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Ce mémoire intitulé:
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Résumé
L’apprentissage auto-surveillé (AAS), c’est-à-dire l’apprentissage de connais-

sances en exploitant la structure intrinsèque présente dans un ensemble de données
non étiquettées, a beaucoup fait progresser l’apprentissage automatique dans la
dernière décennie, et plus particulièrement dans les dernières deux années en vision
informatique. Dans cet ouvrage, nous nous servons de l’AAS comme outil dans
deux champs applicatifs: Pour interpréter e�cacement les ensembles de données et
les décisions prises par des modèles statistiques, et pour pré-entrainer un modèle
d’apprentissage par renforcement pour grandement augmenter l’e�cacité de son
échantillonnage dans son contexte d’entrâınement.

Le Chapitre 1 présente les connaissances de fond nécessaires à la compréhen-
sion du reste du mémoire. Il o↵re un aperçu de l’apprentissage automatique, de
l’apprentissage profond, de l’apprentissage auto-surveillé et de l’apprentissage par
renforcement (profond).

Le Chapitre 2 se détourne brièvement du sujet de l’auto-surveillance pour étu-
dier comment le phénomène de la mémorisation se manifeste dans les réseaux de
neurones profonds. Les observations que nous ferons seront alors utilisées comme
pièces justificatives pour les travaux présentés dans le Chapitre 3. Ce chapitre
aborde la manière dont l’auto-surveillance peut être utilisée pour découvrir e�ca-
cement les régularités structurelles présentes dans un ensemble de données d’entrâı-
nement, estimer le degré de mémorisation de celui-ci par le modèle, et l’influence
d’un échantillon d’entrâınement sur les résultats pour un échantillon-test. Nous
passons aussi en revue de récents travaux touchant à l’importance de mémoriser la
“longue trâıne” d’un jeu de données.

Le Chapitre 4 fait la démonstration d’une combinaison d’objectifs de pré-
entrâınement AAS axés sur les caractéristiques des données en apprentissage par
renforcement, de ce fait élevant l’e�cacité d’échantillonnage à un niveau compa-
rable à celui d’un humain. De plus, nous montrons que l’AAS ouvre la porte à de
plus grands modèles, ce qui a été par le passé un défi à surmonter en apprentissage
par renforcement profond.

Finalement, le Chapitre 5 conclut l’ouvrage avec un bref survol des contributions
scientifiques et propose quelque avenues pour des recherches poussées dans le futur.

mots-clés: apprentissage automatique, apprentissage profond, apprentissage de
représentations, apprentissage auto-surveillé, apprentissage par renforcement, gé-
néralisation
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Summary
Self-Supervised Learning (SSL), or learning representations of data by exploiting

inherent structure present in it without labels, has driven significant progress in
machine learning over the past decade, and in computer vision in particular over the
past two years. In this work, we explore applications of SSL towards two separate
goals - first, as a tool for e�ciently interpreting datasets and model decisions, and
second, as a tool for pretraining in reinforcement learning (RL) to greatly advance
sample e�ciency in that setting.

Chapter 1 introduces background material necessary to understand the remain-
der of this thesis. In particular, it provides an overview of Machine Learning,
Deep Learning, Self-Supervised Representation Learning, and (Deep) Reinforce-
ment Learning.

Chapter 2 briefly detours away from this thesis’ focus on self-supervision, to
examine how the phenomena of memorization manifests in deep neural networks.
These results are then used to partially justify work presented in Chapter 3, which
examines how self-supervision can be used to e�ciently uncover structural regular-
ity in training datasets, and to estimate training memorization and the influence
of training samples on test samples. Recent experimental work on understanding
the importance of memorizing the long-tail of data is also revisited.

Chapter 4 demonstrates how a combination of SSL pretraining objectives de-
signed for the structure of data in RL can greatly improve sample e�ciency to
nearly human-level performance. Furthermore, it is shown that SSL enables the
use of larger models, which has historically been a challenge in deep RL.

Chapter 5 concludes by reviewing the contributions of this work, and discusses
future directions.

Keywords: machine learning, deep learning, representation learning, self-supervised
learning, reinforcement learning, generalization

iv



Contents
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1 Introduction
Machine learning (ML) is a data-driven approach to characterizing statistical

regularity in our observations of the world. 1 In recent years it has seen particular

success via deep learning (DL), a collection of model architectures and optimiza-

tion methods which have high expressive capacity and scalability with data and

compute as well as a remarkable ability to generalize beyond training data instead

of merely memorizing it. The flexibility of deep learning comes in large part from

reducing inductive biases and instead learning sophisticated representations from

data directly. A significant drawback to this approach is that a large amount of data

is often needed to learn from, which can be especially prohibitive when this requires

manual human annotation and labelling. A standard approach to addressing this

issue has been through transfer learning, in which representations learned on one

task can be transferred or used as an initialization for another related task. More

recent advances in Self-Supervised Learning (SSL) go further through construction

of novel training objectives that exploit inherent structure present in unlabelled

data in order to learn strong representations. This paradigm allows for decou-

pling of representation learning and more task-specific learning, and also greatly

increases learning signal in settings with limited labelled data.

In this work, we explore applications of SSL towards two separate goals - first,

as a tool for e�ciently interpreting datasets and model decisions, and second, as an

approach for pretraining in reinforcement learning (RL) to greatly advance sample

e�ciency in that setting.

This thesis touches on each of the primary paradigms of machine learning: su-

pervised learning, unsupervised learning, and reinforcement learning. Accordingly,

a brief overview of these is provided in this chapter, as far as is necessary to un-

derstand the remainder of this work.

1. I think this is how a McKinsey consultant might put it.
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1.1 (Supervised) Machine Learning

Four important components of any ML approach to a problem are: the data

the model will learn from and be evaluated on, the loss function used to measure

the quality of the learned model and to provide a learning signal, the optimization

procedure used to train the model, and finally the structure of the model itself.

We elaborate on the first three below, and dedicate the subsequent section to the

structure of neural network and deep learning models that are the focus of this

thesis.

Data In supervised learning we seek to learn a mapping from input data to targets:

f : X ! Y . We do so by learning from example pairs (x, y) of this mapping,

which form a training dataset D = {(xi, yi)}Ni=1
. For example, this could be pairs

of images and corresponding classification labels. In general, modern ML methods

perform better with more data; today’s largest training datasets are on the order of

billions of images (Zhai et al., 2021), and trillions of words (Gao et al., 2020). Most

relevant to this work are two particular image classification datasets: ImageNet-

1K (Russakovsky et al., 2015) and CIFAR-100 (Krizhevsky, 2009b). ImageNet-

1K is a collection of 1.2 million high-resolution images scraped from the internet,

grouped into 1000 natural object classes. This dataset su↵ers from some flaws –

it disproportionately covers certain types of classes such as dogs (which are 120 of

the classes), and many images contain multiple objects or are mislabelled, causing

di�culty when learning from the single crude label provided per image (Beyer et al.,

2020). CIFAR-100 is a collection of 50 thousand downsampled images (32x32)

covering 100 natural object classes. While more computationally accessible, this

also su↵ers from issues such as duplicated data and label errors (Barz and Denzler,

2020).

Objectives In order to solve a problem, we need to quantify performance on it;

this is achieved through objective, cost or loss functions which we seek to minimize.

For example, in classification tasks, we ultimately care about the 0-1 loss, which is

0 for correct classification and 1 for incorrect.

01(y, ŷ) = (y 6= ŷ)

2



Such a loss is not di↵erentiable however, so provides no learning signal for an agent

learning with the gradient-based optimization methods commonly used today. A

very common surrogate objective for the 0-1 loss is the di↵erentiable cross-entropy

loss (Bridle, 1990a,b) in combination with a softmax operator that ensures outputs

are a normalized probability distribution q.

CrossEntropy(q, y) = � log qy

The use of softmax for classification has an appealing probabilistic perspective (Bishop,

2006); however, these probabilities are in general misleading and unreliable when

used as confidence estimates for a model (Gal and Ghahramani, 2016).

Beyond classification, another common setting is regression. A common objec-

tive in this setting is the mean-squared error loss (MSE)

MeanSquaredError(ŷ,y) = kŷ � yk2
2

Surprisingly, recent work has empirically shown that the MSE loss works equally

well to softmax cross-entropy for classification tasks (Hui and Belkin, 2021; Korn-

blith et al., 2020).

Optimization Generally there are not closed-form equations that let us directly

fit a model to a dataset for a given objective function, and we need to use some

form of search process to find good settings of parameters. By far the most promi-

nent approach to optimization in ML (and particularly deep learning) is Gradient

Descent and methods derived from it. Assuming our model is parameterized by

weights ✓, and that the model is fully di↵erentiable with respect to these weights,

gradient descent updates these weights by taking small steps (controlled by a step-

size �) in the opposite direction of the gradient (steepest descent) of these weights

with respect to some scalar loss evaluated on a training dataset:

✓t+1  ✓t � �r✓tLoss(✓t, Dtrain)

3



For neural networks, the backpropagation algorithm (Linnainmaa, 1970; Werbos,

1982; Rumelhart et al., 1986) 2 allows for layer-wise calculation of gradients in a

highly e�cient manner.

In practice, gradients are calculated and averaged over a minibatch of samples,

to more e�ciently leverage the parallelism of GPUs (graphics processing units) and

allow for faster parameter updates — this approach is called Stochastic Gradient

Descent (SGD). Furthermore, additional momentum terms are commonly used to

speed up convergence of SGD, by increasing the gradient in directions of persistent

reduction in loss over iterations (Polyak, 1964; Nesterov, 1983). Two common

momentum-based SGD methods are Nesterov-accelerated-gradient (NAG Nesterov,

1983) and Adam (Kingma and Ba, 2014), which are now standard for optimization

in deep learning. A vast number of variants on SGD have been proposed, though

large-scale studies have shown limited benefit in terms of test performance to any

beyond NAG or Adam (Schmidt et al., 2021; Choi et al., 2020; Nado et al., 2021)

1.2 Deep Learning

Deep Learning is at present the dominant focus of research in ML. Its origins

can be traced to early work on biologically-inspired neural network (NN) methods

such as perceptrons (Rosenblatt, 1958) 3 or the neocognitron (Fukushima, 1980),

though much of today’s work has little connection to learning in natural systems.

Neural networks have undergone cycles of interest and disdain in the community

of artificial intelligence (AI) researchers over the past sixty-five years, but over this

time they have been the only approach to consistently scale with exponentially

increased computational resources and data (Sutskever, 2018; Amodei et al., 2019;

Hernandez and Brown, 2020). We provide a brief summary of the relevant material

here; a far more thorough (though slightly out-of-date) overview of the field can be

found in Goodfellow et al. (2016).

2. Backpropagation is simply an application of the chain rule of calculus and reverse-mode
automatic-di↵erentiation to neural networks with scalar loss functions.

3. Interestingly, Frank Rosenblatt (inventor of the perceptron machine) explicitly distanced
himself from the goal of building artificial intelligence, and worked on the perceptron as a brain
model to better understand natural intelligence (Rosenblatt, 1962)
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1.2.1 Building Blocks

Central to deep learning is the composition of successive functions, such that

sophisticated intermediary representations can be learned that enable better per-

formance on the task at hand. Each function in the composition, referred to as a

layer, can take on various forms to incorporate di↵erent inductive biases relevant

to specific tasks.

f = lL � lL�1 � · · · � l1

Linear The simplest layer is a linear layer, which is parameterized by a weight

matrix and an optional bias vector; applying this layer to its input is merely a

matrix multiplication and vector addition.

Linear(x;W,b) = Wx+ b RD ! RD
0

Nonlinearities Composing linear layers alone does not provide any extra expres-

sive power over a single linear layer, and accordingly cannot be used to model

non-linear relationships in data. It is thus required to introduce nonlinear trans-

formations between layers; the most widespread nonlinearity in use today is the

Rectified Linar Unit (ReLU) applied element-wise:

ReLU(x)i = max(0, xi) RD ! RD

Special nonlinearities are commonly used on the logits (the outputs of the penulti-

mate layer); for example in multi-class classification, it is common to use a Softmax

to turn the unnormalized logits into a normalized probability distribution:

Softmax(x)i =
exi

P
j
exj

RD ! RD

Convolutional Another very common layer is the convolutional layer which oper-

ates on data structured in grids; it has been historically dominant on vision tasks.

Conv2D(X;Kc)hwc = X ?Kc RHWC ! RH
0
W

0
C

0
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where ? is the cross-correlation operation and Kc is the c-th of C 0 kernels. The

core inductive bias of convolutional layers is of spatial locality – that the same

operation can be applied to all regions of an input. This allows for significant

reductions in parameter count compared to equivalent fully-connected linear lay-

ers. Convolutional layers are frequently used in combination with pooling layers,

Figure 1.1 – Visualization of applying a convolutional kernel (Amidi and Amidi, 2019)

which aggregate outputs over a region with a statistic such as the maximum or

average, enabling robustness to small translations in the input, as well as reducing

the dimensionality of the output for downstream layers. Pooling is not strictly

necessary, and networks can be fully convolutional without any pooling or linear

layers (Springenberg et al., 2015).

Self-Attention A relatively recent, yet highly promising, layer is the dot-product

self-attention layer (Luong et al., 2015; Vaswani et al., 2017). For an input sequence

z 2 RN⇥D of length N , with each token having dimension D:

SelfAttention(x;Uqkv) = Softmax

✓
(Uqx)(Ukx)>p

Dh

◆
(Uvx) RND ! RNDh

The parameters Uqkv project the input tokens of x into query q, key k and value

v representations, of the same sequence length as the input. Self-attention provides

a way for information to rapidly propagate between di↵erent areas of the input;

this was especially useful in the natural language processing (NLP) setting it was

first introduced in (Luong et al., 2015; Vaswani et al., 2017), but self-attention

has recently been used in computer vision (CV) to drive significant advances in

compute e�ciency and performance (Dosovitskiy et al., 2020). Unfortunately, self-

attention su↵ers from poor computational complexity, due to the quadratic scaling

of the outer product of the query q and the key k; motivating recent work on

approximations to self-attention that have linear computational cost (Wang et al.,
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2020; Choromanski et al., 2021), and approaches for global information propagation

that discard self-attention entirely and use regular linear layers and transposes or

frequency domain transformations (Melas-Kyriazi, 2021; Lee-Thorp et al., 2021).

Normalization Other commonly used layers are normalization layers, which make

optimization with SGD more stable for deep models. Batch Norm (Io↵e and

Szegedy, 2015) is the most prominent of these layers, and operates by keeping

per-channel running mean and variance statistics, calculated over the inputs of

a batch, and then using these statistics to center and normalize inputs. How-

ever, there has been a move away from Batch Norm recently due to its significant

drawbacks: instability with small batches, inter-device communication overhead

in distributed training, and inappropriateness when transferring to new distribu-

tions (Kolesnikov et al., 2020). More recently, alternatives which normalize each

input in isolation, such as Layer Norm (Ba et al., 2016), Group Norm (Wu and He,

2018), and Instance Norm (Ulyanov et al., 2017), have gained in popularity due to

their ease of use and improved task and compute performance over Batch Norm.

Beyond their stabilizing e↵ect on optimization, normalization layers also have sig-

nificant expressive capacity by themselves; it has been shown that good models

can be learnt by training batch norm alone with the rest of the model frozen at a

random initialization (Frankle et al., 2021), and that transferring a model to new

modalities (e.g. language to images) can be done by finetuning input and output

layers along with intermediary layer norm layers alone (Lu et al., 2021).

H
, W

C N

Batch Norm

H
, W

C N

Layer Norm

H
, W

C N

Instance Norm

H
, W

C N

Group Norm

Figure 1.2 – The dimensions along which various normalization layers operate (Wu and He, 2018).
N corresponds to the batch dimension, H,W ,C are height, width, and channels (for image inputs).

Residual Connections While not technically a layer, we highlight the importance

of residual connections to modern architectures, as popularized by He et al. (2015a).
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These do not directly change the expressive power of a model, but similarly to

normalization layers make optimization of deeper models significantly easier.

identity

weight layer

weight layer

relu

relu

F(x)�+�x

x

F(x) x

Figure 1.3 – An example of a residual block (He et al., 2015a)

Initializations An often overlooked but critical aspect of layers is the values used

to initialize them when training with SGD. Naively setting each layer’s weights from

independent random distributions can lead to di�culty in training convergence and

gradient signal propagation depending on the nonlinearities used between layers;

these issues are generally resolved through careful design of initializations to en-

sure stability of signal propagation through layers (Glorot and Bengio, 2010; He

et al., 2015b). Remarkably, appropriate design of initialization schemes can en-

able training of models with 10,000 layers, using neither residual connections nor

normalization (Xiao et al., 2018).

1.2.2 Generalization

A critical property of a trained model is its ability to generalize to samples

beyond the training set (though from the same distribution). Remarkably, deep

learning models, in spite of being heavily overparameterized and capable of memo-

rizing completely noisy data (Zhang et al., 2016), in practice have low generaliza-

tion gap (the di↵erence between error on training data and held-out testing data),

and do not learn via memorization on structured data (Arpit et al., 2017). Un-

fortunately, we currently lack theory to convincingly explain these observations; in

practical settings most generalization bounds are vacuous (greater than 1), and in

many cases generalization measures derived from them do not even correlate with

the generalization gap across architectures and training settings (Jiang et al., 2019;

Dziugaite et al., 2021).
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1.3 Self-Supervised Learning

A significant limitation of standard ML methods has been their reliance on ex-

plicit supervisory signal in the form of labels. This is a bottleneck, as modern deep

learning often requries vast amounts of labelled data for competitive performance,

and yet labelling introduces a dependency on costly and error-prone human anno-

tation. The subfield of self-supervised learning (SSL) is focused on constructing

novel objectives that exploit the rich inherent structure present in unlabelled data

by itself. For example, simple tasks such as next-token prediction have driven mas-

sive advances in NLP, and are central to current state of the art models (Brown

et al., 2020a). Pretraining with SSL objectives produces models which can transfer

zero-shot to new tasks (Brown et al., 2020a; Radford et al., 2021), or can e�ciently

be finetuned with very few samples from the new task (Chen et al., 2020b; Grill

et al., 2020a; Héna↵ et al., 2019). In the latter setting, SSL pretraining is a form

of learned initialization, in contrast to random initializations discussed earlier, and

is reminiscent of unsupervised layer-wise pretraining that was historically critical

to the training of deep neural networks (Erhan et al., 2010). For a more in-depth

overview of recent advances in self-supervision, one can read Weng (2019) and Weng

(2021).

1.3.1 Contrastive Learning

A recently successful approach to unsupervised representation learning has been

Contrastive Learning, which seeks to maximize the latent-space similarity of pos-

itive pairs of examples and the latent-space dissimilarity of negative pairs of ex-

amples. Positive pairs are generally di↵erent views of the same data sample, often

using augmentation to obtain these separate views as in SwAV (Caron et al., 2020)

or through image-text pairs scraped from the internet as in CLIP (Radford et al.,

2021). Contrastive learning is e↵ectively a classification problem, of identifying a

positive sample in comparison to all other samples in a batch (which are negative

samples), and can be referred to as contrastive instance discrimination. A specific

instantiation of a contrastive loss looks like the following instance discrimination
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objective from SimCLR (Chen et al., 2020b).

NTXenti,j = � log
exp

⇣
z>i zj

kzikkzjk⌧

⌘

P
2N

k=1 [k 6=i] exp
⇣

z>i zk
kzikkzkk⌧

⌘

This represents the loss for the positive pair i,j within a batch of original size N

(and 2N after producing a positive pair for each sample in it), with temperature

scaling ⌧ ; the loss for a batch is the sum over the losses for each positive pair.

Note that the terms inside exponentiations are merely cosine similarities between

low-dimensional representations z for each input.

Contrastive objectives have been analyzed in great detail due to their success.

Wang and Isola (2020) found that it is implicitly composed of a uniformity objective

which (asymptotically) uniformly covers the latent space, and an alignment objec-

tive which ensures closeness of features from positive pairs. Zimmermann et al.

(2021) showed that under certain assumptions the contrastive objective actually

inverts the generative model of the data it is trained on. Cai et al. (2020) showed

that a small minority of negatives (referred to as hard negatives) within a batch

were both necessary and su�cient for optimal performance on downstream tasks,

suggesting better strategies for negative sample selection could greatly reduce the

computational requirements of contrastive learning methods.

Contrastive Learning su↵ers from certain drawbacks. The reliance on large

numbers of negative samples requires huge batch sizes that introduce computa-

tional challenges (Chen et al., 2020b). Recently Grill et al. (2020b) demonstrated

that negative samples could be entirely done away with, and that optimizing for

alignment of positive pairs alone could be done in a stable manner with certain

additional tricks such as an exponential moving average network providing regres-

sion targets for representations under di↵erent augmentations. Nevertheless, this

approach and most other contrastive methods are reliant on heavy augmentation

for positive samples, introducing representational invariance which can be harmful

for downstream tasks (Xiao et al., 2021); such augmentations can also be hard to

design in novel domains beyond images.
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1.4 (Deep) Reinforcement Learning

The previous sections have focused on settings in which a fixed amount of data

is provided to a learning algorithm, and for which the test data comes from the

same distribution as this training data. These assumptions are poor when consid-

ering the manner in which natural intelligence learns – from an online and varied

stream of data, and with the ability to interact with the environment and a↵ect

the distribution of new data being learned from and evaluated on. Reinforcement

Learning (RL) is focused on this paradgim, of an agent learning online from feed-

back in an environment that they themselves a↵ect. Specifically, agents are trained

to maximize their expected reward from this environment. The formalisms that

underpin this learning setting are briefly described as follows; more comprehensive

treatments can be found in Sutton and Barto (2018) and Achiam (2018). 4

1.4.1 Markov Decision Processes

At a timestep t, consider that we can fully describe the environment (includ-

ing the agent in it) with a discrete or continuous state st, and an agent chooses

to take a discrete or continuous action at (possibly including a choice to take no

action). A scalar function R(st, at, st+1) determines the reward an agent receives

from the environment when taking actions. In a Markov Decision Process (MDP,

Bellman, 1957), we make the Markov assumption that the current state st con-

tains all information necessary to model the dynamics of the environment, i.e. that

transitions between states in the environment are completely modelled by a distri-

bution p(st+1 | st, at). The important detail in this assumption is that prior states

and actions are unnecessary for modelling transitions; the distribution of the next

state depends only on the current state and action taken from it. An interaction se-

quence st, at, rt, st+1, at+1, . . . is called a trajectory; when there are terminal states

in the MDP (such as a “game over”), trajectories are finite and can be referred

to as episodes. Finally, the metric of primary interest for an agent is the return

G =
P

t
rt – the total reward obtained over an episode (such as the score over a

game). A slightly modified objective is almost always used instead – the discounted

sum of rewards using a geometric discounting factor � 2 [0, 1]: G� =
P

t
�trt; this

4. The background sections of Schwarzer (2020) are also relevant, as the RL article presented
in this thesis builds on the method presented in that work.
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discounting biases an agent towards prioritizing earlier rewards, and also ensures

for unbounded trajectories that the return is a bounded quantity (for � < 1).

1.4.2 Policies and Q-Learning

RL is concerned with finding optimal behaviours, that maximize expected re-

turn within MDPs. Agents do not necessarily know the structure of the MDP

(the transition dynamics p, or the reward function R); and in real-world settings

these are unknown to algorithm designers as well. Formally, agent behaviour can

be defined by a policy ⇡(a | s), which is a distribution over actions given the cur-

rent state. In settings with discrete actions, one popular approach to constructing

a policy is indirectly via Q-Learning. The objective in this setting is to learn a

(possibly non-unique) function Q⇤(s, a) which quantifies the expected return when

taking action a in state s, and from there on acting optimally; this provides a mea-

sure of the quality of a state-action pair. Acting optimally is defined recursively:

an optimal policy ⇡⇤ acts greedily and takes the highest-valued action according

to Q⇤ in every state: ⇡⇤(s) = argmax
a
Q⇤(s, a). Under any policy ⇡ (optimal or

not), the associated Q⇡-function adheres to a very useful recursive decomposition

known as the Bellman expectation equation:

Q⇡(st, at) = E
st+1⇠p

[R(st, at, st+1) + � E
at+1⇠⇡

[Q⇡(st+1, at+1)]]

Under the optimal policy which acts greedily, this can be further simplified to the

Bellman optimality equation:

Q⇤(st, at) = E
st+1⇠p

[R(st, at, st+1) + �max
at+1

Q⇤(st+1, at+1)]

One of the central advances in modern RL has been the use of neural networks

as powerful function approximators; with Deep Q-Networks (DQN, Mnih et al.,

2015), the Q✓-function is parameterized by a neural network with weights ✓. To

learn an approximation to Q⇤, we use standard gradient-based learning to minimize

the Temporal Di↵erence (TD) error: the discrepancy between the left and right

sides of the Bellman optimality equation under the model Q✓.

The use of neural networks for Q-learning su↵ers from inherent instabilities (van

Hasselt et al., 2018), and a variety of additional methods are commonly used to
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mitigate this problem – the Rainbow DQN implementation combines many of these

improvements and provides a strong baseline to build o↵ of (Hessel et al., 2018).

1.4.3 Data-E�cient Atari

One of the most widely used benchmarks in Deep RL has been the Atari Learn-

ing Environment (Bellemare et al., 2013), a suite of 57 video games from the Atari

2600 console. As Atari games were designed to be played by humans, they also pro-

vide a benchmark for comparison to human data-e�ciency. In Mnih et al. (2015),

human testers were given two hours (roughly 100K environment steps) to learn to

play each game before evaluation on them. In comparison, DRL algorithms are

often trained with months or years of human-equivalent interaction (Badia et al.,

2020; Campos et al., 2021), a clearly unsustainable trend if DRL is to see usage

on problems of greater complexity in the physical world we inhabit. The Atari-

100K benchmark limits DRL interaction to 100K interactions on each of a subset

of 26 Atari games, as a way to measure progress on the e�ciency of RL algo-

rithms. This benchmark has driven considerable progress on data-e�ciency, with

varied approaches such as the use of reconstruction-based models for asynchronous

training (Kaiser et al., 2019), better tuning of hyperparameters for standard algo-

rithms to trade-o↵ interaction for computation (van Hasselt et al., 2019), the use

of data augmentation (Kostrikov et al., 2021), and the use of self-supervised aux-

iliary objectives (Schwarzer et al., 2021a). Nevertheless, no method has achieved

human-level sample e�ciency on all the games of this benchmark as yet.
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2 Does Your Model Memorize
Where You Think It Does?
Authors Nitarshan Rajkumar1,2, David Krueger1,2, Laurent Charlin1,3

A�liation 1Mila, 2Université de Montréal, 3HEC Montréal

Abstract Memorization in neural networks has generally been investigated by

training models on artificially “noisy” or mislabelled data, a setting known to be

harmful for generalization. By contrast, memorization as encountered in practice,

on mostly noiseless (“clean”) long-tailed data, has been shown to be beneficial for

generalization. In this paper, we conduct an empirical study into these forms of

memorization and find significant di↵erences in where they occur within models. In

particular, we find that memorization of clean data in convolutional models gener-

ally occurs in proportion to convolutional parameter count, and does not necessarily

occur in deeper layers. By contrast, memorization of noisy data is largely a factor

of depth, predominantly occurring in the final few layers of a network.

Contributions The idea for this work, all experimentation, and all writing was

done by myself. David provided feedback and helped edit the paper. Laurent

similarly helped with editing, and supervised this work.

Submission This is ongoing work, and as presented has been submitted to the

ICML 2021 Workshop on Overparameterized Models where it is under review.

2.1 Introduction

Overparameterized neural networks trained with stochastic gradient descent

(SGD) are capable of fitting, or memorizing, completely noisy data (Zhang et al.,

2016). This observation laid bare the failure of classical theories of generalization
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to explain the learning abilities of neural networks, and Arpit et al. (2017) further

advocated that such explanations must accordingly be data-dependent.

These works generally focused on noisy memorization – i.e. on (artificially)

corrupted or mislabelled samples. Noisy memorization can induce worse general-

ization and robustness (Liu et al., 2019; Maennel et al., 2020; Sanyal et al., 2020),

but experimentally this setting is appealing as it is easy to artificially intervene on

noise and control the amount of memorization needed to fit a dataset.

The memorization we encounter in practice however, and which contributes to

a generalization gap, is largely in the form of clean memorization – i.e. on samples

which are not mislabelled or corrupted, but are relatively atypical with respect to

their classes. This form of memorization has recently been shown to be theoretically

and empirically beneficial for generalization on minority subgroups when data is

drawn from long-tailed distributions, as is common for natural data (Feldman,

2019; Feldman and Zhang, 2020).

Analysis of these two forms of memorization has until now occurred separately,

with sometimes conflicting results. For example, prior work on noisy memoriza-

tion has claimed that memorization emerges as a property of model depth (Cohen

et al., 2019; Stephenson et al., 2021), while a limited experiment in Feldman and

Zhang (2020) suggested that clean memorization barely occurs in the last layer of

a model. Accordingly, the structural similarities, or dissimilarities, of noisy and

clean memorization are poorly understood.

We take a simple, empirical approach to understanding memorization of clean

and noisy data, using standard architectures, training procedures, and natural

data. In particular, we aim to attribute such memorization to specific layers

within a model. By explicitly drawing a distinction in analysis between clean

and noisy memorization, we demonstrate the heterogeneous, architecture-and-data-

dependent nature of where memorization occurs. We show that clean memorization

does not necessarily occur in deep layers, and negligibly occurs in final linear lay-

ers. This is in stark contrast to noisy memorization, which predominantly occurs

in the deepest layers, including the final linear layers of convolutional models. Sur-

prisingly, for these convolutional models, we find that clean memorization generally

occurs in linear proportion to convolutional parameter count. This finding suggests

di↵ering roles for capacity and depth in clean and noisy memorization.
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2.2 Methodology

Defining Memorization We focus our attention on memorization-required sam-

ples – i.e. samples which are correctly classified when included in the training

dataset, and incorrectly classified if held out of the training process, following the

definition of memorization in Feldman and Zhang (2020). Unlike previous notions

of memorization, this definition doesn’t require artificially injecting noise in the

data, and can identify clean but atypical data points as memorized.

To attribute memorization to individual layers, we use a set of memorization-

required samples. At the extremes of inclusion or exclusion from the training

process, a model will have 100% or close to 0% accuracy on this set, respectively.

In between these extremes, we consider what would happen if only the first l layers

were trained with this set held-in. For how many of the samples would the l’th

layer learn a su�cient representation, such that the remaining layers could train

without these samples and still classify them correctly? We draw inspiration from

the memorization estimator of Feldman and Zhang (2020) to answer this question,

and describe our method in detail below.

Partial Retraining with Memorization-Required Samples Held-out

1. Pretrain a Model. Train an L-layer model h on the full training set DT ,

using algorithm A: h A(DT ).

2. Hold Out Memorization-Required Samples. Separate the training set DT

into two disjoint sets:

(a) a set DM containing only memorization-required samples

(b) a set D0
T
containing all other samples

3. Partially Retrain On Non-Memorized Samples. For l 2 [0, L):

(a) Initialize the first l layers of an L-layer model h0
l
with the first l layers of

h, and freeze these layers. Initialize the remaining layers of h0
l
randomly.

(b) Using the first l layers of h0
l
as a fixed feature extractor, train the re-

maining L� l layers of h0
l
on D0

T
, using the same algorithm used to train

h: h0
l
 Ah

l
(D0

T
) (h0

0
corresponds to retraining the entire model on D0

T
,

and h0
L
is equivalent to h)

(c) Repeat the above step over multiple random seeds.
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4. Calculate Local Memorization. For each layer l, using the partially retrained

models from the previous step, calculate local memorization as the expected

di↵erence in classification accuracy on DM between when layer l is frozen

(i.e. was pretrained on both D0
T
and D0

M
) and not (i.e. was retrained only on

D0
T
):

E
h
0
l Ah

l (D
0
T )

[acc (h0
l
, DM)]� E

h
0
l�1 Ah

l�1(D
0
T )

⇥
acc

�
h0
l�1, DM

�⇤

Intuitively, local memorization is the marginal contribution of a layer to the

(100%) accuracy of the full model on the set of memorization-required samples. We

emphasize that this process does not identify where specific samples are memorized,

and instead measures memorization in aggregate over a set of samples.

Datasets and Architectures All experiments are done using CIFAR-100 (Krizhevsky,

2009a). We consider variants of three architectures for image classification: VGGs

(Simonyan and Zisserman, 2015), ResNets (He et al., 2015a), and Vision Trans-

formers (ViTs) (Dosovitskiy et al., 2020). We slightly adapt these models for the

setting of CIFAR-100: for VGGs we remove the average pool, and change the first

linear layer to be of size 512x4096; for ResNets we replace the first convolutional

layer (7x7 kernel, 2x2 stride) with a smaller one (3x3 kernel, 1x1 stride), and re-

move the subsequent max pool; for ViTs we use the recommended modifications

of Hassani et al. (2021). For VGGs, we define a layer to be a convolutional or

linear layer combined with the batch normalization that follows; for ResNets, we

treat residual blocks as single layers; for ViTs, we define layers to be either residual

self-attention or linear layers combined with their preceding normalization layer.

Constructing Memorization-Required Subsets We make use of the memorization

scores provided by Feldman and Zhang (2020) as an oracle for identifying 5756

memorization-required samples (roughly 11.5% of the training set) in CIFAR-100,

which we include in our holdout set used for measuring clean memorization. Some

of these samples are in fact mislabelled (Song et al., 2020; Pleiss et al., 2020) –

technically noisy according to our terminology – but we assume they are minimal

in quantity and include them in this set of points for ease of analysis. For measuring

noisy memorization, we simply shu✏e the labels in this same set of samples (even

when they are held in during pretraining).
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Table 2.1 – Summary of models used.

Model Depth Params Test Accuracy

VGG11 11 28.5M 66.6 / 63.5

VGG13 13 28.7M 70.2 / 67.3

VGG16 16 34.0M 69.8 / 66.2

VGG19 19 39.3M 69.8 / 65.2

RN18 10 11.2M 72.0 / 67.9

RN34 18 21.3M 73.7 / 68.6

RN50 18 23.7M 74.1 / 68.7

WRN50 18 67.0M 74.6 / 69.4

RN101 35 42.7M 73.8 / 68.6

ViT7/4 16 3.74M 60.6 / 56.7

Training We follow the training procedure of Feldman and Zhang (2020) across

all experiments: training for 160 epochs, SGD with a learning rate of 0.4 and mo-

mentum of 0.9, linear learning rate warmup from 0 over the first 15% of epochs

and linear decay back to 0 for the remaining epochs, a batch size of 512, and ran-

dom crop and horizontal flip data augmentations. All models (and their partially

retrained descendants) are trained to convergence and reach over 99.9% training

accuracy; test accuracies (when trained including either clean or noisy subsets) are

presented in Table 2.1. All models except the ResNet-101 are trained with mixed-

precision. For partial retraining we average results over 5 random seeds for clean

memorization experiments; we found little variance between measurements across

these seeds, and used 1 random seed for noisy memorization experiments due to

compute constraints.

2.3 Results

We present our main results in Figure 2.1, which shows the distribution of local

memorization on clean and noisy data across the 10 models considered. We imme-
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Figure 2.1 – Clean and noisy memorization occur in di↵erent layers. Each plot presents local
memorization on clean (first row) and noisy (second row) data, across all models evaluated (col-
umn titles, see Table 2.1). Additional visualizations of parameter count and layer input size are
presented in Figure 2.3.

diately observe that for both clean and noisy memorization, there is no consistent

behaviour across all the models evaluated.

We also visually verify from Figure 2.2a that the clean memorization subset was

being almost entirely memorized – when these samples are included in the training

set, accuracy on this subset is nearly 100%, but when they are withheld completely

from training the subset accuracy drops to ⇠5% (as CIFAR-100 has 100 classes,

random selection is 1%).

Clean memorization does not necessarily occur in deeper layers. We can see

from Figure 2.1 that for convolutional models, the final linear layers contribute

negligibly to clean memorization on both VGG and ResNet architectures, extend-

ing the findings of Feldman and Zhang (2020). This is not a property of the linear

layers themselves, but their position at the end of the network; intermediate linear

layers are responsible for the vast majority of clean memorization in the Vision
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(a) Clean Memorization Subset (b) Noisy Memorization Subset

Figure 2.2 – Clean memorization occurs generally linearly with convolutional parameter count.
Plots present accuracy on heldout memorization-required subsets, with respect to percent of
convolutional parameters frozen under the retraining procedure outlined in Section 2.2. Further
visualizations are presented in Figure 2.4 and Figure 2.5.

Transformer (despite being interleaved with self-attention layers of similar param-

eter count). We also make note of the manner in which clean memorization occurs

in VGGs – the layers in which this occurs are roughly the same (6-12) even as

depth is increased from VGG13 to VGG19, with negligible memorization occurring

in the additional convolutional layers of the VGG19.

In contrast to clean memorization, noisy memorization occurs largely in later

layers, including linear layers. Figures 2.1 and 2.2b show that noisy memorization

for convolutional models predominantly occurs in the final convolutional layer and

the subsequent linear layers (for VGGs this is where the majority of parameters

are). These findings align with prior work investigating noisy memorization and

finding that it abruptly occurs at the latest layers which specialize to fit this data

(Cohen et al., 2019; Maennel et al., 2020; Stephenson et al., 2021). Interestingly,

with increasing depth noisy memorization moves largely to the final linear layer

alone across VGGs and ResNets, in contrast to clean memorization which either

stays similarly distributed (for ResNets) or moves relatively earlier in the network

(for VGGs). This insight could be used for targeting the final layers responsible

for noisy memorization in a network (with retraining or perhaps for identifying

mislabelled examples), with minimal impact on earlier layers responsible for more
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helpful clean memorization.

Clean memorization generally occurs in proportion to convolutional parameter

count. In Figure 2.2a, we observe that all ResNets exhibit a remarkably linear

relationship between the percent of convolutional parameters frozen and the ac-

curacy on the clean memorization heldout subset. The smaller VGG models also

exhibit this relationship, though increased depth in the VGG16 and VGG19 leads

to this breaking down and memorization occurring relatively earlier in the convolu-

tional layers of the network. This di↵erence between the ResNets and VGGs seems

to indicate the importance of residual connections for evenly allocating network

capacity to clean memorization. Furthermore, the contrast between clean memo-

rization being proportional to capacity and noisy memorization being a factor of

depth is one we believe to be unexplored in literature as yet.

2.4 Conclusion

In this work, we introduced a new approach to quantifying local memorization

within neural networks, which we then applied across a variety of models to show

the architecture-dependence of local memorization. Furthermore, we have used

this approach to demonstrate the heterogeneous, data-dependent nature of local

memorization, by contrasting between clean and noisy memorization, and their re-

spective relations with capacity and depth. Our findings contribute to developing

the understanding of memorization in neural networks; they also suggest that anal-

ysis of noisy memorization may lead to conclusions which are not applicable to the

clean memorization setting closer to what is encountered in practice.

2.4.1 Future Work

The primary limitation of our work is that it views memorization at the macro

level over a subset of data, and does not provide insight into the stochasticity of

memorization at a sample-level as Feldman and Zhang (2020) did. Furthermore,

by treating entire residual blocks as layers we sidestepped the branching nature of

residual connections as well as the e↵ect of downsampling in ResNets. We intend
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to closely investigate sample-level localized memorization as well as architectural

factors in greater detail.

2.5 Additional Plots

In this section we provide additional plots that visualize properties such as

parameter count and input size for all layers of all models considered, as well as

exhaustive plots that show the relationship between cumulative memorization and

parameter count or layer depth.
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Figure 2.3 – Summary metrics for all models examined (column titles, see Table 2.1). First Row:
Local memorization on clean data. Second Row: Local memorization on noisy data. Third Row:
Per-layer contribution to total parameter count. Fourth Row: Per-layer input size.
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(a) Clean memorization w.r.t. % of parameters frozen. (b) Noisy memorization w.r.t. % of parameters frozen.

(c) Clean memorization w.r.t. % of convolutional pa-

rameters frozen.

(d) Noisy memorization w.r.t. % of convolutional pa-

rameters frozen.

(e) Clean memorization w.r.t. # of parameters frozen. (f ) Noisy memorization w.r.t. # of parameters frozen.

Figure 2.4 – Parameter-wise analysis of cumulative clean and noisy local memorization, under
the retraining procedure of Section 2.2.
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(a) Clean memorization w.r.t. % of layers frozen. (b) Noisy memorization w.r.t. % of layers frozen.

(c) Clean memorization w.r.t. % of convolutional layers

frozen.

(d) Noisy memorization w.r.t. % of convolutional layers

frozen.

(e) Clean memorization w.r.t. # of layers frozen. (f ) Noisy memorization w.r.t. # of layers frozen.

Figure 2.5 – Depth-wise analysis of cumulative clean and noisy local memorization, under the
retraining procedure of Section 2.2.
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Abstract Several methods have been proposed towards understanding the struc-

tural regularity of datasets used to train deep learning models, and on attributing

model decisions to these training samples. Unfortunately these methods tend to

have significant computational requirements that hinder their applicability to the

massive models and datasets used in practice. Instead of introducing any new

methods, we explore how existing methods behave under explicit separation of

task-specific learning and representation learning – specifically by using linear clas-

sifiers and pretrained self-supervised encoders. We demonstrate how this decoupled

approach produces measurements of sample consistency, memorization, and influ-

ence that are highly correlated with the corresponding values produced by fully-

supervised equivalents, while requiring four orders of magnitude less compute. We

also analyze where this approach behaves di↵erently – in particular on the long-tail

of data, where we revisit the claims of the Long-Tail Theory (Feldman, 2019).
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3.1 Introduction

Interpretability via sample importance Deep learning is being increasingly em-

ployed on highly sensitive and safety-critical tasks such as face recognition (Buo-

lamwini and Gebru, 2018), medical imaging (Selvikv̊ag Lundervold and Lundervold,

2018), and autonomous driving (Huang and Chen, 2020). Underlying objectives

in such settings can be hard-to-formulate, involving factors such as unbiasedness,

ethicality, and legality (Lipton, 2016). Thus, it is important to be able to interpret

the decisions made by these models to allow for human evaluation with respect

to these factors. Measuring the importance of individual training samples to the

training procedure and test decisions is one promising approach to interpretability.

Measures of sample importance include consistency (Jiang et al., 2020) and mem-

orization (Feldman and Zhang, 2020), which measures the regularity of a sample

with respect to the rest of the dataset, and influence (Koh and Liang, 2017), which

measures the contribution of a training sample’s presence to the correct classifica-

tion of a test sample.

Challenges when scaling Unfortunately, dataset-focused approaches to interpretabil-

ity tend to have extreme computational requirements when applied to the large

datasets and models used in practice. For instance, estimating influence and memo-

rization in Feldman and Zhang (2020) and consistency in Jiang et al. (2020) required

nearly 1 million GPU-hours when applied to ResNet50’s on ImageNet. As another

example, the influence estimators proposed by Pruthi et al. (2020) and Koh and

Liang (2017) require Jacobian and Hessian computations respectively, which are

computationally demanding or entirely infeasible for standard model architectures

with millions or billions of parameters. Consequently, some form of approximation

is generally necessary for practical use, though potentially at significant cost to

accuracy. Koh and Liang (2017) made use of approximate inverse-Hessian Vector

product methods (Agarwal et al., 2017), though recent work has shown that for

deep models this contributes to erroneous and low quality influence estimates (Basu

et al., 2020). Pruthi et al. (2020) restricted calculations of the Jacobian and Hessian

only to the final layer of the model, though Feldman and Zhang (2020) and Rajku-

mar et al. (2021) demonstrated that a form of memorization useful for classifying

rare test samples largely occurs in the non-final layers.
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Decoupling representation and task The importance of a training sample has two

components: i. an aspect dependent solely on the regularity of the unlabelled part

with respect to the rest of the data, and ii. the label-dependent aspect, with respect

to a particular task. While fully-supervised models trained end-to-end (E2E) im-

plicitly capture both of these components, the former data-dependent component

could be entirely captured through a strong unsupervised representation. Simul-

taneously, the label-dependent component could be fully isolated to a significantly

smaller model operating on top of such representations. Self-supervised learn-

ing (SSL) provides a paradigm under which such a decoupling is possible; recent

methods learn representations which can be fit with linear classifiers to match

the performance of fully-supervised models on challenging computer vision bench-

marks (Chen et al., 2020a; Grill et al., 2020b; Caron et al., 2020). Furthermore,

recent analysis has demonstrated that models trained in this manner behave simi-

larly to E2E models (Geirhos et al., 2020). In this paper we draw inspiration from

these advances and evaluate if and how self-supervised encoders combined with

linear classifiers can be used to e�ciently estimate measures of sample importance;

we refer to this decoupled setting as SSS for Self-Supervised + Simple classifier 1)

The rest of this paper is structured as follows. In Section 3.2 we introduce

notation and background material on sample importance. In Section 3.3 we present

results comparing measures calculated via SSS and E2E approaches; we find a high

level of correlation in produced scores, while reducing computational requirements

by four orders of magnitude when using SSS. In Section 3.4 we conclude with a brief

investigation into the importance of memorization for test performance in the SSS

setting, finding further evidence in support of the Long-Tail Theory of Feldman

(2019).

3.2 Background

How is training and inference of a model a↵ected by any single training sam-

ple? Di↵erent metrics for sample importance estimation attempt to quantify this

1. Terminology borrowed from Bansal et al. (2020)
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notion; we introduce the three metrics studied in this paper, broadly inspired by

the treatments of Feldman and Zhang (2020) and Jiang et al. (2020).

Notation Formally, we are interested in the predictions of learned predictors h ob-

tained by training a stochastic learning algorithm A on a dataset D = {(xi, yi)}Ni=1

with N samples. We further define D\k to be the dataset obtained by removing

the k-th sample from D.

The influence score of training sample i drawn from dataset D on an arbitrary

test sample j (not necessarily in D) is the expected change in the classification

accuracy of sample j when sample i is removed from the training set:

infl (D,A, i, j) = Pr
h A(D)

(h(xj) = yj)� Pr
h A(D\i)

(h(xj) = yj) (3.1)

Of the three measures we use, influence is the only one which goes beyond the

training set and can make use of test data.

The memorization score is straightforwardly defined as self-influence; i.e. the

expected change in classification accuracy on a sample i itself when it is removed

from the training set:

mem (D,A, i) = infl (D,A, i, i) (3.2)

Finally, the consistency score of sample i is the expected classification accuracy

of a learned model h on sample i, when sample i itself is held out of the training

dataset:

cons (D,A, i) = Pr
h A(D\i)

(h(xi) = yi) (3.3)

Intuitively, consistency measures how well supported a sample is by the rest of the

data distribution. Note that this is merely the second term in the formula for mem-

orization; consistency is directly proportional to memorization when classification

accuracy on a training set is (nearly) 100%, as is common in the E2E setting but

not in SSS.

Leave-M -In (LMI) Estimation A näıve approach to calculating these metrics

is a leave-one-out strategy, which requires retraining models on each of the N

pruned datasets D\k. As Feldman and Zhang (2020) pointed out, estimating these
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metrics with standard deviation � would require ⌦(1/�2) training runs per training

sample, for a total computational complexity of ⌦(N/�2) to calculate measures for

all samples in D. For the large datasets and models used in practice, this approach

is entirely intractable.

Feldman and Zhang (2020) introduced an estimator, which we refer to as the

Leave-M -In (LMi) estimator, that provides a tractable method to simultaneously

compute consistency and influence estimates for all samples within a fixed training

dataset and test dataset. It operates by measuring importance with respect to T

subsets St of D, each of size M , that each have an associated model ht trained on

them; furthermore, it only requires O(1/�2) training runs to estimate importance

metrics within standard deviation �.

]inflM (D,A, i, j) = P
t⇠{1...T}

(ht(xj) = yj | i 2 It)� P
t⇠{1...T}

(ht(xj) = yj | i 62 It)

(3.4)

]consM (D,A, i) = P
t⇠{1...T}

(ht(xi) = yi | i 62 It) (3.5)

It represents the indices of training samples that were included in St. Feldman and

Zhang (2020) balanced between estimator accuracy and compute requirements (for

memorization and influence) by setting subset size M = 0.7N and the number of

trials T = 2000 for ImageNet-1K and T = 4000 for CIFAR-100; Jiang et al. (2020)

used these same settings to calculate consistency.

Challenges with Further Approximation The LMI-estimator is tractable, yet

nevertheless incurs significant computational cost; requiring 800,000 GPU-hours

to calculate scores on ImageNet for Resnet-50’s. Feldman and Zhang (2020) con-

ducted a limited experiment to see if only retraining the last layer would be su�-

cient for calculating memorization and influence scores, finding that this was not

the case. Furthermore the experiments and results in Chapter 2 demonstrate that

memorization as exhibited on natural data can occur within networks in propor-

tion with capacity for convolutional models; not including all these layers in an

analysis of sample importance will therefore miss out on the contribution of these

underrepresented long-tail samples.
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3.3 Consistency and Influence via SSS

We start with the observation that current SSS methods approach or sur-

pass the performance of equivalent E2E models on large-scale image classification

tasks (Grill et al., 2020b; Chen et al., 2020a; Caron et al., 2020, 2021). Further-

more, in the SSS setting the linear classifier is the only component of the network

in which a dependence on labels can occur. Thus, we calculate memorization, con-

sistency, and influence scores using the LMI-estimator isolated to linear classifiers

trained on top of large pretrained encoders. In this section, we first provide details

on this methodology, and then compare the similarities and di↵erences between

scores computed by SSS and E2E approaches.

3.3.1 Methodology

Datasets We restrict our experiments to the image classification datasets used

in Feldman and Zhang (2020) and Jiang et al. (2020); in particular, our primary

experiments are on ImageNet-1K (Russakovsky et al., 2015). In Section 3.4 we also

evalute on CIFAR-100 (Krizhevsky, 2009b), as well as ImageNetV2 (Recht et al.,

2019), which is a new test set for ImageNet with subtle distribution shift that

causes significant performance drops, and ciFAIR-100 (Barz and Denzler, 2020), a

modification of the CIFAR-100 test set, with duplicates replaced with new images.

Self-Supervised Encoders We experiment with two state-of-the-art self-supervised

methods: SwAV (Caron et al., 2020) and CLIP (Radford et al., 2021). SwAV is

an online clustering algorithm which enforces cluster consistency between di↵erent

views of images via a contrastive objective. CLIP is composed of an image and

text encoder which are jointly trained in a contrastive manner on image-text pairs

(we only make use of the pretrained image encoder from CLIP). We use pretrained

encoders made publicly available by authors of these papers: SwAV provides pre-

trained encoders for a ResNet-50 pretrained on (unlabelled) ImageNet itself, and

CLIP provides a Vision Transformer (ViT) pretrained on a private dataset scraped

from the internet. 2

2. While quite di↵erent from other self-supervised approaches due to its multimodal nature,
we believe that the abundance of the paired data used to train CLIP justifies describing it as a
self-supervised method.
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Table 3.1 – Parameter count and ImageNet classification performance.

Parameters Accuracy

Model Dim. Encoder Classifier Train Test V2

E2E-RN50 2048 — 27.1M — 73% —

SwAV-RN50 2048 25M 2.1M 81.6 73.2 —

SwAV-RN50-R2 4096 25M 4.1M 87.0 73.0 —

SwAV-RN50-R4 8192 25M 8.2M 91.7 71.3 —

CLIP-ViT 512 87M 0.5M 81.4 74.6 62.9

Linear Classifiers In training the linear classifiers, we use SGD with a learning

rate of 0.3, with Nesterov momentum of 0.9, a batch size of 1024, and training is

done over 40 epochs. No data-augmentation is used (though this was used when

pretraining the encoders); this allows us to calculate representations for all im-

ages once, and then train the linear classifiers on just these stored representations,

greatly speeding up training. For further speed we also employ mixed-precision

training, at no e↵ect to classification performance. We use the exact setup of Feld-

man and Zhang (2020) – we train 2000 classifiers, each on di↵erent 70% random

subsets of the full training set. As seen in Table 3.1, each SSS model reaches test

accuracies (when trained on a 70% subset) comparable to the E2E model accuracy

reported in Feldman and Zhang (2020).

Widening Representations for Memorization As seen in Table 3.1, linear clas-

sifiers on the representations we obtain from SwAV (dimension 2048) and CLIP

(dimension 512) do not reach 100% accuracy on the training set, due to limited

capacity. To improve the quality of memorization estimates (relative to supervised

models which can reach 100% training accuracy), we also run additional experi-

ments where we widen the representation of the SwAV ResNet50 by a factor of

2 (-R2) or 4 (-R4). This is done by increasing the output size of that model’s

final average pooling layer; this does not change the number of parameters in the

encoder at all.
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Table 3.2 – Correlations between SSS and E2E Scores on ImageNet.

Pearson r Spearman ⇢ Kendall ⌧

Method mem cons mem cons mem cons

CLIP-ViT 0.35 0.64 0.50 0.67 0.38 0.53

SwAV-RN50 0.41 0.76 0.56 0.75 0.44 0.62

SwAV-RN50-R2 0.60 0.77 0.70 0.78 0.55 0.64

SwAV-RN50-R4 0.71 0.77 0.76 0.78 0.60 0.64

3.3.2 Consistency and Memorization

In Table 3.2 we present correlations between memorization and consistency

scores calculated via SSS and those calculated using E2E models and provided

by Feldman and Zhang (2020) and Jiang et al. (2020). We observe a strong cor-

relation between consistency scores for both approaches, and across all models –

the Pearson and Spearman correlations are consistently greater than 0.75 for the

SwAV models, and greater than 0.64 for the CLIP model. Unsurprisingly, without

representation widening there is a much weaker correlation across models with the

memorization scores; wider representations improve this correlation. These results

imply that we can recover a significant amount of information about the supervised

estimates of consistency via our self-supervised approach.

To visuallly inspect these results, we first look at class-level regularity for dataset

interpretability. As dataset designers we may wish to see how consistent samples

within a class are, and whether a class requires further attention or even subdivision

into more fine-grained classes. In Figure 3.1 we plot a class-level consistency density

plot as was done in Jiang et al. (2020), with the x-axis being the mean consistency

score for a class, and the y-axis being the standard deviation of scores within a class;

points at the bottom right correspond to those classes which have high consistency

scores for a large number of points without much variation. In addition, we plot 5

data points marked with ? corresponding to the 5 classes identified in Jiang et al.

(2020) as characteristic of the consistency structure of ImageNet-1K. The overall

shapes of the consistency density plots match for the SSS and E2E approaches,

and the relative orderings of the characteristic classes remain the same; implying

that we can recover the class-level structure solely based on our approach in a
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Figure 3.1 – SSS recovers the class-level stucture of E2E consistency. The highlighted classes
correspond to Projectile (1), Weasel (2), Green Snake (3), Oscilloscope (4), Yellow Lady’s Slipper
(5). The figure on the right shows histograms of SSS and E2E consistency scores for each of these
classes.

highly compute-e�cient manner. We also plot histograms of consistency scores for

these classes on the right of Figure 3.1, where we see broad similarities between the

distributions under SSS and E2E; though notably, SSS scores tend to appear more

bimodal as is especially clear in the scores for Projectiles.

We further visualize the consistency scores in Figure 3.2; for each of the previ-

ously identified five classes, we display a random selection of the most inconsistent

(first two rows, consistency score 0) and consistent (third and fourth rows, consis-

tency score 1) images. These results remain human interpretable, with inconsistent

samples identified by SSS being clearly more atypical or mislabelled. For exam-

ple, the first image in the second row of projectiles displays an airplane dropping

bombs, the third image in the first row of weasels shows a woman pulling a weasel

away from a man’s neck, and the sixth image in the first row of oscilloscopes has a

man as the central figure in the image (with the oscilloscope in the background).
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(a) Projectiles

(b) Weasels

(c) Green Snakes

Figure 3.2 – Score histograms and inconsistent and consistent images, for classes identified as
characteristic of ImageNet by (Jiang et al., 2020).
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(d) Oscilloscopes

(e) Yellow Lady’s Slippers

Figure 3.2 – (Continued) Score histograms and inconsistent and consistent images, for classes
identified as characteristic of ImageNet by (Jiang et al., 2020).

Table 3.3 – Estimator resource usage in GPU-hours

Method pretrain Train

E2E-RN50 � 800,000

SWaV-RN50 16,000 40

CLIP-ViT < 73,728 40
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3.3.3 Resource Usage

Measuring memorization and influence in Feldman and Zhang (2020) and con-

sistency in Jiang et al. (2020) on Imagenet with ResNet50s required 800,000 P100

GPU-hours – 8 GPUs were used for each of 2000 runs, and each run took 50 hours.

In contrast, under the SSS approach, each of the 2000 linear classifiers takes 10

minutes to train, and 8 can be trained in parallel on a single GPU; in total we

only require 40 RTX8000 GPU-hours, a 20,000x speedup compared to the E2E

approach. We note that this computational requirement is even less than the cost

of training a single ResNet50 on ImageNet-1K.

Of course, the vastly reduced computational requirements depended on the

availability of strong pretrained visual encoders; the pretrained SwAV encoder re-

quired about 16,000 GPU-hours to train, and CLIP required on the order of 73,728

GPU-hours 3 to train. However, much as NLP has moved to a paradigm in which

large self-supervised pretrained models are readily available and almost always used

to finetune on specific tasks, we believe that a similar paradigm is taking hold in

computer vision, and that these models can be taken for granted without extra

compute requirements.

3.4 Revisiting the Long-Tail Theory

A motivation of Feldman and Zhang (2020) in developing the LMI-estimator

was to provide empirical support for the Long-Tail Theory of Feldman (2019). This

theory proposes that memorization of training data is beneficial or even necessary

for optimal performance when data is drawn from long-tailed distributions (as is

common in many natural settings) — in order to classify a rare or atypical test

sample, memorizing a similar training sample might be the only solution. We

conclude this work by briefly evaluating these claims under the SSS paradigm.

3. This is actually an upper-bound – CLIP only reported compute usage for their largest
model, yet we are using their smallest model which was the only one publicly released.
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Table 3.4 – High-influence pairs identified under various models and datasets. Test samples can
be influenced my multiple training samples, so we report both the number of pairs and unique
test samples.

Test Dataset Model Pairs Test Samples (%) Dim. Acc.

ImageNet E2E-RN50 1641 1462 (2.9%) — 73%

ImageNet SwAV-RN50 1233 933 (1.9%) 2048 73%

ImageNet CLIP-ViT 596 514 (1.0%) 512 75%

ImageNetV2 CLIP-ViT 91 80 (0.8%) 512 63%

CIFAR-100 E2E-RN50 1015 888 (8.9%) — 76%

CIFAR-100 CLIP-ViT 206 177 (1.8%) 512

ciFAIR-100 CLIP-ViT 211 173 (1.7%) 512

Memorization remains useful under SSS. The empirical findings of Feldman and

Zhang (2020) indicated that correct classification of 2.92% of the ImageNet test-

set and 8.88% of the CIFAR-100 test set was highly influenced by the presence

of memorized samples in the corresponding training sets. They defined a high-

influence train-test pair to be one where the memorization score of the training

sample is > 0.25, and the influence score of that training sample on the test sample

is > 0.15. In the SSS setting, in spite of having significantly reduced capacity to

memorize labels, we see in Table 3.4 that on ImageNet roughly 1.9% of the test set

benefitted from memorization under the SwAV encoder, and 1% under the CLIP

encoder.

Memorization remains useful under distribution-shift or de-duplication with SSS.

A visual inspection of E2E high-influence pairs revealed that many of them were

near-duplicates between the train and test samples; di↵erentiated by camera angles

or temporal delay. This is an idiosyncracy of the ImageNet, as well as CIFAR100,

dataset collection process– finding such near-duplicates would be exceedingly un-

likely when sampling from the natural distribution of images which these datasets

aim to emulate. We assess to what extent this a↵ects the importance of memo-

rization to test set classification, by replicating the high-influence calculations on

new test datasets: ciFAIR (Barz and Denzler, 2020), which removed all (near-

)duplicates of training images from the test set of CIFAR-100 and replaced them
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with new images, and ImageNetV2 Recht et al. (2019), which replicated the data

collection and labelling strategy of ImageNet yet su↵ers from distribution shift that

causes ImageNet-trained models to perform significantly worse on it. Somewhat

surprisingly, we find that memorization appears to remain beneficial under these

settings; the proportion of influenced test samples on ImageNet drops from 1% to

0.8%, and the proportion on CIFAR-100 negligbly drops from 1.77% to 1.73%.

We speculate that while SSS and E2E reach similar test accuracies, the set of

test points they correctly classify are subtly di↵erent. In particular, it is possible

that test samples which benefitted from E2E memorization are not classified at

all by SSS, as SSS may not have memorized the relevant training samples. This

would help to explain why adapting to new test sets saw minimal reduction in the

benefit of memorization. We intend to more closely evaluate the di↵erences in test

set predictions between SSS and E2E in future work.
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Abstract Data e�ciency is a key challenge for deep reinforcement learning. We

address this problem by using unlabeled data to pretrain an encoder which is then

finetuned on a small amount of task-specific data. To encourage learning represen-

tations which capture diverse aspects of the underlying MDP, we employ a combi-

nation of latent dynamics modelling and unsupervised goal-conditioned RL. When

limited to 100k steps of interaction on Atari games (equivalent to two hours of hu-

man experience), our approach significantly surpasses prior work combining o✏ine

representation pretraining with task-specific finetuning, and compares favourably

with other pretraining methods that require orders of magnitude more data. Our

approach shows particular promise when combined with larger models as well as

more diverse, task-aligned observational data – approaching human-level perfor-

mance and data-e�ciency on Atari in our best setting. We provide code associated

with this work at https://github.com/mila-iqia/SGI.

Contributions I came up with the idea of applying SPR to pretrain represen-

tations on o✏ine data, scaling this approach to larger models, and transferring

representations between tasks (games). Max and I jointly designed the approach

and experiments. I conducted initial experimentation to demonstrate the feasi-

bility of this approach, and then focused on the experiments for demonstrating

transfer across games (which were ultimately unsuccessful). Max formulated the

goal-conditioned objective, and was responsible for all non-transfer experiments

presented in the paper. I contributed significantly to the structure and writing of

the paper itself, but this writing was led and largely done by Max. Michael as-
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sisted with experiments for transfer, and writing of the paper. Ankesh contributed

to feedback on the project and editing of the paper, as well as creating Figure 4.1.

Laurent, Devon, Phil, and Aaron all contributed to supervision of the project and

editing of the paper.

Submission An earlier version of this project was presented at the Self-Supervision

for Reinforcement Learning Workshop at ICLR 2021. The work as presented here,

verbatim, is under review for the conference track of NeurIPS 2021, and is available

on arXiv (Schwarzer et al., 2021b).

4.1 Introduction

Deep reinforcement learning (RL) methods often focus on training networks

tabula rasa from random initializations without using any prior knowledge about

the environment. In contrast, humans rely a great deal on visual and dynamics

priors about the world to perform decision making e�ciently (Dubey et al., 2018;

Lake et al., 2017). Thus, it is not surprising that RL algorithms which learn tabula

rasa su↵er from severe overfitting (Zhang et al., 2018) and poor sample e�ciency

compared to humans (Tsividis et al., 2017).

Self-supervised learning (SSL) provides a promising approach to learning useful

priors from past data or experiences. SSL methods leverage unlabelled data to

learn strong representations, which can be used to bootstrap learning on down-

stream tasks. Pretraining with self-supervised learning has been shown to be quite

successful in vision (Héna↵ et al., 2019; Grill et al., 2020a; Chen et al., 2020b) and

language (Devlin et al., 2019; Brown et al., 2020b) settings.

Pretraining can also be used in an RL context to learn priors over representa-

tions or dynamics. One approach to pretraining for RL is to train agents to explore

their environment in an unsupervised fashion, forcing them to learn useful skills and

representations (Hansen et al., 2020; Liu and Abbeel, 2021; Campos et al., 2021).

Unfortunately, current unsupervised exploration methods require months or years

of real-time experience, which may be impractical for real-world systems with limits

and costs to interaction — agents cannot be run faster than real-time, may require

significant human oversight for safety, and can be expensive to run in parallel. It is
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thus important to develop pretraining methods that work with practical quantities

of data, and ideally that can be applied o✏ine to fixed datasets collected from

prior experiments or expert demonstrations (as in Stooke et al., 2021).

To this end, we propose to use a combination of self-supervised objectives for

representation learning on o✏ine data, requiring orders of magnitude less pre-

training data than existing methods, while approaching human-level data-e�ciency

when finetuned on downstream tasks. We summarize our work below:

RL-aligned representation learning objectives: We propose to pretrain repre-

sentations using a combination of latent dynamics modeling, unsupervised goal-

conditioned reinforcement learning, and inverse dynamics modeling – with the in-

tuition that a collection of such objectives can capture more information about

the dynamical and temporal aspects of the environment of interest than any single

objective. We refer to our method as SGI (SPR, Goal-conditioned RL and Inverse

modeling).

Significant advances for data-e�ciency on Atari: SGI’s combination of objectives

performs better than any in isolation and significantly improves performance over

previous representation pretraining baselines such as ATC (Stooke et al., 2021).

Our results are competitive with exploration-based approaches such as APT or

VISR (Liu and Abbeel, 2021; Hansen et al., 2020), which require two to three

orders of magnitude more pretraining data and the ability to interact with the

environment during training, while SGI can learn with a small o✏ine dataset of

exploration data.

Scaling with data quality and model size: SGI’s performance also scales with

data quality and quantity, increasing as data comes from better-performing or

more-exploratory policies. Additionally, we find that SGI’s performance scales

robustly with model size; while larger models are unstable or bring limited benefits

in standard RL, SGI pretraining allows their finetuning performance to significantly

exceed that of smaller networks.

We assume familiarity with RL in the following sections (with a brief overview

in Section 1.4).
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Figure 4.1 – A schematic diagram showing our two stage pretrain-then-finetune method. All
unsupervised training losses and task-specific RL use the shared torso on the left.

4.2 Representation Learning Objectives

A wide range of SSL objectives have been proposed for RL which leverage var-

ious aspects of the structure available in agent interactions. For example, the tem-

poral dynamics of an environment can be exploited to create a forward prediction

task (e.g., Gelada et al., 2019; Guo et al., 2018; Stooke et al., 2021; Schwarzer et al.,

2021a) in which an agent is trained to predict its immediate future observations,

perhaps conditioned on a sequence of actions to perform.

Structure in RL goes far beyond forward dynamics, however. We propose to

combine multiple representation learning objectives, covering di↵erent agent-centric

and temporal aspects of the MDP. Based on the intuition that knowledge of an en-

vironment is best represented in multiple ways (Hessel et al., 2021; Degris and

Modayil, 2012), we expect this to outperform monolithic representation learning

methods such as temporal contrastive learning (e.g., Stooke et al., 2021). In decid-

ing which tasks to use, we consider questions an adequate representation should be

able to answer about its environment, including:

— If I take action a in state s, what state s0 am I likely to see next?

— If I transitioned from state s to state s0, what action a did I take?

— What action a would I take in state s so that I reach another state s0 as soon

as possible
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Note that none of these questions are tied to task reward, allowing them to be

answered in a fully-unsupervised fashion. Additionally, these are questions about

the environment, and not any specific policy, allowing them to be used in o✏ine

pretraining with arbitrary behavioral policies.

In general, the first question may be answered by forward dynamics modeling,

which as mentioned above is well-established in RL. The second question corre-

sponds to inverse dynamics modeling, which has also been commonly used in the

past (Lesort et al., 2018). The third question corresponds to self-supervised goal-

conditioned reinforcement learning which has the advantage of being structurally

similar to the downstream target task, as both require learning to control the en-

vironment.

To facilitate their joint use, we formulate these objectives so that they operate

in the latent representation space provided by a shared encoder. We provide an

overview of these components in Figure 4.1 and describe them in greater detail

below; we also provide detailed pseudocode in Appendix A.3.

4.2.1 Self-Predictive Representations

SPR (Schwarzer et al., 2021a) is a representation learning algorithm devel-

oped for data-e�cient reinforcement learning. SPR learns a latent-space transition

model, directly predicting representations of future states without reconstruction

or negative samples. As in its base algorithm, Rainbow (Hessel et al., 2018), SPR

learns a convolutional encoder, denoted as fo, which produces representations of

states as zt = fo(st). SPR then uses a dynamics model h to recursively estimate the

representations of future states, as ẑt+k+1 = h(ẑt+k, at+k), beginning from ẑt , zt.

These representations are projected to a lower-dimensional space by a projection

function po to produce ŷt+k , po(ẑt+k).

Simultaneously, SPR uses a target encoder fm to produce target representations

z̃t+k , fm(st+k), which are further projected by a target projection function pm to

produce ỹt+k , pm(z̃t+k). SPR then maximizes the cosine similarity between these

predictions and targets, using a learned linear prediction function q to translate
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from ŷ to ỹ:

LSPR

✓
(st:t+K , at:t+K) = �

KX

k=1

q(ŷt+k) · ỹt+k

||q(ŷt+k)||2 · ||ỹt+k||2
. (4.1)

The parameters of these target modules ✓m are defined as an exponential moving

average of the parameters ✓o of fo and po: ✓m = ⌧✓m + (1� ⌧)✓o.

4.2.2 Goal-Conditioned Reinforcement Learning

Inspired by works such as Dabney et al. (2021) that show that modeling many

di↵erent value functions is a useful representation learning objective, we propose

to augment SPR with an unsupervised goal-conditioned reinforcement learning

objective. We define goals g to be normalized vectors of the same size as the

output of the agent’s convolutional encoder (3,136- or 4,704-dimensional vectors,

for the architectures we consider). We use these goals to annotate transitions with

synthetic rewards, and train a modified version of Rainbow (Hessel et al., 2018) to

estimate Q(st, a, g), the expected return from taking action a in state st to reach

goal g if optimal actions are taken in subsequent states.

We select goals using a scheme inspired by hindsight experience replay (Andrychow-

icz et al., 2017), seeking to generate goal vectors that are both semantically mean-

ingful and highly diverse. As in hindsight experience replay, we begin by sampling

a state from another trajectory or the future of the current trajectory. However,

we take the additional step of applying stochastic noise to encourage goals to lie

somewhat o↵ of the current representation manifold. We provide details in Ap-

pendix A.2.2.

4.2.3 Inverse Dynamics Modeling

We propose to use an inverse dynamics modeling task (Lesort et al., 2018),

in which the model is trained to predict at from st and st+1. Because this is a

classification task (in discrete control) or regression task (continuous control), it

is naturally not prone to representational collapse, which may complement and

stabilize our other objectives. We directly integrate inverse modeling into the

rollout structure of SPR, modeling p(at+k|ŷt+k, ỹt+k+1) for each k 2 (0, . . . , K�1),
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using a two-layer MLP trained by cross-entropy.

4.3 Related Work

Data-E�ciency In order to address data e�ciency in RL, Kaiser et al. (2019) in-

troduced the Atari 100k benchmark, in which agents are limited to 100,000 steps of

environment interaction, and proposed SimPLe, a model-based algorithm that sub-

stantially outperformed previous model-free methods. However, van Hasselt et al.

(2019) and Kielak (2020) found that simply modifying the hyperparameters of ex-

isting model-free algorithms allowed them to exceed SimPLe’s performance. Later,

DrQ (Kostrikov et al., 2021) found that adding mild image augmentation to model-

free methods dramatically enhanced their sample e�ciency, while SPR (Schwarzer

et al., 2021a) combined data augmentation with an auxiliary self-supervised learn-

ing objective. SGI employs SPR as one of its objectives in o✏ine pretraining,

leading to significant improvements in data-e�ciency.

Exploratory pretraining A number of recent works have sought to improve rein-

forcement learning via the addition of an unsupervised pretraining stage prior to

finetuning on the target task. One common approach has been to allow the agent

a period of fully-unsupervised interaction with the environment, during which the

agent is trained to maximize a surrogate exploration-based task such as the di-

versity of the states it encounters, as in APT (Liu and Abbeel, 2021), or to learn

a set of skills associated with di↵erent paths through the environment, as in DI-

AYN (Eysenbach et al., 2018), VISR (Hansen et al., 2020), and DADS (Sharma

et al., 2019). Others have proposed to use self-supervised objectives to generate

intrinsic rewards encouraging agents to visit new states; e.g. Pathak et al. (2017)

and Burda et al. (2018) use the loss of an inverse dynamics model like that used

in SGI, while Sekar et al. (2020) uses the disagreement between an ensemble of

latent-space dynamics models. Finally, Campos et al. (2021) report strong results

based on massive-scale unsupervised pretraining.

Many of these methods are used to pretrain agents that are later adapted to

specific reinforcement learning tasks. However, SGI di↵ers in that it can be used

o✏ine and is agnostic to how data is collected. As such, if no pre-existing o✏ine
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data is available, one of the methods above can be used to generate a dataset for

SGI; we use Burda et al. (2018) for this in Section 4.4.2.

Visual Representation Learning Computer vision has seen a series of dramatic

advances in self-supervised representation learning, including contrastive meth-

ods (Oord et al., 2018; Hjelm et al., 2019; Bachman et al., 2019; He et al., 2020;

Chen et al., 2020b) as well as purely predictive ones (Grill et al., 2020a). Variants

of these approaches have also been shown to improve performance when coupled

with a small quantity of labeled data, in a semi-supervised setting (Chen et al.,

2020c; Héna↵ et al., 2019), and several self-supervised methods have been designed

specifically for this case (for example, Sohn et al., 2020; Tarvainen and Valpola,

2017).

These advances have spurred similar growth in methods aimed specifically at

improving performance in RL. We refer the reader to Lesort et al. (2018) for a

review of earlier methods, including inverse dynamics modeling which is used in

SGI. Recent research has focused on leveraging latent-space dynamics modeling

as an auxiliary task. Gelada et al. (2019) propose a simple next-step prediction

task, coupled with reward prediction, but found it is prone to latent space collapse

and requires an auxiliary reconstruction loss for experiments on Atari. Guo et al.

(2020) use a pair of networks for both forward and backward prediction, and show

improved performance in extremely large-data multi-task settings. Mazoure et al.

(2020) use a temporal contrastive objective for representation learning, and show

improvement in continual RL settings. Concurrently, SPR (Schwarzer et al., 2021a)

proposed a multi-step latent prediction task with similarities to BYOL (Grill et al.,

2020a).

Two works similar to ours, Anand et al. (2019) and Stooke et al. (2021), pro-

pose reward-free temporal-contrastive methods to pretrain representations. Anand

et al. (2019) show that representations from encoders trained with ST-DIM con-

tain a great deal of information about environment states, but they do not examine

whether or not representations learned via their method are, in fact, useful for re-

inforcement learning. However, Stooke et al. (2021) employ a similar algorithm

and find only relatively minor improvements in performance compared to standard

baselines in the large-data regime; our controlled comparisons show that SGI’s

representations are far better for data-e�ciency. Concurrent to our work, FERM
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(Zhan et al., 2020) propose contrastive pretraining from human demonstrations in

a robotics setting. As FERM is quite similar to ATC, we are optimistic that our

improvements over ATC in Atari 100k would translate to FERM’s setting.

4.4 Experimental Details

In our experiments, We seek to address two main challenges for the deployment

of RL agents in the real world (Dulac-Arnold et al., 2020): (1) training the RL agent

with a limited budget of interactions in the real environment, and (2) leveraging

existing interaction data of arbitrary quality.

4.4.1 Environment and Evaluation

To address the first challenge, we focus our experimentation on the Atari 100k

benchmark introduced by Kaiser et al. (2019), in which agents are allowed only

100k steps of interaction with their environment. 1 This is roughly equivalent to

the two hours human testers were given to learn these games by Mnih et al. (2015),

providing a baseline of human sample-e�ciency.

Atari is also an ideal setting due to its complex observational spaces and diverse

tasks, with 26 di↵erent games included in the Atari 100k benchmark. These fac-

tors have led to Atari’s extensive use for representation learning and exploratory

pretraining (Anand et al., 2019; Stooke et al., 2021; Campos et al., 2021), and

specifically Atari 100k for data-e�cient RL (e.g., Kaiser et al., 2019; Kostrikov

et al., 2021; Schwarzer et al., 2021a), including finetuning after exploratory pre-

training (e.g., Hansen et al., 2020; Liu and Abbeel, 2021), providing strong baselines

to compare to.

Our evaluation metric for an agent on a game is human-normalized score (HNS),

defined as agent score�random score

human score�random score
. We calculate this per game by averaging scores

over 100 evaluation trajectories at the end of training, and across 10 random seeds

for training. We report both mean (Mn) and median (Mdn) HNS over the 26

Atari-100K games, as well as on how many games a method achieves super-human

performance (>H) and greater than random performance (>0). Following the

1. Note that sticky actions are disabled under this benchmark.
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guidelines of Anonymous (2021) we also report interquartile mean HNS (IQM) and

quantify uncertainty via bootstrapping in Appendix A.1.

4.4.2 Pretraining Data

The second challenge pertains to pretraining data. Although some prior work

on o✏ine representational pretraining has focused on expert-quality data (Stooke

et al., 2021), we expect real-world pretraining data to be of greatly varying quality.

We thus construct four di↵erent pretraining datasets to approximate di↵erent data

quality scenarios.

— (R)andom To assess performance near the lower limit of data quality, we use a

random policy to gather a dataset of 6M transitions for each game. To encourage

the agent to venture further from the starting state, we execute each action for

a random number of steps sampled from a Geometric(1
3
) distribution.

— (E)xploratory To emulate slightly better data that covers a larger range of the

state space, we use an exploratory policy. Specifically, we employ the IDF

(inverse dynamics) variant of the algorithm proposed by Burda et al. (2018).

We log the first 6M steps from an agent trained in each game. This algorithm

achieves better-than-random performance on only 70% of tasks, setting it far

below the performance of more modern unsupervised exploration methods.

To create higher-quality datasets, we follow Stooke et al. (2021) and use experience

gathered during the training of standard DQN agents (Mnih et al., 2015). We opt

to use the publicly-available DQN Replay dataset (Agarwal et al., 2020), which

contains data from training for 50M steps (across all 57 games, with five di↵erent

random seeds). Although we might prefer to use data from recent unsupervised

exploration methods such as APT (Liu and Abbeel, 2021), VISR (Hansen et al.,

2020), or CPT (Campos et al., 2021), none of these works provide code or datasets,

making this impractical. We address using data collected from on-task agents with

a behavioural cloning baseline in Section 4.5, with surprising findings relative to

prior work.

— (W)eak We first generate a weak dataset by selecting the first 1M steps for each

of the 5 available runs in the DQN Replay dataset. This data is generated with

an ✏-greedy policy with high, gradually decaying ✏, leading to substantial action
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diversity and many suboptimal exploratory actions. Although the behavioral

policies used to generate this agent are not especially competent (see Table 4.1),

they have above-random performance on almost all games, suggesting that that

this dataset includes more task-relevant transitions.

— (M)ixed Finally, for a realistic best-case scenario, we create a dataset of both

medium and low-quality data. To simulate a real-world collection of data from

di↵erent policies, we concatenate multiple checkpoints evenly spread throughout

training of a DQN. We believe this is also a reasonable approximation for data

from a modern unsupervised exploration method such as CPT (Campos et al.,

2021); as shown in Table 4.1, the agent for this dataset has performance in

between CPT and VISR, with median closer to CPT and mean closer to VISR.

This data is also lower quality than the expert data originally used in the method

most similar to ours, ATC (Stooke et al., 2021). 2 We create a dataset of 3M

steps and a larger dataset of 6M steps; allM experiments use the 3M step dataset

unless otherwise noted.

Table 4.1 – Performance of agents used in pretraining
data collection compared to external baselines on 26 Atari
games (Kaiser et al., 2019)

Method Mdn Mean >H >0 Data

Exploratory Pretraining Baselines

VISR@0 0.056 0.817 5 19 250M

APT@01 0.038 0.476 2 18 250M

CPT@0 0.809 4.945 12 25 4B

O✏ine Datasets

Exploratory 0.039 0.042 0 18 6M

Weak2 0.028 0.056 0 23 5M

Mixed2 0.618 1.266 10 26 3M

1 Calculated from ICLR 2021 OpenReview submission;
unreported in arXiv version.

2 Upper-bound estimate from averaging evaluation per-
formance of corresponding agents in Dopamine.

2. Our data-collection agents are weaker than those used by ATC on seven of the eight games
they consider.
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We compare the agents used for our datasets to those for unsupervised ex-

ploration pretraining baselines in Table 4.1. We estimate the performance of the

Weak and Mixed agents as the average of the corresponding logged evaluations in

the Dopamine (Castro et al., 2018) baselines. Even our largest dataset is quite small

compared to the amounts of data gathered by unsupervised exploration methods

(see the “Data” column in Table 4.1); this is intentional, as we believe that unsu-

pervised interactional data may be expensive in real world applications. We show

the performance of the non-random data collection policies in Table 4.2 (note that

a fully-random policy has a score of 0 by definition).

4.4.3 Training Details

We optimize our three representation learning objectives jointly during unsu-

pervised pretraining, summing their losses. During finetuning, we optimize only

the reinforcement learning and forward dynamics losses, following Schwarzer et al.

(2021a) (see Section 4.5.5), and lower the learning rates for the pretrained encoder

and dynamics model by two orders of magnitude (see Section 4.5.4).

We consider the standard three-layer convolutional encoder introduced by Mnih

et al. (2015), a ResNet inspired by Espeholt et al. (2018), as well as an enlarged

ResNet of the same design. In other respects, our implementation matches that of

SPR and is based on its publicly-released code. Full implementation and hyper-

parameter details are provided in Appendix A.2. We refer to agents by the model

architecture and pretraining dataset type used: SGI-R is pretrained on Random,

SGI-E on Exploratory, SGI-W on Weak, and SGI-M on Mixed. To investigate

scaling, we vary the size of the encoder used in SGI-M: the standard Mnih et al.

(2015) encoder is SGI-M/S (for small), our standard ResNet is simply SGI-M and

using a larger ResNet is SGI-M/L (for large) 3. For SGI-M/L we also use the 6M

step dataset described earlier. All ablations are conducted in comparison to SGI-M

unless otherwise noted. Finally, agents without pretraining are denoted SGI-None;

SGI-None/S would be roughly equivalent to SPR (Schwarzer et al., 2021a).

For baselines, we compare to no-pretraining Atari 100k methods (Kaiser et al.,

2019; van Hasselt et al., 2019; Kostrikov et al., 2021; Schwarzer et al., 2021a).

For our models trained on Random and Exploratory data we compare against

3. See Appendix A.2 for details on these networks
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previous pretraining-via-exploration approaches applied to Atari 100k (Liu and

Abbeel, 2021; Hansen et al., 2020; Campos et al., 2021). In the higher quality data

regime, we compare to recent work on data-agnostic unsupervised pretraining, ATC

(Stooke et al., 2021), as well as behavioural cloning (BC).

4.5 Results and Discussion

We find that SGI performs competitively on the Atari-100K benchmark; pre-

senting aggregate results in Table 4.2, and full per-game data in Appendix A.4. Our

best setting, SGI-M/L, achieves a median HNS of 0.753, approaching human-level

sample-e�ciency and outperforming all comparable methods except the recently

proposed CPT (Campos et al., 2021). With less data and a smaller model, SGI-M

achieves a median HNS of 0.679, significantly outperforming the prior method ATC

on the same data (ATC-M). Meanwhile, SGI-E achieves a median HNS of 0.456,

matching or exceeding other exploratory methods such as APT (Liu and Abbeel,

2021) and VISR (Hansen et al., 2020), as well as ATC-E.

Pretraining data e�ciency SGI achieves strong performance with only limited

pretraining data; our largest dataset contains 6M transitions, or roughly 4.5 days of

experience. This compares favourably to recent works on unsupervised exploration

such as APT or CPT, which require far larger amounts of data and environment

interaction (250M steps or 193 days for APT, 4B steps or 8.45 years for CPT). We

expect SGI would perform even better if used in these large-data settingss, as we

find that it scales robustly with data (see Section 4.5.2).

Behavioural cloning is a strong baseline Although ATC pretrains with expert

data, they did not investigate behavioral cloning as a baseline pretraining objec-

tive. We do so on our Mixed dataset, the only one to be generated by policies

with significantly above-random performance. Behavioral cloning without finetun-

ing (BC-M@0) performs poorly, perhaps due to the varying behavioural quality in

the dataset. But when finetuned, BC-M yields very respectable performance, sur-

passing ATC-M but not SGI-M. All fine-tuning settings for BC-M match SGI-M.
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Table 4.2 – HNS on Atari100k for SGI and baselines.

Method Mdn Mn >H >0 Data

No Pretraining (Finetuning Only)

SimPLe 0.144 0.443 2 26 0
DER 0.161 0.285 2 26 0
DrQ 0.268 0.357 2 24 0
SPR 0.415 0.704 7 26 0
SGI-None 0.343 0.565 3 26 0

Exploratory Pretraining + Finetuning

Method Mdn Mn >H >0 Data

VISR 0.095 1.281 7 21 250M
APT 0.475 0.6661 7 26 250M
CPT@02 0.809 4.945 12 25 4000M

ATC-R3 0.191 0.472 4 26 6M
ATC-E3 0.237 0.462 3 26 6M
SGI-R 0.326 0.888 5 26 6M
SGI-E 0.456 0.838 6 26 6M

O✏ine-data Pretraining + Finetuning

Method Mdn Mn >H >0 Data

ATC-W3 0.219 0.587 4 26 3M
ATC-M3 0.204 0.780 5 26 3M
BC-M@0 0.139 0.227 0 23 3M
BC-M 0.548 0.858 8 26 3M
SGI-W 0.589 1.144 8 26 5M
SGI-M/S 0.423 0.914 8 26 3M
SGI-M 0.679 1.149 9 26 3M
SGI-M/L 0.753 1.598 9 26 6M

1APT claims 0.6955, but we calculate 0.666
from their reported per-game scores.
2CPT@0 does not do any finetuning.
3Our implementation (see Appendix A.2.5)
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4.5.1 Data quality matters

Figure 4.2 – SGI finetuning performance vs. pretraining data score for all combinations of game
and dataset. Data score is estimated as clipped return per episode, trend calculated via kernel
regression. Values whitened per-game for clarity.

In principle, SGI can be used with any o✏ine dataset but we demonstrate that

it scales with the quality of its data. Near the lower bound of data quality where all

actions are selected randomly, SGI-R still provides some benefit over an otherwise-

identical randomly-initialized agent (SGI-None) on 16 out of 26 games, with a

similar median but 57% higher mean HNS. With better data from an exploratory

policy, SGI-E improves on 16/26 games, gets 33% higher median HNS, and sur-

passes APT (Liu and Abbeel, 2021) which used 40 times more pretraining data.

With similarly weak data but possibly more task-specific transitions, SGI-W gets

72% higher median HNS compared to SGI-None and with realistic data from a

mixture of policies, SGI-M improves to 98%.

Importantly, the pattern we observe is very di↵erent from what would be ex-

pected for imitation learning. In particular, SGI-W’s strong performance shows

that expert data is not required. To characterize this, we plot the average clipped

reward 4 experienced per episode for each of our pretraining datasets in Figure 4.2.

Normalizing across tasks, we find a strong positive correlation between task re-

ward engagement (p < 0.0001) and finetuning performance. Moreover, we find

diminishing returns to further task engagement.
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Figure 4.3 – Finetuning performance of SGI
for di↵erent CNN sizes and amounts of pre-
trained data from the Mixed dataset. We plot
IQM HNS with confidence intervals (see Ap-
pendix A.1).

Figure 4.4 – Average cosine similarity be-
tween representations over pretraining, aver-
aged across the 26 Atari 100k games. 1 indicates
representations are identical, 0 perfect dissimi-
larity.

4.5.2 Pretraining unlocks the value of larger networks

The three-layer network introduced by Mnih et al. (2015) has become a fixture of

deep reinforcement learning, and has been employed by previous works examining

pretraining in this field (e.g. Liu and Abbeel, 2021; Stooke et al., 2021). However,

we find that representational pretraining with this network (SGI-M/S) provides

only minor benefits compared to training from scratch. In contrast, larger networks

struggle without pretraining but shine when pretrained as shown in Figure 4.3.

This finding is consistent with recent work in unsupervised representation learn-

ing for classification, which has observed that unsupervised pretraining benefits

disproportionately from larger networks (Chen et al., 2020b). In particular, our

results suggest that model size should increase in parallel with amount of pretrain-

ing data, matching recent work on scaling in language modeling (Kaplan et al.,

2020; Hernandez et al., 2021). SGI thus provides a simple way to use unlabeled

data to extend the benefits of large networks, already well-known in the large-data

regime (e.g., Schrittwieser et al., 2021; Espeholt et al., 2018), to data-e�cient RL.

4.5.3 Combining SGI’s objectives improves performance

We test all possible combinations of our three SSL objectives, denoted by com-

binations of the letters S, G and I to indicate which objectives they employ. Results

in Table 4.3 show that performance monotonically increases as more objectives are

4. Unclipped rewards are not available for the o✏ine DQN dataset.
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Table 4.3 – HNS on Atari 100K for pre-
training ablations of SGI.

Pretraining Mdn Mean >H

None 0.343 0.565 3
S 0.009 -0.054 0
G 0.060 0.181 1
I 0.411 0.943 7
S+G 0.029 0.098 0
G+I 0.512 1.004 9
S+I 0.629 0.978 8

SGI-M 0.679 1.149 9

used, with inverse dynamics modeling combined with either of the other objec-

tives performing respectably well. This illustrates the importance of using multiple

objectives to obtain representational coverage of the MDP.

We note that including inverse modeling appears to be critical, and hypoth-

esize that this is related to representational collapse. To measure this, we plot

the average cosine similarity between representations yt of di↵erent states for sev-

eral pretraining methods in Figure 4.4, using our ResNet encoder on the Mixed

dataset. We observe that S, G and S+G all show some degree representational

collapse, while configurations that include inverse dynamics modeling avoid repre-

sentational collapse, as does ATC, whose contrastive loss implicitly optimizes for

representational diversity (Wang and Isola, 2020). Intriguingly, we observe that

increased representational diversity does not necessarily improve performance. For

example, SGI outperforms ATC, G+I and I in finetuning but has less diverse pre-

training representations. We also observe that adding SPR (S) consistently pulls

representations towards collapse (compare S+I and I, S+G and G, and SGI and

G+I); how this relates to performance is a question for future work.

4.5.4 Naively finetuning ruins pretrained representations

We find that properly finetuning pretrained representations is critical, as results

in Table 4.4 show. Although allowing pretrained weights to change freely during

finetuning is better than initializing from scratch (Naive vs No Pretrain), freezing

the pretrained encoder (Frozen) leads to better performance than either. SGI’s
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Table 4.4 – Human-normalized score on Atari-100K for various controlled comparisons to SGI-C.

Method Mdn Mean >H > SPR

Naive 0.429 0.845 8 14
Frozen 0.499 0.971 8 15
No SPR 0.452 1.114 8 14
All Losses 0.397 1.011 8 17

SGI-C 0.679 1.149 9 20

approach of reducing finetuning learning rates for pretrained parameters leads to

superior performance (Reduced LRs, equivalent to SGI-M).

We thus hypothesize that representations learned by SGI are being disrupted

by gradients early in finetuning, in a phenomenon analogous to catastrophic forget-

ting (Zenke et al., 2017; Hadsell et al., 2020). As representations may not generalize

between di↵erent value functions across training (Dabney et al., 2021), allowing the

encoder to strongly adapt early in training could make it worse at modeling later

value functions, compared to the neutral initialization from SGI. We also note

that there is a long history in computer vision of employing specialized finetuning

hyperparameters (Li et al., 2020; Chu et al., 2016) when transferring tasks.

4.5.5 Not all SSL objectives are beneficial during finetuning

Table 4.5 – HNS on Atari 100K for finetuning ablations of SGI.

Finetune SSL Mdn Mean >H

Without SGI pretraining

None 0.161 0.315 2
S Only 0.343 0.565 3

With SGI pretraining

None 0.452 1.114 8
SGI 0.397 1.011 8
S Only 0.679 1.149 9

Although SGI uses S during finetuning, we experiment with a variant that opti-

mizes only the standard DQN objective, roughly equivalent to using DrQ (Kostrikov
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et al., 2021) with DQN hyperparameters set to match SGI. We find that finetuning

with S has a large impact with or without pretraining (compare None and S Only

entries in Table 4.5.). Although, SGI without S manages to achieve roughly the

same mean human-normalized score as SGI with S, removing S harms performance

on performance on 19 out of 26 games and reduces median normalized score by

roughly 33%. We also find no benefit to using all of SGI’s constituent objectives

during finetuning (All Losses in Table 4.5) compared to using S alone, although

the gap between them is not statistically significant for metrics other than median

(see Figure A.1d).
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5 Conclusion
Sample Importance We have demonstrated that explicit separation of (overpa-

rameterized) representation learning and (underparameterized) task-specific classi-

fiers appears to provide a useful surrogate model-class to fully-supervised models for

the purposes of measuring sample importance, while requiring orders of magnitude

less compute. There are a few avenues for further advancing this work, which we

hope to investigate soon. The first is to evaluate SSS as a surrogate model for other

sample importance estimators such as TracIn (Pruthi et al., 2020) and Influence

Functions (Koh and Liang, 2017). The second is to investigate how much of these

measures can be recovered using non-parametric approaches on the representations

alone, such as with density estimation, or nearest-neighbour classifiers.

Data-E�cient RL We presented SGI, a fully self-supervised (reward-free) ap-

proach to representation learning for reinforcement learning, which uses a combi-

nation of pretraining objectives to encourage the agent to learn multiple aspects of

environment dynamics. We demonstrate that SGI enables significant improvements

on the Atari 100k data-e�ciency benchmark, especially in comparison to unsuper-

vised exploration approaches which require orders of magnitude more pretraining

data. Investigating the various components of SGI, we find that it scales robustly

with higher-quality pretraining data and larger models, that all three of the self-

supervised objectives contribute to the success of this approach, and that careful

reduction of fine-tuning learning rates is critical to optimal performance. An initial

goal for this work was to learn representations which could transfer across tasks,

which we were unable to make work successfully; we believe this to be a very im-

portant goal to keep working towards, perhaps on more realistic benchmark tasks

such as in robotics or self-driving. Furthermore, we are interested in using SGI

itself as a sample-e�cient exploratory method.
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A

Appendix for Pretraining
Representations for
Data-Efficient
Reinforcement Learning

A.1 Uncertainty-aware comparisons

Concurrent work (Anonymous, 2021) has found that many prior comparisons in

deep reinforcement learning are not robust and may be entirely incorrect, particu-

larly in the Atari 100K setting. They demonstrate that these misleading compar-

isons are partially due to undesirable properties of the per-game median and mean

normalized scores, the most commonly-used aggregate metrics, and propose using

the inter-quartile mean (IQM) normalized score, calculated over runs rather than

tasks. Moreover, they suggest providing percentile bootstrap confidence intervals

to quantify uncertainty, to avoid misleading comparisons based on highly-variable

point estimates.

As raw per-run data is required for this, which was not reported for prior work,

we do so only for experiments conducted ourselves. In the interests of improving

practices in the community moving forward, we also commit to making this data

for our experiments available to other researchers in the future.

In Figure A.1a through Figure A.1e we show estimated uncertainty via boot-

strapping for the various comparisons drawn throughout Section 4.5, while Ta-

ble A.1 gives IQM human-normalized scores and 95% bootstrap confidence inter-

vals for the same results. All comparisons in Figure A.1a through Figure A.1e are

statistically significant (p < 0.05) except for:

— ATC-M vs SGI-None in Figure A.1a (p� 0.05)

— SGI-M vs SGI-W in Figure A.1b (p ⇡ 0.05)

— SGI-M vs SGI-M w/ SGI FT in Figure A.1d (p ⇡ 0.4)

— SGI-M vs G+I and S+I in Figure A.1e (p ⇡ 0.1)
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(a) Comparisons to behavioral cloning (BC) and ATC. (b) Ablations over di↵erent pretraining datasets.

(c) Ablations over various fine-tuning. (d) Ablations over SSL objectives during fine-tuning.

(e) Ablations over pretraining SSL objectives.

Figure A.1 – Bootstrapping distributions for uncertainty in IQM measurements.
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Table A.1 – Interquartile mean, median and mean human-normalized scores for variants of SGI
and controls, evaluated after finetuning over all 10 runs for each of the 26 Atari 100k games.
Confidence intervals computed by percentile bootstrap with 5000 resamples.

Method IQM 95% CI Median 95% CI Mean 95% CI

SGI-M/L 0.745 (0.687, 0.805) 0.753 (0.625, 0.850) 1.598 (1.486, 1.676)

SGI-M 0.567 (0.524, 0.612) 0.679 (0.473, 0.739) 1.149 (0.974, 1.347)

SGI-M/S 0.444 (0.404, 0.487) 0.423 (0.341, 0.577) 0.914 (0.822, 1.031)

SGI-W 0.510 (0.476, 0.547) 0.589 (0.434, 0.675) 1.144 (0.981, 1.345)

SGI-E 0.363 (0.326, 0.404) 0.456 (0.309, 0.482) 0.838 (0.692, 1.008)

SGI-R 0.302 (0.275, 0.331) 0.326 (0.253, 0.385) 0.888 (0.776, 1.004)

SGI-None 0.242 (0.212, 0.274) 0.343 (0.268, 0.401) 0.565 (0.440, 0.711)

Baselines

ATC-M 0.235 (0.210, 0.262) 0.204 (0.182, 0.291) 0.780 (0.601, 0.971)

ATC-W 0.221 (0.199, 0.244) 0.219 (0.170, 0.290) 0.587 (0.504, 0.673)

ATC-E 0.214 (0.193, 0.236) 0.237 (0.169, 0.266) 0.462 (0.420, 0.504)

ATC-R 0.187 (0.174, 0.202) 0.191 (0.139, 0.202) 0.472 (0.454, 0.491)

BC-M 0.481 (0.438, 0.524) 0.548 (0.390, 0.685) 0.858 (0.795, 0.924)

Pretraining Ablations

S+I 0.522 (0.488, 0.559) 0.629 (0.494, 0.664) 0.978 (0.900, 1.061)

G+I 0.521 (0.486, 0.558) 0.512 (0.386, 0.582) 1.004 (0.892, 1.129)

S+G 0.032 (0.027, 0.039) 0.029 (0.025, 0.044) 0.098 (0.061, 0.146)

I 0.435 (0.404, 0.470) 0.411 (0.334, 0.489) 0.943 (0.783, 1.126)

G 0.060 (0.048, 0.072) 0.060 (0.037, 0.081) 0.181 (0.145, 0.218)

S 0.007 (0.002, 0.011) 0.009 (0.002, 0.014) -0.054 (-0.082, -0.026)

Finetuning Ablations

SGI-M (No S) 0.448 (0.412, 0.484) 0.419 (0.335, 0.524) 1.114 (0.921, 1.321)

SGI-None (No S) 0.139 (0.118, 0.162) 0.161 (0.123, 0.225) 0.315 (0.274, 0.356)

SGI-M (All SGI) 0.541 (0.498, 0.585) 0.397 (0.330, 0.503) 1.011 (0.909, 1.071)

SGI-M (Frozen) 0.510 (0.476, 0.543) 0.499 (0.406, 0.554) 0.971 (0.871, 1.088)

SGI-M (Naive) 0.453 (0.422, 0.485) 0.429 (0.380, 0.500) 0.845 (0.754, 0.952)
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A.2 Implementation Details

We base our work on the code released for SPR (Schwarzer et al., 2021a),

which in turn is based on rlpyt (Stooke and Abbeel, 2019), and makes use of

NumPy (Harris et al., 2020) and PyTorch (Paszke et al., 2019).

A.2.1 Training

We set �SPR = 2 and �IM = 1 during pre-training. Unless otherwise noted, all

settings match SPR during fine-tuning, including batch size, replay ratio, target

network update period, and �SPR. We use a batch size of 256 during pre-training to

maximize throughput, and update both the SPR and goal-conditioned RL target

network target networks with an exponential moving average with ⌧ = 0.99. We

pre-train for a number of gradient steps equivalent to 10 epochs over 6M samples,

no matter the amount of data used. Due to the cost of pretraining, we pre-train a

single encoder per game for each configuration tested. However, we use 10 random

seeds at fine-tuning time, allowing us to average over variance due to exploration

and data order. Finally, we reduce fine-tuning learning rates for pretrained encoders

and dynamics models by a factor of 100, and by a factor of 3 for other pretrained

weights. We find this crucial to SGI’s performance, and discuss it in detail in

Section 4.5.4.

We trained SGI on standard GPUs, including V100s and P100s. We found that

pretraining took roughly one to three days and finetuning between four and 12

hours per run on a single GPU, depending on the size of the network used and type

of GPU.

A.2.2 Goal-Conditioned Reinforcement Learning

We generate goals in a three-stage process: a goal g for state st is initially

chosen to be the target representation of a state sampled uniformly from the near

future, g  z̃t+i, i ⇠ Uniform(50), before being combined with a normalized vector

of isotropic Gaussian noise n as g  ↵n + (1 � ↵)g, where ↵ ⇠ Uniform(0, 0.5).

Finally, we exchange goal vectors between states in the minibatch with probability

0.2, to ensure that some goals correspond to states reached in entirely di↵erent

trajectories.
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In defining our synthetic goal-conditioned rewards, we take inspiration from

potential-based reward shaping (Ng et al., 1999). Using the target representations

z̃t , fm(st) and z̃t+1 , fm(st+1), we define the reward as follows:

R(z̃t, z̃t+1, g) = d(z̃t, g)� d(z̃t+1, g) (A.1)

d(z̃t, g) = exp

✓
2

z̃t · g
||z̃||2 · ||g||2

� 2

◆
. (A.2)

As this reward function depends on the target encoder fm, it changes throughout

training, although using the slower-moving fm rather than the online encoder fo

may provide some measure of stability. Like SPR, however, this objective is tech-

nically vulnerable to collapse. If all representations z̃t collapse to a single constant

vector then all rewards will be 0, allowing the task to be trivially solved.

We estimateQ(st, at, g) using FiLM (Perez et al., 2018) to condition the DQN on

the goal g, which we found to be more robust than simple concatenation. A FiLM

generator j produces per-channel biases �c and scales �c, which then modulate

features through a per-channel a�ne transformation:

FiLM(Fc|�c, �c) = �cFc + �c (A.3)

We use these parameters to replace the learned per-channel a�ne transformation

in a layer norm layer (Ba et al., 2016), which we insert immediately prior to the

final linear layer in the DQN head.

We apply FiLM after the first layer in the DQN’s MLP head. We parameterize

our FiLM generator j as a small convolutional network, which takes the goal g

(viewed as a 64⇥ 7⇥ 7 spatial feature map) as input and applies two 128-channel

convolutions followed by a flatten and linear layer to produce the FiLM parameters

� and �.

A.2.3 Model Architectures

In addition to the standard three-layer CNN encoder introduced by Mnih et al.

(2015), we experiment with larger residual networks (He et al., 2016). We use the

design proposed by Espeholt et al. (2018) as a starting point, while still adopting

innovations used in more modern architectures such as E�cientNets (Tan and Le,
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2019) and MobileNetv2 (Sandler et al., 2018). In particular, we use inverted residual

blocks with an expansion ratio of 2, and batch normalization (Io↵e and Szegedy,

2015) after each convolutional layer. We use three groups of three residual blocks

with 32, 64 and 64 channels each, downscaling by a factor of three in the first

group and two in each successive group. This yields a final representation of shape

64 ⇥ 7 ⇥ 7 when applied to 84 ⇥ 84-dimensional Atari frames, identical to that of

the standard CNN encoder. In our scaling experiment with a larger network, we

increase to five blocks per group, with 48, 96 and 96 channels in each group, as

well as using a larger expansion ratio of 4, producing a representation of shape

96 ⇥ 7 ⇥ 7. This enlargement increases the number of parameters by roughly a

factor of 5. Finally, our DQN head has 512 hidden units, as opposed to 256 in

SPR.

A.2.4 Image Augmentation

We use the same image augmentations as used in SPR (Schwarzer et al., 2021a),

which itself used the augmentations used in DrQ (Kostrikov et al., 2021), in all

experiments, including during both pretraining and fine-tuning. Specifically, we

employ random crops (4 pixel padding and 84x84 crops) in combination with image

intensity jittering.

A.2.5 Experiments with ATC

As ATC (Stooke et al., 2021) was not tested on the Atari100k setting, and as its

hyperparameters (including network size and fine-tuning scheme) are very di↵erent

from those used by SGI, we modify its code 1 to allow it to be fairly compared

to SGI. We replace the convolutional encoder with that used by SGI, and use

the same optimizer settings, image augmentation, pre-training data, and number

of pre-training epochs as in SGI. However, we retain ATC’s mini-batch structure

(i.e., sampling 32 subsequences of eight consecutive time steps, for a total batch size

of 512), as this structure defines the negative samples used by ATC’s InfoNCE loss.

During fine-tuning, we transfer the ATC projection head to the first layer of the

DQN MLP head, as in SPR; we otherwise fine-tune identically to SGI, including

using SPR.

1. https://github.com/astooke/rlpyt/tree/master/rlpyt/ul
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A.3 Pseudocode

Algorithm 1: Pre-Training with SGI
Denote parameters of online encoder fo, projection po and Q-learning head

as ✓o;

Denote parameters of target encoder fm, projection pm and Q-learning

target head as ✓m;

Denote parameters of transition model h, predictor q, inverse model I as �;

Denote the maximum prediction depth as K, batch size as N ;

Denote distance function in goal RL reward as d;

initialize o✏ine dataset D;

while Training do

sample a minibatch of sequences of (st, a, s+ t+ 1) ⇠ D ; // sample

unlabeled data

/* sample goals */

for i in range(0, N) do

si  augment(si); s0i  augment(s0i) ; // augment input images

j ⇠ Discrete Uniform(1, 50) ; // sample hindsight goal states

gi  fm(snj ) ; // encode goal states

↵ ⇠ Uniform(0, 0.5), n ⇠ Normal(0, 1) ; // sample noise

parameters

gi  ↵gi + (1� ↵)n ; // apply noise

/* Permute to make some goals very challenging to reach */

permute ⇠ Bernoulli(0.2)

if permute then
j ⇠ Discrete Uniform(N)

gi  gj ; // permute goal

/* compute SGI loss */

for i in range(0, N) do

ẑi
0
 f✓(si0) ; // compute online representations

li  0;

/* compute SPR loss */

for k in (1, . . . , K) do

ẑi
k
 h(ẑi

k�1, a
i

k�1) ; // latent states via transition model

z̃i
k
 fm(sik) ; // target representations

ŷi
k
 q(po(ẑik)), ỹ

i

k
 gm(z̃ik) ; // projections

li  li � �SPR

⇣
ỹ
i
k

||ỹik||2

⌘> ⇣
ŷ
i
k

||ŷik||2

⌘
; // SGI loss at step k

/* compute inverse modeling loss */

for k in (1, . . . , K) do
li  �IM · Cross-entropy loss(ai

k�1, I(ŷk�1, ỹk))

/* compute goal RL loss */

ri  d(gi, z̃t)� d(gi, z̃t+1) ; // Calculate goal RL reward

li  li + RL loss(si, ai, ri, s0i) ; // Add goal RL loss for batch

l  1

N

P
N

i=0
li ; // average loss over minibatch

✓o,� optimize((✓o,�), l) ; // update online parameters

✓m  ⌧✓o + (1� ⌧)✓m ; // update target parameters

return (✓o, �) ; // return parameters for fine-tuning
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A.4 Full Results on Atari100k

We report full scores for SGI agents across all 26 games in Table A.2. We do

not reproduce the per-game scores for APT and VISR provided by Liu and Abbeel

(2021), as we believe that the scores in the currently-available version of their paper

may contain errors. 2

Table A.2 – Mean return per episode for the 26 Atari100k games (Kaiser et al., 2019) after 100k
steps. Agents are evaluated at the end of training, and scores for all methods are averaged over 10
random seeds. We reproduce scores for SPR from Schwarzer et al. (2021a), whereas ATC scores
are from our implementation.

Random Human SPR ATC SGI-R SGI-E SGI-W SGI-C/S SGI-C SGI-C/L

Alien 227.8 7127.7 801.5 699.0 1034.5 857.6 1043.8 1070.5 1101.7 1184.0

Amidar 5.8 1719.5 176.3 95.4 154.8 166.8 206.7 185.9 168.2 171.2

Assault 222.4 742.0 571.0 509.8 446.6 583.1 759.5 632.4 905.1 1326.5

Asterix 210.0 8503.3 977.8 454.1 754.6 953.6 1539.1 651.8 835.6 567.2

Bank Heist 14.2 753.1 380.9 534.9 397.4 514.8 426.3 547.4 608.4 567.8

Battle Zone 2360.0 37187.5 16651.0 13683.8 4439.0 16417.0 7103.0 12107.0 13170.0 14462.0

Boxing 0.1 12.1 35.8 16.8 57.7 33.6 50.2 40.0 36.9 73.9

Breakout 1.7 30.5 17.1 16.9 23.4 17.8 35.4 23.8 42.8 251.9

Chopper Command 811.0 7387.8 974.8 870.8 784.7 1136.2 1040.1 1042.7 1404.0 1037.9

Crazy Climber 10780.5 35829.4 42923.6 74215.5 50561.2 76356.3 81057.4 75542.1 88561.2 94602.2

Demon Attack 152.1 1971.0 545.2 524.6 2198.7 357.5 1408.5 1135.5 968.1 5634.8

Freeway 0.0 29.6 24.4 5.7 2.1 15.1 26.5 12.5 30.0 28.6

Frostbite 65.2 4334.7 1821.5 222.6 349.3 981.4 247.7 861.1 741.3 927.8

Gopher 257.6 2412.5 715.2 946.2 1033.9 964.9 1846.0 1172.4 1660.4 2035.8

Hero 1027.0 30826.4 7019.2 6119.4 7875.2 6863.7 7503.9 7090.4 7474.0 9975.9

Jamesbond 29.0 302.8 365.4 272.6 263.9 383.8 425.1 413.2 366.4 394.8

Kangaroo 52.0 3035.0 3276.4 603.1 923.8 1588.9 598.6 1236.8 2172.8 1887.5

Krull 1598.0 2665.5 3688.9 4494.7 5672.6 4070.7 5583.2 6161.3 5734.0 5862.6

Kung Fu Master 258.5 22736.3 13192.7 11648.2 13349.2 11802.1 14199.7 16781.8 16137.8 17340.7

Ms Pacman 307.3 6951.6 1313.2 848.9 411.0 1278.3 1970.8 1519.5 1520.0 2218.0

Pong -20.7 14.6 -5.9 -13.5 -3.9 4.2 4.7 9.7 7.6 7.7

Private Eye 24.9 69571.3 124.0 95.0 95.3 100.0 100.0 84.7 90.0 83.8

Qbert 163.9 13455.0 669.1 572.2 595.0 717.6 855.6 804.7 709.8 702.6

Road Runner 11.5 7845.0 14220.5 7989.3 5476.0 9195.2 18011.9 12083.5 18370.2 18306.8

Seaquest 68.4 42054.7 583.1 415.7 735.3 615.2 656.1 728.2 728.4 1979.3

Up N Down 533.4 11693.2 28138.5 84361.2 67968.1 63612.9 84551.4 42165.6 79228.8 46083.3

Median HNS 0.000 1.000 0.415 0.204 0.326 0.456 0.589 0.423 0.679 0.755

Mean HNS 0.000 1.000 0.704 0.780 0.888 0.838 1.144 0.914 1.149 1.590

#Games > Human 0 0 7 5 5 6 8 6 9 9

#Games > 0 0 26 26 26 25 26 26 26 26 26

2. In particular, we observed that VISR claimed to have a score below �21 on Pong, which is
impossible with standard settings.
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Table A.3 – Mean return per episode for the 26 Atari100k games (Kaiser et al., 2019) after
100k steps for versions of SGI with modified fine-tuning, as discussed in Section 4.5. Agents are
evaluated at the end of training, and scores for all methods are averaged over 10 random seeds.
We reproduce scores for SPR from Schwarzer et al. (2021a).

Random Human SGI-None Naive Frozen No SPR Full SSL SGI-C

Alien 227.8 7127.7 835.9 1049.3 1242.8 1060.7 1117.6 1101.7

Amidar 5.8 1719.5 107.6 133.6 147.7 154.2 206.0 168.2

Assault 222.4 742.0 657.7 752.1 869.2 756.3 1145.2 905.1

Asterix 210.0 8503.3 832.9 1029.3 433.1 575.5 603.1 835.6

Bank Heist 14.2 753.1 613.2 726.5 273.6 365.8 323.4 608.4

Battle Zone 2360.0 37187.5 13490.0 15708.0 11754.0 13692.0 11689.8 13170.0

Boxing 0.1 12.1 6.6 24.0 61.5 34.7 42.7 36.9

Breakout 1.7 30.5 12.1 29.3 34.0 43.0 62.6 42.8

Chopper Command 811.0 7387.8 1085.2 1081.2 916.5 925.5 965.8 1404.0

Crazy Climber 10780.5 35829.4 19707.6 55002.4 65220.0 69505.6 69052.0 88561.2

Demon Attack 152.1 1971.0 778.8 850.0 1329.4 981.7 1783.8 968.1

Freeway 0.0 29.6 17.2 28.1 24.4 13.2 10.9 30.0

Frostbite 65.2 4334.7 1475.8 662.1 1045.4 482.1 1664.9 741.3

Gopher 257.6 2412.5 438.2 626.1 2214.1 1561.7 1998.7 1660.4

Hero 1027.0 30826.4 6472.0 5538.3 6353.3 5249.6 8715.4 7474.0

Jamesbond 29.0 302.8 157.4 324.2 358.2 346.8 407.6 366.4

Kangaroo 52.0 3035.0 3802.8 3091.6 800.0 685.6 999.5 2172.8

Krull 1598.0 2665.5 3954.0 5202.7 6073.7 5722.8 5323.9 5734.0

Kung Fu Master 258.5 22736.3 7929.4 11952.2 19374.6 15039.8 18123.2 16137.8

Ms Pacman 307.3 6951.6 990.2 1276.4 1663.3 1753.3 1779.3 1520.0

Pong -20.7 14.6 -4.4 -4.2 3.8 3.9 -0.1 7.6

Private Eye 24.9 69571.3 62.8 385.9 96.7 90.5 90.0 90.0

Qbert 163.9 13455.0 720.0 664.8 587.6 681.3 3015.8 709.8

Road Runner 11.5 7845.0 5428.4 14629.7 14311.9 17036.5 13998.2 18370.2

Seaquest 68.4 42054.7 577.8 509.0 1054.4 1397.8 989.4 728.4

Up N Down 533.4 11693.2 46042.6 48856.6 29938.4 105466.9 45023.5 79228.8

Median HNS 0.000 1.000 0.343 0.425 0.499 0.452 0.397 0.679

Mean HNS 0.000 1.000 0.565 0.849 0.971 1.114 1.011 1.149

#Games > Human 0 0 3 8 8 8 8 9

#Games > SPR 0 19 10 14 15 14 17 20

68



Table A.4 – Mean return per episode for the 26 Atari100k games (Kaiser et al., 2019) after 100k
steps for various combinations of SGI’s pretraining objectives, as discussed in Section 4.5. Agents
are evaluated at the end of training, and scores for all methods are averaged over 10 random
seeds.

Random Human None S G I G+I S+G S+I SGI

Alien 227.8 7127.7 835.9 278.7 964.3 1161.6 571.2 1172.3 1203.0 1101.7

Amidar 5.8 1719.5 107.6 37.8 54.8 198.1 58.0 210.5 175.4 168.2

Assault 222.4 742.0 657.7 517.9 512.3 868.1 567.2 813.5 820.3 905.1

Asterix 210.0 8503.3 832.9 292.6 416.1 475.6 431.8 506.3 648.5 835.6

Bank Heist 14.2 753.1 613.2 3.1 115.2 357.6 57.2 423.3 547.5 608.4

Battle Zone 2360.0 37187.5 13490.0 4665.0 3336.0 14807.0 3249.0 12528.0 15491.0 13170.0

Boxing 0.1 12.1 6.6 -21.8 12.5 40.1 -0.4 42.9 38.3 36.9

Breakout 1.7 30.5 12.1 0.9 2.1 24.1 3.2 41.0 41.6 42.8

Chopper Command 811.0 7387.8 1085.2 799.7 813.1 973.1 923.7 1097.2 978.3 1404.0

Crazy Climber 10780.5 35829.4 19707.6 243.3 17760.3 51203.9 581.0 66228.5 83995.4 88561.2

Demon Attack 152.1 1971.0 778.8 668.9 316.9 1524.6 756.4 1008.4 1286.6 968.1

Freeway 0.0 29.6 17.2 15.2 17.7 2.6 19.3 30.5 29.1 30.0

Frostbite 65.2 4334.7 1475.8 427.2 523.3 395.0 215.4 530.5 463.3 741.3

Gopher 257.6 2412.5 438.2 60.7 129.0 1966.1 99.0 1747.4 1778.7 1660.4

Hero 1027.0 30826.4 6472.0 2381.2 3590.2 7177.6 3998.7 8251.2 7366.2 7474.0

Jamesbond 29.0 302.8 157.4 41.8 236.0 373.1 183.6 365.6 378.4 366.4

Kangaroo 52.0 3035.0 3802.8 129.8 401.6 1041.4 222.6 830.8 760.2 2172.8

Krull 1598.0 2665.5 3954.0 720.1 1241.4 5859.8 1582.4 5778.8 5808.6 5734.0

Kung Fu Master 258.5 22736.3 7929.4 79.7 453.7 16914.7 686.2 17825.1 14681.9 16137.8

Ms Pacman 307.3 6951.6 990.2 418.7 528.5 1620.1 293.3 1847.1 1715.9 1520.0

Pong -20.7 14.6 -4.4 -20.9 -20.4 -3.0 -21.0 0.9 1.7 7.6

Private Eye 24.9 69571.3 62.8 -20.7 89.4 100.0 12.7 98.2 100.0 90.0

Qbert 163.9 13455.0 720.0 201.0 277.4 706.5 215.2 650.5 601.9 709.8

Road Runner 11.5 7845.0 5428.4 780.3 5592.9 17698.4 2617.8 18229.4 17443.5 18370.2

Seaquest 68.4 42054.7 577.8 105.7 193.2 965.3 118.8 1115.0 792.1 728.4

Up N Down 533.4 11693.2 46042.6 892.2 4399.7 58142.0 1313.4 52772.9 39771.3 79228.8

Median HNS 0.000 1.000 0.343 0.009 0.060 0.411 0.029 0.512 0.629 0.679

Mean HNS 0.000 1.000 0.565 -0.054 0.181 0.943 0.098 1.004 0.978 1.149

#Games > Human 0 0 3 0 1 7 0 9 8 9

#Games > SPR 0 19 10 1 1 18 1 20 19 20
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A.5 Transferring Representations between Games

One advantage of pretraining representations is the possibility of representations

being useful across games. Intuitively, we expect better transfer between similar

games so we chose five“cliques”of games with similar semantics and visual elements.

The cliques are shown in Table A.5. We pretrain on a dataset of 750k frames from

each game in a clique (i.e. 3M frames for a clique of 4) and finetune on a single

game. To show whether pretraining on other games is beneficial, we compare to a

baseline of pretraining on just the 750k frames from the single Atari 100k game we

use for finetuning.

Our results in Table A.6 show that pretraining with the extra frames from the

clique games is mostly unhelpful to finetune performance. Only Kangaroo shows

a modest improvement, a few games show no di↵erence in performance, and most

games show a decrease in performance when pretraining with other games. We

believe that Atari may not be as suitable to transferring representations as other

domains, and previous work using Atari to learn transferable representations has

also had negative results (Stooke et al., 2021). Though game semantics can be

similar, we note that even small di↵erences in rule sets and visual cues can make

transfer di�cult.

Table A.5 – Cliques of semantically similar games

space Space Invaders, Assault, Demon Attack, Phoenix

pacman MsPacman, Alien, Bank Heist, Wizard Of Wor

platformer Montezuma Revenge, Hero, Kangaroo, Tutankham

top scroller Crazy Climber, Up N Down, Skiing, Journey Escape

side scroller Chopper Command, James Bond, Kung Fu Master, Private Eye
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Table A.6 – Mean return per episode for clique games in Atari100k (Kaiser et al., 2019) after
100k steps. Agents are evaluated at the end of training, and scores for all methods are averaged
over 10 random seeds. Games in the same clique are placed together.

Game Single Clique

Assault 738.5 554.1

Demon Attack 1171.8 695.0

Alien 1183.9 830.2

Bank Heist 448.8 303.0

Ms Pacman 1595.8 1352.1

Kangaroo 489.2 994.0

Crazy Climber 52036.0 21829.8

Up N Down 18974.7 13493.9

James Bond 397.6 325.4

Kung Fu Master 16402.6 16499.0

Chopper Command 933.6 854.6
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Richemond, Elena Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhao-

han Daniel Guo, Mohammad Gheshlaghi Azar, Bilal Piot, Koray Kavukcuoglu,
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