
Université de Montréal

On quantifying the value of simulation for training and
evaluating robotic agents

par

Anthony Courchesne

Département d’informatique et de recherche opérationnelle
Faculté des arts et des sciences

Mémoire présenté en vue de l’obtention du grade de
Maître ès sciences (M.Sc.)

en Intelligence Artificielle et Robotique

April 2021

© Anthony Courchesne, 2021

Université de Montréal
Faculté des arts et des sciences

Ce mémoire intitulé

On quantifying the value of simulation
for training and evaluating robotic agents

présenté par

Anthony Courchesne

a été évalué par un jury composé des personnes suivantes :

Philippe Langlais
(président-rapporteur)

Liam Paull
(directeur de recherche)

Guillaume Rabusseau
(membre du jury)

Résumé

Un problème récurrent dans le domaine de la robotique est la difficulté à reproduire les
résultats et valider les affirmations faites par les scientifiques. Les expériences conduites en
laboratoire donnent fréquemment des résultats propres à l’environnement dans lequel elles
ont été effectuées, rendant la tâche de les reproduire et de les valider ardues et coûteuses.
Pour cette raison, il est difficile de comparer la performance et la robustesse de différents
contrôleurs robotiques. Les environnements substituts à faibles coûts sont populaires, mais
introduisent une réduction de performance lorsque l’environnement cible est enfin utilisé.
Ce mémoire présente nos travaux sur l’amélioration des références et de la comparaison
d’algorithmes (“Benchmarking”) en robotique, notamment dans le domaine de la conduite
autonome.

Nous présentons une nouvelle platforme, les Autolabs Duckietown, qui permet aux cher-
cheurs d’évaluer des algorithmes de conduite autonome sur des tâches, du matériel et un
environnement standardisé à faible coût. La plateforme offre également un environnement
virtuel afin d’avoir facilement accès à une quantité illimitée de données annotées. Nous
utilisons la plateforme pour analyser les différences entre la simulation et la réalité en ce
qui concerne la prédictivité de la simulation ainsi que la qualité des images générées. Nous
fournissons deux métriques pour quantifier l’utilité d’une simulation et nous démontrons de
quelles façons elles peuvent être utilisées afin d’optimiser un environnement proxy.

Mots Clés
Conduite Autonome, Robotique, Références et Comparaisons, Apprentissage

Automatique, Sim-to-Real, Simulation, Science Reproductible, Apprentissage
par Imitation, Reality Gap

5

Abstract

A common problem in robotics is reproducing results and claims made by researchers. The
experiments done in robotics laboratories typically yield results that are specific to a complex
setup and difficult or costly to reproduce and validate in other contexts. For this reason, it
is arduous to compare the performance and robustness of various robotic controllers. Low-
cost reproductions of physical environments are popular but induce a performance reduction
when transferred to the target domain. This thesis present the results of our work toward
improving benchmarking in robotics, specifically for autonomous driving.

We build a new platform, the Duckietown Autolabs, which allow researchers to evaluate
autonomous driving algorithms in a standardized framework on low-cost hardware. The
platform offers a simulated environment for easy access to annotated data and parallel eval-
uation of driving solutions in customizable environments. We use the platform to analyze
the discrepancy between simulation and reality in the case of predictivity and quality of data
generated. We supply two metrics to quantify the usefulness of a simulation and demonstrate
how they can be used to optimize the value of a proxy environment.

Keywords
Autonomous Driving, Robotics, Benchmarking, Machine Learning, Sim-to-

Real, Simulation, Reproducible Science, Imitation Learning, Reality Gap

7

Contents

Résumé . 5

Mots Clés . 5

Abstract . 7

Keywords. 7

List of Tables. 13

List of Figures. 15

List of Acronyms and Abbreviations . 17

Acknowledgements . 21

Introduction . 23

Problem Definition . 23
The Usefulness of Benchmarks . 23
Autonomous Driving . 24
Duckietown, a Proxy to Autonomous Driving . 24
Classical vs ML-Based Controllers . 25
The need for Simulation . 25

Contributions . 25

Thesis Layout . 26

Chapter 1. Background . 27

1.1. Modeling in Robotics . 27
1.1.1. Markov Decision Process . 27
1.1.2. Partially Observable Markov Decision Process . 29

1.2. Classical Methods for Autonomous Driving. 29
1.2.1. Perception . 30

9

1.2.2. Estimation. 30
1.2.2.1. Kalman Filter . 30

1.2.3. Planning . 30
1.2.4. Control . 31

1.2.4.1. Bang-Bang controllers . 31
1.2.4.2. PID Controller. 31

1.3. Machine Learning and Deep Learning . 32
1.3.1. Multi-layer Perceptron . 32
1.3.2. Convolutional Neural-Network . 34

1.3.2.1. Convolutional Layer . 34
1.3.2.2. Activation Layer . 35
1.3.2.3. Pooling Layer . 35
1.3.2.4. Fully Connected Layer . 36
1.3.2.5. Softmax Layer . 36

1.4. Machine Learning Applications for Autonomous Driving. 36
1.4.1. Behavior Cloning . 36
1.4.2. On-Policy vs Off-Policy Algorithms . 37
1.4.3. Reinforcement Learning . 37

Value-based . 37
Policy-based . 37

1.5. Simulators . 38
1.5.1. Success of Data-Driven Techniques . 38
1.5.2. Fidelity-Efficiency Trade-Off . 38
1.5.3. Flaws of Simulated Environments . 38
1.5.4. The I.I.D. Assumption . 39
1.5.5. The Reality Gap . 39

Chapter 2. Prologue to first paper . 41

2.1. Article details . 41
Personal Contribution . 41

2.2. Context. 41

2.3. Contributions . 42

10

Chapter 3. On Assessing the Usefulness of Proxy Domains for Developing
and Evaluating Embodied Agents . 43

Abstract . 43

3.1. Introduction . 44

3.2. Related work . 45
3.2.1. Crossing the Domain Gap. 45
3.2.2. Optimizing Proxies . 46
3.2.3. Quantifying Domain Discrepancies . 47

3.3. Preliminaries. 48
3.3.1. A Naive Measure of Proxy Usefulness . 49

3.4. The Proxy as a Predictor . 50

3.5. The Proxy as a Teacher . 51

3.6. Optimizing the Proxy . 53

3.7. Experiments . 53
3.7.1. Duckietown Simulator Predictivity . 54
3.7.2. Duckietown Simulator for Learning. 55

3.8. Conclusion and Future Work . 57

Chapter 4. Prologue to second paper . 59

4.1. Article details . 59
Personal contribution . 59

4.2. Context. 59

4.3. Contributions . 60

Chapter 5. Integrated Benchmarking and Design for Reproducible and
Accessible Evaluation of Robotic Agents . 61

Abstract . 61

5.1. Introduction . 61

5.2. Integrated Benchmarking and Development for Reproducible Research 64
5.2.1. Reproducibility . 64

5.2.1.1. Software . 65

11

5.2.1.2. Hardware . 65
5.2.1.3. Environment. 65

5.2.2. Agent Interoperability . 66
5.2.3. Robot-Agent Abstraction . 66
5.2.4. Robot-Benchmark Abstraction . 67

5.3. The Decentralized Urban Collaborative Benchmarking Network (DUCKIENet) 67
5.3.1. The Base Platform. 68

5.3.1.1. The Duckietown Hardware Platform . 68
5.3.1.2. The Duckietown Software Architecture . 69

5.3.2. System Architecture Overview . 69
5.3.3. The Duckietown Automated Laboratory (Duckietown Autolab (DTA)) 70

5.3.3.1. Localization . 71
5.3.3.2. Operator Console . 72

5.3.4. Defining the Benchmarks . 72
5.3.5. DTA Operation Workflow . 72

5.4. Validation . 73
5.4.1. Experiment Repeatability . 74
5.4.2. Inter-Robot Reproducibility . 74
5.4.3. DTA Reproducibility. 75
5.4.4. Limitations . 75

5.5. Conclusions . 76

Chapter 6. Conclusion . 79
Limitations and Future Work . 79

References . 81

12

List of Tables

3.1 Zero shot score and number of target domain samples required to achieve real world
performance at convergence on the robot according to proxy used for pre-training. 57

13

List of Figures

0.1 The Duckiebot (version DB18) . 24

1.1 Agent-environment interactions as modeled in an MDP . 28

1.2 Traditional components of a robotic system . 29

1.3 Effects of varying the P -gain of a PID controller on an autonomous car 32

1.4 Graph of a simple MLP with 3 input nodes, one hidden layer of 4 nodes and two
output nodes. 33

1.5 The convolution of a kernel over a padded input matrix . 35

3.1 Comparison of different instantiations of a task . 45

3.2 The agent-environment interface for proxy and target domains 46

3.3 Comparison of proxy usefulness metrics . 54

3.4 Evaluation of different instances of gym_duckietown as a proxy using PRPV. . . . 55

3.5 Proxy and target domains of Duckietown . 56

3.6 Performance of an imitation learning agent in a 3x3 duckietown map lane-following
challenge with different proxy domains . 57

5.1 The Duckietown Autolab . 62

5.2 Integrating Benchmark Design . 64

5.3 Robot-Agent Abstractions and Interfaces . 67

5.4 DTA Use-cases . 68

5.5 DTA user workflow . 68

5.6 DTA GUI . 70

5.7 Evaluation Workflow. 71

5.8 DTA Experience Repeatability . 74

5.9 DTA Inter-Robot Reproducibility . 75

15

5.10 DTA Reproducibility . 76

16

List of Acronyms and Abbreviations

AIDO AI Driving Olympics

BC Behavior Cloning

DTA Duckietown Autolab

DUCKIENet Decentralized Urban Collaborative Benchmarking Network

CNN Convolutional Neural Network

CTE Cross-Track Error

EKF Extended Kalman Filter

KF Kalman Filter

IID Independant and Identically Distributed

IL Imitation Learning

IMU Inertial Measurement Unit

17

LF Lane-following

LIDAR LIght Detection And Ranging (Sensor unit)

MDP Markov Decision Process

ML Machine Learning

MLP Multi-Layer Perceptron

MOD Mean Orientation Deviation

MPD Mean Position Deviation

PID Proportional-Integral-Derivative

PLV Proxy Learning Value

POD Proxy Observation Discrepancy

POMDP Partially-Observable Markov Decision Process

PPV Proxy Predictivity Value

PRPV Proxy Relative Predictivity Value

18

RL Reinforcement Learning

SRCC Sim-vs-Real Correlation Coefficient

19

Acknowledgements

First, I would like to thank my supervisor Liam for believing in me and generously sharing
his immense knowledge. He has been raising the bar constantly and helped me understand
how to properly conduct scientific experiments. I am grateful for everything he did for me,
as well as the overall Robotics and Embodied AI Lab during the pandemic. Even if they
did not last long, Wednesday hacking sessions were a great idea that I was always looking
forward to.

I thank the Faculty of Art and Science (FAS) and Département d’Informatique et de
Recherche Opérationelle de l’Université de Montréal (DIRO) for financially supporting my
research during the pandemic.

I would like to thank my parents for sharing the emotions that I have been going through.
Moreover, I am grateful for the expertise and advice that my mother has constantly provided
me, and my father, who shared his tools and personal workshop to help me get through my
studies. I am extremely grateful to my brother, who has been kind enough to host and
support me during this peculiar year. I cannot imagine how any of this would have been
possible without his generosity.

I would like to acknowledge the help that I received from people at The Duckietown
Foundation, Mila, and the Montreal Robotics group, without which this work would not
have been possible.

It is important to mention how helpful it was to have frequent online discussions with my
friend Louis-Alexandre in times were physical distancing usually ends up in social distancing.

Last but not least, I want to thank my girlfriend Marie-Christine for supporting, loving,
and understanding me from the beginning to the end of this adventure.

21

Introduction

Problem Definition
With the advance of deep learning techniques to control robots, simulators have seen an

increase in popularity as agents trained entirely in a simulated environment were successful
in performing difficult tasks in the real world [1], [52]. Multiple scientific works has since
made use of simulators, raising concerns about the value of a simulated environment. It
was said that “Simulators are doomed to succeed”, referring to the fact that simulators can
often be adjusted to prove a hypothesis without much scientific value, in which case an agent
overfits a simulated environment and fails to have any value in a real-world environment. The
discrepancy between the real and simulated environment is called the “Reality Gap”, but it
has been used without metric or clear definition. It is relevant to re-think the purpose of the
simulator and evaluate its usefulness in different setups. The lack of metrics to evaluate a
simulation to reality gap has been hindering the progress of science since papers have been
claiming different ways of crossing the gap without a precise way to benchmark and compare
to other state-of-the-art methods. The main contributions of this thesis are trying to address
this problem.

The Usefulness of Benchmarks

Unified benchmarks are crucial to be able to reproduce and compare research. Computer
vision has been able to make significant progress following the arrival of datasets such as
KITTI [33], where claims of performance were being validated on a standard dataset, con-
firming the value of new approaches. In robotics, when a claim is made, it is not easy to
reproduce the same environment. Robots are expensive and minor discrepancies in the re-
produced environment might yield major performance change variations. This is especially
true in sim-to-real transfer when there are multiple environments. One way to compare
efficiently different algorithms is through robotic challenges (duckietown [64], darpa [14],
iGibson [97]) where all techniques are evaluated on standardized tasks, environments and
hardware.

Autonomous Driving

The specific robotic task that we are interested in for our work is autonomous driving.
This consists of various tasks, the easiest being Lane-Following (LF), where an agent has
to drive on the right side of the yellow dashed lane for as long as possible. There are
multiple scenarios but each usually includes straight paths and 90◦ left and right turns.
The goal is to reduce the cross-track error (CTE) by driving as close as possible to the
center of the lane. The agent also needs to maximize its survival time and the distance
it has moved in the right direction, and it gets penalized if it goes completely out of the
lane. Depending on a task specification, these scoring components can be used or weighted
differently. Additionally, autonomous driving often includes related tasks such as driving
through intersections, avoiding pedestrians and obstacles, and properly adapting driving
when sharing the road with other moving vehicles.

Duckietown, a Proxy to Autonomous Driving

In our work, we make extensive use of the Duckietown platform, where duckiebots (fig.
0.1) are used as proxies for cars. The tasks mentioned previously are available as the
Lane-Following, Lane-Following-Vehicles, Lane-Following-Pedestrians, and Lane-Following-
Intersections challenges. The environment is a duckietown, the roads are modulable foam
tiles and civilians (including drivers and pedestrians) are rubber duckies. The same tasks
and environment are available in a simulation.

Fig. 0.1. The Duckiebot (version DB18) is a low-cost vehicle used as a proxy for a car. Its
raspberry feeds the images from the camera to a Docker container that encapsulates the control
software, receives the commands, and transmits them to the wheels’ actuators.

24

Classical vs ML-Based Controllers

Historically, multiple solutions have been found to the autonomous driving problem using
mathematical models with various degrees of success. Those techniques are called classical
methods and include controllers such as bang-bang (sec. 1.2.4.1), PID (sec. 1.2.4.2) and
KF/EKF (sec. 1.2.2.1). More recently, neural networks have been used for different compo-
nents of the driving system such as object detection and semantic segmentation, although
success has been demonstrated for full-fledged controllers based on machine learning, either
Reinforcement Learning or Imitation Learning. Having access to challenges for benchmark-
ing, it is relevant to analyze the performance, robustness, cost, and limitations of classical
vs ML-based approaches. A primer on robotics notation (sec 1.1), basic ML techniques (sec
1.3) and ML-based controllers (sec. 1.4) is provided in the background section to help the
reader better understand the techniques that are used to make such comparison in our work.

The need for Simulation

In order for roboticists to test their software and prevent hardware damage, a simulator
is typically used. This allows quick deployment and execution of a controller in various
environments, but also collection of big amount of annotated data, a crucial part of machine
learning. The main challenge of simulated environments is the reality gap, induced by the
discrepancy of the source and target domains. More context about simulators and the reality
gap can be found in the background section (sec. 1.5.5). Our work will be directed towards
the analysis of this gap, and how it can be quantified and minimized through simulator
analysis and optimization.

Contributions
• Proxy Relative Predictive Value: One specific use of simulators is being a proxy
for the real world as an evaluation environment. Simulators are often used this way
to choose which agents are more promising before investing resources to perform real-
world trials. This is frequently done by ranking agent performance for a given task.
We claim that for that purpose, the value of a simulator as a predictor is better if
the simulator can predict the relative ordering of agent performance conditioned on a
task. We propose a new metric to assess the usefulness of a simulator as a predictor,
the Proxy Relative Predictive Value.
• Proxy Learning Value: We also claim that the simulators are useful to save time
and resources for the training of agents. We establish a new metric, the Proxy
Learning Value, to assess the usefulness of a simulator as a teacher.

25

• Simulator Optimization Instance in Duckietown: We provide an analysis of the
new metrics in the framework of Duckietown [64], a low-cost framework for research
on autonomous vehicles. We set up and solve optimization problems for the simulator
using both PRPV and PLV, providing an analysis of the optimal simulator obtained
in both scenarios and how to reproduce for different frameworks.
• Duckietown Autolabs: Part of the work was concluded to help configure an en-
vironment for automatic evaluation of autonomous driving agents (chap. 5). The
result is a distributed network of autolabs where docker containers encapsulating
software solutions are evaluated seamlessly in a simulation and then in an embodied
environment, enabling reproducible research with robots in the loop.

Thesis Layout
The first chapter of the thesis will contain preliminary information useful to understand

our contributions, including simulation, sim-to-real and deep learning. Following will be
the core of the work that was done as part of my master, the paper that was submitted at
IROS2021 titled “On Assessing the Usefulness of Proxy Domains for Developing and Evalu-
ating Embodied Agents”. It will be preceded by a short introductory chapter that contains
context and article details. In a similar fashion, chapter 4 will be a prologue to chapter 5,
which contains the paper that I contributed to titled “Integrated Benchmarking and Design
for Reproducible and Accessible Evaluation of Robotic Agents” which was submitted and
accepted at IROS2020. While I was not a major contributor to the text in the second paper,
it encloses the architecture work that I have been doing on the Duckietown platform in the
first part of my Master’s.

26

Chapter 1

Background

Before diving into our contributions, we briefly review some preliminary material required
to grasp the value of the claims we make in our work. It will be useful for the reader to
understand Markov Decision Processes and how they are used to model robot-environment
interactions. We include a small section about classical approaches to solving autonomous
driving, and then more modern, machine-learning-based solutions such as reinforcement
learning, behavior cloning, and imitation learning. It will be useful to the reader to have a
basic understanding of CNNs (sec. 1.3.2) and end-to-end autonomous driving methods (sec.
1.4.1) since these will be used in our work to assess the usefulness of a proxy when using such
techniques. The last section of this chapter is about simulators and their uses and flaws.
The reader should be familiar with those to understand the contribution of the research that
we present subsequently.

1.1. Modeling in Robotics
In order to build a controller for a robot, it is required to encode the information that the

robot is given. That includes what the robot sees (observations z), what the robot knows
(set of past observations) and how the robot acts (controls u). It is common to formalize
the problem of robotics controls as a Markov Decision Process (MDP), enabling precise
mathematical formulation.

1.1.1. Markov Decision Process

An MDP is used to model a stochastic dynamical system in a sequential decision-making
problem. When in a state st at time t, an agent submits an action at ∈ A(s) to the
environment. In return, the environment provides the agent with a reward rt+1 ∈ R and a
new state st+1 as shown in figure 1.1.

Fig. 1.1. Agent-environment interactions as modeled in an MDP. Credits: de Lope, Javier, and
Darío Maravall. "The knn-td reinforcement learning algorithm." International Work-Conference on
the Interplay Between Natural and Artificial Computation. Springer, Berlin, Heidelberg, 2009.

An MDP is a stochastic decision process, so the transitions between states are proba-
bilistic. Given a state s and action a, we note the probability of ending in a state s′ as

p(s′|s,a) , Pr{St = s′|St−1 = s, At−1 = a} (1.1.1)

As seen in eq. 1.1.1, the probability of ending in a state s′ at time T = t depends on the
previous state st−1, but not directly on any state before that. Since MDPs are an extension
of Markov Chains, they also satisfy the Markov Property. The latter specifies that a state is
entirely characterized by the previous state and action, and it has no memory about states
or actions before.

In robotics, the MDPs often consist of a 5-tuple: (S,A,T,R,γ).
• S: Set of possible states of the system. A state st is assumed to capture the infor-
mation of previous transitions and states and as such, is independent of an anterior
state st−1

• A: Possible actions that the agent can take. At a given state s ∈ S, only a subset of
action A(s) are available to the agent to choose from
• T : Transition probabilities. The transitions are given in the form of triplets. Given
a state s ∈ S, action a ∈ A(s) and a second state s′ ∈ S, there is a probability p that
the agent in state s taking action a ends up in state s′

• R: Reward that the environment gives to the agent. In a state s, if the agent carries
out action a, it will be rewarded with r ∈ R

28

• γ: Discount factor. Using the discount factor (γ ∈ [0,1]), it is possible to specify the
trade-off between an immediate reward and a long-term reward. A value of 1 means
that the reward is the same, whether we receive it now or in future actions. A value
close to zero means that it is important to obtain the reward as soon a possible, and
planning to obtain a reward with subsequent actions will yield a discounted, lower
reward.

1.1.2. Partially Observable Markov Decision Process

In robotics, it is common that the agent is not able to capture all the information about
the state of the environment. In that case, we use a Partially Observable Markov Decision
Process (POMDP). In addition to the 5 components that define a MDP, we append two
more for POMDPs.

• Ω: Observations that can be made by the agents. In a robotic framework, it is
possibly a grid of RGB-D pixels, a range of LIDAR scans, angular acceleration from
an IMU, etc.
• O: Conditional observations. Given an action a performed by the agent and an
end-state s′, the agent will make observation o ∈ Ω with probability p(o|s′,a). These
observations are usually noisy approximations of parts of the real state of the envi-
ronment.

1.2. Classical Methods for Autonomous Driving
Autonomous robotic agents are usually made of multiple components, as shown in fig.

1.2. The actuation, environment model, and sensing are handled by the environment or
the simulator, and interactions with the robot are captured through control commands and
sensor data exchanges.

Fig. 1.2. Traditional components of a robotic system. Credits: Liam Paul, “IFT6757 - Au-
tonomous Vehicles (Duckietown)”

29

1.2.1. Perception

The perception module is given sensor data and needs to analyze the data to find mean-
ingful information. This is often in the form of lines, SIFT [53] or SURF [5] features,
semantic maps, detected objects, etc. For our work, we will not make extensive use of the
perception component since we will use the default line detection module provided with
Duckietown, and in the case of our ML-based agent, we will not use any perception module.

1.2.2. Estimation

Given the measurements, we now want to estimate the pose of the robot in the 3D world.
This is done by taking into account what we already know and updating the probability that
the robot is in a given state with the new measurements. The calculation required to obtain
the pose belief involves integrating the probability that we are in a certain state, given the
measurements and previous state. Most of the time, this integral has no closed-form [87],
so we require an alternate way to find the pose of the robot. One solution is to discretize
the space to turn the integration into a sum. Another solution is to approximate the beliefs
by normal distributions. The latter solution is used in the Kalman Filter, perhaps the most
popular state-estimation algorithm.

1.2.2.1. Kalman Filter. A Kalman Filter is an online algorithm that takes noisy mea-
surements and update the belief of the robot pose. The algorithm is divided in two parts. In
the first step, the algorithm predicts what is the current state and its uncertainty using the
knowledge it has from previous states and observations. During the second phase, it updates
its belief using the new measurements.

The Kalman Filter assumes that the underlying dynamical system is linear. For the
prediction and update equations of the Kalman Filter as well as the Extended Kalman
Filter which supports non-linear dynamical systems, we refer the reader to more extensive
work on the subject [93].

1.2.3. Planning

In classical robotic tasks, the agent is required to plan its path to navigate the environ-
ment and reach its goal. This can be done with various techniques, but one popular easily
accessible version is A*, where the shortest path to reach a goal is found using heuristics.
In our case, we don’t need any planning system since the route is imposed in the task of
lane-following.

30

1.2.4. Control

Once the robots has a good estimation of its pose and where it wants to go, it needs to
figure control commands to send to the actuators such that it will end in its target state.
For our example of lane-following, the commands would be actuators torques, or at a higher
level, steering angles and forward velocity (throttle).

A naive controller to reach the target state would be the “bang-bang” controller (sec.
1.2.4.1). Elaborating from this solution, multiple improvements have been made and different
techniques exist to build classical controllers. Before diving into algorithms powered by
neural networks, it is relevant to have a brief understanding of the most popular classical
techniques to drive a vehicle along a lane.

1.2.4.1. Bang-Bang controllers. Also known as “2-steps” or “On-Off” controllers,
these controllers are perhaps the simplest. They simply alternate between two controls
to obtain the desired state. In a lane following task, an example of a bang-bang controller
would be an agent that turns right if it is at the left of the lane and left if it is at the right
of the lane. Unfortunately, these types of solutions do not achieve good performance as they
usually overshoot the target state (middle of the lane) and end up oscillating around it.

1.2.4.2. PID Controller. One way to improve upon the previous controller is to plan
ahead how much the agent is going to overshoot the target state. A PID controller uses the
difference between the target state and the current state (the error). The control vector that
is returned from a PID is the sum of a proportional term, a derivative term, and an integral
term. For each term, a gain parameter needs to be tuned.

• P : The proportional term tells the robot to go left or right with a value proportional
to how far it is to the middle of the lane. If the robot is far from the lane, it should
take a sharper turn to reach the target state faster. Increasing this term would yield
increased amplitude in the reaction to errors (fig. 1.3)
• I: The integral term tries to drive the long-term error to zero. This is especially
useful when there are systematic errors, such as a miscalibrated actuator, or wear on
a wheel resulting in different friction.
• D: The derivative term anticipates how quickly the agent is approaching the goal
state, and attenuate the control to prevent overshoot and oscillation.

Thus, the controls u as a function of time t given by a PID controller are

u(t) = Kp e(t) +Ki

∫ t

0
e(t) dt+Kd

d e(t)
dt

(1.2.1)

31

Fig. 1.3. Effects of varying the P -gain of a PID controller on an autonomous car. Credits: MIT
Aerospace Controls Lab: “Controlling Self Driving Cars”, 2015

1.3. Machine Learning and Deep Learning
It has been observed that artificial intelligence (AI) is a powerful tool, able to solve

complex tasks such as chess [40]. However, when problem description becomes less trivial, it
becomes impossible for a programmer to inform the machine of all the rules and possibilities.
The game of Go, in contrast with chess, is much harder to optimize since it has an untractable
number of possible states. Fortunately, neural networks have been succesfully solving such
problems [76].

Deep learning is the solution to let a machine acquire its own knowledge, as opposed to
leaving the job to the programmer to input all the rules and possibilities. The name Deep
originates from the fact that the knowledge is stored as a hierarchy of concepts, from simple
to complex. A graph representing the dependency between these concepts would be very
deep [35]. The term learning is derived from the data that is fed to the network, effectively
learning the concepts by itself.

1.3.1. Multi-layer Perceptron

The simplest (and most frequent) neural network is a Multi-Layer Perceptron (MLP)
(fig. 1.4), also known as a feed-forward neural network. The input nodes carry information
that is fed to the network. The arrows contain weights wi, indicating how important that
node is for the concept linked to the right-hand side of that arrow. The nodes in the middle
are named hidden layers since they abstract away complex concepts that the programmer
does not need to know. Often, these nodes represent data in a non-intuitive way and are

32

hard for a human to understand. It is frequent to have neural networks with many hidden
layers, each of which becomes more complex and abstract. Finally, the rightmost nodes are
the output nodes, which hold the information that the network inferred from the inputs.
That might be one or multiple scalars, or a class such as dog or cat.

Fig. 1.4. Graph of a simple MLP with 3 input nodes, one hidden layer of 4 nodes and two output
nodes.

In the simpler case, a neuron sums its weighted inputs, applies a non-linear activation
function, and outputs the value. The use of an activation function allows the network to
have non-linear hidden representation. The output of a node with k inputs is then given by

y = ϕ(
n∑
k=1

xk wk)

where ϕ is the activation function. To permit backpropagation of the error, the activation
needs to be differentiable. Historically, the logistic function has been widely used but nowa-
days it is frequent to see alternatives such as ReLU, which is a piecewise linear function
that keeps the property of linear function making it easy to optimize while also performing
a non-linear transformation.

33

The loss function L is used to quantify how far away was the network’s prediction from
the true value. When we train the MLP, we are optimizing the weights to reduce the expected
loss on new data samples. It is common to use the mean squared error for scalar outputs.
In that case, we are trying to minimize the error according to:

L = 1
m

m∑
i=1
||ŷi − yi||2

over the whole dataset of m samples, where y is the network’s output and ŷ is the target
value.

During the training of a network, the MLP is given tuples of input-output for which it
will optimize the weights wi for each link of the network. Once the network is given an
example, it compares its predicted output to the target output according to the loss function
and it performs backpropagation to propagate the error through the nodes.

Using the chain rule, the derivatives of the error with respect to the weight wi are
computed at each node and the parameters are updated using gradient descent. Depending
on the learning rate (how quickly the model parameters are updated), the network is expected
to converge to optimal parameter values to generate output with minimal loss.

1.3.2. Convolutional Neural-Network

Convolutional Neural Networks (CNNs) are a specific type of neural network that are
used when the input data is in the form of an array. This is not restricted to, but especially
useful for image inputs. Any neural network that has a convolution operation instead of one
of the matrix multiplication is called a CNN.

A convolution is an operation on two functions x and w. The output is a third function
s that describes how x affects w. For the purpose of neural networks, the first function (x)
refers to the input while the second function (w) refers to the kernel (also known as the
filter).

The weight matrix of a CNN is usually sparse, which leads to fewer multiplications
required to train the model. This is due to the fact that the kernel is usually small, so
an input node only affects a few neighboring nodes in the next layer (sparse connectivity).
Additionally, the kernels are reused for multiple regions of the input, so the weights are
shared.

1.3.2.1. Convolutional Layer.When a CNN is given a grid of pixels, the convolution
operation happens by taking a kernel and sliding it across the image. The output of a
convolutional layer is another array of the same dimension1, for which every entry is the
result of applying the kernel onto the output of that layer at the same index and neighboring
region.
1assuming appropriate padding

34

It is possible to specify the size of the kernel, the number of pixels for the translation of
the kernel at each iteration (also known as the stride), and whether or not to add padding to
the image such that the kernel can reach the borders and corners. Those options are called
hyper-parameters since they are specified to the network and not learned. It is common to
tune these on a validation set using grid-search or other techniques.

The kernel is learned by the network as part of the training procedure.

Fig. 1.5. The convolution of a kernel over a padded input matrix. Credits: Yamashita, Rikiya,
et al. "Convolutional neural networks: an overview and application in radiology." Insights into
imaging 9.4 (2018): 611-629.

1.3.2.2. Activation Layer. Similar to how it is done in a normal neural network, the
activation function maps its input to a non-linear domain. A frequent activation function
for CNNs is a rectified linear unit (ReLU). See the section about MLP (sec. 1.3.1) for more
information.

1.3.2.3. Pooling Layer. The pooling layer summarizes what was seen in a region. That
has the benefit of reducing the dimension of the information carried over to the next layer.
Often, this results in a lot of resources saved at training time. By doing pooling between
each convolution, a tractable set of dimensions can be reached once the data gets to the fully
connected layer, for which the matrix multiplication is expansive.

Max-pooling is one of the most popular techniques, where every neighborhood of pixels
(in the case of an image) will be represented by the pixel with the highest value. Averaging is
another popular pooling operation, such as L2-norm and distance-weighted average. These
operations remove some of the noise in the input and also allow a small tolerance to trans-
lation in the input image for which they would give similar output. Both of these features
might be wanted or not, in which case it is possible to omit the pooling layer completely and
use a smaller image size to compensate for the fixed dimensions.

35

Using pooling layers, it is also possible to feed images of varying sizes to the network.
Instead of pooling a specific amount of input pixels, a pooling layer can be configured to
output summary for a fixed number of regions. This allows images of different sizes to be
fed to the network while keeping the input to the classification layer the same.

1.3.2.4. Fully Connected Layer. The fully connected layer is usually at the end of the
network architecture. It is a simple MLP, so the input is typically flattened before being fed
to the fully connected layer. Since this layer is fully connected (i.e. all neurons are connected
with all the inputs, unless otherwise specified), the number of weights is the number of input
to that layer multiplied by the number of neurons in the fully connected layer. For this
reason, it is useful to reduce the dimensionality of the data carried through the network in
the previous layer. Otherwise, the number of parameters risks being unreasonably large,
therefore requiring more data samples to train the network.

1.3.2.5. Softmax Layer. The final layer of a CNN is commonly the Softmax Layer,
which applies the softmax activation function. This allows the network to outputs its pre-
diction as a probability of each available category for classification (although this should not
be used as a measure of confidence !).

1.4. Machine Learning Applications for Autonomous
Driving

1.4.1. Behavior Cloning

End-to-end learning has been successfully used to teach cars to drive themselves [9].
Behavior Cloning is one such instance where the problem of autonomous driving is formulated
as a supervised learning problem. It is required to have access to an expert, able to generate
annotated data, also called a “teacher”. The behavioral cloning algorithm will then attempt
to learn a function that maps the input (commonly images from what is in front of the car)
to the controls that the expert chooses. This is typically done using a CNN. However, the
data is always assumed to be I.I.D, which is not always the case. More specifically, data
samples collected from driving a car are usually correlated to other samples with nearby
timestamps.

In order to be able to train a useful controller, it is required that the dataset generated by
the expert has enough variability. The agent should be shown how to recover from difficult
situations, like when it has made an error and ended up outside of the lane. Since at test
time, the agent that controls the vehicle is different from the controller that was used at
training time, the agent is bound to make some errors (also known as covariate shift). Being
in a state that has not been seen in the training data, the error made by the controller at

36

test time will cascade [3]. One specific solution to help the controller recover from unseen
states is dataset augmentation [9], where data collected from the expert is augmented using
translation and rotation to increase the variability.

1.4.2. On-Policy vs Off-Policy Algorithms

A different way to solve the covariate shift is to query the expert using samples that
the agent generated while executing its own learned policy. Dataset aggregation (DAgger)
[70] is one specific method that aggregates from the agent’s policy to the dataset before
readjusting the neural network weights to fit the new, improved dataset. While this approach
increases the variability of the dataset and removes the cascading error issue, it requires to
be able to interactively query the expert on new data points. Such a technique is called “on-
policy” since the dataset is generated from examples from executions of the learned policy.
Conversely, the behavior cloning method described in the previous section is “off-policy”
because the learned policy has no influence on the dataset.

1.4.3. Reinforcement Learning

Reinforcement Learning (RL) based robotic controllers try to learn an optimal policy with
respect to the reward that they receive from the environment. The RL algorithm usually has
to make a choice between exploration, where it will attempt new actions with considerable
uncertainty about their reward (possibly getting higher reward than otherwise available),
and exploitation, where a safe action with confident reward will be selected. Training such
algorithms on expensive hardware is usually not a good idea since the agent might attempt
to explore unsafe states, potentially resulting in damaged equipment. This is especially
relevant in the case of autonomous driving, where crashing a car incurs considerable costs
and possibly injuries of a human supervisor. For this reason, researchers looking to train
RL-based controllers typically rely on simulated environments. RL methods exist both in
the form of on-policy and off-policy algorithms and fall mainly into two categories:

Value-based. These methods learn a value function V (or state-action value function
Q) that estimates how good it is to be in a state s (or in a state s taking action a in the
case of the Q-value). The policy is then implicit: at each state, the action that is assigned
the highest value is chosen. Popular value-based reinforcement learning algorithms include
Q-learning [91], SARSA [71], DQN [58].

Policy-based. Policy-based reinforcement learning algorithms avoid estimating the
value function and directly learn the policy. REINFORCE [94] and DPG [77] algorithms
are popular examples that falls in this category.

37

1.5. Simulators
1.5.1. Success of Data-Driven Techniques

The success of deep learning for tasks with vision in the loop can be attributed to the
availability of big labeled datasets [81]. Some well-known annotated datasets in the field
of robotics including KITTY [32], Cityscapes [26] and Oxford RobotCar [54] have been
especially useful to improve state-of-the-art performance for tasks such as optical flow, object
tracking, SLAM, visual odometry, and semantic segmentation. Using deep learning to achieve
these tasks induces a dependency on a big dataset and out-of-distribution examples are often
expected to be wrongly classified or yield wrong results. For most real-world applications,
the public datasets do not represent exactly the target environment and having a model
that overfits these datasets is expected to perform poorly. The user is then left with two
choices, either collecting a new dataset in their target environment, which is often costly
and unpractical, or adapting a pre-trained network. In both cases, they will need to collect
annotated examples in the desired environment.

For this reason, simulated environments have seen an increase in popularity. Instead of
collecting and annotating thousands or millions of examples manually, a simulator can auto-
matically generate an infinite amount of custom and labeled data for a minimal cost. They
allow reproducible experiments and additional customization of the environment, which is
especially useful to adjust parameters to hardware changes or enable domain randomization.
Amongst others, robots have been successful in solving a Rubik’s cube [1], piloting a drone
in a new environment [72] and grasping objects [21] thanks to training in simulation.

1.5.2. Fidelity-Efficiency Trade-Off

Data collected from a simulator is expected to be of lower quality than real-world data.
Nonetheless, it is usually a trade-off that we are willing to make when training deep learning
agents. For such data-driven techniques, efficiency is crucial and fidelity can usually be
neglected for some aspects that are not relevant to the task. As such, being able to generate
low-quality annotated data at a high rate is often preferred to manually obtaining real-world
data. The same can be said about the level of fidelity of simulators: a less realistic simulator
is sometimes preferred to a full-fledged one that accurately simulates fluids and lightning,
given that the latter has a higher data generation cost in terms of computational resources.

1.5.3. Flaws of Simulated Environments

In addition to saving resources, using simulators has the benefit of being safe. Training
a model on a real robot has the risk of damaging the hardware. During the exploration, a
policy might try to reach states that are not safe for the robot. In the case of autonomous

38

driving, training an algorithm directly on a car can be a hazard for the supervisor (human),
the environment (pedestrians), and the hardware (expansive car).

On the other hand, it often happens that simulators contain glitches. By definition, an
optimization algorithm will try to be the most efficient possible, which means exploiting
bugs, glitches and/or inaccuracies in a simulation to get better results according to the
scoring criteria. This behavior has been observed in [48] where an agent that was trying
to jump as high as possible according to the minimum height of its feet. The agent was
able to optimize this metric by learning how to somersault, without performing a real jump.
This kind of behavior can reach high performance in the simulated environment but is not
useful for any task on the real robot that would require it to jump over an obstacle. Similar
behavior was observed in [4] where agents learn to abuse the simulator physics to surf objects
and in [45] where the robot was able to generate a trajectory that clips through wall corners
to shorten its path. Using a simulated environment requires careful tuning and analysis to
prevent undesirable behavior when optimizing a policy.

1.5.4. The I.I.D. Assumption

Most predictive models assume that the data is independent and identically distributed
(IID). In the case of robotics, the first part of the assumption, independent data, is usually
resolved by the fact that we are assuming the Markov property. The second part of the IID
assumption means that there cannot be trends or sudden changes in the target distribution
that are not captured by the data. Unfortunately, by using simulated data we are not
respecting this assumption, unless the simulator is perfectly faithful (or the target domain is
also the simulation). Our analysis is not about training models in circumstances where the
IID assumption does not hold, for that we refer the reader to other work in that direction:
[80, 73, 51]. We will instead focus our research on observing the usefulness of using out of
distribution data for generating models.

1.5.5. The Reality Gap

The discrepancy between the simulator and the embodied task usually cause a perfor-
mance drop once the policies are transferred to the real robot, a phenomenon known as
the “Reality Gap”. Fundamentally, the source of the performance discrepancy resides in the
graphics, dynamics or environment model of the simulation. However, even with careful
tuning and improvement of a simulator, it would not be possible to completely remove the
reality gap since there will always be unmodeled (or incorrectly modeled) effects at lower
level. Aerodynamics, fluids dynamics and friction are some example of interactions that are
often disregarded or approximated in simulation, resulting in performance discrepancy once
a policy is transferred to the real world. It is often said that “no simulator is perfect” [59, 46]

39

and as such, reducing the reality gap through improvement of the simulation is a limited so-
lution. Following this idea, multiple work have been trying to “cross the gap” by mitigating
or reducing the impact of the domain discrepancy. The most popular technique to achieve
good performance transfer is Domain Randomization, which consist of using different visual
or dynamics parameters at each training episode, preventing the learning algorithm to overfit
to the simulated environment. In the best case scenario, the target environment will appears
as an instance sampled from the same distribution. Data Augmentation, Meta-learning, Do-
main Adaptation, Learning common representations and Transferability Optimization are
other available techniques that have had success in improving sim-to-real performance. A
more in-depth analysis of these method is presented as part of the first research paper in
section 3.2.1

40

Chapter 2

Prologue to first paper

2.1. Article details
On Assessing the Usefulness of Proxy Domains for Developing and Evaluating

Embodied Agents, by Anthony Courchesne, Andrea Censi and Liam Paull. The article
was submitted and accepted at International Conference on Intelligent Robots and Systems
(IROS) 2021.

Personal Contribution

The problem was first identified by Liam Paull. Liam came up with the first version of
the metrics proposed and we worked on the solutions and wrote the paper together. I took
care of the coding, training the neural networks, performing the real and simulated robot
runs, and the coding required for the experiments. Andrea Censi handled the base of the
Duckietown infrastructure and provided additional analysis of the problem, which ended up
being moved to an ulterior work.

2.2. Context
Simulators have seen a steep increase in popularity for robotics, but the transfer to the

real robot is an arduous process that usually yield unpredictable results. In an effort to better
understand the causes of the reality gap and how to assess and mitigate it, we offer a novel
analysis of the value of a proxy environment. By providing clear metrics, new optimization
angles are available to maximize the usefulness of our proxy environment, with respect to
the task at hand.

A big part of the work done as part of my Master’s reside in the infrastructure of Ducki-
etown [64] and its simulator [17], both of which were used extensively for the experiments in
this paper. We also contributed to and used the Autolabs [85] (included in 5), although since

the situation with the pandemic made the infrastructure unavailable for extended periods,
the use we were able to make of them was limited.

2.3. Contributions
We offer a novel analysis of the domain shift between a proxy and target environment.

We establish two different uses for proxy environments and offer new metrics to quantify the
value of a simulator for each of them. In the case of a proxy used to predict which agent
perform the best, we suggest the Proxy Relative Predictive Value (PRPV) and argue that the
value of a proxy as a predictor should be task-dependent and agent agnostic. When the proxy
is used as an intermediate tool for learning agents, we offer the Learning Proxy Value (PLV)
and claim that in this case, the metric should be specific to both a task and a learning agent.
We demonstrate the usefulness of our metrics empirically in the context of Duckietown and
compare them to other available metrics available to quantify the environment discrepancy.
We show how our metrics can be used to tune a proxy and improve its predictivity.

42

Chapter 3

On Assessing the Usefulness of Proxy
Domains for Developing and Evaluating

Embodied Agents

Abstract
In many situations it is either impossible or impractical to develop and evaluate agents

entirely on the target domain on which they will be deployed. This is particularly true in
robotics, where doing experiments on hardware is much more arduous than in simulation.
This has become arguably more so in the case of learning-based agents. To this end, consid-
erable recent effort has been devoted to developing increasingly realistic and higher fidelity
simulators. However, we lack any principled way to evaluate how good a “proxy domain” is,
specifically in terms of how useful it is in helping us achieve our end objective of building
an agent that performs well in the target domain. In this work, we investigate methods to
address this need. We begin by clearly separating two uses of proxy domains that are often
conflated: 1) their ability to be a faithful predictor of agent performance and 2) their ability
to be a useful tool for learning. In this paper, we attempt to clarify the role of proxy domains
and establish new proxy usefulness (PU) metrics to compare the usefulness of different proxy
domains. We propose the relative predictive PU to assess the predictive ability of a proxy
domain and the learning PU to quantify the usefulness of a proxy as a tool to generate
learning data. Furthermore, we argue that the value of a proxy is conditioned on the task
that it is being used to help solve. We demonstrate how these new metrics can be used
to optimize parameters of the proxy domain for which obtaining ground truth via system
identification is not trivial.

3.1. Introduction
Developing and evaluating agents for physically embodied systems such as robots in the

setting that they are meant to be deployed in can be costly, dangerous, and time consuming.
As a result, it is often desirable to have some proxy of the target task domain, which can
be a simulation environment or some simpler smaller scale real environment. The fidelity
or accuracy of this proxy domain is important in the sense that we need it to be a faithful
predictor of performance on the target domain.

Recent breakthroughs in machine learning have increased the popularity of data-driven
approaches to solve tasks with embodied agents. Two prevalent paradigms include rein-
forcement [55] and imitation [98] learning. As a result, the value of data has increased
dramatically. Obtaining data from robots is costly since it requires deployment of hardware,
operation of the robot and time-consuming rollouts of policies. Moreover, the policy ex-
ploration process might end up in hardware damage while unsafe states are explored. This
further motivates the need for a proxy domain, but the objectives here are somewhat differ-
ent. In this case we want to efficiently acquire knowledge in the proxy domain that can be
transferred to the target domain.

There may be other advantages of the proxy domain for the purposes of agent learning,
such as: the availability of ground-truth data such as robot localization, reduced cost of
data collection, ability to generate and randomize large numbers of samples, customization
of scenarios to facilitate the learning of edge cases, parallelization of the data generation
process, and others.

Any domain used as a proxy for a target domain introduces a set of discrepancies, often
resulting in performance reduction. The “reality gap” is a term that is typically used in the
context of sim-to-real, although the concept can be generalized to any domain transfer. For
this reason, we will instead use the term “domain gap” as a more generic case. The domain
gap has been observed in multiple works, and the community has found multiple ways to
mitigate its effects (i.e. “crossing the gap”), without actually explicitly quantifying it. As
a result, algorithms that show good performance in some settings (e.g. when the domain
discrepancy is small) may completely fail in others, and there are no methods of predicting
transferability a priori.

In this work, we quantify the usefulness of a proxy domain by providing proxy usefulness
(semi)metrics. We make a clear distinction between proxies used to predict task performance
(used to select agents according to their performance) and data-generating proxies (used to
generate data samples or policies). In the first case, we propose the Proxy Relative Predic-
tivity Value (PRPV), a metric to quantify the predictivity of a proxy, enabling researchers
to find the most predictive proxy available to them. We also prescribe a metric to assess the
usefulness of a proxy to generate learning data or trained agents, giving the possibility to

44

Fig. 3.1. How do we compare the value of two different instantiations of the same task? This is
a common setting in robotics where it is easier to develop and evaluate on a simulator or proxy
domain before deploying on real hardware (the target domain). If we start the agent at the same
state in both domains and execute the same sequence of control signals, we will get different output
measurements due to discrepancies in dynamics, appearance, rendering, and many other factors.
We argue that directly comparing these observations is not an appropriate measure of the proxy’s
value, since it does not consider the consequence of the actions under the task specification. Instead,
we propose measures for assessing the value quantitatively both in terms of how useful the proxy
domain is in terms of predictivity and as a tool for learning agents.

researchers to compare different data-generating domains and select the one that yields the
best agents.

Our new metrics allow robotics practitioners to tune some parameters of their proxy
domain for which system identification is non-trivial and ground truth value for the target
domain is often not available, such as observation blur, input delay, field of view, etc.

3.2. Related work
In the most common configuration, the source domain is a simulator and the target

domain is a real robot, in which case the policy transfer is called “sim-to-real”. However,
it is also frequent to see “sim-to-sim” ([43, 34, 99]), or even “real-to-real”, such as in the
case of [64] where small, cheap robots are used to represent an expensive car, or in [96]
where authors used real-to-real to validate their sim-to-real performance. Our analysis of
the domain discrepancies applies to all of these cases.

3.2.1. Crossing the Domain Gap

Multiple techniques exist to mitigate the effects of the domain gap. One such promising
technique that has received a lot of attention lately is domain randomization [88]: during
training, a different proxy is sampled from a domain family (see 3.3) for each run, preventing
the model from overfitting to a specific instance. In the best-case scenario, the target domain
will appear as another sample from the same distribution. Data augmentation is another

45

Fig. 3.2. The agent-environment interface for proxy (simulation) and target (real robot) domains.
An agent receives observations and generates control commands. The predictive value of a sim-
ulator lies in its ability to faithfully reproduce an estimate of the task performance. A simulator
may also be used in a learning paradigm. In this case, the value of the simulator lies in how many
fewer trials we need to perform on the real robot to achieve equivalent performance.

popular solution [75, 63, 12] where a model is trained to augment data generated by a proxy
to match that of the target domain. Meta-learning and domain adaptation are also often
used to transfer the knowledge acquired in a source domain to a different domain [98, 11].
The authors in [60, 59] show that it is possible to find which controllers are most likely to
transfer well to the target setup using only a few sample experiments on the real robot, a
method they call “The transferability approach”. Crossing the domain gap was also shown to
be possible by learning a common representation for both source and target domains, either
by imposing a common state representation using an autoencoder and a disciminator network
[101] or by forming weakly aligned pairs of source and target data, effectively transferring
the annotations to the target images [89].

3.2.2. Optimizing Proxies

In our work, we are more interested in the different ways to analyze the domain gap
and improve the proxy rather than circumvent its effects. The first step to reduce the gap
imposed by a proxy is to do proper system identification [84]. For a specific domain pair,
it is possible to carry out standardized tests to find inconsistencies between models [65].
It is common [16, 20, 83] to use a task performance metric to optimize proxy parameters
such as actuator gains, masses, static friction, etc. Recent papers have also shown success
in improving their proxies by adding a module that learns inverse dynamics to adapt the
action that the proxy outputs to the expected action in the target domain [18, 38].

46

3.2.3. Quantifying Domain Discrepancies

Being able to quantify the domain gap may lead to better prediction of the transferability
of agents. As such, multiple attempts have been made by the community to obtain a metric to
quantify this gap. One promising work in that direction establishes the sim-to-real disparity:
a metric specific to an agent that predicts how well it will transfer to the real robot [46]. By
conducting only a few experiments both on the real robot and in simulation, it is possible
to learn a surrogate model that will estimate the fitness function on the real robot via
interpolation. However, it is assumed that we have access to a quick way to compute the
distance between two controllers in a domain such that similar controllers will have a similar
transferability (e.g. behavioral features), which is often not the case. Moreover, we are
interested in a way to quantify the domain gap at the level of a simulator instead of at the
agent level. We believe that the domain gap should be agnostic to the agent.

The “ν-gap” [90] is a metric used in robust control theory to analyze the discrepancy
between two feedback control system. It has been used [79] to quantify the discrepancy
between robotic systems without any knowledge about their dynamics since it compares
two different controllers in a black-box fashion. The metric is computed by measuring the
largest chordal distance between the two controllers projected onto the Riemann sphere. It
is then possible to minimize it to find the most representative domain. This metric has the
limitation of comparing only the dynamics and being only available for linear systems.

A version of “simulator fidelity” has been used as a metric in a multi-fidelity simulator
environment [29] to define the fidelity of a domain Σi to a target domain Σj. The fidelity is
defined by the maximum error in the optimal value function. Using this metric, it is possible
to optimize the training of reinforcement-learning-based agents using multiple simulators,
taking into account the cost of generating data for high-fidelity simulators. On the other
hand, this definition is inconvenient when used to assess a simulator since the value function
is not always trivially computed, especially in the real world. We believe that the definition
of the domain gap should not be tightly coupled with machine learning, and it should be
independent of the algorithm used.

In [45], the authors were able to create a high-fidelity virtual domain for their task using
real-to-sim. Given agents and a task, they used the Pearson correlation coefficient between
runs on the real robot and in simulation to evaluate the reality gap. This allowed them to
find that the noise model for their dynamics was wrong and that learning-based agents were
overfitting to the simulator domain by using glitches. In their work, they frequently refer to
rank inversion to validate their empirical results, which is an idea that is also used in [49].
Like the former, we support that the predictive ability of a simulator lay in its capacity to
predict the performance ordering of the agents. In our work, we further define the domain
gap based on rank inversion. Using a relative metric for the reality gap allows us to use

47

multiple performance metrics to get a domain gap measure through partial ordering. We
additionally propose a separate and orthogonal measure of a simulator’s value for learning.

3.3. Preliminaries
We will consider a domain to encapsulate the actuation, environment and sensing, as

shown in Fig. 3.2. For a simulated domain, those components translate to a simulation of
the dynamics, an environment model and rendering, respectively. The various components
in the domain may include tunable parameters, θ. A domain may also optionally provide a
scalar reward r ∈ R ⊆ R signal, where a reward function maps an action and the internal
environment state to a scalar value. Note that it is entirely possible that a reward can be
provided in the proxy domain but not in the target domain since we don’t have direct access
to the internal states needed to calculate it. Consequently, a domain S ∈ S can be considered
as something that maps control commands u ∈ U to observations z ∈ Z, conditioned on
some environment model state x ∈ X env and parameters θ ∈ Θ (S : U ×X env×Θ 7→ Z×R).

We will refer to a single domain generated by a specific set of parameters as a domain
instance Sθ and the set of all domains that are possible to achieve by varying the parameters
as a domain family, SΘ.

A task, T ∈ T , is specified through one or more evaluation metrics, M , which map a
trajectory of N states to a real-valued number:

T , {Mi}mi=1, Mi : XN → R (3.3.1)

An agent1 contains the algorithm that is used to generate control commands from the
history of observations, the history of control commands, some initial state x0 ∈ X agent

(at time t, A : Z t−1 × U t−1 × X agent 7→ U , or if the state is assumed to be Markovian then
A : Z×X agent 7→ U). Presumably, the algorithm informing this agent is designed to optimize
the specified task evaluation metrics. A learning agent is able to adapt its behaviour over
time by means of a learning algorithm (A at time k is not necessarily the same as A at time
k + 1). However, we assume here that, for a stationary domain and task, the learning agent
will converge to a stationary agent for some k large enough.

Given a sequence u0:n of control values (generated by any means), a domain instance
Sθ can generate a dataset DSθ

, conditioned on an initial state x0, which is a collection
of n labelled data samples each consisting of a tuple of observation z and command u

(DSθ
= {(zi,ri, ui)}ni=1 where (zi,ri) = Sθ(xenvi ,ui)). It is also possible that the parameters,

θ, are randomized over the domain family during dataset generation. In this case we have
DSΘ = {(zi,ri, ui)}ni=1 where (zi,ri) = Sθ(xenvi ,ui) and θ ∼ Θ. Such datasets are useful as

1We distinguish an agent from the more standard notion of policy in that a policy maps internal states to
actions

48

demonstrations for the learning agent, for example in imitation learning algorithms [70]
which try to reproduce the behaviour of an expert.

In an on-policy reinforcement learning setting, the control actions are selected at every
timestep: ui = A(zi,xagenti). The domain will update its state according to the command and
will return the next observation and optionally a reward to the agent. Normally the agent
will be able to use the reward to update its algorithm. Again the on-policy rollouts can be
executed on the same domain instance or on random samples from the simulator family (as
is the case in domain randomization [88]) 2.

Our objective in this work is to provide measures to quantify the usefulness of a proxy
domain. We will use the term “Proxy Usefulness (PU)” to quantify the value of a proxy
domain.

3.3.1. A Naive Measure of Proxy Usefulness

Naively, one could define the PU of a proxy domain by its discrepancies with the target
domain it is expected to represent. Following, the usefulness of a proxy domain would be
inversely proportional to its domain gap with the target domain and, according to (Fig. 3.2),
would be defined by:
Def. 1 (Proxy Observation Discrepancy (POD)). A proxy is deemed more useful
inasmuch as the “difference” in the resulting observations produced by the proxy’s and the
target’s robots for a predefined sequence of control commands is small.

For a sequence of control values u0..n and initial state, this could simply be calculated as:

||Sproxyθ (xenvi ,ui)− Stargetθ (xenvi ,ui)|| (3.3.2)

where in this case we are primarily concerned with the observations that are output and not
the rewards.

There are several issues with Def. 1:
(1) It combines in an opaque way the various sources of the discrepancy. Referring to

Fig. 3.2, there could be a “gap” in the dynamics, the environment model (for example
how other agents move in the environment), or in the generation of sensor data based
on a rendering model. Moreover, errors in upstream models will compound.

(2) It is agnostic to the task that the agent is trying to solve. Many proxies should be
deemed perfectly faithful if a trivial task is chosen, but that will not be the case here.

(3) It presupposes that the fidelity in the target domain is needed. In practice, we only
require a form of task-conditioned fidelity: only the things that are important to
solve the task at hand must be faithfully reproduced in the proxy.

(4) It in no way represents how useful the proxy is for learning.

2The instances may not be sampled randomly, as is the case in [56]

49

In the remainder of this paper, we offer alternative ways to evaluate the PU to address
these issues.

We make a clear distinction between two different uses of a proxy: 1) The predictivity
value of a proxy domain (given a target domain) is its ability to generate accurate predictions
about the performance of agents in the target domain. The teaching value of a proxy domain
encapsulates how useful it is as a tool to train learning agents that perform well on the target
domain.

3.4. The Proxy as a Predictor
The first “value” of a proxy domain is as a tool to predict. However, different from

Def. 1, we argue that the domain’s ability to predict task performance rather than exact
observations is what is relevant:
Def. 2 (Proxy Predictivity Value (PPV)). Given a task T defined by evaluation metrics
M1:m, and an agent A that generates trajectory x1:N

proxy in the proxy domain and x1:N
target in a

target domain given equivalent starting conditions, then we define the PPV of a proxy Sθ as
the discrepancy of the resulting evaluation metrics:

PPV(Sθ, A) ,
m∑
i=1

βi|Mi(x1:N
proxy)−Mi(x1:N

target)| (3.4.1)

where the βi terms are weighting constants that can account for mismatched units or possibly
increased importance of one metric over another. A proxy is deemed more useful if it has a
lower PPV.

By Def. 2, a proxy domain can be considered perfectly faithful to a target domain for
a given task if the PPV is zero for all possible agents. This definition is in some sense
a generalization of the Sim-vs-Real Correlation Coefficient (SRCC) [45] to the case where
there are multiple metrics that define the task, except with a 1-norm distance instead of the
bivariate correlation.

The need for the β constants in Def. 2 is undesirable since it allows some room for
subjectivity that can effect the results. This can be avoided by considering that in many
cases we are interested in comparing agents rather than finding exact evaluations of the
metrics. As a result, we can consider a relaxation of Def. 2 to the relative case. Given that
a task may contain several evaluation metrics, agents can be arranged in a partial ordering
whose binary relation ≤ is defined by dominance along all of the available metrics:

A1 ≥ A2 →Mi(X1) ≥Mi(X2) ∀i (3.4.2)

where Xj is shorthand for the trajectory produced by agent Aj (either in the proxy or in
target domain).

50

Def. 3 (Proxy Relative Predictive Value (PRPV)). Given K agents, the relative pre-
dictive ability of a proxy Sθ is defined by its ability to accurately predict the binary relations
between agents that would be present in the target domain. Let Aproxy = [αproxyij]i,j=1..K be
a matrix whose entries are given by:

αproxyij =

1 Aproxyi ≥ Aproxyj

0.5 Aproxyi � Aproxyj & Aproxyj � Aproxyi

0 Aproxyi ≤ Aproxyj

(3.4.3)

where Aproxyj (Aproxyi) is agent j (i) applied to the proxy domain. We similarly construct
Atarget. Then the PRPV of a proxy domain is given by the 1-norm between the two matrices
that represent the relations in the two partial orders [25]:

PRPV(Sθ, A1:K) =
K∑

i,j=1
|αproxyij − αtargetij | (3.4.4)

According to Def. 3, a proxy domain is now perfectly faithful if it produces the identical
partial order over agents that would be produced if the agents were run on the real robot.
This is closely related to the concept of “rank inversion” [50].

Note that in the case of both PPV and PRPV, the value of the domain is conditioned on
the task and agnostic to the agent (only requires some method of generating trajectories).
Also note that in practice the performance of the agent in a simulated domain or (especially)
in the real domain will be stochastic and therefore PPV and PRPV should be redefined as
metrics over distributions and approximated by sequences of trials, but we omit this here for
clarity.

3.5. The Proxy as a Teacher
Orthogonal from the proxy domain’s predictivity, it may have value as a tool for agents

that learn (3.3). That proxy domain now becomes a part of the agent generation process
since, as shown by the dashed lines in Fig. 3.2, the task performance may be fed back to the
agent. We can assess the usefulness of the proxy domain by evaluating the performance of
the agents that it trains on the target domain, compared to agents that learn entirely on the
target domain. A proxy domain is deemed more valuable if it reduces the number of trials
that are needed in the target domain. One naive option to evaluate a domain transfer method
would be to consider the zero-shot (or N-shot) performance on the target domain. However,
similar to the argument we made in Def. 2, the outputs of these metrics may not calibrate
well to the actual learning that has taken place. Instead, we define the usefulness for learning
explicitly as what we are trying to minimize through using the simulator for training: the

51

number of trials on the target domain required to achieve equivalent performance as we
would achieve if we had not pre-trained in the proxy domain.
Def. 4 (Proxy Learning Value (PLV)). Consider that a learning agent, Atarget trained
entirely in the target domain is able to achieve a performance of M target

i..m on task T at
convergence using dataset Starget. An agent Aproxy→target pre-trained on the proxy domain
and then transferred to the target domain and fine-tuned until it achieves an equivalent
performanceMproxy→target

i..m ≥M target
i..m using dataset on the target domain Sproxy→target. Then,

the PLV is given by:
PLV = |Dtarget| − |Dproxy→target| (3.5.1)

Note here that, in contrast to the predictivity, the usefulness of the proxy as a teacher is
conditioned on both the task and the learning algorithm used to train the agent. In addition,
different learning algorithms may leverage the proxy domain in different ways. Behavior
cloning methods may generate a dataset that includes expert trajectories from both domains
[9]. In this case the usefulness is determined by the reduction in the size of the dataset,
Dtarget from the target domain (an example we demonstrate in Sec. 3.7.2). As noted in
Sec. 3.3, the proxy domain dataset can be generated from a single domain instance or over
the domain family for increased robustness. In either case, the definition of the usefulness
value is unchanged.

In reinforcement learning, the agent is learning through interaction with the environment
[19]. In this case the data is generated through trials and this number of trials is what we
seek to minimize. Again, it is entirely possible that the training episodes in the proxy
environment randomize over the domain family, as is the case in domain randomization [88].

In some cases, both off-policy data and on-policy rollouts may be used. Such is the
case in approaches that leverage domain adversarial transfer [101, 6]. Off-policy data is
used to learn the mapping from proxy domain to the source domain (for example using a
discriminator). At test time, this mapping is applied but then fine-tuning is achieved with
on-policy trials. A generalization of the PLV may consider these two cases (on-policy and
off-policy) as being scaled differently. A natural priority would be to minimize the number of
on-policy trials on the target domain at the expense of off-policy data, which may be easier
and safer to obtain. As such we can generalize (3.5.1) to:

PLV = ηon(|Dtarget
on | − |Dproxy→target

on |)

+ ηoff (|Dtarget
off | − |D

proxy→target
off |)

(3.5.2)

where ηon and ηoff represent the relative importance of off and on-policy data.

52

3.6. Optimizing the Proxy
Using any of the proxy domain metrics defined above, we can optimize the set of param-

eters θ of the proxy instance.
In the case of predictivity, we desire to minimize the PRPV:

θ∗(A1:K) = arg min
θ

PRPV(Sθ, A1:K) (3.6.1)

which will yield the parameters that are most predictive of the task metrics. The residual
of this optimization defines the irreducible domain gap and is due to the fact that the proxy
models may be limited in their capacity. For example, if wheel slip is not modeled in the
proxy domain but it exists in the target domain, we will always incur error.

In the case of teaching, we desire to maximize the PLV. It is possible that we wish to find
the single best proxy instance, but more recent methods leverage randomization for increased
robustness. In this case, we may wish to optimize for the optimal distribution or sequence of
domain instances (e.g., as in [56]), a problem that can be formulated as curriculum learning:

p(θ)∗ = arg max
p(θ)

PLV(θ) (3.6.2)

or possibly over the domain itself:

S∗ = arg max
S

PLV(S) (3.6.3)

These optimization may be solved with gradient-based methods in the case that the
proxy domain is differentiable [61, 41]. Evaluating the loss function may incur significant
cost, however, particularly in the case of the PLV where training an agent in the proxy
domain and evaluating it in the target domain is needed. For these cases, an approach such
as Bayesian Optimization or some approximation may be more appropriate [78].

3.7. Experiments
We evaluate the proposed metrics in the context of Duckietown [64], a platform to run

vehicle controllers both in a simulator and on a real robot seamlessly. The platform offers
a simulated domain ([17]) where domain randomization is available, as well as multiple
customizable features (see Fig. 3.5). A challenge server is in place such that the users can
easily submit a Docker container to the server, which will evaluate it and returns footage of
the runs as well as performance metrics. Duckietown now additionally offers the evaluation
of runs on the real robot at the Autolab through the challenge server [85]. The Autolab is
an embodied domain monitored by watchtowers. As such, users can receive the ground truth
position of the robot at each timestamp as well as a precise trajectory of the performance of
their agent.

53

(a) (b) (c) (d)

Fig. 3.3. Comparison of proxy usefulness metrics. From left to right: PRPV, PPV, SRCC, POD.
For each proxy, the metric is reported for a linear range of trim value from -0.3 to 0.3. The ground
truth, 0.0, is always in the center.

3.7.1. Duckietown Simulator Predictivity

We collected 10 agent submissions from a lane-following challenge from the AI Driving
Olympics (AIDO) [102]. Each submission consist of a controller that is designed to drive
a Duckiebot along a lane, following the center as closely as possible. The environment
configuration in our experiments was a simple 3-by-3 Duckietown map, in which every run
would last 60 seconds or until the robot crashes. For a given Duckiebot trajectory, the task
is specified through two performance metrics: M1: distance traveled along a lane and M2:
survival time, capped at 60 seconds. Since each agent had multiple runs in both the proxy
and target domain, the metrics reported are actually means of multiple entries3.

The target domain was set to be the embodied lane following AIDO domain, while
the proxy domains were instances of the Duckietown simulator [17]. We selected a list of
parameters consisting of trim value, which controls the wheel trim, command delay, which
simulates latency in the control loop, blur time, which is used to simulate camera blur, and
camera angle, which is the pitch angle of the camera. For some of these parameters (namely
the trim value and camera angle) we know the ground truth value on the real Duckiebot. In
the case of the trim value, the robot is made to go straight using an odometric calibration
procedure, therefore the ground truth value in the simulator should be 0.0. For the camera
angle, we can determine it though extrinsic camera calibration.

As a result, we can verify that our metrics are correct since the best predictivity should
correspond to the ground truth value. We investigate this for the case of trim in Fig. 3.3,
and compare the scores for SRCC (Fig. 3.3c) [45], POD (Fig. 3.3d), PPV (Fig. 3.3b) and our
proposed PRPV (Fig. 3.3a). We can see from the plots that the PRPV identifies the correct
trim value, and also shows monotonic decrease in predictivity as the trim value increases.
By writing our metric in terms of agent ordering explicitly we are able to capture the essence
of how well the agents are able to perform the task.

3The results can be found at https://challenges-stage.duckietown.org/humans/challenges/
anc-01-LF-sim-validation/leaderboard

54

https://challenges-stage.duckietown.org/humans/challenges/anc-01-LF-sim-validation/leaderboard
https://challenges-stage.duckietown.org/humans/challenges/anc-01-LF-sim-validation/leaderboard

Fig. 3.4. Evaluation of different instances of gym_duckietown as a proxy for the AIDO embodied
challenge according to the PRPV. The green bars represent the parameter value that was used for
AIDO. Using our metric we can now determine which of our parameters were correct and which
should be modified.

We apply a similar approach to the other tunable parameters. For each simulator in-
stance, we report the PRPV in fig 3.4 for three different parameter values centered on the
ones that were actually used in the recent AIDO competition.

As expected, the results in fig. 3.4 show that having a non-zero trim value highly reduces
the predictivity of our simulator. We also observe that the command delay that was initially
set to 50 ms seems to be good, same for the camera angle. However, in the case of the
blur time, our simulator could make better predictions if we decrease the parameter value.
To obtain the optimal simulator instance, a second iteration of that experience could be
repeated, using the new information to choose the range of the parameters to explore.

3.7.2. Duckietown Simulator for Learning

To compute the PLV, we collected annotated data from an expert that has access to
ground truth both in the proxy and target domains (fig. 3.5). We then used the algorithm
of the controller that placed first during AI-DO3 [68], which is based on imitation learning
[9], to obtain a learning-based agent capable of following a Duckietown lane. Again, the
environment configurations was set to be a 3-by-3 Duckietown map, where the agent has
to drive within the outer lane for 60 seconds. We note the performance of an agent by the
amount of time it can drive, where each second spent with one wheel outside the lane is
subtracted and each second spent with both wheels outside the lane is subtracted twice. If
the agent drives out of the map entirely, the run ends.

Computing the PLV requires comparison of the performance of an agent with and without
the proxy domain. We trained the neural network based on various amount of real world
samples, each time deploying on the real robot and observing its performance. We observed

55

Fig. 3.5. Proxy (left) and target (right) domain of Duckietown, displaying the environment, ob-
servation and trajectories.

that the agents converge at a performance of around 55 seconds score (that is, they survive
the whole 60 seconds run and get around 5 seconds of penalty), which was obtained with
9000 annotated data points from the target domain. Afterwards, we performed the same
experiment, but we initialized the weights of the network from a neural network trained
entirely with data from a simulator-based proxy domain.

The experiment was done for three different proxy instances where we modified the angle
of the simulated camera to 3°, 19° and 35°, respectively. The learning curves for the four
cases are shown in Fig. 3.6 and results are presented in Table 3.1. We see here that the zero-
shot score on the target domain is not a representative value for how useful the simulator
is for learning. The zero-shot scores for ‘sim_ca03’ and ‘sim_ca35’ are very low compared
to ‘sim_ca19’. However, they are both still very useful since they dramatically reduce the

56

Proxy zero-shot score target domain samples % reduction
sim_ca03 4.0 1000 88
sim_ca19 47.4 250 97
sim_ca35 5.4 750 92

none 0 9000 0.0
Table 3.1. Zero shot score and number of target domain samples required to achieve real world
performance at convergence on the robot according to proxy used for pre-training.

Fig. 3.6. Performance of an imitation learning agent in a 3x3 duckietown map lane-following
challenge with different proxy domains

amount of target domain data needed compared to training entirely on the target domain.
We also see here that these two different uses of a simulator (predictivity and teaching) may
tell us different things. A simulator that is not particularly predictive (since the camera
pitch angle is way off) may still be useful for learning if the learning algorithm is able to
adapt properly.

3.8. Conclusion and Future Work
We introduce new metrics to assess the usefulness of proxy domains for agent learning.

In a robotics setting it is common to use simulators for development and evaluation to reduce
the need to deploy on real hardware. We argue that it is necessary to to take into account
the specific task when evaluating the usefulness of the the proxy. We establish novel metrics
for two specific uses of a proxy. When the proxy domain is used to predict performance in
the target domain, we offer the PRPV to assess the usefulness of the proxy as a predictor,
and we argue that the task needs to be imposed but not the agent. When a proxy is used
to generate training data for a learning algorithm, we propose the PLV as a metric to as-
sess usefulness of the source domain, which is dependent on a specific task and a learning
algorithm. We demonstrated the use of these measures for predicting parameters in the

57

Duckietown environment. Future work will involve more rigorous treatment of the optimiza-
tion problems posed to find optimal parameters, possibly in connection with differentiable
simulation environments.

58

Chapter 4

Prologue to second paper

4.1. Article details
Integrated Benchmarking and Design for Reproducible and Accessible Evalu-

ation of Robotic Agents, by Jacopo Tani, Andrea F. Daniele, Gianmarco Bernasconi,
Amaury Camus, Aleksandar Petrov, Anthony Courchesne, Bhairav Mehta, Rohit Suri,
Tomasz Zaluska, Matthew R. Walter, Emilio Frazzoli, Liam Paull, Andrea Censi, Proceed-
ings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
2020

Personal contribution

I worked extensively on the software architecture of the platform. I was specifically help-
ing develop and maintain the simulator and the interface with the challenge infrastructure. I
conducted multiple projects such as upgrading the major OS distribution, ROS, and python
versions of the repositories and containers, uniformizing the communication interface be-
tween the controller and the environment using UNIX named pipes and ROS, generating 3D
models, developing an exercise infrastructure and more. For the paper, I contributed to the
discussions as well as the sections about the simulation.

4.2. Context
Benchmarking in robotics has always been a challenge since hardware is costly and often

subject to breakage. Scientific claims in robotics are typically made within a single environ-
ment, or multiple simulated environment. There is a need for robot-in-the-loop testing and
low-cost, reproducible setups.

4.3. Contributions
In this work, we provide a new design where reproducibility is the top priority. The au-

tolabs are publicly available autonomous environments for evaluation of specific autonomous
driving tasks. The presence of multiple autolabs in different locations with the same proto-
col definition, along with the software containerization, enables highly reproducible scientific
experiments. Software solutions wrapped in a container are submitted to a simulation, and
then to a real robot.

60

Chapter 5

Integrated Benchmarking and Design for
Reproducible and Accessible Evaluation of

Robotic Agents

Abstract
As robotics matures and increases in complexity, it is more necessary than ever that robot

autonomy research be reproducible. Compared to other sciences, there are specific challenges
to benchmarking autonomy, such as the complexity of the software stacks, the variability
of the hardware and the reliance on data-driven techniques, amongst others. In this paper,
we describe a new concept for reproducible robotics research that integrates development
and benchmarking, so that reproducibility is obtained “by design” from the beginning of
the research/development processes. We first provide the overall conceptual objectives to
achieve this goal and then a concrete instance that we have built: the DUCKIENet. One
of the central components of this setup is the Duckietown Autolab, a remotely accessible
standardized setup that is itself also relatively low-cost and reproducible. When evaluating
agents, careful definition of interfaces allows users to choose among local versus remote
evaluation using simulation, logs, or remote automated hardware setups. We validate the
system by analyzing the repeatability of experiments conducted using the infrastructure and
show that there is low variance across different robot hardware and across different remote
labs.2

5.1. Introduction
Mobile robotics poses unique challenges that have precluded the establishment of bench-

marks for rigorous evaluation. Robotic systems are complex with many different interacting
2The code used to build the system is available on the Duckietown GitHub page (https://github.com/
duckietown).

https://github.com/duckietown
https://github.com/duckietown

Fig. 5.1. The Duckietown Autolab: We augment Duckietowns [64] with localization and au-
tomatic charging infrastructure. We modify Duckiebots (inset) to facilitate detection by the local-
ization system and auto-charging.

components. As a result, evaluating the individual components is not a good proxy for full
system evaluation. Moreover, the outputs of robotic systems are temporally correlated (due
to the system dynamics) and partially observable (due to the requirement of a perception
system). Disentangling these issues for proper evaluation is daunting.

The majority of research on mobile robotics takes place in idealized laboratory settings
or in unique uncontrolled environments that make comparison difficult. Hence, the value
of a specific result is either open to interpretation or conditioned on specifics of the setup
that are not necessarily reported as part of the presentation. The issue of reproducibility is
exacerbated by the recent emergence of data-driven approaches, the performance of which
can vary dramatically and unpredictably across seemingly identical environments (e.g., by
only varying the random seed [39]). It is increasingly important to fairly compare these
data-driven approaches with the more classical methods or hybrids of the two.

Most existing methods for evaluating robotics operate on individual, isolated components
of the system. For example, evaluating robot perception is comparatively straightforward
and typically relies on annotated datasets [33, 27, 15, 82]. However, performance on these
benchmark datasets is often not indicative of an algorithm’s performance in practice. A
common approach to analyzing robot control algorithms is to abstract away the effects of
perception [100, 67] and assume that the pose of the robot is known (e.g., as determined
using an external localization system, such as a motion capture setup [57]).

Simulation environments are potentially valuable tools for system-level evaluation. Ex-
amples such as CARLA [31], AirSim [74], and Air Learning [47] have recently been developed

62

for this purpose. However, a challenge with simulation-based evaluation is that it is difficult
to quantify the extent to which the results extend to the real world.

Robotics competitions have been excellent testbeds for more rigorous evaluation of ro-
botics algorithms [2]. For example, the DARPA urban challenge [14], the DARPA robotics
challenge [44], and the Amazon Picking Challenge [28], have all resulted in massive develop-
ment in their respective sub-fields (autonomous driving, humanoid robotics, and manipula-
tion respectively). However, the cost and multi-year effort required to join these challenges
limit participation.

A very promising recent trend that was spearheaded by the Robotarium at Georgia
Tech [66, 95] is to provide remotely accessible lab setups for evaluation. This approach has
the key advantage that it enables access for anyone to submit. In the case of the Robotarium,
the facility itself cost 2.5M $US, and would therefore be difficult to replicate. Additionally,
while it does allow users flexibility in the algorithms they can run, it does not offer any
standardized evaluation.

In this paper, we propose to harmonize all the above-mentioned elements (problem defini-
tion, benchmarks, development, simulation, annotated logs, experiments, etc.) in a “closed-
loop” design that has minimal software and hardware requirements. This framework allows
users to define benchmarks that can be evaluated with different modalities (in simulation
or on real robots) locally or remotely. Importantly, the design provides immediate feedback
from the evaluations to the user in the form of logged data and scores based on the metrics
defined in the benchmark.

We present the Decentralized Urban Collaborative Benchmarking Network
(DUCKIENet), an instantiation of this design based on the Duckietown platform [64] that
provides an accessible and reproducible framework focused on autonomous vehicle fleets
operating in model urban environments.

The DUCKIENet enables users to develop and test a wide variety of different algorithms
using available resources (simulator, logs, cloud evaluations, etc.), and then deploy their
algorithms locally in simulation, locally on a robot, in a cloud-based simulation, or on a real
robot in a remote lab. In each case, the submitter receives feedback and scores based on
well-defined metrics.

The DUCKIENet includes Duckietown Autolabs (DTAs), remote labs that are also low-
cost, standardized and fully documented with regards to assembly and operation, making
this approach highly scalable. Features of the DTAs include an off-the-shelf camera-based
localization system and a custom automatic robot recharging infrastructure. The accessi-
bility of the hardware testing environment through the DUCKIENet enables experimental
benchmarking that can be performed on a network of DTAs in different geographical loca-
tions.

63

In the remainder of this paper we will summarize the objectives of our integrated bench-
marking system in Section 5.2, describe an instantiation that adheres to these objectives,
the DUCKIENet, in Section 5.3, validate the performance and usefulness of the approach in
Section 5.4 and finally present conclusions in Section 5.5.

5.2. Integrated Benchmarking and Development for Re-
producible Research

Benchmarking should not be considered an isolated activity that occurs as an after-
thought of development. Rather, it should be considered as an integral part of the research
and development process itself, analogous to test-driven development in software design.
Robotics development should be a feedback loop that includes problem definition, the speci-
fication of benchmarks, development, testing in simulation and on real robot hardware, and
using the results to adjust the problem definition and the benchmarks (Fig. 5.2).

Fig. 5.2. Integrating Benchmark Design: Designing robotic benchmarks should be more
tightly integrating into robotic system development.

In this paper we describe a system built to explore the benefits and the challenges of har-
monizing development, benchmarking, simulation and experiments to obtain reproducibility
“by design”. In this section we give an overview of the main challenges and design choices.

5.2.1. Reproducibility

Our main objective is to achieve “reproducibility”. At an abstract level, reproducibility is
the ability to reduce variability in the evaluation of a system such that experimental results
are more credible [36]. More specifically, there are three distinct aspects to reproducibility,
all equally important:

(1) An experiment is reproducible if the results obtained at different times and by differ-
ent people are similar;

(2) An experimental setup is reproducible if it is possible to build a copy of the same
setup elsewhere and obtain comparable results;

(3) An experimental platform is reproducible if it is relatively easy, in terms of cost and
complexity, to replicate.

64

5.2.1.1. Software.Modern autonomy stacks consist of many modules and dependen-
cies, and the reproducibility target implies being able to use the same software possibly many
years later.

Standardized software archival systems such as Git solve part of the problem, as it is
easy to guarantee storage and integrity of the software over many years [7]. However, even
if the core implementation of the algorithm is preserved, the properties of the system change
significantly in practice due to the external dependencies (libraries, operating system, etc.).
In extreme cases “bit rot” causes software to stop working simply because the dependencies
are no longer maintained [8].

Containerization technologies such as Docker [30] have dramatically reduced the effort
required to create reproducible software. Containerization solves the problem of compilation
reproducibility, as it standardizes the environment in which the code runs [92]. Further-
more, the ability to easily store and retrieve particular builds (“images”) through the use of
registries, solves the problem of effectively freezing dependencies. This allows perfect repro-
ducibility for a time span of 5–10 years (until the images can no longer be easily run using
the current version of the containerization platform).

5.2.1.2. Hardware. In addition to issues related to software, a central challenge in
the verification and validation of robot autonomy is that the results typically depend on
under-defined properties of the particular hardware platforms used to run the experiments.
While storage and containerization make it possible to standardize the version and build of
software, hardware will never be fully reproducible, and using only one instance of a platform
is impossible due to wear and tear.

As a result, we propose to make several samples from a distribution of hardware platforms
that are used for evaluation. Consequently, metrics should be considered statistically (e.g.,
via mean and covariance), similarly to recent standard practices in reinforcement learning
that evaluate over a set of random seeds [39]. This incentivizes algorithms that are robust
to hardware variation, and will consequently be more likely to work in practice. Also, one
can define the distribution of variations in simulations such that configurations are sampled
by the benchmark on each episode. While the distribution as a whole might change (due to
different components being replaced over the years), the distributional shift is easier to detect
by simply comparing the performance of an agent on the previous and current distributions.

Cost can also quickly become the limiting factor for the reproducibility of many platforms.
Our objective is to provide a robotic platform, a standardized environment in which it should
operate, and a method of rigorous evaluation that is relatively inexpensive to acquire and
construct.

5.2.1.3. Environment.We use an analogous approach to deal with variability in the
environment. The first and most crucial step for reproducibility of the setup is to standardize

65

the formal description of the environment. Nevertheless, it is infeasible to expect that even
a well described environment can be exactly reproduced in every instance. As discussed in
Section 5.3, our approach is to use a distributed set of experimental setups (the DTAs) and
test agents across different installations that exist around the world. Similar to the way that
robot hardware should be randomized, proper evaluation should include sampling from a
distribution over environments.

5.2.2. Agent Interoperability

Open source robotics middleware such as ROS [69] and LCM [42] are extremely useful
due to the tools that they provide. However, heavily leveraging these software infrastruc-
tures is an impediment to long-term software reproducibility since versions change often and
backward/forward compatibility is not always ensured. As a result, we propose a framework
based on low-level primitives that are extremely unlikely to become obsolete, and instead
provide bridges to popular frameworks and middlewares. Specifically, components in our
infrastructure communicate using pipes (FIFOs) and a protocol based on Concise Binary
Object Representation (CBOR) (a binarized version of JavaScript Object Notation) [10].
These standardized protocols have existed for decades and will likely persist long into the
future. It is then the job of the infrastructure to interconnect components, either directly or
using current middleware (e.g., ROS) for transport over networks. In the future, the choice
of middleware might change without invalidating the stored agents as a new bridge can be
built to the new middleware. An additional benefit of CBOR is that it is self-describing
(i.e., no need of a previously agreed schema to decode the data) and allows some form of
extensibility since schema can change or be updated and maintain backwards compatibility.

5.2.3. Robot-Agent Abstraction

Essential to our approach is defining the interface between the agent and the robot
(whether the robot is in a simulator or real hardware). Fundamentally, we define this inter-
face in the following way (Fig. 5.3):

• Robots are nodes that consume actuation commands and produce sensor observa-
tions.
• Agents are nodes that consume sensor observations and produce actuation com-
mands.

Combining this with containerization and the low-level reproducible communication pro-
tocol introduced in Section 5.2.2 results in a framework that is reliable and enables the easy
exchange of either agents or robots in a flexible and straightforward manner. As described in
Section 5.3, this approach is leveraged in the DUCKIENet to enable zero friction transitions
from local development, to remote simulation, and to remote experiments in DTAs.

66

Performance
Metric

Agent

Benchmark

Simulation
SimulationSimulation

SimulationSimulationHardware

Benchmarking infrastructure

Robot

Observations Commands

Logs

Environment Definition

Fig. 5.3. Abstractions and Interfaces: An interface must be well-specified so that components
on either side of the interface can be swapped in and out. The most important is the Agent-
Robot interface, where the robot can be real hardware or a simulator. The interface between the
benchmark and the infrastructure enables a clear definition of benchmark tasks (in terms of metrics)
separately from the means by which they are evaluated.

5.2.4. Robot-Benchmark Abstraction

A benchmarking system becomes very powerful and extensible if there is a way to distin-
guish the infrastructure from the particular benchmark being run. In similar fashion to the
definition of the interface for the robot system, we standardize the definition of a benchmark
and its implementation as containers (Fig. 5.3):

• Benchmarks provide environment configurations and consume robot states to eval-
uate well-define metrics.
• Infrastructure consumes environment configurations and provides estimates of ro-
bot state, either directly (e.g., through a simulator) or through other external means.

5.3. The DUCKIENet
In this section we describe an instantiation of the high-level objectives proposed in Sec-

tion 5.2 that we refer to as DUCKIENet, which:
• comprises affordable robot hardware and environments,
• adheres to the proposed abstractions to allow easy evaluation on local hardware or
in simulation,
• enables evaluation of user-specified benchmarks in the cloud or in a remote, stan-
dardized lab.

67

duckietown/dt-duckiebot-interface
Image	with	user	code

Evaluator	system

Experiment in DTA

Localization	system
Autolab	control	interface

Image	with	user	code
duckietown/dt-duckiebot-interface

Running a baseline
duckietown/dt-duckiebot-interface

duckietown/dt-car-interface
duckietown/dt-core

Local experiment

Evaluator	system

Simulation
Image	with	user	code

Simulator	interface	image

Fig. 5.4. Use-cases: The well-defined interfaces enable execution of an agent in different settings,
including locally in hardware, in a DTA, with a standard baseline, or in a simulator. Different icons
indicate where a container is executed (either on the robot

duckietown/dt-duckiebot-interface
Image with user code

Evaluator system

Experiment in DTA

Localization system
Autolab control interface

Image with user code
duckietown/dt-duckiebot-interface

Running a baseline
duckietown/dt-duckiebot-interface

duckietown/dt-car-interface
duckietown/dt-core

Local experiment

Evaluator system

Simulation
Image with user code

Simulator interface image

or on the laptop

duckietown/dt-duckiebot-interface
Image with user code

Evaluator system

Experiment in DTA

Localization system
Autolab control interface

Image with user code
duckietown/dt-duckiebot-interface

Running a baseline
duckietown/dt-duckiebot-interface

duckietown/dt-car-interface
duckietown/dt-core

Local experiment

Evaluator system

Simulation
Image with user code

Simulator interface image

).

Simulator

Challenges server
Remote DTAs

Agent
Jobs

Results

Local Development

Results

Fig. 5.5. The user workflow: Local development can take place on the real hardware or in a
simulator. Agents are submitted to the Challenges server, which marshals agents to be submitted in
simulation challenges to the cloud simulation, or agents that should be evaluated on real hardware
to a DTA. The results of these evaluations are combined with the benchmark definition and made
available to the submitter.

5.3.1. The Base Platform

The DUCKIENet is built using the Duckietown platform, which was originally developed
in 2016 and has since been used for education [86], research [102] and outreach [23].

5.3.1.1. The Duckietown Hardware Platform. The Duckietown hardware consists
of Duckiebots and Duckietown urban environments. Duckiebots are differential-drive mobile

68

robots with a front-facing camera as the only sensor, five LEDs used for communication, two
DC-motors for actuation, and a Raspberry Pi for computation. Duckietowns are structured
modular urban environments with floor and signal layers. The floor layer includes five
types of road segments: straight, curve, three-way intersection, four-way intersection, and
empty. The signal layer includes traffic signs and traffic lights. Traffic lights have the same
hardware as the Duckiebots, excluding the wheels, and are capable of sensing, computing,
and actuation through their LEDs.

5.3.1.2. The Duckietown Software Architecture.We implement the Duckietown
base software as ROS nodes and use the ROS topic messaging system for inter-process com-
munication. The nodes are organized in Docker images that can be composed to satisfy
various use-cases (Fig. 5.4). Specifically, the components that correspond to the “robot” are
the actuation and the sensing, and all other nodes correspond to the agent. The Duckietown
simulator [17] is a lightweight, modular, customizable virtual environment for rapid debug-
ging and training of agents. It can replace the physical robot by subscribing to commands
and producing sensor observations. We provide an agent interface to the OpenAI Gym [13]
protocol that can be called at a chosen frequency to speed up training. In the case of rein-
forcement learning, rewards can be specified and are returned, enabling one to easily set up
episodes for training.

The process of marshalling containers requires some specific configurations. To ease this
process, we have developed the Duckietown Shell which is a wrapper around the Docker
commands and provides an interface to the most frequent development and evaluation op-
erations [24]. Additionally, the Duckietown Dashboard provides an intuitive high-level web-
based graphical user interface [22]. The result is that agents that are developed in one
modality (e.g., the simulator) can be evaluated in the cloud, on real robot hardware, or in
the DTA with one simple command or the at click of a button.

5.3.2. System Architecture Overview

The DUCKIENet (Fig. 5.5) is comprised of: (i) a Challenges server that stores agents,
benchmarks, and results, computes leaderboards, and dispatches jobs to be executed by
a distributed set of evaluators; (ii) a set of local or cloud-based evaluation machines that
run the simulations; and (iii) one or more DTAs, physical instrumented labs that carry out
physical experiments (Sec. 5.3.3).

The system has:
(1) Super-users who define the benchmarks. The benchmarks are defined as Docker

containers submitted to the Challenges server. These users can also set permissions
for access to different benchmarks, their results, and the scores.

69

Fig. 5.6. The DTA GUI provides a control interface to human operators, including a represen-
tation of the map and the Watchtowers (left) and an overhead live feed of the physical Duckietown
with diagnostic information about the experiment in progress (right).

(2) Regular developers are users of the system. They develop agents locally and
submit their agent code as Docker containers. They can observe the results of the
evaluation, though the system supports notions of testing and validation, which hides
some of the results.

(3) Simulation evaluators and experimental evaluators query the Challenges server
for jobs to execute. They run jobs as they receive them and communicate the results
back to the Challenges server.

5.3.3. The Duckietown Automated Laboratory (DTA)

The DTAs are remotely accessible hardware ecosystems designed to run reproducible
experiments in a controlled environment with standardized hardware (Sec. 5.3.1.1). DTAs
comprise: (a) a set of Duckietown environments (maps); (b) a localization system that
estimates the pose of every Duckiebot in the map (Sec. 5.3.3.1); (c) a local experiment man-
ager, which receives jobs to execute from the Challenges server and coordinates the local
Duckiebots, performs diagnostics, and collects logs from the system; (d) a human opera-
tor responsible for tasks that are currently not automated (e.g., resetting experiments and
“auto"-charging); and (e) a set of Duckiebots modified with a upwards-facing AprilTag [62]
and charge collection apparatus, as shown in Figure 5.1. A graphical UI (Fig. 5.6) makes
the handling of experiments more user-friendly (Sec. 5.3.3.2).

We evaluate the reproducibility of the DTAs themselves by evaluating agents across
different labs at distributed locations worldwide, as described in Section 5.4.

70

Job Duckietown Autolab
DUCKIENet

Data
Post-processing

Challenges
Server

Prioritization

Setup

Experiment
Execution

Setup validation and report

Initialization

Confirmation

Termination

Execution Monitoring

Job request

Attempt
outcome

Fail or Error

Success

Relabel “Attempt” to “Run”

Save run data

Fill in Run report

Localization data,
Diagnostics

Data
Validation

Cleanup

• Perception / Camera
• Actuation / Motors / SysID
• Power / Battery
• Memory / SD card

HW compliance

Results

• Data integrity
• Data storage
• Environment monitoring

Diagnostics

• IDs: experiment, DA,
operator

• HW compliance results
• Experiment setup data
• Setup validation report
• Diagnostic reports

Meta-statistics

Agent

Fig. 5.7. Evaluation workflow: An experiment is triggered by an agent being submitted to
the Challenges server. The experiment is run in the DTA following a predefined and deterministic
procedure. The results are then uploaded to the Challenges server and returned to the submitter.

5.3.3.1. Localization. The goal of the localization system is to provide pose estimates of
all Duckiebots during experiments. This data is post-processed according to metrics specified
in the benchmarks to evaluate agent performance. The localization system comprises a
network of Watchtowers, i.e., low-cost observation structures using the same sensing and
computation as the Duckiebots. The Watchtowers are placed such that their fields-of-view,
which are restricted to a local neighbor region of each Watchtower, overlap and collectively
cover the entire road network. A set of calibration AprilTags are fixed to the road layer

71

of the map and provide reference points from the camera frame of each Watchtower to the
map’s fixed reference frame.

The localization system is decentralized and vision-based, using the camera both the
streams of the network of Watchtowers and those of the Duckiebots themselves. In each
image stream the system detects AprilTags, which are placed on the Duckiebots as well as
in other locations around the city, e.g., on traffic signs at intersections. For each AprilTag,
the system extracts their camera-relative pose. Using the resulting synchronized sequences
of AprilTag-camera relative pose estimates, a pose graph-based estimate of the pose history
of each AprilTag, using the g2o library [37], is returned.

5.3.3.2. Operator Console. DTAs are equipped with a graphical user interface based
on the \compose\ web framework (Fig. 5.6). Similarly to the Duckietown Dashboard, it
is designed to provide an intuitive interface between the operator and the DTA. Available
functionalities include: various diagnostics (e.g., network latency, room illumination, camera
feeds, etc.), the ability to run jobs (experiments) with a few clicks and compute, visualize
and return results to the Challenges server, and the control of the environment illumination.

5.3.4. Defining the Benchmarks

Benchmarks can be defined either to be evaluated in simulation or on real robot hardware.
Both types require the definition of: (a) the environment, through a standardized map
format; (b) the “non-playing characters” and their behavior; and (c) the evaluation metrics,
which can be arbitrary functions defined on trajectories.

Each benchmark produces a set of scalar scores, where the designer can choose the final
total order for scoring by describing a priority for the scores as well as tolerances (to define a
lexicographic semiorder). The system allows one to define “benchmarks paths” as a directed
acyclic graph of benchmarks with edges annotated with conditions for progressions. One
simple use case is to prescribe that an agent be first evaluated in simulation before being
evaluated on real robot hardware. It is possible to set thresholds on the various scores that
need to be reached for progression. For competitions such as the AI Driving Olympics [102],
the superusers can set up conditions such as “progress to the next stage only if the submission
does better than a baseline”.

5.3.5. DTA Operation Workflow

The Challenges server sends a job to a DTA that provides the instructions necessary
to carry out the experiment (Fig. 5.7). The DTA executes each experiment in a series of
three steps: (i) experiment execution, (ii) data validation, and (iii) data post-processing and
report generation.

72

Before the DTA carries out an experiment, it first verifies that the robots pass a hardware
compliance test that checks to see that their assembly, calibration, and the functionality of
critical subsystems (sensing, actuation, power, and memory) are consistent with the specifi-
cations provided in the description of the experiment.

Having passed the compliance test, the experiment execution phase begins by initializing
the pose of the robot(s) in the appropriate map, according to the experiment definition.
The robot(s) that runs the user-defined agent is categorized as “active”, while the remaining
“passive” robots run baseline agents. During the initialization step, the appropriate agents
are transferred to each robot and initialized (as Docker containers). The localization system
assigns a unique ID to each robot and verifies that the initial pose is correct. Once the robots
are ready and the DTA does not detect any abnormal conditions (e.g., related to room illu-
mination and network performance), the DTA sends a confirmation signal to synchronize the
start of the experiment. The robots then execute their respective agents until a termination
condition is met. Typical termination conditions include a robot exiting the road, crashing
(i.e., not moving for longer than a threshold time), or reaching a time limit.

During the validation phase, the DTA evaluates the integrity of the data, that it has been
stored successfully, and that the experiment was not been terminated prematurely due to an
invalidating condition (e.g., an unexpected change in environment lighting). Experiments
that pass this phase are labeled as successful runs.

In the final phase, the DTA compiles experiment data and passes it to the Challenges
server. The Challenges server processes the data according to the specifications of the exper-
iment and generates a report that summarizes the run, provides metrics and statistics unique
to the run, as well as information that uniquely identifies the experiment, physical location,
human operator, and hardware compliance. The entire report including the underlying data
as well as optional comparative analysis with selected baselines are then shared with the
user who submitted the agent. The Challenges server then performs cleanup in anticipation
of the next job.

5.4. Validation
We perform experiments to demonstrate (a) the repeatability of performance within a

DTA, (b) the reproducibility of experiments across different robots in the same DTA, and
(c) reproducibility across different facilities.

To assess the repeatability of an experiment, we run the same agent, in this case a
lane-following (LF) ROS-based baseline, on the same Duckiebot and in the same DTA. To
evaluate inter-robot reproducibility, we run the same experiment on multiple Duckiebots,
keeping everything else fixed. Finally, we demonstrate that the same experiments yield
similar results when run in different DTAs across the world.

73

-10.0

0.0

10.0

P
os

it
io

n
[c

m
]

0 2 4 6
Travelled distance [m]

-20.0

0.0

20.0

O
ri

en
ta

ti
on

[d
eg

]

Deviation from the center of the lane

Robots Location Repetitions AVG
MPD

STD
MPD

AVG
MOD

STD
MOD

1 ETHZ 9 -6.2 1.3 -0.8 2.8

Fig. 5.8. Repeatability: Experiments repeatedly run on the same robot. Plots include mean
and standard deviation. The execution of the same agent is low variance across runs.

We define two metrics to measure repeatability: Mean Position Deviation (MPD) and
Mean Orientation Deviation (MOD). Given a set of trajectories, MPD at a point along a
trajectory is computed as the mean lateral displacement of the Duckiebot from the center of
the lane. Similarly, MOD represents the mean orientation with respect to the lane orienta-
tion. For each set of experiments, we compute the average and the standard deviation along
the trajectory itself.

5.4.1. Experiment Repeatability

To demonstrate experiment repeatability, we run a baseline agent for the LF task nine
times, on the same Duckiebot, with the same initial conditions and in the same DTA. The
results are in Figure 5.8, with the mean and standard deviation of the robot’s position on the
map. We also include plots of the MPD and MOD metrics. Given the vetted robustness of
the baseline agent, we expect repeatable behavior. This is supported by standard deviations
of the MPD (1.3 cm) and the MOD (2.8deg), which show that there is low variability in
agent performance when run on the same hardware.

5.4.2. Inter-Robot Reproducibility

Given the low-cost hardware setup, we expect a higher degree of variability if the same
agent is run on different robots. To evaluate inter-robot reproducibility, we run the LF base-
line three times each, on three different Duckiebots. Experiments are nominally identical,
and performed in the same DTA. Although the behavior of each Duckiebot is expected to

74

-10.0

0.0

10.0

P
os

it
io

n
[c

m
]

0 2 4 6 8
Travelled distance [m]

-20.0

0.0

20.0

O
ri

en
ta

ti
on

[d
eg

]

Deviation from the center of the lane

Robots Location Repetitions AVG
MPD

STD
MPD

AVG
MOD

STD
MOD

3 ETHZ 3× 3 1.1 3.4 -0.4 5.2

Fig. 5.9. Inter-Robot Reproducibility: Experiments on three different but similar robots.
Results show that there is more variation when the same agent is run on different hardware.

be repeatable given the result of the previous section, we expect some shift in the perfor-
mance distribution to hardware nuisances such as slight variations in assembly, calibration,
manufacturing differences of components, etc.

Figure 5.9 visualizes mean and standard deviation of the trajectories for all runs. The
experiments reveal a standard deviation for the MPD of 3.4 cm and a standard deviation
for the MOD of 5.2 deg. These results show higher deviations than for the single Duckiebot
repeatability test, as expected.

5.4.3. DTA Reproducibility

To demonstrate DTA reproducibility, we run a total of twelve experiments in two different
DTAs with nominally identical conditions except for the hardware, the geographic location,
the infrastructure, and the human operators. Results are shown in Figure 5.10. We obtain
a standard deviation for the MPD of 2.5 cm, and a standard deviation for the MOD of
3.9deg. Although variance is higher than the single Duckiebot repeatability test, which
is to be expected, it is lower than that of the experiments run on three different robots,
reinforcing the notion that hardware variability is measurable across different DTAs on the
DUCKIENet.

5.4.4. Limitations

Finally, we discuss some limitations of the DUCKIENet framework, all of which are on
our development roadmap.

The scenarios used to evaluate the reproducibility of the platform are relatively sim-
ple. With the Duckietown setup, we are able to produce much more complex behaviors

75

-10.0

0.0

10.0

P
os

it
io

n
[c

m
]

0 2 4 6 8
Travelled distance [m]

-20.0

0.0

20.0

O
ri

en
ta

ti
on

[d
eg

]

Deviation from the center of the lane

Robots Location Repetitions AVG
MPD

STD
MPD

AVG
MOD

STD
MOD

1× 2 ETHZ/TTIC 6× 2 2.2 2.5 -0.4 3.9

Fig. 5.10. DTA Reproducibility Experiments in two different DTAs: ETH Zürich and TTI-
Chicago. Results show that the infrastructure is reproducible across setups, since experiments in
two different DTAs yield similar results.

and scenarios, such as multi-robot coordination, vehicle detection and avoidance, sign and
signal detection, etc. These more complex behaviors should also be benchmarked. We have
also only considered here metrics that are evaluated over a single agent, but multi-agent
evaluation is also needed.

Finally, we have not analyzed the robustness to operator error (e.g., mis-configuration
of the map compared to the simulation) or in case of hardware error (e.g., one camera in
the localization system becomes faulty). This is necessary to encourage widespread adoption
of the platform, which requires the components to be well-specified and capable of self-
diagnosing configuration and hardware errors.

5.5. Conclusions
We have presented a framework for integrated robotics system design, development, and

benchmarking. We subsequently presented a realization of this framework in the form the
DUCKIENet, which comprises simulation, real robot hardware, flexible benchmark defini-
tions, and remote evaluation. These components are swappable because they are designed
to adhere to well-specified interfaces that define the abstractions. In order to achieve this
level of reproducibility, we have relied heavily on concepts and technologies including formal
specifications and software containerization. The combination of these tools with the proper
abstractions and interfaces yields a procedure that can be followed by other roboticists in a
straightforward manner.

Our contention is that there is a need for stronger efforts towards reproducible research
for robotics, and that to achieve this we need to consider the evaluation in equal terms as the

76

algorithms themselves. In this fashion, we can obtain reproducibility by design through the
research and development processes. Achieving this on a large-scale will contribute to a more
systemic evaluation of robotics research and, in turn, increase the progress of development.

77

Chapter 6

Conclusion

This thesis has addressed core issues in the method that robotic research is conducted. We
have enabled researchers with a new design for robotics environments to promote ease of
reproducibility. In this effort, we hope that claims made for state-of-the-art techniques in
autonomous driving are going to be easily validated and benchmarked. The autolabs are
made available to the public as one such platform, offering low-cost robots and official,
standardized evaluation of common autonomous driving tasks. We demonstrate that the
variability between various autolabs is low and as such, the experiments can be reproduced
faithfully at any remote autolabs.

We use that new platform to conduct our research and analysis about the reality gap, and
more generally the usefulness of surrogate environments as proxies for an embodied challenge.
We claim that a proxy environment is never going to be a perfectly faithful representation
of the real environment, but also that it does not need to. We argue that even low-fidelity
environments can be useful, as long as some relevant components are modeled properly and
the task is imposed. Following this claim, we provide a novel metric, the PRPV, which
allows us to quantify the usefulness of a proxy when predicting the relative ordering of a set
of agents. Furthermore, we offer the LPV, a second metric that is used to quantify the value
of a proxy as a training tool. We demonstrate that both these new metrics can be used to
optimize a proxy environment to better predict the relative performance of agents, or reduce
the number of real robot trials required to train an agent.

Limitations and Future Work

We think that the goal of removing the reality gap entirely is not realistic, but there is
still work to be done to reduce it. A lot of work in robotics has neglected the gap or provided
methods to mitigate it, but we hope that our analysis will encourage researchers to better
understand the causes and effect of that discrepancy. While we offer tools to assess the value
and optimize a proxy, precisely predicting the effect of the transfer is not yet possible.

In our work, we deliberately neglected the overhead of generating data. The proxy that
we were using had such low overhead compared to the target environment that generating a
dataset was never a problem. We are aware that some proxy environments (i.e. high-fidelity
simulators) might require significant time investments to produce data. It can also be the
case that a proxy is a trade-off between hardware cost and time, such that the proxy is safe
but more time-consuming than target environment rollouts. In that case, it might be useful
to take the resource cost into consideration while analyzing the proxy value metrics.

Moreover, our metric provide a total order on proxy instances. In the case that we
want to account for more than one proxy value metric, resource costs, or different types of
prediction errors, it might be beneficial to establish a partial order on proxies.

We provided a way to optimize proxy parameters within a given family. In the case that
the environment gap irreducible within the given family (in which case it would be caused by
non-tunable features), we do not provide any advice on how to improve the proxy. Figuring
out a proxy family optimization method would be a good path for future work.

The experiments were done exclusively on the Duckietown platform. It would be rele-
vant to conduct similar experiments with other platforms such as CARLA [31], and other
embodied robotic tasks such as grasping.

80

References

[1] Ilge Akkaya, Marcin Andrychowicz, Maciek Chociej, Mateusz Litwin, Bob McGrew, Arthur
Petron, Alex Paino, Matthias Plappert, Glenn Powell, Raphael Ribas et al. : Solving rubik’s
cube with a robot hand. arXiv preprint arXiv:1910.07113, 2019.

[2] Francesco Amigoni, Emanuele Bastianelli, Jakob Berghofer, Andrea Bonarini, Giulio
Fontana, Nico Hochgeschwender, Luca Iocchi, Gerhard Kraetzschmar, Pedro Lima, Matteo
Matteucci et al. : Competitions for benchmarking: Task and functionality scoring complete
performance assessment. IEEE Robotics & Automation Magazine, 22(3):53–61, 2015.

[3] J Andrew Bagnell : An invitation to imitation. Rapport technique, CARNEGIE-MELLON UNIV
PITTSBURGH PA ROBOTICS INST, 2015.

[4] Bowen Baker, Ingmar Kanitscheider, Todor Markov, Yi Wu, Glenn Powell, Bob McGrew et
Igor Mordatch : Emergent tool use from multi-agent autocurricula. arXiv preprint arXiv:1909.07528,
2019.

[5] Herbert Bay, Tinne Tuytelaars et Luc Van Gool : Surf: Speeded up robust features. In European
conference on computer vision, pages 404–417. Springer, 2006.

[6] H. Bharadhwaj, Z. Wang, Y. Bengio et L. Paull : A data-efficient framework for training and sim-
to-real transfer of navigation policies. In 2019 International Conference on Robotics and Automation
(ICRA), pages 782–788, 2019.

[7] John D Blischak, Emily R Davenport et Greg Wilson : A quick introduction to version control
with Git and GitHub. PLoS Computational Biology, 12(1), 2016.

[8] Carl Boettiger : An introduction to Docker for reproducible research. ACM SIGOPS Operating
Systems Review, 49(1):71–79, 2015.

[9] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner, Beat Flepp,
Prasoon Goyal, Lawrence D Jackel, Mathew Monfort, Urs Muller, Jiakai Zhang et al. : End
to end learning for self-driving cars. arXiv preprint arXiv:1604.07316, 2016.

[10] Carsten Bormann : CBOR. http://cbor.io/. Accessed: 2020-02-29.
[11] Konstantinos Bousmalis, Alex Irpan, Paul Wohlhart, Yunfei Bai, Matthew Kelcey, Mrinal

Kalakrishnan, Laura Downs, Julian Ibarz, Peter Pastor, Kurt Konolige et al. : Using simula-
tion and domain adaptation to improve efficiency of deep robotic grasping. In 2018 IEEE international
conference on robotics and automation (ICRA), pages 4243–4250. IEEE, 2018.

[12] Konstantinos Bousmalis, Nathan Silberman, David Dohan, Dumitru Erhan et Dilip Krishnan
: Unsupervised pixel-level domain adaptation with generative adversarial networks. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pages 3722–3731, 2017.

[13] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie
Tang et Wojciech Zaremba : OpenAI Gym. arXiv preprint arXiv:1606.01540, 2016.

http://cbor.io/

[14] Martin Buehler, Karl Iagnemma et Sanjiv Singh : The DARPA urban challenge: Autonomous
vehicles in city traffic, volume 56. Springer, 2009.

[15] Holger Caesar, Varun Bankiti, Alex H Lang, Sourabh Vora, Venice Erin Liong, Qiang Xu,
Anush Krishnan, Yu Pan, Giancarlo Baldan et Oscar Beijbom : NuScenes: A multimodal dataset
for autonomous driving. arXiv preprint arXiv:1903.11027, 2019.

[16] Yevgen Chebotar, Ankur Handa, Viktor Makoviychuk, Miles Macklin, Jan Issac, Nathan
Ratliff et Dieter Fox : Closing the sim-to-real loop: Adapting simulation randomization with real
world experience. In 2019 International Conference on Robotics and Automation (ICRA), pages 8973–
8979. IEEE, 2019.

[17] Maxime Chevalier-Boisvert, Florian Golemo, Yanjun Cao, Bhairav Mehta et Liam Paull :
Duckietown environments for openai gym. https://github.com/duckietown/gym-duckietown, 2018.

[18] Paul Christiano, Zain Shah, Igor Mordatch, Jonas Schneider, Trevor Blackwell, Joshua To-
bin, Pieter Abbeel et Wojciech Zaremba : Transfer from simulation to real world through learning
deep inverse dynamics model. arXiv preprint arXiv:1610.03518, 2016.

[19] Felipe Codevilla, Matthias Müller, Antonio López, Vladlen Koltun et Alexey Dosovitskiy
: End-to-end driving via conditional imitation learning. In 2018 IEEE International Conference on
Robotics and Automation (ICRA), pages 4693–4700. IEEE, 2018.

[20] Jack Collins, Ross Brown, Jurgen Leitner et David Howard : Traversing the reality gap via
simulator tuning. arXiv preprint arXiv:2003.01369, 2020.

[21] Jack Collins, David Howard et Jurgen Leitner : Quantifying the reality gap in robotic manipula-
tion tasks. In 2019 International Conference on Robotics and Automation (ICRA), pages 6706–6712.
IEEE, 2019.

[22] The Duckietown Community : The Duckietown dashboard. https://docs.duckietown.org/DT19/
opmanual_duckiebot/out/duckiebot_dashboard_setup.html. Accessed: 2020-03-01.

[23] The Duckietown Community : Duckietown project. https://www.duckietown.org/. Accessed: 2020-
01-22.

[24] The Duckietown Community : The Duckietown shell. https://github.com/duckietown/
duckietown-shell. Accessed: 2020-03-01.

[25] Wade D. Cook, Moshe Kress et Lawrence M. Seiford : An axiomatic approach to distance on
partial orderings. RAIRO - Operations Research - Recherche Opérationnelle, 20(2):115–122, 1986.

[26] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler, Rodrigo
Benenson, Uwe Franke, Stefan Roth et Bernt Schiele : The cityscapes dataset for semantic urban
scene understanding. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 3213–3223, 2016.

[27] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler, Rodrigo
Benenson, Uwe Franke, Stefan Roth et Bernt Schiele : The Cityscapes dataset for semantic
urban scene understanding. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 3213–3223, 2016.

[28] Nikolaus Correll, Kostas E Bekris, Dmitry Berenson, Oliver Brock, Albert Causo, Kris
Hauser, Kei Okada, Alberto Rodriguez, Joseph M Romano et Peter R Wurman : Analysis
and observations from the first Amazon Picking Challenge. IEEE Transactions on Automation Science
and Engineering, 15(1):172–188, 2016.

82

https://github.com/duckietown/gym-duckietown
https://docs.duckietown.org/DT19/opmanual_duckiebot/out/duckiebot_dashboard_setup.html
https://docs.duckietown.org/DT19/opmanual_duckiebot/out/duckiebot_dashboard_setup.html
https://www.duckietown.org/
https://github.com/duckietown/duckietown-shell
https://github.com/duckietown/duckietown-shell

[29] Mark Cutler, Thomas J Walsh et Jonathan P How : Reinforcement learning with multi-fidelity
simulators. In 2014 IEEE International Conference on Robotics and Automation (ICRA), pages 3888–
3895. IEEE, 2014.

[30] Inc. Docker : Docker: Empowering app development for developers.
[31] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez et Vladlen Koltun : CARLA:

An open urban driving simulator. arXiv preprint arXiv:1711.03938, 2017.
[32] Andreas Geiger, Philip Lenz, Christoph Stiller et Raquel Urtasun : Vision meets robotics: The

kitti dataset. The International Journal of Robotics Research, 32(11):1231–1237, 2013.
[33] Andreas Geiger, Philip Lenz et Raquel Urtasun : Are we ready for autonomous driving? the

kitti vision benchmark suite. In Computer Vision and Pattern Recognition, 2012 IEEE Conference on,
pages 3354–3361, 2012.

[34] Florian Golemo, Adrien Ali Taiga, Aaron Courville et Pierre-Yves Oudeyer : Sim-to-real transfer
with neural-augmented robot simulation. In Conference on Robot Learning, pages 817–828. PMLR,
2018.

[35] Ian Goodfellow, Yoshua Bengio, Aaron Courville et Yoshua Bengio : Deep learning, volume 1.
MIT press Cambridge, 2016.

[36] Steven N. Goodman, Daniele Fanelli et John P. A. Ioannidis : What does research reproducibility
mean? Science Translational Medicine, 8(341), 2016.

[37] Giorgio Grisetti, Rainer Kümmerle, Hauke Strasdat et Kurt Konolige : g2o: A general frame-
work for (hyper) graph optimization. In IEEE International Conference on Robotics and Automation
(ICRA), Shanghai, China, pages 9–13, 2011.

[38] Josiah Hanna et Peter Stone : Grounded action transformation for robot learning in simulation. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 31, 2017.

[39] Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup et David Meger
: Deep reinforcement learning that matters. In Proceedings of the National Conference on Artificial
Intelligence (AAAI), pages 3207–3214, 2018.

[40] Feng-Hsiung Hsu : Behind Deep Blue: Building the computer that defeated the world chess champion.
Princeton University Press, 2002.

[41] Yuanming Hu, Luke Anderson, Tzu-Mao Li, Qi Sun, Nathan Carr, Jonathan Ragan-Kelley
et Frédo Durand : Difftaichi: Differentiable programming for physical simulation. arXiv preprint
arXiv:1910.00935, 2019.

[42] Albert S. Huang, Edwin Olson et David Moore : LCM: Lightweight communications and mar-
shalling. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 4057–4062, Taipei, Taiwan, October 2010.

[43] Stephen James, Paul Wohlhart, Mrinal Kalakrishnan, Dmitry Kalashnikov, Alex Irpan, Ju-
lian Ibarz, Sergey Levine, Raia Hadsell et Konstantinos Bousmalis : Sim-to-real via sim-to-sim:
Data-efficient robotic grasping via randomized-to-canonical adaptation networks. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 12627–12637, 2019.

[44] Matthew Johnson, Brandon Shrewsbury, Sylvain Bertrand, Tingfan Wu, Daniel Duran, Mar-
shall Floyd, Peter Abeles, Douglas Stephen, Nathan Mertins, Alex Lesman et al. : Team IHMC’s
lessons learned from the DARPA robotics challenge trials. Journal of Field Robotics, 32(2):192–208,
2015.

[45] Abhishek Kadian, Joanne Truong, Aaron Gokaslan, Alexander Clegg, Erik Wijmans, Stefan
Lee, Manolis Savva, Sonia Chernova et Dhruv Batra : Sim2real predictivity: Does evaluation in

83

simulation predict real-world performance? IEEE Robotics and Automation Letters, 5(4):6670–6677,
2020.

[46] Sylvain Koos, Jean-Baptiste Mouret et Stéphane Doncieux : The transferability approach:
Crossing the reality gap in evolutionary robotics. IEEE Transactions on Evolutionary Computation,
17(1):122–145, 2012.

[47] Srivatsan Krishnan, Behzad Borojerdian, William Fu, Aleksandra Faust et Vijay Janapa Reddi
: Air learning: An AI research platform for algorithm-hardware benchmarking of autonomous aerial
robots. arXiv preprint arXiv:1906.00421, 2019.

[48] Joel Lehman, Jeff Clune, Dusan Misevic, Christoph Adami, Lee Altenberg, Julie Beaulieu,
Peter J Bentley, Samuel Bernard, Guillaume Beslon, David M Bryson et al. : The surpris-
ing creativity of digital evolution: A collection of anecdotes from the evolutionary computation and
artificial life research communities. Artificial Life, 26(2):274–306, 2020.

[49] Antoine Ligot et Mauro Birattari : On mimicking the effects of the reality gap with simulation-only
experiments. In International Conference on Swarm Intelligence, pages 109–122. Springer, 2018.

[50] Antoine Ligot et Mauro Birattari : On Mimicking the Effects of the Reality Gap with Simulation-
Only Experiments: 11th International Conference, ANTS 2018, Rome, Italy, October 29–31, 2018,
Proceedings, pages 109–122. 01 2018.

[51] Regina Y Liu et al. : Bootstrap procedures under some non-iid models. The annals of statistics,
16(4):1696–1708, 1988.

[52] Antonio Loquercio, Elia Kaufmann, René Ranftl, Alexey Dosovitskiy, Vladlen Koltun et
Davide Scaramuzza : Deep drone racing: From simulation to reality with domain randomization.
IEEE Transactions on Robotics, 36(1):1–14, 2019.

[53] David G Lowe : Object recognition from local scale-invariant features. In Proceedings of the seventh
IEEE international conference on computer vision, volume 2, pages 1150–1157. Ieee, 1999.

[54] Will Maddern, Geoffrey Pascoe, Chris Linegar et Paul Newman : 1 year, 1000 km: The oxford
robotcar dataset. The International Journal of Robotics Research, 36(1):3–15, 2017.

[55] Maja J Matarić : Reinforcement learning in the multi-robot domain. In Robot colonies, pages 73–83.
Springer, 1997.

[56] Bhairav Mehta, Manfred Diaz, Florian Golemo, Christopher J. Pal et Liam Paull : Active domain
randomization. In Proceedings of the Conference on Robot Learning, pages 1162–1176, 2020.

[57] Pierre Merriaux, Yohan Dupuis, Rémi Boutteau, Pascal Vasseur et Xavier Savatier : A study
of Vicon system positioning performance. Sensors, 17(7), 2017.

[58] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G
Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski et al. :
Human-level control through deep reinforcement learning. nature, 518(7540):529–533, 2015.

[59] Jean-Baptiste Mouret et Konstantinos Chatzilygeroudis : 20 years of reality gap: a few thoughts
about simulators in evolutionary robotics. In Proceedings of the Genetic and Evolutionary Computation
Conference Companion, pages 1121–1124, 2017.

[60] Jean-Baptiste Mouret, Sylvain Koos et Stéphane Doncieux : Crossing the reality gap: a short
introduction to the transferability approach. arXiv preprint arXiv:1307.1870, 2013.

[61] J. Krishna Murthy, Miles Macklin, Florian Golemo, Vikram Voleti, Linda Petrini, Martin
Weiss, Breandan Considine, Jérôme Parent-Lévesque, Kevin Xie, Kenny Erleben, Liam Paull,
Florian Shkurti, Derek Nowrouzezahrai et Sanja Fidler : gradsim: Differentiable simulation for

84

system identification and visuomotor control. In International Conference on Learning Representations,
2021.

[62] Edwin Olson : AprilTag: A robust and flexible visual fiducial system. In IEEE International Con-
ference on Robotics and Automation (ICRA), pages 3400–3407, Shanghai, China, 2011.

[63] Alexander Pashevich, Robin Strudel, Igor Kalevatykh, Ivan Laptev et Cordelia Schmid : Learn-
ing to augment synthetic images for sim2real policy transfer. arXiv preprint arXiv:1903.07740, 2019.

[64] Liam Paull, Jacopo Tani, Heejin Ahn, Javier Alonso-Mora, Luca Carlone, Michal Cap, Yu Fan
Chen, Changhyun Choi, Jeff Dusek, Yajun Fang et al. : Duckietown: an open, inexpensive and
flexible platform for autonomy education and research. In 2017 IEEE International Conference on
Robotics and Automation (ICRA), pages 1497–1504. IEEE, 2017.

[65] C Pepper, S Balakirsky et C Scrapper : Robot simulation physics validation. In Proceedings of
the 2007 Workshop on Performance Metrics for Intelligent Systems, pages 97–104, 2007.

[66] Daniel Pickem, Paul Glotfelter, Li Wang, Mark Mote, Aaron Ames, Eric Feron et Magnus
Egerstedt : The Robotarium: A remotely accessible swarm robotics research testbed. In Proceedings
of the IEEE International Conference on Robotics and Automation (ICRA), pages 1699–1706, 2017.

[67] Daniel Pickem, Paul Glotfelter, Li Wang, Mark Mote, Aaron Ames, Eric Feron et Magnus
Egerstedt : The Robotarium: A remotely accessible swarm robotics research testbed. In Proceedings
of the IEEE International Conference on Robotics and Automation (ICRA), pages 1699–1706, 2017.

[68] Chude (Frank) Qian : Teaching cars to drive themselves. http://www.igvc.org/design/2019/1.pdf.
Accessed: 2021-02-14.

[69] Morgan Quigley, Ken Conley, Brian P. Gerkey, Josh Faust, Tully Foote, Jeremy Leibs, Rob
Wheeler et Andrew Y. Ng : ROS: An open-source Robot Operating System. In International Con-
cerence on Robotics and Automation (ICRA) Workshop on Open Source Software, 2009.

[70] Stéphane Ross, Geoffrey Gordon et Drew Bagnell : A reduction of imitation learning and struc-
tured prediction to no-regret online learning. In Proceedings of the fourteenth international conference
on artificial intelligence and statistics, pages 627–635. JMLR Workshop and Conference Proceedings,
2011.

[71] Gavin A Rummery et Mahesan Niranjan : On-line Q-learning using connectionist systems, vol-
ume 37. University of Cambridge, Department of Engineering Cambridge, UK, 1994.

[72] Fereshteh Sadeghi et Sergey Levine : Cad2rl: Real single-image flight without a single real image.
arXiv preprint arXiv:1611.04201, 2016.

[73] Felix Sattler, Simon Wiedemann, Klaus-Robert Müller et Wojciech Samek : Robust and
communication-efficient federated learning from non-iid data. IEEE transactions on neural networks
and learning systems, 2019.

[74] Shital Shah, Debadeepta Dey, Chris Lovett et Ashish Kapoor : AirSim: High-fidelity visual and
physical simulation for autonomous vehicles. In Proceedings of the International Conference on Field
and Service Robotics (FSR), pages 621–635, 2018.

[75] Ashish Shrivastava, Tomas Pfister, Oncel Tuzel, Joshua Susskind, Wenda Wang et Russell
Webb : Learning from simulated and unsupervised images through adversarial training. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pages 2107–2116, 2017.

[76] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van
Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc
Lanctot et al. : Mastering the game of go with deep neural networks and tree search. nature,
529(7587):484–489, 2016.

85

http://www.igvc.org/design/2019/1.pdf

[77] David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra et Martin Riedmiller
: Deterministic policy gradient algorithms. In International conference on machine learning, pages
387–395. PMLR, 2014.

[78] Jasper Snoek, Hugo Larochelle et Ryan P Adams : Practical bayesian optimization of machine
learning algorithms. arXiv preprint arXiv:1206.2944, 2012.

[79] Michael J Sorocky, Siqi Zhou et Angela P Schoellig : Experience selection using dynamics sim-
ilarity for efficient multi-source transfer learning between robots. arXiv preprint arXiv:2003.13150,
2020.

[80] Ingo Steinwart et Andreas Christmann : Fast learning from non-iid observations. Advances in
neural information processing systems, 22:1768–1776, 2009.

[81] Chen Sun, Abhinav Shrivastava, Saurabh Singh et Abhinav Gupta : Revisiting unreasonable
effectiveness of data in deep learning era. In Proceedings of the IEEE international conference on
computer vision, pages 843–852, 2017.

[82] Pei Sun, Henrik Kretzschmar, Xerxes Dotiwalla, Aurelien Chouard, Vijaysai Patnaik, Paul
Tsui, James Guo, Yin Zhou, Yuning Chai, Benjamin Caine et al. : Scalability in perception for
autonomous driving: Waymo open dataset. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 2446–2454, 2020.

[83] Jie Tan, Zhaoming Xie, Byron Boots et C Karen Liu : Simulation-based design of dynamic con-
trollers for humanoid balancing. In 2016 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 2729–2736. IEEE, 2016.

[84] Jie Tan, Tingnan Zhang, Erwin Coumans, Atil Iscen, Yunfei Bai, Danijar Hafner, Steven Bohez
et Vincent Vanhoucke : Sim-to-real: Learning agile locomotion for quadruped robots. arXiv preprint
arXiv:1804.10332, 2018.

[85] Jacopo Tani, Andrea F Daniele, Gianmarco Bernasconi, Amaury Camus, Aleksandar Petrov,
Anthony Courchesne, Bhairav Mehta, Rohit Suri, Tomasz Zaluska, Matthew R Walter et al. :
Integrated benchmarking and design for reproducible and accessible evaluation of robotic agents. arXiv
preprint arXiv:2009.04362, 2020.

[86] Jacopo Tani, Liam Paull, Maria T Zuber, Daniela Rus, Jonathan How, John Leonard et Andrea
Censi : Duckietown: An innovative way to teach autonomy. In International Conference EduRobotics
2016, pages 104–121, 2016.

[87] Sebastian Thrun : Probabilistic robotics. Communications of the ACM, 45(3):52–57, 2002.
[88] Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba et Pieter Abbeel :

Domain randomization for transferring deep neural networks from simulation to the real world. In
2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 23–30.
IEEE, 2017.

[89] Eric Tzeng, Coline Devin, Judy Hoffman, Chelsea Finn, Pieter Abbeel, Sergey Levine, Kate
Saenko et Trevor Darrell : Adapting deep visuomotor representations with weak pairwise con-
straints. In Algorithmic Foundations of Robotics XII, pages 688–703. Springer, 2020.

[90] Glenn Vinnicombe : Frequency domain uncertainty and the graph topology. IEEE Transactions on
Automatic Control, 38(9):1371–1383, 1993.

[91] Christopher John Cornish Hellaby Watkins : Learning from delayed rewards. 1989.
[92] Jonathan Weisz, Yipeng Huang, Florian Lier, Simha Sethumadhavan et Peter Allen :

Robobench: Towards sustainable robotics system benchmarking. In Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA), pages 3383–3389, 2016.

86

[93] Greg Welch, Gary Bishop et al. : An introduction to the kalman filter. 1995.
[94] Ronald J Williams : Simple statistical gradient-following algorithms for connectionist reinforcement

learning. Machine learning, 8(3-4):229–256, 1992.
[95] Sean Wilson, Paul Glotfelter, Li Wang, Siddharth Mayya, Gennaro Notomista, Mark Mote

et Magnus Egerstedt : The Robotarium: Globally impactful opportunities, challenges, and lessons
learned in remote-access, distributed control of multirobot systems. IEEE Control Systems Magazine,
40(1):26–44, 2020.

[96] Fei Xia, Chengshu Li, Kevin Chen, William B Shen, Roberto Martín-Martín, Noriaki Hirose,
Amir R Zamir, Li Fei-Fei et Silvio Savarese : Gibson env v2: Embodied simulation environments
for interactive navigation. Stanford University, Tech. Rep., 2019.

[97] Fei Xia, William B Shen, Chengshu Li, Priya Kasimbeg, Micael Edmond Tchapmi, Alexander
Toshev, Roberto Martín-Martín et Silvio Savarese : Interactive gibson benchmark: A benchmark
for interactive navigation in cluttered environments. IEEE Robotics and Automation Letters, 5(2):713–
720, 2020.

[98] Tianhe Yu, Chelsea Finn, Annie Xie, Sudeep Dasari, Tianhao Zhang, Pieter Abbeel et Sergey
Levine : One-shot imitation from observing humans via domain-adaptive meta-learning. arXiv
preprint arXiv:1802.01557, 2018.

[99] Wenhao Yu, C Karen Liu et Greg Turk : Policy transfer with strategy optimization. arXiv preprint
arXiv:1810.05751, 2018.

[100] Yangguang Yu, Zhihong Liu et Xiangke Wang : An introduction to formation control of UAV with Vi-
con system. In Proceedings of the International Conference on Robotic Sensor Networks (ROSENET),
pages 181–190, 2020.

[101] Fangyi Zhang, Jürgen Leitner, Zongyuan Ge, Michael Milford et Peter Corke : Adversarial dis-
criminative sim-to-real transfer of visuo-motor policies. The International Journal of Robotics Research,
38(10-11):1229–1245, 2019.

[102] Julian Zilly, Jacopo Tani, Breandan Considine, Bhairav Mehta, Andrea F Daniele, Manfred
Diaz, Gianmarco Bernasconi, Claudio Ruch, Jan Hakenberg, Florian Golemo et al. : The ai
driving olympics at neurips 2018. arXiv preprint arXiv:1903.02503, 2019.

87

	Résumé
	Mots Clés

	Abstract
	Keywords

	Contents
	List of Tables
	List of Figures
	List of Acronyms and Abbreviations
	Acknowledgements
	Introduction
	Problem Definition
	The Usefulness of Benchmarks
	Autonomous Driving
	Duckietown, a Proxy to Autonomous Driving
	Classical vs ML-Based Controllers
	The need for Simulation

	Contributions
	Thesis Layout

	Chapter 1. Background
	1.1. Modeling in Robotics
	1.1.1. Markov Decision Process
	1.1.2. Partially Observable Markov Decision Process

	1.2. Classical Methods for Autonomous Driving
	1.2.1. Perception
	1.2.2. Estimation
	1.2.2.1. Kalman Filter

	1.2.3. Planning
	1.2.4. Control
	1.2.4.1. Bang-Bang controllers
	1.2.4.2. PID Controller

	1.3. Machine Learning and Deep Learning
	1.3.1. Multi-layer Perceptron
	1.3.2. Convolutional Neural-Network
	1.3.2.1. Convolutional Layer
	1.3.2.2. Activation Layer
	1.3.2.3. Pooling Layer
	1.3.2.4. Fully Connected Layer
	1.3.2.5. Softmax Layer

	1.4. Machine Learning Applications for Autonomous Driving
	1.4.1. Behavior Cloning
	1.4.2. On-Policy vs Off-Policy Algorithms
	1.4.3. Reinforcement Learning
	Value-based
	Policy-based

	1.5. Simulators
	1.5.1. Success of Data-Driven Techniques
	1.5.2. Fidelity-Efficiency Trade-Off
	1.5.3. Flaws of Simulated Environments
	1.5.4. The I.I.D. Assumption
	1.5.5. The Reality Gap

	Chapter 2. Prologue to first paper
	2.1. Article details
	Personal Contribution

	2.2. Context
	2.3. Contributions

	Chapter 3. On Assessing the Usefulness of Proxy Domains for Developing and Evaluating Embodied Agents
	Abstract
	3.1. Introduction
	3.2. Related work
	3.2.1. Crossing the Domain Gap
	3.2.2. Optimizing Proxies
	3.2.3. Quantifying Domain Discrepancies

	3.3. Preliminaries
	3.3.1. A Naive Measure of Proxy Usefulness

	3.4. The Proxy as a Predictor
	3.5. The Proxy as a Teacher
	3.6. Optimizing the Proxy
	3.7. Experiments
	3.7.1. Duckietown Simulator Predictivity
	3.7.2. Duckietown Simulator for Learning

	3.8. Conclusion and Future Work

	Chapter 4. Prologue to second paper
	4.1. Article details
	Personal contribution

	4.2. Context
	4.3. Contributions

	Chapter 5. Integrated Benchmarking and Design for Reproducible and Accessible Evaluation of Robotic Agents
	Abstract
	5.1. Introduction
	5.2. Integrated Benchmarking and Development for Reproducible Research
	5.2.1. Reproducibility
	5.2.1.1. Software
	5.2.1.2. Hardware
	5.2.1.3. Environment

	5.2.2. Agent Interoperability
	5.2.3. Robot-Agent Abstraction
	5.2.4. Robot-Benchmark Abstraction

	5.3. The DUCKIENet
	5.3.1. The Base Platform
	5.3.1.1. The Duckietown Hardware Platform
	5.3.1.2. The Duckietown Software Architecture

	5.3.2. System Architecture Overview
	5.3.3. The Duckietown Automated Laboratory (DTA)
	5.3.3.1. Localization
	5.3.3.2. Operator Console

	5.3.4. Defining the Benchmarks
	5.3.5. DTA Operation Workflow

	5.4. Validation
	5.4.1. Experiment Repeatability
	5.4.2. Inter-Robot Reproducibility
	5.4.3. DTA Reproducibility
	5.4.4. Limitations

	5.5. Conclusions

	Chapter 6. Conclusion
	Limitations and Future Work

	References

