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Résumé

Les matériaux discrets entrecroisés (DIM) rigides sont une classe de matériaux qui se dis-
tinguent par la manière unique par laquelle ils se déforment: les DIMs sont composés d’élé-
ments (connectés par entrecroisements) qui peuvent se déplacer librement à l’intérieur d’une
amplitude définie par les contacts avec leurs éléments voisins. Ceci donne une réponse bipha-
sique aux déformations unique à ces structures où soit aucune résistance n’est fournie à une
déformation, soit un arrêt complet à la déformation se présente. Il n’est pas clair comment
l’ensemble de paramètres discrets et continus décrivant un DIM influence ce comportement
biphasique. De plus, nous ne possédons pas les outils pour le charactériser correctement.
Dans le but d’élucider ce comportement, nous présentons une méthode qui s’inspire de tech-
niques d’homogénisation qui peut détecter les contacts physiques entre éléments composés
de tores. En définissant une énergie adéquate, nous pouvons minimiser les intersections entre
éléments tout en déformant le DIM d’une façon arbitraire en utilisant des techniques d’opti-
misation standardes. Nous explorons les déformations auxquelles des arrangements planaires
de DIMs peuvent être assujettis et investiguons comment le couplage de contraintes dans
deux directions orthogonales influence ces déformations. Nos résultats permettent de mieux
comprendre comment différents paramètres décrivant un DIM influence ces déformations.

Mots clés: matériaux discrets entrecroisés, surfaces implicites, optimisation, déforma-
tion, arrangements planaires
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Abstract

Rigid discrete interlocking materials (DIMs) are a class of materials that distinguish them-
selves by the unique way in which they deform: in DIMs, elements (connected through
interlocking) can move freely within a range defined through contacts with neighbouring ele-
ments. This results in a biphasic deformation behaviour unique to these structures where no
resistance is provided to deformation or a hard stop to deformation is met. It is yet unclear
how the set of discrete and continuous parameters describing a DIM influences this biphasic
behaviour. Likewise, we lack tools to properly characterize it. To that effect, we present
a method which takes inspiration from homogenization and handles contacts by leveraging
the definition of implicit surfaces, specifically tori, making up our elements. By defining an
adequate energy function, we can minimize intersection between elements while deforming
the DIM in an arbitrary way using standard optimization approaches. We explore the defor-
mations that planar sheets of DIM can be subjected to and investigate how the coupling of
constraints in two orthogonal directions affects these deformations. Our results give insights
on how the tuning of various parameters describing the DIM affects these deformations.

Keywords: discrete interlocking materials, implicit surfaces, optimization, deformation,
planar sheets
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Chapter 1

Introduction

Discrete Interlocking Materials (DIM) are materials made of individual elements that are
interlocked together in a repeating fashion, constraining each other’s motion in three dimen-
sional space. DIMs stand out among other materials by their biphasic behaviour: defor-
mation in a given direction will be largely unresisted until a fully extended configuration is
reached in that direction. At this point, further deformation is met with the full stiffness
of the material making up the elements and restoring forces will be generated to counter
the deformation. The transition point between inelastic and elastic regimes will vary based
on the direction of deformation, the element dimensions, and the topology of interlocking.
Moreover, due to DIMs’ discrete and inherently redundant nature, failure of individual ele-
ments will generally remain local and not propagate in a catastrophic manner. Chainmail is
a prime example of a DIM where the elements are more often than not rigid. Rigid DIMs
distinguish themselves from other DIMs by the hard stop in deformation that is met once
they are fully extended, i.e., in the elastic regime. These properties of DIMs make them
attractive prospects for certain applications: in robotics, for instance, DIMs can be useful
for manipulation and picking tasks, enabling end-effectors that provide compliance during
approach and strength during transport. For soft robots, the tunable anisotropy can be used
to shape pneumatically-actuated limbs that would otherwise expand in an isotropic way.
To enable such applications, we must first establish a formal way to characterize DIMs. In
this thesis, we are more specifically concerned with understanding where in the configura-
tion space of a DIM its inelastic regime takes place. For the sake of simplicity, we assume
contacts are frictionless and focus on rigid DIMs. With that goal in mind, the simulation of
such materials presents two main challenges.

The first challenge pertains to the large number of elements present in a DIM: a typical
piece of chainmail can easily be composed of hundreds of elements, if not more. Approaches
using rigid body mechanics are ill-suited for the task of design-space exploration due to the
large degrees of freedom associated with DIMs. Typical optimizations such as coarsening



of the elements’ meshes can be adopted, but that will be at the expense of accuracy. The
freezing of bodies with low kinetic energy is a common and well researched heuristic to
minimize computation times in rigid body simulations [29]. More sophisticated versions of
it which leverage bodies stacking into messy piles [15] or bodies in contact with low relative
velocities [7] would seem useful in the context of DIMs. However, we are interested in
the deformation of such materials and their mechanical properties. These protocols would
mostly come into effect at the end of simulations, where these materials have already left
the inelastic regime, or near it, thus being of little help in the characterization task.

The other challenge involves the interlocking characteristic of DIMs. It is important that
the interlocking relationships between different pairs of elements are preserved throughout
the simulation. Failure to enforce such rules would render the simulation of a DIM essentially
useless as elements could move through one another, a behaviour quite unlike the physical
reality we are attempting to reproduce.

Keeping those challenges in mind, we decide to adopt an energy-based method that lever-
ages the structure of elements composed of implicit surfaces, specifically tori. We introduce
a score function that can accurately determine the presence of overlap between two tori
allowing the detection of contacts between elements at any time step. We also derive an
equation whose evaluation determines whether or not two elements interlock. By defining
an energy whose minimization induces deformation in the DIM while avoiding intersection
between elements, we can use optimization routines such as Newton’s method to explore the
deformation space of the DIM while ensuring that topology is preserved at every time step.
In particular, we investigate how the coupling of constraints applied in orthogonal directions
affects the deformation limit a DIM may be subjected to. Lastly, to study the macrome-
chanical behaviour of infinite tilings of DIMs, we take an approach based on homogenization
where the DIM is a tiling of a unit cell and depends entirely on the cell’s parameters. Our
contributions include:

• An accurate torus-to-torus score function to detect contacts and intersections;
• An accurate way to detect interlocking between a pair of tori;
• A scheme to simulate and analyze deformation in rigid DIMs with little trade-off in
accuracy.
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Chapter 2

Related work

Work done specifically on rigid DIMs is, as a whole, quite sparse. Despite chainmail existing
for thousands of years, the use of DIMs as a mechanical metamaterial has been largely
unexplored. Engel and Liu [12] describe a fabrication process to create microscopic chainmail
for smart textile. However, much of their investigation focused on electrical properties of
the material: mechanical properties were ignored except when it came to the material’s
load bearing ability. Slightly more in line with our objectives, Caraglio et al. [4] explore
how interlinked chains of polymers behaved under mechanical stretching by using Langevin
dynamics simulations. They explore how varying interlocking configurations deform as the
chains are pulled apart from one another using constant forces and how the interlocking
affects the length of the stretched out system. By applying a constant velocity to the
elements instead, they also were able to analyze the force the rings were subjected to as
they became more stretched out. In the context of soft robotics, Ransley et al. [27] present
a concept study of a chain of rigid elements which, when applied with a voltage, contracts
under actuation continuously from a curved drape profile to a rigid cantilever.

In addition to macromechanical characterization, via simulation, a more application-
oriented but central aspect of metamaterial design is the ability to understand the possibil-
ities, and limitations, of a space of materials. Within visual computing, the exploration of
high-dimensional design spaces has been intensively studied, whether it be through physical
simulation in the context of clothing [34], flexible molds [39, 20], and furniture design [33]
or through physical contraints in the context of surface shapes [8, 38].

As mentionned previously, DIMs behave unlike any other material, but they do share
traits with some. On a macroscopic scale, sheets of rigid interlocking elements can be roughly
thought of as sheets of inelastic cloth, especially when they have left their inelastic regime:
neither can be stretched and both show similar behaviour to out-of-plane motion, namely
in how they can both drape over surfaces. As a matter of fact, chainmail was once worn as
a form of protection and, even nowadays, designers come up with pieces of clothing made



Fig. 2.1. The use of chainmail as garments. Left [13] and right [28].

up of interlocking elements. For instance, Nervous System [28] applied their Kinematics
system to chainmail-like textile structures which allowed them to fold their designs to obtain
smaller configuration and thus optimize 3D-printing. Other artists such as Danit Peleg [24]
are also making a push to popularize the use of 3D-printed garments in general. Since we are
interested in planar arrangements of DIMs, planar and sheet materials also bare relevance,
especially those that are structured. Metamaterials share similarities to chainmail in that
both are made up of individual elements at the microscopic level, usually arranged in some
form of a unit cell, which themselves describe the macroscopic deformation the system of
elements can exhibit by how they are tiled. Hence, in the next sections, we shall cover some
of the work that has been done in relation to cloth, planar materials and assemblies, and
metamaterials and interlocking materials.

2.1. Cloth
The simulation of cloth is a well researched problem in the graphics and animation com-

munity. The standard approach involves simulating the cloth as a simple sheet of triangles
where the edges are simulated as springs. Collisions between edge-edge and face-vertex pairs
are predicted during a time step and resolved by applying impulses. The position of elements
at each time step is determined by either explicit or implicit time integration [2].

However, this approach is not always adequate as it ignores the underlying microscopic
structure of the cloth which can affect the mechanical properties of the cloth. Take for
instance yarn-based fabric: the manner in which the yarn is knitted has a significant impact
on the microscopic and macroscopic behaviours of the fabric, something that a simple triangle
mesh sheet cannot accurately replicate. In woven fabrics, the yarns are nearly immobile
meaning that the overall yarn structure is subject to very little deformation. Meanwhile,
the yarns of knitted fabric can deform and slide much more freely. Changes in the small-
scale structure of the fabric thus happen readily leading to a highly extensible cloth at the
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Fig. 2.2. An example yarn structure [35] and yarn-level simulation [16].

macroscopic scale. In their work, Kaldor et al. [16] address this discrepancy between both
types of cloth and propose a solution to better simulate knitted fabrics: a model where each
yarn is approximated by a B-spline curve. They can then model the yarn’s time evolution
using the equations of motion of constrained Lagrangian dynamics. However, despite the
possibility of parallelizing some of the steps (e.g., contact force evaluations), the algorithm
scales poorly. Cirio et al. [6] improve upon this aspect by using a compact representation of
yarn-based cloth using persistent contacts. Their representation is based on the observation
that yarn threads have a select few points of persistent contact: these points can thus be
represented by nodes with some restriction on their motion based on the yarn threads that
reach them. Yarns can then simply be represented by straight segments. Using this method,
their simulations run nearly an order of magnitude faster than previous work.

Given the time stepping nature of simulations, it is possible for the loop-loop topology of
knitted cloth to erroneously change after a time step. Naturally, this will lead to incorrect
results as the topology is intrinsically linked to the macroscopic behaviour of the cloth. The
use of large time steps to reduce computation time of a simulation only further exacerbates
the issue. Loop-loop topology can be more formally described using linking numbers, a way
of counting the oriented linkages between two closed curves. Qu et al. [26] analyze different
methods of computing the linkage numbers between spline curves. These methods can be
applied to knitted fabric, chainmail, or any type of loopy material. The methods differ in
how they compute the linkage number, but all employ the same overall strategy:

• Determine which loops potentially intertwine based on whether or not their respective
boundary volumes overlap or not;
• Discretize the spline curves into line segments while ensuring the process is link
homotopic;
• Compute the linking number of potentially linked pairs of loops.

From their results, they note that the counting crossings and the Barnes-Hut methods are
the more efficient ones they have tested.
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Fig. 2.3. Unit cell and tiling of a planar rod network [31].

2.2. Planar sheets and assemblies
Some planar materials, unlike cloth, do not exhibit nearly as much freedom of motion in

the direction orthogonal to the plane due to their resistance to out of plane bending. Such
materials thus require a different set of methods to be properly simulated and analyzed. Lu et
al. [19] devise a theoretical framework of nonlinear continuum mechanics for two-dimensional
graphene sheets under in-plane and bending deformations. They use their method to ana-
lyze the behaviour of single-atomic-layer graphene sheets under uniaxial stretch, cylindrical
bending, and buckling under molecular mechanics simulation. Geers et al. [14] address the
main principles needed to construct a computational homogenization scheme to upscale thin
multi-layered sheets towards macroscopic shells. Schumacher et al. [31] use a Kirchhoff rod
simulation to explore the properties of planar rod networks of varying designs to characterize
their Young’s modulus, Poisson’s ratio, and bending stiffness. They are also able to derive
structures with desired mechanical properties with a simple gradient-based optimization ap-
proach. For instance, they successfully obtain a structure with a target Young’s modulus
profile. We most notably adopt their use of homogenization to subject a tileable unit cell to
states of deformation under the influence of boundary conditions to preserve the tileability
of the mesoscopic scale leading to deformations on the macroscopic scale.

Kirchhoff-Plateau surfaces (KFS) are flexible structures made of elastic rods and stretched
textile membranes that are assembled into a planar state and deploy into complex three-
dimensional shapes. Designing such a structure in the goal of obtaining a specific shape is
by no means trivial. To ease the design process, Pérez et al. [25] propose a user-guided,
computer-assisted approach where the user is in charge of designing the structure and shape
of the KPS while having access to editing and visualization tools to simplify the task. These
helper tools are supported by their computational model that represents rods as Catmull-
Rom splines and models membranes as a St. Venant-Kirchhoff material to accurately predict
equilibrium configurations of the KPS and how a change of parameters influences those
configurations. Similarly, Skouras et al. [32] develop an interactive tool for the design of
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Fig. 2.4. Simulation (left) and physical experiment (right) of KFS [25].

three-dimensional shapes from two-dimensional interlocking elements that bend, but do not
stretch. Although a single type of element is used, they can be assembled in a number of
different ways allowing for a variety of shapes to arise. While designing, a user only needs
to work with basic shapes that can be merged or extruded. By leveraging a half-edge data
structure combined with a penalty approach, they can render the appearance of the final
product once it is assembled from the flat elements and also automatically come up with an
order of instructions to make assembly easier.

Lensgraf et al. [17] study the kinematic behaviour of planar assemblies of puzzle pieces
connected through loose joints. They define a linearized distance function between vertices
of the polygons that make up the bodies in the chain and collision points. This distance
function, in turn, is used to derive a constraint on the system to define a linear program in
which the target of optimization is a configuration-space direction in which motion is possible.
This direction is then used in an Euler step to move the system in the given direction. This
is done iteratively until the system reaches an equilibrium. They show that their approach
can be used to explore joint tolerance of systems by parameterizing the tightness of joints
and performing binary search. They also successfully use their algorithm to simulate flock
formation of robots and show that the algorithm may be used for assembly (and disassembly)
of linked elements. They note that due to their geometric-based approach, the motion of
the elements in the system may not be the most realistic, but it allows fast and interesting
optimizations due to the linear constraints describing a space of possible motions.

2.3. Structured materials
The design and analysis of structured materials has gained a rise in popularity in the past

years due to manufacturing technologies such as 3D printing becoming more readily available.
Likewise, metamaterials and interlocking materials are also gaining in popularity as their
unique properties are becoming more well-known. Even simple convex building blocks such
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Fig. 2.5. Top: three topologically interlocked assemblies of tetrahedra, cubes, and octahe-
dra respectively [36]. Bottom: two rods with different arrangements of volumetric textures
leading to different behaviours under pressure [23].

as tetrahedra can display a wealth of characteristics when assembled that would otherwise
not be present in a monolithic block of the same substance. Despite being interlocked,
the building blocks can still slide, rotate, or separate to some degree, thus providing many
tunable deformation mechanisms and properties. Moreover, this extra range of motion allows
the building blocks to dissipate energy through frictional sliding, often making these kinds of
materials more impact resistant than their monolithic counterparts. However, improvements
in impact resistance and energy absorption (i.e., toughness) are usually accompanied by losses
in material strength. Mirkhalaf et al. [21] systematically explore topologically interlocked
panels made of convex ceramic blocks and identify an architecture based on octahedral blocks
that displayed much higher toughness (50-fold), but also higher strength (∼20% ). They also
observe that the monolithic material tends to fail in a much more catastrophic and brittle
manner, as opposed to the interlocking material which fails in a much more localized fashion.
However, they note that the exploration of the large design space of possible architectures is
rather difficult since their (physical) experiments are lengthy, which brings us to numerical
models.
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Wang et al. [36] study topological interlocking assemblies made of convex building blocks.
Given an input surface and a two-dimensional tessellation, their method derives a manner
in which the surface can be reproduced by interlocking blocks shaped in accordance to
the tessellation. By using a global interlocking test and static equilibrium analysis, their
method also optimizes the structure such that it can withstand loads in a greater set of
directions, making them more stable. Wang et al. [37] develop a graph model to describe
the interlocking nature of interlocking assemblies. With their model, they can determine if
an object may be disassembled into its constituent parts or not. Furthermore, they come up
with a design framework that builds upon the graph model that, given a full input model,
iteratively splits off parts for disassembly in a tree traversal process. Given an assembly
and its parts, it can also determine how they should interlock to be a proper interlocking
assembly (i.e., once assembled, only one of the parts can move w.r.t. to the others).

Although their method does not involve disjoint building blocks, Andreassen et al. [1]
develop an optimization routine to minimize the Poisson ratio of materials assembled from a
single unit cell tiled in all directions at periodic intervals. Their approach leverages first-order
FEM by adding a design variable to each element which determines if the element is void or
not. Through a standard topology optimization approach, the unit cell is then essentially
hollowed out from iteration to iteration, leading to a change in the macroscopic behaviour
of the tiled material. Schumacher et al. [30] develop a method to make the design of 3D
printed metamaterials more accessible: they begin by designing families of substructures
that exhibit desired properties with the additional benefit that these substructures may
be interpolated to smoothly vary the materials’ properties. Through the use of a global
optimization algorithm, they can then select from these substructures to create objects with
specific shapes and behaviours. Similarly, Panetta et al. [23] explore how objects with
complex material properties could be assembled from basic volumetric textures. Their goal
is to create objects that display heterogenous properties, e.g., a rod that is much more
susceptible to bending at a specific point along its axis (see bottom of Figure 2.5). By
defining a family of pattern topologies, they then perform a shape optimization so that
these topologies may match specific elasticity parameters. The textures can then be used to
fabricate objects manually or automatically possessing pre-specified behaviour with a local-
global optimization. The complex material properties are thus attained by selecting the
correct combination of textures throughout the object, which differs from other work where
typically a single unit cell (i.e., texture) is selected and its macroscopic behaviour when tiled
is analyzed. In later work, Panetta et al. [22] address the issue that such microstructures may
have, namely the high stress that softer topologies may experience at specific joints, often
leading to fracture. By deriving the exact solution to the worst-case stress analysis problem
and introducing their own parametric shape model, they achieve robust minimization of
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maximal stress in microstructures without the side-effect of altering the microstructures’
macroscopic behaviour.

Bickel et al. [3] tackle the design problem of fabricating objects with specific behaviour
to deformation by subsequently layering different materials. Their main contribution is
a goal-based design approach that replicates deformation behaviour at the mesoscale by
means of combinatorial optimization. By measuring the deformation of real world materials
and then using those measurements as a reference point for their method, they can design
objects with specific responses to deformation and fabricate them using a 3D multi-material
printer. This is made possible by their optimization routine which uses a branch-and-bound
with clustering approach to select an ideal combination of materials to reproduce the set
of specified deformations. In such iterative design algorithms, the use of FEM is a major
bottleneck. Even with the use of mesh coarsening and model reduction, such methods require
expensive precomputation phases that themselves require a priori knowledge of an object’s
geometry and material composition. Naturally, for design tasks, this knowledge is not usually
known. Chen et al. [5] propose Data-Driven FEM, a new simulation methodology to address
this issue. The key feature of their method is the use of a custom metamaterial database
learned in an offline fashion that is used to perform fast coarsening of meshes at runtime
leading to significant speed gains (up to 2 orders of magnitude) by reducing the time of
precomputation stages.
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Chapter 3

Distance between elements

Our method is an energy-based approach that attempts to reach a compromise between the
deformation of a DIM and the minimization of intersections between elements, all the while
maintaining the DIM’s topology. To appropriately penalize element interpenetration, we
must first be able to recognize it. To achieve this, we leverage the definition of a torus to
our advantage:
Definition 3.0.1 (Torus and related definitions). A torus T is a geometrical shape whose
surface can be defined as the set of points lying at a distance r from a circle C. The circle C
has radius R, normal N and center c. For our purposes, R > r will always hold. The major
radius of T is R and the minor radius of T is r.

Using this definition, we devise a method to compute intersections between pairs of tori
that builds upon the distance between their respective circles C. Furthermore, we also derive
an equation which, when solved, answers the question of whether or not two tori interlock.
A circle in 3D space is a function of an angle yielding points. Hence, before deriving the
solution to the circle-to-circle distance problem, we quickly review how to derive the distance
from a point to a circle.

3.1. Distance between a circle and a point
The distance d between a circle C (of center c and normal N) and a point P is rather

trivial to compute. Consider the plane defined by c and N . Project P onto this plane to
obtain Q. Then the closest point K on C to Q is

K = c+ r(Q− c)/|Q− c|.

The distance between C and P is then

d = |P −K|.



Fig. 3.1. A torus with circle C, center c, major radius R, and minor radius r.

Fig. 3.2. The distance between a circle C and a point P is the distance between points P
and K.

By defining ∆ = P − c, we can formulate d as a function of C’s parameters and P [11]

|P −K|2 = |P −Q|2 + |Q−K|2 (3.1.1)

= (N ·∆)2 + (|Q− c|2 −R)2

= (N ·∆)2 + (
√
|∆|2 − (N ·∆)2 −R)2

= (N ·∆)2 + (|N ×∆| −R)2. (3.1.2)
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3.2. Distance between a circle and a circle
To compute the shortest distance between two circles C1 and C2, we can set P to be a

function of an angle θ whose image spans the set of points defined by C2 [11]. To accomplish
this, we define vectors U and V s.t. the set {U, V,N2} is right handed and orthonormal. The
definition of P (θ) is then

P (θ) = c2 +R2
(

cos θU + sin θV
)

(3.2.1)

and the definition of ∆(θ) is

∆(θ) = c2 − c1 +R2
(

cos θU + sin θV
)
. (3.2.2)

We can substitute ∆ in Equation 3.1.2 for Equation 3.2.2 to then solve for θ by differen-
tiating w.r.t. θ, setting to zero and solving for θ.

∆′(θ) = R2
(
− sin θU + cos θV

)
(3.2.3)

g = d

dθ
|P −K|2

= 2(N1 ·∆(θ))(N1 ·∆′(θ)) + 2(|N1 ×∆(θ)| −R1)N1 ×∆(θ) ·N1 ×∆′(θ)
|N1 ×∆(θ)| (3.2.4)

= 0

After some rearrangements (see Appendix A), we obtain a polynomial of the term cos θ which
can be solved for by using root-finding algorithms. The possible values of θ derived through
cos θ are plugged into Equation 3.2.2 to obtain a set of points, one of which (or possibly
more) will have minimal distance to C1.

3.3. Detecting overlap between pairs of tori
We can define a score function between a pair of tori T1 and T2 from the distance of their

respective circles C1, C2 allowing to detect whether or not they overlap.
Theorem 3.3.1 (Overlap between two tori). Given tori T1 and T2 with respective circles
C1, C2, the value dc represents the minimal distance from C1 to C2. Assume this distance
is from points p1 to p2. The line segment connecting p1 and p2 goes through point t2 on T2.
Take the value

d = dc − r1 − r2.

When d ≥ 0, there is no overlap between T1 and T2. When d < 0, overlap does occur.

Proof. We begin by proving the first claim by contradiction: assume that despite d ≥ 0,
overlap does occur. If overlap occurs, a point t2 on T2 is at a distance dt < r1 from C1. Since
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t2 is at a distance of r2 from C2, d′c = dt + r2 is a distance from C1 to C2. We thus have

d′c = dt + r2 < r1 + r2

≡ d′c − r1 − r2 < 0

and since dc is minimal
d = dc − r1 − r2 ≤ d′c − r1 − r2 < 0

which contradicts the fact that d ≥ 0. Since this contradiction arises from our assumption
that overlap does occur, no overlap must occur.

Now we prove the second claim. If d < 0, then dc < r1 + r2. Therefore, t2 is at a distance
less than r1 from C1, therefore t2 is inside T1, therefore T1 and T2 overlap. �

Theorem 3.3.1 states how to determine whether or not overlap occurs. However, there
might be multiple pairs of points at which overlap is occurring, i.e., different sections of the
tori. Both these issues are addressed by simply taking into account all the different values
of θ obtained by solving for the roots of the polynomial derived from Equation 3.2.4 and
considering all scores which turn out negative between the tori. Since the obtained scores
are either local minima or local maxima (we consider all extrema of the distance function
between C1 and C2) this is also a valid way to compute overlap:
Proposition 3.3.2 (Local overlap of tori). Given tori T1 and T2 with respective circles C1,
C2, the value dc represents a locally minimal distance from C1 to C2. Assume this distance
is from points p1 to p2. The line segment connecting p1 and p2 goes through point t2 on T2.
Take the value

d = dc − r1 − r2.

When d ≥ 0, there is no local overlap between T1 and T2. When d < 0, local overlap does
occur.

Proof. Same as the proof of Theorem 3.3.1 considering the locally shortest distance instead
of the globally shortest one. �

3.4. Maintaining the interlocking relationship between
tori

It is important that throughout a simulation, our method maintains the interlocking
relationship between elements.
Definition 3.4.1 (Neighbour elements). Two elements are said to be neighbours if and only
if they interlock.

At the same time, we do not want tori that were not neighbours at the start of the
simulation to interlock after a step of the simulation. To prevent any changes in the neighbour
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Fig. 3.3. Two interlocking circles C1 and C2. The dotted portion of C2 is the arc behind
the plane on which C1 lies from our point of view.

relationship, or lack thereof, between pairs of tori, we need a more formal description of what
it means for two elements to interlock:
Definition 3.4.2 (Interlocking). Given two tori T1 and T2, T1 and T2 are said to be in-
terlocking if the circle C2 of T2 has two points p1, p2 lying on the plane defined by center
c1 and normal N1. Furthermore, either of p1 or p2 needs to be at a distance less than R1

from c1 while the other must be at a distance greater than R1 from c1. Since the interlocking
relationship is mutual, this naturally also applies from T2 to T1.

Such points p will satisfy the equation

N1 · (p− c1) = 0. (3.4.1)

We can solve for p using a similar approach to the one used in Equation 3.1.2

N1 ·
(
p(θ)− c1

)
= N1 ·

(
c2 +R2 cos θU +R2 sin θV − c1

)
= N1 ·∆(θ) = 0. (3.4.2)

Taking the square and then differentiating w.r.t. θ
d

dθ

(
N1 ·∆(θ)

)2
=
(
N1 ·∆(θ)

)(
N1 ·∆′(θ)

)
= 0. (3.4.3)

Solving for θ in Equation 3.4.3 will yield multiple points, some of which may be solutions
to Equation 3.4.2. If none are found, then the corresponding tori do not interlock. If some
are found, then additional checks must be done to ensure that the distance conditions of
Definition 3.4.2 are met.

To solve Equation 3.4.3, let γ = cos θ, σ = sin θ, and D = c2 − c1.
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(
N1 ·∆(θ)

)(
N1 ·∆′(θ)

)
=γ(N1 ·D)(N1 ·R2V )

+ γ2(N1 ·R2U)(N1 ·R2V ) + (1− γ2)(−N1 ·R2U)(N1 ·R2V )

− σ[(N1 ·D)(N1 ·R2U)− γ(N1 ·R2V )(N1 ·R2V ) + γ(N1 ·R2U)(N1 ·R2U)]

= 0
(3.4.4)

First we rearrange the terms

γ(N1 ·D)(N1 ·R2V ) + γ2(N1 ·R2U)(N1 ·R2V ) + (1− γ2)(−N1 ·R2U)(N1 ·R2V )

= σ[(N1 ·D)(N1 ·R2U)− γ(N1 ·R2V )(N1 ·R2V ) + γ(N1 ·R2U)(N1 ·R2U)].
(3.4.5)

Then we square both sides(
γ(N1 ·D)(N1 ·R2V ) + γ2(N1 ·R2U)(N1 ·R2V ) + (1− γ2)(−N1 ·R2U)(N1 ·R2V )

)2

= σ2[(N1 ·D)(N1 ·R2U)− γ(N1 ·R2V )(N1 ·R2V ) + γ(N1 ·R2U)(N1 ·R2U)]2

= (1− γ2)[(N1 ·D)(N1 ·R2U)− γ(N1 ·R2V )(N1 ·R2V ) + γ(N1 ·R2U)(N1 ·R2U)]2

≡ p1 = σ2p2 = (1− γ2)p2.

(3.4.6)

Finally, Equation 3.4.6 can be rearranged into a polynomial of γ.

p1 − (1− γ2)p2 = 0.

We can solve for the roots of this polynomial using a root finding algorithm and subse-
quently solve for θ.

We are now equipped with the tools to measure intersection between elements and pe-
nalize it. Likewise, we can determine whether or not two elements interlock after a time step
and adjust the step size if topology violations arise. In the next chapter, we shall cover how
our simulation method works.
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Chapter 4

System energy, gradient, and optimization

In this chapter, we present the different components of our energy function and how they are
computed. The two main contributors of the energy are a term penalizing negative scores
(i.e., intersection) between pairs of elements and a force inducing a desired deformation in the
DIM. In the goal of simulating infinite DIMs, we adopt an approach based on homogenization
involving a repeatedly tiled unit cell; this unit cell must meet certain conditions for the tiling
to remain valid, which introduces a third term to our energy. We use Newton’s method to
minimize the energy. Hence, we also cover how we parameterize the DIM under simulation
as well as how the gradient and Hessian are derived based on this parameterization.

4.1. System energy
We define an energy for the system under simulation that we then wish to minimize.

There are three components to this energy:

• energy of the contacts between elements;
• energy to maintain the periodic boundary conditions;
• energy based on an external force.

We now detail how each component is defined.

4.1.1. Energy from contacts

The goal of this energy (Ec) is to penalize interpenetration between elements: contacts
between elements are allowed, but we wish to limit the extent to which an element can move
into another. In Section 3.3, we discussed how to compute a score between two individual
tori. As a reminder, the method yields a set of values that are all extrema of the score
function between both tori (see Proposition 3.3.2): some of the values are locally minimal
while others are locally maximal. In our case, we are interested in the ones that are negative.



A straightforward approach to penalize these would be to compute the energy from contacts
as the score d squared, scaled by some arbitrary factor.

Ec =

αd
2, if d < 0

0, otherwise.
(4.1.1)

However, this formulation is not C2 continuous and since we wish to use Newton’s method
for optimization (as we will explain in Section 4.3), we look for a more suitable alternative.
In their work, Li et al. [18] use the following barrier function

b(δ, δ̂) =

−(δ − δ̂)2 ln δ
δ̂
, if 0 < δ < δ̂

0, otherwise
(4.1.2)

where δ̂ is the minimum distance that will not be penalized between two objects and δ is
the actual distance between them. Looking at Proposition 3.3.2, our torus-to-torus score
function is based on the distance between the tori’s respective circles’ C and their respective
minor radii r. We can modify the above barrier function to fit our needs: set δ̂ = r1 + r2

since the case where dc = r1 + r2 is the case where contact happens between the two tori,
but no interpenetration does. As for δ, it is simply equivalent to dc in Proposition 3.3.2.

Ec =

−α(dc − r1 − r2)2 ln dc

r1+r2
, if 0 < dc < r1 + r2

0, otherwise

=

−αd
2 ln dc

r1+r2
, if d < 0

0, otherwise.

(4.1.3)

4.1.2. Additional contacts

Overlap between two elements’ volumes is itself a volume, yet we are penalizing it with
what is more akin to a distance measurement. It is a valid way to penalize overlap since
as long as the score between elements is positive, no overlap occurs. It leaves a bit to be
desired when overlap does occur though. Say two elements T1 and T2 mutually overlap with
points P1 and P2 being their respective closest points on their respective circles. Consider
the axis A passing through center c2 and P2. We could rotate T2 about A while maintaining
P1 and P2 as the closest points. This results in the score between T1 and T2 to remain the
same, but the overlap volume likely does not. In our tests, this could be observed by having
neighbour elements lie in contact in orientations that were suboptimal.

We resolve this issue by sampling additional points about P2 as Drumwright et al. [9]
suggested to resolve instabilities in their solver. This extra set of points does not lie on A
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Fig. 4.1. By rotating T2 about the axis going through c2 and P2, the overlap volume between
T1 and T2 changes, but the distance between P1 and P2 remains the same.

Fig. 4.2. On the left, we can see that the element is not aligned perpendicularly to its
neighbours which increases the volume of intersection between them. On the right, we can
see that once we incorporate non-minimal points into the computation of contact energy, the
elements reach an alignment that is much more adequate to minimize interpenetration.

and hence proofs the method against the above described scenario. We shall refer to such
points as non-minimal points from now on.
Definition 4.1.1 (Non-minimal points). A pair of non-minimal points p1, p2 are points (on
circles C1, C2 respectively) whose score is not minimal, but still yield interpenetration of
their respective elements T1, T2.

Non-minimal points are chosen by sampling at fixed intervals along C2. Thus, given that
P2 = c2 +R2 cos θU +R2 sin θV then a non-minimal point P ′2 would be

P ′2 = c2 +R2 cos(θ + δ)U +R2 sin(θ + δ)V. (4.1.4)
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Fig. 4.3. The main unit cell (in blue) is used to determine the position of all other elements
by setting the position of other cells based on d1 and d2. We simulate a layer of unit cells
(in gray) neighbouring the main unit cell to more accurately approximate the behaviour of
elements far away from the boundary of an arbitrarily large sheet of discrete interlocking
elements.

The distance from P ′2 to C1 is computed as in Equation 3.1.2. This distance is then
penalized as in Equation 4.1.3. Note that since P ′2 is not minimal, Proposition 3.3.2 does
not apply to it. However, this is sufficient for our goal of resolving suboptimal orientations.

4.1.3. Periodic boundary conditions

Ultimately, we are interested in the mechanical behaviour of sheets of discrete interlock-
ing material on a macroscopic level. Simulating a small sheet of material would not give
satisfactory results since elements on the boundary of the sheet are much less constrained
than those closer to the center meaning the obtained results would not be representative of
those obtained on a much larger sheet. On the flip side, simulating a large sheet quickly
becomes computationally expensive as contacts increase quadratically with the number of
elements and so do the validity checks for neighbours (see Section 3.4). To decouple a sheet’s
size from its macroscopic behaviour, we turn to periodic boundary conditions.

The overall idea is to simulate a single unit cell comprised of few elements which is then
padded with an external layer of identical cells all around to act as the boundary of the
sheet (see Figure 4.3). Elements on the boundary are thus entirely dependent on those
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in the center of the sheet plus a translation term which is also derived from the unit cell.
In turn, the original cell at the center is being stretched by its neighbouring cells. This
relationship between cells on the boundary and the one in the center of the sheet gives a
good approximation of what we would observe in a large sheet of material away from the
boundary: multiple neighbouring cells pulling on each other while being in nearly identical
configurations.

To ensure that the unit cell can be tiled in a valid manner, an energy Eb is introduced.
Specifically, given a unit cell whose four corners are {x1, x2, x3, x4}, we want the following
to hold

x4 = x1 + (x2 − x1) + (x3 − x1). (4.1.5)

We thus simply define the energy contributed by the unit cell as

Eb =
∣∣∣∣x4 −

(
x1 + (x2 − x1) + (x3 − x1)

)∣∣∣∣2 =
∣∣∣∣x4 + x1 − x2 − x3

∣∣∣∣2. (4.1.6)

4.1.4. Energy from forces

Lastly, an energy Ef is also defined based on the specific deformation that we are in-
terested in. We either define this as an energy acting on some or all elements as gravity
would

Ef = βx (4.1.7)

where x is the position of the element.
Alternatively, this energy can also be defined based on a target position xT that we wish

for an element to reach (or try to reach)

Ef = β|x− xT |2. (4.1.8)

4.2. System parameterization
An element T will have a set of six degrees of freedom (DOFs) on which it depends: three

for position and three for rotation. Its positional DOFs are simply its center c whereas the
three rotational DOFs are Euler angles {θx, θy, θz}.
Definition 4.2.1. An element T depends on the set of DOFs q s.t.

q = {cx, cy, cz, θx, θy, θz}

Euler angles are prone to lead to gimbal lock where different axes of rotation align with
one another, but this does not occur when the angles of rotation are small. Thus, we opt
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to have the rotational DOFs represent the rotation to be applied at the current step while
the overall rotation R relative to the initial orientation of T up to the current state is kept
separate. At each step, the values obtained through optimization for {θx, θy, θz} are then
used to update R,

R := RyRxRzR

where Ra is the rotation matrix about axis a ∈ {x, y, z} by angle θa. Lastly, we apply
rotation before translation.

Given a point pi on T in its initial configuration, we can compute the point’s current
position p as

p = RyRxRzRpi + c. (4.2.1)

Obtaining pi from p is quite simple as the inverse of a rotation matrix is its transpose.

pi = (RyRxRzR)T (p− c) (4.2.2)

However, while computing the gradients, we are rarely interested in pi, but in Rpi instead.

pc = Rpi = (RyRxRz)T (p− c) (4.2.3)

Using this parameterization makes computing the gradient of the distance between two
points much easier and cleaner as we shall see in the next section.

4.3. Optimization
To minimize the energy of our system, we use Newton’s method. This requires computing

the gradient of the energy and its Hessian w.r.t. the DOFs defined in Section 4.2. The
energy components Ef and Eb only depend on the positional DOFs c of elements and are
rather trivial to derive. Hence, we shall not go into detail in regards to how we derive their
contribution to the gradient. We begin by working out the definition of the gradients of
the contact component of the energy, continue by looking at a few special cases where the
gradient evaluation is more involved, and finish off by explaining how we obtain the Hessian.

4.3.1. Gradient of the contact energy

Given D, the square of the distance between two points on two elements’ circles is

D = d2
c = |P1 − P2|2 = (P1 − P2)2

x + (P1 − P2)2
y + (P1 − P2)2

z = D2
x +D2

y +D2
z . (4.3.1)

We can rewrite the equation of d in Theorem 3.3.1 as

dt =
√
D − r1 − r2 =

√
D − r.
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From Equation 4.1.3, if d < 0, then we have

Ec = −αd2
t ln
√
D

r

d

dq
E = −αdt

1√
D

d

dq
D ln

√
D

r
− αd2

t

1
2D

d

dq
D. (4.3.2)

4.3.2. Gradient of the squared distance between two points

We wish to compute the gradient of D as defined in Equation 4.3.1. The derivation of this
form of D involves fewer terms and is generally easier to handle than the form in Equation
3.1.2. First we further define

P1 = R1yR1xR1zp1c + c1

P2 = R2yR2xR2zp2c + c2

using Equations 4.2.1 and 4.2.3.
Points P1 and P2 were obtained by solving for θ as explained in Section 3.2. This θ also

has a dependency on the set of DOFs q1 and q2 and we must thus account for it in the
gradient. Hence the gradient of D has the following form

d

dq
D = ∂D

∂q
+ ∂D

∂θ

∂θ

∂q
. (4.3.3)

The term ∂D
∂θ

will be zero for points obtained directly from solving Equation 3.2.4 since
g = ∂D

∂θ
= 0 by definition at such points. However, for non-minimal points as described in

Section 4.1.4, that is not the case. We thus need to compute the term ∂θ
∂q
. There is no closed

form expression of θ w.r.t. the set of DOFs q so we use sensitivity analysis to compute it.
We wish for g = ∂D

∂θ
to remain the same as q changes

d

dq
g = ∂g

∂q
+ ∂g

∂θ

∂θ

∂q
= 0 (4.3.4)

and from here we isolate ∂θ
∂q

∂θ

∂q
= −∂g

∂q

(
∂g

∂θ

)−1
. (4.3.5)

For non-minimal points, the angle θ′ = θ + δ has a linear relationship with θ.
∂g

∂θ′
∂θ′

∂q
= ∂g

∂θ′
∂θ′

∂θ

∂θ

∂q
= ∂g

∂θ′
∂θ

∂q
(4.3.6)

Hence, we only need to compute ∂θ
∂q

once per overlap volume. The value ∂g
∂θ

needs to be
computed on a per-point basis, but it is rather cheap to do so. Refer to Appendix B for the
full derivation of D.
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4.3.3. Multi-ring elements

Some of the elements we are interested in are not composed of a single ring (tori), but
of multiple. We shall call these multi-ring elements.
Definition 4.3.1 (Multi-ring elements). A multi-ring element (MRE) T is an element com-
posed of multiple rings (tori) of possibly different sizes. We will refer to these rings as
sub-elements. A sub-element Ts will be shifted by a fixed offset d from T s.t. its center is
cs = c+Rd, where R is the rotation T has been subjected to. Consequently, all sub-elements
in T are subjected to the translations and rotations applied to T .

The energy contribution of MREs can be computed in the same way when it comes to
the components Eb and Ef , i.e., simply use the MRE’s positional DOFs. For the contact
energy Ec however, the approach is more involved: each sub-element of an MRE needs to be
checked against all sub-elements of another MRE to detect contacts and overlaps between
both MREs. Then, the contributions to the gradient need to be added together correctly
since MREs will be displaced as a single unit at the optimization step.

Given an MRE T , consider one of its sub-elements Ts. Any point on the surface of Ts
may be described using Equation 4.2.1: ps = RsyRsxRszRmpsi + cs, where Rm = RRs, the
matrix product of the rotation R applied to T and the initial rotation Rs applied to Ts w.r.t.
the frame of T . Contact energy Ec can be computed normally between sub-elements with
respect to DOFs qs = [csx, csy, csz, θsx, θsy, θsz]T . We have the following relationship between
q and qs

∂csa
∂ca

= 1

∂csa
∂θb

=
(
∂

∂θb
RyRxRzRd

)
a

∂θsb
∂ca

= 0

∂θsb
∂θb

= 1

for ca ∈ {cx, cy, cz} and θb ∈ {θx, θy, θz}.
By the Chain Rule, we have
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∂

∂q
Ec =

∑
s



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

( ∂
∂θx
RyRxRzRd)x ( ∂

∂θx
RyRxRzRd)y ( ∂

∂θx
RyRxRzRd)z 1 0 0

( ∂
∂θy
RyRxRzRd)x ( ∂

∂θy
RyRxRzRd)y ( ∂

∂θy
RyRxRzRd)z 0 1 0

( ∂
∂θz
RyRxRzRd)x ( ∂

∂θz
RyRxRzRd)y ( ∂

∂θz
RyRxRzRd)z 0 0 1


∂

∂qs
Ec.

(4.3.7)
With Equation 4.3.7, we can easily compute the MRE’s gradient contribution ∂

∂q
Ec by

computing the gradient contribution ∂
∂qs
Ec of each of its sub-elements.

The use of MREs can lead to cases where a neighbour check as described in Section 3.4
becomes insufficient to maintain the initial neighbour element relationships. Consider an
MRE shaped like a gyroscope: a neihbouring element interlocking with a single of the MRE’s
sub-elements can be positioned in four ways, relative to the other sub-elements, while still
maintaining the interlocking relationship. Fortunately, we can easily determine in which
position the element lies: after solving for the point p on the inside of the MRE, as described
in Definition 3.4.2, verify that p is on the correct side of the planes defined by the other sub-
elements. Evaluating the dot product of the vector p−c and the normals of the sub-elements
allows us to determine on which side of their planes p resides. The signs of the dot products
need to remain the same at every step of the simulation to preserve the DIM’s topology.

4.3.4. Periodic boundary conditions

As described in Section 4.1.3, all elements in a sheet depend on the elements of a single,
main unit cell. The unit cells adjacent to the main one are translated copies of the main
unit cell. Rotational DOFs will be identical between an element in a copied unit cell and its
corresponding element in the main unit cell. Positional DOFs of an element in a copied cell
will depend linearly on some, if not all, elements in the main cell.

Given the gradient of the energy with respect to the DOFs of the sheet qS, we can then
obtain the gradient of the energy with respect to the DOFs of the main unit cell qC

∂E

∂qC
= ∂E

∂qS

∂qS
∂qC

. (4.3.8)

4.3.5. Hessian computation

Our approach to optimization is to use Newton’s method to minimize the energy of the
system

Hdq = − ∂

∂qC
E.
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At each step, we move in the direction of dq. While dq · ∂
∂qC

E is non-negative, we regularize
the system by adding γI to H, where γ is a scalar that increases with each attempt, before
resolving for dq once more.

We observed that using simple gradient descent to reach optimality was much slower than
using Newton’s method, even when taking into account the time to compute the Hessian.
Moreover, gradient descent tends to reach points of zero gradient that visually do not appear
to be minimal.

We compute the Hessian using a finite difference approximation

∂2E

∂xi∂xj
= gi(x+ εej)− gi(x+ εej)

4ε + gj(x+ εei)− gj(x+ εei)
4ε (4.3.9)

where gi is the value of the gradient at position i, ei is the unit vector with position i set to
1 and the rest 0, and ε is a small positive scalar. We use ε = 1e− 7.

From time to time, the optimization routine will converge to saddle points of the energy
function where the gradient is of magnitude 0, but the energy is not minimal. For instance,
consider the case where two elements are being pressed into one another with perfectly
antiparallel updates. Shifting one slightly in a direction perpendicular to this motion would
then allow the two elements to keep moving unhindered.

To solve this, we adopt Duenser et al.’s approach [10]: if a point of equilibrium is reached,
we test the Hessian of the system’s energy for indefiniteness by evaluating its eigenvalues.
If any eigenvalue is negative, we perturb the system of elements by shifting all DOFs in the
direction of the most negative eigenvalue’s eigenvector repeatedly until the Hessian has no
more negative eigenvalues. Then we proceed with the minimization once more.
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Algorithm 4.3.2. Simulation algorithm for sheets of discrete interlocking elements

Initialize elements
Initialize forces
While !converged

Compute energy Ecur and gradient grad
Compute Hessian H approximation
Do

Solve for dq in Hdq = −grad
H = H + εI

ε = 2ε
While dq · grad ≥ 0
Do

q = q + δdq

δ = δ/2
Update elements that are not part of the main unit cell
Compute new energy Enew

While (Enew > Ecur or Neighbour constraint not satisfied)
if grad == 0 and H indefinite

Perturb system
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Chapter 5

Macromechanical characterization

Our goal is to explore the impact of topology and element shape in the macromechanical
deformation limits of a DIM. Hence, we require a manner to induce deformation in a DIM
as well as a method to evaluate the degree of deformation that is observed in said DIM. In
this chapter, we explain our approach in doing so: we set up a number of planar deformation
experiments to explore the configuration space of various designs of rigid DIMs. At the
beginning of each experiment, the corner elements of the sheet of DIM are given position
constraints as described in Section 4.1.4. Our minimization routine is run until a point of
zero gradient is reached where the Hessian is not indefinite, at which point we measure the
deformation of the sheet.

5.1. Constraint definition
The deformation constraints are set up in a way such as to stretch the sheet out in a given

direction D that is parallel to the sheet. The extent to which a DIM can be stretched in
the direction of D is generally dependent on the elements’ relative positions to one another
in the in-plane direction perpendicular to D. We shall label this second direction Dperp.
The constraints put on the four corners of the sheet (sheets are typically of rectangle or
parallelogram shape) depend on both D and Dperp.

Given the center of mass Cm of the sheet (the average position of all elements), we define
a vector vi for each corner element {e1, e2, e3, e4} pointing from Cm to the corresponding
element’s starting position. The components of vi parallel to D and Dperp are then derived
and scaled by pre-defined scalars to yield the element’s target position

pt = Cm + (1 + l1)vi ·D
|D|2

D + (1 + l2)vi ·Dperp

|Dperp|2
Dperp (5.1.1)

where l1 and l2 determine how far in a direction the sheet shall be stretched.
A given target position is not always attainable. We wish that in that case, our minimiza-

tion routine finds a configuration where neither direction D or Dperp is disproportionately



Fig. 5.1. Target position pt of element e.

penalized with respect to the other. For a given value of l2, l1 is incrementally increased until
any of the corner elements cannot be positioned within a certain threshold distance of its
target position when the simulation ends. Elements are reset to their starting configuration
whenever l1 is incremented.

5.2. Deformation measurement
We evaluate sheet deformation by adopting the usual deformation measurement used in

FEM and applying it to two-dimensional space. Given a quadrilateral, define its undeformed
corners as x̄ = (x̄, ȳ)T , its deformed corners as x(x̄) = (x(x̄, ȳ), y(x̄, ȳ))T , and the corners’
displacement vectors as u(x̄) = (u(x̄, ȳ), v(x̄, ȳ))T .
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We compute the matrix

F = ∇u + I =
∂u∂x̄ ∂u

∂ȳ
∂v
∂x̄

∂v
∂ȳ

+ I (5.2.1)

The eigenvalues of C = FTF describe the deformation to which the sheet was subjected
relative to its initial state (note that we report deformation as λ− 1 in Chapter 6). Since we
always have l1 ≥ l2 in our experiments, the larger eigenvalue usually pertains to the principal
deformation direction D whereas the smaller one to the perpendicular direction Dperp. When
this is the case, we usually have

λ1 − 1 ∼ l1

λ2 − 1 ∼ l2

where λ1 > λ2. In some cases, deformation along D is more constrained than along Dperp

and the larger eigenvalue describes the deformation along Dperp instead. Hence, the above
similarities will not hold.

We wish to stress the fact that this deformation is relative to the initial state of the
sheet of DIM. DIMs do not have a true rest state: there are infinitely many valid configura-
tions in which a DIM can lie at rest while free from the influence of external forces. Hence,
the measurements we obtain through our experiments are inherently dependent on the ini-
tial configurations we arbitrarily defined. To keep our results meaningful, we maintain the
relative position of elements the same when we tune parameters of specific designs.
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Chapter 6

Results

We wish to study the mechanical behaviour of DIMs with an emphasis on the anisotropy
they exhibit to deformations as well as the coupling that they possess between different
deformation directions. To that effect, we subject a number of different DIM designs to
deformations in a direction D while also constraining the relative deformation in the in-plane
perpendicular direction Dperp. For brevity, we refer to deformation in the main direction D
simply as deformation. We expect to see a decrease in deformation as the relative deformation
along Dperp increases due to reduced shifting and stacking of elements. Similarly, an increase
in minor radius should lead to a decrease in deformation since thicker rings have less space
to move relative to each other. Conversely, an increase in major radius should allow greater
deformations.

6.1. Simulation speed
Our simulations were run on a laptop using an Intel(R) Core(TM) i7-4720HQ CPU

processor. Optimizing for speed was not our main concern, hence, we did not pursue speed
gains other than basic optimizations to avoid unnecessary computations when elements are
obviously too far apart to make contact. Parallelizing of the evaluation of intersections and
interlocking is likely possible by having multiple threads be responsible for different pairs of
elements at the same time.

Refer to Figure 6.1 for time measurements of simulation length, where we pull a DIM in
a given direction until we converge to a minimum. Topologies that are more densely packed
(e.g., designs 3.1 and 5.2) tend to lead to smaller updates (in terms of magnitude) at each
time step, thus requiring more steps for full extension, while each step is itself more expensive
to compute due to the higher number of proximate pairs of tori. This also occurs when the
sheet is being compressed (i.e., l2 ≤ 0) as can be observed in the line plot of Figure 6.1 by
the blue lines spanning more time steps than their red counterparts.
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Fig. 6.1. The blue lines are for tests with l2 = −0.25 whereas the red lines are for tests
with l2 = 0.25. Some of the designs take slower steps at the beginning where the initial
configuration contains intersecting elements for consistency across designs. Note the spike
in time for design 5.2 in the line plot, indicating that a step could not be taken and a
perturbation of the system had to take place. These performance tests were performed in
the same direction for all cases.
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6.2. DIM designs
We now present our different designs:

Name Sheet Details Elements

Design
1.1

Ring elements are
connected in a cartesian

grid fashion. Possesses the
same topology as design

1.2.

Single ring elements

Design
1.2

Ring elements are
connected in a cartesian

grid fashion. Possesses the
same topology as design

1.1.

Single ring elements

Design
1.3

MREs are connected in a
cartesian grid fashion.

Mixture of

Design
2

Ring elements are
connected diagonally. Single ring elements

Design
3.1

Ring elements are
connected along three

directions. Possesses the
same topology as design

3.2.

Single ring elements

Design
3.2

Ring elements are
connected along three

directions. Possesses the
same topology as design

3.1.

Single ring elements

Fig. 6.2. Table of our DIM designs (first half)
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Name Sheet Details Elements

Design
3.3

MREs are connected along
three directions.

Design
3.4

Mixture of single ring
elements and MREs
connected along three

directions.

Single ring elements and

Design
4.1

MREs are connected in a
cartesian grid fashion.

Design
4.2

MREs are connected in a
cartesian grid fashion.

Design
4.3

MREs are connected in a
cartesian grid fashion.

Design
5.1

MREs are connected in a
cartesian grid fashion.

Design
5.2

MREs are connected
diagonally.

Fig. 6.3. Table of our DIM designs (second half).

52



6.3. Planar deformations
As described in Section 5, we subject sheets of rigid DIMs to planar deformations and

measure the extent to which it can be deformed in a particular direction as described in
Section 5.2. By varying design parameters, namely the minor radius of elements and, when
sensible, the major radius as well (see designs 1.1 vs 1.2 and designs 3.1 vs 3.2 in Figure 6.2),
we explore how they influence the space of possible deformations. Scaling equally both
minor and major radii of all elements in a sheet will lead to the exact same deformation
as the unscaled version of the sheet as long as relative positions of elements are also scaled
accordingly. The deformation measurements reported are obtained by taking λ1 − 1 where
λ1 is the largest eigenvalue of C as described in Section 5.2.
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Fig. 6.4. Deformations of designs 1.1, 1.2 and 1.3 in different directions at varying values
of l2.
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Fig. 6.5. Deformations of designs 3.1 and 3.2 in different directions at varying values of l2.

55



Design 3.3 Design 3.4
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Fig. 6.6. Deformations of designs 3.3 and 3.4 in different directions at varying values of l2.

56



Design 4.1 Design 4.2 Design 4.3

0

30

60

90

120

150

180

210

240

270

300

330

0

0.1

0.2

0.3

0.4

-0.125

0.0

0.125

0.25

D
perp

constraint l
2

0

30

60

90

120

150

180

210

240

270

300

330

0

0.1

0.2

0.3

-0.25

-0.125

0.0

0.125

0.25

D
perp

constraint l
2

0

30

60

90

120

150

180

210

240

270

300

330

0

0.02

0.04

0.06

0.08

-0.25

-0.125

0.0

D
perp

constraint l
2

r= 1
10R

0

30

60

90

120

150

180

210

240

270

300

330

0

0.1

0.2

0.3

0.4

-0.125

0.0

0.125

0.25

0

30

60

90

120

150

180

210

240

270

300

330

0

0.1

0.2

0.3

-0.25

-0.125

0.0

0.125

0.25

0

30

60

90

120

150

180

210

240

270

300

330

0

0.02

0.04

0.06

0.08

-0.25

-0.125

0.0

r= 1
20R

0

30

60

90

120

150

180

210

240

270

300

330

0

0.1

0.2

0.3

0.4

-0.125

0.0

0.125

0.25

0

30

60

90

120

150

180

210

240

270

300

330

0

0.1

0.2

0.3

0.4

-0.25

-0.125

0.0

0.125

0.25

0

30

60

90

120

150

180

210

240

270

300

330

0

0.05

0.1

0.15

-0.25

-0.125

0.0

r= 1
40R

0

30

60

90

120

150

180

210

240

270

300

330

0

0.1

0.2

0.3

0.4

-0.125

0.0

0.125

0.25

0

30

60

90

120

150

180

210

240

270

300

330

0

0.1

0.2

0.3

0.4

-0.25

-0.125

0.0

0.125

0.25

0

30

60

90

120

150

180

210

240

270

300

330

0

0.1

0.2

-0.25

-0.125

0.0

Fig. 6.7. Deformations of designs 4.1, 4.2, and 4.3 in different directions at varying values
of l2.
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Fig. 6.8. Deformations of designs 2, 5.1, and 5.2 in different directions at varying values of
l2.
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Fig. 6.9. The interlocking directions, described by the red lines, are defined by the direction
in which neighbours interlock with each other. These directions usually exhibit minimum de-
formation. The black lines indicate the directions of maximum deformation and are typically
equidistant from the nearest interlocking directions.

From our set of experiments, we can make the following observations:
• Deformation is typically minimal when the deformation direction aligns with the
direction in which neighbours align. Conversely, deformation is typically maximal
when the deformation direction is furthest away (in terms of angle) from aligning
with any interlocking direction (see Figure 6.9). This latter case can be explained
by the fact that elements are free to shift in space such as to align with their non-
interlocking neighbours thus allowing greater deformation ranges. In the former case
though, deformation in the given direction becomes limited by a select subset of the
sheet’s elements. As they are tensed and come into contact with their neighbours,
no amount of shifting from adjacent elements will allow greater deformation.
• Decreasing the minor radius of elements relative to their major radius, unsurprisingly,
increases the extent to which a DIM can deform. By being thinner, the elements have
more room for displacement before coming into contact with their surrounding el-
ements. This effect is compounded as we deform in directions further and further
away from the interlocking direction of the sheet (see previous observation). This
compounding effect can be observed by comparing the differences between the mini-
mum and maximum deformations over all directions when we alter the minor radius.
Figure 6.10 clearly demonstrates this: a smaller minor radius leads to consistently
greater difference between the minimal and maximal deformations, with design 2
being somewhat of an exception. Moreover, it can also be observed by smoother
transitions from minimum to maximum deformation as we decrease the minor ra-
dius. This is particularly obvious in designs 1.2 and 4.3 where the curve of the
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Fig. 6.10. Effect of minor radius on the difference between the maximum and minimum
deformations. Design 2 distinguishes itself by a high amount of element stacking at small
l2 values which significantly reduces the minimum deformations observed, leading to larger
differences than at smaller relative minor radii.

deformation graphs in directions 0◦ and 90◦ are visibly less sharp as the minor radius
decreases. Lastly, the minor radius can also play a major role in the possible defor-
mation space by determining whether or not certain elements can align and overlap:
as elements become thicker, this phenomenon might become impossible which could
lead to a decrease in the displacement range as we see in design 2.
• Compression of the sheet in the direction orthogonal to the deformation direction typ-
ically allows greater deformation. This builds upon the first observation: the move-
ment of elements induced by the compression typically is equivalent to the shifting
that these elements need to go through to allow a greater deformation. The greater
the compression, the more the elements may shift into a more beneficial configuration
for deformation. In a few rare cases though, compression will instead limit deforma-
tion by excessively stacking rings which then leaves very little room for the elements
to move in the desired direction. Design 2 is a perfect example of this (see Figures
6.8 and 6.10) where the deformation in the direction range of (−15◦, 15◦) becomes
much more significant as the minor radius decreases, especially at lower values of l2.
• Altering the major radius of a subset of elements does not change the core behaviour
of an interlocking pattern, i.e. directions of maximum and minimum deformations
remain the same. In designs 1.1 and 3.1, we halved the major radius of all elements
not aligned with the sheet’s plane to obtain designs 1.2 and 3.2 (see Figures 6.4
and 6.5) and observed this. Increasing the major radius will lead to an increase in
deformation in all directions. We can observe a trend in the difference between the
minimum and maximum deformations observed over all directions: as we increase l2,
this difference decreases at roughly the same rate despite the different element sizes
(see Figure 6.11).
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Fig. 6.11. Effect of altering the major radius of a subset of elements in the DIM sheet (see
designs 1.1 vs 1.2 and 3.1 vs 3.2). The magnitude of the difference is larger with a larger R,
but the decrease of said difference remains roughly the same as l2 increases.
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6.4. Sheet shape
We adopt a unit cell implementation to simulate and to study infinite tilings of DIMs.

Contrary to our expectations, the shape of the unit cell and its tiling still influence the sheet’s
deformation behaviour.

As we can observe in Figure 6.12, the deformation peak in the direction of 30◦ is much
wider than the other peaks in the directions of 90◦ and 150◦. When we arrange the elements
in a more rectangular fashion such as in Figures 6.5 and 6.6 however, the designs do not
appear to favor any of the three deformation directions over the others. It is unclear to us
why this occurs.
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Fig. 6.12. Deformations of designs 3.1, 3.2, and 3.3 in different directions at varying values
of l2 when using a different configuration of elements, but the same topology of interlocking.
The deformation peaks in the direction of 30◦ are much wider than the peaks in the 90◦ and
the 150◦ directions.
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Chapter 7

Conclusion

This thesis represents the first attempt to formally characterize the mechanical behaviour of
DIMs, a class of materials that distinguishes itself from others by its biphasic response to
deformation. Our work focused on rigid DIMs and the deformations that they can be sub-
jected to. We achieve this through an energy-based method that leverages the geometrical
properties of the torus to minimize overlap between elements of the DIM and maintain the
neighbour relationship of pairs of elements at every time step. We show that the distance
between two circles in three dimensional space can be used to determine whether or not two
tori overlap. Through a similar set of operations, we also show how to recognize whether
or not two tori are interconnected. The method thus works by using an energy to induce
deformation while penalizing for intersection between elements and adjusting step sizes to
maintain the state of interconnectedness at every time step. The use of a unit cell imple-
mentation allows us to study the behaviour of DIMs in a manner that is independent from
the simulated sample’s size.

The lack of a manner in which to objectively describe the rest state of a DIM is a major
limitation: it makes it very hard to compare the behaviour between different DIMs while
also making it challenging to do physical experiments to validate our simulations’ results.

Otherwise, the use of a score function specifically built for tori is certainly a limitation,
however, it should be possible to extend it to other shapes as well. For instance, our score
function could easily be adapted for a rod-like shape composed of a cylinder with a half-
sphere at both bases: this shape could then be used to create a much greater variety of
elements than is possible with just tori.

Lastly, our method is also limited by the fact that, like most minimization routines, it
can find a set of parameter values that are locally minimal, but not globally minimal. From
our experiments, it seems that such minima are obtained very rarely, but they do occur as
can be seen by the jittery lines of some graphs among our results.



A natural extension of this work would be to study out-of-plane deformations on planar
arrangements of DIMs and deformations in 3D arrangements of DIMs rather than planar
ones. Conversely, looking into elastic DIMs with the goal of better understanding the elastic
regime that DIMs can experience (which this work ignores) is also an interesting avenue.
An important problem to solve would be the inverse task of deriving a DIM from a specific
deformation behaviour. Because of their discrete nature, this would be a challenging en-
deavour, but it would likewise make finding new and interesting applications for DIMs much
easier, which is ultimately our goal.
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Appendix A

Circle-to-circle distance

We solve for θ in the following way. As a reminder:

g = d

dθ
|P −K|2 = 2(N1 ·∆(θ))(N1 ·∆′(θ)) + 2(|N1 ×∆(θ)| −R1)N1 ×∆(θ) ·N1 ×∆′(θ)

|N1 ×∆(θ)|

= ∆(θ) ·∆′(θ)−R1
N1 ×∆(θ) ·N1 ×∆′(θ)

|N1 ×∆(θ)| = 0.

From g, we can define the following

H(θ) = |N1 ×∆(θ)|2
(
∆(θ) ·∆′(θ)

)2
−R2

1

(
N1 ×∆(θ) ·N1 ×∆′(θ)

)2
= 0.

Letting γ = cos θ and σ = sin θ, we obtain the following:

H(γ, σ) =
(
p0(γ) + σp1(γ)

)(
p2(γ) + σp3(γ)

)2
−R2

1

(
p4(γ) + σp5(γ)

)2
= p6(γ) + σp7(γ)

where:
a0 = R2(c2 − c1) · U

a1 = R2(c2 − c1) · V

a2 = |N1 × (c2 − c1)|2

a3 = R2N1 × (c2 − c1) ·N1 × U

a4 = R2N1 × (c2 − c1) ·N1 × V

a5 = R2
2|N1 × U |2

a6 = R2
2N1 × U ·N1 × V

a7 = R2
2|N1 × V |2



p0 = (a2 + a7) + 2a3γ + (a5 − a7)γ2

p1 = 2(a4 + a6γ)

p2 = a1γ

p3 = −a0

p4 = −a6 + a4γ + 2a6γ
2

p5 = −a3 + (a7 − a5)γ

p6 = p0
(
p2

2 + (1− γ2)p2
3

)
+ (1− γ2)(2p1p2p3)−R2

1

(
p2

4 + (1− γ2)p2
5

)
p7 = 2p0p2p3 + p1

(
p2

2 + (1− γ2)p2
3

)
−R2

1(2p4p5)

Lastly, we solve for p6 = −σp7 and rearrange the terms to obtain

φ(γ) = p2
6 − (1− γ2)p2

7 = 0.

The roots of φ(γ) are then used to find a series of points on C2. For each point, we compute
its distance to C1 using equation 3.1.2. These distances can then be used to compute energy
contributions to the system of elements. See [11] for a more in depth explanation of the
derivations.
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Appendix B

Gradient of the torus-to-torus distance

B.1. Distance gradient
Here we cover the derivation of the different components needed to compute the term ∂D

∂q

of equation 4.3.3.

D = d2
c = |P1 − P2|2 = (P1 − P2)2

x + (P1 − P2)2
y + (P1 − P2)2

z = D2
x +D2

y +D2
z

∂D

∂c1
= 2Dx

∂Dx

∂c1
+ 2Dy

∂Dy

∂c1
+ 2Dz

∂Dz

∂c1
∂Dx

∂c1
=
[
1 0 0

]T ∂Dy

∂c1
=
[
0 1 0

]T ∂Dz

∂c1
=
[
0 0 1

]T
∂D

∂θ1
=
[
∂D
∂θ1x

∂D
∂θ1y

∂D
∂θ1z

]T
∂D

∂θ1x
= (P1 − P2) · (R1y

∂

∂θ1x
R1xR1zp1c)

∂D

∂θ1y
= (P1 − P2) · ( ∂

∂θ1y
R1yR1xR1zp1c)

∂D

∂θ1z
= (P1 − P2) · (R1yR1x

∂

∂θ1z
R1zp1c)

∂D

∂c2
= 2Dx

∂Dx

∂c2
+ 2Dy

∂Dy

∂c2
+ 2Dz

∂Dz

∂c2
∂Dx

∂c2
=
[
−1 0 0

]T ∂Dy

∂c2
=
[
0 −1 0

]T ∂Dz

∂c2
=
[
0 0 −1

]T
∂D

∂θ2
=
[
∂D
∂θ1x

∂D
∂θ1y

∂D
∂θ1z

]T
∂D

∂θ2x
= −(P1 − P2) · (R2y

∂

∂θ2x
R2xR2zp2c)



∂D

∂θ2y
= −(P1 − P2) · ( ∂

∂θ2y
R2yR2xR2zp2c)

∂D

∂θ2z
= −(P1 − P2) · (R2yR2x

∂

∂θ2z
R2zp2c)

B.2. Sensitivity analysis
Here we cover the derivation of the values necessary for sensitivity analysis to obtain the

term ∂θ
∂q

in equation 4.3.5. Note that Ra is a scalar (major radius of Ta) whereas Rab is a
rotation matrix applied to Ta about axis b ∈ {x,y,z}. Likewise, θ is the angle at which a
point is evaluated on C2 whereas θa =

[
θax θay θaz

]T
is a vector of rotation angles applied

to Ta.

∆(θ) = c2 − c1 +R2
(

cos θU + sin θV
)

∆′(θ) = R2
(
− sin θU + cos θV

)
g = ∂D

∂θ
= 2(N1 ·∆(θ))(N1 ·∆′(θ)) + 2(|N1 ×∆(θ)| −R1)N1 ×∆(θ) ·N1 ×∆′(θ)

|N1 ×∆(θ)|

∂g

∂θ
=2(N1 ·∆′′(θ))(N1 ·∆(θ)) + 2(N1 ·∆′(θ))(N1 ·∆′(θ))

+ 2((N1 ×∆(θ)) ·N1 ×∆′(θ))(N1 ×∆′(θ)) ·N1 ×∆(θ)
|N1 ×∆(θ)|2

+ 2(|N1 ×∆(θ)| −R1)(N1 ×∆′′(θ)) ·N1 ×∆(θ)
|N1 ×∆(θ)|

+ 2(|N1 ×∆(θ)| −R1)(N1 ×∆′(θ)) ·N1 ×∆′(θ)
|N1 ×∆(θ)|

− 2(|N1 ×∆(θ)| −R1) [(N1 ×∆′(θ)) ·N1 ×∆(θ)][(N1 ×∆(θ)) · (N1 ×∆′(θ))]
|N1 ×∆(θ)|3

∂∆(θ)
∂c1x

=
[
−1 0 0

]T ∂∆(θ)
∂c1y

=
[
0 −1 0

]T ∂∆(θ)
∂c1z

=
[
0 0 −1

]T
∂∆(θ)
∂c2x

=
[
1 0 0

]T ∂∆(θ)
∂c2y

=
[
0 1 0

]T ∂∆(θ)
∂c2z

=
[
0 0 1

]T
Considering that U = R2yR2xR2zUc, V = R2yR2xR2zVc, N1 = R1yR1xR1zN1c:

∂∆(θ)
∂θ2

=
[
∂∆(θ)
∂θ2x

∂∆(θ)
∂θ2y

∂∆(θ)
∂θ2z

]T
∂∆(θ)
∂θ2x

= R2 · (R2y
∂

∂θ2x
R2xR2z)

(
cos θUc + sin θVc

)
∂∆(θ)
∂θ2y

= R2 · (
∂

∂θ2y
R2yR2xR2z)

(
cos θUc + sin θVc

)
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∂∆(θ)
∂θ2z

= R2 · (R2yR2x
∂

∂θ2z
R2z)

(
cos θUc + sin θVc

)
∂∆′(θ)
∂θ2

=
[
∂∆′(θ)
∂θ2x

∂∆′(θ)
∂θ2y

∂∆′(θ)
∂θ2z

]T
∂∆′(θ)
∂θ2x

= R2 · (R2y
∂

∂θ2x
R2xR2z)

(
− sin θUc + cos θVc

)
∂∆′(θ)
∂θ2y

= R2 · (
∂

∂θ2y
R2yR2xR2z)

(
− sin θUc + cos θVc

)
∂∆′(θ)
∂θ2z

= R2 · (R2yR2x
∂

∂θ2z
R2z)

(
− sin θUc + cos θVc

)
∂N1

∂θ1
=
[
∂N1
∂θ1x

∂N1
∂θ1y

∂N1
∂θ1z

]T
∂N1

∂θ1x
= (R1y

∂

∂θ1x
R1xR1z)N1c

∂N1

∂θ1y
= ( ∂

∂θ1y
R1yR1xR1z)N1c

∂N1

∂θ1z
= (R1yR1x

∂

∂θ1z
R1z)N1c

∂g

∂c1
=2(N1 ·∆′(θ))(N1 ·

∂

∂c1
∆(θ)) + 2((N1 ×∆(θ)) ·N1 ×

∂

∂c1
∆(θ))(N1 ×∆′(θ)) ·N1 ×∆(θ)

|N1 ×∆(θ)|2

+ 2(|N1 ×∆(θ)| −R1)
(N1 ×∆′(θ)) ·N1 × ∂

∂c1
∆(θ)

|N1 ×∆(θ)|

− 2(|N1 ×∆(θ)| −R1)
[(N1 ×∆′(θ)) ·N1 ×∆(θ)][(N1 ×∆(θ)) ·N1 × ∂

∂c1
∆(θ)]

|N1 ×∆(θ)|3

∂g

∂c2
=2(N1 ·∆′(θ))(N1 ·

∂

∂c2
∆(θ)) + 2((N1 ×∆(θ)) ·N1 ×

∂

∂c2
∆(θ))(N1 ×∆′(θ)) ·N1 ×∆(θ)

|N1 ×∆(θ)|2

+ 2(|N1 ×∆(θ)| −R1)
(N1 ×∆′(θ)) ·N1 × ∂

∂c2
∆(θ)

|N1 ×∆(θ)|

− 2(|N1 ×∆(θ)| −R1)
[(N1 ×∆′(θ)) ·N1 ×∆(θ)][(N1 ×∆(θ)) ·N1 × ∂

∂c2
∆(θ)]

|N1 ×∆(θ)|3

75



∂g

∂θ2
=2(N1 ·

∂

∂θ2
∆′(θ))(N1 ·∆(θ)) + 2(N1 ·∆′(θ))(N1 ·

∂

∂θ2
∆(θ))

+ 2((N1 ×∆(θ)) · (N1 ×
∂

∂θ2
∆(θ)))(N1 ×∆′(θ)) ·N1 ×∆(θ)

|N1 ×∆(θ)|2

+ 2(|N1 ×∆(θ)| −R1)
(N1 × ∂

∂θ2
∆′(θ)) ·N1 ×∆(θ)
|N1 ×∆(θ)|

+ 2(|N1 ×∆(θ)| −R1)
(N1 ×∆′(θ)) ·N1 × ∂

∂θ2
∆(θ)

|N1 ×∆(θ)|

− 2(|N1 ×∆(θ)| −R1)
[(N1 ×∆′(θ)) ·N1 ×∆(θ)][(N1 × ∂

∂θ2
∆(θ)) ·N1 ×∆(θ)]

|N1 ×∆(θ)|3

∂g

∂θ1
=2( ∂

∂θ1
N1 ·∆′(θ))(N1 ·∆(θ)) + 2(N1 ·∆′(θ))(

∂

∂θ1
N1 ·∆(θ))

+ 2((N1 ×∆(θ)) · ( ∂

∂θ1
N1 ×∆(θ)))(N1 ×∆′(θ)) ·N1 ×∆(θ)

|N1 ×∆(θ)|2

+ 2(|N1 ×∆(θ)| −R1)
( ∂
∂θ1
N1 ×∆′(θ)) ·N1 ×∆(θ)
|N1 ×∆(θ)|

+ 2(|N1 ×∆(θ)| −R1)
(N1 ×∆′(θ)) · ∂

∂θ1
N1 ×∆(θ)

|N1 ×∆(θ)|

− 2(|N1 ×∆(θ)| −R1)
[(N1 ×∆′(θ)) ·N1 ×∆(θ)][( ∂

∂θ1
N1 ×∆(θ)) ·N1 ×∆(θ)]

|N1 ×∆(θ)|3

We can now evaluate ∂θ
∂q

= −∂g
∂q

(
∂g
∂θ

)−1
.

76


	Résumé
	Abstract
	Contents
	List of figures
	List of abbreviations
	Remerciements
	Chapter 1. Introduction
	Chapter 2. Related work
	2.1. Cloth
	2.2. Planar sheets and assemblies
	2.3. Structured materials

	Chapter 3. Distance between elements
	3.1. Distance between a circle and a point
	3.2. Distance between a circle and a circle
	3.3. Detecting overlap between pairs of tori
	3.4. Maintaining the interlocking relationship between tori

	Chapter 4. System energy, gradient, and optimization
	4.1. System energy
	4.1.1. Energy from contacts
	4.1.2. Additional contacts
	4.1.3. Periodic boundary conditions
	4.1.4. Energy from forces

	4.2. System parameterization
	4.3. Optimization
	4.3.1. Gradient of the contact energy
	4.3.2. Gradient of the squared distance between two points
	4.3.3. Multi-ring elements
	4.3.4. Periodic boundary conditions
	4.3.5. Hessian computation


	Chapter 5. Macromechanical characterization
	5.1. Constraint definition
	5.2. Deformation measurement

	Chapter 6. Results
	6.1. Simulation speed
	6.2. DIM designs
	6.3. Planar deformations
	6.4. Sheet shape

	Chapter 7. Conclusion
	References
	Appendix A. Circle-to-circle distance
	Appendix B. Gradient of the torus-to-torus distance
	B.1. Distance gradient
	B.2. Sensitivity analysis


