
Université de Montréal

PatchUp: A Feature-Space Block-Level Regularization
Technique for Convolutional Neural Networks.

par

Mojtaba Faramarzi

Département d’informatique et de recherche opérationnelle
Faculté des arts et des sciences

Mémoire présenté en vue de l’obtention du grade de
Maître ès sciences (M.Sc.)

en Informatique

July 23, 2021

© Mojtaba Faramarzi, 2020

Université de Montréal
Faculté des arts et des sciences

Ce mémoire intitulé

PatchUp: A Feature-Space Block-Level Regularization
Technique for Convolutional Neural Networks.

présenté par

Mojtaba Faramarzi

a été évalué par un jury composé des personnes suivantes :

Aaron Courville
(président-rapporteur)

Sarath Chandar Anbil Parthipan
(directeur de recherche)

Claude Frasson
(membre du jury)

Résumé

Les modèles d’apprentissage profond à large capacité ont souvent tendance à présenter de
hauts écarts de généralisation lorsqu’ils sont entrainés avec une quantité limitée de données
étiquetées. Dans ce cas, des réseaux de neurones très profonds et larges auront tendance à
mémoriser les échantillons de données et donc ils risquent d’être vulnérables lors d’un léger
décalage dans la distribution des données au moment de tester. Ce problème produit une
généralisation pauvre lors de changements dans la répartition des données au moment du test.
Pour surmonter ce problème, certaines méthodes basées sur la dépendance et l’indépendance
de données ont été proposées. Une récente classe de méthodes efficaces pour aborder ce
problème utilise plusieurs manières de contruire un nouvel échantillon d’entrainement, en
mixant une paire (ou plusieurs) échantillons d’entrainement.

Dans cette thèse, nous introduisons PatchUp, une régularisation de l’espace des caracté-
ristiques au niveau des blocs dépendant des données qui opère dans l’espace caché en mas-
quant des blocs contigus parmi les caractéristiques mappées, sélectionnés parmi une paire
aléatoire d’échantillons, puis en mixant (Soft PatchUp) ou en échangeant (Hard PatchUp)
les blocs contigus sélectionnés. Notre méthode de régularisation n’ajoute pas de surcharge
de calcul significative au CNN pendant l’entrainement du modèle. Notre approche améliore
la robustesse des modèles CNN face au problème d’intrusion du collecteur qui pourrait appa-
raitre dans d’autres approches de mixage telles que Mixup et CutMix. De plus, vu que nous
mixons des blocs contigus de caractéristiques dans l’espace caché, qui a plus de dimensions
que l’espace d’entrée, nous obtenons des échantillons plus diversifiés pour entrainer vers dif-
férentes dimensions. Nos expériences sur les ensembles de données CIFAR-10, CIFAR-100,
SVHN et Tiny-ImageNet avec des architectures ResNet telles que PreActResnet18, PreAc-
tResnet34, WideResnet-28-10, ResNet101 et ResNet152 montrent que PatchUp dépasse ou
égalise les performances de méthodes de régularisation pour CNN considérée comme état de
l’art actuel. Nous montrons aussi que PatchUp peut fournir une meilleure généralisation pour
des transformations affines d’échantillons et est plus robuste face à des attaques d’exemples
contradictoires. PatchUp aide aussi les modèles CNN à produire une plus grande variété
de caractéristiques dans les blocs résiduels en comparaison avec les méthodes de pointe de
régularisation pour CNN telles que Mixup, Cutout, CutMix, ManifoldMixup et Puzzle Mix.

Mots clés: Apprentissage en profondeur, Réseau Neuronal Convolutif, Généralisation,
Régularisation, Techniques de régularisation dépendantes et indépendantes des données, Ro-
bustesse aux attaques adverses.

ii

Abstract

Large capacity deep learning models are often prone to a high generalization gap when
trained with a limited amount of labeled training data. And, in this case, very deep and wide
networks have a tendency to memorize the samples, and therefore they might be vulnerable
under a slight distribution shift at testing time. This problem yields poor generalization for
data outside of the training data distribution. To overcome this issue some data-dependent
and data-independent methods have been proposed. A recent class of successful methods to
address this problem uses various ways to construct a new training sample by mixing a pair
(or more) of training samples.

In this thesis, we introduce PatchUp, a feature-space block-level data-dependent regular-
ization that operates in the hidden space by masking out contiguous blocks of the feature map
of a random pair of samples, and then either mixes (Soft PatchUp) or swaps (Hard PatchUp)
these selected contiguous blocks. Our regularization method does not incur significant com-
putational overhead for CNNs during training. Our approach improves the robustness of
CNN models against the manifold intrusion problem that may occur in other state-of-the-
art mixing approaches like Mixup and CutMix. Moreover, since we are mixing the contiguous
block of features in the hidden space, which has more dimensions than the input space, we
obtain more diverse samples for training towards different dimensions. Our experiments
on CIFAR-10, CIFAR-100, SVHN, and Tiny-ImageNet datasets using ResNet architectures
including PreActResnet18, PreActResnet34, WideResnet-28-10, ResNet101, and ResNet152
models show that PatchUp improves upon, or equals, the performance of current state-of-the-
art regularizers for CNNs. We also show that PatchUp can provide a better generalization to
affine transformations of samples and is more robust against adversarial attacks. PatchUp
also helps a CNN model to produce a wider variety of features in the residual blocks com-
pared to other state-of-the-art regularization methods for CNNs such as Mixup, Cutout,
CutMix, ManifoldMixup, and Puzzle Mix.

Key words: Deep Learning, Convolutional Neural Network, Generalization, Regular-
ization, Data-dependent and Data-independent Regularization Techniques, Robustness to
Adversarial Attacks.

iii

Contents

Résumé . ii

Abstract . iii

List of tables . vi

List of figures . viii

List of Abbreviations . xii

Remerciements . xiii

Acknowledgements . xiv

Chapter 1. Introduction. 1

1.1. Machine Learning . 1

1.2. Convolutional Neural Networks . 2
1.2.1. Convolutional Layer . 2

1.3. Generalization and Regularization. 5

1.4. Contributions . 8

1.5. Thesis Layout. 9

Chapter 2. Regularization Techniques for CNNs. 10

2.1. Data-dependant Regularization Methods . 10
2.1.1. AutoAugment. 11
2.1.2. AugMix. 12
2.1.3. Mixup . 13
2.1.4. MetaMixup . 15
2.1.5. Cutout . 16
2.1.6. CutMix . 18
2.1.7. ManifoldMixup . 19

iv

2.1.8. Puzzle Mix . 21

2.2. Data-independent Regularization Methods . 21
2.2.1. DropBblock . 22

Chapter 3. PatchUp . 24

3.1. PatchUp . 25
3.1.1. Binary Mask Creation . 25
3.1.2. PatchUp Operation . 26
3.1.3. Learning Objective. 27
3.1.4. Algorithm . 27
3.1.5. PatchUp in Input Space. 28

3.2. Relation to Other Methods . 30
3.2.1. PatchUp Vs. ManifoldMixup: . 30
3.2.2. PatchUp Vs. CutMix: . 31

3.3. Conclusion . 32

Chapter 4. Experiments. 33

4.1. Data . 33

4.2. Experiment Setup and Hyper-parameter Tuning. 34

4.3. Generalization on Image Classification . 36

4.4. Robustness to Common Corruptions . 38

4.5. Generalization on Deformed Images . 40

4.6. Robustness to Adversarial Examples . 41

4.7. Effect on Activations . 44

4.8. PatchUp Interpolation Policy Effect . 46

4.9. Significance of loss terms . 47

4.10. Why random k? . 48

Chapter 5. Conclusion . 50

5.1. Future Work . 50

References . 52

v

List of tables

4.1 The hyper-parameters used for each model to compare the effect of each
regularization technique. The learning rate is denoted as lr. lr is multiplied
at each learning rate schedule step by the step factor. 34

4.2 Image classification error rates on Tiny-ImageNet. We run experiments five times
to report the mean and the standard deviation. Best performance result is shown
in bold, second best is underlined. The lower number is better. 36

4.3 Error rates comparison on SVHN. We run experiments five times to report the
mean and the standard deviation. Best performance result is shown in bold,
second best is underlined. The lower number is better. 36

4.4 Image classification task error rates on CIFAR-10 and CIFAR-100. We run
experiments five times to report the mean and the standard deviation. Best
performance result is shown in bold, second best is underlined. The lower number
is better. 37

4.5 Error rates in the test set on samples subject to affine transformations for
WideResNet-28-10 trained on CIFAR-100 with indicated regularization method.
We repeated each test for five trained models to report the mean and the standard
deviation of errors. Best performance result is shown in bold, second best is
underlined. 40

4.6 Error rates in the test set on samples subject to affine transformations for
PreActResNet34 trained on CIFAR-100 with indicated regularization method.
We repeated each test for five trained models to report the mean and the standard
deviation of errors. Best performance result is shown in bold, second best is
underlined. 41

4.7 Robust Accuracy of WideResNet-28-10 in the Tiny-ImageNet dataset against
adversarial 7-steps attacks with ε = 16

255 . Best performance result is shown in bold,
second best is underlined. The higher number is better (repeated five times). 41

vi

4.8 The validation error rate on CIFAR-100 for WideResNet-28-10 with Hard and
Soft PatchUp. The result is the mean and standard deviation of the experiment
for five runs. A smaller number indicates better performance. 48

4.9 WRN-28-10 using Hard PatchUp on CIFAR-100. repeated five times and reported
the mean and std. 49

vii

List of figures

1.1 Convolutional operation on a simple input using a vertical edge filter. The filter
convolved on the input with the stride of one. 3

1.2 Dilation and Padding. 4

1.3 A simple CNN model for house numbers digit (SVHN dataset) classification [52]. 5

1.4 The blue line shows the model’s performance in the training set, and the orange
line shows the accuracy of the model at test time. The green arrow illustrates the
generalization gap between training and unseen data. 6

2.1 Controller RNN samples a policy and trains model using five sub-policies created
based on the selected policy. Then, the searching algorithm receives the validation
accuracy as a reward signal and updates the controller RNN.. 11

2.2 For each example in the mini-batch, one of the 5 sub-policies is chosen uniformly
random to augment the image. Last row specifies the sub-policy that is applied
in each images. First number indicates the probability of applying each operation
and the second number shows the magnitude of the operation out of 10 (the image
is borrowed from AutoAugment paper [8]). 12

2.3 (Left) Mixup overview that shows the linear interpolation of a random pair of
samples (a dog and a cat as shown in the figure) using λ as a coefficient of
interpolation that is sampled from the Beta Distribution. Three curves show the
beta distribution for α equal to .5, 1, and 2 from left to right, respectively. (Right,
borrowed from [16]) Manifold intrusion for three pairs of samples from the MNIST
dataset. The mixed samples intrude with class 8. 15

2.4 (Left) Patch size effect comparison on CIFAR dataset in validation accuracy in
WideResNet-28-10 model [9]. (Right) Cutout drops the contiguous regions from
the image. 17

2.5 CutMix comparison with Cotout. While Cutout just drops the selected patch,
CutMix replaces the selected patch with a different patch from another image. . . 18

viii

2.6 ManifoldMixup interpolates the hidden states of a randomly chosen layer including
the input layer at every training update. However, Mixup interpolation get applied
only the input space.. 19

2.7 Mask sampling in DropBlock and the process of dropping the continuous block of
features from the feature map. DropBlock creates a Binnary mask using Bernoulli
distribution. The P parameter for each feature in the feature map is computed as
γ in DropBlock. The process started from the top left to the right. 22

3.1 PatchUp process for two hidden representations associated with two samples
randomly selected in the mini-batch (a, b). X1 = g

(i)
k (a) and X2 = g

(i)
k (b) where

i is the feature map index. Right top shows Hard PatchUp output and the right
bottom shows the interpolated samples with Soft PatchUp. The yellow continuous
blocks represent the interpolated selected blocks. 25

3.2 PatchUp mask creation process (block_size = 5). The left matrix shows
the process of feature selection from feature maps. By using a max_pool2d
function, we can create blocks around selected features. The max_pool2d
function uses stride = (1, 1), kernel_size = (block_size, block_size), and
padding = (block_size

2 , block_size
2). Red and blue points are 1 and 0 in the generated

binary mask, respectively. 28

3.3 Mask sampling in PatchUp is applied in the hidden state, compared to CutMix
which is applied in the input space. Red areas show the blocks that should be
altered. 28

3.4 Left: ManifoldMixup interpolated samples for any combination of the three blue
hidden states selected only from along orange line. Right: PatchUp can produce
interpolated hidden representations for these three hidden states in almost all
possible places in all dimensions except the samples which lie directly on the
orange lines. 30

3.5 The two possible block selections from CutMix for two samples (cat and dog) with
a large background. Swapping a similar part of the background or an essential
element correlated to the label in the selected images can have a negative effect
on the CutMix learning objective. 31

4.1 Impact of hyper-parameters γ, block_size and patchup_prob on error rates in
the CIFAR-10 validation set for PreActResNet18. We repeated each job three
times to collect the mean and the standard deviation of errors. Marked points

ix

are the mean of the error rate in the validation set. And, the shadow shows the
bootstrapping of results for each hyper-parameter setting. The lower numbers on
the y-axes correspond to better performance.. 35

4.2 Robustness of WideResNet-28-10 to Tiny-ImageNet Common Corruptions (Tiny-
ImageNet-C). We repeated each test for five trained models to report the mean
and the standard. The lower values on the y-axes show the robustness of the
model against the input common corruptions. The y-axis is the sum of error
rates for each category. And, the x-axis represents the list of corruptions in
Tiny-ImageNet-C. 38

4.3 Robustness to Tiny-ImageNet Common Corruptions (Tiny-ImageNet-C). We
repeated each test for five trained models to report the mean and the standard.
The lower values on the y-axes show the robustness of the model against the input
common corruptions. The y-axis is the sum of error rates for each category. And,
the x-axis represents the list of corruptions in Tiny-ImageNet-C. 39

4.4 Robustness of PreActResNet18 and PreActResNet34 models in CIFAR-10 and
CIFAR-100 to the FGSM attack, known as a white-box attack. We repeated each
test for five trained models to report the mean and the standard deviation of each
method’s accuracy against the FGSM attack. The higher values on the y-axes
show the robustness of the model against the attack. And, ε is the magnitude
that controls the perturbation. 42

4.5 Robustness of WideResNet28-10 model in CIFAR-10, CIFAR-100, SVHN, and
Tiny-ImageNet to the FGSM attack, known as a white-box attack. We repeated
each test for five trained models to report the mean and the standard deviation of
each method’s accuracy against the FGSM attack. The higher values on the y-axes
show the robustness of the model against the attack. And, ε is the magnitude
that controls the perturbation. 43

4.6 The effect of the state-of-the-art regularization techniques on activations in
WideResNet28-10 for CIFAR100 test set. Each curve is the magnitude of feature
activations, sorted by descending value, and averaged over all test samples for each
method. The higher magnitude shows a wider variety of the produced features by
the model at each block. 45

4.7 H1 andH2 are the flattened hidden representations. H is the flattened interpolated
hidden representation that can be produced by either ManifoldMixup, Soft
PatchUp or Hard PatchUp. 46

x

4.8 The comparison of ∠ρ for flattened hidden representations of a mini-batch of
samples at the second residual block (layer k = 3) of WideResNet-28-10 with
corresponding regularization method. 47

4.9 (top) Original samples. (bottom) Hard PatchUp output using PatchUp Binary
Mask on input images. 49

xi

List of Abbreviations

DL Deep Learning

CNN Convolutional Neural Network

CIFAR Canadian Institute for Advanced Research

SVHN The Street View House Numbers

FGSM Fast Gradient Sign Method

PGD Projected Gradient Descent

CW Carlini-Wagner attack

DDN Decoupled Direction and Norm attack

xii

Remerciements

To you.

Acknowledgements

First of all, I would like to express my sincere gratitude to my supervisor, Dr. Sarath
Chandar, for providing guidance and feedback throughout my study. I am grateful to him
for accepting me as his student and providing a great chance to learn the technical concepts
and personal skills.

I would like to thank my primary collaborators: Mohammad Amini, Akilesh Badri-
naaraayanan, and Vikas Verma, and Sarath Chandar. Chapters 3 and 4 in this thesis are
joint research work with them. I would also like to thank you, Doriane Olewicki, Darshan
Patil, Louis Clouâtre, and Paul-Aymeric McRae for reviewing the thesis.

I am grateful to be part of Mila, the Quebec AI Institute. I would like to thank the
following Mila faculty members for their technical advice and several exciting conversations
over some projects and their guidance in the last year: Irina Rish, Pouya Bashivan, and
Samira Ebrahimi Kahou.

I want to thank all my teammates in ChandarLab who participated in weekly meetings
and for all their effort to make the ChandarLab an excellent lab for research and a fun place
to learn new things.

I want to acknowledge Compute Canada and Calcul Quebec for providing computing
resources used in this work.

This thesis would not have been possible without the support of my friends and family!

xiv

Chapter 1

Introduction

Deep Learning (DL), particularly deep Convolutional Neural Networks (CNNs) have achieved
exceptional performance in many machine learning tasks, including object recognition [29],
image classification [17, 29, 46], speech recognition [23], and natural language understand-
ing [59, 64]. However, in a deep and wide network, the network has a tendency to memorize
the samples, which yields poor generalization for data outside of the training data distri-
bution [2, 14]. Poor generalization or overfitting problem might happen for a high-capacity
model that performs very well on training data but not in unseen data at evaluation time [7].
There are several approaches to tackle this problem.

This thesis aims to introduce a new data-dependent regularization that leads the CNN
model to prevent overfitting and reduce the generalization gap. Therefore, it helps CNN
models generalize better on unseen data and against adversarial attacks.

1.1. Machine Learning
According to Arthur Samuel, Machine Learning (ML) is the field of study that gives

computers the ability to learn without being explicitly programmed. Another definition for
machine learning was proposed by Tom Mitchell [39] that indicates that machine learning
is the study of computer algorithms that improve automatically through experience and by
the use of data.

There are different types of learning algorithms including supervised learning, unsuper-
vised learning, semi-supervised learning, self-supervised learning, and reinforcement learning.
This thesis has a focus on supervised learning algorithms, particularly deep learning algo-
rithms and convolutional neural networks. In supervised learning, the model is supervised
using samples and the targets associated with each sample. In supervised learning, the
datasets that are given to the learner have the correct target clearly defined, and therefore
the goal of the model is to find a relationship between the input and the learning target.

1

Regression and classification problems are two main problems that supervised learning al-
gorithms try to solve. In a regression problem, the model has to predict continuous-valued
output while in classification, the model has to predict discrete-valued output.

1.2. Convolutional Neural Networks
Deep learning facilitates data representation and hierarchical learning through some se-

quential layers of abstraction [32, 50]. Deep learning models learn automatically and extract
features from raw data using forward and backward propagations. These automatically ex-
tracted features in higher levels of abstraction are constructed from lower level features in
the hierarchy [33]. Deep learning models outperform many complex tasks, particularly in
the vision domain. Convolutional neural networks are deep learning models that contain
at least one convolutional layer. Such networks are usually constructed by stacking some
convolutional layers, pooling layers, and fully connected layers. It is worth mentioning that
most of the learning time complexity of CNN models belong to the layers before dense layers,
and most of the memory complexity is because of the memory requirement for keeping the
dense layer parameters. A CNN expects to receive a tensor that represents the raw data
which is often in three color channels. The input image has H rows, W columns, and three
channels (R, G, B). Input tensors with higher dimensions will be treated in the same way
in the CNN models. These input data will be processed in CNN models one layer after
another. The following section explains the convolutional operation as a vital operation in
the convolutional layer.

1.2.1. Convolutional Layer

Before the surge of deep learning and CNN models, filters were hand-designed by domain
experts, which were then applied to an image to result in a feature map. Convolutional
operation refers to convolving the filter on the image. Figure 1.1 shows convolving a vertical
filter on the image to extract the vertical edges on the image. While hand-crafted features can
provide good performance in some datasets, they are highly data-dependent and hence will
not generalize to other datasets. CNN architectures take advantage of convolution operation
and automatically extract features and filters using forward and backward propagation.
CNNs start with a random uniform initialization of the filters at the beginning of the learning
process and then find each layer’s best filters using either batch gradient descent or stochastic
gradient descent. Some hyperparameters that affect the convolutional operation include

2

Fig. 1.1. Convolutional operation on a simple input using a vertical edge filter. The filter
convolved on the input with the stride of one.

stride, padding, and dilation. Following is a summary of the definition of each of these
hyperparameters.

Stride controls how the filter convolves and moves over the input tensor. In figure 1.1,
the filter convolves around the input volume by shifting one unit at a time. Using a smaller
stride value on convolutional operation helps to process more the center of the image, while
a larger stride leads to considering the pixels close to the edges [75].

Padding is an additional layer of pixels that we can add to the border of an image. It
indicates the number of pixels added to an input tensor before a convolutional operation
gets applied. SAME and VALID paddings are two types of padding. Valid padding implies
no padding at all. Therefore, the input image will remain in an unaltered shape. The same
padding also refers to the case that p layers will be added to the input tensor’s border such
that the output tensor has the same dimensions as the input tensor.

Since a convolutional operation uses the middle pixels multiple times, the information
in the middle of images will have more effect in extracted filters than the pixels on corners
and edges. Adding padding around the input tensor helps preserve the border and corner
information in the feature extraction process, as the information in the middle of the input
tensor. If the padding is set to zero, then every pixel value that is added will be set to zero.
Figure 1.2 shows the padding that is used to prevent losing the border pixels information.

Assume a convolutional layer receives input tensor for N samples in the mini-batch such
that each sample has Cin channels. The input tensor can be presented as (N,Cin, Hin,Win).
After applying a convolutional operation on each channel we expect to have an output
presented as (N,Cout , Hout ,Wout) where Cout indicates the number of output channels after

3

applying a filter with kernel size of K. The width and height of output (Ow, Oh) for each
channel is computed as follows:

Oh =
⌊
Ih + 2p0− d0× (K0− 1)− 1

S0
+ 1

⌋
And Ow =

⌊
Iw + 2p1− d1× (K1− 1)− 1

S1
+ 1

⌋
, (1.2.1)

where p, d, and K denote the padding, dilatation, and the filter kernel respectively. Padding
indices represent the padding on each side. Dilation indices indicate the height and width
spacing between kernel elements. The default value for simple and straightforward convo-
lution operation is one. If dilation is set to d as an integer number more than one, convo-
lutions operation will get applied such that there will be d − 1 skipped cells between each
filter. Figure 1.2 shows both dilation and padding effect in convolutional operation. Dilated
convolution can achieve about 5% performance improvement on the test-set using adapted
VGG-16 [56] model for dense predication [72].

Fig. 1.2. Dilation and Padding.

A convolutional layer consists of convolutional operations, each acting on a different slice
of the input tensor from the previous convolutional layer or on the image’s tensor directly.
Figure 1.3 illustrates a simple CNN model that is used for house numbers digit (SVHN
dataset) classification. The proposed architecture leaded to 94.85% accuracy on 2012 while
human performance to solve such task is 98.0% [52].

A CNN model is a multistage architecture that can automatically extract features. Fig-
ure 1.3 shows multiple stages that work as a part of a CNN model sequentially. In this
architecture, the arrays of information that flow from one stage to another are called fea-
ture maps. A ConvNet has several consecutive layers that are separated into multiple stages.
Each layer can be either a convolution layer for extracting features, a feature pooling layer, or
a non-linearity layer. The convolutional network remarkably outperforms a broad spectrum
of perceptual tasks in comparison to simple MLP models. Like most supervised learning
methods, training a CNN model as an efficient and accurate model requires a large number

4

of labeled training samples. While CNN models are still essential methods in vision tasks,
some recent works tried to propose alternative architectures like Capsule Networks [49]. CNN
models can not find the orientational and relative spatial relationships between the elements
in an image that capsule networks tries to capture. However, they are still far from the CNN
models’ performance in large datasets like ImageNet [24].

The performance of CNNs depends on the samples we have in the training set, and a
slight shift in data distribution drastically reduces the CNN models’ performance. That
makes CNN models very naive against even week adversarial attacks. CNNs can overfit
or underfit the data depending on the hyper-parameters, model structures, and training
data. [12]. In this thesis, we study some regularization techniques that prevent overfitting
in the CNN model and improve the CNN model’s generalization. For a proof of concept, we
consider the ResNet Architecture in the experimental setup. However, the proposed method
is applicable in other CNN models with different architectures without any required changes.
The following section gives an overview of the generalization and regularization techniques.

1.3. Generalization and Regularization
A model overfits the training data when the model performs well on the training data

but provides a poor performance on the evaluation data (unseen data) [14]. In other words,
there is a considerable gap between the model’s performance on training data and the model
performance on the evaluation dataset. This gap is also known as the generalization gap.
Figure 1.4 illustrates the generalization gap on a model performance on training in Tiny-
ImageNet dataset using WideResNet-28-10 model after 400 training epochs. The general-
ization gap in this example is about 40%, which indicates the model completely overfitted
to the training dataset.

Fig. 1.3. A simple CNN model for house numbers digit (SVHN dataset) classification [52].

5

Fig. 1.4. The blue line shows the model’s performance in the training set, and the or-
ange line shows the accuracy of the model at test time. The green arrow illustrates the
generalization gap between training and unseen data.

Several techniques are proposed to reduce the generalization gap and avoid overfitting.
A straightforward approach to avoid overfitting problem is to reduce the model’s capacity
up to the point that the model still performs well in training but not by memorizing the
training samples. This can be done by using network-reduction methods such as pre-pruning,
post-pruning, and model compression [70].

Another approach to improve the generalization of the model is by expanding the training
data. In supervised learning, the training data and annotations that are used for supervising
at training time and the quality of this information have significant effects on the performance
of the model on unseen data. Data expansion methods include some effective approaches
such as exploiting more training data [14, 58], randomly expanding training sets [26], adding
some random noise to the existing dataset [70], and producing some new data based on the
distribution of the existing data set [70, 71].

Two other approaches for improving a model’s generalization are applying early stopping
and parameter norm penalties [14]. Early stopping avoids overfitting and, as a result, reduces
the generalization gap. However, understanding when we should apply early stopping is
another challenge that one should consider [42].

In the parameter norm penalties approach, L1 regularization and L2 regularization
(Weight Decay) are two well-known methods that have been used to improve the gener-
alization of the model. L1 regularization adds minimizing the sum of the absolute value
of the parameters into the learning objective of the model, and L2 regularization or weight
decays push the parameters closer to the origin by adding minimizing 1

2‖w‖
2
2 to the learning

6

objective [14]. Since the performance of a model is dependent on the model parameters,
controlling them using regularization techniques can be beneficial.

Regularization techniques can be categorized into two main categories, including explicit
regularization and implicit regularization techniques. The goal of the explicit regularization
technique is to reduce the representational capacity of the model. The implicit regularization
technique affects the model’s sufficient capacity instead of reducing the model’s representa-
tional capacity using optimization techniques or other tricks [21].

Recently, adding some noisy computation while training has shown some improvement in
the model generalization. Noisy computation is often employed during the training, making
the model more robust against invariant samples and thus improving the generalization of
the model [1]. This idea is exploited in several state-of-the-art regularization techniques.

Such noisy computation based regularization techniques can be categorized into data-
dependent and data-independent methods [16]. Earlier work in this area has been more fo-
cused on the data-independent techniques such as Dropout [57], Variational Dropout [11] and
ZoneOut [30], Information Dropout [1], SpatialDropout [62], and DropBlock [13]. Dropout
performs well on fully connected layers [57]. However, it is less effective on convolutional lay-
ers [63]. One of the reasons for the lack of success of dropout on CNN layers is perhaps that
the activation units in the convolutional layers are correlated, thus despite dropping some
of the activation units, information can still flow through these layers. SpatialDropout [63]
addresses this issue by dropping the entire feature map from a convolutional layer. Drop-
Block [13] further improves SpatialDropout by dropping random continuous feature blocks
from feature maps instead of dropping the entire feature map in the convolutional layers.

Data-augmentation also is a data-dependent solution to improve the generalization of
a model. Choosing the best augmentation policy is challenging. AutoAugment [8] finds
the best augmentation policies using reinforcement learning with huge computation over-
head. AugMix [20] reduces this overhead by using stochasticity and diverse augmentations
and adding a Jensen-Shannon Divergence consistency loss to training loss. Recent works
show that data-dependent regularizers can achieve better generalization for CNN models.
Mixup [76], one such data-dependent regularizer, synthesizes additional training examples
by linearly interpolating random pairs of inputs such that the linear interpolation coefficient
λ is sampled from a Beta distribution. By using these types of synthetic samples, Mixup
encourages the model to behave linearly in-between the training samples.

The mixing coefficient λ in Mixup is sampled from a prior distribution. This may lead
to the manifold intrusion problem [16]: the mixed synthetic example may collide (i.e., have
the same value in the input space) with other training data examples, essentially leading

7

to two training samples that have the same inputs but different targets. To overcome the
manifold intrusion problem, MetaMixUp [38] used a meta-learning approach to learn λ with
a lower possibility of causing such collisions. However, this meta-learning approach adds
significant computation complexity. ManifoldMixup [65] attempts to avoid the manifold
intrusion problem by interpolating the hidden states (instead of input states) of a randomly
chosen layer at every training update. Recently, Puzzle Mix [27] has explicitly exploited
an optimized masking strategy for the Input Mixup. It uses the saliency information and
the underlying statistics of pair of images to avoid manifold intrusion problems at each
batch training step. Puzzle Mix adds computation overhead at training time to find an
optimal mask policy while improving the model’s performance compared to Mixup and
ManifoldMixup.

Unlike the interpolation-based regularizers discussed above, Cutout [9] drops the contigu-
ous regions from the image in the input space. This kind of noise encourages the network
to learn the full context of the images instead of overfitting to the small set of visual fea-
tures. CutMix [73] is another data-dependent regularization technique that cuts and fills
rectangular-shaped parts from two randomly selected pairs in a mini-batch instead of inter-
polating two selected pairs completely. Applying CutMix at the input space improves the
generalization of the CNN model by spreading the focus of the model across all places in the
input instead of just a small region or a small set of intermediate activations. According to
the CutMix paper, applying CutMix at the latent space, Feature CutMix, is not as effective
as applying CutMix in the input space [73].

1.4. Contributions
The key contribution of this thesis is introducing PatchUp, a feature-space, block-level,

data-dependent regularization technique that operates in the hidden space of CNN models.
We propose masking out contiguous blocks of the feature map of a random pair of samples,
and then either mix (Soft PatchUp) or swap (Hard PatchUp) these selected blocks to ob-
tain more diverse samples for training towards different dimensions and therefore achieve a
better image classification performance and more robustness against adversarial examples
and deformed images. Our regularization method does not incur significant computational
overhead for CNNs during training.

8

1.5. Thesis Layout
The rest of the thesis is organized as follows. Chapter 2 explains the modern regulariza-

tion techniques that can improve the generalization of a CNN model. Chapter 3 introduces
PatchUp, a feature-space block-level data-dependent regularization that operates in the hid-
den space by masking out contiguous blocks of the feature map of a random pair of samples,
and then either mixes (Soft PatchUp) or swaps (Hard PatchUp) these selected contiguous
blocks. Chapter 4 contains all the experimental results, ablation studies, and analysis on
PatchUp. Chapter 5 concludes the thesis and outlines future research directions.

9

Chapter 2

Regularization Techniques for CNNs

Regularization methods help prevent overfitting to the training set distribution and im-
prove the generalization performance in machine learning models [31]. The goal is to make
the model robust to previously unseen data, assuming the unseen data is drawn from the
same distribution as the training data. Regularization schema can be categorized into data-
dependent and data-independent techniques [16]. In this chapter, we summarize some state-
of-the-art regularization methods from both approaches that have been used for Convolu-
tional Neural Networks (CNNs).

2.1. Data-dependant Regularization Methods
Data-dependent regularization uses the structure of the data to constrain the model

parameter space [16]. This includes data augmentation methods [34, 53, 55], adversarial
training schemes [15], and some state-of-the-art regularization methods that work either in
input space or in latent representation space.

The straightforward regularization approach uses data augmentation methods that im-
prove the model’s generalization performance by providing more diverse data. Data augmen-
tation methods create diverse data by randomly augmenting the original data [4, 29, 54].
The most common augmentations that have been used for training CNNs are translating
the image by a few pixels, randomly cropping, resizing, and flipping the image horizontally.
Apart from these traditional transformations, one could also use generative adversarial net-
works [25, 35, 45, 67, 69] and texture transfer [10, 22] for data augmentation. Since data
augmentation methods are considered data-dependent regularization methods, choosing the
best data augmentation method is a challenging task since the effectiveness of the selected
augmentation methods depends on the structure of the data. Recent works [8, 20] show that
chaining and combining augmentation policies can improve the effectiveness of the data aug-
mentation method. However, finding such chained or combined policies introduces additional

10

challenges. This section contains a summary of some popular data-dependent regularization
methods that improve the model performance by exploiting the data structure.

2.1.1. AutoAugment

Fig. 2.1. Controller RNN samples a policy and trains model using five sub-policies created
based on the selected policy. Then, the searching algorithm receives the validation accuracy
as a reward signal and updates the controller RNN.

As mentioned before, searching for an augmentation strategy that provides better per-
formance is a time-consuming task that can be automated. AutoAugment introduces a rein-
forcement learning (RL) approach to automatically find a better data augmentation strategy
for a given data and model [8]. AutoAugment has two components: a controller that is a
simple RNN model and a Proximal Policy Optimization (PPO) [51] algorithm that uses the
validation accuracy to select the best policy.

The search space is limited to 5 sub-policies. Users can design the search space by cre-
ating each sub-policy in their experiment. Each sub-policy is constructed using two data
augmentations that can be applied in sequence. AutoAugment calls each data augmentation
as an image operation. The probability and the magnitude of the operation are two hyperpa-
rameters that are related to each operation. The Controller RNN is responsible for sampling
an augmentation strategy at each time step, training the model using the selected data aug-
mentation policy, and computing the validation accuracy. Then, the PPO component uses
the computed validation accuracy as a reward to update the controller using reinforcement

11

Fig. 2.2. For each example in the mini-batch, one of the 5 sub-policies is chosen uniformly
random to augment the image. Last row specifies the sub-policy that is applied in each
images. First number indicates the probability of applying each operation and the second
number shows the magnitude of the operation out of 10 (the image is borrowed from Au-
toAugment paper [8]).

learning [51]. After selecting a policy, the controller RNN uses the sub-policies created based
on the selected policy for training each of the mini-batches. Each policy has five sub-policies
that are selected uniformly at random to augment images in a mini-batch. Each sub-policy
consists of two operations, as well as a probability of actually calling each operation and
the magnitude with which each operation is applied. Figure 2.1 shows the overview of the
AutoAugment method and Figure 2.2 illustrates how the sub-policies are applied on images
for each mini-batch. As figure 2.2 shows, five sub-policies that are designed for the ImageNet
dataset. For example, the first sub-policy consists of two image operations, Equalize and
Rotate, that each has two hyperparameters. It also shows in 80% of the case (0.8), the
operation will be applied with a strength of 8 out of 10.

AutoAugment provides significant improvement in performance on several image recogni-
tion benchmarks. However, its drawback is that to achieve such an improvement, it requires
a massive number of GPU hours for computation, even for small datasets [36].

2.1.2. AugMix

AutoAugment improves model performance by searching and finding the best augmen-
tation strategy during training. However, this adds a huge computational overhead. Aug-
Mix [20] reduces this overhead by using stochasticity, diverse augmentations, and by adding
a Jensen-Shannon Divergence consistency loss to the training loss.

12

AugMix mixes a chain of augmentation operations that are used in AutoAugment. It
samples k augmentation chains, each composed of one to three randomly selected augmen-
tation strategies. AugMix then mixes the augmentation chains to create final augmented
images. To select the k-dimensional vector of k augmentation chains, AugMix uses the
Dirichlet(α, . . . , α) distribution as a mixing policy. After constructing the augmented im-
age by mixing the chain of augmented images, AugMix linearly interpolates the augmented
images with the original image using a mixing coefficient that is randomly sampled from the
Beta(α, α) Distribution.

Several sources of stochasticities are applied to construct the final images, including the
operation selection, the severity of the operations, and the coefficient of linear interpolations.
Algorithm 1 explains the AugMix algorithm in detail. After creating two augmented samples
from the original image (as declared in lines 14 and 15 in Algorithm 1), AugMix defines the
loss function by adding the Jensen-Shannon divergence to the classification loss (line 16).
Therefore, the loss function is computed as follow [20]:

L(porig, y) + λ JS(porig; paugmix1; paugmix2). (2.1.1)

where

JS (porig ; paugmix1 ; paugmix2) = 1
3 (KL [porig ‖M] + KL [paugmix 1‖M] + KL [paugmix 2‖M])

(2.1.2)

M = 1
3 (porig + paugmix 1 + paugmix 2) (2.1.3)

2.1.3. Mixup

Mixup [76] synthesizes additional training examples by interpolating random pairs of
inputs xi, xj and their corresponding labels yi, yj as:

x̃ = λxi + (1− λ)xj and ỹ = λyi + (1− λ)yj, (2.1.4)

where λ ∈ [0,1] is sampled from a Beta distribution such that λ ∼ Beta(α, α) and (x̃, ỹ) is
the new example. By using these types of synthetic samples, Mixup encourages the model
to behave linearly in-between the training samples. We know that the goal of the learning
function f that maps input x ∈ X to target y ∈ Y is minimizing the empirical risk using
the following loss function:

L(f) = 1
n

n∑
i=1

` (yi, f (xi)) (2.1.5)

13

Algorithm 1 AugMix Pseudocode (source of the algorithm is the AugMix paper. [20]).
Input:

Model p̂, Classification Loss L, Image xorig, Operations O = {rotate, . . . , posterize}
Output:

loss (Loss Output)
1: function AugmentAndMix(xorig, k = 3,α = 1)
2: Fill xaug with zeros
3: Sample mixing weights (w1, w2, . . . , wk) ∼ Dirichlet(α,α, . . . ,α)
4: for i = 1, . . . , k do
5: Sample operations op1, op2, op3 ∼ O
6: Compose operations with varying depth op12 = op2 ◦ op1 and op123 = op3 ◦ op2 ◦ op1
7: Sample uniformly from one of these operations chain ∼ {op1, op12, op123}
8: xaug += wi · chain(xorig)
9: end for
10: Sample weight m ∼ Beta(α, α)
11: Interpolate with rule xaugmix = mxorig + (1−m)xaug
12: return xaugmix
13: end function
14: xaugmix1 = AugmentAndMix(xorig) # xaugmix1 is stochastically generated
15: xaugmix2 = AugmentAndMix(xorig) # xaugmix1 6= xaugmix2
16: loss = L(p̂(y | xorig), y) + λ Jensen-Shannon(p̂(y | xorig); p̂(y|xaugmix1); p̂(y|xaugmix2))
17: return loss

where n is the total number of training examples.
Since Mixup linearly interpolates the pair of input samples and therefore their corre-

sponding targets in supervised learning algorithms, it should minimize the empirical vicinal
risk as follow:

L(f) = 1
m

m∑
i=1

` (ỹi, f (x̃i)) (2.1.6)

wherem is the number of samples sampled from the generic vicinal distribution, called mixup
denoted as µ (x̃, ỹ | xi, yi) which is computed as follows:

µ (x̃, ỹ | xi, yi) = 1
n

n∑
j

E
λ

[δ (x̃ = λ · xi + (1− λ) · xj, ỹ = λ · yi + (1− λ) · yj)] (2.1.7)

Mixup regularizes a neural network model by generating new augmented examples which
have a linear relation to existing examples in the dataset [76]. To this end, it can provide some
kind of adversarial-like examples besides the existing samples in the training set. Mixup is an
effective regularization approach that helps to generalize better in deep learning models [76].
The mixing coefficient λ in Mixup is sampled from a prior distribution. This may lead to

14

Fig. 2.3. (Left) Mixup overview that shows the linear interpolation of a random pair of
samples (a dog and a cat as shown in the figure) using λ as a coefficient of interpolation
that is sampled from the Beta Distribution. Three curves show the beta distribution for α
equal to .5, 1, and 2 from left to right, respectively. (Right, borrowed from [16]) Manifold
intrusion for three pairs of samples from the MNIST dataset. The mixed samples intrude
with class 8.

the manifold intrusion problem [16]: the mixed synthetic example may collide (i.e., have the
same value in the input space) with other examples in the training data, essentially leading to
two training samples which have the same inputs but different targets. Figure 2.3 shows an
example of manifold intrusion problem for three pairs of samples from the MNIST dataset.

2.1.4. MetaMixup

In the Mixup method, the random selection of λ from the range of [0, 1] might cause the
manifold intrusion problem which would lead the model to predict incorrect labels for the
interpolated inputs. To overcome the manifold intrusion problem, MetaMixUp [38] uses a
meta-learning approach to learn λ with a lower possibility of causing such collisions. However,
this meta-learning approach adds significant computation complexity.

MetaMixup initially uses a random value for λ, generated by a prior distribution for
each minibatch. Then, it uses the validation set to tune the λ with one step of meta-learning
training. In doing so, it learns λ∗, which is the optimized λ that alleviates manifold intrusion
by decreasing the negative effect of the Mixup interpolation. Since, the λ∗ has to be in the

15

range of [0, 1], MetaMixup uses a sigmoid function to map the optimized λ to the range of
[0, 1]. Algorithm 2 explains the MetaMixup process in detail.

Algorithm 2 MetaMixUp (source of the algorithm is the MetaMixUp paper [38])
Input:

Training data D, validation Dv.
Output:

Deep neural network Φ(θ) and λ∗.
Parameters:

Deep neural network Φ(θ), batch size B, learning rate η, step size α.
1: for t = 1, 2, ... , Itermax do
2: Shuffle training set D;
3: for n = 1, ... , |D|

B
do

4: Fetch mini-batch D̄ from D;
5: Fetch mini-batch D̄v from Dv;
6: Random initialize λ = {λi}Bi=1 ;
7: Turn network to meta stage Φ(θ)→ Φ′(θ);
8: MixUp examples with λ to construct D̃;
9:
10: Update θ′ = θ − η∇θ`(Φ

′(θ),D̃);
11: Update λ∗ = λ− α∇λ`(Φ

′(θ′),Dv);
12: MixUp examples with updated λ∗ to reconstruct D̃;
13: Update nework θ := θ − η∇θ`(Φ(θ),D̃);
14: end for
15: end for
16: return Φ(θ) and λ∗

2.1.5. Cutout

Different from the interpolation-based regularizers discussed above, Cutout [9] drops the
contiguous regions from the image in the input space. Figure 2.4 (right) shows the Cutout at
input space. Cutout is inspired by intuitions from dropout. Dropout performs well on fully
connected layers, but it is less effective on convolutional layers. Since convolutional layers
have much fewer parameters than fully connected layers, they require less regularization.
Furthermore, with convolutional layers, neighboring pixels in images share much information.
By dropping pixels from images, these pixels’ neighbors will likely still pass the dropped
pixels’ information. Because of these two reasons, dropout has a smaller effect on improving
the performance of models and increasing their robustness.

16

Cutout tries to provide a similar effect as dropout to improve the generalization of the
deep learning models but operates at the input stage of the network rather than in the
hidden layers [9]. Cutout drops a contiguous section of input image instead of random
individual pixels. This allows Cutout to drop and remove the randomly selected region
in all subsequent feature maps. In doing so, it forces the network to focus on the entire
input and be less dependent on a specific section of features. The strength of this approach
is removing the transition of vicinity information of dropped points to the next stage by
dropping randomly contiguous selected points not at the intermediate level but at the input
stage [9]. Cutout encourages the model to produce a wider variety of features when making
predictions instead of relying on the presence of a limited number of features.

Cutout shows that the size of the cutout region is a more important hyperparameter
than the shape. Therefore, for simplicity, they conduct their experiment with a square-
shaped patch as the cutout region. Figure 2.4 (left) shows the effects of different patch sizes
on validation accuracy in the WideResNet-28-10 [74] model for CIFAR10 and CIFAR100
image classification tasks. The red line is the baseline or the vanilla model performance.
It also shows that for ten classes, the best value for the patch size is 16. However, with
the increased number of classes, the best patch size is eight. Cutout observes that it is
important for the model to receive some images where a large portion of the image is not
dropped during training. The cutout operation improves the model performance without
adding a computational overhead in training. It is can easily be applied on the CPU and
mixed with other augmentation strategies.

Fig. 2.4. (Left) Patch size effect comparison on CIFAR dataset in validation accuracy in
WideResNet-28-10 model [9]. (Right) Cutout drops the contiguous regions from the image.

17

Fig. 2.5. CutMix comparison with Cotout. While Cutout just drops the selected patch,
CutMix replaces the selected patch with a different patch from another image.

2.1.6. CutMix

CutMix [73] is another data-dependent regularization technique that cuts and replaces a
rectangular shaped part from an image with a randomly selected patch from another image
in the mini-batch, instead of interpolating the two selected images completely. Applying
CutMix at the input space improves the generalization of the CNN model by spreading the
focus of the model across all places in the input instead of just a small region or a small set
of intermediate activations. According to the CutMix paper, applying CutMix at the latent
space, Feature CutMix, is not as effective as applying CutMix in the input space [73]. CutMix
alleviates the manifold intrusion problem by cutting and filling some parts of the pair instead
of interpolating two inputs completely [73]. CutMix also provides a promising positive effect
on the generalization of a very deep and wide CNN model such as PyramidNet [73].

CutMix generates a new training sample from two input samples (xA, xB) with (yA, yB) as
their associated labels. The new sample is created using the following combining operation:

x̃ = M� xA + (1−M)� xB
ỹ = λyA + (1− λ)yB

In the combining operation M ∈ {0,1}W×H is a binary mask that defines the drop out
and fill in part of two images. As, figure 2.5 shows, CutMix selects a bounding-box from the
second input image and fill it in the same position in the first image.

18

The bounding-box B = (rx, ry, rw, rh) region is sampled uniformly in the following way:.

rx ∼ Unif (0,W), rw = W
√

1− λ

ry ∼ Unif (0, H), rh = H
√

1− λ
Since the cropped area ratio is rwrh

WH
= 1 − λ, CutMix defines the interpolated target by

ỹ = λyA + (1− λ)yB.
Since parts of the pair of images are swapped the loss function of the CutMix should be

modified accordingly. Mathematically, CutMix minimizes:

L(f) = E(x, y)∼P E(x′, y′)∼P Eλ∼Beta(α, α) Mixλ=pu(`(f(x̃), y), `(f(x̃), y′)). (2.1.8)

where pu is the portion of the unchanged part of the input and x̃ is the image produced using
binary mask described in CutMix approach denoted as M that indicates where to swap the
two input data in their three-colored channels [73]. The performance of the CutMix approach
depends heavily on the W and H (the size of input images). There are no experiments that
show this approach does not depend on those parameters. One positive point from CutMix
is that it relaxed the alpha and set it to one. Algorithm 3 explains the CutMix algorithm in
detail [73].

2.1.7. ManifoldMixup

Fig. 2.6. ManifoldMixup interpolates the hidden states of a randomly chosen layer including
the input layer at every training update. However, Mixup interpolation get applied only the
input space.

ManifoldMixup [65] attempts to avoid the manifold intrusion problem by interpolating
the hidden states (instead of input states) of a randomly chosen layer at every training
update. Figure 2.6 shows the main differences between ManifoldMixup and Mixup. Man-
ifoldMixup provides smoother decision boundaries at multiple levels of representation and

19

Algorithm 3 CutMix (source of the algorithm is the CutMix paper [73]).
Input:

input: samples from a mini-batch in N×C×W×H size tensor.
target: target of samples in a mini-batch in N×K size tensor.

1: if mode == training then
2: input_s, target_s = shuffle_minibatch(input, target) # CutMix starts here.
3: lambda = Unif(0,1)
4: r_x = Unif(0,W)
5: r_y = Unif(0,H)
6: r_w = Sqrt(1 - lambda)
7: r_h = Sqrt(1 - lambda)
8: x1 = Round(Clip(r_x - r_w / 2, min=0))
9: x2 = Round(Clip(r_x + r_w / 2, max=W))
10: y1 = Round(Clip(r_y - r_h / 2, min=0))
11: y2 = Round(Clip(r_y + r_h / 2, min=H))
12: input[:, :, x1:x2, y1:y2] = input_s[:, :, x1:x2, y1:y2]
13: lambda = 1 - (x2-x1)*(y2-y1)/(W*H) # Adjust lambda to the exact area ratio.
14: target = lambda * target + (1 - lambda) * target_s # CutMix ends.
15: end if
16: output = model_forward(input)
17: loss = compute_loss(output, target)
18: model_update()

improves the log-likelihood on the test set. Therefore, the model is more robust against
adversarial examples and has better generalization for unseen data.

In ManifoldMixup a neural network is defined as f(x) = fk(gk(x)), where gk maps the
input data to the hidden representation at layer k. Then, the hidden representation is
mapped by fk to the output f(x). In this approach, the k is randomly selected first. It
denotes the layer whose output will be used in the ManifoldMixup algorithm. After that,
two samples (x, y) and (x′, y′) from a mini-batch go through the forward process until
the selected layer. ManifoldMixup processes two random data mini-batches as usual until
reaching layer k. At this stage, we are going to apply gk. To compute the output, we have
to perform the Mixup approach to the outputs of (gk(x),y) and (gk(x′),y′).

(g̃k, ỹ) := (Mixλ (gk(x), gk (x′)) ,Mixλ (y, y′)) (2.1.9)

where λ ∼ Beta(α, α). Finally, we continue the forward process to the end of network and
calculate the gradients of all parameters of the network in the back-propagation phase. The

20

loss of the ManifoldMixup [65] is as follows:

L(f) =E(x,y)∼P E(x′,y′)∼P Eλ∼Beta(α,α) Ek∼S `(fk(Mixλ(gk(x), gk(x′))),Mixλ(y, y′)). (2.1.10)

In this approach, k and λ can be selected randomly for each minibatch. ManifoldMixup takes
advantage of Mixup by performing the Mixup for input samples of mini-batches. Manifold
Mixup can lead to flatter class-specific representations that could not be provided by other
regularizers. Since ManifoldMixup pushes the boundary decision away, the model has robust
behavior in adversarial examples. In general, ManifoldMixup delivers better performance,
faster learning convergence, and a smaller gap in training and testing performance.

2.1.8. Puzzle Mix

Recently, Puzzle Mix [27] has explicitly exploited an optimized masking strategy for the
Input Mixup. It uses the saliency information and the underlying statistics of pairs of images
to avoid manifold intrusion problems at each batch training step. Puzzle Mix considers an
optimization problem alternating between the multi-label objectives for interpolated pairs
of images for optimal mixing mask using the saliency information for an optimal transport
objective. To avoid the manifold intrusion problem after the mixing operation, Puzzle Mix
utilizes the saliency information to find the main object in each image and then uses this
information to transport the object before applying the mixing procedure to avoid such a mix
that leads to manifold intrusion problem. Puzzle Mix adds computation overhead at training
time to find an optimal mask policy while improving the model’s performance compared to
Mixup and ManifoldMixup.

2.2. Data-independent Regularization Methods
The second category of regularization methods is the data-independent regularization ap-

proach. Data-independent regularization improves model performance in unseen data with-
out exploiting the structure or the distribution of data [16]. The most well-known methods
in this direction are dropout and all its various forms, including Variational Dropout [11],
ZoneOut [30], and other dropout methods proposed specifically to improve CNN models’ per-
formance. This section contains a summary of DropBlock, a state-of-the-art Convolutional
dropout technique.

21

Fig. 2.7. Mask sampling in DropBlock and the process of dropping the continuous block of
features from the feature map. DropBlock creates a Binnary mask using Bernoulli distribu-
tion. The P parameter for each feature in the feature map is computed as γ in DropBlock.
The process started from the top left to the right.

2.2.1. DropBblock

While dropout performs well on fully connected layers [57], it is less effective on convo-
lutional layers [63]. One of the reasons for the lack of success of dropout on CNN layers
is perhaps that the activation units in the convolutional layers are correlated, thus despite
dropping some of the activation units, information can still flow through these layers. Spa-
tialDropout [63] addresses this issue by dropping the entire feature map from a convolutional
layer. DropBlock [13] further improves SpatialDropout by dropping random contiguous fea-
ture blocks from feature maps instead of dropping the entire feature map in the convolu-
tional layers. DropBlock works as a regularization method similar to dropout but specifically
designed for convolutional blocks. Pseudocode of DropBlock is shown in Algorithm 4. Drop-
Block uses two hyperparameters: block_size, which represents the size of the block to be
dropped and γ, which controls how many activation units to drop. Figure 2.7 illustrates the
summary of dropping continuous blocks of features from the future map.

DropBlock explicitly sets γ that controls the number of features to drop. Suppose that
we want to keep every activation unit with the probability of keep_prob. In dropout [57]
the binary mask will be sampled with the Bernoulli distribution with mean (1−keep_prob).
However, to account for the fact that every zero entry in the mask will be expanded by
block_size2 and that the blocks will be fully contained in the feature map, we need to
adjust γ accordingly when we sample the initial binary mask. DropBlock computes γ as

22

follows:
γ = 1− keep_prob

block_size2
feat_size2

(feat_size− block_size+ 1)2 (2.2.1)

where keep_prob is the probability of keeping a feature in normal dropout. The space to
select a feature is limited to (feat_size − block_size + 1)2 where feat_size is the size of
feature map. DropBlock provides a binary mask such that there might be some overlap in
the candidate dropping-regions. Therefore, Equation 2.2.1 gives an approximation of how
many activation units to drop.

Algorithm 4 DropBlock (source of the algorithm is the DropBlock paper [13]).
Input:

A: output activations of a layer.
block_size: the size of each block in the binary mask.
γ: the probability of altering a feature.
mode: either inference or training.

Output:
A′: output activations of a layer after dropping some continuous blocks of features.

1: if mode == Inference then
2: return A
3: end if
4: Mi,j ∼ Bernoulli(γ) # Randomly sample mask M
5: For each zero position Mi,j, create a spatial square mask with the center being Mi,j, the

width, height being block_size and set all the values of M in the square to be zero.
6: A = A×M # Apply the mask
7: A′ = A× count(M)/count_ones(M) # Normalize the features
8: return A′

23

Chapter 3

PatchUp

PatchUp: A Feature-Space Block-Level Regularization Technique
for Convolutional Neural Networks.

Submitted to CVPR 2021.
Contribution:
• I came up with the idea under the supervision of Prof. Sarath Chandar. Prof.
Sarath Chandar provided significant support and help for the further development of
the idea.
• Experiment setups and analysis were designed by me and Prof. Sarath Chandar with
valuable feedback from Vikas Verma.
• I wrote all the code for algorithms and experiments reported in this thesis.
• Mohammad Amini and Akilesh Badrinaaraayanan helped me in running experiments
and collecting results.
• I also wrote the entire paper with valuable help from Prof. Sarath Chandar, Vikas
Verma, and Mohammad Amini.

Affiliation:
• Mojtaba Faramarzi: Mila - Quebec AI Institute, Université de Montréal.
• Mohammad Amini: Mila - Quebec AI Institute, McGill University.
• Akilesh Badrinaaraayanan: Mila - Quebec AI Institute, Université de Montréal.
• Vikas Verma: Mila - Quebec AI Institute, Université de Montréal, Aalto Univeristy,
Finland.
• Sarath Chandar: Mila - Quebec AI Institute, École Polytechnique de Montréal,
Canada CIFAR AI Chair.

24

In this chapter, we introduce PatchUp, a feature-space block-level data-dependent regular-
ization that operates in the hidden space by masking out contiguous blocks of the feature
map of a random pair of samples, and then either mixes (Soft PatchUp) or swaps (Hard
PatchUp) these selected contiguous blocks.

3.1. PatchUp
PatchUp is a hidden state block-level regularization technique that can be used after

any convolutional layer in CNN models. Given a deep neural network f(x) where x is
the input, let gk be the k-th convolutional layer. The network f(x) can be represented as
f(x) = fk(gk(x)) where gk is the mapping from the input data to the hidden representation
at layer k and fk is the mapping from the hidden representation at layer k to the output
[65]. In every training step, PatchUp applies block-level regularization at a randomly selected
convolutional layer k from a set of intermediate convolutional layers. Section-4.10 gives a
formal intuition for selecting k randomly.

3.1.1. Binary Mask Creation

Fig. 3.1. PatchUp process for two hidden representations associated with two samples ran-
domly selected in the mini-batch (a, b). X1 = g

(i)
k (a) and X2 = g

(i)
k (b) where i is the feature

map index. Right top shows Hard PatchUp output and the right bottom shows the interpo-
lated samples with Soft PatchUp. The yellow continuous blocks represent the interpolated
selected blocks.

Once a convolutional layer k is chosen, the next step is to create a binary mask M (of
the same size as the feature map in layer k) that will be used to PatchUp a pair of examples
in the space of gk(x). The mask creation process is similar to that of DropBlock [13]. The

25

idea is to select contiguous blocks of features from the feature map that will be either mixed
or swapped with the same features in another example. To do so, we first select a set of
features that can be altered (mixed or swapped). This is done by using the hyper-parameter
γ which decides the probability of altering a feature. When we alter a feature, we also alter
a square block of features centered around that feature which is controlled by the side length
of this square block, block_size. Hence, the altering probabilities are readjusted using the
following formula [13]:

γadj = γ × (feature map’s area)
(block’s area)× (valid region to build block) . (3.1.1)

where the area of the feature map and block are the feat_size2 and block_size2, respec-

tively, and the valid region to build the block is (feat_size− block_size+ 1)2.
For each feature in the feature map, we sample from Bernoulli(γadj). If the result of this

sampling for feature fij is 0, then Mij = 1. If the result of this sampling for fij is 1, then the
entire square region in the mask with the center Mij and the width and height of the square
of block_size is set to 0. Note that these feature blocks to be altered can overlap which will
result in more complex block structures than just squares. The block structures created are
called patches. Figure-3.1 illustrates an example mask used by PatchUp. The maskM has 1
for features outside the patches (which are not altered) and 0 for features inside the patches
(which are altered).

3.1.2. PatchUp Operation

Once the mask is created, we can use the mask to select patches from the feature maps
and either swap these patches (Hard PatchUp) or mix them (Soft PatchUp).

Consider two samples xi and xj. The Hard PatchUp operation at layer k is defined as
follows:

φhard(gk(xi), gk(xj)) = M� gk(xi) + (1−M)� gk(xj), (3.1.2)

where � is known as the element-wise multiplication operation and M is the binary mask
described in section 3.1.1.

To define Soft PatchUp operation, we first define the mixing operation for any two vectors
a and b as follows:

Mixλ(a, b) = λ · a+ (1− λ) · b, (3.1.3)

26

where λ ∈ [0,1] is the mixing coefficient. Thus, the Soft PatchUp operation at layer k is
defined as follows:

φsoft(gk(xi), gk(xj)) = M� gk(xi) + Mixλ[((1−M)� gk(xi)), ((1−M)� gk(xj))], (3.1.4)

where λ in the range of [0, 1] is sampled from a Beta distribution such that λ ∼ Beta(α, α).
α controls the shape of the Beta distribution. Consequently, it controls the strength of
interpolation [76]. Both PatchUp operations are illustrated in Figure 3.1.

3.1.3. Learning Objective

After applying the PatchUp operation, the CNN model continues the forward pass from
layer k to the last layer in the model. The output of the model is used for the learning
objective, including the loss minimization process and updating the model parameters ac-
cordingly.

Again, consider the example pairs (xi, yi) and (xj, yj). Let φk = φ(gk(xi), gk(xj)) be the
output of PatchUp after the k-th layer. Mathematically, the CNN with PatchUp minimizes
the following loss function:

L(f) =E(xi, yi)∼P E(xj , yj)∼P Eλ∼Beta(α, α) Ek∼SMixpu [`(fk(φk), yi) , `(fk(φk), Y)]

+ `(fk(φk), W (yi, yj)),
(3.1.5)

where pu is the fraction of the unchanged features from feature maps in gk(xi) and S is the
set of layers where PatchUp is applied randomly. φ is φhard for Hard PatchUp and φsoft for
Soft PatchUp.

Y is the target corresponding to the changed features. In the case of Hard PatchUp,
Y = yj and in the case of Soft PatchUp, Y = Mixλ(yi, yj). W (yi, yj) calculates the re-
weighted target according to the interpolation policy for yi and yj. W for Hard PatchUp
and Soft PatchUp is defined as follows:

Whard(yi, yj) = Mixpu(yi, yj), (3.1.6)

Wsoft(yi, yj) = Mixpu(yi, Mixλ(yi, yj)). (3.1.7)

The PatchUp loss function has two terms where the first term is inspired from the CutMix
loss function and the second term is inspired from the MixUp loss function.

3.1.4. Algorithm

As with most regularization techniques, PatchUp also has two modes (either inference
or training). It also needs the combining type (either Soft PatchUp or Hard PatchUp), γ,

27

Fig. 3.2. PatchUp mask creation process (block_size = 5). The left matrix shows the
process of feature selection from feature maps. By using a max_pool2d function, we can
create blocks around selected features. The max_pool2d function uses stride = (1, 1),
kernel_size = (block_size, block_size), and padding = (block_size

2 , block_size
2). Red and blue

points are 1 and 0 in the generated binary mask, respectively.

and block_size. Algorithm-5 shows how PatchUp generates a new hidden representation
from (gk(xi), yi) and (gk(xj), yj). Lines 4 to 9 in the algorithm are the binary mask creation
process used in both Soft PatchUp and Hard PatchUp. Figure 3.2 briefly illustrates and
summarizes the binary mask creation process in PatchUp. Lines 11 to 25 correspond to
the interpolation and combination of hidden representations in the mini-batch in PatchUp.
Figure 3.3 compares the masks generated by PatchUp and CutMix.

(a) Mask sampling in PatchUp. (b) Mask sampling in CutMix.

Fig. 3.3. Mask sampling in PatchUp is applied in the hidden state, compared to CutMix
which is applied in the input space. Red areas show the blocks that should be altered.

3.1.5. PatchUp in Input Space

By setting k = 0, we can apply PatchUp to only the input space. When we apply
PatchUp to the input space, only the Hard PatchUp operation is used, this is due to the
reason that, as shown in [73], swapping in the input space provides better generalization
compared to mixing. Furthermore, we select only one random rectangular patch in the
input space (similar to CutMix) because the PatchUp binary mask is potentially too strong
for the input space, which has only three channels, compared to hidden layers in which each
layer can have larger number of channels (more details in section 4.9).

28

Algorithm 5 PatchUp
Input:

(gk(xi), yi): the hidden representation for the sample (xi, yi) at layer k.
(gk(xj), yj): the hidden representation for the sample (xj, yj) at layer k.
mode : either inference or training.
mixing_type: soft or hard.
γ: the probability of altering a feature.
block_size: the size of each block in the binary mask.

Output:
yi, yj: original labels for samples i and j.
H ′: the new hidden representation computed by PatchUp.
pu: The portion of the feature maps that remained unchanged.
Y : the target corresponding to the changed features.
W : re-weighted target according to the interpolation policy.

1: if mode == Inference then
2: return (gk(xi), yi), (gk(xj), yj)
3: end if
4: kernel_size← (block_size, block_size)
5: stride← (1, 1)
6: padding ← (block_size

2 , block_size
2)

7: γadj ← adjust γ using (3.1.1)
8: holes← max_pool2d(Bernoulli(γadj), kernel_size, stride, padding)
9: Mask ← 1− holes
10: unchanged←Mask � gk(xi)
11: pu ← calculate the portion of changed features map.
12: Patchi ← holes� gk(xi)
13: Patchj ← holes� gk(xj)
14: if mixing_type == hard then
15: Patchi ← Patchj
16: Y ← yj
17: W ← Whard(yi, yj) using (3.1.7)
18: else if mixing_type == soft then
19: λ ∼ Beta(α, α)
20: Y ← Mixλ(yi, yj)
21: W ← Wsoft(yi, yj) using (3.1.7)
22: Patchi ← Mixλ(Patchi, Patchj)
23: end if
24: H ′ ← unchanged+ Patchi
25: return yi, yj, H

′, pu, Y,W

29

3.2. Relation to Other Methods
3.2.1. PatchUp Vs. ManifoldMixup:

Both PatchUp and ManifoldMixup improve the generalization of a model by combining
the latent representations of a pair of examples. ManifoldMixup linearly mixes two hidden
representations using Equation 3.1.3. PatchUp uses a more complex approach ensuring that
a more diverse subspace of the hidden space gets explored. To understand the behaviour
and the limitation that exists in the ManifoldMixup, assume that we have a 3D hidden space
representation as illustrated in figure 3.4. It presents the possible combinations of hidden
representations explored via ManifoldMixup and PatchUp. Blue dots represent real hidden
representation samples. ManifoldMixup can produce new samples that lie directly on the
orange lines which connect the blue point pairs due to its linear interpolation strategy. But,
PatchUp can select various points in all dimensions, and can also select points extremely
close to the orange lines. The proximity to the orange lines depends on the selected pairs
and λ sampled from the beta distribution. Figure 3.4 is a simple diagrammatic description
of how PatchUp constructs more diverse samples. Section-4.8 provides a mathematical and
real experimental justification for this discussion.

Fig. 3.4. Left: ManifoldMixup interpolated samples for any combination of the three blue
hidden states selected only from along orange line. Right: PatchUp can produce interpo-
lated hidden representations for these three hidden states in almost all possible places in all
dimensions except the samples which lie directly on the orange lines.

30

3.2.2. PatchUp Vs. CutMix:

The CutMix cuts and fills the rectangular parts of the randomly selected pairs instead of
using interpolation for creating a new sample in the input space. Therefore, CutMix has less
potential for a manifold intrusion problem, however, CutMix may still suffer from a manifold
intrusion problem. Figure 3.5 shows two samples with small portions that correspond to their
labels. In this example, if only the parts within the yellow bounding boxes are swapped,
then the label does not change. However, if the parts within the white bounding boxes
are swapped, then the entire label is swapped. In both scenarios, CutMix only learns the
interpolated target based on the fractions of the swapped part. In contrast, these scenarios
are is less likely to occur in PatchUp since it works in the hidden representation space
most of the time. Another difference between CutMix and PatchUp is how the masks are
created. PatchUp can create arbitrarily shaped masks while CutMix masks can only be
rectangular. Figure 3.3 shows an example of CutMix Mask and PatchUp mask in input
space and hidden representation space, respectively. CutMix is more effective than Feature-
CutMix that applies CutMix in the latent space [73]. And, both the learning objective of
PatchUp, as well as the binary mask selection are different from Feature-CutMix.

Fig. 3.5. The two possible block selections from CutMix for two samples (cat and dog)
with a large background. Swapping a similar part of the background or an essential element
correlated to the label in the selected images can have a negative effect on the CutMix
learning objective.

31

3.3. Conclusion
As we discussed in previous sections, most state-of-the-art data-dependent regularization

techniques can cause manifold intrusion problems, particularly the approaches applied in in-
put space such as Mixup and CutMix. ManifoldMixup tried to avoid the manifold intrusion
problem by applying the regularization at latent space. ManifoldMixup also attempted to
push the decision boundary away by exploring linear interpolation of hidden representations
at randomly selected layers. Since ManifoldMixup interpolates the whole part of two hidden
representations, the limited representations that can regularize the model are explored. To
improve the CNN models’ performance and their generalization on unseen data, this chap-
ter introduced Patch up as a feature-space block-level regularization technique for the CNN
models. Our experiments in the next chapter show that it can improve the CNN models’ per-
formance and provide better robustness against adversarial attacks and better generalization
on a dataset that has a small shift from the training set.

32

Chapter 4

Experiments

In this chapter, we present the results1 of applying PatchUp to image classification tasks
using various benchmark datasets such as CIFAR-10, CIFAR-100 [28], SVHN (the standard
version with 73257 training samples) [41], Tiny-ImageNet [6] datasets, and with various
benchmark architectures such as PreActResNet18, PreActResNet34 [18], and ResNet101,
ResNet152, and WideResNet-28-10 [74] models.

4.1. Data
CIFAR-10: The CIFAR-10 dataset [28] has been used to evaluate image classification

tasks since 2009. It consists of 60000 color samples divided into 50000 training and 10000
test samples in size of 32 × 32 for 10 classes. CIFAR-10 dataset contains 6000 samples per
class.

CIFAR-100: Similar to CIFAR-10, CIFAR-100 [28] dataset also has 60,000 colour im-
ages of size 32 × 32 but the samples grouped into 100 classes, each class containing 500
training, 100 testing images and requires more fine-grained classification.

SVHN: The Street View House Numbers (SVHN) dataset [41] contains a total of 630,420
colour images with a resolution of 32 × 32 pixels. The dataset consists of 73,257 training
images and 26,032 test images that images are obtained from house numbers in Google Street
View images.

Tiny-ImageNet: The Tiny ImageNet dataset [6] is a modified subset of the original
ImageNet dataset [48] that contains 200 classes of ImageNet dataset, with 100,000 training
samples and 10,000 testing examples. We reserved 10,000 samples of the training set as a
validation set. The resolution of the images in the Tiny-ImageNet dataset is 64x64 pixels that
make it more challenging to extract information from samples. Having a lower resolution in
samples makes the classification task much more challenging [6].

1The code to reproduce all the results is available at https://github.com/chandar-lab/PatchUp.

33

https://github.com/chandar-lab/PatchUp

4.2. Experiment Setup and Hyper-parameter Tuning
We follow ManifoldMixup in our experimental setup. We use SGD with 0.9 Nesterov

momentum as an optimizer, mini-batch of 100, and weight decay of 1e-4 [65]. This section
describes the hyper-parameters of each model in table 4.1 following the hyper-parameter
setup from ManifoldMixup [65] experiments to create a fair comparison. First, we performed
hyper-parameter tuning for the PatchUp to achieve the best validation performance. Then,
we ran all the experiments five times, reporting the mean and standard deviation of errors
and negative log-likelihoods for the selected models. We let models train for defined epochs
and checkpoint the best model in terms of validation performance during the training. In
our study, we used PreActResNet18, PreActResNet34, and WideResNet-28-10 models.

Model lr lr steps step factor Epochs

PreactResnet18 0.1 500-1000-1500 0.1 2000

PreactResnet34 0.1 500-1000-1500 0.1 2000

WideResnet-28-10 0.1 200-300 0.1 400
Table 4.1. The hyper-parameters used for each model to compare the effect of each regu-
larization technique. The learning rate is denoted as lr. lr is multiplied at each learning rate
schedule step by the step factor.

PatchUp adds patchup_prob, γ and block_size as hyper-parameters. patchup_prob
is the probability that the PatchUp operation is performed for a given mini-batch, i.e if
there are N mini-batches and patchup_prob is p, PatchUp is performed in p fraction of
N mini-batches. γ and block_size are described in section 3.2. We tuned the PatchUp
hyper-parameter on CIFAR-10 with the PreActResNet18. To create a validation set, we
split 10% of training samples into a validation set. We set α to 2 in PatchUp. For Soft
PatchUp, we set patchup_prob to 1.0 and applied PatchUp to all mini-batches in training.
Then, we did a grid search by varying γ from 0.45 to 0.9 and block_size from 3 to 9. We
found that γ of 0.75 and block_size of 7 work best for Soft PatchUp as shown in figure 4.1c.
Similarly, for Hard PatchUp, we set patchup_prob to 0.7 and performed a grid search by
varying γ from 0.2 to 0.6 and block_size from 3 to 9. We found that block_size of 7 and
γ of 0.5 yield the best results for Hard PatchUp as shown in figure 4.1d. Figure 4.1a shows
that ManifoldMixup with (α = 1.5) achieves the best validation performance. For cutout,
we used the same hyper-parameters proposed in [9], setting cutout to 16 for CIFAR10, 8
for CIFAR100, and 20 for SVHN following [9]. Figure 4.1b shows that CutMix achieves

34

its best validation performance in PreActResNet18 in CIFAR-10 with cutmix_prob = 0.4.
Furthermore, DropBlock achieves its best validation performance on this task by setting the
block size and γ to 7 and 0.9, respectively [13].

(a) Impact of α in ManifoldMixup approach. (b) cutmix_prob’s impact on CutMix.

(c) Impact of γ, block_size with patchup_prob
as 1.0 for Soft PatchUp.

(d) Impact of γ, block_size with patchup_prob
as 0.7 for Hard PatchUp.

Fig. 4.1. Impact of hyper-parameters γ, block_size and patchup_prob on error rates in the
CIFAR-10 validation set for PreActResNet18. We repeated each job three times to collect
the mean and the standard deviation of errors. Marked points are the mean of the error rate
in the validation set. And, the shadow shows the bootstrapping of results for each hyper-
parameter setting. The lower numbers on the y-axes correspond to better performance.

35

Table 4.2. Image classification error rates on Tiny-ImageNet. We run experiments five
times to report the mean and the standard deviation. Best performance result is shown in
bold, second best is underlined. The lower number is better.

ResNet101 ResNet152 WideResNet-28-10
Error Loss Error Loss Eror Loss

No Mixup 46.184± 0.495 2.369± 0.027 45.222± 0.321 2.280± 0.083 36.756± 0.245 1.885± 0.023
Input Mixup (α = 1) 44.930± 0.338 2.252± 0.044 44.645± 0.113 2.233± 0.040 36.504± 0.286 1.876± 0.018
ManifoldMixup (α= 2) 44.538± 0.139 2.247± 0.011 44.128± 0.313 2.231± 0.022 35.964± 0.644 1.829± 0.064
Cutout 45.782± 0.346 2.349± 0.012 45.234± 0.193 2.336± 0.017 35.850± 0.114 1.834± 0.007
DropBlock 46.978± 0.531 2.273± 0.095 45.818± 0.220 2.171± 0.007 36.972± 0.378 1.893± 0.015
CutMix 42.042± 0.376 2.108± 0.012 41.714± 0.711 2.084± 0.029 35.812± 0.180 1.748± 0.079
Puzzle Mix 42.250± 0.193 2.132± 0.011 42.126± 0.306 2.125± 0.029 33.428± 0.216 1.651± 0.050
Soft PatchUp 38.676± 0.340 1.865± 0.007 38.112± 0.287 1.840± 0.016 29.812± 0.240 1.459± 0.042
Hard PatchUp 40.552± 0.151 1.938± 0.007 40.314± 0.175 1.927± 0.009 33.116± 0.113 1.569± 0.053

Table 4.3. Error rates comparison on SVHN. We run experiments five times to report the
mean and the standard deviation. Best performance result is shown in bold, second best is
underlined. The lower number is better.

PreActResNet18 PreActResNet34 WideResnet-28-10
Error Loss Error Loss Eror Loss

No Mixup 3.035± 0.092 0.138± 0.004 3.087± 0.659 0.164± 0.008 2.833± 0.081 0.137± 0.008
Input Mixup (α = 1) 2.930± 0.221 0.233± 0.016 2.855± 0.096 0.223± 0.024 2.643± 0.161 0.207± 0.041
ManifoldMixup (α= 2) 2.436± 0.056 0.157± 0.062 2.423± 0.428 0.146± 0.064 2.425± 0.101 0.157± 0.029
Cutout 2.794± 0.121 0.122± 0.010 2.654± 0.152 0.114± 0.007 2.475± 0.148 0.109± 0.009
DropBlock 2.961± 0.111 0.134± 0.005 3.101± 0.083 0.158± 0.006 2.732± 0.055 0.132± 0.002
CutMix 3.040± 0.054 0.135± 0.031 2.658± 0.049 0.121± 0.005 2.433± 0.045 0.110± 0.003
Puzzle Mix 2.657± 0.042 0.113± 0.003 2.451± 0.075 0.111± 0.002 2.432± 0.068 0.107± 0.002
Soft PatchUp 2.551± 0.056 0.129± 0.023 2.467± 0.081 0.111± 0.005 2.081± 0.066 0.111± 0.010
Hard PatchUp 2.286± 0.084 0.107± 0.004 2.123± 0.024 0.101± 0.007 2.088± 0.061 0.105± 0.012

4.3. Generalization on Image Classification
Table 4.4 shows the comparison of the generalization performance of PatchUp with six

recently proposed mixing based or feature-level regularization methods on the CIFAR-10 and
CIFAR-100 datasets. Since Puzzle Mix clearly showed that both CutMix and Puzzle Mix
perform better than AugMix [27], we excluded it from our experiments. Our experiments
show that PatchUp leads to a lower test error for all the models on CIFAR (Table 4.4),
SVHN (Table 4.3), and Tiny-ImageNet (Table 4.2) with a large margin. Specifically, Soft
PatchUp outperforms other methods on Tiny-ImageNet dataset using ResNet101/152, and

36

WideResNet-28-10 followed by Hard PatchUp. As explained in Section-4.8 and shown in
Figure 4.8, both Soft and Hard PatchUp produce a wide variety of interpolated hidden
representations towards different dimensions. However, Soft PatchUp behaves more conser-
vatively that helps outperform other methods with a large margin in the case of a limited
number of training samples per class and having more targets.

Table 4.4. Image classification task error rates on CIFAR-10 and CIFAR-100. We run
experiments five times to report the mean and the standard deviation. Best performance
result is shown in bold, second best is underlined. The lower number is better.

PreActResNet18 Test Error (%) Test NLL PreActResNet18 Test Error (%) Test NLL
No Mixup 4.800± 0.135 0.184± 0.004 No Mixup 24.622± 0.358 1.062± 0.017
Input Mixup (α = 1) 3.628± 0.201 0.192± 0.012 Input Mixup (α = 1) 22.326± 0.323 1.011± 0.012
ManifoldMixup (α = 1.5) 3.388± 0.048 0.147± 0.016 ManifoldMixup (α = 1.5) 21.396± 0.384 0.931± 0.008
Cutout 4.218± 0.046 0.158± 0.005 Cutout 23.386± 0.185 1.004± 0.004
DropBlock 5.038± 0.147 0.185± 0.005 DropBlock 25.022± 0.259 1.067± 0.016
CutMix 3.518± 0.898 0.131± 0.002 CutMix 22.184± 0.176 0.949± 0.012
Puzzle Mix 3.155± 0.110 0.119± 0.004 Puzzle Mix 20.649± 0.214 0.857± 0.013
Soft PatchUp 2.956± 0.119 0.169± 0.031 Soft PatchUp 19.950± 0.180 0.833± 0.005
Hard PatchUp 2.918± 0.131 0.146± 0.718 Hard PatchUp 19.120± 0.172 0.748± 0.013
PreActResNet34 PreActResNet34
No Mixup 4.640± 0.099 0.204± 0.004 No Mixup 23.342± 0.269 1.103± 0.006
Input Mixup (α = 1) 3.260± 0.075 0.175± 0.004 Input Mixup (α = 1) 21.000± 0.440 0.950± 0.019
ManifoldMixup (α = 1.5) 2.926± 0.062 0.124± 0.004 ManifoldMixup (α = 1.5) 18.724± 0.305 0.810± 0.008
Cutout 3.690± 0.141 0.150± 0.012 Cutout 22.420± 0.075 1.043± 0.001
DropBlock 4.950± 0.188 0.221± 0.010 DropBlock 23.744± 0.125 1.113± 0.007
CutMix 3.332± 0.071 0.142± 0.004 CutMix 19.944± 0.141 0.907± 0.008
Puzzle Mix 2.996± 0.069 0.125± 0.006 Puzzle Mix 19.974± 0.225 0.893± 0.022
Soft PatchUp 2.570± 0.062 0.108± 0.005 Soft PatchUp 18.630± 0.153 0.816± 0.016
Hard PatchUp 2.534± 0.048 0.108± 0.005 Hard PatchUp 17.692± 0.125 0.758± 0.016
WideResNet-28-10 WideResNet-28-10
No Mixup 4.244± 0.142 0.162± 0.011 No Mixup 22.442± 0.226 1.065± 0.010
Input Mixup (α = 1) 3.272± 0.353 0.191± 0.018 Input Mixup (α = 1) 18.726± 0.149 0.854± 0.013
ManifoldMixup (α = 1.5) 3.252± 0.183 0.155± 0.034 ManifoldMixup (α = 1.5) 18.352± 0.378 0.833± 0.023
Cutout 3.134± 0.119 0.122± 0.005 Cutout 20.164± 0.351 0.931± 0.016
DropBlock 4.182± 0.069 0.157± 0.003 DropBlock 22.364± 0.149 1.049± 0.013
CutMix 3.148± 0.118 0.126± 0.004 CutMix 18.316± 0.185 0.839± 0.020
Puzzle Mix 2.562± 0.074 0.098± 0.002 Puzzle Mix 17.528± 0.224 0.757± 0.006
Soft PatchUp 2.606± 0.052 0.132± 0.029 Soft PatchUp 16.726± 0.110 0.722± 0.017
Hard PatchUp 2.528± 0.065 0.114± 0.014 Hard PatchUp 16.134± 0.197 0.660± 0.017

Comparison on CIFAR-10 Comparison on CIFAR-100

Hard PatchUp provides the best performance in the CIFAR and Soft PatchUp achieves
the second-best performance except on the CIFAR-10 with WideResNet-28-10 where Puzzle
Mix provides the second-best performance. In the SVHN dataset ManifoldMixup achieves

37

the second-best performance in PreActResNet18 and PreActResNet34 where Hard PatchUp
provide the lowest top-1 error. Soft PatchUp performs reasonably well and comparable to
ManifoldMixup for PreActResNet34 on SVHN and leads to a lower test error followed by
Hard PatchUp for WideResNet-28-10 in the SVHN dataset. We observe that the Mixup,
ManifoldMixup, and Puzzle Mix are sensitive to the α when we have more training classes.
We tried to fix hyper-parameter for all experiments. Notably, using the same α used in
CIFAR or SVHN leads to worse performance than No-Mixup in Tiny-ImageNet, where others
are almost stable. Since ManifoldMixup and Puzzle Mix show that they perform better than
No-Mixup and Input Mixup on affine transformation and against adversarial attacks [27,
65], we exclude experiments on No-Mixup and Input Mixup for the tasks in the following
sections.

4.4. Robustness to Common Corruptions

Fig. 4.2. Robustness of WideResNet-28-10 to Tiny-ImageNet Common Corruptions (Tiny-
ImageNet-C). We repeated each test for five trained models to report the mean and the
standard. The lower values on the y-axes show the robustness of the model against the
input common corruptions. The y-axis is the sum of error rates for each category. And, the
x-axis represents the list of corruptions in Tiny-ImageNet-C.

38

(a) Comparison on ResNet101.

(b) Comparison on on ResNet152.

Fig. 4.3. Robustness to Tiny-ImageNet Common Corruptions (Tiny-ImageNet-C). We re-
peated each test for five trained models to report the mean and the standard. The lower
values on the y-axes show the robustness of the model against the input common corruptions.
The y-axis is the sum of error rates for each category. And, the x-axis represents the list of
corruptions in Tiny-ImageNet-C.

39

The common corruption benchmark helps to evaluate the robustness of models against
the input corruptions [19]. It uses the 75 corruptions in 15 categories such that each category
has five levels of severity. We compare the methods robustness in Tiny-ImageNet-C dataset
for ResNet101, ResNet152, and WideResNet-28-10 models. So, we compute the sum of
error rates denoted as Ef

c where s is the level of severity and c is corruption type such that
Ef
c = ∑5

s=1 E
f
s,c [19]. Figure 4.2 shows Soft PatchUp leads the best performance in Tiny-

ImageNet-C and Hard PatchUp achieves the second-best performance in the WideResNet-
28-10. Figures 4.3a and 4.3b show the comparison results in ResNet101, and ResNet152.

4.5. Generalization on Deformed Images
Affine transformations on the test set provide novel deformed data samples that can

be used to evaluate the robustness of a method on out-of-distribution samples [65]. We
trained PreActResNet34 and WideResNet-28-10 on the CIFAR100 dataset. Then, we created
deformed test sets from CIFAR100 by applying some affine transformations. Table 4.6
shows that PatchUp provides the best performance on affine transformed test sets and better
generalization in PreActResNet34 (The lower number is better).

Table 4.5. Error rates in the test set on samples subject to affine transformations for
WideResNet-28-10 trained on CIFAR-100 with indicated regularization method. We re-
peated each test for five trained models to report the mean and the standard deviation of
errors. Best performance result is shown in bold, second best is underlined.

Transformation cutout CutMix ManifoldMixup Puzzle Mix Soft PatchUp Hard PatchUp
Rotate (-20, 20) 36.162± 0.633 34.236± 0.785 35.774± 0.621 28.35± 0.561 31.282± 0.622 31.340± 0.318
Rotate (-40, 40) 57.220± 0.549 56.512± 0.752 56.610± 0.877 51.49± 1.028 52.014± 0.916 53.804± 0.576
Shear (-28.6, 28.6) 33.482± 0.463 31.770± 0.312 32.300± 0.317 27.178± 0.256 30.898± 0.836 28.426± 0.430
Shear (-57.3, 57.3) 53.328± 0.587 50.618± 0.552 52.366± 0.170 47.414± 0.482 51.908± 0.632 48.334± 0.631
Scale (0.6) 56.770± 0.376 45.980± 0.404 63.924± 2.160 46.354± 0.869 52.648± 0.616 46.924± 1.035
Scale (0.8) 30.550± 0.611 26.818± 0.328 29.012± 0.372 24.428± 0.171 27.188± 0.597 23.840± 0.535
Scale (1.2) 47.268± 0.639 51.258± 0.817 41.644± 0.846 49.18± 1.046 42.108± 0.985 43.370± 1.223
Scale (1.4) 79.000± 0.933 82.562± 0.575 72.752± 0.846 82.152± 0.41 70.970± 1.433 77.370± 1.457

Table 4.5 illustrates that the quality of representations is improved by PatchUp and it also
shows better generalization in deformed test sets on WideResNet-28-10 (The lower number
is better).

40

Table 4.6. Error rates in the test set on samples subject to affine transformations for
PreActResNet34 trained on CIFAR-100 with indicated regularization method. We repeated
each test for five trained models to report the mean and the standard deviation of errors.
Best performance result is shown in bold, second best is underlined.

Transformation cutout CutMix ManifoldMixup Puzzle Mix Soft PatchUp Hard PatchUp
Rotate (-20, 20) 37.448± 0.526 35.418± 0.328 35.444± 0.572 31.698± 0.664 31.136± 0.524 30.406± 0.520
Rotate (-40, 40) 58.752± 0.995 57.830± 0.586 54.424± 0.946 54.042± 0.800 53.422± 0.420 49.956± 0.798
Shear (-28.6, 28.6) 36.552± 0.487 34.148± 0.473 34.150± 0.416 31.628± 0.688 28.984± 0.497 29.574± 0.410
Shear (-57.3, 57.3) 57.736± 0.574 53.640± 0.587 55.444± 0.683 52.492± 0.390 49.102± 0.532 50.318± 0.616
Scale (0.6) 72.994± 1.231 54.304± 1.268 78.998± 1.126 59.696± 1.242 46.246± 1.204 50.062± 2.692
Scale (0.8) 35.092± 0.857 29.380± 0.577 34.624± 0.370 30.366± 0.359 23.942± 0.212 25.338± 0.328
Scale (1.2) 42.310± 0.706 49.522± 2.035 41.322± 0.638 47.38± 1.443 43.414± 0.652 38.002± 0.703
Scale (1.4) 69.404± 0.901 78.664± 1.854 65.938± 0.751 77.586± 0.967 77.068± 1.189 66.338± 1.219

4.6. Robustness to Adversarial Examples
Neural networks trained with Empirical Risk Minimization (ERM) are often vulnerable

to adversarial examples [60, 76]. Certain data-dependent regularization techniques can alle-
viate such fragility to adversarial examples by training the models with interpolated data.
Therefore, the robustness of a regularized model to adversarial examples can be considered
as a criterion for comparison [65, 73, 76].

Table 4.7. Robust Accuracy of WideResNet-28-10 in the Tiny-ImageNet dataset against
adversarial 7-steps attacks with ε = 16

255 . Best performance result is shown in bold, second
best is underlined. The higher number is better (repeated five times).

Methods DeepFool DDN CW PGDL∞

No Mixup 0.171± 0.007 0.177± 0.005 0.177± 0.005 0.171± 0.004
Input Mixup 0.193± 0.002 0.195± 0.001 0.195± 0.001 0.190± 0.001
ManifoldMixup 0.197± 0.003 0.198± 0.002 0.197± 0.002 0.191± 0.002
Cutout 0.183± 0.007 0.185± 0.005 0.185± 0.005 0.180± 0.005
DropBlock 0.181± 0.004 0.186± 0.001 0.186± 0.001 0.181± 0.002
CutMix 0.168± 0.004 0.171± 0.003 0.172± 0.003 0.171± 0.003
Puzzle Mix 0.187± 0.002 0.191± 0.001 0.191± 0.002 0.188± 0.001
Soft PatchUp 0.187± 0.002 0.196± 0.002 0.198± 0.002 0.192± 0.002
Hard PatchUp 0.179± 0.004 0.186± 0.003 0.186± 0.003 0.182± 0.004

41

(a) PreActResNet18 in CIFAR-10. (b) PreActResNet18 in CIFAR-100.

(c) PreActResNet34 in CIFAR-10. (d) PreActResNet34 in CIFAR-100.

Fig. 4.4. Robustness of PreActResNet18 and PreActResNet34 models in CIFAR-10 and
CIFAR-100 to the FGSM attack, known as a white-box attack. We repeated each test for
five trained models to report the mean and the standard deviation of each method’s accuracy
against the FGSM attack. The higher values on the y-axes show the robustness of the model
against the attack. And, ε is the magnitude that controls the perturbation.

The adversarial attacks refer to small and unrecognizable perturbations on the input
images that can mislead deep learning models [14, 15]. One approach to creating adversar-
ial examples is using the Fast Gradient Sign Method (FGSM), also known as a white-box
attack [15]. FGSM creates perturbed samples by adding small perturbations to the original
samples. Once a regularized model is trained, then FSGM creates adversarial examples as
follows [15]:

x′ = x+ ε× sign (∇xJ(θ,x, y)) . (4.6.1)

42

where x′ is an adversarial example, x is the original example, y is the ground truth label for
x, and J(θ,x, y) is the loss of the model with parameters of θ. ε controls the perturbation.

(a) WideResNet28-10 in CIFAR-10. (b) WideResNet28-10 in CIFAR-100.

(c) WideResNet28-10 in SVHN. (d) WideResNet28-10 in Tiny-ImageNet.

Fig. 4.5. Robustness of WideResNet28-10 model in CIFAR-10, CIFAR-100, SVHN, and
Tiny-ImageNet to the FGSM attack, known as a white-box attack. We repeated each test
for five trained models to report the mean and the standard deviation of each method’s
accuracy against the FGSM attack. The higher values on the y-axes show the robustness of
the model against the attack. And, ε is the magnitude that controls the perturbation.

Figures 4.4 and 4.5 shows the compared performance of the methods for PreActRes-
Net18, PreActResNet34, and WideResNet-28-10 models in CIFAR-10, CIFAR-100, SVHN,
and Tiny-ImageNet datasets against the FGSM attacks described in [15]. Table 4.7 also
shows the robust accuracy (in the range of [0, 1]) for the Foolbox benchmark [44] against the

43

7-steps DeepFool [40], Decoupled Direction and Norm (DDN) [47], Carlini-Wagner (CW) [5],
and PGDL∞ [37] attacks with ε = 8

255 .
We observe that PatchUp is more robust to adversarial attacks when compared to other

regularization methods. While Hard PatchUp achieves better performance in terms of clas-
sification accuracy, Soft PatchUp seems to trade-off a slight loss of accuracy to achieve more
robustness.

4.7. Effect on Activations
Cutout introduced an ablation study to compare the regularization techniques. Cutout

compares the average magnitude of feature activations in different layers of the model. Ac-
cording to the Cutout, the higher average magnitude of feature activations shows that the
model uses a wider variety of features when making predictions, rather than relying on the
presence of a smaller number of features [9]. Having a wider variety of features can capture
more detail from input images and provide rich representation.

However, our experiment shows that having a higher average magnitude of feature acti-
vations on a regularized model could be considered a strength for a model and, therefore,
for the regularization method. Still, it is not sufficient to consider a regularization method
as the best regularization technique. This section shows that PatchUp provides a higher
average magnitude of feature activations in the layers that PatchUp are applied at training
time.

To study the effect of the methods on the activations in the residual blocks, we compared
the mean magnitude of feature activations in the residual blocks following [9] in WideResNet-
28-10 for CIFAR-100 test set. We first train the models with each method and then calculate
the magnitudes of activations in the test set. And, the higher mean magnitude of features
shows that the models tried to produce a wider variety of features in the residual blocks [9].

Our WideResNet-28-10 has a conv2d module followed by three residual blocks. We
selected k randomly such that k ∈ {0, 1, 2, 3}. And, we apply the ManifoldMixup and
PatchUp in either input space, first conv2d, first or second residual blocks.

Figures 4.6a, 4.6b, and 4.6c illustrate that PatchUp produces more diverse features in the
layers where we apply PatchUp. Since we are not applying the PatchUp in the third residual
block, the mean magnitude of the feature activations are below, but very close to, Cutout
and CutMix as shown in Figure 4.6d. This experiment also shows that producing a wide
variety of features can be an advantage for a model. However, according to our experiments,
a larger magnitude of activations does not always mean better performance. Figure 4.6

44

(a) Comparison on the first convolution module. (b) Comparison on 1st Residual Block.

(c) Comparison on 2nd Residual Block. (d) Comparison on 3rd Residual Block.

Fig. 4.6. The effect of the state-of-the-art regularization techniques on activations in
WideResNet28-10 for CIFAR100 test set. Each curve is the magnitude of feature activa-
tions, sorted by descending value, and averaged over all test samples for each method. The
higher magnitude shows a wider variety of the produced features by the model at each block.

shows that for ManifoldMixup, the mean magnitude of the feature activations is less than
other approaches. But, it performs better than Cutout and CutMix in image classification,
affine transformations, and FGSM attacks. In our implementation WideResNet28-10 has a
conv2d module followed by three residual blocks. Figure 4.6 illustrates the comparison of
ManifoldMixup, cutout, CutMix, Soft PatchUp, and Hard PatchUp.

45

4.8. PatchUp Interpolation Policy Effect
Assume that H1 and H2 are flattened hidden representations of two examples produced

at layer k. And, H is the flattened interpolated hidden representation of these two paired
samples at layer k. First, we calculate the cosine distance of the pairs (H2, H1), (H1, H), and
(H2, H). Reversing the cosine of these cosine similarities give the angular distance between
each pair of vectors denoted as ∠θ, ∠α1, and ∠α2, respectively. There is always a surface
that contains H2 and H1 denoted as S. Mathematically, we have:

∠α1 = cos−1(H1·H
‖H1‖‖H‖) & ∠α2 = cos−1(H2·H

‖H2‖‖H‖) & ∠θ = cos−1(H2·H1
‖H2‖‖H1‖), (4.8.1)

Let us define ∠ρ = (∠α1 + ∠α2) − ∠θ and ∠ρ′ = |∠α1 − ∠α2| − ∠θ. According to the
triangle inequality principle, either ∠ρ or ∠ρ′ will be zero if, and only if, H ∈ S. Figure 4.7
illustrates three possible scenarios for two paired flattened hidden representations and their
flattened interpolated hidden representations. ∠ρ and ∠ρ′ are zero for the left and right
figures, respectively. We try to empirically show that H2, H1, and H always lie in the same
surface S and H lies between H2 and H1 in ManifoldMixup. This means that ∠ρ = 0 for
ManifoldMixup because of its linear interpolation policy. The middle figure in 4.7 is the case
that both ∠ρ and ∠ρ′ are not equal to zero. This figure shows that one possible situation is
that flattened interpolated hidden representation does not lie in the surface S. Our goal is
to produce the interpolated hidden representation that lies in all possible places towards all
dimensions in the hidden space.

Fig. 4.7. H1 andH2 are the flattened hidden representations. H is the flattened interpolated
hidden representation that can be produced by either ManifoldMixup, Soft PatchUp or Hard
PatchUp.

As discussed in section 3.2.1, ManifoldMixup can provide interpolated hidden represen-
tation only in a limited space. However, Soft PatchUp and Hard PatchUp can produce a
wide variety of interpolated hidden representations towards different dimensions. To support
that, in WideResNet-28-10, for a mini-batch of 100 samples, we calculated the ∠ρ for the

46

Fig. 4.8. The comparison of ∠ρ for flattened hidden representations of a mini-batch of
samples at the second residual block (layer k = 3) of WideResNet-28-10 with corresponding
regularization method.

flattened interpolated hidden representation produced by ManifoldMixup, Hard PatchUp,
and Soft PatchUp at the second residual block (layer k = 3) with the same interpolation
policy (λ = .4, γ = .5, and block_size = 7) for both Soft PatchUp and Hard PatchUp for
all samples in the mini-batch. The swarmplot 4.8 shows all ∠ρ for the mini-batch are equal
to zero in ManifoldMixup, which empirically supports our hypothesis. However, PatchUp
produces more diverse interpolated hidden representations towards all dimensions in the hid-
den space. It is worth mentioning that few ∠ρ that are equal to zero in Soft PatchUp and
Hard PatchUp belong to the interpolated hidden representation that was constructed from
the pairs with the same labels.

4.9. Significance of loss terms
PatchUp uses the loss that is introduced in Equation 3.1.5. We can paraphrase the

PatchUp learning objective for this ablation study as follow:

L(f) = E(xi, yi)∼P E(xj , yj)∼P Eλ∼Beta(α, α) Ek∼S(L1 + L2), (4.9.1)

where L1 = Mixpu [`(fk(φk), yi), `(fk(φk), Y)] and L2 = `(fk(φk),W (yi, yj)). We also show
the effect of L1 and L2 in PatchUp loss. Table 4.8 shows the error rate on the validation set
for WideResNet-28-10 on CIFAR-100. This study shows that the summation of the L1 and
L2 reduces error rate by .1% in PatchUp.

47

Table 4.8. The validation error rate on CIFAR-100 for WideResNet-28-10 with Hard and
Soft PatchUp. The result is the mean and standard deviation of the experiment for five runs.
A smaller number indicates better performance.

Simple WRN-28-10 Error Rate: 23.256± 0.586

Error rates with L1 Error rates with L2 Error rates with L(f)

Soft PatchUp 16.856± 0.666 16.865± 0.339 16.75± 0.291

Hard PatchUp 16.135± 0.229 16.79± 0.457 16.02± 0.358

4.10. Why random k?
PatchUp applies block-level regularization at a randomly selected hidden representation

layer k. The Information Bottleneck (IB) principle [61] gives a formal intuition for selecting
k randomly. First, let us encapsulate the network layers into blocks where each block could
contain more than one layer. Let gk be the k-th block of layers. In this case, sequential blocks
share the information as a hidden representation to the next block of layers, sequentially.
We can consider this case as a Markov chain of the block of layers as follows:

x→ g1(x)→ g2(x)→ g3(x). (4.10.1)

In this scenario, the sequential communication between the intermediate hidden representa-
tions is considered an information bottleneck. Therefore,

I(g3(x); g2(x)) < I(g2(x); g1(x)) < I(g1(x); x), (4.10.2)

where I(gk(x); gk−1(x)) is the mutual information between the k-th and (k − 1)-th layer.
If gk=3(x) has enough information to represent x, then applying regularization techniques

in gk=3(x) will provide a better generalization to unseen data. However, most current state-
of-the-art CNN models contain residual connections that break the Markov chain described
above (since information can skip the gk=3 layer). One solution to this challenge is to
randomly select a residual block and apply regularization techniques like ManifoldMixup or
PatchUp.

We also conducted an experiment to show the importance of random layer selection in
PatchUp. Table 4.9 shows the contribution of the random selection of the layer in the overall
performance of the method. Worth mentioning that applying ManifoldMixup or PatchUp
at every layer will also be considered a very strong regularization that hurts the model’s
performance. As Table 4.9 shows, if we apply the PatchUp only in the fixed layer it might

48

either overfit or twists the manifold. In the left-most column 1/2/3 refers to PatchUp being
applied to only one layer (more details in Section-4.10). As noted in section 3.1.5, the
PatchUp mask is “too strong” for the input space, which has only three channels. Figure 4.9
shows that the PatchUp mask often drastically destroys the semantic concepts in the input
images. Thus, we select one random rectangular patch in the input space (similar to CutMix).
However, the learning objective in (k = 0) is still the PatchUp objective that is different from
CutMix. The last row in table 4.9 shows the negative effect of applying PatchUp mask in
the input space.

Fig. 4.9. (top) Original samples. (bottom) Hard PatchUp output using PatchUp Binary
Mask on input images.

Table 4.9. WRN-28-10 using Hard PatchUp on CIFAR-100. repeated five times and re-
ported the mean and std.

layer Validation Error (%) Test Error (%) Test NLL

1 18.428± 0.441 17.864± 0.158 0734± 0.014

2 22.536± 0.799 21.418± 0.278 0.854± 0.008

3 26.172± 0.497 25.254± 0.139 1.138± 0.033

Random selection 16.382± 0.473 16.134± 0.197 0.66± 0.017

PatchUp Masks in k = 0 16.976± 0.342 16.97± 0.0.206 0.671± 0.002

49

Chapter 5

Conclusion

We presented PatchUp, an efficient and straightforward regularizer scheme for CNNs that
alleviates some of the drawbacks of the previous mixing-based regularizers. PatchUp exploits
either mixing or swapping a masked out contiguous blocks of the feature map of a random pair
of samples at randomly selected layers to avoid manifold intrusion problem. Like previous
mixing-based approaches, our approach also has the advantage of preventing any added
computational overhead.

We show that the PatchUp provides a comprehensive variety of interpolated hidden repre-
sentations towards different dimensions and therefore a better generalization and robustness
against adversarial attacks including FGSM, DDN, CW, and PGD∞ attacks. PatchUp as a
data-dependent regularization operates in the hidden space in a CNN model during training.
Our experimental results show that with the proposed approach, PatchUp, we can achieve
state-of-the-art results on image classification and deformed image classification tasks across
different models with the ResNet architecture in CIFAR-10, CIFAR-100, SVHN, and Tiny-
ImageNet datasets.

Our empirical results show that PatchUp as a data-dependent regularization method
that enforces CNN models to produce minimal and more robust features. To this end, the
strong test accuracy improvements achieved by PatchUp, with no additional computational
overhead, makes it particularly appealing for practical applications.

5.1. Future Work
PatchUp selects the layer randomly in ResNet architecture, making sense for the ResNet

architecture due to the skip connection. However, finding a more efficient and adaptive way
to select an intermediate layer at each training step could be considered potential future
work. Another line of work could be comparing PatchUp with other regularization tech-
niques on models that use for Point Clouds object classification or segmentation. Point

50

Clouds data is a 3D ShapeNets used to detect objects using LiDAR technology. Model-
Net40 [68] as a 3D Representation for Volumetric Shapes can be used as a benchmark to see
the effect of PatchUp on CNN layers in PointNet [43], PCNN [3], and Dynamic Graph CNN
(DGCNN) [66].

51

References

[1] A. Achille et S. Soatto : Information dropout: Learning optimal representations
through noisy computation. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 40(12):2897–2905, Dec 2018.

[2] Devansh Arpit, Stanisław Jastrzębski, Nicolas Ballas, David Krueger, Em-
manuel Bengio, Maxinder S Kanwal, Tegan Maharaj, Asja Fischer, Aaron
Courville, Yoshua Bengio et al. : A closer look at memorization in deep networks.
In Proceedings of the 34th International Conference on Machine Learning-Volume 70,
pages 233–242. JMLR. org, 2017.

[3] Matan Atzmon, Haggai Maron et Yaron Lipman : Point convolutional neural net-
works by extension operators, 2018.

[4] Henry S Baird, Horst Bunke et Kazuhiko Yamamoto : Structured document image
analysis. Springer Science & Business Media, 2012.

[5] Nicholas Carlini et David Wagner : Towards evaluating the robustness of neural
networks. In 2017 ieee symposium on security and privacy (sp), pages 39–57. IEEE,
2017.

[6] Patryk Chrabaszcz, Ilya Loshchilov et Frank Hutter : A downsampled variant
of imagenet as an alternative to the cifar datasets, 2017.

[7] Michael Cogswell, Faruk Ahmed, Ross Girshick, Larry Zitnick et Dhruv Batra
: Reducing overfitting in deep networks by decorrelating representations, 2016.

[8] Ekin D. Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasudevan et Quoc V. Le :
Autoaugment: Learning augmentation policies from data, 2019.

[9] Terrance DeVries et Graham W. Taylor : Improved regularization of convolutional
neural networks with cutout, 2017.

[10] Alexei A Efros et William T Freeman : Image quilting for texture synthesis and trans-
fer. In Proceedings of the 28th annual conference on Computer graphics and interactive
techniques, pages 341–346, 2001.

[11] Yarin Gal et Zoubin Ghahramani : A theoretically grounded application of dropout
in recurrent neural networks. In Advances in neural information processing systems,
pages 1019–1027, 2016.

52

[12] Andrei Dmitri Gavrilov, Alex Jordache, Maya Vasdani et Jack Deng : Prevent-
ing model overfitting and underfitting in convolutional neural networks. International
Journal of Software Science and Computational Intelligence (IJSSCI), 10(4):19–28, 2018.

[13] Golnaz Ghiasi, Tsung-Yi Lin et Quoc V. Le : Dropblock: A regularization method
for convolutional networks. CoRR, abs/1810.12890, 2018.

[14] Ian Goodfellow, Yoshua Bengio et Aaron Courville : Deep learning. MIT press,
2016.

[15] Ian J. Goodfellow, Jonathon Shlens et Christian Szegedy : Explaining and har-
nessing adversarial examples, 2014.

[16] Hongyu Guo, Yongyi Mao et Richong Zhang : Mixup as locally linear out-of-manifold
regularization. CoRR, abs/1809.02499, 2018.

[17] Kaiming He, Xiangyu Zhang, Shaoqing Ren et Jian Sun : Deep residual learning for
image recognition. CoRR, abs/1512.03385, 2015.

[18] Kaiming He, Xiangyu Zhang, Shaoqing Ren et Jian Sun : Identity mappings in deep
residual networks, 2016.

[19] Dan Hendrycks et Thomas Dietterich : Benchmarking neural network robustness
to common corruptions and perturbations, 2019.

[20] Dan Hendrycks, Norman Mu, Ekin D. Cubuk, Barret Zoph, Justin Gilmer et
Balaji Lakshminarayanan : Augmix: A simple data processing method to improve
robustness and uncertainty, 2020.

[21] Alex Hernández-García et Peter König : Data augmentation instead of explicit
regularization, 2020.

[22] Aaron Hertzmann, Charles E Jacobs, Nuria Oliver, Brian Curless et David H
Salesin : Image analogies. In Proceedings of the 28th annual conference on Computer
graphics and interactive techniques, pages 327–340, 2001.

[23] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A. Mohamed, N. Jaitly, A. Senior,
V. Vanhoucke, P. Nguyen, T. N. Sainath et B. Kingsbury : Deep neural networks
for acoustic modeling in speech recognition: The shared views of four research groups.
IEEE Signal Processing Magazine, 29(6):82–97, Nov 2012.

[24] Geoffrey Hinton : How to represent part-whole hierarchies in a neural network, 2021.
[25] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou et Alexei A Efros : Image-to-image

translation with conditional adversarial networks. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 1125–1134, 2017.

53

[26] George N Karystinos et Dimitrios A Pados : On overfitting, generalization, and
randomly expanded training sets. IEEE Transactions on Neural Networks, 11(5):1050–
1057, 2000.

[27] Jang-Hyun Kim, Wonho Choo et Hyun Oh Song : Puzzle mix: Exploiting saliency
and local statistics for optimal mixup, 2020.

[28] Alex Krizhevsky : Learning multiple layers of features from tiny images. 2009.
[29] Alex Krizhevsky, Ilya Sutskever et Geoffrey E Hinton : Imagenet classification

with deep convolutional neural networks. In F. Pereira, C. J. C. Burges, L. Bottou
et K. Q. Weinberger, éditeurs : Advances in Neural Information Processing Systems
25, pages 1097–1105. Curran Associates, Inc., 2012.

[30] David Krueger, Tegan Maharaj, János Kramár, Mohammad Pezeshki, Nicolas
Ballas, Nan Rosemary Ke, Anirudh Goyal, Yoshua Bengio, Aaron Courville et
Chris Pal : Zoneout: Regularizing rnns by randomly preserving hidden activations.
arXiv preprint arXiv:1606.01305, 2016.

[31] Jan Kukačka, Vladimir Golkov et Daniel Cremers : Regularization for deep learn-
ing: A taxonomy. arXiv preprint arXiv:1710.10686, 2017.

[32] Yann LeCun, Yoshua Bengio et al. : Convolutional networks for images, speech, and
time series. The handbook of brain theory and neural networks, 3361(10):1995, 1995.

[33] Yann LeCun, Yoshua Bengio et Geoffrey Hinton : Deep learning. nature, 521(7553):
436–444, 2015.

[34] Yann LeCun, Léon Bottou, Yoshua Bengio et Patrick Haffner : Gradient-based
learning applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324,
1998.

[35] Christian Ledig, Lucas Theis, Ferenc Huszár, Jose Caballero, Andrew Cunning-
ham, Alejandro Acosta, Andrew Aitken, Alykhan Tejani, Johannes Totz, Zehan
Wang et al. : Photo-realistic single image super-resolution using a generative adver-
sarial network. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 4681–4690, 2017.

[36] Sungbin Lim, Ildoo Kim, Taesup Kim, Chiheon Kim et Sungwoong Kim : Fast au-
toaugment, 2019.

[37] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras et
Adrian Vladu : Towards deep learning models resistant to adversarial attacks, 2019.

[38] Zhijun Mai, Guosheng Hu, Dexiong Chen, Fumin Shen et Heng Tao Shen :
Metamixup: Learning adaptive interpolation policy of mixup with meta-learning, 2019.

[39] Tom M Mitchell et al. : Machine learning. 1997.

54

[40] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi et Pascal Frossard : Deepfool:
a simple and accurate method to fool deep neural networks. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 2574–2582, 2016.

[41] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu et An-
drew Y. Ng : Reading digits in natural images with unsupervised feature learning. In
NIPS Workshop on Deep Learning and Unsupervised Feature Learning 2011, 2011.

[42] Lutz Prechelt : Early stopping-but when? In Neural Networks: Tricks of the trade,
pages 55–69. Springer, 1998.

[43] Charles R. Qi, Wei Liu, Chenxia Wu, Hao Su et Leonidas J. Guibas : Frustum
pointnets for 3d object detection from rgb-d data, 2018.

[44] Jonas Rauber, Wieland Brendel et Matthias Bethge : Foolbox: A python toolbox
to benchmark the robustness of machine learning models, 2018.

[45] Scott Reed, Zeynep Akata, Xinchen Yan, Lajanugen Logeswaran, Bernt Schiele
et Honglak Lee : Generative adversarial text to image synthesis. arXiv preprint
arXiv:1605.05396, 2016.

[46] Shaoqing Ren, Kaiming He, Ross Girshick et Jian Sun : Faster r-cnn: Towards real-
time object detection with region proposal networks. In C. Cortes, N. D. Lawrence,
D. D. Lee, M. Sugiyama et R. Garnett, éditeurs : Advances in Neural Information
Processing Systems 28, pages 91–99. Curran Associates, Inc., 2015.

[47] Jerome Rony, Luiz G. Hafemann, Luiz S. Oliveira, Ismail Ben Ayed, Robert
Sabourin et Eric Granger : Decoupling direction and norm for efficient gradient-
based l2 adversarial attacks and defenses. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), June 2019.

[48] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh,
Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein,
Alexander C. Berg et Li Fei-Fei : ImageNet Large Scale Visual Recognition Chal-
lenge. International Journal of Computer Vision (IJCV), 115(3):211–252, 2015.

[49] Sara Sabour, Nicholas Frosst et Geoffrey E Hinton : Dynamic routing between
capsules, 2017.

[50] Jürgen Schmidhuber : Deep learning in neural networks: An overview. Neural
networks, 61:85–117, 2015.

[51] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford et Oleg Klimov
: Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[52] Pierre Sermanet, Soumith Chintala et Yann LeCun : Convolutional neural net-
works applied to house numbers digit classification, 2012.

55

[53] Patrice Y Simard, Yann A LeCun, John S Denker et Bernard Victorri : Trans-
formation invariance in pattern recognition—tangent distance and tangent propagation.
In Neural networks: tricks of the trade, pages 239–274. Springer, 1998.

[54] Patrice Y Simard, David Steinkraus, John C Platt et al. : Best practices for
convolutional neural networks applied to visual document analysis. In Icdar, volume 3,
2003.

[55] Karen Simonyan et Andrew Zisserman : Very deep convolutional networks for large-
scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[56] Karen Simonyan et Andrew Zisserman : Very deep convolutional networks for large-
scale image recognition, 2015.

[57] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever et Ruslan
Salakhutdinov : Dropout: A simple way to prevent neural networks from overfitting.
Journal of Machine Learning Research, 15:1929–1958, 2014.

[58] Yi Sun, Xiaogang Wang et Xiaoou Tang : Deep learning face representation from
predicting 10,000 classes. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 1891–1898, 2014.

[59] Ilya Sutskever, Oriol Vinyals et Quoc V. Le : Sequence to sequence learning
with neural networks. In Proceedings of the 27th International Conference on Neural
Information Processing Systems - Volume 2, NIPS’14, page 3104–3112, Cambridge, MA,
USA, 2014. MIT Press.

[60] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Er-
han, Ian Goodfellow et Rob Fergus : Intriguing properties of neural networks.
arXiv preprint arXiv:1312.6199, 2013.

[61] Naftali Tishby et Noga Zaslavsky : Deep learning and the information bottleneck
principle. CoRR, abs/1503.02406, 2015.

[62] Jonathan Tompson, Ross Goroshin, Arjun Jain, Yann LeCun et Christoph Bre-
gler : Efficient object localization using convolutional networks. CoRR, abs/1411.4280,
2014.

[63] Jonathan Tompson, Ross Goroshin, Arjun Jain, Yann LeCun et Christoph Bre-
gler : Efficient object localization using convolutional networks. CoRR, abs/1411.4280,
2014.

[64] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser et Illia Polosukhin : Attention is all you need.
CoRR, abs/1706.03762, 2017.

56

[65] Vikas Verma, Alex Lamb, Christopher Beckham, Amir Najafi, Ioannis
Mitliagkas, David Lopez-Paz et Yoshua Bengio : Manifold mixup: Better
representations by interpolating hidden states. In Kamalika Chaudhuri et Ruslan
Salakhutdinov, éditeurs : Proceedings of the 36th International Conference on
Machine Learning, volume 97 de Proceedings of Machine Learning Research, pages
6438–6447, Long Beach, California, USA, 09–15 Jun 2019. PMLR.

[66] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma, Michael M. Bronstein et
Justin M. Solomon : Dynamic graph cnn for learning on point clouds, 2019.

[67] Huikai Wu, Shuai Zheng, Junge Zhang et Kaiqi Huang : Gp-gan: Towards re-
alistic high-resolution image blending. In Proceedings of the 27th ACM International
Conference on Multimedia, pages 2487–2495, 2019.

[68] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou
Tang et Jianxiong Xiao : 3d shapenets: A deep representation for volumetric shapes,
2015.

[69] Raymond A Yeh, Chen Chen, Teck Yian Lim, Alexander G Schwing, Mark
Hasegawa-Johnson et Minh N Do : Semantic image inpainting with deep gener-
ative models. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 5485–5493, 2017.

[70] Xue Ying : An overview of overfitting and its solutions. In Journal of Physics:
Conference Series, volume 1168, page 022022. IOP Publishing, 2019.

[71] Kevin Y Yip et Mark Gerstein : Training set expansion: an approach to improving
the reconstruction of biological networks from limited and uneven reliable interactions.
Bioinformatics, 25(2):243–250, 2009.

[72] Fisher Yu et Vladlen Koltun : Multi-scale context aggregation by dilated convolutions,
2016.

[73] Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe et
Youngjoon Yoo : Cutmix: Regularization strategy to train strong classifiers with
localizable features, 2019.

[74] Sergey Zagoruyko et Nikos Komodakis : Wide residual networks, 2017.
[75] Luiz Zaniolo et Oge Marques : On the use of variable stride in convolutional neural

networks. Multimedia Tools and Applications, 79(19):13581–13598, 2020.
[76] Hongyi Zhang, Moustapha Cisse, Yann N. Dauphin et David Lopez-Paz : mixup:

Beyond empirical risk minimization, 2017.

57

	Résumé
	Abstract
	Contents
	List of tables
	List of figures
	List of Abbreviations
	Remerciements
	Acknowledgements
	Chapter 1. Introduction
	1.1. Machine Learning
	1.2. Convolutional Neural Networks
	1.2.1. Convolutional Layer

	1.3. Generalization and Regularization
	1.4. Contributions
	1.5. Thesis Layout

	Chapter 2. Regularization Techniques for CNNs
	2.1. Data-dependant Regularization Methods
	2.1.1. AutoAugment
	2.1.2. AugMix
	2.1.3. Mixup
	2.1.4. MetaMixup
	2.1.5. Cutout
	2.1.6. CutMix
	2.1.7. ManifoldMixup
	2.1.8. Puzzle Mix

	2.2. Data-independent Regularization Methods
	2.2.1. DropBblock

	Chapter 3. PatchUp
	3.1. PatchUp
	3.1.1. Binary Mask Creation
	3.1.2. PatchUp Operation
	3.1.3. Learning Objective
	3.1.4. Algorithm
	3.1.5. PatchUp in Input Space

	3.2. Relation to Other Methods
	3.2.1. PatchUp Vs. ManifoldMixup:
	3.2.2. PatchUp Vs. CutMix:

	3.3. Conclusion

	Chapter 4. Experiments
	4.1. Data
	4.2. Experiment Setup and Hyper-parameter Tuning
	4.3. Generalization on Image Classification
	4.4. Robustness to Common Corruptions
	4.5. Generalization on Deformed Images
	4.6. Robustness to Adversarial Examples
	4.7. Effect on Activations
	4.8. PatchUp Interpolation Policy Effect
	4.9. Significance of loss terms
	4.10. Why random k?

	Chapter 5. Conclusion
	5.1. Future Work

	References

