right self-
attention mask for generation to avoid information leak. The decoder re-uses 2 the hidden

2Re-using means the hidden states do not need to be calculated again in the decoder. In inference, the input
of the decoder is only [BOS] to denote the beginning of the string.
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states of encoder in the multi-head self-attention mechanism to construct a flat encoder-
decoder structure making parameter updating in the encoder more effective:

Qj = Yl−1WQ
j (2.3.3)

K̂j = concat([X̂l−1,Yl−1])WK
j (2.3.4)

V̂j = concat([X̂l−1,Yl−1])WV
j (2.3.5)

headj = softmax(
QjK̂T

j√
dk

+ My)V̂j (2.3.6)

where Qj ∈ R|y|×dk , and K̂j, V̂j ∈ R(|x̂|+|y|)×dk . |x̂| is the length of X̂ that is the re-used
encoder hidden states . In the decoder, the self-attention mask matrix is My ∈ Ry×(|x̂|+|y|)

and we set My
ij = 0 if j ≤ i.

Note that the re-used hidden states of the encoder have already encoded the entire
input to some extent because of the bi-directional attention applied. We will show in the
experiments that re-using only the current turn of dialogue Dt and j-th [SLOT], i.e. xlslj , l ∈
{1, L}, (if updating value for the j-th slot) achieves the best performance.

Objective The objective of the value generation process is the auto-regressive loss of
generated slot values compared to the ground-truth slot values as in the previous works. We
use teacher forcing all the time. The final training objective is the sum of the state operation
prediction loss and the value generation loss.

2.4. Experiment Settings
2.4.1. Datasets

To evaluate the effectiveness of our approach, we use MultiWOZ 2.0 [8] and MultiWOZ
2.1 [21] in our experiments. These datasets introduce a new DST task – DST in mixed-
domain conversations. For example, a user can start a conversation by asking to book a
hotel, then book a taxi, and finally reserve a restaurant. MultiWOZ 2.1 is a corrected
version of MultiWOZ 2.0. Following previous work [37], we use the script provided by
previous work [99] to preprocess the datasets. The final test datasets contain 5 domains,
17 slots, 30 (domain, slot) pairs, and more than 4500 different values. Some statistics of
MultiWOZ 2.1 are reported in Table 2.2. Table 2.1 shows the frequency of transitions from
one domain to another in a dialogue (maximum 3 domains).
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Domain Transition
First Second Third Count
restaurant train - 87
attraction train - 80
hotel - - 71
train attraction - 71
train hotel - 70
restaurant - - 64
train restaurant - 62
hotel train - 57
taxi - - 51
attraction restaurant - 38
restaurant attraction taxi 35
restaurant attraction - 31
train - - 31
hotel attraction - 27
restaurant hotel - 27
restaurant hotel taxi 26
attraction hotel taxi 24
attraction restaurant taxi 23
hotel restaurant - 22
attraction hotel - 20
hotel attraction taxi 16
hotel restaurant taxi 10

Table 2.1. Statistics of domain transitions that correspond to more than 10 dialogues in
the test set of MultiWOZ 2.1. Train domain always co-occurs with another domain. Taxi
always co-occurs with two other domains.

Domain Slots Train Valid Test
Attraction area, name, type 8,073 1,220 1,256
Hotel price range, type, parking, book stay, book day, 14,793 1,781 1,756

book people, area, stars, internet, name
Restaurant food, price range, area, name, book time, book day, 15,367 1,708 1,726

book people
Taxi leave at, destination, departure, arrive by 4,618 690 654
Train destination, day, departure, arrive by, book people, 12,133 1,972 1,976

leave at
Table 2.2. Data statistics of MultiWOZ 2.1 including domain and slot types and number
of turns in train, valid, and test set.

2.4.2. Implementation Details

Our model is initialized with BERT (base, uncased), and it works as both the encoder
and the decoder. We set the learning rate and warmup proportion to 3e-5 and 0.1. We use
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a batch size of 16. The model is trained on a P100 GPU device for 15 epochs (a half of
the iterations of SOM-DST). We use 42 as the random seed. With it, we can reproduce
our experimental results. In the inference, we use the previously predicted dialogue state as
input instead of the ground-truth, and we use greedy decoding to generate slot values.

2.4.3. Baselines

We compare the performance of our model, called Transformer-DST, with both ontology-
based models and open vocabulary-based models.

FJST [21] uses a bi-directional LSTM to encode the dialogue history and a feed-forward
network to choose the value of each slot.

HJST [21] encodes the dialogue history using an LSTM like FJST but utilizes a hierar-
chical network.

SUMBT [40] uses BERT to initialize the encoder. Then, it scores each candidate slot-
value pair using a non-parametric distance measure.

HyST [27] utilizes a hierarchical RNN encoder and a hybrid approach to incorporate
both ontology-based and open vocabulary-based settings.

DS-DST [107] uses two BERT-based encoders and designs a hybrid approach for
ontology-based DST and open vocabulary DST. It defines picklist-based slots for classifi-
cation similarly to SUMBT and span-based slots for span extraction as DST Reader.

DST-Picklist [107] uses a similar architecture to DS-DST, but it performs only prede-
fined ontology-based DST by considering all slots as picklist-based slots.

DSTQA [116] formulates DST as a question answering problem – it generates a question
asking for the value of each (domain, slot) pair. It heavily relies on a predefined ontology.

SST [13] utilizes a graph attention matching network to fuse utterances and schema
graphs, and a recurrent graph attention network to control state updating.

CHAN-DST [83] employs a contextual hierarchical attention network based on BERT
and uses an adaptive objective to alleviate the slot imbalance problem by dynamically adjust
the weights of slots during training.

DST-Reader [25] formulates the problem of DST as an extractive question answering
task – it uses BERT contextualized word embeddings and extracts slot values from the input
by predicting spans.

DST-Span [107] applies BERT as the encoder and then uses a question-answering
method similar to DST-Reader.

TRADE [99] encodes the dialogue history using a bi-directional GRU and decodes the
value for each state using a copy-based GRU decoder.

NADST [39] uses a transformer-based non-autoregressive decoder to generate the cur-
rent state.
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Model BERT used MultiWOZ 2.0 MultiWOZ 2.1
HJST [21] 38.40 35.55
FJST [21] 40.20 38.00

predefined SUMBT [40]
√

42.40 -
ontology HyST [27] 42.33 38.10

DS-DST [107]
√

- 51.21
DST-Picklist [107]

√
- 53.30

DSTQA [116] 51.44 51.17
SST [13] 51.17 55.23
CHAN-DST [83]

√
52.68 58.55

DST-Reader [26] 39.41 36.40
DST-Span [107]

√
- 40.39

TRADE [99] 48.60 45.60
open- COMER [74]

√
48.79 -

vocabulary NADST [39] 50.52 49.04
SAS [34] 51.03 -
SOM-DST [37]

√
51.72 53.01

CSFN-DST [118]
√

52.23 53.19
Craph-DST [105]

√
52.78 53.85

Transformer-DST (ours)
√

54.64 55.35
Table 2.3. Joint goal accuracy (%) on the test set of MultiWOZ. Results for the baselines
are taken from their original papers.

Model Attr. Hotel Rest. Taxi Train
SOM-DST 69.83 49.53 65.72 59.96 70.36
Graph-DST 68.06 51.16 64.43 57.32 73.82
Ours 71.11 52.01 69.54 55.92 72.40

Table 2.4. Domain-specific joint goal accuracy on MultiWOZ 2.1.

SAS [34] uses slot attention and slot information sharing to reduce redundant informa-
tion’s interference and improve long dialogue context tracking.

COMER [74] uses BERT-large as the encoder and a hierarchical LSTM decoder.
SOM-DST [37] employs BERT as the encoder and a copy-based RNN decoder upon

BERT outputs.
CSFN-DST [118] introduces the Schema Graph considering relations among domains

and slots. Their model is built upon SOM-DST.
Graph-DST [105] introduces the Dialogue State Graph in which domains, slots and

values from the previous dialogue state are connected. They instantiate their approach upon
SOM-DST for experiments.
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Fig. 2.4. The joint goal accuracy of Transformer-DST and SOM-DST on MultiWOZ 2.1.

2.5. Results
We report the joint goal accuracy of our model and the baselines on MultiWOZ 2.0 and

MultiWOZ 2.1 in Table 2.3. Joint goal accuracy measures whether all slot values predicted
at a turn exactly match the ground truth values. That is, a correct prediction should detect
the right domain, slot and value. The joint goal accuracy is the rate of the correct detection
over all the slots in the ground truth. The accuracy of baseline models is taken from their
original papers.

As shown in the table, our Transformer-DST model achieves the highest joint goal ac-
curacy among open-vocabulary DST: 54.64% on MultiWOZ 2.0 and 55.35% on MultiWOZ
2.1. Our model even outperforms all ontology-based methods on MultiWOZ 2.0. Recall
that these latter benefit from the additional prior knowledge, which simplifies DST into a
classification/ranking task.

In Table 2.4, we show the joint goal accuracy for each domain. The results show that
Transformer-DST outperforms previous state-of-the-art framework (SOM-DST) in all do-
mains except in Taxi. Graph-DST based on SOM-DST introduces the Dialogue State Graph
to encode co-occurrence relations between domain-domain, slot-slot and domain-slot. This
method outperforms our approach in Taxi and Train domains. According to the statistics
about domains, we can see that Taxi and Train frequently co-occur with other domains.
Therefore, leveraging extra knowledge about co-occurrence relations is particularly helpful
for these domains. Our Transformer-DST does not exploit such knowledge that, however,
could be added in the future.

In the following sub-sections, we will examine several questions: 1) how does joint opti-
mization help the model to converge fast? 2) what is the model efficiency? 3) what is the
impact of re-using different parts of the model input?

2.5.1. Joint Optimization Effectiveness

Figure 2.4 shows the joint goal accuracy on training set (5k samples) and test set of each
epoch. We train Transformer-DST for 15 epochs and SOM-DST for 30 epochs as suggested in
the original paper. We can observe that our model performance increases faster than SOM-
DST at the beginning, and from 5th to 15th epoch the increase rate of the two frameworks
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Model Accuracy Latency
TRADE 45.60 450ms
NADST 49.04 35ms
SOM-DST 53.01 50ms
Transformer-DST (Ours) 55.35 210ms

Table 2.5. Average inference time per dialogue turn on MultiWOZ 2.1 test set.

are close. At about 15th epoch, our performance generally stops increasing on both training
set and test set.

Our model achieves 54% joint goal accuracy on the test set at 9th epoch, which already
outperforms SOM-DST after 30 epochs. In contrast, SOM-DST does not outperform our
model (15th epoch) on the training set until 22th epoch. On the test set, SOM-DST perfor-
mance increases very slowly and is consistently worse than ours. These results suggest that
SOM-DST at 30th epoch suffers more from the over-fitting problem than our model. We
also observe that its performance fluctuates at the end.

We also observe that both the training and test curves of our framework are smoother
than SOM-DST. The same observation is also made on MultiWOZ 2.0. This indicates that
our training process is more stable and robust.

2.5.2. Inference Efficiency Analysis

As we have shown that our approach needs much fewer training iterations to achieve
state-of-the-art performance, we further analyze its time efficiency at inference/test time.
We show in Table 2.5 the latency of our method and some typical models measured on P100
GPU with a batch size of 1. Since our approach first predicts state operation, it is about 2
times faster than TRADE that generates the values of all the (domain, slot) pairs at every
turn of dialogue. However, Transformer-DST utilizes a multi-layer Transformer (12 layers)
for decoding, which makes it 4 times slower than SOM-DST. Overall, when latency is a
critical factor in an application, it may be better to use SOM-DST or even NADST (using
non-autoregressive decoder). In other cases or if we have a fast GPU device, the gain in
accuracy of Transformer-DST is worth the higher cost in time.

2.5.3. Required Resource Analysis

The goal of our study is to improve DST without incurring much increase in resources. In
parallel, several recent studies have explored using much larger resources for DST. Namely,
Tripy [30] and SimpleTOD [32] also achieve high performance on MultiWoz 2.1 with joint
goal accuracy of 55.30% and 55.76% respectively. However, these high performances are
obtained at the cost of much higher resource requirements. This is why we have not discussed

46



Model Input Len Params Resource
Tripy 512 BERT+2xMem >2
SimpleTOD 1024 GPT-2 ∼50
Ours 256 BERT 1

Table 2.6. Efficiency analysis of state-of-the-art approaches via comparing resource usage.
BERT (base, uncased) we used has 110M parameters, while GPT-2 has 1.5B parameters.

them in previous subsections. Here, we compare our model with these two models in terms
of cost-effectiveness.

Extra Knowledge Tripy uses auxiliary features. Without these extra features, Tripy
only obtains 52.58% joint goal accuracy. SimpleTOD, a multi-task learning approach, also
uses extra knowledge, i.e. supervision information from two other tasks closely related to
DST. While our approach do not utilize any extra knowledge, the same extra knowledge
could also be incorporated and would further boost the performance on DST.

Dialogue History Both Tripy and SimpleTOD utilize much longer dialogue history as
model input, which is important for their models to achieve the state-of-the-art performance
as reported. Encoding longer dialogue history is time-consuming and takes several times
more GPU memories. To avoid this and to keep the whole process efficient, we utilize the
predicted previous dialogue state as a compact representation of the dialogue history. Even
with such a noisy input, our model can still achieve the state-of-the-art performance.

GPU Usage According to the input length and the amount of model parameters, we
estimated the GPU resources (number of GPUs) needed by each approach as listed in Table
2.6. As mentioned, our approach only needs one P100 GPU for training. In contrast,
although SimpleTOD is indeed simple, the GPT-2 it used is 13.6 times larger than the
BERT we used. The large model is critical to this approach, as the authors also reported
that the performance drops if a smaller pre-training model is used instead - with DistilGPT-
2, still 8.6 times larger than our BERT, they only obtained 54.54% in joint goal accuracy.
Therefore, our approach requires much less computation resources.

2.5.4. Re-Use Hidden States of Encoder

In our preliminary experiments, we re-use all hidden states of the encoder in the decoder,
and the model performance drops sharply comparing to SOM-DST. Since DST is not a
genuine generation task such as dialogue response generation that requires to be consistent
with the entire dialogue history or machine translation in which every word on the source
side needs to be translated, we consider re-using only a fraction of the hidden states. In
SOM-DST, the RNN decoder only uses xLcls (the final hidden state at the first position) as
the summary of the entire model input and xLslj (the final hidden state at the j-th [SLOT]
position) as the summary of the j-th (domain, slot, value). Inspired by this, we conduct
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Transformer-DST Joint Accuracy
Full re-use 27.83
Dt−1+Dt+[SLOT] 53.08
Dt+[SLOT] 55.35
[CLS]+[SLOT] 53.95
[SLOT]+(d,s) 53.83
[SLOT] 53.03
Dt+[SLOT]+(d,s,v) 52.67
Dt+[SLOT]+(d,s) 52.40

Table 2.7. Joint goal accuracy on MultiWOZ 2.1 by re-using different encoder’s states in
the decoder.

an exhaustive search on which hidden states should be re-used. The results are listed in
Table 2.7. We can see that re-using encoding hidden states of the current dialogue turn Dt

and j-th [SLOT] achieves the best performance. Re-using more encoding hidden states may
introduce additional noises.

2.6. Conclusion and Future Work
The existing state-of-the-art generative framework to DST in open-vocabulary setting

exploited BERT encoder and copy-based RNN decoder. The encoder predicts state oper-
ation, and then the decoder generates new slot values. However, the operation prediction
objective affects only the BERT encoder and the value generation objective mainly influences
the RNN decoder because of the stacked model structure.

In this chapter, we proposed a purely Transformer-based framework that uses BERT for
both the encoder and the decoder. The operation prediction process and the value generation
process are jointly optimized. In decoding, we re-use the hidden states of the encoder in
the self-attention mechanism of the corresponding decoder layers to construct a flat encoder-
decoder structure for effective parameter updating. Our experiments on MultiWOZ datasets
show that our model substantially outperforms the existing framework, and it also achieves
very competitive performance to the best ontology-based approaches.

Some previous works in DST has successfully exploited extra knowledge, e.g. Schema
Graph or Dialogue State Graph. Such a graph could also be incorporated into our framework
to further enhance its performance. We leave it to future work.

Despite the fact that our approach can achieve state-of-the-art performance, we can
notice that the joint accuracy rates are around 55% on the two collections. This shows that
DST is a difficult task. In particular, in the case of open-domain DST, the detection of slot
values is very difficult. In the ideal case, the dialogue system should capture exactly what
the user says in order to place an order. This is still far from the case with the current
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approaches. Therefore, more investigations are required before the dialogue systems can be
put into practical utilization.
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Chapter 3

Leveraging Pre-trained LM for Generative
Chatbots

RNN-based Seq2Seq model is known to generate bland responses, e.g. “I don’t know what you
mean”. Recently, models based on Generative Pre-training (GPT) have shown to generate
fluent and diverse responses. Further, some works have even fine-tuned BERT, a well-known
bi-directional encoder, for dialogue generation tasks. In this chapter, we compare 4 frame-
works proposed in the literature that utilize pre-trained language models for open-domain
dialogue generation on 3 public datasets, each in large and small scale, and we analyze each
framework based on the experimental results. Through extensive experiments, we observe
pretrain-finetune discrepancy and finetune-generation discrepancy of each framework. Then,
we propose two methods to reduce discrepancies, yielding improved performance. It is the
first investigation that shows explicitly the phenomenon of model discrepancy and its impact
on performance.

Notice that even though recent studies have explored pre-training dialogue models using
large-scale Reddit/Twitter data [1, 77] (it is then straightforward to fine-tune the models for
a specific dialogue task), in practice, there may not always be enough data for pre-training.
In some cases, we still need to exploit a pre-trained LM. For example, some studies do further
pre-training for dialogue based on a pre-trained LM [109, 18, 4, 86], and some studies that
do multi-task learning (e.g. on dialogue and question answering) can only fine-tune based on
a pre-trained LM [50, 104]. Therefore, understanding how a pre-trained model can be best
used in a dialogue task is crucial.

To give a better idea of what a chatbot system is required to generate, we provide a
simple example in Table 3.1. The chatbot receives a user’s utterance denoted as Dialogue
History, and is asked to generate a response. The gold response in the dataset (the one
given by another human being) is Gold Response. Notice that some of the tokens in the
input and gold response have been replaced by their types (e.g. <num> and <person>)
because it is difficult for a model to generate automatically the specific value for them. We



Dialogue History one week before election day , early voting is nearly twice as high as <num>
Gold Response i hope it ’s <person> out in full force .
Trans-ED i am not sure what you are talking about , but it ’s a good thing that

<person> is going to win .
Trans-Dec that ’s not true . early voting in nyc is times higher than the

national average
Trans-MLM it ’s not even close to <num> % of the vote . i am sure you are right , but

there is a huge difference between early voting and <person> voter
suppression in ca

Trans-AR it ’s not that high , but i am sure there will be a lot of voter fraud .
Table 3.1. Sample responses generated by a chatbot.

Fig. 3.1. i-th Transformer Block and two M settings represented in two ways. Shaded areas
are blocked.

show the responses generated by four common models: Trans-ED, Trans-Dec, Trans-MLM
and Trans-AR (which will be described in more details later). The quality of the response
generated by a model is measured according to how it corresponds to the gold response (using
automatic metrics such as BLEU), or using a manual evaluation to rate how reasonable the
response is.

3.1. Multi-Layer Transformer
In this section, we recall some background knowledge on Transformer. We will introduce

four frameworks that all consist of 12 Transformer blocks: Transformer-ED, Transformer-
Dec, Transformer-MLM and Transformer-AR. More details about them will be introduced
later. Figure 3.1 (a) shows a general architecture of a Transformer layer, where the most
important component is the masked multi-head self-attention. The setting of attention
masks is the largest difference between Transformer-Dec and Transformer-AR (which will
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be detailed later) and it is also the most critical part to implement our discrepancy-free
methods.

A dialogue history is denoted by x, and a corresponding response is denoted by y. The
input to the multi-layer transformer is the concatenation of dialogue history and the re-
sponse. When using MLM objective, the response is randomly masked. The input rep-
resentation H0 ∈ Rn×dh , where n is the input length and dh is the hidden dimension
(which is set at 768 in our experiments), is the sum of token embedding, position em-
bedding, and type embedding at each position. The type embeddings introduce a sepa-
ration between encoder/source side and decoder/target side in order to warrant different
treatments in the model. Then, H0 is encoded into hidden representations of i-th layer
Hi = [hi1, ...,hin] by: Hi = Transi(Hi−1), i ∈ [1,L], where Transi denotes the i-th Trans-
former Block as shown in Figure 3.1(Left). The core component of a transformer block is
the masked multi-head attention, whose outputs are Ci = [ci1, ...,cin] that are computed via
Ci = Concat(head1, ...,headh), with

headj = softmax(
QjKT

j√
dk

+ M)Vj (3.1.1)

where Qj,Kj,Vj ∈ Rn×dk are obtained by transforming Hi−1 ∈ Rn×dh using
WQ

j ,WK
j ,WV

j ∈ Rdh×dk respectively. M ∈ Rn×n is the self-attention mask ma-
trix that determines whether a position can attend to other positions. Mij ∈ {0,−∞}. In
particular, Mij = 0 allows the i-th position to attend to j-th position and Mij = −∞ pre-
vents from it. Figure 3.1 (b&c) shows two M settings that are applied by Trans-MLM/AR
and Trans-Dec respectively.

3.2. Pre-training Based Frameworks
It has been shown that leveraging a pre-trained Language Model (LM) based on trans-

former can achieve excellent performance for dialogue generation [97]. Different approaches
have been proposed recently, which can be categorized into 4 frameworks (see Fig. 3.2):

• Transformer-ED [111], an encoder-decoder Transformer;
• Transformer-Dec [97, 50], which uses Transformer only for decoder;
• Transformer-MLM [18], which uses Transformer with masked language model objec-
tive;
• and Transformer-AR [4, 86], which uses Transformer with autoregressive objective.

The latter three all utilize a decoder-only architecture. Besides, Trans-Dec uses left-to-
right attention for both source and target side, while Trans-MLM and Trans-AR employ
bi-directional attention on the source side to encode dialogue history. Due to this differ-
ence, Trans-Dec only utilizes left-to-right pre-trained models, e.g. GPT-2 [66], while Trans-
MLM/AR are based on the pre-trained models applying bi-directional attention (on the
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Fig. 3.2. Architectures of 4 pre-training based Transformers for dialogue generation.

Trans-ED Trans-Dec Trans-MLM Trans-AR
Pre-trained LM GPT GPT-2 BERT BERT
Architecture encoder-decoder decoder-only decoder-only decoder-only
Source Side Attn. bi-directional left-to-right bi-directional bi-directional
Target Side Attn. left-to-right left-to-right left-to-right left-to-right
Objective auto-regressive auto-regressive Masked-LM auto-regressive

Table 3.2. Key characteristics of the 4 pre-training based Transformers. Characteristics
in red are inconsistent between pre-training and fine-tuning.

source side), e.g. BERT [15]. The difference between Trans-MLM and Trans-AR is that
Trans-MLM uses masked language modeling while Trans-AR uses auto-regressive objective.

Then, a critical question is how to best exploit a pre-trained LM for dialogue generation.
On this question, we have contradictory beliefs in the literature: some researchers believe
that Trans-Dec is appropriate because it uses a left-to-right language model that corresponds
well to the dialogue generation task [109, 50], while some others [18, 4] show that Trans-
MLM/AR fine-tuning BERT can also achieve state-of-the-art performance. We will explore
this question through experiments in this work.

We start with a brief description of the 4 frameworks for dialogue generation based on pre-
trained language models. We examine the pretrain-finetune discrepancy of each framework.
Figure 3.2 and Table 3.2 provide an overview.

3.2.1. Model Discrepancy

The concept of model discrepancy has been briefly mentioned in XLNet [103] to mean
that the model has been trained in a way, but used in a different way. However, the problem
has not been investigated in depth. In this work, we go further in this direction and define
two discrepancies: pretrain-finetune discrepancy which means the differences in archi-
tecture and loss function between pre-training and fine-tuning, and finetune-generation
discrepancy which means that the way the model is used in generation (inference/test) is
different from the way it has been trained. Discrepancies might affect the model performance
since models with such discrepancies cannot best exploit the pre-trained model or employ
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the fine-tuned model. For the 4 frameworks, except Trans-Dec, they all have some pretrain-
finetune discrepancies. For example, Trans-AR relies on a BERT model pre-trained using
bidirectional attention, but has to limit it to left-to-right attention on the target side during
fine-tuning. Only Trans-MLM has finetune-generation discrepancy because of MLM objec-
tive: during training, the model input has random masks, while in the generation process,
the input does not contain masks.

3.2.2. Transformer-ED

Trans-ED discussed in this paper is an encoder-decoder architecture used by ConvAI2
[16] champion 1. The decoder of Trans-ED is stacked upon the encoder outputs, while in
other decoder-only frameworks, the hidden states of each encoder layer are all utilized in
the decoding part. The framework shares the encoder and the decoder and initializes the
parameters with GPT [65]. In this case, the pretrain-finetune discrepancy comes from the bi-
directional attention in encoder since GPT is a left-to-right language model. This framework
is not commonly used for fine-tuning on a dialogue task. In practice, more efficient variants
of Trans-ED are recently used for extremely large-scale dialogue pre-training from scratch.
For example, some work [1] utilizes Evolved Transformer to prune redundant connections,
and some [77] employs only 2 encoder layers and 24 decoder layers of standard Transformer
[91].

3.2.3. Transformer-Dec

Trans-Dec is a left-to-right decoder-only architecture, and it utilizes GPT-2 [66]. Thus,
there is no pretrain-finetune discrepancy in terms of architecture and loss function. This
framework is widely applied for fine-tuning on a dialogue task. However, it encodes dialogue
history using only left-to-right attention, which limits the scope of context, resulting in a
partial context modeling.

3.2.4. Transformer-MLM and AR

These two frameworks have an identical decoder-only architecture 2 that employs dif-
ferent self-attention masks for the source and target side: they use bi-directional attention
on the source side to encode dialogue history and left-to-right attention on the target side.
The only difference between them is the objective function: Trans-MLM masks some tokens
at the target side and tries to predict them, while Trans-AR uses auto-regressive objective
that tries to predict the next tokens successively. BERT is often exploited by the two frame-
works, which is a bi-directional architecture using MLM as the pre-training objective. Thus,

1https://github.com/atselousov/transformer_chatbot
2Since the architecture is not stacked encoder-decoder, we categorize it into decoder-only.
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Twitter Ubuntu Reddit
Train Set 2M 1.5M 3M
Valid Set 60K 30K 80K
Test Set 20K 20K 20K

Table 3.3. Key characteristics of the three public datasets. For each dataset, we also
evaluate model performance using 100K training data and the same test set.

the pretrain-finetune discrepancy of Trans-MLM/AR comes from the left-to-right attention
on the target side. Additionally, Trans-AR applies the auto-regressive objective, which is
different from the MLM used in the pre-training.

3.2.5. Applications of the Frameworks

The frameworks we described have been widely applied to dialogue generation. For
personalized response generation, some [97] uses Trans-Dec and some [111] utilizes Trans-
ED. Some [51] uses Trans-Dec for empathetic response generation. Some [104] proposes
a multi-task learning approach based on Trans-MLM for conditioned dialogue generation.
Meanwhile, some studies propose to further pre-train the model using large-scale dialogue
data based on a pre-trained language model: Some [109] trains Trans-Dec on 147M Reddit
data based on GPT-2, some [18] trains Trans-MLM on natural language understanding and
generation datasets based on BERT, some [86] trains Trans-AR on large-scale Reddit data
and then jointly trains on 12 dialogue sub-tasks based on BERT, and some [4] trains a variant
of Trans-AR on large-scale Reddit and Twitter data based on BERT. Some recent studies
have increased the model size to billions of parameters and utilize even more training data,
e.g. Reddit, to train a conversational model from scratch. Some works [1, 77] use variants
of Trans-ED and some [5] employs a variant of Trans-AR.

In general, these studies show that all the 4 frameworks can produce good results, and
increasing the model size and training data is an effective method to further improve per-
formance. However, behind the success story, the question of suitability of a framework
is overlooked. To investigate this question, we do not follow the current trend to increase
the model size and training data. Instead, we are interested in the behaviors of different
frameworks on the same datasets and to understand the reasons.

3.3. Experiments and Results
3.3.1. Datasets

We use three large-scale unlabeled dialogue datasets. Some important characteristics of
the datasets are summarized in Table 3.3. We are interested in the behaviors of the models
in two cases: 1) further pre-training on large dialogue data based on a pre-trained LM;
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Model Pre-trained LM Data
Trans-ED GPT [65] BooksCorpus
Trans-Dec GPT-2 small [66] WebText
Trans-MLM/AR BERT base [15] BooksCorpus, English Wikipedia

Table 3.4. The text data used for language model pre-training.

Model Params Runtime
SEQ2SEQ-MMI 66M 50
HRED-MMI 58M 25
Trans-ED 117M 180
Trans-Dec 117M 290
Trans-MLM 110M 140
Trans-AR 110M 140
PF&FG-free 110M 140

Table 3.5. The number of parameters of each tested approach and the average runtime
(minutes) for every million training samples. The runtime is tested using a 1080Ti GPU
device, and the batch size is set to take all of the GPU memories. Notice that the runtime
will be influenced by code implementation in addition to model structure.

and 2) fine-tuning on a small dialogue corpus based on a pre-trained LM. Our large datasets
contain a few million samples, and the small datasets consist of 100K samples3. Although the
datasets are smaller than those used in several previous studies, we believe that a comparison
of different models on the same data, and the contrast between large and small datasets, can
reveal interesting trends, which we will explain with respect to discrepancies.

Specifically, we choose the following 3 datasets: Twitter Dialogue Corpus 4 is collected
from Twitter consisting of 2.6M (message, response) pairs. We filtered out samples with
dialogue history (/context) length longer than 72 words (i.e. the previous rounds of dialogue
longer than 72 words are filtered out due to limit the computation) or shorter than 6 words
(not enough information). Samples whose response is longer than 36 words or shorter than 6
words are also removed. As a result, 2M samples are kept. Reddit Conversational Corpus
5[20] is a 3-turn conversational dataset collected from 95 selected subreddits. Ubuntu
Dialogue Corpus V2.0 6 [55] contains two-person conversations extracted from the Ubuntu
chat logs of technical support for various Ubuntu-related problems.
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3.3.2. Implementation Details

We use open-source implementations for all four frameworks. Only minor adaptations
(e.g. for data loading) have been made. We used the default settings for hyper-parameters,
e.g. optimizer and learning rate. Although some models (e.g. Trans-ED) produced poor
performance on small datasets, all model can generate some coherent and fluent responses
with large scale training data, which is consistent with the performances reported in previous
papers. The pre-trained language models used by these frameworks in previous studies have
comparable number of parameters (∼ 110M), while the pre-training data are in different
scales: Trans-ED < Trans-MLM/AR < Trans-Dec. We assume that the difference is trivial
when there are millions of dialogue data. Details are listed as follows.

Language Models The pre-trained language models used by these frameworks have
comparable number of parameters as listed in Table 3.5, while the pre-training data are in
different scales as described in Table 3.4. BooksCorpus [119] (800M words) contains over
7,000 unique unpublished books from a variety of genres. English Wikipedia (2,500M words)
consists of the text passages of Wikipedia extracted by previous work [15]. WebText crawled
by previous work [66] contains 8M diverse documents for a total of 40 GB of text.

Trans-ED We use the implementation of ConvAI2 champion 7. The model was for
persona-conditioned dialogue generation. The framework is based on GPT architecture and
uses GPT for parameter initialization. However they only provide a model checkpoint that
has been fine-tuned on large-scale dialogue data including Reddit. To examine the ability
of utilizing pre-trained LM, we did not use this checkpoint but initialize the model with
GPT parameters 8. We also did not apply post-processing to the generation results (to be
consistent with other experiments).

Trans-Dec We use the released code [97]9 that uses GPT-2 small by default. The model
was for persona-conditioned dialogue generation.

Trans-MLM/AR These two models are implemented based on previous work [18] 10

that applies multi-task learning on language understanding and generation tasks. We use
BERT (base, uncased) for parameter initialization, and fine-tune it on dialogue datasets.
PF-free and FG-free are also implemented based on the code. We set the bi-directional
attention interval of PF-free to 5. Since the average length of ground-truth responses in the
datasets is ∼ 15, This setting is generally appropriate.

3Labeled datasets such as persona [108] and emotion [71] are usually in similar scale.
4https://github.com/Marsan-Ma-zz/chat_corpus
5https://github.com/nouhadziri/THRED
6https://github.com/rkadlec/ubuntu-ranking-dataset-creator
7https://github.com/atselousov/transformer_chatbot
8https://github.com/openai/finetune-transformer-lm/tree/master/model
9https://github.com/huggingface/pytorch-openai-transformer-lm
10https://github.com/microsoft/unilm/tree/master/unilm-v1
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We also include two general RNN-based frameworks in this comparison to show how pre-
trained models perform against them – SEQ2SEQ-MMI [43], a Seq2Seq model using bi-
directional GRU encoder and applying MaximumMutual Information (MMI) as the objective
function to generate more diverse responses, and HRED-MMI 11, a hierarchical recurrent
encoder-decoder neural network [81] applying diverse decoding strategy based on MMI [45].

We also equip all frameworks with an identical decoding script12 to avoid extra factor
affecting the generation quality, which uses beam search with beam size of 4, prevents du-
plicated uni-grams, and sets minimum response length that encourages diverse generation
as in previous work [77]. The minimum response length is set to make the average length
of generated responses match the average target length of the dataset. Generation results
are evaluated after applying an identical word tokenization method. With two P100 GPU
devices, the maximum input length is set to 128, and we fine-tune all models for 6 epochs
and apply early-stop based on the performance on validation set. Our methods (PF-free and
FG-free, which will be described in Section 3.4.2) do not add parameters or increase runtime
in comparison with Trans-MLM.

3.3.3. Evaluation

Automatic Metrics We compare the similarity between generated responses and
ground-truth responses using13: BLEU [61] evaluating how many n-grams (n=1,2,3) over-
lapped; CIDEr [92] utilizing TF-IDF weighting for each n-gram. Besides, we evaluate re-
sponse diversity using Distinct (denoted Dist) [43] that indicates the proportion of unique
n-grams (n=1,2) in the entire set of generated responses.

Human Evaluation Some existing studies considered response fluency, coherence, and
informativeness. We make the manual evaluation simpler and ask two human evaluators who
are professionals in dialogue systems to rate a response in {0, 1, 2}. A score of 0 represents an
unacceptable response, which might have flaw in fluency and logic or be incoherent. Special
cases are for example completely coping from the dialogue history as the output, and a bland
response such as “i do not know what you are talking about , but it ’s a good point .”. A
score of 1 represents an acceptable response, but it is generic or not perfectly coherent to the
dialogue history. 2 represents a coherent and informative response. Each generated response
is rated by three annotators. Annotators are unaware of which model generates a response.
We also do a pair-wise evaluation to compare two models and indicate which one is better.
To reduce time cost, we only perform human evaluation on Twitter and Reddit datasets that
are closer to daily dialogue. However, during evaluation, we observe that ∼ 65% Reddit data
are professional discussions that are difficult to understand. The percentage is ∼ 30% for

11https://github.com/hsgodhia/hred
12https://github.com/microsoft/unilm/
13We use an open-source evaluation tool: https://github.com/Maluuba/nlg-eval
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Model BLEU-1 BLEU-2 BLEU-3 CIDEr Dist-1 Dist-2 avgLen
SEQ2SEQ-MMI 10.872 (**) 4.555 (**) 2.259 (/) 0.119 (/) 0.008 (**) 0.028 (**) 10.6
Trans-ED 15.319 (**) 4.877 (**) 2.037 (**) 0.097 (**) 0.014 (**) 0.063 (**) 19.0
Trans-Dec 14.363 (**) 4.861 (**) 2.120 (*) 0.101 (**) 0.031 (**) 0.178 (/) 19.9
Trans-MLM 13.749 (**) 4.253 (**) 1.715 (**) 0.061 (**) 0.018 (**) 0.106 (**) 29.3
Trans-AR 15.694 5.221 2.272 0.119 0.029 0.164 18.9
FG-free 15.659 (/) 5.176 (/) 2.200 (/) 0.112 (/) 0.027 (**) 0.147 (*) 18.7
Trans-ED 14.813 (**) 4.249 (**) 1.330 (**) 0.066(**) 0.001 (**) 0.004 (**) 18.4
Trans-Dec 13.805 (**) 4.407 (**) 1.787 (**) 0.092(*) 0.033 (**) 0.195 (**) 20.2
Trans-MLM 15.487(**) 4.766(**) 1.814(**) 0.092 (*) 0.016(**) 0.080(**) 19.7
Trans-AR 15.213 (**) 4.700 (**) 1.767 (**) 0.090(**) 0.019(**) 0.091(**) 18.8
PF-free 15.880 (*) 4.970 (*) 1.868 (*) 0.093 (*) 0.022 (**) 0.114 (*) 15.7
FG-free 16.395 5.218 2.043 0.101 0.026 0.129 16.2
PF&FG-free 15.714 (*) 4.916 (*) 1.780 (**) 0.093 (*) 0.020 (**) 0.111 (*) 18.4
Table 3.6. Evaluation results on large-scale (upper half) and small-scale (lower half) Twit-
ter dataset. PF-free denotes the method with reduced pretrain-finetune discrepancy of
Trans-MLM. FG-free denotes the method that eliminates finetune-generation discrepancy
of Trans-MLM. Two-sided t-test compares each method with the one without () sign, which
is usually the best performer. Scores are denoted with * (p < 0.05) or ** (p < 0.01) for
statistically significant differences.

Model BLEU-1 BLEU-2 BLEU-3 CIDEr Dist-1 Dist-2 avgLen
SEQ2SEQ-MMI 12.056(**) 5.512(**) 2.841(**) 0.142(**) 0.005(**) 0.024(**) 9.8
HRED-MMI 13.518(**) 4.564(**) 1.947(**) 0.060(**) 0.001(**) 0.003(**) 13.6
Trans-ED 19.295(/) 6.712(**) 2.986(*) 0.125(**) 0.010(**) 0.069(**) 16.8
Trans-Dec 18.974(*) 6.911(/) 3.022(*) 0.130(*) 0.018(**) 0.134(**) 18.0
Trans-MLM 17.574(**) 5.884(**) 2.552(**) 0.096(**) 0.012(**) 0.097(**) 25.5
Trans-AR 20.103 7.270 3.339 0.143 0.017 0.127 16.8
FG-free 19.774 (/) 7.045 (/) 3.213 (/) 0.139 (/) 0.016 (*) 0.115 (/) 17.7
Trans-ED 14.195(**) 4.533(**) 1.756(**) 0.074(**) 0.003(**) 0.012(**) 16.3
Trans-Dec 17.944(**) 6.360(*) 2.727(*) 0.121(/) 0.018(**) 0.143(**) 18.3
Trans-MLM 18.338(*) 6.018(**) 2.480(**) 0.108(**) 0.011(**) 0.066(**) 17.0
Trans-AR 19.005 (*) 6.431 (/) 2.733 (*) 0.114(*) 0.012(**) 0.078(**) 17.4
PF-free 19.116 (*) 6.356 (*) 2.684 (*) 0.118 (/) 0.012 (**) 0.086 (*) 16.7
FG-free 18.884 6.530 2.869 0.125 0.014 0.095 17.3
PF&FG-free 19.024 (*) 6.448 (/) 2.740 (*) 0.118 (/) 0.012 (**) 0.087 (*) 17.1
Table 3.7. Evaluation results on large-scale (upper half) and small-scale (lower half)
Ubuntu dataset.

Twitter data. These test samples are discarded, and at the end the test set for each dataset
consists of 200 random samples. The inter-rater annotation agreement in Cohen’s kappa
[14] is 0.44 and 0.42 on average for Twitter and Reddit, which indicates moderate agreement
(on the low side).
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Model BLEU-1 BLEU-2 BLEU-3 CIDEr Dist-1 Dist-2 avgLen
SEQ2SEQ-MMI 15.550(**) 6.814(**) 3.321(**) 0.168(**) 0.011(**) 0.036(**) 11.2
HRED-MMI 13.278(**) 3.845(**) 1.398(**) 0.047(**) 0.001(**) 0.003(**) 13.8
Trans-ED 17.946(/) 6.626(**) 3.213(**) 0.165(**) 0.039(**) 0.203(**) 18.8
Trans-Dec 17.581(**) 6.790(*) 3.372(*) 0.180(**) 0.043(/) 0.248(**) 18.2
Trans-MLM 18.672(**) 7.115(**) 3.484(/) 0.177(**) 0.041(**) 0.215(**) 16.8
Trans-AR 18.849 7.245 3.662 0.192 0.044 0.235 16.8
FG-free 18.741 (/) 7.134 (**) 3.504 (*) 0.184 (*) 0.042 (**) 0.225 (**) 17.0
Trans-ED 17.337(**) 5.366(**) 1.967(**) 0.073(**) 0.001(**) 0.003(**) 17.1
Trans-Dec 17.460(**) 6.586(**) 3.161(*) 0.172(/) 0.045(/) 0.254(**) 17.7
Trans-MLM 19.193 (/) 6.877 (/) 3.175(*) 0.152(**) 0.029(**) 0.128(**) 15.0
Trans-AR 18.749(/) 6.746(/) 3.119(*) 0.153(**) 0.031(**) 0.141(**) 16.2
PF-free 18.466 (/) 6.688 (*) 3.075 (*) 0.169 (*) 0.038 (/) 0.180 (*) 14.1
FG-free 18.610 6.937 3.302 0.175 0.040 0.191 14.1
PF&FG-free 19.302 (*) 6.923 (/) 3.073 (*) 0.159 (**) 0.034 (*) 0.164 (**) 15.3
Table 3.8. Evaluation results on large-scale (upper half) and small-scale (lower half) Reddit
dataset.

Model Score (M) Score (K)
SEQ2SEQ-MMI 0.39 -
Trans-ED 0.53 0.11
Trans-Dec 1.02 0.77
Trans-MLM 0.88 0.58
Trans-AR 0.99 0.47
PF-free - 0.52
FG-free 0.91 0.78
PF&FG-free - 0.72

Trans-Dec (M) FG-free (K)
SEQ2SEQ-MMI (11%, 48%) -
Trans-ED (14%, 46%) (4%, 47%)
Trans-Dec / (24%, 29%)
Trans-MLM (24%, 34%) (18%, 31%)
Trans-AR (27%, 32%) (17%, 34%)
PF-free - (18%, 38%)
FG-free (28%, 32%) /
PF&FG-free - (23%, 29%)

Table 3.9. Human evaluation including pair-wise evaluation (lower half) for generated
response quality for million-scale (M) Twitter dataset and its 100K training subset (K).
Pair-wise comparison between two frameworks show the winning percentages of the two
parties. For example, the first numbers (11%, 48%) mean respectively the percentage of the
cases where Trans-Dec loses or wins against SEQ2SEQ-MMI. A higher winning rate than
losing rate means that the method is better.
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Model Score (M) Score (K)
SEQ2SEQ-MMI 0.12 -
Trans-ED 0.33 0.10
Trans-Dec 0.58 0.43
Trans-MLM 0.48 0.38
Trans-AR 0.64 0.31
PF-free - 0.28
FG-free 0.68 0.40
PF&FG-free - 0.33

FG-free (M) Trans-Dec (K)
SEQ2SEQ-MMI (5%, 40%) -
Trans-ED (11%, 33%) (2%, 28%)
Trans-Dec (25%, 32%) /
Trans-MLM (18%, 29%) (15%, 19%)
Trans-AR (18%, 23%) (15%, 23%)
PF-free - (15%, 24%)
FG-free / (23%, 24%)
PF&FG-free - (16%, 24%)

Table 3.10. Human evaluation on Reddit dataset.

3.3.4. Architecture Analysis

We first examine architecture appropriateness on the large-scale data setting, since when
data are limited pretrain-finetune discrepancy and the size of pre-training data may strongly
influence the results. Our global observation is that Trans-Dec and Trans-AR are the best
choice for large-scale data setting, e.g. further dialogue pre-training based on a pre-trained
LM.

Left-to-Right Only vs. Bi-Direction on the Source According to automatic metrics
(Tables 3.6, 3.7, 3.8), Trans-AR applying bi-directional attention on the source side obtains
the highest BLEU and CIDEr scores on all three million-scale datasets. We believe that
bi-directional attention helps the model to better encode the dialogue history. In contrast,
Trans-Dec is able to generate the most diverse responses. We attribute it to the left-to-
right attention that introduces less constraint than bidirectional attention, thus has a higher
flexibility for generation.

Human evaluation results in response appropriateness (Tables 3.9 and 3.10) show that
Trans-Dec and Trans-AR generate most appropriate responses.

Trans-MLM vs. AR With large data, Trans-AR substantially outperforms Trans-
MLM in terms of both automatic and human evaluation. When eliminating the finetune-
generation discrepancy of Trans-MLM, i.e. FG-free (we will introduce in Section 3.4.3), the
performance is improved while still having a small gap especially in automatic metrics to
Trans-AR. This may be because MLM objective only masks a certain percentage of tokens
(40%) while AR objective predicts all tokens on the target side for training. Thus, the AR
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Dialogue History one week before election day , early voting is nearly twice as high as <num>
Gold Response i hope it ’s <person> out in full force .
SEQ2SEQ-MMI i am not voting for a third party candidate . (2)
Trans-ED i am not sure what you are talking about , but it ’s a good thing that

<person> is going to win . (2)
Trans-Dec that ’s not true . early voting in nyc is times higher than the

national average (2)
Trans-MLM it ’s not even close to <num> % of the vote . i am sure you are right , but

there is a huge difference between early voting and <person> voter
suppression in ca (2)

Trans-AR it ’s not that high , but i am sure there will be a lot of voter fraud . (2)
FG-free it ’s not even close to <num> yet , but i am sure the polls will show up . (2)
Trans-ED (K) i am not sure what you are talking about . it ’s the only one who is

going to do with this (0)
Trans-Dec (K) it ’s not that early voting is a bad thing , but it shouldnot be the case . (0)
Trans-MLM (K) it ’s a little too late . i am not sure if that is the case , but we will see

what happens next (2)
Trans-AR (K) it ’s not even close to <num> % of voter turnout . i am sure you are right

about that (0)
PF-free (K) <num> % of people voted for <person> , so i am going to vote (2)
FG-free (K) it ’s not even close to <num> % of voter turnout , but i am sure

there are more . (2)
PF&FG-free (K) it ’s not even <num> % of the vote . i am going to be a voter (2)
Table 3.11. Responses generated by baselines and our methods trained on the Twitter
dataset(million-scale and 100K). Human evaluation scores are given at the end of each gen-
erated reply.

objective is more training-efficient. However, when training data are limited, we will show
that it is better to use MLM objective which has smaller pretrain-finetune discrepancy.

Trans-ED vs. Decoder-Only With large dialogue data, we assume the size of pre-
training data only has small influence on performance. However, even comparing with Trans-
MLM(FG-free)/AR, Trans-ED generates much less diverse or appropriate responses. We also
observe lower speed for convergence when training the model 14. We believe that the result is
more or less due to the main difference in architecture: the decoder of Trans-ED only utilizes
the outputs of the encoder, while all hidden states of the encoding part are used in other
decoder-only frameworks. The different performances suggest that the latter architecture is
a better choice.

In Tables 3.11, 3.12, 3.13, 3.14, 3.15, 3.16, we show some examples generated by different
models on the three datasets.

14Similar observation has been reported in: https://github.com/atselousov/transformer_chatbot/
issues/15
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Dialogue History i think about this man every day
Gold Response it is so hypnotic . this man was found dead post-election
SEQ2SEQ-MMI i do not know what you are talking about . (0)
Trans-ED i think he ’s the only one who has a lot of work to do with it . (1)
Trans-Dec i think about this man every day too . he ’s my favorite person in the world (2)
Trans-MLM he ’s such a good guy . i love him so much, but it doesnot make sense to me

that this is the only way we can be together in our lives (2)
Trans-AR i think about this man every day too . he ’s so good at it ! (2)
FG-free he ’s such a good guy . i am so happy for him and his family (2)
Trans-ED (K) i am not sure what you are talking about , but it ’s a good idea . (0)
Trans-Dec (K) i think about this man every day . he ’s my hero and i love him (2)
Trans-MLM (K) i think he ’s a great actor , but no one cares about him . lol (2)
Trans-AR (K) i think he ’s a good guy , but not sure what you are talking about . (0)
PF-free (K) i think he ’snitch . it makes me happy to watch him (0)
FG-free (K) he ’s a great guy . i am so happy to have him back (2)
PF&FG-free (K) i think he is little silly , but you are a fool . (2)
Table 3.12. Responses generated by baselines and our methods trained on the Twitter
dataset(million-scale and 100K). Human evaluation scores are given at the end of each gen-
erated reply.

Dialogue History how old are you guys ? you did not have mechanical pencils ? [SEP]
<url> young are you ? i was in school all the way up to a few years ago and
most of us still used non - mechanical ones .

Gold Response i started using mechanical pencil in elementary school about 15 years ago .
SEQ2SEQ-MMI i do not know what you are talking about . (0)
Trans-ED how old are you ? i was in school all the way up to a few years ago . (1)
Trans-Dec i was in school all the way up to a few years ago and most of us still used

non - mechanical ones . (0)
Trans-MLM i was in school for a few years , and most of us still use mechanical pencils .

it ’s not the same age as you (2)
Trans-AR i was in high school when we used to use mechanical pencils . (2)
FG-free how old are you ? i was in high school and still use mechanical pencils . (2)
Trans-ED (K) i do not know what you are talking about , but it ’s just a joke . (0)
Trans-Dec (K) i was in school all the way up to a few years ago and most of us still used

non - mechanical ones . (0)
Trans-MLM (K) i have been in school for a few years , but not really . (0)
Trans-AR (K) how old are you ? i have never been in school for a few years . (0)
PF-free(K) how old are you ? i am not really a mechanical engineer . ! (1)
FG-free (K) how old are you ? i have never had a mechanical pencil . (2)
PF&FG-free (K) how old are you ? i have never had a lot of time in school (2)
Table 3.13. Responses generated by baselines and our methods trained on the Reddit
dataset(million-scale and 100K). Human evaluation scores are given at the end of each gen-
erated reply. We can observe that some generated responses (in red) are simply copy from
dialogue history.

64



Dialogue History i have read all of the books , which character do you not like ? [SEP]
it ’s gon na be the dornish and greyjoys . and probably brienne . you will see .

Gold Response nah , they have only just started a game of thrones so it must be one of
the starks , dan , or tyrion .

SEQ2SEQ-MMI i do not know why you are being downvoted . (0)
Trans-ED i have read all of the books , and it ’s gon na be dornish . (0)
Trans-Dec i have not read the books yet , but i will definitely check them out . (2)
Trans-MLM i have not read the dornish and greyjoys , but you will see them all as well . (0)
Trans-AR brienne is not a fictional character , she ’s an actual person . (2)
FG-free i have read all of the dornish and greyjoys . (1)
Trans-ED (K) i am not sure what you are talking about , but it ’s just a joke . (0)
Trans-Dec (K) i do n’t know , i have read all of the dornish books . (0)
Trans-MLM (K) i do not think it ’s a good idea to say that . (0)
Trans-AR (K) i do not think it ’s gon na be the best . (0)
PF-free (K) i am not sure what you are talking about here ’s a link .
FG-free (K) i do not think it ’s gon na be . (1)
PF&FG-free (K) i do not know , but it ’s a lot of people ? (1)
Table 3.14. Responses generated by baselines and our methods trained on the Reddit
dataset(million-scale and 100K). Human evaluation scores are given at the end of each gen-
erated reply.

Dialogue History is that easy to do ? [SEP] usually the ubuntu installer will set it up
perfectly for you

Gold Response and then i would select at start-up ?
SEQ2SEQ-MMI how do i install it ?
HRED-MMI i am not sure what you mean by that
Trans-ED is there a way to do it without installing the ubuntu installer ? i am not sure .
Trans-Dec ok , i will try that . thanks for the help ! :-) it ’s working now
Trans-MLM is there a way to do it with the live cd ? i am not sure if that ’s what you are

looking for , but how does one install ubuntu on
Trans-AR ok , i will give it a try . thank you very much for your help !
FG-free is there a way to do it from the command line ? i am not sure what you mean
Trans-ED (K) i am not sure what you mean by that , but it ’s just a little bit more specific
Trans-Dec (K) ok , i will try that . thanks for your help ! :-) <url>
Trans-MLM (K) i am not sure what you mean by that , but it ’s a good idea .
Trans-AR (K) i am not sure what you are talking about , but it ’s possible that the installer

will be able to boot from cd
PF-free (K) i am not sure what to do ? it ’ s just a file in the repos
FG-free (K) i do not think it ’ s a good idea to install ubuntu on my laptop
PF&FG-free (K) i am not sure what you mean by setting it up perfectly . is there a way

to do that ?
Table 3.15. Responses generated by baselines and our methods trained on the Ubuntu
dataset(million-scale and 100K).

3.3.5. Discrepancy Impact

In section 3.2, we have discussed the pretrain-finetune discrepancy of each framework.
When a large training dataset is available, the impact of pretrain-finetune discrepancy is less
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Dialogue History usually if on the same machine , <url> [SEP] : i am getting error .
phpmyadmin not in this server

Gold Response you installed it from the software center , or with aptitude or apt-get ,
or some other way ?

SEQ2SEQ-MMI what is the error you are getting ?
HRED-MMI i have no idea what you are talking about
Trans-ED i am not sure what you are trying to do , but it ’s a good idea .
Trans-Dec did you install phpmyadmin from the repos ? if so , it should be in <path>
Trans-MLM i am not sure what you are trying to do , but it should be in <path> .

try sudo dpkg - reconfigure phpmyadmin
Trans-AR i am not sure what you are trying to do , but it ’s possible .
FG-free i am not sure what you are trying to do , but it ’ s usually in <path>
Trans-ED (K) i am not sure what you mean by " phpmyadmin <path>
Trans-Dec (K) i am not sure what phpmyadmin is , but it ’s probably in <path>
Trans-MLM (K) i am not sure what you mean by " phpmyadmin - > <path> . <url>
Trans-AR (K) i do not know what phpmyadmin is , but it ’s in the repos
PF-free (K) it ’ s not in this server . i am trying to get phpmyadmin working
FG-free (K) phpmyadmin is not in the same machine , it ’ s just a server .
PF&FG-free (K) i am not sure if it ’s on the same machine , you can use phpmyadmin
Table 3.16. Responses generated by baselines and our methods trained on the Ubuntu
dataset(million-scale and 100K).

severe since the model can be gradually adapted to the given task. However, if the training
data are limited, the discrepancy problems may surface. Evaluation results, especially in hu-
man evaluation, show that the performance is more reduced with small data if the framework
has larger discrepancy. For example, by comparing Trans-MLM (FG-free) and Trans-AR,
the latter having additional pretrain-finetune discrepancy due to its auto-regressive objec-
tive, we see that the performance of Trans-AR drops more when trained on a small dataset.
Trans-MLM (FG-free) and Trans-Dec that have small pretrain-finetune discrepancy have
clear advantage over other frameworks according to human evaluation.

These results suggest that with a small dataset one should reduce pretrain-finetune dis-
crepancy to best exploit pre-trained LM. In the next section, we propose 2 methods to reduce
pretrain-finetune discrepancy and finetune-generation discrepancy of Trans-MLM.

3.4. Discrepancy-Free Transformer-MLM
3.4.1. The Attention Conflict Problem

If applying bi-directional attention at each generation step, the corresponding training
method has extremely low sample-efficiency – only one token at the target side could be
masked for each training sample; otherwise there will be attention conflicts, i.e. different
self-attention mask matrices are required for different masked tokens, while only one mask
matrix can be provided per training sample. We experimentally tested this approach and
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Fig. 3.3. Self-attention mask, M, conflicts – (a) if predicting y1, M(a) is as the left figure,
where y2 and y3-M are "future" and forbidden to be accessed by y1-M; (b) if predicting y3,
M(b) is as the right figure, in which case y1-M accesses to y2 and y3-M. (c) if forbidding y1-M
to access to y2 and y3-M in M(b), there will still be (indirect) information leak as indicated
in red arrows. Masking two positions thus causes conflicts. Our PF-free method aims to
overcome this problem.

found it less efficient and effective. In Figure 3.3, we provide an illustration of the mask
conflict problem. We assume y1 and y3 are masked and need to be predicted at the same
time. In the figure, we show two conflicting masks required for predicting y1 and y3. We see
in the figure that two different masks are required for predicting y1 and y3, which cannot be
done in a single training step, making it impossible to mask more than one token in each
step.

3.4.2. Pretrain-Finetune Discrepancy

The discrepancy of Trans-MLM comes from the left-to-right attention on the target side
that has not been pre-trained in BERT. Therefore, this discrepancy cannot be eliminated
during fine-tuning for a generation task. However, we can alleviate the discrepancy by using
bi-directional attention also on the target side. Specifically, at inference time, to generate
a new token denoted as gt, [MASK] is fed into t-th position, denoted as gt-M. Previously
generated tokens g<t could be viewed as a special type of dialogue history, and thus we can
apply bi-directional attention on it.

However, in this case, the corresponding training process will have efficiency problems –
only one token can be masked in each training sample; otherwise, there will be conflict for the
self-attention mask. This would lead to much lower training efficiency: the loss on validation
set only decreases slightly to 5.39 from 6.27 after four epochs, while Trans-MLM masking
40% of the target tokens can reduce it to 4.35. To avoid this situation, we cannot always
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Fig. 3.4. The generation process of PF-free at 4 different time steps. Bi-attention interval
is 3 in the graph.

update previous hidden states using bi-directional attention in generation. Therefore, we
explore to set a time-step interval for bi-directional attention on the target side – within the
interval we apply left-to-right attention and at the end of an interval we apply bi-directional
attention. The corresponding training method allows us to mask multiple target tokens at
the same time to guarantee training efficiency.

Figure 3.4 illustrates the generation process of our method with interval of 3. Before time
step 3, left-to-right attention is used (e.g. t=2). At time step 3, bidirectional attention is
allowed. Then left-to-right attention is used (e.g. t=5) before the end of next interval cycle
(t=6). Accordingly, the training process is: given a target response, we first randomly select
among all (3 in the figure because t=3 and t=5 are the same pattern) possible attention
patterns (e.g. the case of t=3 or t=5 in Figure 3.4, where we apply bi-directional attention
only on y0,1,2); then in the part of left-to-right attention, we randomly mask several tokens.
We can mask multiple tokens because this part applies left-to-right attention and the masks
at other positions will not influence the prediction on a given mask. We call this method
PF-free, which means that the pretrain-finetune discrepancy is reduced.

3.4.3. Finetune-Generation Discrepancy

A model having finetune-generation discrepancy means the way that it is used in gener-
ation (inference/test) is different from the way it has been trained. Only Trans-MLM has
finetune-generation discrepancy because of its MLM objective as shown in Figure 3.5: during
training, there is a masked token, y1-M, before y2-M, while in inference there is not a masked
token before when generating the token for g2-M.
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Fig. 3.5. The training process of vanilla Trans-MLM and FG-free. We only plot the atten-
tion connection at the second position.

To eliminate this mismatch, we propose that at training time, rather than replacing the
tokens with [MASK] as in vanilla MLM, we keep all original input tokens unchanged and
prepend [MASK] tokens in the input sequence as illustrated. In so doing, we can choose to
use [MASK] or the original token according to the need. The prepended [MASK] token uses
the same position embedding of the corresponding token. Then, every position after y1-M
attends to y1 instead of the [MASK] token, and thus the finetune-generation discrepancy of
MLM is eliminated as shown in Figure 3.5. We call the modified model FG-free. A similar
method has also been explored in [3], where they introduced an extra pseudo mask in addition
to [MASK] and prepend it before the original token in order to handle factorization steps of
their partially auto-regressive language model.

3.4.4. Experimental Results

The results with PF-free, FG-free and PF&FG-free models on small-scale datasets are
reported in Table 3.6, 3.7, 3.8, 3.9, and 3.10 together with other models. We can see that
each of the proposed methods brings some improvement. PF-free improves most automatic
metrics over Trans-MLM, but the response appropriateness in human evaluation is not im-
proved. We observe that PF-free could generate some responses that lack fluency, which also
influences PF&FG-free. In general, our exploration shows that the left-to-right attention on
the target side is necessary for a generative task.

We examine our PG-free method on both large and small-scale data. It always brings
statistically significant improvement over Trans-MLM in all automatic metrics, and generates
more appropriate responses. On small-scale datasets, it outperforms all other frameworks
in similarity metrics and achieve comparable performance in response appropriateness to
Trans-Dec that has leverages much more pre-training data.
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This set of experimental results confirm the usefulness of reducing discrepancies in the
model. This demonstrates that model discrepancies are indeed important problems we need
to address when a pre-trained LM is used for dialogue generation, and the problems have
been under-explored.

3.5. Conclusion
In this chapter, we examined the 4 frameworks for open-domain dialogue based on pre-

trained models. We compared their performances on several datasets with the same setting,
each with large and small scale training data. Our results on large-scale datasets show that
Transformer-ED that applies the stacked encoder-decoder architecture does not produce
competitive results against the others that use a decoder-only architecture. Transformer-
Dec/AR generate the most appropriate responses. However, according to automatic metrics,
Transformer-Dec generates most diverse responses while Transformer-AR produce responses
most similar to the ground-truth. This may be due to the fact that uni-directional attention
does not have constraint from the right side context and thus is more flexible, while bi-
directional attention on source side can better model dialogue context. In contrast, the
results on small-scale datasets reveal an important aspect, namely, the discrepancies that
may occur between pre-training and the fine-tuning processes. We then try to explain the
performances of the 4 frameworks with respect to the discrepancies.

We defined the concept of pretrain-finetune and finetune-generation discrepancy, and
examines the 4 frameworks with respect to these concepts. We have shown that the perfor-
mances of the 4 frameworks can be largely explained by their respective discrepancies, which
hinder their performances. This becomes more clear when the dataset is small.

To further show that reducing the discrepancies can improve the performance, we de-
signed PF-free and FG-free correction methods to reduce the discrepancies on Transformer-
MLM, and tested the corrected Transformer-MLM models on the datasets. Our results
confirmed that once discrepancies are eliminated, Transformer-MLM can produce better
results.

This study is the first investigation on the widely used 4 frameworks based on pre-trained
LM in terms of architectural appropriateness and discrepancies. We believe that this question
is important to understand how a pre-trained model can be used in dialogue generation. It
deserves more investigations in the future.
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Chapter 4

Multi-Task Learning based on Pre-trained
LM for Conditioned Dialogue Generation

We have introduced the frameworks to leverage pre-trained language models for each type
of dialogue systems. We will focus on conditioned dialogue for generative chatbot systems,
i.e. dialogue that needs to fit a condition such as style, topic, etc. We take a very general view
of conditioned dialogue to mean any dialogue that should fit some condition. The condition
could denotes a specific person. In that case, we want the generated dialogue to mimic
the style of that person. The condition can also be a specific topic domain (e.g. computer
science). In that case, we aim to generate dialogues in that domain. Notice that this
generalized view of conditioned dialogue is new. In all the existing work, one focuses on one
single condition. We show in this chapter that a general approach can be developed to fit
different types of condition.

In this chapter, we propose a simple and efficient multi-task learning approach based
on pre-trained Transformer that leverages different condition-labeled data, i.e. dialogue and
text, for conditioned response generation 1. We assume that we have a set of conditioned
dialogue data (i.e. dialogue relating to the condition) as in most of the existing studies.
In addition, we also assume that we have a set of non-dialogue data corresponding to the
condition (e.g. a set of texts written by a specific person), which can complement the former.
The exploitation of the latter data is new in our work. The experiments under two different
conditions – persona- and topic-based dialogue, show that our approach outperforms the
state-of-the-art models by leveraging labeled texts even when the labels are predicted by a
model.

1The code is available at https://github.com/zengyan-97/MultiT-C-Dialog.
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4.1. The Challenge of Conditioned Generation
General conversational models pre-trained on large text data [65, 15] or human-to-human

conversation data [109, 4] have shown excellent performance in generating fluent and diverse
responses. In addition to general conversation, we are more and more faced with the problem
of conditioned conversation that tunes the dialogue toward a specific style or domain. For
example, we might specify a condition as the vocabulary frequently used by a person and
ask the system to mimic the speaking style of the person, or a topic-related vocabulary and
ask the chatbot to discuss the given topic. We put all these into the general category of
conditioned dialogue and we aim at developing a general solution to such problems.

Conditioned response generation has been extensively explored using RNN-based
sequence-to-sequence models, under different conditions, e.g. persona [44], topic [100],
emotion [113], situations [78], and so on. However, only a few existing studies considered
using pre-training based models [111, 51]. The basic idea in these previous works is to
utilize a parametric vector to represent a condition and then use it in the decoder for
conditioned generation. However, the key issue in conditioned dialogue generation is the
availability of labeled responses [117], and pre-training on unlabeled text or dialogue data
does not help much.

Therefore, the motivation of our work is to leverage labeled text (non-dialogue) data that
are much easier to collect than labeled dialogue data as supplement. These data can be, for
example, texts written by the same person (for a persona condition), within the same topic
domain (for a topic condition), etc. The idea is inspired by response style transfer [56, 60],
which uses a text corpus to learn a style and then transfer the style to dialogue. Based on their
success, we assume that the labeled text data can contribute to create better representations
of conditions and better utilization of conditions in natural language generation.

In this work, we propose a multi-task learning approach to leverage both labeled dia-
logue and text data. We use 3 tasks to jointly optimize the same pre-trained Transformer
– conditioned dialogue generation task on the labeled dialogue data, conditioned language
encoding task and conditioned language generation task on the labeled text data. Our
assumption is that the two other tasks can help in our final goal of conditioned dialogue
generation: conditioned language generation is the base of conditioned response genera-
tion, and conditioned language encoding using bi-directional attention can efficiently encode
condition-related expressions and lead to better condition representations. We apply differ-
ent input representations, self-attention masks, and random mask strategies to differentiate
the 3 tasks. Regardless of these differences, the training objectives of these tasks are es-
sentially the same, i.e. masked language modeling, and thus we can mix up 2 types of data
/ 3 tasks in one training batch, which prevents us from having the catastrophic forgetting
problem [64].
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4.2. Related Work
4.2.1. Conditioned Dialogue Generation

We categorize the related existing works into 3 categories. (1) Response generation
conditioned on latent variables, where no extra annotations of dialogues are required [82,
84, 28, 11, 24, 5]. (2) Loosely-conditioned response generation, where a label designating
the type of the response is required. For example, persona labels [44] designate the speaking
styles of the responses, and topic labels [100, 20] or emotion labels [47, 113, 71] specify
topic-related or emotion-related vocabularies. These studies usually utilize a parametric
vector to encode a label, which is then used in the decoder to guide the generation. (3)
Strictly-conditioned response generation, where extra knowledge is required to determine the
content of the response, such as a persona profile [108, 90], a situation description [70, 90],
or a wikipedia paragraph [22, 17], which are used to ground the response. The ability
to strictly-conditioned generation is important, but these dialogues only count for a small
fraction of open-domain conversation [111]. In many other cases, we are in the situation of
loosely-conditioned dialogue. Furthermore, the state-of-the-art strictly-conditioned method
[97] can be easily added in other models as well [86, 57], which simply concatenates the
extra knowledge with the dialogue history as the model input.

In this work, we focus on loosely-conditioned response generation 2. We will show that
our approach is robust and can work with different types of labels including those predicted
by a classification model, e.g. LDA for topic labels. Therefore, our method is compatible to
generation conditioned on latent variables by borrowing power of a classification model. In
this work, we do not touch on strictly-conditioned generation. However, this ability can be
easily equipped as mentioned.

4.2.2. Response Style Transfer

Style transfer in dialogue aims to learn the style of a text corpus and then incorporate
the style in dialogue generation. The transfer is usually between two styles, e.g. rude and
polite, or adding a style to general dialogues. To leverage the text corpus, previous work
[56] jointly trains a Seq2Seq response generator and an extra auto-encoder, and some work
[60] trains an extra style classifier first to guild the response generator using reinforcement
learning.

These works show that text data contain rich information about how to generate a spe-
cific type of texts, which inspire us to exploit the labeled text data in conditioned dialogue
generation to alleviate the data scarcity issue. Style transfer is usually between two given
styles. In contrast, conditioned dialogue generation could work with hundreds of condition

2Conditioned generation elsewhere in this chapter refers to loosely-conditioned generation.

73



Fig. 4.1. (a) Overview of our multi-task learning approach. Labeled dialogue and text data
are mixed, and they are processed using the same pre-trained Transformer with data/task-
adaptive input representations, self-attention masks, and random mask strategies. (b) De-
tailed structures of a condition-aware transformer block, i.e. a C-Transformer Block.

labels simultaneously. As we will show in our experiments, the style transfer methods that
utilize additional models, e.g. auto-encoder, to leverage text corpus are unscalable and inef-
ficient for conditioned dialogue. In contrast, our approach that leverages labeled text data
without using ad hoc models and makes a tighter integration of labeled text data with labeled
dialogue data can more directly impact the conditioned dialogue generation.

4.3. Proposed Method
To efficiently leverage labeled data, first, our approach incorporates all types of data

within the same framework, avoiding introducing ad hoc model components which are usually
needed in some response style transfer methods in order to leverage extra texts. Second, we
propose TF-IDF based masking which selects more condition-related tokens to mask, so that
the model can exploit the labeled text data more for condition-related expressions rather
than the general language features already captured by the pre-trained models. Third,
for conditioned generation, we propose a non-parametric attention-based gating mechanism,
which chooses between generating a general word (necessary for general function words) or a
condition-related word at each position. We expect it to be more efficient than a parametric
gating. Experimental results show that these approaches all bring improvements.

Our approach is generalizable. In spite of many different labels, a condition essentially
specifies some preferences on words, phrases, and sentence structures in the generated re-
sponses. Thus, a general approach can be instantiated to a specific case as long as the
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corresponding labeled dialogue data are available. We will run experiments with two in-
stantiated models for persona- and topic-related dialogue. Additionally, we will empirically
show that our approach is robust and can even work with condition labels predicted by a
classification model, e.g. LDA for topic labels.

Dialogue History Hi Jake, how is your day? [SEP] I am great!
Condition John
Response Cool! Do you want to play a video game with me?
Condition John

I love playing video games.
Text My favourite game is GTA5. That’s so cool!

Cool! That’s awesome!
Table 4.1. An example of the two types of data that our approach exploits. Here for
persona-conditioned dialogue, a condition corresponds to a specific user and encodes some
speaking styles.

We assume that we have two types of training data: a labeled dialogue corpus containing
(dialogue history, condition, response) samples, and a labeled text corpus consisting of (con-
dition, text) samples. Table 4.1 gives an example of the data. Notice that the “condition”
is any categorical label that indicates a type of responses or texts. Our goal is to generate a
response y that exhibits the desired characteristics of the type of responses given a dialogue
history x and a condition c:

y = arg max
y

P (y|x, c) (4.3.1)

The Transformer in our work uses bi-directional attention on the source side to encode the
dialogue history, and left-to-right attention on the target side to generate the response. Such
a transformer can be initialized from BERT[15], Roberta[54], UniLM [18], or the models
pre-trained on large-scale unlabeled dialogue data e.g. PLATO [4] and Blender [77]. In this
work, we focus on efficiently leveraging labeled data, i.e. dialogue and text. Figure 4.1 (Left)
shows the overview of our approach.

4.3.1. Masked Multi-Head Attention

Section 3.1 introduced the basic components of Transformer. Masked multi-head atten-
tion is also applied in our condition-aware transformer block. Our approach jointly optimizes
three tasks that apply different self-attention masks as shown in Figure 4.1 (Left). For con-
ditioned dialogue generation task, the self-attention mask allows bi-directional attention on
the source side to fully encode dialogue history and left-to-right attention on the target side
to generate conditioned responses. For the labeled text data, we randomly choose between
conditioned language encoding and conditioned language generation task. The two tasks use
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bi-directional attention and left-to-right attention respectively. The language encoding ob-
jective, i.e. Masked Language Modeling (MLM), is used in BERT, which has shown stronger
ability than the auto-regressive objective used in GPT [15]. Therefore, we expect condi-
tioned language encoding is more helpful to learn condition-related expressions (especially
with the TF-IDF masking strategy which we will introduce) than the two generation tasks
that employ the auto-regressive objective.

4.3.2. Condition-aware Transformer Block

In this subsection, we introduce position-wise condition bias that aims to determine
how much condition information should be utilized to bias word generation probability at a
position. The core component to calculate the bias is a non-parametric attention-based
gating mechanism as shown in Figure 4.1 (Right). Other gate mechanisms usually employ
parametric linear layers to calculate weights. We assume a self-attention based method (non-
parametric) could be more training-efficient, which is important since labeled data are usually
limited. We will empirically confirm its effectiveness compared to other gating methods.

Specifically, given a training sample (x, c, y) or (c, text), the condition label c is encoded
using two sets of parameters: one parametric vector works as the key kc ∈ Rdh and another
one works as the value vc ∈ Rdh . Additionally, there is a general condition label g with a
parametric vector kg as its key and a zero vector vg as its value. The former corresponds to
conditioned generation, while the latter to the general dialogue that generates words only
based on dialogue history. At each position, the model determines an attention weight to
each choice. More attention to c means that the position is more tuned to the condition.
More specifically, for each condition-aware transformer block as shown in Figure 4.1(Right),
given Ci = [ci1, ..., cin] as queries, the condition biases Bi = [bi1, ...,bin] are calculated by:

Bi = softmax(CiKT
b√

dk
+ Mb)Vb (4.3.2)

where Kb = [kc,kg] and Vb = [vc,vg]. The calculation is non-parametric. We use the
matrix Mb ∈ Rn×2 to prevent adding condition bias to positions on the source side because
the condition only influences the target side (the labeled response or text).

4.3.3. Objectives

We jointly optimize three tasks: conditioned dialogue generation on labeled dialogue,
conditioned language encoding and conditioned language generation on labeled text. As
discussed in Section 3.1, conditioned language encoding is expected to be very helpful to
learn condition-related expressions.

A specific self-attention mask is required for each task, while the objectives of three
tasks are essentially the same – some tokens of the target side (labeled response or text) are
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Dataset Persona Reddit Topic dialogue
Source of Labels Personal ID LDA
Number of Labels 2000 190
Labeled Texts 3M 500K 3M 500K
dialogue Train 3M 250K 3M 250K
dialogue Valid 80K 80K
dialogue Test 10K 10K

Table 4.2. Key characteristics of the two datasets.

randomly masked, and the final hidden vectors HL corresponding to the masked tokens are
fed into an output softmax over the vocabulary to predict the expected tokens. Therefore, we
can mix up 2 types of data (3 different tasks) in one training batch, and the loss is averaged
in a batch. This thus prevents us from having the catastrophic forgetting problem [64].
This problem is usually observed using a sequential fine-tuning process, i.e. first fine-tuning
on labeled texts and then on conditioned dialogue data, which will erase the effect of the
previous steps of training.

When using labeled dialogue data, we want the model to learn to generate conditioned but
more importantly coherent responses. Thus, we uniformly sample the tokens on the target
side to mask. Differently, when exploiting labeled text data, we only want the model to
generate condition-related expressions. Therefore, we introduce TF-IDF Based Masking
for the labeled text data to speed up the learning process – we sample tokens to mask
according to their TF-IDF values counted on the entire corpus. We will empirically show its
effectiveness.

4.4. Experiments
4.4.1. Datasets

We use two labeled dialogue datasets, and we created two smaller training sets (500K
labeled texts and 250K labeled dialogues), which are summarized in Table 4.2. We anticipate
that when labeled dialogue data are limited, the benefit of leveraging labeled text data will
be larger.

Persona Reddit We filtered the Reddit data from 2015 to 2019 that is provided by a
third party 3. Reddit data is a natural source of dialogue with multiple users – a post may
have multiple comments by different users. Following previous work [44], we consider each
user as a distinct persona. We extract (post, user, comment) tuples, where “user” is the
label of the user who makes the “comment”. We further filtered the data based on sentence
length and users: sentences with more than 30 words or less than 4 words are removed, and

3https://files.pushshift.io/reddit/
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we only keep comments from the 2000 most active users so that we can collect enough data
for each user. As a result, each user has 1291 samples (comments) on average. To build the
labeled text corpus, we collect extra posts or comments on Reddit from the same user that
have no overlap with the dialogue data – these extra texts are intended to reflect the general
writing style of the user.

Topic-related Dialogue previous work [20] provides a high-quality 3-turns conversa-
tional dataset for topic aware response generation 4. Along with each (history, target) pair,
there is a topic label and dozens of topic words that are predicted by LDA model. The
dataset contains 9.2M samples, from which we sample 3M (history, topic, target) tuples as
the labeled dialogue corpus. To construct the labeled text data, we sample other 3M tuples
and only keep their (topic, target) parts. Note that the topic labels are generated by LDA,
and thus it is difficult to obtain the labeled text data from other sources.

4.4.2. Baselines

We choose two strong baselines specifically designed for personalized response generation
and two others for topic-aware generation. Additionally, we choose some state-of-the-art
pre-trained Transformers.

Speaker Model[44] a Seq2Seq model using four LSTM layers. Given a user label, the
decoder transforms it into a user embedding and use it to generate a personalized response.

MT-Speaker an approach jointly trains a Speaker Model and a conditioned auto-encoder
with shared decoder parameters, which is adapted from a style transfer approach [56]. This
approach also leverages the labeled text data.

TA-Seq2Seq [100] and THRED [20] these models utilize topic words instead of topic
labels predicted by the LDA model. TA-Seq2Seq leverages the topic information by a joint
attention mechanism and a biased generation probability. THRED is built based on HRED
and incorporates topic words via a hierarchical joint attention mechanism.

C-Trans-ED [111] an encoder-decoder transformer framework initialized with GPT
parameters. The decoder dynamically merges features from the dialogue history and the
condition. This model is based on the code of ConvAI2 champion [16].

C-Trans-Dec a decoder-only transformer initialized with GPT-2 parameters, adapted
from previous work[97]. We add a condition embedding to the input representation to enable
conditioned generation.

BERT fine-tuning the pre-trained model [15] on the dialogue datasets. The encoder
and decoder share the parameters. When encoding, the model uses bi-directional attention.
When decoding, it uses left-to-right attention.

4https://github.com/nouhadziri/THRED
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Model Parameters Runtime(min/M)
Sp-Model 80M 25
MT-Speaker 90M 40
TA-Seq2Seq 155M 150
THRED 174M 135
C-Trans-ED 120M 180
C-Trans-Dec 126M 290
BERT 110M 140
Ours 113M 145

Table 4.3. The number of parameters of each tested approach and the average runtime
(minutes) for every million training samples.

4.4.3. Implementation Details

We implement the speaker model and MT-Speaker model based on OpenNMT 5. Other
models are directly taken from the available open-source code. Hyper-parameters are set
following the original papers. Since our baselines utilize GPT or BERT, we use BERT (base,
uncased) to initialize our model for fair comparison. It is however possible to build our
model upon more powerful pre-trained dialogue models such as Blender [77] or PLATO[5].
We do hyper-parameter search based on perplexity 6 on the validation set for: the number
of condition-aware transformer blocks in {2, 6, 12}, the mix-up rate of labeled dialogues
and texts in {3:1, 1:1}, and whether using conditioned language encoding task. We report
experimental results with 2, 3:1, and using conditioned language encoding respectively. The
warm-up proportion is set to 0.1. 25% tokens of the target side are randomly masked.
During decoding the beam size is 10, and we prevent duplicated bigrams. We fine-tune all
the parameters end-to-end on two P100 GPUs. Generally, we used early stop according
to performance observed on validation set to prevent over-fitting. For large-scale datasets,
performances of models usually stop to increase a lot after the 4-th epoch. With in total 6M
training samples, each epoch takes twelve hours. The fine-tuning model only has (2C+1)×dh
additional parameters, where C is the number of different condition labels.

In Table 4.3, the average runtime is tested using a 1080Ti GPU device, and the batch
size is set to take all of the GPU memories. TA-Seq2Seq and THRED are implemented in
TensorFlow. Other models are implemented in PyTorch. Notice that the runtime will be
influenced by code implementation in additional to model structure. When experimenting
with the small-scale Persona Reddit dataset, we decrease the number of parameters of Sp-
Model and MT-Speaker models to 48M and 52M respectively in order to avoid over-fitting.

5http://opennmt.net/
6Perplexity evaluates how likely the model generates the ground-truth responses. So we use it as the proxy
for model fitness.
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Hyper-parameters Value
C-Tranformer layers 2
mask probability 0.25
max length 80
batch size 160
learning rate 3e-5
warmup proportion 0.1
label smoothing 0
weight decay 0.01
dropout probability 0.1

Table 4.4. Hyper-parameters for our fine-tuning approach. There are in total 6M data.
Thus, we use a large batch size.

C-Trans-ED loads the pre-training results of GPT. In the original paper, they pre-trained
by themselves using a Chinese corpus, which cannot be used in our experiments.

4.4.4. Evaluation

Automatic Metrics We choose some widely used metrics in the literature 7: BLEU
[61] with n=1,2,3; ROUGE-L – longest common subsequence based statistics; CIDEr [92]
utilizing TF-IDF weighting for each n-gram; and Distinct [43] indicating the proportion
of unique n-grams (n=1,2) in the entire set of generated responses to evaluate response
diversity. Two-sided t-test is used for statistical significance test.

Response Appropriateness Furthermore, we conduct manual evaluation on the best
models according to the automatic metrics. We only manually evaluate the model perfor-
mance on large-scale datasets8. We ask human evaluators to rate a response in {0, 1, 2}. A
score of 0 means that the response might have flaw in fluency and logic or be incoherent.
Special cases are for example completely coping from the dialogue history as the output, and
a bland response such as “I don’t know what you mean”. A score of 1 represents a coherent
but generic response. 2 represents a coherent and informative response. We also do a pair-
wise evaluation to compare two models and indicate which one is better. The evaluation is
based on 200 random samples. Each generated response is rated by three annotators. The
inter-rater annotation agreement in Cohen’s kappa [14] is 0.441 on average, which indicates
moderate agreement.

Condition Consistency We observe that automatic metrics fail to evaluate condition
consistency since BERT that does not consider conditions outperforms C-Trans-ED and C-
Trans-Dec. Thus, we perform manual evaluation on the condition consistency. A generated

7We use an open-source evaluation tool: https://github.com/Maluuba/nlg-eval
8We did not manually evaluate the results with small datasets due to its high cost. However, we expect even
larger difference when small data are used for training, as indicated by the automatic metrics.
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Model BLEU-1 BLEU-2 BLEU-3 ROUGE-L CIDEr Dist-1 Dist-2 avgLen
Sp-Model 10.539 (**) 3.152 (**) 1.396 (**) 0.116 (**) 0.056 (**) 0.012 (**) 0.044 (**) 12.6
MT-Speaker 10.970 (**) 3.488 (**) 1.540 (**) 0.118 (**) 0.059 (**) 0.009 (**) 0.034 (**) 12.7
C-Trans-ED 13.548 (*) 3.881 (**) 1.529 (**) 0.113 (**) 0.045 (**) 0.005 (**) 0.025 (**) 18.7
C-Trans-Dec 12.964 (**) 4.182 (**) 1.781 (**) 0.117 (**) 0.060 (**) 0.023 (**) 0.097 (**) 16.7
BERT 12.928 (*) 4.405 (/) 1.764 (**) 0.119 (**) 0.062 (**) 0.014 (**) 0.052 (**) 26.1
Ours 14.052 4.891 2.149 0.122 0.070 0.024 0.098 23.3
Two-Step FT 13.714 (/) 4.870 (/) 2.160 (/) 0.122 (/) 0.071 (/) 0.023 (/) 0.102 (*) 25.0
w/o ctext 13.015 (*) 4.563 (/) 1.956 (/) 0.113 (**) 0.061 (**) 0.023 (/) 0.106 (*) 25.7
w/o tfidf 13.581 (*) 4.705 (/) 2.000 (/) 0.118 (**) 0.070 (/) 0.023 (/) 0.095 (*) 24.0

Sp-Model 10.467 (**) 3.039 (**) 1.239 (**) 0.116 (**) 0.049 (**) 0.007 (**) 0.027 (**) 12.3
MT-Speaker 10.286 (**) 2.932 (**) 1.174 (**) 0.114 (**) 0.047 (**) 0.007 (**) 0.030 (**) 12.3
C-Trans-ED 10.968 (**) 3.247 (**) 1.295 (**) 0.106 (**) 0.040 (**) 0.001 (**) 0.006 (**) 14.7
C-Trans-Dec 11.263 (**) 3.390 (**) 1.274 (**) 0.106 (**) 0.043 (**) 0.020 (**) 0.075 (**) 16.2
BERT 12.766 (*) 4.195 (*) 1.805 (*) 0.118 (/) 0.063 (*) 0.022 (/) 0.071 (**) 15.3
Ours 13.517 4.517 1.988 0.119 0.068 0.021 0.066 16.4

Two-Step FT 10.125 (**) 3.295 (**) 1.388 (**) 0.111 (**) 0.052 (**) 0.015 (**) 0.043 (**) 12.7
w/o ctext 11.776 (**) 3.821 (**) 1.631 (**) 0.115 (**) 0.059 (**) 0.020 (*) 0.062 (**) 14.4
w/o tfidf 13.475 (/) 4.409 (/) 1.853 (/) 0.118 (/) 0.064 (*) 0.023 (/) 0.078 (*) 16.7

Table 4.5. Evaluation results on large-scale (upper half) and small-scale (lower half) Per-
sona Reddit. Two-Step FT means using our model architecture but applying sequential
fine-tuning. w/o ctext is without leveraging conditioned text data. w/o tf-idf means with-
out applying TF-IDF based masking. * (p < 0.05) or ** (p < 0.01) show statistically
significant differences with our model by two-sided t-test.

response is rated in {0, 1, 2}. The scores 0, 1 and 2 mean respectively that the response is
inconsistent to the condition, somehow related, and consistent. However, if the response has
flaw in fluency or logic, it will get a score of 0. For Topic Dialogue, it is easy to measure
whether a generated response is in the topic. However, for persona consistency, it is difficult
for a human evaluator to know the speaking style of each user. Thus, before evaluation we
first automatically determine those frequently used words by a user in responses and show
them to the annotators to help their evaluations.

4.4.5. Analysis

Table 4.5 and 4.6 gives automatic evaluation results, and Table 4.7 gives human evaluation
results. The results can be summarized as follow:

BERT vs. Trans-ED & Trans-Dec C-Trans-Dec has a clear advantage over C-Trans-
ED in almost all automatic metrics, which can also be observed in their generated responses.
Fine-tuning BERT without considering conditions outperforms C-Trans-Dec on most simi-
larity metrics such as BLEU. We explain this by the fact that bi-directional attention could
enable a model to better encode dialogue history, and thus to generate responses more sim-
ilar to the ground truth. The ablation model using w/o ctext is fine-tuning C-BERT (with
our condition-aware transformer blocks) on labeled dialogue data. The performance of w/o
ctext is similar to C-Trans-Dec’s, with a slight advantage in condition consistency and small
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Model BLEU-1 BLEU-2 BLEU-3 ROUGE-L CIDEr Dist-1 Dist-2 avgLen
TA-Seq2Seq 10.197 (**) 3.307 (**) 1.602 (**) 0.121 (**) 0.098 (**) 0.016 (**) 0.051 (**) 9.7
THRED 9.061 (**) 3.035 (**) 1.468 (**) 0.118 (**) 0.098 (**) 0.015 (**) 0.048 (**) 8.8
C-Trans-ED 13.990 (**) 5.359 (**) 2.689 (**) 0.131 (**) 0.147 (**) 0.055 (**) 0.222 (**) 12.5
C-Trans-Dec 14.544 (**) 5.475 (**) 2.669 (**) 0.136 (**) 0.154 (**) 0.046 (**) 0.177 (**) 13.2
BERT 15.287 (/) 6.243 (/) 3.283 (/) 0.141 (/) 0.168 (**) 0.057 (**) 0.227 (**) 12.5
Ours 15.639 6.484 3.455 0.140 0.185 0.060 0.243 13.0

Two-Step FT 15.926 (/) 6.431 (/) 3.376 (/) 0.143 (/) 0.185 (/) 0.059 (*) 0.239 (*) 13.1
w/o ctext 15.491 (*) 6.397 (/) 3.399 (/) 0.142 (/) 0.190 (*) 0.063 (*) 0.262 (**) 12.8
w/o tfidf 15.393 (/) 6.302 (/) 3.351 (/) 0.139 (/) 0.185 (/) 0.059 (**) 0.230 (**) 13.1

C-Trans-ED 13.874 (**) 5.145 (**) 2.503 (*) 0.124 (**) 0.124 (**) 0.039 (**) 0.150 (**) 13.1
C-Trans-Dec 14.899 (/) 5.648 (/) 2.690 (/) 0.133 (**) 0.150 (/) 0.043 (*) 0.176 (*) 15.2
BERT 14.457 (/) 5.583 (/) 2.802 (/) 0.135 (**) 0.136 (**) 0.037 (**) 0.133 (**) 12.4
Ours 14.587 5.747 2.894 0.139 0.152 0.050 0.186 12.0

Two-Step FT 13.941 (**) 5.463 (/) 2.765 (/) 0.136 (*) 0.140 (**) 0.045 (**) 0.169 (**) 11.7
w/o ctext 13.211 (**) 5.179 (**) 2.655 (/) 0.137 (/) 0.142 (**) 0.046 (**) 0.163 (**) 10.8
w/o tfidf 13.964 (**) 5.485 (**) 2.809 (/) 0.135 (**) 0.145 (*) 0.048 (*) 0.178 (**) 11.8

Table 4.6. Evaluation results on large-scale and small-scale Topic Dialogue. Topic labels
are predicted by LDA.

Model
Persona Topic

Appropriateness Consistency Appropriateness Consistency
Score Pair-wise Score Pair-wise Score Pair-wise Score Pair-wise

C-Trans-Dec 0.96 (28%, 39%) 0.85 (20%, 39%) 0.77 (26%, 34%) 0.71 (21%, 31%)
BERT 0.77 (11%, 40%) 0.78 (22%, 43%) 0.55 (17%, 40%) 0.46 (16%, 40%)
Ours 1.15 - 1.24 0.83 - 0.80 -
w/o ctext 0.91 (26%, 39%) 0.90 (23%, 38%) 0.73 (27%, 35%) 0.72 (23%, 30%)

Table 4.7. Human evaluation of generated responses on appropriateness and condition
consistency. Pair-wise comparisons show the wining percentages of (baseline, ours).

disadvantage in response appropriateness. These results show that our approach is built
upon a strong base model. As mentioned, other pre-trained models can also be used.

With Condition When large Persona Dialogue is available, w/o ctext (i.e. C-BERT)
outperforms BERT in almost all automatic metrics. However, we observe that when only
small-scale labeled dialogue data are available, all three conditioned models perform worse
than BERT. This shows that the model cannot learn the condition-related features well from
the limited labeled dialogue data. Thus, it is important to leverage the labeled texts that
are easier to collect, and the results on small-scale Persona Reddit show that our multi-task
learning approach significantly outperforms BERT on similarity metrics such as BLEU and
CIDEr.

For Topic Dialogue, the labels are given by LDA model. LDA is an unsupervised method
and the predicted condition labels can be very noisy. Nevertheless, similarly, with large data
C-BERT outperforms BERT in all metrics, but when only small-scale labeled dialogue data
are available, C-BERT performs worse than BERT in terms of BLEU. The result again shows

82



dialogue His. ca n’t wait to see the team at full strength when watt and clowney are back .
Gold Resp. i ’ve been waiting a long time to see watt and clowney healthy together
Sp-Model i do n’t think you know what the word means (0)
MT-Speaker i do n’t think the texans will be able to handle the ball in the first half (2)

of the season
C-Trans-ED i do n’t know why you ’re getting downvoted, i ’m just saying that (0)

you ’re wrong .
C-Trans-Dec i ’m not sure if i ’d be surprised if they both get hurt . (1)
BERT i ca n’t wait to see watt and clowney at full strength when watt is back . (0)
Ours i do n’t think it ’s going to happen , but i ’d love to see watt and clowney back . (2)
w/o ctext i do n’t think it ’s going to happen , but i ’d love to see watt and clowney on

the same team (2)
w/o tfidf i do n’t think it ’s going to happen , but i ’d love to see watt back . (2)

Sp-Model i do n’t think he is going to be a good qb . (1)
MT-Speaker i ’m not sure if this is a good thing . (2)
C-Trans-ED i ’m not sure what you ’re talking about . i do n’t know what to say . (0)
C-Trans-Dec i ’m not sure i ’d be surprised if they ’re both back (2)
BERT i do n’t think they ’ll be able to do that . (2)
Ours i ’d be so happy to see watt and clowney back . (2)
Two-Step FT i do n’t think that ’s what i ’m talking about . (0)
w/o ctext i do n’t think they ’ll be able to do that . (2)
w/o tfidf i ’m so excited to see watt on the team . (2)

Table 4.8. Responses generated by baselines and our model trained on the large-scale and
small-scale Persona Reddit.

the importance of exploiting labeled texts, and our approach is the best on small-scale Topic
Dialogue.

Leveraging Labeled Texts In general, our approach significantly outperforms all base-
lines and w/o ctext that do not exploit labeled text data, either with large-scale or small-scale
data. With small-scale data, our approach outperforms BERT while w/o ctext itself cannot
achieve this, which shows that conditioned dialogue generation can be helped by extra labeled
text data. On Topic Dialogue, with such noisy labels, our model leveraging the labeled texts
still produces the best performance, which confirms the robustness of our multi-task learning
approach to work with different types of labels. The human evaluation on appropriateness
and condition consistency further confirms the effectiveness of our approach.

Not all methods utilizing extra labeled text can obtain such performance improvement as
we did. MT-Speaker that employs an extra auto-encoder does not gain much improvement
over Sp-Model. This result shows that using additional model components to leverage labeled
texts is inefficient for conditioned dialogue generation. Furthermore, Two-Step FT that first
fine-tuning on labeled texts and then on labeled dialogue data does not always produce good
performance. It achieves comparable performance to our approach on large-scale datasets,
but on small-scale datasets it can even perform worse than w/o ctext (Table 4.5). This result
shows that the size of labeled text data is a considerable factor. With small-scale labeled text
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dialogue His. what is your favorite food ? [SEP] ice cream .
Gold Resp. what flavor ?
TA-Seq2Seq what kind of ice cream ? (2)
THRED what kind of ice cream ? (2)
C-Trans-ED ice cream is the best food i have ever eaten (2)
C-Trans-Dec i ’m not sure if you ’re joking but i ’m not sure if you ’re serious . (0)
BERT i do n’t like ice cream . (2)
Ours i do n’t like ice cream . it ’s coarse and irritating and it gets everywhere . (2)
w/o ctext i ’ve never had ice cream . what ’s it taste like ? (2)
w/o tfidf what kind of ice cream do you like ? (2)

C-Trans-ED ice cream is the best food i ’ve ever seem . (2)
C-Trans-Dec i ’ve never had ice cream . (2)
BERT i ’ve never had ice cream . (2)
Ours i do n ’ t like ice cream . (2)
Two-Step FT i like ice cream , but i do n ’ t like it . (0)
w/o ctext i ’ve never had ice cream , but it ’s so good . (2)
w/o tfidf i ’ ve never had ice cream . (2)

Table 4.9. Responses generated by baselines and our model trained on the large-scale and
small-scale Topic Dialogue. We use a special token, [SEP], to concatenate successive dialogue
turns.

Fig. 4.2. Perplexity of the model with sequential fine-tuning and our approach given 1M
labeled text data and different size of labeled dialogue data.

data, it is better to avoid sequential fine-tuning that has the catastrophic forgetting problem
[64]. Additionally, we investigate how the ratio of the size of labeled text data to the size of
dialogue data influence model performance. We use perplexity to measure the performance
of a model: a better model is the one leading to lower perplexity. As shown in Figure 4.2,
given 1M labeled text data, when the ratio is less than 6.7, our approach performs better
than Two-Step FT. However, when labeled text corpus is much larger than dialogue corpus,
sequential fine-tuning is better.
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Model BLEU-1 BLEU-2 Dist-2
Single Gate 13.880 (*) 4.853 (/) 0.090 (**)
Double Gates 13.988 (*) 4.889 (/) 0.094 (*)
Attn. Routing 14.052 4.891 0.098
Single Gate 11.703 (**) 3.891 (**) 0.090 (**)
Double Gates 11.336 (**) 3.698 (**) 0.091 (**)
Attn. Gating 13.517 4.517 0.066

Table 4.10. Comparison of gating mechanisms on large-scale and small-scale Persona
Reddit.

TF-IDF Masking and Attention Gating We assumed that the general language
features have already been captured by the pre-trained models. Thus, to better utilize
labeled text data, we mask more condition-related words using TF-IDF based masking. Our
ablation study confirms that TF-IDF masking brings improvement in almost all automatic
metrics although the improvement might not always be statistically significant.

Our attention gating is a non-parametric gating mechanism to fuse the condition into
the decoder. We expected it to be efficient, which is particularly important when labeled
data are limited. Here, we compare it with two common parametric gating mechanisms: 1)
setting a single gate on Ci to get a weight; 2) setting gates on both Ci and vc to get two
weights. Then, we combine the weighted Ci and vc to get C′i as in our attention gating.
Experimental results in Table 4.10 confirm that our method is more efficient. When only
small-scale labeled data are available, the model with attention gating generates responses
that are significantly more similar to the ground-truth.

4.5. Conclusion
In this chapter, we examined the data scarcity issue of conditioned dialogue generation.

Pre-training on unlabeled text or dialogue data is not helpful to conditioned generation.
Thus, we exploited labeled text data that are easier to collect than labeled dialogues. We
expected these data can contribute to better representations of conditions and better use
the conditions in natural language generation, which complement what is lacking in the
pre-trained models.

To leverage these two types of data, we proposed a simple and efficient multi-task learning
approach. Three tasks are considered: conditioned dialogue generation task on the labeled
dialogue data, conditioned language encoding task and conditioned language generation task
on the labeled text data. We conducted experiments under persona and topic conditions.
Experimental results show that our approach outperforms the state-of-the-art models by
leveraging labeled texts, and it also obtains larger improvement in performance comparing
to the previous methods leveraging text data.
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Chapter 5

Adapter based on Pre-trained Model for
Dialogue Skill Learning

Dialogue models pre-trained on large unlabeled conversation data (e.g. Reddit and Twitter)
[109, 1, 77] have already shown excellent performance in generating coherent and fluent
responses. Nevertheless, a recent study [77] shows that large additional improvements can
be obtained by fine-tuning a pre-trained dialogue model on data that emphasizes desirable
conversational skills. By conversation skills, we mean the ability of the system to use some in-
formation and knowledge related to the conversation context. The conditioned dialogues we
presented in the previous chapter can be viewed as skills, i.e. the skills to exploit conditioned
data. More generally, dialogue skills refer to the general, domain-independent functional-
ity of open-domain dialogue systems to generate responses that are consistent with some
conditions, e.g. a pre-defined persona profile.

It is important to underline the difference between the general dialogue skill that exploits
persona-related information and the the ability of a system to generate persona-related
responses. To generate persona-related dialogue in the latter case, one can train (fine-tune) a
model for the persona specifically. However, for a new persona, one has to retrain the whole
model once again. No common “skill” is generated from the first persona, and transferable to
the second one. On the other hand, the dialogue skill learned from a person is more general,
and can be transferred to a new persona. A more concrete example of skill is the ability of
a system to exploit the information about the profession of the persona, independently of
the specific profession and persona. Once the skill is acquired, it can be applied to another
persona with a different profession. In other words, dialogue skills correspond to the “know-
how” while a specific conditioned dialogue corresponds to “know”.

Dialogue skills cannot be learned by reconstructing ground-truth responses, which will
mix up skills with domain-related expressions. These latter are not transferable to other
domains. In this chapter, we propose a novel training approach aiming at extracting the
transferable dialogue skills underlying task(s). The approach leverages an auxiliary training



objective, multi-task learning as well as small adapters to constrain the skill model to focus on
the general skill across domains. Experimental results show that our approach can effectively
learn dialogue skills in a multi-domain dialogue context.

5.1. Definition of Dialogue Skill
Dialogue skill is defined as the general ability of a dialogue agent to exploit some knowl-

edge or information [86, 77]. For example, the agent should know how to use the persona
information in dialogue [108], or how to exploit knowledge [17]. This is in contrast to
domain-specific features such as specific expressions in a domain. A difference between them
is that the former is general and more abstract, while the latter is more specific to a domain.
We can also use the term “know-how” to refer to the former and “know” to the latter.

Several small single-skill datasets have been created for communicating with a persona
profile [108], displaying empathy [71], and answering questions by utilizing knowledge re-
sources [17]. In these studies, a dialogue skill model is viewed as what can help to generate
responses that fits the task context such as persona profile or knowledge. As a matter of
fact, attempts have been made to create multi-skill dialogue systems [86, 77] by leverag-
ing multi-task learning [9] on several single-skill datasets. However, these attempts have not
been successful in the sense that the performance of such a system is worse than the one fine-
tuned on each dataset, showing what is learned from a dataset is hard to be transferred to
another. A key issue is about the training objective: These models have been trained using
the standard Negative Log Likelihood Loss (NLLLoss) trying to reconstruct the ground-
truth responses. However, at the same time, the model would also capture domain-specific
expressions, making it hard to be transferred to another domain.

We believe that it is critical to design an auxiliary task in order to extract a specific skill.
Therefore, we propose a novel training approach to capture the dialogue skill underlying
task(s). To this end, first, we require the model to explicitly predict whether a condition is
relevant to dialogue history so that the model should use it in generation. This auxiliary
task can also be applied for training other skills such as knowledge skill [17] that also
requires to recognize useful information before generation. Next, we train the model by
conditioned response generation task based on relevant conditions instead of all conditions.
To implement this, however, we will have to take into account the possible noise in the
determined condition(s). Therefore, we propose a more robust training process in such a
noisy situation.

In this chapter, we focus on learning domain-independent dialogue skills that can be
transferred more easily. In order to do this, we should have appropriate datasets for the
training and evaluation, which are unfortunately lacking. Therefore, we first construct a
dataset, named PersonaSkillTalk, based on two public datasets: PersonaChat [108] and
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LIGHT [90]. Both of them are conditioned on persona profiles, thus they require using
similar dialogue skills relating to persona-conditioned dialogue. However, there is a clear
difference between them: PersonaChat is about daily life and LIGHT is about adventure
game. Using this dataset, we will be able to test if a dialogue skill related to persona is
learned: If a model learns the skill on the data in one domain, transferring it to another
domain (requiring the same skill) would yield better performance.

Through experiments on PersonaSkillTalk, we will confirm that using NLLLoss only
makes the model capture everything that is specific to the dataset, including the skill and
domain-specific features. We will also introduce a promising avenue toward learning trans-
ferable dialogue skills.

5.2. Related Works
5.2.1. Dialogue Skill Modelling

Previous works [86, 77] view a dialogue skill as the ability to generate responses by
taking into account the task context such as persona profile [108], situation [71], knowledge
[17] or image [85]. To build a multi-skill dialogue model, [86] and [77] implement multi-
task learning [9] on multiple single-skill datasets. However, the network captures only the
minimal common structure underlying all the datasets, and thus multi-task learning has
shown to perform worse than fine-tuning on each dataset. To remedy the problem, [87]
propose to train a dialogue manager (a classifier) to switch among skills so as to combine
multiple single-skill dialogue models trained in advance. [57] reduces the parameters of
the multi-skill dialogue model by replacing a large single-skill dialogue model with a small
adapter [33]. These adapters for different skills are then employed upon a fixed pre-trained
dialogue model.

These previous works assume that they have trained a single-skill model, and focus on
how to combine different skills. However, our experiments show that all these studies using
NLLLoss only and trained on a single dataset cannot learn a transferable dialogue skill.
Thus, they will not be able to combine skills of different domains or to transfer skills to other
domains. Their approaches only work if all single-skill models are in the target domain. In
this work, we investigate how to learn a transferable dialogue skill, and we will validate the
effectiveness of our approach on persona-conditioned datasets.

5.2.2. Dialogue Training Objective

The standard approach to train dialogue response generator is minimizing NLLLoss given
ground-truth responses. Some works have applied other training objectives to improve re-
sponse specificity [79] and dialogue coherence [95, 102, 46]. However, previous works on
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Fig. 5.1. Architecture and objectives for dialogue skill training. In addition to ground-truth
response reconstruction (LY ), there are relevant condition recognition (LR) and domain
adversarial training (LD). The Predictor, Classifier and Pooler are a linear layer with an
activation function.

dialogue skills are trained using NLLLoss only [86, 77, 87, 57]. Since this training objective
requires the model to fully reconstruct the ground-truth responses, the model will also learn
many domain-specific expressions, especially when training the model on a single dataset.
Our experiments will examine this problem. Therefore, in this work, we propose to use an
auxiliary loss to help capture the dialogue skill underlying dataset(s), and we will empirically
show its usefulness.

5.2.3. Adapter

An adapter is a set of trainable parameters that steer a fixed base model to a down-stream
task. Only the adapter is fine-tuned in the training process. Adapter has been shown to
yield parameter-efficient tuning for NLP [33]. This ability is desirable to build a multi-skill
dialogue model [57]. Many adapter variants have been applied to diverse tasks including
visual domain learning [73], language adaptation [6, 63], and knowledge infusion [93]. What
we contribute in this work is that we find that adapter helps to learn a transferable dialogue
skill since the small model capacity prevents it from learning diverse domain-specific features.

5.3. Methodology
A single-skill dialogue dataset is denoted as D = {(C(i),x(i),y(i))}, where x(i) is the

dialogue history, y(i) is the ground-truth response, and C(i) = {c(i)
1 , ..., c

(i)
k , ...} are conditions

related to the skill, e.g. persona profiles for persona skill. Given c(i)
k and y(i), we assume that
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it is known if the condition is utilized in the response (see section 5.4.1 for data annotation).
Based on it, r(i)

k ∈ {0, 1} indicates whether c(i)
k is relevant to x(i).

We apply a pre-trained Transformer-AR [86, 106] as the base dialogue model, which is
a decoder-only framework that uses bi-directional attention on the source side and left-to-
right attention on the target side. This framework enables the application of a classification
task on the source side, and thus we will introduce relevant condition recognition as the
auxiliary training objective. Figure 5.1 illustrates the components that we will compare in
experiments.

5.3.1. Training Objective

We train a model to learn a dialogue skill by maximizing two probabilities, namely∑
k P (r(i)

k |x(i),C(i)), and P (y(i)|x(i),C(i)
R ), where C(i)

R is the relevant conditions. In con-
trast, previous works employ NLLLoss to train the model, i.e. maximizing P (y(i)|x(i),C(i)),
expecting to implicitly optimize relevant condition recognition and conditioned response
generation. However, we observe in our experiments that the method also learns many
domain-specific features (/expressions).
Relevant Condition Recognition. To capture the underlying dialogue skill, we ask the model
to explicitly predict whether a condition is relevant to dialogue history so that the model
should use it in generation. Then, we minimize:

L(i)
R = −

|C(i)|∑
k=1

logPk(r(i)
k |x(i),C(i)), (5.3.1)

We utilize hck
L to calculate the probability Pk, which is the output of the transformer at c(i)

k

[SEP] position. This position only attends to the tokens within c(i)
k and thus aggregates the

information in this range. The representation at the [SEP] position can then be considered
as the representation of c(i)

k . In contrast, the general attention on the source side is bi-
directional, which ensures that the probability is calculated based on x(i) and C(i).

This auxiliary task can also be applied for knowledge-conditioned dialogue generation [17]
that also requires to recognize useful information first. However, this task is inapplicable
to image-conditioned [85] or situation-conditioned generation [71]. In these cases, other
auxiliary tasks that help to learn the underlying dialogue skill need to be explored.
Conditioned Response Generation. Since we have separated the relevance recognition pro-
cess, for conditioned generation we use ground-truth C(i)

R . Specifically, we minimize the
negative loss likelihood:

L(i)
Y = −

|y(i)|∑
t=1

logPt(y(i)
t |x(i),C(i)

R̂
, y

(i)
<t), (5.3.2)
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Fig. 5.2. In inference, only when P (relevant|x(i),C(i)) < α will the generation not attend
to this condition.

According to the formulation, this objective inevitably forces the model to learn the to-
kens/expressions closely related to the dataset while learning conditioned generation.
Training under Noisy Conditions (Denoising). We observe that using ground-truth C(i)

R for
training is inappropriate since in inference the predicted relevant conditions could be in-
accurate and contain noises. Therefore, we design a training process that simulates the
same noisy situations. In addition to the ground-truth condition, we randomly sample some
irrelevant conditions for training1:

C(i)
R̂

= C(i)
R + sample(C(i)

IR, p = β), (5.3.3)

where each irrelevant condition is uniformly sampled with the probability β. In inference,
only when Pk(relevant|x(i),C(i)) < α, the condition will be viewed as irrelevant, and the
generation will not attend to it. The sampling probability β is calculated based on α to
ensure that the noises introduced in the training process is consistent with inference. In
inference, only when Pk(relevant|x(i),C(i)) < α, the condition will be viewed as irrelevant,
and the generation will not attend to it. It can be viewed as: false

true = 0.5−α
0.5 as shown in

Figure 5.2. Thus, in the training process, we make false
true = β|C(i)

IR|
|C(i)

R |
= 0.5−α

0.5 . Then,

β = λ
(1− 2α)|C(i)

R |
|C(i)

IR|
(5.3.4)

where | · | denotes the number of conditions and λ is a hyper-parameter to control the
magnitude.

5.3.2. Adapter

Adapter has been shown to yield parameter-efficient tuning for NLP [33]. This ability
is desirable to build a multi-skill dialogue model [57]. Several architectures of adapter have
been proposed in the previous studies, as shown in Figure 5.3: added upon each transformer
layer [33, 57], mixed within each layer [62], and added outside the pre-trained model [93].
We denote them as Top-, In-, Side-Adapter respectively. In the first two architectures, the
adapter directly modifies the outputs of a transformer layer. In contrast, Side-Adapter will

1We first tried to use the predicted relevant conditions instead of the ground-truth for training in a certain
proportion, but it damaged the performance.

92



Fig. 5.3. Three types of adapter architectures explored in this work.

not modify the outputs of a pre-trained transformer, but utilizes an output layer to fuse
two types of outputs at the end. Apart from the different positions, the components within
an adapter are similar. An adapter layer is a down projection to a bottleneck dimension
followed by an up projection to the initial dimension. Below, we only give the formulation
of Top-Adapter.

Given the output of i-th Transformer layer H′i ∈ Rn×d, where n is the input length and
d is the hidden dimension, Hi is:

Hi = ReLU(LN(H′i)WD
i )WU

i + H′i, (5.3.5)

where WD
i ∈ Rd×h, WU

i ∈ Rh×d, and LN(·) denotes layer normalization [2]. The bottleneck
dimension h is tunable and it allows to adjust the capacity of the adapter.

5.3.3. Domain Adversarial Training

In addition to multi-task learning, we explore whether domain adversarial training [23]
can remove domain-specific features and further help to capture common structure under-
lying all the datasets. This method has been shown to benefit both convolutional nets and
recurrent nets [48, 29]. However, the work of [49] on clinical negation detection and that
of [98] on multi-source domain adaptation showed that the method does not work well on
pre-trained transformer, e.g. BERT. Recently, [19] demonstrated that it is effective to first
encourage the model to be domain-aware and then conduct the domain adversarial training
to derive the domain-invariant representations. We evaluate this idea in our experiments.
As shown in Figure 5.1, we require the output of Feature Pooler (a linear layer with Tanh ac-
tivation) to maximally confuse a domain classifier. This is accomplished through a min-max
objective between the domain classifier θD and our model θG:

L(i)
D = max

θG

min
θD

−
|C(i)|∑
k=1

logPk(d(i)|x(i),C(i)), (5.3.6)
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PersonaChat LIGHT
Train Set 33145 27325
Valid Set 4098 1782
Test Set 3738 3463

Table 5.1. Key characteristics of PersonaSkillTalk.

where d(i) is the ground-truth domain of this sample. The effect of this objective is to improve
the ability of the classifier to determine the domain of a sample, while encouraging the model
to generate maximally confusing representations. In practice, this is implemented by training
the model using standard loss, but reversing the gradients of the loss with respect to θG as
indicated in Figure 5.1. We adopt the method of [19], and thus before domain adversarial
training we first remove the Gradient Reversal layer and train the model to be domain-aware.

5.4. Experiments
5.4.1. Data Collection

We build our experiment dataset, named PersonaSkillTalk based on two public
datasets: PersonaChat [108] and LIGHT [90], where dialogues are both conditioned on
persona profiles. Meanwhile, the two datasets are in clearly different domains: the former is
related to daily life while the latter involves interactions between characters (or animals) in
a text adventure game. Thus, if a model mainly learns domain-specific features on a dataset,
transferring it to another will not yield good performance.

We automatically annotate whether a persona profile has been employed in the ground-
truth response based on simple matching as follows 2: if some key word in a persona profile
match the key words in the response, then we consider that the persona profile is used. An
automatic annotation is possible in this case because the sentences to construct persona
profiles are simple, such as “I am a student.” or “I love dogs.”, and the vocabulary of persona
profiles is much smaller than the vocabulary of dialogues. The automatic annotation lead
to a very high accuracy: A manual evaluation of 200 random samples reveals that 92.3% of
the automatic annotations conform to human judgement. We can thus use the annotations
in model training. To fully evaluate the performance on modeling dialogue skill, we only
keep samples where the response is constructed based on at least a persona profile, which
produces 40,981 (51%) and 32,570 (28%) samples for PersonaChat (denoted PC) and LIGHT
(denoted LI) dataset respectively as in Table 5.1.

2We use lemmatization, stop word removal, and rules considering the results of part-of-speech tagging to
identify key words. We will release the code to construct the dataset.
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5.4.2. Baselines

Our main experiments are: 1) validating the effectiveness of the auxiliary loss (denoted
as LY + LR w/ denoising) comparing to the response reconstruction objective employed by
the previous works (denoted as LY only) [86, 77, 87, 57]; 2) exploring whether multi-
task learning and domain adversarial training help to learn a domain-independent skill; 3)
investigating the functionality of adapter.

Specifically, with two different training objectives, we compare: fine-tuning on the target
dataset (denoted as FT) [86, 77], first training on another dataset then fine-tuning on
the target dataset (X-FT+FT) [86], multi-task learning on the two datasets (MultiT)
[86, 87], only fine-tuning the adapter (Adap) [57], multi-task learning using the adapter
(MultiT-Adap), and applying domain adversarial training (Dinv-Adap).

5.4.3. Implementation Details

Since PersonaSkillTalk is a small dataset, the base dialogue model in our experiments
(all models using this pre-trained dialogue model) is a small-scale Transformer-AR (110M)
that uses bi-directional attention on the source side and left-to-right attention on the target
side [106]. The model is initialized with BERT (base, uncased) [15] and has been further
pre-trained on 8M dialogue dataset consisting of Reddit [20] 3 and Twitter 4 data that has
been carefully preprocessed.

For the proposed auxiliary loss, we do hyper-parameter search based on the perfor-
mance on the validation set for both α in {0.2, 0.3, 0.4, 0.5} and λ, the magnitude of β, in
{0.2, 0.3, 0.5, 1.0}. We report experimental results with α = 0.3 and λ = 0.2. For the abla-
tion study of training without denoising, α is set to 0.5. We use a P100 GPU for training.
The batch size is 20, and the maximum input length is set to 256. We apply early stop-
ping according to the performance on the validation set. For decoding, the beam size is 4.
We prevent duplicated uni-grams, and set minimum response length to encourage diverse
generation as in [77]: The minimum response length is set to make the average length of
generated responses match with the average target length of the dataset.

When comparing different adapter architectures, we vary the bottleneck dimension of
Top-Adapter and In-Adapter to change the model size. For Side-Adapter, we vary both
the bottleneck dimension and the number of Transformer layers inside each Adapter. We
implement Top-Adapter and In-Adapter, and take the open-source code of Side-Adapter
[93]5.

3https://github.com/nouhadziri/THRED
4https://github.com/Marsan-Ma-zz/chat_corpus
5https://github.com/microsoft/k-adapter
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PPL R-Acc C-Hit
LI PC LI PC LI PC

FT 23.4 13.4 - - 63.0 46.6
X-FT + FT 23.4 13.4 - - 63.3 45.6

LY only MultiT 24.1 13.9 - - 58.3 43.0
Adapter 25.2 14.3 - - 60.9 45.1
MultiT-Adap 25.2 14.4 - - 60.0 43.8
FT 24.5 15.2 65.2 63.2 66.5 56.3
X-FT + FT 24.2 14.8 65.8 63.3 68.4 54.2

LY + LR MultiT 24.6 14.8 65.4 63.2 66.8 56.2
w/ denoising Adapter 24.7 15.8 65.1 63.2 64.1 56.4

(ours) MultiT-Adap 26.1 15.8 65.2 63.9 68.4 57.0
Dinv-Adap 25.8 15.3 64.9 63.2 67.2 56.3

Table 5.2. Performance on PersonaSkillTalk. We report the results on LIGHT (LI) and
PersonaChat (PC) respectively. The upper half is training with LY only, and the lower half
is using our training approach.

Cohe. Appr.
FT 0.57 1.14

LY only X-FT + FT 0.51 0.94
MultiT 0.51 0.90
FT 0.61 1.27

LY + LR X-FT + FT 0.63 1.22
w/ denoising MultiT 0.65 1.10

(ours) MultiT-Adap 0.67 1.33
Table 5.3. Human evaluation on response coherence (Cohe.) and condition appropriateness
(Appr.).

5.4.4. Evaluation

Automatic Metrics. We compare model performance using: 1) perplexity (PPL) that is a
reformulation of the standard training objective LY reflecting how well the model fit the
dataset (i.e. measuring how likely the model generates the ground-truth responses); 2) the
accuracy (%) of relevant condition recognition (R-ACC); 3) the percentage (%) of at least
1 ground-truth relevant condition detected in the generated responses (C-HIT). We use the
automatic script used in the data collection process to evaluate C-HIT.
Human Evaluation. Furthermore, we ask human evaluators to rate whether a response is
coherent to the dialogue history in {0, 1}, denoted as Coherence. 1 represents a fluent and
coherent response. We also evaluate whether a response utilizes correct condition(s) that is
also relevant to the dialogue history in {0,1,2}, denoted as Condition Appropriateness.
1 means the response uses correct condition(s); 2 means the utilized condition(s) is correct
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and relevant. We only perform human evaluation on parts of the models that have shown
good performance given automatic metrics. The test set consists of 100 random samples in
PersonaChat and 100 in LIGHT. The inter-rater annotation agreement in Cohen’s kappa
[14] is 0.44 and 0.71 for coherence and condition appropriateness, which indicates moderate
and substantial agreement.

Dialogue History i am male , divorce , 6 grandchildren , ex named doug .
Persona Profiles i graduated from college last year . (0)

i work in an office as a secretary . (0)
my name is lucy . (1)
i like to eat candy . (0)
i was on the soccer team in college . (0)

Gold Response nice to meet you doug . i am lucy
FT that is great . i am a secretary in college (1, 0)

LY X-FT + FT hi i am lucy , my name is . how are ? that sucks (0, 0)
MultiT that is cool i am a secretary my name lucy (1, 2)
FT that is nice i am a secretary in office now (1, 2)

LY + LR X-FT + FT hi i am lucy . that is cool my name was in college (0, 0)
w/ denoising MultiT that s cool i m a college student my name is lucy what do you

like (1, 0)
MultiT + Adap that s cool i m a secretary my name lucy (1, 2)

Table 5.4. Generated responses on PersonaChat. The automatic annotations, i.e. (0/1),
are given at the end of each persona profile. Human evaluation scores are given at the end
of each generated reply, representing (response coherence, condition appropriateness).

Dialogue History me either . not since i quit working there and began writing short
stories . [SEP] what are some of your stories like ?

Persona Profiles i like dark superhero movies . (1)
i like to drink scotch to relax . (0)
i write short stories for a living . (0)
i used to work at a carnival . (0)

Gold Response i get alot of my inspiration from superhero movies . little mix of
all my faves .

FT i love superhero . my stories are dark like a ghost (0, 2)
LY X-FT + FT i like dark superhero . what do you write ? (0, 2)

MultiT i like dark superhero movies . they are my favorite (0, 2)
FT mostly superhero . i write a lot about drinking scotch (1, 2)

LY + LR X-FT + FT i am a superhero writer and love stories like the dark ones (1, 2)
w/ denoising MultiT i am a writer . mostly horror stories and thrillers (1, 2)

MultiT + Adap mostly superhero . i love them especially the dark ones (1, 2)
Table 5.5. Generated responses on PersonaChat. The automatic annotations, i.e. (0/1),
are given at the end of each persona profile. Human evaluation scores are given at the end
of each generated reply, representing (response coherence, condition appropriateness).
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Dialogue History what brings you to the king ’ s throne room this day ?
Persona Profiles the neighboring kingdom has been destroyed . (1)

what was once a castle is now smoldering ruin . (1)
i have to warn him , before they are next . (0)
i have arrived after days of travel with grave news for the king . (1)

Gold Response your majesty , i have terrible news of dire consequence . the
neighboring kingdom has been over - run . the castle is burned
to the grounds and even know it smoulders ,
nothing more than a pile of rubble . this scroll gives a full account
of what transpired .

FT i am looking for new to the kingdom . my father is king and he
has been here years (1, 0)

LY X-FT + FT i am here to warn the king he is looking for treasure (1, 0)
MultiT i am here to warn the king . he is looking for a new kingdom

that has been destroyed (1, 0)
FT i am here to news of the loss our kingdom s king (0, 0)

LY + LR X-FT + FT i am looking for news the king has been . he is having
a talk with (0, 0)

w/ denoising MultiT i am here to the king s quarters this morning my kingdom has
been destroyed (1, 2)

MultiT + Adap i am looking for news from the king s quarters how are things
in kingdom (1, 0)

Table 5.6. Generated responses on LIGHT. The automatic annotations, i.e. (0/1), are
given at the end of each persona profile. Human evaluation scores are given at the end of
each generated reply, representing (response coherence, condition appropriateness).

5.4.5. Results and Analysis

LY only and Untransferable Skill Our experimental results in Table 5.2 show that X-
FT + FT performs very similarly as FT, indicating that leveraging another dataset (e.g. using
PersonaChat for LIGHT) does not help. Multi-task learning should have helped the model
to learn the common structure underlying the two datasets, here the persona skill; but
MultiT performs worse than FT in all automatic metrics especially in C-Hit, which means
it weakens the ability to utilize relevant conditions in generation. Human evaluation results
in Table 5.3 (LY only) also show that leveraging another dataset weakens model performance.
Similar observation has already been reported in a previous work that applies LY only [86].
The reason behind these phenomena can only be that by reconstructing the ground-truth
responses (LY only), the model also learns domain-specific features in additional to the
underlying dialogue skill. Thus, leveraging another dataset of a clearly different domain does
not only transfer the knowledge of the dialogue skill to the target dataset, but also brings
noises in the training on the target dataset, and thus damages the model performance.
LR and Denoising Training As summarized in the lower half of Table 5.2, with the

proposed training objective, X-FT + FT performs better than FT in most automatic metrics,
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Dialogue History ah , this choir room is amazing .
Persona Profiles i am financed by the king , so i often work in the palace ,

making art for the royals . (0)
working on my art makes me extremely happy . (0)
i love to paint the scenery of my village , the beautiful views of
nature around me . (1)

Gold Response it sure is beautiful . it ’ s one of my favorite areas to paint .
FT yes it is a beautiful room i love the view (1, 0)

LY X-FT + FT yes it is my work i love painting the scenery (1, 2)
MultiT yes it is i love my paintings what do you (0, 2)
FT yes it is my pleasure i love the view you are very (0, 0)

LY + LR X-FT + FT it is indeed . i am very proud of my work , the king has me a
great artist (1, 2)

w/ denoising MultiT it s a beautiful room indeed i am very proud of my work (1, 2)
MultiT + Adap it s a beautiful place i am painting the scenery you d like

my majesty (1, 2)
Table 5.7. Generated responses on LIGHT. The automatic annotations, i.e. (0/1), are
given at the end of each persona profile. Human evaluation scores are given at the end of
each generated reply, representing (response coherence, condition appropriateness).

and MultiT performs very similarly to FT. Although the improvement is small, so as the
corresponding human evaluation results in Table 5.3, comparing with LY only, our training
approach indeed prevents leveraging another dataset of a different domain from damaging
the model performance on the target task. Particularly, MultiT-Adap performed much worse
than FT, but with our training approach it performs better than FT in both automatic and
manual evaluations. It is thus viewed as a promising avenue to learn a transferable dialogue
skill. We will further discuss it subsequently.

When comparing the model trained with our training approach to a model with LY only,
the results show that our approach largely enhances the ability of utilizing relevant condi-
tions in generation (C-Hit and Appr.). It thus confirms that an auxiliary loss additional
to NLLLoss enables the model to focus on learning the dialogue skill instead of general ex-
pressions related to a domain. However, we indeed observe a small increase in perplexity. It
is expected since perplexity is related to LY , and thus training on LY only will yield lower
perplexity.

Denoising is the core component of the proposed training approach. It simulates the noisy
situations when the predicted relevant conditions are inaccurate (low R-ACC). To validate
its effectiveness, Table 5.8 reports the ablation study of training without denoising. The last
row summarizes its average decrease in performance comparing with LY +LR w/ denoising.
The results show that denoising training enables the model to better fit the datasets (lower
perplexity) and enhances the ability of utilizing relevant conditions in generation (higher
C-Hit).
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PPL C-Hit
LI PC LI PC

FT 24.5 16.8 64.5 54.2
X-FT + FT 24.7 17.0 65.4 53.6
MultiT 25.1 17.1 65.4 55.6
Adapter 25.2 17.6 61.3 55.1
MultiT-Adap 28.1 18.9 62.2 53.0
avg. +0.7 +2.2 -3.1 -2.3

Table 5.8. Ablation study of w/o denoising. The last row summarizes the average decrease
in performance.

Fig. 5.4. PCA visualization of the outputs of Feature Pooler on the test set without and
with domain adversarial training.

Multi-task Learning and Domain Adversarial Training As discussed before, when
training the model using only response reconstruction loss, multi-task learning on two
datasets in clearly different domains substantially damages the performance on each task.
In contrast, with our training approach, multi-task learning on average improves the perfor-
mance. We expect that with more persona-skill datasets, the multi-task learning can better
capture the skill underlying these tasks. In PersonaSkillTalk, there are only two datasets
that are in clearly different domains, which poses much difficulty to learn the common struc-
ture. Nevertheless, we find that decreasing model capacity helps to learn the common part.
We will further discuss it later.

In addition to multi-task learning, we explore whether direct domain adversarial training
helps the model to be domain-independent. As shown in Figure 5.4, with domain adversarial
training, the distance between the data points from different domains becomes much smaller.
However, the performance in generation is not improved (see Table 5.2). We also observe
that the adversarial training process can be unstable as reported in the previous work [98].
These show that multi-task learning is a more effective and robust way to learn the underlying
dialogue skills.

Multi-task Learning with Adapter Adapter training a small set of parameters has
been shown to have comparable performance to fine-tuning all parameters [57]. In this
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Fig. 5.5. Performance comparison among three types of adapters on the two datasets. The
x-axis is the size of adapter comparing to the size of the base model.

work, we compare the three adapter architectures as well as fine-tuning all parameters using
LY only, denoted as Fine-Tune (100%), and report the results in Figure 5.5. As expected,
we can observe that fine-tuning the entire model performs the best. Nevertheless, Top-
Adapter can consistently get closer to the performance of fine-tuning with only ∼ 6% task-
specific parameters. Increasing the adapter size does not obviously affect Top-Adapter but
improves the performance of In-Adapter. Only a large In-Adapter (∼ 13% of parameters)
can yield comparative performance to Top-Adapter. We also see that Side-Adapter cannot
efficiently adapt the pre-trained dialogue model to a specific dialogue task and performs the
worst. Therefore, Top-Adapter is most suitable to build a single-skill dialogue model. The
results reported in Table 5.2 have been produced using Top-Adapter (fine-tuning only 6.7%
parameters).

What is discovered in our experiments is that with our training approach MultiT-Adap
outperforms both FT and MultiT in both automatic (except in terms of perplexity) and
manual evaluation, indicating that MultiT-Adap best learns the common dialogue skill un-
derlying the two datasets. We assume the behind reason is that the much smaller capacity
of adapter (comparing with fine-tuning all parameters) helps to distill a domain-independent
skill since it is more undisturbed by diverse domain-specific features. The experiment results
of LY only in Table 5.2 also indicate that MultiT-Adap learns less domain-specific features
than MultiT (higher PPL) but better ability of utilizing relevant conditions in generation
(higher C-Hit).

5.5. Conclusion
In this chapter, we investigated the problem of dialogue skill modeling. Different from

previous studies, we focus on the transferability of a skill model. Through experiments on
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PersonaSkillTalk, we confirmed that using NLLLoss only makes the model capture everything
that is specific to the dataset, including the skill and domain-specific features. This explains
why multi-task learning performed worse than fine-tuning on each dataset separately, and
weakened the ability to utilize relevant conditions in generation. Instead, our experiments
revealed a promising avenue toward learning transferable dialogue skills, including:

• An auxiliary task specifically designed to extract a skill is necessary. We proposed a
training approach that first requires the model to explicitly predict whether a con-
dition is relevant to dialogue history so that the model should use it in generation.
Next, we trained the model by conditioned response generation task based on these
relevant conditions. Experimental results showed that with our training approach,
multi-task learning improves the model performance. Our approach also largely en-
hances the general ability of utilizing relevant conditions in generation.
• Multi-task learning is effective to capture the common dialogue skill underlying the
datasets with our training objective. However, domain adversarial training [23] that
is used for removing domain-specific features does not further help to learn a domain-
independent skill.
• Adapter helps to distill a domain-independent skill. An adapter is a small set of train-
able parameters that steer a fixed base model to a down-stream task. Previous work
has shown that it yields parameter-efficient tuning for NLP [33]. Our experiments
revealed its advantage on learning dialogue skills: its much smaller capacity (compar-
ing with fine-tuning all parameters) prevents it from learning diverse domain-specific
features.
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Chapter 6

Conclusion and Future Work

6.1. Overview
In summary, this dissertation presented a series of methods to leverage pre-trained lan-

guage models for both task-oriented dialogue systems and general-domain chatbots. Partic-
ularly, we focused on the latter and provided solutions starting from general open-domain
dialogue generation to conditioned dialogue generation.

Pre-trained language models have shown to be effective for improving many natural
language processing tasks. For task-oriented dialogue systems, the existing state-of-the-art
generative framework in DST replaces RNN encoder with BERT. However, this framework
still utilizes an RNN decoder stacked upon BERT encoder. In Chapter 2, we proposed
a framework consisting of a single BERT that works as both the encoder and the decoder,
which has a flat encoder-decoder architecture allowing for more effective parameter updating.
Experiments on MultiWOZ datasets showed that our model substantially outperforms the
existing framework, and it also achieves very competitive performance to the best ontology-
based approaches. Besides, it can converge to its best performance much faster and in a
more stable manner than the existing framework.

For generative chatbot systems, GPT, a left-to-right language model, has shown to gen-
erate fluent and diverse text, and thus previous works fine-tuned GPT for open-domain dia-
logue generation. Nevertheless, some works showed that fine-tuning BERT can also achieve
state-of-the-art performance. Thus, we investigated this problem and examined how to best
exploit a pre-trained LM for dialogue generation in Chapter 3. Specifically, we compared
4 frameworks that utilize pre-trained LM for open-domain dialogue generation on 3 public
datasets each in large and small scale. The comparison revealed that Transformer-Dec and
Transformer-AR are both good choices when large-scale data is available, e.g. further dialogue
pre-training. When data is limited, e.g. fine-tuning on small dialogue tasks, Transformer-
Dec is the most appropriate. Through extensive experiments, we also observed the impact
of pretrain-finetune discrepancy and finetune-generation discrepancy, and we examined the



discrepancies of each framework. Further, we proposed two novel methods to reduce discrep-
ancies, yielding improved performance. This study is the first investigation on the widely
used 4 frameworks based on pre-trained LM in terms of architectural appropriateness and
discrepancies.

Beyond the pre-trained Transformer based frameworks for task-oriented dialogue and
open-domain dialogue, we go further in conditioned dialogue generation. In Chapter 4, we
proposed a simple and efficient multi-task learning approach for loosely-conditioned response
generation to alleviate the data scarcity issue of labeled dialogues. We show that labeled text
(non-dialogue) data that are much easier to collect can supplement labeled dialogue data.
These data can be, for example, texts written by the same person (for a persona condition),
within the same topic domain (for a topic condition), etc. We confirmed that these data can
contribute to create better representations of conditions and better utilization of conditions
in natural language generation. Our approach outperforms the state-of-the-art models by
leveraging labeled texts and obtains larger improvement in performance compared to the
existing methods to leverage text data.

We also investigate how to equip a chatbot with dialogue skills in Chapter 5. We showed
that Adapter has enough capacity to model a dialogue skill while needing only 6% more
parameters than a pre-trained dialogue model. Thus, it is possible to build a multi-skill model
by using a fixed base model and multiple small Adapters. However, we found that previous
works in dialogue skill learning also learn domain-specific expressions. In this case, combing
two dialogue “skills” does not improve the performance due to the non-transferablility of
these domain-specific features. Thus, we proposed methods for learning a dialogue skill
by: 1) auxiliary loss specifically designed for the skill; 2) multi-task learning to learn the
common part, i.e. skill, of several tasks; 3) Adapter to decrease model capacity avoiding to
learn diverse styles. Experimental results show that with our approach a model more likely
generates appropriately conditioned responses.

At last, we summarize our works in the following table:

Task-oriented Dialogue Systems A flat encoder-decoder framework consisting of a single BERT
Generative Chatbots
Open-domain dialogue 1) Transformer-ED/Dec/MLM/AR;

2) Pretrain-finetune and finetune-generation discrepancy;
3) Two methods to decrease model discrepancies

Conditioned dialogue 1) A multi-task learning approach for loosely conditioned generation;
2) Multi-skill chatbots by a fixed base pre-trained model & Adapters;
3) Methods of learning transferable dialogue skills

Table 6.1. A summary of the proposed methods that better exploit pre-trained language
model for dialogue systems.
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6.2. Future Research Directions
This thesis suggests many promising future research directions.

• Language Modeling Before the rise of pre-trained Transformer-based language
models, works in dialogue generation were all based on RNN Seq2Seq framework.
Many methods had been proposed and achieved better performance than vanilla
RNN, e.g. hierarchical RNN [81] for multi-turn response generation, CVAE [110]
to generate diverse responses, CCM [114] leveraging knowledge graph for response
generation, generation under different conditions, and so on. However, none of these
works outperforms vanilla pre-training based models that do not exploit extra knowl-
edge. Furthermore, many previous ideas that work well in RNN based systems might
not bring similar improvement to a Transformer based system. For example, multi-
turn response generation in a Transformer based system does not apply a hierarchical
model structure. Instead, it simply concatenates multi-turn dialogue history as the
input of Transformer. Therefore, we believe that future improvement in dialogue
generation will be still from the improvement in language model. The question will
be how to continue scaling a language model and how to efficiently train such a giant
model on extremely large-scale text corpus.
• Conditioned Generation More and more attention is paid to controlling language
generation. Researchers are interested in controlling the style, topic, knowledge, and
so on. Some of these approaches for dialogue generation specifically have been de-
scribed in Chapter 4, e.g. using a parametric vector or Adapter. However, generation
based on scheme is a more challenging task. To generate a long text, e.g. a story,
researchers usually want a generative model to expand the story based on a scheme.
The scheme controls the logic and the main story, and the model enables the diversity
of generated text.
• Content to be Generated Much of the current research work tries to generate
a response from an internal representation built from the dialogue history. The
assumption is that a powerful language model would be able to determine what to
generate. This is difficult in practice. In many real situations, we need to control
tightly the content of the generation. There is a need to combine the flexible neural
framework used in the current research on dialogue generation with the strategy used
in traditional dialogue generation: determine first what to generate, then how to
generate. More investigations are required to determine the content to be generated.
• Multi-Skill System For dialogue systems, researchers have realized that a vanilla
Seq2Seq model for open-domain dialogue generation overly simplifies the task: it
leaves a model to generate a response given dialogue history without extra knowl-
edge. Instead, recent studies have focused on modeling dialogue skills and how to
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switch among skills given a dialogue history using elaborate rules or more explain-
able models. There are always debates on whether to use a unified solution or a
specifically-designed one for NLP tasks. We believe that compromise will be a better
choice. For example, BERT is a unified solution and different LM heads, e.g. linear
layers, stacked on it for different NLU tasks have achieved superior performance.
However, Google T5 applying the idea of “text-to-text” to incorporate most NLP
tasks may be overly unified. Thus, we believe that the future framework will consist
of a powerful base model and multiple small adapters for each target task.
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