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Résumé

Cette dernière décennie a vu un certain nombre d’avancées significatives en mathématiques,
en apprentissage computationnel et en traitement de signal, qui n’ont pas encore été plei-
nement exploitées en neurosciences. En particulier, l’évaluation de la connectivité dans les
réseaux neuronaux peut grandement bénéficier de ces travaux. Nous proposons ici d’ex-
ploiter ces outils pour combler partiellement le fossé considérable qui existe encore entre la
recherche connectomique à grande échelle (largement centrée sur des mesures indirectes de
l’activité cérébrale comme l’Imagerie par résonance magnétique fonctionnelle (IRMf)) et les
mesures physiologiques plus directes de l’activité cérébrale. Il est particulièrement impor-
tant de combler ce fossé pour l’étude des propriétés physiologiques associées à divers états
de conscience normaux et anormaux, notamment les troubles psychiatriques, le sommeil,
l’anesthésie ou les états induits par les drogues. Les travaux récents sur l’induction d’états
de conscience altérés par des agonistes non sélectifs de la sérotonine, tels que la psilocybine
et le Diéthyllysergamide (LSD), en sont de bons exemples.

Au cours des cinq dernières années, une résurgence rapide de la recherche sur la neurobio-
logie des tryptamines psychédéliques s’est produite, après une interruption d’un demi-siècle.
Bien que ces substances présentent un grand potentiel pour éclairer des aspects jusqu’ici
non interrogés du fonctionnement normal et anormal du cerveau, l’ampleur et le carac-
tère inhabituel des changements qu’elles provoquent posent de sérieux défis aux chercheurs.
La découverte de méthodes convaincantes et évolutives pour étudier ces données est d’une
grande importance si nous voulons tirer parti de la fenêtre unique que ces substances aty-
piques offrent sur les aspects centraux de la conscience et des fonctions cérébrales anormales.
Dans la présente thèse, nous résumons l’état actuel de la neuro-imagerie électrophysiolo-
gique en ce qui concerne l’étude des tryptamines psychédéliques, et nous démontrons un
certain nombre de lacunes évidentes dans la recherche électrophysiologique actuelle sur les
psychédéliques. Nous offrons également quelques modestes contributions méthodologiques
au domaine. L’utilité de ces contributions est soutenue par quelques résultats empiriques
intrigants, bien que préliminaires. Dans le premier chapitre, nous présentons l’histoire de la
recherche neuroscientifique sur le LSD. Il a été rapporté que le LSD induit des déplacements
de pics dans les spectres de puissance, en même temps que des diminutions de l’amplitude
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des pics. Le fait que ces effets soient liés entre eux et que la plupart des recherches me-
nées jusqu’à présent n’aient pas cherché à les distinguer est uniformément négligé dans la
littérature, ce qui, selon nous, peut conduire à de fausses interprétations.

Le chapitre 2 examine certains des avantages plausibles ainsi que les obstacles sérieux
à la recherche sur la connectivité du cerveau entier par magnétoencéphalographie (MEG),
et propose plusieurs stratégies pour surmonter ces limites méthodologiques. Celles-ci com-
prennent des stratégies d’imagerie de source convaincantes, des développements nouveaux et
récents dans la décomposition spectrale, des mesures de connectivité insensibles à la conduc-
tion volumique, et des implémentations évolutives de métriques de couplage interfréquence
bien établies. Nous montrons que ces techniques peuvent être étendues à une grille corticale
et sous-corticale de plus haute résolution que celle qui existe actuellement. Nous discutons
également d’une mise en œuvre allégée de statistiques non paramétriques adaptées à ces
données. Le troisième chapitre a pour but de démontrer l’efficacité de ces procédures, en
montrant les résultats empiriques d’une étude de la connectivité du cerveau entier sous LSD
par MEG. Le quatrième et dernier chapitre discute de ces résultats, ainsi que des précautions
nécessaires et des orientations futures prometteuses pour ce type de recherche. Il propose
des approches computationnelles supplémentaires qui pourraient étendre la portée de ces
recherches et, plus généralement, de l’électrophysiologie du cerveau entier. Dans l’ensemble,
le cadre méthodologique proposé dans ce travail surmonte les limitations endémiques précé-
dentes, non seulement dans la recherche sur les psychédéliques, mais aussi dans la recherche
électrophysiologique en général, et jette une lumière nouvelle sur sur les mécanismes centraux
qui sous-tendent ces états de conscience anormaux, ainsi que sur les importantes précautions
à prendre dans la recherche électrophysiologique.

Mots-clés: Magnétoencéphalographie ; électrophysiologie ; LSD ; MEG; Connectivité
interfréquence ; Wavelet ; Transformée Synchrosqueezing
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Abstract

The past decade has seen a number of significant advances in mathematics, computational
learning, and signal processing, which have yet to be deployed in neuroscience. In particular
the assessment of connectivity in neural networks has much to gain from this work. Here
we propose these tools be leveraged to partially bridge the considerable gap that still exists
between large-scale connectomics research (largely centered around indirect measures of brain
activity such as fMRI), and more direct, physiological measures of brain activity. Bridging
this gap is especially important to the study of physiological properties associated with
various normal and abnormal states of consciousness including Psychiatric conditions, sleep,
anaesthesia or drug-induced states. Exemplary of such research, is recent work surrounding
the induction of altered states of consciousness by non-selective serotonin agonists such as
Psilocybin and LSD.

During the past five years, a rapid resurgence of research into the neurobiology of
Psychedelic tryptamines has transpired, following a half-century hiatus. While these sub-
stances hold great potential to illuminate hitherto uninterrogated aspects of normal and
abnormal brain function, the scope and unusual character of the changes they illicit pose
serious challenges to researchers. Uncovering cogent and scalable methods for investigating
such data is a matter of great importance if we are to leverage the unique window such atyp-
ical substances provide into central aspects of consciousness and abnormal brain function.
In the present thesis, we summarize the current state of electrophysiological neuroimaging
as it pertains to the study of Psychedelic tryptamines, and demonstrate a number of clear
shortcomings in current electrophysiological research on Psychedelics. We also offer some
modest methodological contributions to the field. The utility of these contributions is sup-
ported by some intriguing, albeit preliminary, empirical findings. In the first chapter, we
present the history of neuroscientific research on LSD. LSD has been reported to induce peak
shifts in power spectra, alongside decreases in peak amplitude. The fact that these effects
are inter-related and most research so far has not sought to disambiguate them is uniformly
overlooked in the literature, which we believe may lead to false interpretations.

Chapter Two discusses some of the plausible advantages as well as serious barriers to
whole-brain connectivity research in MEG, proposing several strategies to overcome these
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methodological limitations. These include cogent source imaging strategies, novel and re-
cent developments in spectral decomposition, connectivity measures insensitive to volume
conduction, and scalable implementations of well-established cross-frequency coupling met-
rics. We show that these techniques can be extended to a higher resolution cortical and
subcortical grid than previously shown. We also discuss a lightweight implementation of
non-parametric statistics suitable to such data. Chapter Three serves to demonstrate the ef-
ficacy of these procedures, showing empirical results from a whole-brain study of connectivity
under LSD in MEG. The fourth and final chapter discusses these results, as well as necessary
precautions and promising future directions for this kind of research. It proposes additional
computational approaches that might extend the scope of such research and whole-brain
electrophysiology more generally. Taken together, the methodological framework proposed
in this work overcomes previous limitations endemic not only in Psychedelics research, but
electrophysiological research broadly, and sheds new light on central mechanisms underlying
these abnormal states of consciousness, as well as important precautions in electrophysiolog-
ical research.

Key-words: Magnetoencephalography ; Electrophysiology ; LSD ; MEG ; Cross-
frequency Coupling ; Wavelet ; Synchrosqueezing Transform
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EEG Electroencephalography

STFT Short-time Fourier Transform

FFT Fast-Fourier Transform

PSD Power Spectral Density

CSD Cross Spectral Density

5HT2AR Receptor for subtype of 5-Hydroxytryptamine 2 (Serotonin)

WT Wavelet Transform
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PT Psychedelic Tryptamine

GSR Global Signal Regression

FC Functional Connectivity

HZ Hertz, number of oscillations per second

PAC Phase-Amplitude Coupling

CFC Cross-frequency Coupling

PLI Phase-lag Index

OAC Orthogonalized Amplitude Correlation

GFC Global Functional Connectivity
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Introduction

Since the discovery of the electroencephalogram (EEG) in 1924 by Hans Berger, investiga-
tions into human electrophysiology have had as a central preoccupation the characteristic
alterations of the electromagnetic frequency spectrum observed during well-defined divergent
states of consciousness. Before the taxonomization of electrophysiological effects accompa-
nying sleep and waking, two prominent discoveries were made that would form an indispu-
table cornerstone for research in electrophysiology, and the basis for unresolved questions
extending into the present day. The first would be the presence of a single dominant oscilla-
tion, persistent in all mammalian brains during simple restful waking, aptly labeled alpha.
The second would be a reliable attenuation of this rhythm during visual and sensory stimu-
lation, known as “the Berger effect.” Enduring at around 10 hz, the alpha rhythm drew the
interest of a diverse cast of scientists– specialists and non- – eager to explain its function.
Early cyberneticist and biological mathematician Norbert Wiener famously sought to ex-
plain alpha as a mean effect of multiple oscillatory dynamics, while more recent theory has
conventionally either endorsed this idea indirectly, via Kuramoto-like dynamics of multiple
oscillators, or posited alpha and its attenuation as a by-product of cortical synchroniza-
tions and desynchronizations with definite thalamic drivers (Lozano-Soldevilla, 2018; Liley
& Muthukumaraswamy, 2020; Strogatz, 1994). Alpha has been explained in terms of sensory
gating, proffered as a plausible “sampling rate” of sensation, implicated as critical rhythm
in memory formation, and suggested to be a critical mediator in neural feedback processes
involving various forms of cross-frequency-coupling (travelling waves), but its basic nature
is still not well understood. (Klimensch, 1997; Palva & Palva, 2015; Samaha & Postle, 2015;
Spaak et al 2014;Ronconi et al 2018; Haegens et al 2011; VanRullen & Koch, 2003; Alamia
& Vanrullin, 2019; Bahramisharif, et al 2013; Pang et al 2020; Zhang et al 2018).

The current manuscript presents recent work in pharmacological MEG which illuminates
hitherto unseen aspects of alpha activity under abnormal states of consciousness. It aims to
highlight some of the relationships between alpha and such atypical forms of cognition as
those elicited by serotonergic psychedelic drugs, while exploring the plausibility and shortco-
mings of previous research assessing the functional significance of these effects. Most impor-
tantly, it presents novel insights into the relationship between alpha and various indices of



interregional synchronization in MEG, while addressing extant methodological barriers and
putative solutions to conducting electrophysiological analyses at a very large scale.
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Chapitre 1

Historical and Scientific Context of Research

1.1. Historical Context
Lysergic acid diethylamide (LSD) is a non-selective serotonin-receptor agonist synthe-

sized in 1938 and identified as psychoactive in 1943. During the 1950’s, research into the
consciousness-altering properties of LSD prompted a veritable sea-change in Psychiatry and
electrophysiology. Thought to provide a window into abnormal cognition, research on LSD
flourished for two decades until fears surrounding its growing popularity prompted a wides-
pread moratorium on human research lasting through the first decade of the current century.

In the years spanning the discovery of LSD, its subsequent ban, and the eventual re-
surgence of psychedelic research, studies of it, and of related substances, have presented a
muddled picture of the behavioral impact of LSD. In early research, LSD was found to ei-
ther increase (Becker 1967; Blough, 1956, 1957a), decrease (Fuster, 1959; Key, 1961; Sharpe
et al., 1967; Siegel, 1969) or have no effect (Berryman, 1962; Dykstra, 1973) on temporal
discrimination in a range of psychophysical experiments. Studies also attested to significant
alterations in absolute visual and auditory threshold with contradictory effects on reinfor-
cement learning in a range of behavioral task (Dykstra, 1973). Due to often substantial
divergences in dosing, paradigm, and the animals utilized in such research (decorticated vs
intact cats , pigeons, monkeys and rats), such inconclusive findings are unsurprising. Never-
theless, studies from this era attest near-universally to at least two prominent effects of LSD:
a substantial reduction in amplitude affecting all frequencies measurable by EEG–especially
alpha– and an increase in peak frequency of the alpha rhythm (Shagrass, 1967).

Findings related to the neuropharmacological action of LSD have been more consistent,
showing reliable increases in the tonic activity level of the optic tract and lateral geniculate
body (Schwartz & Cheney, 1965), alterations in the recovery cycle of excitability in auditory
and visual cells (Purpura, 1956; Davis et al 1975), and preferential influence on entorhinal
and hippocampal cortices, (Adey et al, 1963). LSD in particular has been shown to exert
its influence via a special affinity for the Serotonin binding 5-hydroxytryptamine(5-HT)



system shared by all tryptamine psychedelics (Berridge & Prince 1974), thus preferentially
binding to regions mediating a range of cognitive and somatic processes, including the choroid
plexus, frontoparietal cortices, motor, premotor and somatosensory areas, olfactory tubule,
anterior cingulate gyrus, nucleus accumbens, caudate-putamen, claustrum, dentate gyrus,
mammillary nuclei, and motor trigeminal nuclei (Nakada et al. 1984; McKenna et al 1989;
Wong, 1987).

1.2. Contemporary Research
Following a resurgence of human research on psychedelics in the past decade, the effects of

psychedelics on human brain activity have been interrogated using modern equipment with
paradigms geared toward uncovering alterations in structural and functional connectivity.
Several studies applying positron emission tomography (PET) to psychedelics have revealed
increased cortical glucose metabolism (CMRglu) in 5HT2A-rich sites such as the frontomedial
and frontolateral cortex, thalamus, anterior cingulum, and temporo-medial cortex, as well
as thalamic, visual and sensorimotor areas (Vollenweider, 1997). These effects have been
correlated with phenomenological effects such as visual hallucination and perceived “ego
dissolution”.

Less frequently acknowledged is the impact of LSD and related psychedelics on nonseroto-
nergic binding sites. Some studies have emphasized a significant impact on the Dopamine D2
and D3 systems, with additional impacts on alpha-1 adrenergic 5HT1A system–namely the
ventral ( Nucleus Accumbens, Olfactory Tubule) and dorsal (Caudate-Putamen) striatum
(Vollenweider,1999; Minuzzi, 2005; Seeman, 2005). The likelihood that this dopaminergic
action is mediated by serotonergic effects is supported by several studies showing that the
majority of psychedelic effects (though not all, as is sometimes maintained–see e.g. Car-
ter, 2007) are blocked by the selective 5HT2A receptor antagonist Ketanserin (Vollenweider,
1998; Kraehenmann et al 2017;Preller et al. 2018; Quednow et al 2011).

Multimodal analyses employing structural assays alongside fMRI blood-oxygen level de-
pendent (BOLD) signal reveal a range of supplementary effects of LSD on functional connec-
tivity shown to be mediated in a nonlinear fashion by 5HT system binding. These findings
beg the question of whether this effect is due to simple scaling of receptor densities, or some-
thing more mechanistically complex. Gustavo Deco (2018), has used mean-field modeling to
identify the interactions characteristic of the relationship. In his work, PET-derived values
of region specific serotonin concentration were integrated into a dynamic model of recurrent
excitatory and inhibitory connections in the brain, as “neural gain” parameter quantifying
the sensitivity of efferent firing rates within a neural population, to changes in input.A glo-
bal parameter was incorporated to tune neural gain to simulate the proposed effect of LSD.

24



Comparing global time-averaged connectivity predicted by the model and the empirical re-
sults of BOLD connectivity under LSD, Deco found support for 5HT2AR-density scaling as
a central mediator of LSD drug action.

Notable established changes in functional connectivity under psychedelic substances in-
clude decreased BOLD signal in various “hub-like” regions, including the thalamus, anterior
and posterior cingulate and ventromedial prefrontal cortex, as well as sensory regions, accom-
panied by substantially altered connectivity between them. Most prominently, LSD is seen
to induce increases in global functional connectivity between these regions and the rest of the
brain, facilitating a broadened repertoire of possible connectivity "motifs". In similar fashion,
Carhart-Harris et al. (2016) observed decreases in connectivity within typically segregated
brain networks, alongside increases in between-network connectivity in all but one network
pair (visual-frontoparietal). This latter finding implicates several 5HT2 rich regions (frontal,
parietal, and inferior temporal cortices, as well as in the bilateral thalamus) as emergent hubs
facilitating increased global connectivity under LSD, with particularly robust connections to
auditory, sensorimotor, and visual networks (Muller et al 2018). Finally, while decreases
in network segregation were not associated with more specific behavioral measures such as
ego-dissolution, increases in global connectivity, and especially those between aforementio-
ned sensory cortices and bilateral angular gyrus and insula-region did correlate strongly
with both perceived intensity of the experience and ego-dissolution (Carhart-Harris,2012;
Carhart-Harris, 2016; Tagliazucchi,2016).

The general effect of increased functional network integration under LSD is robust. Ne-
vertheless, inconsistencies have emerged in the precise location of these effects. For example,
Preller et al (2018) have demonstrated that while results of Tagliazucchi’s 2016 fMRI study,
showing increased connectivity in associative cortices (especially prefrontal and angular gy-
rus, and cingulate areas), were easily reproduced, these effects were eliminated by global
signal removal, resulting in the contradictory finding of global hypoconnectivity under LSD
in thalamic and associative regions, and hyperconnectivity in sensory cortices. While the
authors of this study concede that this global signal regression (GSR) may be seen to remove
legitimate neural activity alongside plausible artifacts, and controversy surrounding the use
of GSR persists (Murphy & Fox, 2017), this finding underlines the sensitivity of observed
functional connectivity to modality and data preparation: a point which will be of critical
importance to the research presented later in this manuscript.

In a somewhat more nuanced analysis, Luppi et al (2020) have shown (without GSR) that
global BOLD connectivity under LSD is non uniform over time, and is instead comprised of
two orthogonal substates: one consisting of higher levels of global network segregation– and
the other of higher network integration, under which state small-worldness is seen to mediate
ego-dissolution. Bridging Preller’s and Tagliazucchi’s contradictory results, Luppi shows
global dynamic functional connectivity to be decreased in associative cortices–especially
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fronto-medial and anterior cingulate cortices– only during states of high segregation. This
effect is not observed in time-averaged analyses. Increases in thalamic connectivity (with
orbitofrontal-insular, temporoparietal and bilateral amygdala sources) were also observed by
Luppi, independent of integration level.

A principal finding of Luppi’s study was that during the more transient, less temporally
dominant high-segregation state, LSD was seen to induce “the opposite effect to anaesthesia,
allowing FC to diverge more freely from anatomical constraints.” Whereas high similarity
between functional and structural connectivity (as measured by Hamming distance) was
observed in high integration states, high segregation states under LSD were marked by
substantial attenuation of the similarity between functional and structural connections. This
study is of interest for the reason that it highlights the dynamic character of LSD’s influences
on connectivity, and the dynamic character of (generally mediating) 5HT2A-dense “hubs.” It
also complicates a somewhat simplistic picture proffered by time-averaged BOLD and global
mean-field approaches.

The effects observed in dynamic BOLD analyses prove that LSD action is complex in ways
that cannot be untangled without scrutinizing the influence of time. The variable nature
of these effects in time is further supported by recent studies suggesting that psychedelics
tend to enhance the entropy of neural signals (Varley, 2020), as well as the repertoire of
connectivity motifs (Petri,2014; Tagliazucchi et al., 2014), with connectome harmonics ope-
rating nearer to criticality (Atasoy, 2017). This finding facilitates an understanding of the
seemingly contradictory effects outlined by Luppi’s study, as criticality can be understood
to correspond to a phase transition between a sub-critical state–a comparatively inflexible,
highly ordered and displays low entropy (high segregation)–and a super-critical state–highly
entropic, flexible, and disorganized (low segregation).

A version of Deco’s mean-field modeling approach was recently applied to Psilocybin
incorporating much more detailed mathematical descriptions of temporal dynamics. Krin-
gelbach et al. (2020) paired dynamical equations for synaptic/neuronal activity and neu-
rotransmitter diffusion via the same receptor maps used in Deco (2018). By accounting
for synaptic dynamics, directedness of anatomical pathways and the excitation of afferent
projections from serotonin producing regions, the model was able to accurately predict empi-
rical coupling (state probability, lifetime, and transition probability) and identify regionally
specific modulation of global dynamics based on aforementioned site-specific gain paramete-
rizations and the firing rate of the raphe nucleus (van der Meer, 2018). Madsen et al (2019)
has also shown receptor occupancy to be correlated with dynamic effects of LSD using mean-
field models. In this vein, but more illustrative of site-specific "hubness" is Herzog et al’s
(2020) study, which recently applied dynamic mean-field modelling to LSD, showing regio-
nally specific impact on local entropy with strong correspondences to connectivity-strength
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an 5HT2AR density. Such mean-field modelling might be usefully applied to the identifica-
tion of specific mechanisms responsible for observed electrophysiological changes as well.

1.3. Electrophysiological Research
Despite relatively conclusive results on the location and character of functional connecti-

vity changes under psychedelics as measured by BOLD, the research outlined above remains
a limited basis for mechanistic explanations of LSD action. One important drawback of this
work is its tenuous connection with actual neuronal activity. While PET and fMRI no doubt
possess the advantage of high spatial resolution as measures of neural energy consumption,
the time-scale on which they operate is many orders of magnitude removed from that of
local field activity. In order to properly account for the precise nature of rhythmic activity
on inter-regional coupling under LSD and other tryptamine psychedelics, comprehensive
understanding of the relationship between alterations observed in electrophysiological and
BOLD data is required.

As mentioned previously, historical research on LSD has identified two predominant ef-
fects on human electrophysiology: widespread decreases in oscillatory amplitude, particularly
in alpha, and a robust increase in peak alpha frequency. These effects have been replicated
with an array of 5-HT2A agonists using local-field potential recordings in rodent brains, as
well as human EEG ( Horovitz et al, 1965; Abraham et al 1996;Celada et al. 2008; Wood
et al 2012). Contrary to older research, which was limited in the range of frequencies de-
tectable by EEG, a number of modern EEG-based studies show lower spectrum oscillatory
amplitude decreases to be accompanied by significant increases in high-frequency (gamma)
activity under psychedelics (Stuckey et al 2005; Gonzalez et al, 2020). Others have shown
reliable increases in high-gamma activity via intracranial EEG in rodents in psychedelics
(Páleníček et al, 2013; Goda et al. 2013; Gonzalez et al 2020).

In one of the first robust human studies, Muthukumaraswamy et al (2013) investigated
alterations in oscillatory activity under Psilocybin using MEG. The study showed broadband
decreases in oscillatory power distributed over a number of functional networks. These broad-
band decreases in power are believed to be caused by irregular excitation of layer 5 pyramidal
neurons– a hypothesis which predicts decreases extending into gamma and high-gamma do-
main, and supported by dynamic causal modeling. This desynchronization explanation has
been a dominant paradigm for interpreting psychedelic effects in the majority of subsequent
electrophysiological studies (Barnett, 2019; Carhart-Harris, 2016;Carhart-Harris, 2019; Li-
ley and Muthukumaraswamy, 2018; Pallavicini, et al. 2019; Tagliazucchi, et al . 2016).
Exemplary of theoretical interpretations of this effect, the first multimodal study of LSD
summarizes the alpha effect as follows:
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«Cortical alpha has been hypothesized to serve a general inhibitory function,
filtering out ‘stimulus-irrelevant’ information. Thus, reduced alpha power
could have dis-inhibitory consequences, facilitating the release of anarchic
patterns of excitation that manifest spontaneously and experientially as vi-
sual hallucinations (Carhart-Harris et al, 2016). »

The recently-proposed REBUS (“relaxed beliefs under psychedelics”) hypothesis, which
aims to establish the principal psychedelic effect on neural activity as a kind of reversal
of top-down and bottom-up processing (within a predictive coding framework), similarly
claims:

«It is well known that the brain’s resting power spectrum exhibits stark
nonuniformities in its oscillatory components, in the sense that certain
rhythms are especially pronounced. This seems to be particularly the case
when recording population-level activity in the cortex. Perhaps the most
conspicuous example of a predominant rhythm is the α rhythm or Berger
wave of about 10 Hz, which shows a striking prominence, especially, but by
no means exclusively, during eyes-closed waking rest. The α rhythm has
been associated with a range of functions, including top-down inhibition
(Klimesch et al., 2007). Evidence has been accumulating, however, that
α also plays a more specific role in conferring top-down expectations about
perceptual stimuli (Mayer et al., 2016) that effectively silence more granular
information processed by lower-level aspects of the system. The α power
is known to correlate positively with DMN activity (Mantini et al., 2007),
as does β (Mantini et al., 2007). Like alpha, the β rhythm has also been
associated with a top-down function, albeit within the motor system (Fries,
2015). »

The authors add,
«the α rhythm is known to be especially highly expressed in humans relative
to other animals, and especially so during maturity, with a peak at about
20 years of age (Basar and Guntekin, 2009), which, intriguingly, is ap-
proximately when the complexity of cognition has been found to be maximal
(Gauvrit et al., 2017). Although open to critique, a curious cross-cultural
electroencephalogram (EEG) study sampling eyes-closed brain activity in
more than 400 individuals has reported that α is most pronounced in the
most technologically advanced and developed cultures (Parameshwaran and
Thiagarajan, 2017). (Carhart-Harris & Friston, 2020) »

It is well established that some of the effects of psychedelics on functional network segre-
gation observed via fMRI are possibly mediated by decreases in cortical inhibition (Müller
et al 2017). However, the description of alpha as a simple marker of "cortical inhibition" is
dubious. Apart from the somewhat problematic dual claim that large alpha expression is an
index of both entropic/complex thinking and of “fixed beliefs,” the articles cited on alpha
(and beta) are highly selective and misleading. Pointing on the one hand to decreases of
alpha in the PCC as an indication of alpha’s BOLD-like status in electrophysiology, and on
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the other hand, alpha’s presumed anticorrelation to BOLD resting-state activity (Carhart-
Harris et al, 2016), the authors infer spatially distributed meaning from site specific effects
—which are moreover seen to be distributed across the frequency spectrum.

Alpha is not simply associated with resting state activity, but is host to a range of effects
whose precise relationship to BOLD is anything but clear (for a robust overview, see Palva &
Palva, 2007). It has, for example, been shown to be functionally anticorrelated with beta and
gamma, both of which hold parallel significance for the authors’ interpretation as they are
presented as systematically reduced under psychedelics (Pang & Robinson, 2018; Sadaghiani
& Kleinschmidt, 2016; Carhart-Harris, et al. 2016; Muthukumaraswamy, 2013; Barnett et
al 2020) . This latter claim is not universally supported by the research (Timmerman et al
2017; Goda et al. 2013; Gonzalez et al 2020).

Better evidence for their central claim –that psychedelics facilitate increased influence of
sensory and environmental stimuli, and a decreased role of "top-down" priors for cognition–
comes from the host of studies, both historical and current, citing alterations in perceptual
discrimination and learning across a range of behavioral assays in both animal and human
subjects. Timmerman et al. (2018) have shown alterations auditory discrimination accompa-
nied by change in directional connectivity, and neural sensitivity to novel vs familiar stimuli,
in a mismatch negativity paradigm. Another compelling study is that of Alamia et al (2020;
See also Timmerman, 2019), which observed a change in direction of travelling alpha waves
in sensor-level DMT.

In general the established role of alpha and other oscillatory activity in mediating pro-
cesses of sensory gating and attention provides a stronger foothold for theorizing indices
of psychedelic action in human electrophysiology. A substantial literature on alterations
in oscillatory sensory gating as important predictors of positive and negative schizophrenia
symptoms are suggestive here (Keihl et al, 2015; Thoma et al 2005; Fodor et al 2020).

In addition to changes in oscillatory power, both Psilocybin and LSD have been shown
to induce increased signal diversity (Schartner et al, 2017), and to prompt visible and sys-
tematic shifts in peak oscillatory alpha frequency, accompanied by changes in aperiodic
spectrum (Lilly et al , 2018). Given previous literature attesting to a plausible functional
significance of peak oscillatory frequency (especially in alpha), (Posthuma et al 2001; Clark
et al, 2004;Mierau et al 2017; Lozano-Soldevilla, 2018), the impact on oscillatory peak shift
is a matter which has been insufficiently investigated. Furthermore, alterations in peak
oscillatory frequency introduce a confound to the direct comparison of either band-wise,
or frequency-specific oscillatory effects (Liley, 2018;Nest, 2018). While (amplitude-based)
connectivity results have recently been presented for LSD and Psilocybin, these were com-
puted using band-wise power, and fail to control for changes in peak oscillatory frequency
(Pallavicini, et al. 2019;Barnett et al, 2020; see also Anzolin et al 2019, which highlights the
influence of source-estimation methods on directed coupling in MEG).
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1.3.1. Gaps in Research and Objective of Current Study

Although alpha is purported to mediate the observed effects of LSD, and is believed to
underlie several of the observed changes seen in fMRI connectivity, it is as yet unclear what
impact the shift in peak alpha frequency, and associated broadband changes in the periodic
and nonperiodic frequency spectrum might have on observed connectivity effects across the
brain. In particular, these frequency shifts likely have confounding effects on the results
derived from analyses of power and connectivity effects in MEG, prompting us to derive
erroneous conclusions from spurious relationships. Furthermore, the sources associated with
these cross-spectral effects, and their impact on whole brain relationships is not currently
known. In light of the known role of alpha in mediating not only “top-down” but also
“bottom-up” cognition via travelling waves, and sensory gating, the investigation of these
effects warrants further consideration.

In order to better illuminate the precise mechanisms of action in LSD induced electrophy-
siological changes, and to better ground the relationship between BOLD-based connectivity
and electrophysiological effects, the present study will apply three connectivity measures
corresponding to three plausible means of neuronal signalling and synchronization: one
phase-based measure, one measure of amplitude correlation, and one measure of interre-
gional phase-amplitude coupling (PAC). This study will also attempt to localize and better
identify the precise character of observed frequency shifts and power changes.
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Chapitre 2

Methodological Challenges

The previous chapter closed with a discussion of the special methodological challenges pre-
sented by pharmacological-MEG and especially LSD. Before presenting our own study me-
thodology, it is important to discuss some of the more general limitations inherent in the
utilization of MEG as a measure of source-level brain connectivity. These have no doubt
played a role in the hitherto limited scope and largely hypothesis- (as opposed to data-)
driven character of whole-brain electrophysiological research with MEG.

In general, barriers to large-scale, data-driven MEG connectivity analyses fall into three
categories:

(1) Those associated with the scale of data resolved into constituent time-frequency cha-
racteristics

(2) Those associated with lowered resolution of temporal, frequency, and spatial charac-
teristics caused by intermediary computational steps such as time-frequency trans-
formation and source-projection

(3) Those associated with our statistical and/or predictive models and the identification
of main effects due to extreme high-dimensionality (and tensor-structure) of data

These issues emerge alongside the significantly limited spatial resolution and signal-noise
ratio (SNR) of scalp or sensor level electrophysiological recordings relative to fMRI, as well
as their particular sensitivity to muscle and other kinds of artifacts. Apart from the aspects
most immediately relevant to our own data (namely increased presence of muscular activity
assumed to be induced by the consumption of LSD and other serotonergic tryptamines), we
will exclude this rather high-level topic (on which there are several high-quality treatments
in the literature; see for example Sekihara, 2017; Hedrich, 2005) from the present discussion.
Nevertheless, great consideration was taken in our selection of source-imaging metric (to be
discussed in the following section).



2.1. Challenges Associated with the Scale of Data
Owing to the considerable size of data resolved across both time and frequency, it is

infeasible with currently-available hardware to perform resting-state analyses on MEG data
at spatial resolutions comparable to standard fMRI connectomics. It is standard instead
to identify a domain of interest in the temporal, spatial, and frequency dimensions. It is
also common (and valid) to report results from sensor-level MEG, and in spatially projected
data, it is typical to either bin data into anatomically significant ROIs, or to select regions
and frequencies of interest (Hawellek et al. 2013). Studies applying high spatial resolution
MEG (>1000 voxels) resting state data, at more than 7 or so frequency bins are few. Due
to the massive number of empirical frequencies resolved under the (largely untenable) as-
sumption of stationarity–on the order of (fs× ns)/2 where fs = "sampling rate" and ns =
"length of recording in seconds"– reducing the frequency domain to binned frequencies of
interest, associated with historically and physiologically relevant oscillations such as alpha,
beta, gamma, and delta, is standard practice. As we have seen in the above discussion, ho-
wever, systematic (and often subtle) alterations in the structure of the frequency spectrum
across pharmacological (Muthukumaraswamy & Lily, 2018), as well as psychiatric(Nikulin et
al, 2012; Uhlhass & Singer, 2010; Hoptman et al. 2010) and cognitive conditions (Posthuma
et al 2001; Clark et al, 2004;Mierau et al 2017) are likely more fundamental an index of
the mechanisms underlying these conditions than has been previously realized (Muthuku-
maraswamy, 2014). Accordingly, and for reasons to be further elaborated below, it can be
advisable to consider a range of frequencies covering the full spectrum of oscillatory effects
(Hipp et al 2012; Hawallek et al 2013).

While a number of valid approaches have been successfully employed for deriving arbitra-
rily resolved frequency estimates of rhythmic activity in time (e.g. Short Time Fourier and
Hilbert Transforms), the Wavelet is undoubtedly the most recent, and theoretically robust
among them. In addition to providing an empirically resolved analytic signal, parametrically
balancing the standard deviation of filters in both temporal and frequency domain, wavelets
have the advantage of being fully invertible, making them indispensable to a host of research
applications ranging from seismology to the detection of gravitational waves–in addition
to their numerous practical applications in sparse representation and digital compression
(Klimenko, et al 2002; Picco et al 2019; Tsang et al 2020).

Though the computational barriers traditionally associated with managing data objects
at the scale necessary for data-driven source-level connectivity in MEG persist, several deve-
lopments have made such analyses feasible. Most importantly architecture supporting high-
memory hardware has become exponentially cheaper and more accessible in recent decades.
Secondly, the development of software such as CUDA, which support extremely fast matrix
computation by leveraging GPU architecture, and the increased availability of high memory
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GPU chips, reduce compute time for nearly all aspects of a MEG connectivity pipeline–from
projections to source level (matrix multiplication of n dipoles × n sensor imaging kernel and
data matrix of size n sensors × n samples matrix ), convolution (or fourier domain multi-
plication)of the wavelet kernel, inner products of the phase and amplitude components of
analytic signal needed for cross-frequency coupling, to computation of phase and amplitude
based synchronization across all pairs of vertices (and at each frequency bin). Finally, a great
number of open-source software frameworks have emerged in recent years which facilitate the
use of high-power-computation (HPC) clusters, management of resources, and optimization
of algorithms, with high-level coding paradigms like python.

Examples of such libraries are Slurm, Apache Arrow, Numba, PyCuda, PyPERL Dask,
and Ray. Ray, in particular, allows one to leverage access to multiple gpus and cpu nodes,
while preserving in memory any number of data objects via Apache Arrow’s plasma object
store. This makes possible rapid asynchronous computation without multiplication of data
objects in memory entailed by standard asynchronous and threaded data processing frame-
works (e.g. multiprocessing in python, or the built-in Mpool and Task objects of Matlab
and Julia respectively). Additionally, numba, and PyPerl allow the rapid development of
cached and python-free just-in-time implementations of functions resulting in exponential
speed gains, while PyCuda, Cupy and Dask allow one to leverage the advantages of gpu-
based matrix computations with simple numpy code. These softwares and libraries were
indispensible for the analyses described here . By means of them, relatively lighter weight
and asynchronous implementations of morse wavelets, various connectivity algorithms and
jit-ified statistical functions were developed to make manageable the heavy computational
overhead created by such large data objects.

2.2. Challenges Associated with Resolution in Source-
Level MEG

2.2.1. Source Estimation and Synchronization

Source-level MEG suffers from limited spatial resolution compared with fMRI for reasons
related to the intractable nature of its inverse problem. While researchers have proposed
empirical fixes to the problem of no ground-truth, including incorporation of bayesian priors
(Wipf et al 2010) and SNR estimation derived from other modalities (Hipp & Siegel, 2015),
these are often unwieldy and/or require additional data that are not always readily available.
Until fairly recently, it has not been clear that MEG source-estimation algorithms were
capable of detecting deep and subcortical sources, yet consensus has emerged supporting the
reliability of deep source estimation (Attal et al, 2013; Bénar et al 2021; Piastra et al 2021;
Recasens et al 2018). Source projection algorithms have improved considerably in quality
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over recent years. In particular, exact low resolution brain electromagnetic tomography
(eLORETA; Pacual-Marqui et al, 2007), the first 3D, discrete, distributed, linear solution
to the inverse problem of EEG/MEG with zero localization error, shows significant benefits
relative to other source estimation techniques (LCMV Beamformer, MNE and DSPM; Halder
et al 2019; Mahjoory et al 2017; Anzolin et al 2019). By minimizing the second spatial
derivative (surface Laplacian), eLORETA has been shown to yield reliable source estimations
robust to SNR and with low occurrence of false-positives and superior performance in deep
brain sources, and is thus an ideal conservative source model for exploratory analyses (Halder
et al 2019).

Still, these estimations have limited degrees of freedom, and are seen to result in non-
negligible volume conduction, with consequences for both spectral decomposition and connec-
tivity analyses. Because electrophysiological signals are measured instantaneously at different
sensors, their source-level projections reflecting multiple distinct sensors contain spurious
identical phase components, despite it being known that distinct neural populations contain
variable phase relations. To ameliorate these problems we apply the SNR regularization
derived from Wens et al. (2015) in our source estimation procedure.

κ =
tr
(
C−1
ε LLT

)
tr (C−1

ε Cµ)−M
As a control for field spread, we apply estimations of phase and amplitude-based coupling
insensitive to volume conduction–namely the Orthogonalized Amplitude Correlation( OAC)
proposed by Hipp et al (2012), and a weighted Phase-lag Index (PLI) proposed by Vinck
et al (2011). OAC removes zero-phase components from each pair of source signals before
computing a linear correlation of amplitude, to ensure power correlations are not affected
by spurious field spread.Though these measures can not entirely ensure zero false-positives,
and are likewise known to impact the separability of phase and amplitude-based coupling
effects–see, for example, the note of caution presented by Palva et al (2018), also Wens,
et al (2015) – previous studies have demonstrated their considerable efficacy in illuminating
true distal coupling compared with classic methods such as simple amplitude correlation and
phase coherence.

OAC achieves this by taking the orthogonal part of all pairwise signals before computing
correlations. Specifically the complex signal Y (t,f) orthogonalized to the complex signal
X(t,f) is defined:

Y⊥X(t, f) = imag
(
Y (t, f)X(t, f)∗

|X(t, f)|

)
Similarly, PLI estimates near but non-zero phase relations between signals, under the

assumption that most zero-phase coherence is likely due to field spread. If we are to take
I(X) and R(X) as the imaginary and the real component of the cross-spectrum, respectively,
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then EX = 0, when all sources are uncorrelated. Due to volume-conduction, however the
inequality E(R(X)) 6= 0, indexes a spurious non-zero phase locking value and coherence
(Nolte et al., 2004). Thus Imaginary coherence, defined as I(C), provides a measure of phase-
synchronization.The sign of the Imaginary coherence, sgn(=C), indicates whether signals
from the first sensor tend to phase lead or lag signals from the second sensor, and the
strength of phase-synchronization can be indexed by the absolute of |IC|.

Because IC is influenced by the phase of coherency, it has the shortcoming of high
sensitivity to noise. Hence Stam et al (2007) introduce PLI, defined as: Ψ ≡ |E{sgn(={X})}|

Due to biases inherent in PLI, a debiased version is introduced as:

Φ ≡ |E{={X}}|
E{|{X}|}

= |E{|I{X}| sgn(={X})}|
E{|I{X}|}

WPLI is less sensitive to noise than PLI and is shown to have a more reliable relationship
with true phase consistency, even under conditions of high SNR(Vinck et al, 2011).

2.2.2. Frequency Estimation

A notable limitation of electrophysiological analyses (at source-level or otherwise) is the
tradeoff between frequency and time resolution inherent in all forms of spectral decomposi-
tion. Fourier transform, for example, gives perfect resolution in the frequency domain while
collapsing the temporal dimension. As alluded above, wavelets overcome this discrepancy
somewhat by balancing temporal and frequency domain resolution. Morse wavelets (Lilly &
Olhede, 2012), defined in the frequency domain as

Ψβ,γ(ω) =
∫ ∞
−∞

ψβ,γ(t)e−iωtdt = U(ω)aβ,γωβe−ω
γ

are favorable due to their exact analyticity, and their ability to reproduce all known forms
of analytic wavelet by means of only a time-frequency tradeoff parameter gamma, and a
skewness parameter beta, yield a continuous time analytic signal where time-frequency tra-
deoff can be tuned to the exact demands of the analysis in question. They also provide a
simple equation for computing the Heisenberg area–that is, the domain in frequency and time
space where edge effects and aliasing are assumed to be negligible, and where time-frequency
estimates are therefore known to be valid–from wavelet parameters.

Such a trade-off nevertheless results in unavoidable smearing which can obscure mea-
ningful effects when said effects are sufficiently near in either the time or frequency domain.
Because this study is interested in delineating effects of sometimes adjacent frequency bins
(10 vs 12 hz peak in alpha), the ability to clearly identify effects in one or the other frequency
bin would be an obviously attractive feature of our pipeline. Fortunately such a method has
emerged in the past decade. The Synchrosqueezing Transform (SST; Daubechies, et al.
2011) emerged as part of an attempt to ground Empirical Mode Decomposition, and the
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Hilbert-Huang Transform theoretically (Huang & Wu, 2008). While there have been several
similar attempts to model a nonstationary signal as a superposition of oscillatory modes

x(t) = A0(t) +
K∑
k=1

Ak(t) cos (2πφk(t))

– typically referred to in the literature as adaptive harmonic models (AHM)–SST is a theore-
tically valid method ideally suited to wavelet analysis. The method is reliable, invertible and
extremely computationally efficient. It works by reassigning scale according to instantaneous
frequencies in order to sharpen the time-frequency representation of a signal, allowing one
to partially overcome limitations on resolution imposed by Heisenberg uncertainty. SST,
which provides an alternative to the EMD method and its variants such as the ensemble
EMD (EEMD), carries many of the advantages of EEMD and other AHMs for frequency-
based analyses, while overcoming some limitations of the EMD and EEMD schemes such
as mode-mixing and the presence of negative instantaneous frequencies (Wu & Daubechies,
2011, Meignen et al, 2012; Auger et al 2013).

In addition to its ability to independently resolve nearby frequencies, our use of SST
was motivated in part by emerging problematization of common practices in the estimation
of phase-amplitude coupling using traditional parametric spectral methods (Giehl et al.
2021; Yeh et al. 2016). Such approaches have been called into question on the basis of
the plausible spurious detection of PAC due to detection of signal higher-harmonic power
arising from non-sinusoidal brain-oscillatory activity. The more the detected signal deviates
from a sinusoidal function, the larger the coefficients of higher harmonics. As a result AHM
based approaches to PAC have been proposed. In particular, Hilbert transformed EEMD
has become a popular means of PAC estimation in the past few years (Pittman-Polletta et
al 2014; Tsai et al, 2019; Yeh & Shi, 2018). While the use of analytic wavelets rather than
parameterized band-based Hilbert or Fourier estimation already controls for some known
sources of spurious PAC (Jensen, et al 2016; Sotero, 2015a, 2015b; Dellevale 2020; Kovach
et al, 2018; Munia et al 2019), SST is well suited to the assumption of non-stationary and
non-sinusoidality in signals. To our knowledge we are the first to use SST in an Adaptive
decomposition-based implementation of PAC.

A final and somewhat auxiliary concern is the independent resolution of oscillatory and
aperiodic frequency spectra. While electrophysiological activity has long been acknowledged
to be comprised of both oscillatory components and aperiodic components, it is as yet unk-
nown what influence these disparate rhythmic and arrhythmic oscillatory features have on
spatial and connectivity metrics–including PAC (He et al 2010). Only recently have tools
emerged for separately estimating the oscillatory and aperiodic components of power spectra.
Notably the Fitting Oscillations and One-over F (FOOOF) method achieves this by fitting a
linear model to 1/f frequency spectrum as well as divergences from this spectrum (Donoghue
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et al 2020). It is a parametric method which can detect a range of oscillations within a
predefined frequency range in a signal. As a nonparametric alternative, IRASA has been
proposed (Wen & Liu, 2016). This method works by taking a signal power spectrum den-
sity(PSD) as well as the median of PSDs of the geometric mean of the same signal resampled
at several non-integer factors and their inverse. Since this can be said to provide a reliable
estimation cross spectral aperiodic power, the aperiodic PSD is then subtracted from the
original PSD to yield oscillatory power at all estimated frequencies. Still the IRASA method
can yield only estimates of stationary oscillatory and aperiodic activity respectively. Due
to the nonparametric nature of the IRASA algorithm and the fine-grained frequency reso-
lution of synchrosqueezed morse wavelets, we propose WIRASA–a wavelet-based estimation
of aperiodic and rhythmic power which can be resolved in time with superior resolution to
trial-based IRASA, with slight speed improvements. We ensure unbiased wavelet estimation
of PSD following the procedure outlined in Liu et al (2007), and increase the frequency
resolution of the morse wavelet considerably to ensure oscillatory frequencies are correctly
resolved. Theoretically this can allow dynamic comparison of oscillatory and aperiodic source
coupling, though such an approach is not pursued in the present document.

2.3. Statistical Challenges
A final important challenge to address is that of statistics. The large dimensionality, and

tensor-structure of source-level, full spectral MEG connectivity data lends itself to a host of
problems. Firstly, parametric statistics are ill-suited to such data since SNR and variability
cannot be assumed to follow a Gaussian or uniform distribution across all dimensions of the
data. Accordingly, permutation and rank-based statistics are strongly recommended. This
lends itself to computational challenges. Specifically in addition to the pragmatic challenge
of running preliminary analyses for n subjects × n observations × n conditions, one must
have access to sufficiently high-memory computational resources to fit at least one instance
of the data structure in question, for purposes of multiple comparison and/or bootstrapping.
Individual permutations, on the other hand (which must be run a minimum of 1000 times,
and must represent only one data dimension × n subjects × n observations × n conditions at
a time) can be performed using mmap with only slight damage to performance. In general
the tradeoff between memory and computation time is a persistent challenge that proves
unavoidable in these kinds of analyses.

An additional challenge is the inherent complexity of these analyses and the necessity of
selecting regions or frequencies of interest (ROI, FOI) for purposes of vulgarization/reporting.
This introduces additional branches of analysis as well as statistical biases that must be
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controlled. As an efficient means of managing such problems , we use a rank-based permu-
tational statistic procedure based on Hawallek et al (2013). First we count significant alte-
rations between conditions as identified by our base statistic (Wilcoxon rank-sum p<0.05).
We do so across each data dimension for each direction independently. We count the number
of significant alterations along each dimension of each direction of the data tensor indepen-
dently (counts of significant connections per frequency are done independently of counts of
significant connectivity by source and so on). We then swap condition labels for all subjects
and re-run our base statistic at all tensor dimensions at least 1000 times. In order to control
for baseline distribution across all data dimensions of the tensor, we create ranks for each
data dimension across all permutations. For multiple comparisons we take the max rank of
each of the n permutations and compare each data dimension value to the permutation value
associated with maximal rank for that data dimension. Once we have chosen frequencies and
sources of interest, we follow a more conventional procedure: comparing values of our base
statistic to max permutation values (by rank) over all permutations for all data dimensions
within and outside of the selected frequency. This controls for biases introduced by ROI
selection.

One novel alternative to such statistics –when sufficiently high-memory computational
resources are not available and/or avoiding the complexities of manual ROI and FOI se-
lection is a concern–is to use higher order variants of multivariate models such as Partial
Least Squares (PLS). While > 1000 permutations are still required, the requirement of ROI
selection and representation of full data tensor is avoided. Rather than yielding maps of
significance for each individual data-point (at n sources × n sources × n frequencies × n
frequencies for PAC, as an example), methods like Higher-Order PLS (Zhao et al, 2012)
provide loading vectors for each dimension of the data, offering a reliable and statistically
meaningful summary of the main effects along each direction of the data tensor(without in-
dividual dependencies on other data directions, as in conventional PLS). We have presented
results of a Higher-Order PLS implementation in Nest (2019). Though complementary to
the current work, results from this study did not make use of inter-regional, but local PAC,
nor did it apply SST, or the same imaging kernel (eLORETA, 2046 vertices). It is therefore
considered preliminary, and for this reason, omitted from the present manuscript.
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Chapitre 3

Experiment

The present chapter comprises the experimental portion of this manuscript, showcasing many
of the methods described above. Discussion of these findings will be included in the chapter
that follows.

3.1. Outline of Methodology for the Current Study
3.1.1. Experimental Paradigm

20 subjects were selected. Using planar gradiometer-configured MEG, subjects were
scanned for 2 x 5 minute runs in Closed-eye, Open-eye, Video and Music conditions under
both LSD and Placebo. Six subjects’ data were omitted due to extensive artifacts (11 males,
three females; mean age 32 ± 8.3). For the purposes of these analyses video and music
conditions were excluded.

3.1.2. Data Treatment

Data were cleaned for artifacts using ICA and visual inspection. Subject MRI’s were used
for individual source projection using eLORETA with 2046 evenly spaced vertices (2.5mm)
x 3 dipoles. Source kernels were projected onto a default MNI brain. For all subsequent
analyses, data were transformed using Morse wavelets between 0.6 and 152 hz, at 5 voices-
per-octave resolution, with parameters gamma=3, and beta=60. These parameters ensure an
ideal trade-off between time and frequency resolution (Lilly & Olhede 2012). For source-level
analyses, data were wavelet transformed. For each cortical source, and at each frequency
resolved, three filters were reduced to a single the dominant dipole orientation. To achieve
this kernels were weighted with the first eigenvectors’ elements of the frequency transformed
wavelet coefficient at each source location. Complex source signals were then derived by



multiplying the complex valued wavelet coefficients of sensor matrix by the reduced ima-
ging kernel. Subcortical dipoles were treated as independent signals and averaged following
computation of connectivity metrics.

3.1.3. Comparison of Power

Power was estimated across frequency using the above wavelet transform. As an unbiased
estimate of PSD from wavelets, wavelet coefficients were squared and divided by scale for each
frequency (Liu et al, 2017). For separate estimation of oscillatory and aperiodic power, the
WIRASA method outlined in the previous chapter was applied alongside standard IRASA
and FOOOF. For representation of standardized data, individual power estimates of the
wavelet-derived power spectra were simply subtracted from mean. This value was then
divided by the standard deviation of power estimates.

3.1.4. Connectivity Metrics

Connectivity metrics included one phase-based and one power-based method, both in-
sensitive to volume conduction. For amplitude-based coupling Orthogonalized Amplitude
Correlation (OAC; Hipp et al, 2012) was applied. For details, refer to the previous chapter.
For phase-based coupling, weighted Phase-Lag-Index was used(Stam et al. 2007; Vinck et
al 2012). Details for this method are likewise provided in the above chapter. Both PLI and
OAC were computed at each of the 49 frequencies resolved by wavelet decomposition, and
for each pair of source-level signals (2046 x 2046). For all connectivity metrics, wavelet coef-
ficients were first decomposed using the Synchrosqueezing transform (SST) described above.
Our implementation of SST is based on Jiang & Suter (2017).

3.1.5. Phase-Amplitude Coupling

PAC estimates were computed at all pairs of vertices for each phase x amplitude bin (2046
x 2046 x 49 x 49). Norm-direct PAC was chosen for the reason that it is fast and reliable,
while being insensitive to cross-conditional variations in amplitude (Ozkhurt, 2012). Only
bins where amplitude was greater than 2x the frequency of paired phase were considered for
statistical analysis .

3.1.6. Statistics

All statistical analyses were computed using Wilcoxon rank-sum (p<0.05) as a base sta-
tistic. For each connectivity metric, initial statistical comparison was performed at each data
dimension. Conditional labels were then randomly reassigned 5000 times for all dimensions
of data to estimate null distribution at each data dimension. Null values of the base statistic
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were then ranked along each data dimension; conditional statistics were compared to max
rank for each permutation to derive p-values controlling for multiple comparisons.

Selection of frequency bins of interest was conducted by comparing counts of all significant
effects (2046 × 2046 for PAC; (2046 × 2046)/ 2 for OAC and PLI) across all dimensions of
data and comparing these to maximum ranking values for each permutation.

3.2. Experimental Results
3.2.1. Alterations in Cross-spectral Power under LSD

Fig. 3.1. Mean Power in LSD and Placebo

Fig. 3.2. Mean Power in LSD and Placebo Standardized
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Fig. 3.3. Aperiodic and Oscillatory Power vs. Power

Contrary to previous findings, reported effects in sensor-level power (Muthukumaras-
wamy et al 2013; Carhart-Harris et al, 2016) were not consistent in direction. Nor were lower
oscillatory decreases robust against multiple-comparisons. While uncorrected permutation
statistics revealed consistent decreases in all lower frequencies, accompanied by increases
in high gamma, multiple corrections revealed statistically robust increases in upper alpha ,
upper beta, gamma and high frequency oscillations, with decreases in theta/low-alpha, and
low beta only. Among these, the only effects to endure when data were standardized to
their respective conditions were increases in the upper frequencies of alpha and beta (both
of whose frequency bins corresponded with peak increases under LSD)

LSD PLA
Alpha 11.2 ±1.4 10.1±1.3
Beta 23.2±4.2 19.1±3

Tableau 3.1. Average Peak Frequencies

Separate estimation of oscillatory and aperiodic power spectra revealed statistical signi-
ficance across all frequencies in aperiodic spectrum, with increases in oscillatory gamma and
decreases in all lower frequencies. This corresponds to a significant reduction in aperiodic
slope under LSD as identified by FOOOF (see Fig. 3.7). Oscillatory effects were largely
consistent with effects of baseline PSD (See Fig 3.3). Statistical comparison of peak alpha
and beta identified a very robust peak shift in alpha and beta across all sensors (Significant
with multiple comparisons p<=1e-10). This effect was robust in oscillatory, standardized
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and non-standardized frequency spectra, and is quite pronounced in FOOOF-derived oscil-
lations (see figure 3.5). Notably, oscillatory power derived by FOOOF was increased for
beta and alpha oscillatory peaks. This finding completely contradicts previous findings with
LSD electrophysiology, and attests to the overwhelming influence of cross-spectral changes
in aperiodic slope.

Fig. 3.4. Peak change statistics for Alpha and Beta

Fig. 3.5. Distribution of Alpha and Beta Peak Frequencies derived by FOOOF Algorithm

Source-level comparisons of non-standardized activity show alterations in peak frequency
for alpha and beta were spatially consistent with many increases observed in power and
connectivity. These effects were also consistent in extent when taking into account relative
standard deviation in the frequency domain of the wavelet for “alpha” and “beta” frequencies
respectively . In other words, degree of peak frequency increases were equivalent for alpha
and beta given the intrinsic frequency resolution of the wavelet chosen.
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Fig. 3.6. Distribution of Alpha and Beta Peak Power derived by FOOOF Algorithm

Fig. 3.7. Distribution of 1/f slope as derived by FOOOF Algorithm

3.2.2. Alterations in Connectivity under LSD

Initial identification of frequencies of interest controlled for multiple-comparisons revealed
significant decreases in theta/low-alpha for both phase-based and amplitude-based coupling
measures, decreases in low-beta for both phase and amplitude based coupling, and increases
in high-alpha, high-beta and gamma. Unlike amplitude correlations, our phase based mea-
sure (PLI) revealed a significant increase in delta coupling. Notably only OAC identified a
significant shift in peak alpha for mean connectivity over all sources, yet the increases in
phase based coupling in high-alpha persist. Significance of effects by frequency are shown
alongside mean connectivity by frequency for each condition in Figures 3.11 and 3.10
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Fig. 3.8. Sources corresponding with alpha peak increases controlled for multiple compari-
sons

Alterations in Global Functional Connectivity (GFC, averaged connectivity) for brain-
wide source within selected frequency ranges are shown in Appendix 1. Due to the conver-
gence of frequencies identified by frequency selection procedure, and the frequency domain of
peak increases–particularly alpha and beta–we also show statistical alterations taking only
peak (high and low) frequencies into consideration for both alpha and beta.

3.2.3. Inter-regional Phase-Amplitude Coupling

Four clusters in paired phase-amplitude frequencies were identified using the same fre-
quency identification procedure for interregional phase-amplitude coupling as outlined in
the previous section. These frequencies were thresholded following a cluster permutation
procedure outlined in the previous chapter which yielded clear bins.

Figure 3.14 shows commodulogram of significant increases connections each phase-
amplitude bin for all inter-regional PAC connections. Figure 3.15 shows decreases. Clusters
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Fig. 3.9. Sources corresponding with beta peak increases controlled for multiple compari-
sons

of interest included a delta-alpha PAC cluster where coupling was seen to be increased un-
der LSD (approx. 1 - 4 Hz phase with 9.75 hz amplitude center frequency), a delta-alpha
cluster where PAC was shown to be decreased globally (approx. 1.5-6 hz phase paired with
12.5 hz amplitude center frequencies), a delta/theta-beta cluster increased under LSD (2-5hz
phase and 17-22 hz amplitude), and a delta/theta-beta cluster decreasing under LSD (1-7 hz
phase with 25-35hz amplitude). Figure 3.16 shows mean t-values of interregional pac. Both
decreases and increases in delta-alpha coupling were most robust.

Source-wise global PAC values for phase and amplitude components of all significant
connections in these identified clusters were derived. Source-wise effects in all significant
clusters are included in Appendix 2

In order to better understand the relationship between these clusters. We compared
locations where both increases and decreases were seen in corresponding clusters (suggesting
a simple frequency shift of PAC effect), as well as regions where statistical matrices in the
increase cluster bin corresponded to transposed version of matrices of statistical values in
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Fig. 3.10. Significant frequencies under multiple comparisons with mean values of LSD vs
Placebo OAC

Fig. 3.11. Significant frequencies under multiple comparisons with mean values of LSD vs
Placebo PLI

corresponding decrease bin (suggesting a reversal of phase-amplitude mediating effect in a
given source).

We found that several of the regions identified as significant for both increased and de-
creased PAC under LSD were identical to regions previously identified as having a mediating
role in LSD connectivity in fMRI (anterior cingulate, temporal lobe, auditory and visual
cortices, sensorimotor network, medial, and inferior frontal cortices), suggesting a plausible
shift in PAC frequency occurs in these areas.
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Fig. 3.12. Number of significant OAC connections per source (after MC) Top: Alpha;
Bottom: Beta

Fig. 3.13. Number of significant PLI connections per source (after MC) Top: Alpha; Bot-
tom: Beta
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Fig. 3.14. Commodulogram showing phase-amplitude bins corresponding to significantly
increased number of connections controlled for multiple comparisons

Fig. 3.15. Commodulogram showing phase-amplitude bins corresponding to significantly
decreased number of connections controlled for multiple comparisons
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Fig. 3.16. Commodulogram showing phase-amplitude bins corresponding to mean (signi-
ficant) t-values (Wilcoxon rank-sum) across decreased number of connections controlled for
multiple comparisons
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Fig. 3.17. Amplitude part of PAC shift in delta-alpha cluster under LSD
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Fig. 3.18. Phase part of PAC frequency shift in delta-alpha cluster under LSD
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Fig. 3.19. Sources where phase sources were replaced by amplitude drivers under LSD in
delta-alpha PAC
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Fig. 3.20. Sources where amplitude drivers sources were replaced by phase sources under
LSD in delta-alpha PAC
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Fig. 3.21. Alpha Connectivity Results Across all Methods summarized using AAL ROIs
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Fig. 3.22. Beta Connectivity Results Across all Methods summarized using AAL ROIs
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Chapitre 4

Summary of Research and Conclusion

4.1. Discussion
The work presented here provides an intriguing albeit incomplete picture of the effects

of LSD on whole-brain connectivity. From these results we can nevertheless draw several
preliminary conclusions about the influence of LSD on electrophysiological coupling which
might inform more mechanistically informed, and complete analyses of these effects in the fu-
ture. The present chapter will proceed as follows. First we discuss spectral and connectivity
results in light of existing literature on psychedelics in electrophysiological and BOLD-based
studies of functional connectivity. We then discuss various aspects of the interregional PAC
results, including the validity of our somewhat novel adaptive PAC method in light of ob-
served results and extant literature. This is followed by a discussion of caveats and possible
criticisms of our methodology, and a brief overview of promising future directions for this
research.

From the spectral results outlined above, we can draw several important conclusions.
First, shifts in peak frequency are robust, and impact not only alpha. Contrary to previously
reported findings in electrophysiology, an upward shift in beta frequency was also observable
in data. This effect was significant in resolved oscillatory, and standardized power spectra as
well as simple power across sensors. From observed results it is also apparent that decreases
in lower frequencies previously reported in electrophysiological literature on psychedelics
(Muthukumaraswaky et al 2013; Carhart-Harris, et al 2016) can be largely accounted for by
changes in baseline aperiodic power. They do not reflect relative alpha within a standardized
frequency spectrum, nor an aperiodically regressed spectrum like FOOOF, but rather a
displacement of the peak and trough of oscillatory alpha and beta. These displacements
appear to influence coupling in power- as well as phase-based measures of synchronization,
with reliable alterations in both phase and amplitude coupling corresponding to the peaks
and troughs of oscillatory beta. Interestingly, oscillatory alpha does not exhibit increased,
but decreased power in the upper alpha range where peak alpha increases are seen to be



largely expressed under LSD. Likewise oscillatory beta is seen to decrease in the upper beta
region where peak is apparently displaced under LSD.

An interesting quality of PLI and OAC source level results is that they were largely non-
overlapping in corresponding frequencies. However, increases in OAC for gamma, alpha and
beta were partly spatially consistent, linking largely frontal, parietal and occipital cortices,
as well as temporoparietal sources. Interestingly, this connectivity pattern was also partly
observed in PLI’s increases within the delta frequency bin. Any further consistency among
PLI-based effects and OAC-based decreases across frequency would require additional ana-
lyses to elucidate. Importantly decreases and increases in corresponding oscillatory bands
(e.g. beta decrease/increases) were not entirely overlapping, suggesting that the impact of
LSD on coupling is not solely a reflection of observed displacement of oscillatory frequency.

The principal effect on PAC observed under LSD appears to reflect a downward shift in
delta-alpha and delta-beta coupling in several regions highlighted as meaningful in previous
literature (Tagliazucchi et al, 2016). This effect was also accompanied by an apparent swit-
ching of phase and amplitude in a number of regions. While both this ostensible shift and
the possible reversal of phase-amplitude effects in some populations is intriguing, it would re-
quire further analyses to establish the statistical significance and possible functional meaning
of this effect. Nandi et al. (2019) have provided strong evidence for the directed nature of
interregional PAC, with (higher frequency) amplitude sources serving as a driver for slower-
frequency instantaneous phase. In light of recent findings suggesting plausible alterations
in the directionality of connectivity under psychedelics (Alamia et al, 2020; Barnett et al.,
2020; Carhart-Harris & Friston, 2019; Preller et al., 2019), PAC based changes in directed
CFC would make for an intriguing contribution to this mixed literature. However, any such
interpretation of our data at this stage would be undoubtedly premature. Still, the appli-
cation of some measure of directed coupling and/or Granger causality to sources identified
at this preliminary stage (alongside more rigorous statistical testing) could help to elucidate
the principal mechanisms at play. Another finding that warrants further investigation is the
ostensibly inverse relationship between PAC frequency shifts and those identified in nearly
all other modalities. Additional work must be done to elucidate the functional significance
of this relationship.

4.1.1. Caveats

As stated previously, the results presented here are preliminary. Apart from this, several
important points should be addressed. Firstly, given the criticisms of PAC, and the known
presence of spurious PAC due to nonsinusoidal neural oscillations, is it possible that some or
all of the observed CFC reported here could be epiphenomenal? We believe that the relatively
low-frequency amplitudes corresponding to observed PAC changes suggest that these effects

58



are unlikely to be due to higher harmonics. Higher harmonics due to nonsinusoidal signal are
generally assumed to be reflected in gamma and above, not in lower amplitude frequencies
such as alpha and beta. Furthermore the correspondence of PAC increases to a frequency
domain where power is decreased suggests that at the very least non-spurious PAC accounts
for the changes seen under LSD (Jensen et al 2017). Because PAC is known to occur
in distinct phase and amplitude populations, our interregional approach, combined with the
application of SST, provides further evidence that PAC shift identified is likely non-spurious.

A second concern is the presence of significant changes in gamma power. While pre-
vious studies have identified legitimate changes in gamma accompanying psychedelics in
intracranial EEG (Páleníček et al, 2013; Goda et al. 2013; Gonzalez et al 2020), results
from scalp recordings of electrophysiological changes (Tofoli et al, 2016) have been rea-
dily dismissed on the basis that broadband gamma is known to overlap with the frequency
spectrum of artifactual muscle activity (Muthukumaraswamy, 2013b; Muthukumaraswamy,
2013a; Carhart-Harris, 2016). Our study is much more concerned with increases observed
in upper beta and alpha ranges, and did not observe PAC related increases in gamma. As
such, we hesitate to draw definitive conclusions about the significance or validity of observed
changes in gamma. Still the gamma increases observed in this study are a confound in light
of previously reported changes in the power spectrum under psychedelics.

Finally, the usefulness and necessity of a wavelet-based IRASA implementation, and
indeed the efficacy of IRASA itself relative to other proposed methods for separating 1/f
and oscillatory frequency spectrum, such as FOOOF, should be addressed. We compared
results from all three methods and found them to be largely consistent, with the caveat
that a wavelet-based implementation requires significant tuning of time-frequency resolution,
and ideally synchrosqueezing to achieve comparable resolution. This is largely due to the
smearing of oscillatory peaks in frequency domain present in a time-frequency approach to
spectral decomposition.

4.1.2. Future Directions

This work lends itself to a number of future directions, some of which have been discussed
already. In addition to better statistical assessments of directedness of the PAC effect (via
e.g. Granger causality), more detailed identification and seed-based connectivity analyses of
regions of interest, and assessment of the relationship between displacement of the oscillatory
spectrum and alterations in PAC frequencies, we propose extending the recently developed
method of Alamia et al (2020) for detecting travelling alpha waves, to source-level regions
of interest. In addition, dynamical connectivity is a matter of great interest. In addition
to conventional measures of dynamic coupling, our proposed WIRASA method could be
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applied to resolve amplitude-based connectivity in time for only rhythmic components of the
frequency spectrum.
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Annexe A

Sensor Level FOOOF Results

A.1. Aggregate Results for Sensor-Level PSDs

A.2. FOOOF Group Results for Sensor-Level PSDs



Fig. A.1. FOOOF fit for mean LSD spectrum
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Fig. A.2. FOOOF output for mean PLA spectrum
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Fig. A.3. FOOOF Group output for ALL LSD Sensors
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Fig. A.4. FOOOF Group output for ALL PLA Sensors
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Annexe B

Source Level Connectivity of PLI and OAC

B.1. Connectivity changes as measured by PLI

Fig. B.1. Changes in PLI in significant delta bin (Wilcoxon rank-sum, p<=1e-10)

Fig. B.2. Changes in PLI in significant theta bin (Wilcoxon rank-sum, p<=1e-10)

B.2. Connectivity changes as measured by OAC



Fig. B.3. Changes in PLI in significant alpha bin (Wilcoxon rank-sum, p<=1e-10)

Fig. B.4. Changes in PLI in significant lower beta bin (Wilcoxon rank-sum, p<=1e-10)

Fig. B.5. Changes in PLI in significant upper beta bin (Wilcoxon rank-sum, p<=1e-10)
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Fig. B.6. Changes in PLI in significant gamma bin (Wilcoxon rank-sum, p<=1e-10)

Fig. B.7. Changes in OAC in significant theta bin (Wilcoxon rank-sum, p<=1e-10)

Fig. B.8. Changes in OAC in significant alpha bin (Wilcoxon rank-sum, p<=1e-10)
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Fig. B.9. Changes in OAC in significant beta bin (Wilcoxon rank-sum, p<=1e-10)

Fig. B.10. Changes in OAC in significant gamma bin (Wilcoxon rank-sum, p<=1e-10)
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Annexe C

Sources-wise PAC changes in Frequency
Clusters of Interest

C.1. Delta-alpha changes in PAC

C.2. Delta-beta changes in PAC

C.3. alpha-gamma changes in PAC

C.4. Delta-beta shift/reversal in PAC



Fig. C.1. Amplitude source Increases in delta-alpha PAC cluster(Wilcoxon rank-sum,
p<=1e-10)
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Fig. C.2. Phase source Increases in delta-alpha PAC cluster(Wilcoxon rank-sum, p<=1e-
10)
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Fig. C.3. Amplitude source Decreases in delta-alpha PAC cluster(Wilcoxon rank-sum,
p<=1e-10)
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Fig. C.4. Phase source Decreases in delta-alpha PAC cluster(Wilcoxon rank-sum, p<=1e-
10)
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Fig. C.5. Amp source Increases in delta-beta PAC cluster(Wilcoxon rank-sum, p<=1e-10)
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Fig. C.6. Phase source Increases in delta-beta PAC cluster(Wilcoxon rank-sum, p<=1e-10)
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Fig. C.7. Amplitude source Decreases in delta-beta PAC cluster(Wilcoxon rank-sum,
p<=1e-10)
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Fig. C.8. Phase source Decreases in delta-beta PAC cluster(Wilcoxon rank-sum, p<=1e-
10)
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Fig. C.9. Amp source Decreases in alpha-gamma PAC cluster(Wilcoxon rank-sum, p<=1e-
10)
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Fig. C.10. Amplitude sources reflecting frequency shift under LSD(Wilcoxon rank-sum,
p<=1e-10)
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Fig. C.11. Phase sources reflecting frequency shift under LSD(Wilcoxon rank-sum, p<=1e-
10)
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Fig. C.12. Phase source decreases where Amp sources increase in delta-beta PAC clus-
ter(Wilcoxon rank-sum, p<=1e-10)
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Fig. C.13. Amplitude source decreases where Phase sources increase in delta-beta PAC
cluster(Wilcoxon rank-sum, p<=1e-10)
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