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Résumé

Des mesures de confiance calibrées et fiables sont un prérequis pour la plupart des systèmes de
perception robotique car elles sont nécessaires aux modules de fusion de capteurs et de planifica-
tion qui interviennent plus en aval. Cela est particulièrement vrai dans le cas d’applications où la
sécurité est essentielle, comme les voitures à conduite autonome. Dans le contexte de l’appren-
tissage profond, l’incertitude prédictive est classée en incertitude épistémique et incertitude aléa-
toire. Il existe également une incertitude distributionnelle associée aux données hors distribution.
L’incertitude aléatoire représente l’ambiguïté inhérente aux données d’entrée et est généralement
irréductible par nature. Plusieurs méthodes existent pour estimer cette incertitude au moyen de
structures de réseau modifiées ou de fonctions de perte. Cependant, en général, ces méthodes
manquent de calibration, ce qui signifie que les incertitudes estimées ne représentent pas fidè-
lement l’incertitude des données empiriques. Les approches actuelles pour calibrer l’incertitude
aléatoire nécessitent soit un "ensemble de données de calibration", soit de modifier les paramètres
du modèle après l’apprentissage. De plus, de nombreuses approches ajoutent des opérations sup-
plémentaires lors de l’inférence. Pour pallier à ces problèmes, nous proposons une méthode simple
et efficace d’entraînement d’un régresseur neuronal calibré, conçue à partir des premiers principes
de la calibration. Notre idée maîtresse est que la calibration ne peut être réalisée qu’en imposant
des contraintes sur plusieurs exemples, comme ceux d’un mini-batch, contrairement aux approches
existantes qui n’imposent des contraintes que sur la base d’un échantillon. En obligeant la distri-
bution des sorties du régresseur neuronal (la distribution de la proposition) à ressembler à une
distribution cible en minimisant une divergence f , nous obtenons des modèles nettement mieux
calibrés par rapport aux approches précédentes. Notre approche, f -Cal, est simple à mettre en
œuvre ou à ajouter aux modèles existants et surpasse les méthodes de calibration existantes dans
les tâches réelles à grande échelle de détection d’objets et d’estimation de la profondeur. f -Cal
peut être mise en œuvre en 10-15 lignes de code PyTorch et peut être intégrée à n’importe quel
régresseur neuronal probabiliste, de façon peu invasive. Nous explorons également l’estimation de
l’incertitude distributionnelle pour la détection d’objets, et employons des méthodes conçues pour
les systèmes de classification. Nous établissons un problème d’arrière-plan hors distribution qui
entrave l’applicabilité des méthodes d’incertitude distributionnelle dans la détection d’objets.
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Mots clés: Calibration de l’incertitude aléatoire, apprentissage probabiliste, Vision robotique,
estimation de l’incertitude.
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Abstract

Calibrated and reliable confidence measures are a prerequisite for most robotics perception systems
since they are needed by sensor fusion and planning components downstream. This is particularly
true in the case of safety-critical applications such as self-driving cars. In the context of deep
learning, the sources of predictive uncertainty are categorized into epistemic and aleatoric uncer-
tainty. There is also distributional uncertainty associated with out of distribution data. Epistemic
uncertainty, also known as knowledge uncertainty, arises because of noise in the model struc-
ture and parameters, and can be reduced with more labeled data. Aleatoric uncertainty represents
the inherent ambiguity in the input data and is generally irreducible in nature. Several methods
exist for estimating aleatoric uncertainty through modified network structures or loss functions.
However, in general, these methods lack calibration, meaning that the estimated uncertainties do
not represent the empirical data uncertainty accurately. Current approaches to calibrate aleatoric
uncertainty either require a held out “calibration dataset” or to modify the model parameters post-
training. Moreover, many approaches add extra computation during inference time. To alleviate
these issues, this thesis proposes a simple and effective method for training a calibrated neural re-
gressor, designed from the first principles of calibration. Our key insight is that calibration can be
achieved by imposing constraints across multiple examples, such as those in a mini-batch, as op-
posed to existing approaches that only impose constraints on a per-sample basis. By enforcing the
distribution of outputs of the neural regressor (the proposal distribution) to resemble a target distri-
bution by minimizing an f -divergence, we obtain significantly better-calibrated models compared
to prior approaches. Our approach, f -Cal, is simple to implement or add to existing models and
outperforms existing calibration methods on the large-scale real-world tasks of object detection
and depth estimation. f -Cal can be implemented in 10-15 lines of PyTorch code, and can be inte-
grated with any probabilistic neural regressor in a minimally invasive way. This thesis also explores
the estimation of distributional uncertainty for object detection, and employ methods designed for
classification setups. In particular, we attempt to detect out of distribution (OOD) samples, exam-
ples which are not part of training data distribution. I establish a background-OOD problem which
hampers applicability of distributional uncertainty methods in object detection specifically.
Keywords: Aleatoric uncertainty calibration, Probabilistic learning, Robotic vision, Uncertainty
estimation
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Chapter 1

Introduction

The performance of deep neural network based computer vision perception systems has increased
considerably in recent years. Convolutional neural networks (CNNs) have become the de facto
choice for advanced perception systems in robotics and autonomous driving. Deep neural networks
have become a standard choice for many computer vision applications such as object detection,
semantic segmentation, keypoint estimation and object tracking. CNNs achieve state-of-the-art
performance for variety of these tasks. However, for many embodied applications, performance
alone is not sufficient. In order to ensure compliance of these models with other elements of the
standard robotics stack, such as sensor fusion (e.g., [10]) and probabilistic planning (e.g., [80]), we
also require that these models are able to provide reliable and calibrated measures of the confidence
associated with their predictions.

Modern deep learning models act as deterministic functions. Existing deep neural regression
models provide point estimate for each output prediction. Reliably measuring the confidence of
such predictions benefits a variety of downstream robotics tasks, ranging from state estimation, to
planning, to control. The operative word here is reliable: simple schemes that interpret softmax
classifier scores as probabilities have shown to be grossly incorrect and overconfident [22, 73,
5, 14]. This has resulted in the development of Bayesian deep learning techniques, which have
garnered plenty of attention [25, 26, 69, 54] in the community.

In a typical robotics stack, a measurement model is expressed as: z = h(x,ν), where z is the
measurement, x is the underlying partially observable state, and ν is some noise term that accounts
for the inherent variability of the measurement process. Here, measurement process refers to the
action of measuring certain quantity from an input. In range-bearing sensor, we can consider the
physical environment and robot position as inputs to the sensor, and it produces range and angle
readings of the landmarks within an environment. In the case of traditional non-deep learning based
sensor systems, the model h is derived from our understanding of the underlying operation of the
sensor (e.g., a laser range finder reading should be modeled as a “range/bearing” measurement). A
parametric model class is assumed for the noise and then the parameters are fit through a controlled



Fig. 1.1. f -Cal is a simple and effective approach to calibrate the uncertainty estimates from a
neural network performing regression. In above figure, we represent uncertainty of each bounding
box with the uncertainty ellipses. Each ellipse represent uncertainty for a definite confidence inter-
val. (a) ground-truth bounding box, (b) overconfident and inconsistent estimate (c) under-confident
but consistent estimate, (d) calibrated estimate - the error ellipses correspond to the true underlying
uncertainties.

calibration experiment. For example, using GPS data to calibrate the noise characteristics of an
acoustic-ranging based localization system [101]. This stochastic model is a requirement in order
to be able to determine a measurement likelihood.

In deep learning, the model, h is given by the CNN, and the measurement z is given by the
output of the model. We can draw analogy similar to range-bearing sensor here. If we take an
example of image classification, input to the sensor(CNN in this case) is an image, and the mea-
surement is categorical distribution over space of output classes. In this case, forward pass through
the model can be interpreted as measurement process. Output of this process is categorical dis-
tribution, which we can interpret as measurement likelihood. In a typical deep learning setup, we
have no way of evaluating the measurement likelihood without a calibrated estimate of the uncer-
tainty. We need to use the dataset itself as a proxy for the traditional controlled sensor calibration
experiment. For deep networks to be integrated into safety-critical embodied systems, they must
be capable of estimating the predictive uncertainty in their outputs.
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In the machine learning community, this is encompassed by the rapidly growing field of
“Bayesian deep learning” and has resulted in the development of network models that estimate
a posterior distribution over the output space [14, 15, 46, 67, 66, 54, 3, 36]. These techniques try
to predict the posterior over the output instead of providing a point estimate. Central to this dis-
cussion is the characterization of the types of predictive uncertainty that may be present. I adopt
the nomenclature of [14, 46], which distinguishes between uncertainty resulting from data distri-
butional shift (distributional uncertainty), which arises due to an input from a completely different
data-distribution. Such examples are known as out-of-distribution samples. Another major source
of predictive uncertainty is a poorly trained or improperly chosen model (epistemic uncertainty),
which results in lack of proper knowledge of the model, and can be reduced using sufficient data.
Lastly, an irreducible error in the underlying process (aleatoric uncertainty) can introduce noise in
the measurement process. This could happen because of disagreement in annotations of the same
input. For example, in object detection, different human annotators could annotate the same object
with slightly different bounding boxes, thus introducing noise in the system. In this work I assume
that we are operating “in distribution” (unless otherwise specified), and that our model is well-
chosen and trained (epistemic and distributional uncertainties are low) and are largely concerned
with the irreducible uncertainty associated with the “measurement” process. This uncertainty could
result from, for example, inherent ambiguity or inconsistency in the underlying data used for train-
ing. We also assume that this uncertainty is input dependent and therefore heteroscedastic. For
example, different annotators might put a bounding box for an object at a slightly different loca-
tion, particularly when the object is partially occluded.

Bayesian neural networks have become the de facto standard for uncertainty estimation in
modern neural networks [14, 15]. However, most techniques to estimate aleatoric uncertainty suffer
from a lack of calibration [22]. Uncalibrated uncertainty estimates do not provide an accurate
representation of error in estimates and are therefore unreliable. These estimates either over or
under estimate the confidence, and therefore cannot be interpreted as probability densities, nor can
they be directly comparable across multiple samples and/or models. Calibrated uncertainties have
the advantage of being directly interpreted as probability densities, and are directly comparable
across multiple samples and/or models. In a typical classification setup, if the model is predicting
something with 0.8 confidence, we expect the model to be right exactly 80 out of 100 times. A
model is calibrated if its confidence measure is same as the accuracy of the model. If model has low
confidence but high accuracy, such models can be interpreted as under-confident models. While
models with extremely high confidence values, but lower accuracy are typically overconfident.
The objective is to have a calibrated model, so we can use confidence of the model for informed
decision making. Current classification models trained with cross-entropy objective do not provide
well-calibrated confidence predictions.
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To mitigate this lack of uncertainty calibration, several methods have been proposed in the
context of Bayesian neural networks(BNNs), such as to apply isotonoic regression [106] or tem-
perature scaling [22]. These methods are restricted to the case of classification. In this work we
are strictly interested in regressor models whose outputs are continuously valued.

There have been some recent works to attempt to adopt some of these BNN methods to the
regression setting [22, 49, 13, 57]. However, a large portion of the works perform a post-hoc
analysis to learn a transformation on uncertainty estimates to produce better calibrated estimates.
As a result, these methods are highly dependent on a recalibration dataset and tend to overfit on
it. Additionally, these are post-processing methods which add significantly to the computation
requirements at inference time.

To this end, I present a simple and effective procedure to directly train calibrated neural net-
works for regression problems. Inspired by the first principles of calibration, I derive a variational
approach that directly enforces that the neural regressor is calibrated. Unlike prior approaches,
this approach neither require a held-out calibration dataset, nor requires a post-hoc modification
to the model parameters. Our approach is easily imposed as an additional loss term over standard
aleatoric uncertainty estimation, and can be implemented in under 10−15 lines of additional code.
Our approach implicitly encourages the model to learn uncertainty aware representations.

Our insight is that distributional calibration cannot be achieved by a loss function that operates
over individual samples. Calibration is achieved when distributional constraints are enforced upon
uncertainty estimates across multiple (i.i.d.) samples. To achieve this we employ distribution
matching over the error statistics at the mini-batch level. This can be enforced so long as we
can compute the distance between the empirical distribution of model prediction errors, and some
known calibrated distribution.

We formulate this approach first in the general case, and then show that this is particularly
straightforward in the case that the errors are modeled as Gaussian. We leverage the fact that
each sample can be scaled to a unit standard normal, and then that the sum of these follows a χ2

distribution with K degrees of freedom, where K is the number of samples in the mini-batch. For
large K, this distribution approaches a normal distribution with mean K and variance 2K. We
can therefore enforce a variational loss that encourages the normalized sum of the errors to follow
N (K,2K), and this explicitly enforces that the error uncertainty estimates are calibrated.

In summary, we communicate the following contributions1:

1This work closely overlaps with the work submitted under the title "f -Cal: Variational calibration of aleatoric un-
certainty in neural regression" to the fifth Conference on Robot learning (CoRL 2021) and is currently under review.
Chapters 2, 3 and 4 largely overlap with the submitted work and have been augmented with explanations of background
concepts and a more extensive literature review. The authors of the submitted paper are Dhaivat Bhatt, Kaustubh Mani,
Dishank Bansal, Krishna Murthy, Hanju Lee and Liam Paull. Liam Paull came up with the intuition of distribution
matching for calibration. Dhaivat Bhatt conceptualized f -Cal based on this idea, designed and prototyped the loss
function, and tested it on object detection. Dhaivat did literature survey, formulated the problem, designed experimen-
tal setup, implemented and tested the Bayesian object detector and ran a series of experiments on object detection to
robustly evaluate the idea. Kaustubh designed the toy experiments under controlled setup. Dishank and Kaustubh also
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• I present a simple, principled, and effective approach to calibrating uncertainty estimates
in neural regressors;
• Our approach—dubbed f -Cal—neither requires a held-out calibration dataset, nor requires

additional inference time compute. Our loss function can be employed in most regression
pipelines without any modification to the remainder of the pipeline.
• This method demonstrates superior performance to existing calibration approaches across

several tasks, dataset sizes, and network architectures.
We demonstrate the effectiveness, scalability and widespread applicability of this approach on

large-scale, real-world tasks such as object detection and depth estimation. In addition to aleatoric
uncertainty, I also attempt to detect out-of-distribution samples for object detection. Through con-
trolled experiments, I establish that the concept of a background class in object detection severely
impacts the applicability of typical distributional uncertainty estimation methods designed for im-
age classification and segmentation.

The rest of the thesis is divided into 4 different chapters. In Chapter 2, I introduce some of
the background concepts. In particular, I review some key concepts of probability and statistics,
followed by a brief overview of object detection. Then I talk about different types of uncertainties
in deep learning in Section 2.1.3. I formally define problem of uncertainty calibration and go
through related work in Section 2.1.4. In Chapter 3, I explain the f -Cal method, derive the f -Cal
loss and show the algorithm for Gaussian uncertainties. In Section 4, I discuss about evaluation
metrics for calibration, then I show results on a toy dataset in Section 4.4. In Section 4.5, I discuss
consistency and calibration and extensively report results for the KITTI and Cityscapes datasets.
In Section 4.6, I show results of f -Cal for the problem of depth estimation. This is followed by an
ablation over the different components of the method. In Chapter 5, I show experimental results
of out-of-distribution detection for the problem of object detection. Finally, in Chapter 6.2, I list
certain limitations of the proposed method and conclude.

worked on the depth estimation task. Krishna helped in writing of the paper and Hanju provided his valuable inputs
and feedback.
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Chapter 2

Background

In this chapter, I review several key concepts required to understand the key contributions of this
work. I start by reviewing some tools from linear algebra and probability theory in Section 2.1.1.
In Section 2.1.2, I specifically delve into the problem of object detection, and provide overview
of various methods. In Section 2.1.3, I describe predictive uncertainty and its common catego-
rizations. In Section 3.1, I formalize the problem of calibrated uncertainty estimation. Finally in
Section 2.1.4, I provide a detailed overview of related work.

2.1. Preliminaries
In this section, I will briefly cover several concepts necessary to understand the material in the

rest of the thesis. I start by reviewing some important concepts of probability theory and statistics.
In particular, I review the Gaussian distribution, central limit theorem, Mahalanobis distance, KL-
divergence and Wasserstein distance. These concepts are heavily used in this work.

2.1.1. Distributions and Divergences

In this section, I will review some of the most important concepts of probability theory and
statistics, which are used in work presented in this thesis.

Gaussian distribution:
The Gaussian distribution is one of the most widely used distributions in probability theory.

The Gaussian (also known as Normal) distribution is a continuous probability distribution for a
real-valued random variable.



The Gaussian distribution is characterized by two parameters, the mean (µ) and the standard
deviation (σ). A Gaussian distribution is denoted by symbol N . If a random variable x is dis-
tributed according to Gaussian distribution, then its density p(x) can be expressed as below,

p(x) = 1√
2πσ2

exp(−(x− µ)2

2σ2 )

Central limit theorem:
If x1, x2, ..., xn are independently and identically distributed random variables with population

mean µ and standard deviation σ, then according to the central limit theorem,

z =

n∑
i=1

xi − nµ
√
nσ

∼ N (0, 1) as n→∞

Here, the distribution of xi doesn’t matter. The central limit theorem holds as long as the
population mean and standard deviations can be estimated.

Chi-squared distribution:
A Chi-squared distribution with K degrees of freedom is the sum of squares of K IID standard

normal random variables. If z1, z2, ..., zK are K IID standard normal random variables, then their
sum of squares is Chi-squared distributed:

qi =
K∑
i=1

z2
i ∼ χ2(K)

Here, qi is distributed according to the Chi-squared distribution with K degrees of freedom. If
q1 and q2 are two chi-squared random variables with degrees of freedom K1 and K2, then,

q = q1 + q2 ∼ χ2(K1 +K2)

Mahalanobis distance:
The Mahalanobis distance is a distance measure between a Gaussian distribution P and a point

x. It measures the number of standard deviations a point is away from the mean of the distribution.
If P is a normal distribution with mean µ ∈ Rd and co-variance matrix Σ ∈ Rd×d, then for a point
x ∈ Rd, the mahalanobis distance between distribution P and point x is,

DM(x) =
√

(x− µ)TΣ−1(x− µ)

The Mahalanobis distance is uniquely related to the confidence contour of a Gaussian distribu-
tion. For a univariate Gaussian, 68%, 95% and 99.7% values lie within one, two and three standard
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deviations of the mean value. They correspond to a Mahalanobis distance of 1, 2 and 3, respec-
tively. This unique mapping is characterized according to the inverse Chi-squared distribution. The
squared Mahalanobis distance is distributed according to the Chi-squared distribution.
KL divergence:

In probability and statistics, the Kullback–Leibler divergence (also known as KL-divergence or
relative entropy) is a measure of distance between two probability distributions. It is an expectation
over the log difference between two probability densities. If p(x) and q(x) are two probability
density functions over a random variable x, then the KL-divergence between the two distributions
can be expressed as below,

DKL(p||q) = Ex∼p(x)

[
log(p(x))− log(q(x))

]

=
∫
x∼p(x)

p(x)(log(p(x))− log(q(x)))

=
∫
x∼p(x)

p(x) log
(
p(x)
q(x)

)

It is important to note that DKL(p||q) 6= DKL(q||p). DKL(p||q) is integrated over the support
of p(x), and is known as the forward KL. Whenever we employ a variational loss, we integrate
over the support of the true distribution, from where a random variable is supposed to have been
sampled. For two Gaussian distributions p(x) = N (µ1, σ

2
1) and q(x) = N (µ2, σ

2
2), there is closed

form expression to compute the KL-divergence between p and q, which can be expressed as below,

DKL[N (µ1, σ
2
1)||N (µ2, σ

2
2)) = log(σ2

σ1
) + σ2

1 − (µ1 − µ2)2

2σ2
2

− 1
2

Wasserstein distance:
The Wasserstein distance, also known as the Kantorovich–Rubinstein metric, is a distance

function between two probability distributions. It is the minimum cost to turn one distribution
into another. The closed form of the Wasserstein distance between two Gaussian distributions
p(x) = N (µ1, σ

2
1) and q(x) = N (µ2, σ

2
2) can be expressed as below,

W [N (µ1, σ
2
1),N (µ2, σ

2
2)] = (µ1 − µ2)2 + σ2

1 + σ2
2 − 2σ1σ1

2.1.2. Object detection

Object detection is one of the most fundamental and important problems in computer vision.
In object detection, the goal is to localize and classify all the objects in a natural image, from
a predefined set of categories. Deep learning has shown remarkable progress in learning visual
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representations using labeled datasets. In this work, I evaluate proposed method extensively for
object detection. In this section, I will briefly walk through modern deep learning based object
detection architectures. Object detector architectures are mainly of two types. 1) Single stage
object detection, 2) Two-stage object detection. In single stage object detection, features maps
are directly mapped to final predictions, and there is no component for object proposals. In two
stage object detection, potential regions with objects are identified, and then mapped to a fixed
representation, and then we classify the object and regress the bounding box co-ordinates over that
representation. Here, I briefly walk through some popular one-stage and two-stage architectures.

Backbones:

Backbones are convolutional neural networks, which can be used as feature extractors in com-
puter vision tasks. In most cases they have been pre-trained on some large dataset such as Ima-
geNet [47]. Their intermediate representation can provide rich feature representations of an input
and there has been surge of interest in such CNN architectures. Most of these models can be used
as feature extractors in object detection architectures. Here, I present a few popular ones below.

(1) AlexNet [47]: AlexNet was the first major CNN architecture, showing wide-scale success
in image classification task on natural images. It employed ReLU non-linearity and max-
pooling in the architecture.

(2) VGG [91]: VGGNet was proposed in 2014. It was deeper than AlexNet with standardized
design rules for convolution and pooling layers. All the convolutions were 3x3 with stride
and padding of 1, and a pooling layer, after which number of channels doubles. It proposed
2 variants with 16 and 19 layers including fully-connected layers.

(3) GoogLeNet [93]: GoogLeNet was proposed in 2015. The focus of this architecture was
efficiency. It aggressively downsampled the input, and proposed the inception module
where each layer was a neural network. It also proposed global average pooling which
removed the necessity of fully connected layers, and reduced the number of parameters
drastically. It also proposed an auxiliary classification head to effectively train the model.

(4) ResNet [30]: In Residual networks (ResNets), the idea was to have skip connections to
make the gradient flow more easily. It enabled computation of the identity function and
made training deeper networks easy. It came with two types of residual blocks correspond-
ing to "Basic Block" and "Bottleneck block". It is still widely used in most of the computer
vision tasks for deep learning.

(5) ResNext [104]: ResNext modified the Bottleneck residual block of the ResNet by replacing
it with parallel pathways of the same computational complexity. It resulted in improvement
of performance while maintaining same computational complexity.

(6) S&E [39]: The squeeze-and-excitation network modified the Residual block by adding an
extra squeeze-and-excite branch to add global context to each residual block.
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(7) DenseNet [40]: DenseNet constitutes dense blocks where each layer is connected to all
previous layers within a dense block. It alleviates the vanishing gradient problem, and
encourages feature propagation and reuse.

(8) MobileNet [38]: MobileNets were designed for efficiency. They replaced traditional con-
volution blocks with a much more efficient depth-wise separable convolution, which are
computationally less expensive and enables easy deployment on mobile devices.

The above backbones are used as feature extractors for various computer vision tasks. The
above list is non-exhaustive and there are many other architectures which are used in deep learning
models. Next, I will briefly introduce one-stage and two-stage object detection architectures built
using above backbones.

Single stage architectures:

(1) YOLO [84]: You only look once (YOLO), is a single-stage real time object detection ar-
chitecture, which divides an input image into an S×S grid, with each grid cell responsible
for predicting an object whose center falls within that grid. It directly regresses bounding
boxes and predicts classes from the input image.

(2) YOLOv2 [85]: YOLOv2 is an improved version of YOLO with convolutions with an-
chors, batch normalization [42] and multi-scale training. It also proposes a classification
backbone which achieves higher accuracy at lower computation.

(3) SSD [65]: The single-shot detector is a one-stage architecture which predicts bounding
box offsets for a set of predefined bounding boxes at various different scales within feature
maps. These default bounding boxes have different scales and aspect ratios in the feature
maps, and are placed at a regular interval over the feature map grid.

(4) YOLOv3 [86]: YOLOv3 is an improved version of YOLOv2, which uses multi-label clas-
sification, a deeper feature extractor inspired from ResNet architecture.

(5) RetinaNet [61]: RetinaNet is a single-stage architecture with a “focal loss” for clas-
sification. RetinaNet fixes the problem of foreground-background class imbalance in
object detection by proposing a modified loss function that would penalize foreground
classification severely.

Two stage architectures:

(1) R-CNN [19]: R-CNN is a CNN based method for object detection where first region pro-
posals are extracted using selective search [98], and a fixed length feature representation
is extracted out of each region. This representation is used for classification and bounding
box regression.
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(2) Fast R-CNN [18]: Fast R-CNN is faster version of R-CNN where classification and bound-
ing box regression are done over feature maps. It reduces computational load by having
only a single forward pass over an image. It significantly reduces computation from R-
CNN.

(3) Faster R-CNN [87]: Faster R-CNN improves over Fast R-CNN by incorporating a learning
based region proposal pipeline. It learns to extract region proposals through anchors over
feature maps from the backbone network. It removes the necessity of hand-engineered
methods such as selective search for extracting region proposal. Faster RCNN is one of the
most widely used object detection models.

(4) Mask R-CNN [28]: Mask R-CNN adds one more head in the second stage of Faster R-
CNN to predict the mask of an object instance. It is one of the most popular methods for
instance segmentation.

(5) FPN [60]: The feature pyramid network enables detecting objects at multiple different
scales. It puts anchor boxes of multiple scales of the feature maps from the backbone
networks, which enables accurate detection of objects with different sizes, scales and aspect
ratios1.

There are many other object detection methods using deep learning. The list above gives brief
overview of various different architectures, and is not full.

mean average precision (mAP):
mAP is the most used object detector evaluation metric in the literature. In mAP, a detection

is considered to be a true positive if its intersection over union (IoU) with the groundtruth object
(annotated bounding box) is greater than a prescribed threshold and the probability of grountruth
class is greater than a predefined threshold. In mAP, the precision of an object detector is estimated
under this criteria, and this precision is computed for a range of IoU thresholds (from 0.5 to 0.95
at the interval of 0.05) and categories. The mean of these precision values across IoU thresholds
and categories is the mean average precision of an object detector.

2.1.3. Uncertainty in Deep Learning

Reliably measuring the predictive uncertainty of blackbox models could be extremely useful in
downstream robotics tasks. Previous studies demonstrate that softmax-based classification meth-
ods give highly brittle predictions and that they could be easy targets for adversarial attacks [73, 5].
This has resulted in a surge of interest in bayesian deep learning techniques [25, 26, 69, 54]. In the
discussion of a probabilistic neural regression framework, various types/sources of uncertainties
in the system are of central importance. Drawing from previous studies [46, 69, 25], the types

1Note that FPN is not strictly a two stage architecture. FPN is a modification in the way backbone feature maps are
treated, and can be used in RCNN based methods such as Faster RCNN [87] or RetinaNet [61]

24



of uncertainties associated with a deep learning model are classified into two sub-categories. 1)
In-distribution uncertainty and 2) Distributional uncertainty.

• In-distribution uncertainty or predictive uncertainty is categorized into Aleatoric uncer-
tainty and Epistemic uncertainty [14]. Together, Epistemic and Aleatoric uncertainties
induce predictive uncertainty.

– Aleatoric uncertainty (data uncertainty) is the noise in the data presented to the sys-
tem. It is “irreducible" (can only be estimated), and corresponds to the underlying
entropy in the data distribution.

– Epistemic uncertainty (knowledge uncertainty) is a result of noise in the model pa-
rameters and structure of the model(structure uncertainty). Epistemic uncertainty is
considered to be reducible in nature, and can be reduced with availability of more data.

• Distributional uncertainty arises when models are presented with data outside of the train-
ing distribution. Many works have suggested that discriminative models could make over-
confident predictions for an OOD input. Many attempts [34, 54, 33, 59, 22, 35, 72, 69, 89]
have been made to understand and detect outlier data for neural networks.

For object detection, the data and model uncertainties can further be decomposed into spatial
and semantic uncertainties, concerning the uncertainties in the location and label of objects re-
spectively. In current probabilistic object detection setups, spatial uncertainty is characterized by a
Gaussian distribution over the predicted bounding boxes. Semantic uncertainty is represented as a
discrete probability distribution over a set of all possible labels. Classical object detection setups
only deal with semantic uncertainty estimates while providing deterministic outputs for bounding
box prediction ( [87, 28]).

2.1.4. Existing Methods of Uncertainty Estimation and Calibration

Bayesian deep learning has seen significant work in recent years [14, 15, 46, 67, 66, 54, 3, 36].
Bayesian deep learning aims to design neural architectures capable of estimating the predictive
uncertainty in the input data, as well as in the model parameters [14].

Epistemic uncertainty is typically estimated by either using ensembles of neural networks
or by stochastic regularization at inference time (Monte-Carlo dropout) [15, 54, 95]. Distri-
butional uncertainty is also being extensively studied, to detect out of training-distribution ex-
amples [34, 54, 33, 59, 22, 35, 72, 69, 89]. However, there is no direct approach to address
distributional uncertainty for regression settings. Also closely related are the areas of zero-
shot [83, 1, 109, 81, 82, 23] and few-shot learning [100, 43, 105, 44, 12]. Initial works to introduce
uncertainty in neural networks used ensemble methods and dropout at test time [15, 54]. Many
methods have been proposed to model distributional uncertainty for OOD [69]. Uncertainty es-
timation formulation can be broken down into: Epistemic and Aleatoric [46]. A loss attenuation
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formulation to predict Aleatoric uncertainty was proposed. Generally, epistemic uncertainty is es-
timated using ensembles of networks whereas aleatoric uncertainty is predicted by the network.
These uncertainty estimation techniques have since been applied to real-world problems such as
object detection [6, 26, 31], semantic segmentation [45, 41], depth estimation [45, 63, 2], view syn-
thesis [71], and medical imaging [79, 53]. These real-world problems even heightens the demands
for calibrated uncertainty estimates.

In this work, the focus is specifically on calibrating aleatoric uncertainty estimates in neural
regression. Several approaches have been proposed for calibrating neural classifiers [22, 106, 107,
102, 70, 51, 64, 97, 108, 50, 68, 57]. Typically, classifiers are calibrated using post-hoc techniques
such as histogram binning [106], isotonic regression [107], or temperature scaling [13]. Such post-
hoc techniques either require a large held-out calibration dataset [13] and/or add parameters to the
model after training [13, 107]. [68] forms an approximate posterior distribution over the neural
network parameters by fitting a Gaussian using stochastic average weighing over SGD iterates.
It induces regularization which results in calibration of Bayesian deep models. [102] proposed
a non-parametric approach using latent Gaussian process to calibrate multi-class classifier. [70]
calibrates logits with decoupled Bayesian stage, where logits are fed to a Bayesian neural net-
work to get calibrated logits. [51] proposed post-hoc scaling-binning calibrator to get calibrated
output probabilities for classification problem. [64] proposed deep calibrator network to tackle
generalized zero-shot learning, for calibrated scores of source as well as unseen data. Authors in
[97] study calibration of mix-up training [108] for classification and discover that mixup training
provides fairly calibrated classification probabilities. [50] proposed using Dirichlet distribution to
calibrate multiclass classification model. [52] proposes RKHS kernel based calibration measure
that trains model parameters in conjunction with negative log likelihood loss to achieve calibrated
model.

Compared to classification, neural regression settings have received far less attention in terms
of uncertainty estimation [49, 92, 57, 13]. Most techniques for calibrating regressors are applied
post-hoc, and either require a large held-out calibration dataset [13] and/or add parameters to the
model after training [13, 107]. The notion of quantile regression has been developed to quantifying
the extent of calibration [95, 37, 88, 96]. Calibration is quantified by accuracy of quantile levels.
Other methods, such as isotonic regression and temperature scaling have also been extended to
the regression setting [49, 13]. In temperature scaling [13], a temperature parameter is introduced
and trained on a validation dataset, to achieve calibrated confidence scores. In Isotonic regression,
the predicted confidence scores are transformed using an isotonic function. This non-decreasing
isotonic function is learned on a separate validation set to achieve calibrated transformed proba-
bilities. Both isotonic regression and temperature scaling, require a separate held-out dataset for
training, and also incur additional compute overhead. More recently, a calibration loss is proposed
in [13]. This loss enforces the predicted variances to be equal to per-sample errors, thus grounding
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each prediction. However, this takes on a local view of the calibration problem, and while individ-
ual samples might appear well calibrated, the overall distribution of the regressor errors exhibits a
strong deviation from the expected target distribution.

A recent approach that is somewhat similar to ours in spirit is Gaussian process beta calibration
(GP-beta) [92]. It is a post-hoc approach that employs a Gaussian process model (with a beta-link
function prior) to calibrate uncertainties during inference. This requires computation of pairwise
statistics, exacerbating inference time. f -Cal, on the other hand, is a simpler (and superior perform-
ing) loss function that enjoys the same inference time as typical Bayesian neural networks [45]. In
[8] - distribution matching is performed using maximum mean discrepancy to achieve calibration
- is also similar in spirit. This method was proposed for small datasets and didn’t scale to our toy
experiment, so I avoid comparing with it. I used original implementation of [8] but it failed to scale
for the Bokeh dataset and Object detection. GP-beta, however, is a post-hoc approach that applies
a Gaussian process model (assuming a beta-link function prior), while I derive a much simpler
(and superior performing) loss function from first principles. Importantly, GP-beta incurs a signif-
icant inference time overhead since it computes pairwise statistics across test samples, while our
proposed approach enjoys the same inference time as that of standard Bayesian neural nets [45].
Work in [92] relates the calibration from quantile regression perspective to distribution matching
and shares same motivation as ours. However our approach significantly differ from them as they
propose a post-hoc technique while f -Cal loss is designed based on definition of calibration. Au-
thors in [48] tackle the problem of calibration in an online setting, where input can potentially be
out of distribution. [78] regularize low entropic over-confident output distributions by penalizing
it.
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Chapter 3

f -Cal

In this section I present f -Cal, a simple, principled, and effective approach to obtaining calibrated
aleatoric uncertainty estimates from neural regressors.

3.1. Problem Statement
We assume a regression problem over an i.i.d. labelled training dataset D , {(xi,yi)}i=1...|D|

with xi ∈ X where X is the (n-dimensional) input space and yi ∈ Y where Y ⊆ Rm is the output
space. A deterministic model fd : X 7→ Y 1 directly learns the mapping from the input to the
output space by minimizing a loss function L : Y × Y 7→ R through empirical risk minimization
where the empirical risk is given by

Remp(fd) = 1
N

N∑
i=1
L(fd(xi),yi). (3.1.1)

Equation 3.1.1 is typically estimated over a mini-batch of sizeN << |D| during stochastic gra-
dient descent (SGD). Following the notation in [92], we desire a probabilistic model fp : X 7→ SY
where SY is the space of all probability density functions s(y) over Y (s : Y 7→ [0,∞) and∫
s(y)dy = 1). The probability density function (PDF) is defined through its cumulative density

function (CDF): S(y) =
∫ y
−∞ s(y′)dy′.

Uncertainty Calibration: Calibrated uncertainty estimates are those where the output un-
certainties can be exactly interpreted as confidence intervals of the underlying target label distri-
bution. This allows uncertainty estimates across multiple samples (and models) to be compared.
Intuitively, we understand the notion of uncertainty calibration to mean that if we repeated a sto-
chastic experiment a large number of times, that the empirical output distribution would approach
the output density of our probabilistic model, fp. However, in practice, it is impractical to run mul-
tiple forward passes over every possible input. We desire that the probabilistic model outputs this

1In practice these models are assumed to be neural networks with parameters θ but I omit the θ for clarity at this stage.



calibrated density directly from one pass of the model. Using our definitions and adapting from
[92], we can define what we desire in terms of calibration in the case of a deep neural regressor as
follows:
Definition 1 (Uncertainty Calibration). A neural regressor fp is calibrated if and only if :

p(Y ≤ y|s(y)) =
∫ y

−∞
s(y′)dy′ ∀y ∈ Y (3.1.2)

If we can assume that the noise is sampled from a parametric distribution s(y;φ), then the
probabilistic model need only output the parameters associated with each sample. In this case, we
can consider the model to be calibrated if and only if the aggregated error statistics over multiple
outputs of a model align with the parameters predicted by the model.
Definition 2 (Consistency:). A neural regressor fp is consistent for any arbitrary confidence
bound c if2,

p(Y ≤ y|s(y)) ≤ c (3.1.3)

3.1.1. Aleatoric Uncertainty Estimation

Aleatoric uncertainty is the irreducible uncertainty in the underlying process and can only be
estimated. This uncertainty is usually heteroscedastic, i.e., observation noise is not constant across
all inputs. The most widely used technique for estimating heteroscedastic aleatoric uncertainty
is loss attenuation [46, 76], which performs maximum likelihood estimation by minimizing the
negative log-likelihood loss:

Remp(fp) = − 1
N

N∑
i=1
Lattenuation(fp(xi),yi) (3.1.4)

= − 1
N

N∑
i=1

log s(yi; fp(xi)) (3.1.5)

Here fp(xi) outputs the parameters of the distribution. For example, if the aleatoric uncertainty
is characterized by a Gaussian random variable (φ , (µ,σ)), the above expression becomes,

Remp(fp) = 1
N

N∑
i=1

1
2

(
(yi − µi)2

σ2
i

+ log σ2
i

)
(3.1.6)

2Referring to Fig. 1.1, the requirement for calibration is more stringent than that of consistency, which is a one-way
constraint at an arbitrary confidence bound c.
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We refer to the loss derived in Eq. 3.1.6 as the NLL loss in the experiments. However,
probabilistic neural regressors trained using this negative log-likelihood typically lack calibra-
tion according to Def. 1. The estimated uncertainties often over/under-estimate the true aleatoric
uncertainty.

3.2. Calibration as distribution matching
Existing approaches that have demonstrated success on calibration have typically operated in a

post-hoc manner [92]; once a neural regressor has been trained, these techniques require a separate
calibration phase. Some techniques such as temperature scaling [13] also crucially require large
held-out calibration datasets.

Existing calibration approaches lie on a broad spectrum. Calibration losses [13] are quite easily
applied at train time (as an additional loss term), but still operate at a per-sample level and are un-
able to capture global properties of the label error distribution. At the other end of the spectrum lie
post-hoc calibration approaches such as isotonic regression [107] and GP-beta models [92]. These
end up being expensive at inference time, as they require additional computation to output cali-
brated uncertainty estimation. This work brings the best of both these worlds by proposing f -Cal,
a principled approach to aleatoric uncertainty calibration that is extremely simple to implement.
The idea is to approximate the empirical posterior error distribution of the neural regressor errors
(residuals) (f(xi)− yi) by a simpler, tractable target distribution Q.

Distributional calibration means that empirical distribution of target variable Y should agree
with output of the model conditioned on modeling assumption, which follows from the core def-
inition of calibration (Eq. 1). Following the definition of distributional calibration (Definition 1),
f -Cal formulates a variational minimization objective to calibrate the uncertainty estimates from
a neural regressor. This method seek to approximate the empirical posterior over some canoni-
cal transformation of the target variables Y by a simpler (tractable) target distribution Q (mod-
eling choice). This enables us to leverage an abundant class of distribution matching metrics—
f -divergences to formulate a loss function enforcing distributional calibration. This allows us to
formulate a variational optimization problem involving the empirical (proposal) distribution and
the desired calibration (target) distribution. For tractable inference, I assume i.i.d. minibatches of
training data and instead impose distribution matching losses over empirical error residuals across
each batch3.

This work assumes that we can transform each training sample output distribution to some
canonical element of the distribution family. For instance, Gaussian random variables are canon-
icalized by centering the distribution (subtracting the output label), followed by normalization
(scaling the result by the variance). These canonical elements are used (in conjunction with the

3Note that this method does not strictly require minibatches. For tasks such as object detection and depth estimation,
we can always leverage multiple regressed outputs from a single input for distribution matching.
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Fig. 3.1. Block diagram of f -Cal. In addition to deterministic regression loss terms (such as L1
and L2 errors), I impose a distribution matching constraint over the error residuals across a mini-
batch. By enforcing the distribution of mini-batch errors to match a target calibrating distribution,
I obtain significantly superior results compared to prior calibration approaches, most of which
perform post-hoc calibration or assume a large held-out calibration dataset. f -Cal has no inference
time overhead, even for dense regression tasks such as depth estimation.

ground-truth labels) to determine the empirical error distribution. f -Cal then performs distribution
matching across this empirical and a target distribution (a modeling choice). I add an additional
variational loss over the mini-batch errors that minimizes the distance between the empirical distri-
bution generated by the errors in the output predictions and the ground truth canonical distribution
that they are meant to be sampled from. Doing so will enforce calibration according to Def. 1. as
long as our error statistics are well represented by the parametric class of distributions that f -Cal
is minimizing the distance to.

I assume a neural regressor fθ : DX 7→ DY parameterized by learnable weights θ and with
real-valued domains and co-domains DX and DY respectively. I desire a method for calibrating
aleatoric uncertainty that is simple but principled, and fast but robust. I seek to train a probabilistic
model such that the prediction errors of fθ are distribution-calibrated (cf. Def. 1).

3.3. f -Cal Algorithm
Here, we use yi to denote the ground-truth regression target corresponding to the ith prediction,

and by φi the ith regressor output containing parameters of the modeling distribution. Given a mini-
batch containing N inputs xi, a probabilistic regressor predicts N sets of parameters fp(xi) = φi

to the corresponding probability distribution s(yi;φi). Define h : Y × Φ 7→ Z as the function
that maps the target random variable yi to a random variable zi4. which follows a known canonical
distribution. Since these residuals {z1, z2, . . . , zN}must ideally follow a chosen calibrating (target)
distribution Q, I compute the empirical statistics of the residuals to fit a proposal distribution P
of the same family as Q. We define a variational loss function that minimizes the f -divergence

4For a Gaussian target distribution, φi , (µi,σi), h can be chosen to be yi−µi

σi

31



between these two distributions. Examples for the Gaussian case are give in Sec. 3.3.1. Since
modern deep learning frameworks (such as PyTorch [77]) provide out-of-the-box differentiable
functions for distribution matching, and because the residuals are computed in a fully differentiable
manner (e.g. by maintaining a differentiable computation graph all the way from the inputs),
gradients with respect to this loss function can be computed using standard autodifferentiation
tools [77].

In summary, I propose a distribution matching loss function that augments typical supervised
regression losses, and results in the neural regressor being calibrated to the target distribution.
Calibration by itself is not sufficient to predict accurate regression output [49], predicted mean and
variance can be abruptly large and still they still can give calibrated results but won’t be accurate
as empirical risk is poor. Hence, the confidence bound is required to be as tight as possible. For
this I also add term to minimize empirical risk(Lsupervised). In regression setup, we try to minimize
empirical risk through Maximum likelihood estimate. Empirical risk term bounds the mean of
the prediction. In section 3.1, we defined training dataset as D , {(xi,yi)}i=1...|D|, we can write
empirical distribution of the dataset as below,

p̂D(x) = 1
|D|

|D|∑
i=1

δ(x, xi) (3.3.1)

Here, δ(.) is a Kronecker delta function to represent a point mass. If we have a parameterized
likelihood model with model parameters θ, then we can express the log likelihood over a minibatch
of N examples(N << |D|) as below,

∑
x

p̂D(x) log p(x|θ) = 1
N

N∑
i=1

log p(xi|θ) (3.3.2)

From [74], we know that maximizing likelihood is equivalent to minimizing KL-divergence
between empirical data distribution and estimated distribution. Hence, empirical risk objective
function can be expressed as below,

Lsupervised = − 1
N

N∑
i=1

log p(xi|θ) (3.3.3)

= KL(p̂D(x)|| log p(x|θ)) (3.3.4)

Lsupervised could be any maximum likelihood loss function. For popular losses such as L2 or
L1, we can have interpretations in terms of priors. If Lsupervised is L2 loss, it can be thought of as
Maximizing log-likelihood of a Gaussian with unit variance(see 7.1.1 of [21]). If Lsupervised is L1
loss, it can be interpreted as maximizing log-likelihood of a Laplace distribution with unit scale
parameter(see 7.1.2 of [21]). In probabilistic regression setup, we do not assume homoscedastic
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noise, and also learn variance/scale parameters, where maximum likelihood takes form of equation
3.1.4.

In addition to empirical loss of form Lsupervised, we also introduce distribution matching loss
to enforce calibration. We denote estimated distribution of our mini-batch residuals with P , and
our objective is to make it resemble the target distribution Q. In subsequent sections, with a
specific case of Gaussian modeling assumption, forms of P and Q will become clearer. Here, the
distribution matching objective is,

Lf -Cal = Df (P ||Q) (3.3.5)

Here, Df is a differentiable f -divergence – a measure of overlap between distributions P and
Q. We take the weighted combination of empirical objective and calibration objective to construct
our final loss function. Our final loss function takes the shape of the following form,

L = (1− λ)Lsupervised + λLf -Cal (3.3.6)

= (1− λ)KL(p̂D(x)|| log p(x|θ)) + λDf (P ||Q)

L is the final loss objective and λ is a hyper-parameter to weigh the two loss terms. Our
estimates are calibrated due to the distribution matching loss terms in Eq. 3.3.6. We use KL-
divergence and Wasserstein distance as f -divergences in this work. f -Cal can be applied to any
probabilistic neural regressor, in just about 10-15 lines of PyTorch code. The training process is
virtually unchanged, enabling easy integration into almost any regression task.

3.3.1. f -Cal for Gaussian calibration

The f -Cal framework is generic and can be applied to arbitrary—even empirical—
distributions. In this section I consider the case when the distribution s(yi;φi) is Gaussian with
φi , (µi,σi). The variance σ2

i denotes the aleatoric uncertainty in this case. The error residuals
are computed as zi = yi−µi

σi
, where µi and σi are predicted mean and the standard deviation of the

ith Gaussian output from the neural network for each input xi.

yi ∼ N (µi,σ2
i )

=⇒ zi ∼ N (0,1) (known canonical distribution)
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3.3.2. Chi-squared Hyper-constraints

One may apply several transforms to the random variables yi and impose distributional hyper-
constraints over the transformed variables. In practice, I find that this can improve the stability of
the training process and enforces stronger calibration constraints. The variable zi = yi−µi

σi
follows

standard normal distribution. We can construct a chi-squared random variable with degrees of
freedom of K, by fusing K such zi’s in the following way,

zi ∼ N (0,1)

=⇒ q =
K∑
i=1

z2
i ∼ χ2

k

(3.3.7)

Algorithm 1: f -Cal for Gaussian uncertainties
Input: Dataset D, probabilistic neural regressor, fp, degrees of freedom K, batch size N ,

number of samples for hyper-constraint H
for i = 1 . . . N do

(µi, σi)← fp(xi)
zi ← yi−µi

σi

end
C = ∅ // Samples from Chi-squared distribution
for i = 1 . . . H do

// Create a chi-squared hyper-constraint

qi ←
K∑
j=1

z2
ij, zij ∼ {z1 · · · zN}

C.append(qi)
end
P ← Fit-Chi-Squared-Distribution(C)
Lf -Cal ← Df (P ||χ2

K)
return Lf -Cal

In context of regression, I am fitting a univariate Gaussian for each prediction. Hence, over
a batch of predictions, we expect the model to output many standard normal random variables.
In theory, we can construct a chi-squared random variable from many standard normal random
variables as shown in equation 3.3.7. In this work, we have a batch of outputs, each following a
univariate Gaussian distribution, we normalize the output prediction to construct a standard normal
random variable according to h(µi, σi, yi) = yi−µi

σi
. For higher degrees of freedom, the chi-squared

distribution follows another interesting property as well. When degrees of freedom K is large(>50),
the chi-squared distribution converges on a Gaussian distribution with mean K and variance 2K [4],
according to central limit theorem.
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lim
K→∞

χ2
K −K√

2K
→ N (0,1) (3.3.8)

=⇒ lim
K→∞

χ2
K → N (K,2K) (3.3.9)

I exploit this property to construct the target distribution. I construct multiple chi-squared
random variables with degrees of freedom K from canonicalized random variables(zi) predicted
over the batch of inputs. These chi-squared random variables are treated as samples of univariate
Gaussian distribution with mean K and variance 2K. I construct proposed distribution from this chi-
squared random variables, and perform distributional matching between our empirical distribution
and target distribution(N (K, 2K)). Subsequently, I impose hyper-constraints that compute the
sum-of-squared error residuals q, and enforce the resulting distribution to be chi-squared with
parameter K i.e q ∼ χ2

K

So, instead of employing distribution matching over z I use distribution matching over variable
q. So I use our loss function as distribution matching on variable q which can be expressed as
below.

Lf -Cal = Df (P ‖ χ2
k) = Df (P ‖ N (K, 2K)) (3.3.10)

where f ∈ F and F is the family of different distance/divergence function on probability
distribution. We did our experiment with F = {KL-Divergence, Wasserstein Distance} .

In practice, this variation of the central limit theorem for Chi-squared random variables holds
for moderate values of K (i.e., K > 50). This is practical to ensure, particularly in dense regres-
sion tasks such as bounding box object detection (where hundreds of proposals have to be scored
per image) and per-pixel regression. We summarize the Algorithm for generating the Lf -Cal in
Algorithm 1. This loss is then combined with the typical empirical risk as given by Equation 3.3.6.

3.4. Derivation - f -Cal loss:
In this section, I derive the f -Cal loss for KL-divergence and Wasserstein distance. Let’s say

that the neural regressor is predicting N regression variables over an entire batch of inputs. I use
the following notations for our predictions and ground-truth.

• predicted means: µ1, µ2, ...., µN

• predicted variance: σ2
1, σ

2
2, ...., σ

2
N

• Ground truth: y1, y2, ...., yN

• K = degrees of freedom of a chi-squared random variable, generally, K > 50.
Here, N is assumed to be larger, generally N > 1000. Here K is a hyper-parameter.
• z2

i = (yi−µi)2

σ2
i
∼ χ2

1; i = {1, 2, ..., N}, are Mahalanobis distances with DoF 1.
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qi =
K∑
j=1

z2
ij =

K∑
j=1

(yij − µij)2

σ2
ij

yij∼{y1,y2, ...., yN}

qi =
K∑
j=1

(yij − µij)2

σ2
ij

∼ χ2
K

Here, µij and σij are predictions corresponding to yij . yij is uniformly sampled without re-
placement. We get H such qi, each distributed as chi-squared random variable with DoF K. H is a
hyper-parameter, which is number of chi-squared samples.

The distribution resulting out of these H random variables is a chi-squared distribution. For
K > 50, χ2

K → N (K, 2K). The empirical mean (µχ2
K

) and variance (σ2
χ2

K
) of the Chi-squared

distribution can be written as below,

µχ2
K

= 1
H

H∑
i=1

qi =
H∑
i=1

K∑
j=1

(yij − µij)2

σ2
ij

σ2
χ2

K
= 1
H − 1

H∑
i=1

(qi − µχ2
K

)2

=⇒ σ2
χ2

K
= 1
H − 1

H∑
i=1

(
K∑
j=1

(yij − µij)2

σ2
ij

− 1
K

H∑
i=1

K∑
j=1

(yij − µij)2

σ2
ij

)2

In the above equation, we get empirical means and variance sof our Chi-squared distribution
over a batch of predictions. According to the central limit theorem, the Chi-squared distribution
with degrees of freedom K(K ≥ 50) follows a Gaussian distribution mean K and variance 2K,
hence the target mean(µ̂χ2

K
) and target variance(σ̂2

χ2
K

) are:

µ̂χ2
K

= K, σ̂2
χ2

K
= 2K

Proposal distribution: p(x) = N (µ̂χ2
K
, σ̂2

χ2
K

)

Target distribution: q(x) = N (µχ2
K
, σ2

χ2
K

)

Here, we have statistics of the proposal distribution(p(x)) and target distribution(q(x)). The
closed form KL-divergence and Wasserstein distance between two univariate normal distributions
can be expressed as below

KLD = KL(p||q) = 1
2 log

(
σ̂2
χ2

K

σ2
χ2

K

)
+
σ2
χ2

K
+ (µχ2

K
− µ̂χ2

K
)2

2σ̂2
χ2

K

− 1
2
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KLD = KL(p||q) =1
2 log

 2K

1
H−1

∑H
i=1

(∑K
j=1

(yij−µij)2

σ2
ij

− 1
K

∑H
i=1

∑K
j=1

(yij−µij)2

σ2
ij

)2

+

(2K + (∑H
i=1

∑K
j=1

(yij−µij)2

σ2
ij

−K)2

4K

)
− 1

2

W-dist = W (p,q) = (µχ2
K
− µ̂χ2

K
)2 + (σ̂2

χ2
K

+ σ2
χ2

K
− 2σχ2

K
σ̂χ2

K
)

W-dist = W (p,q) = (
H∑
i=1

K∑
j=1

(yij − µij)2

σ2
ij

−K)2+

(2K + 1
H − 1

H∑
i=1

(
K∑
j=1

(yij − µij)2

σ2
ij

− 1
K

H∑
i=1

K∑
j=1

(yij − µij)2

σ2
ij

)2

−

2

√√√√√ 1
H − 1

H∑
i=1

(
K∑
j=1

(yij − µij)2

σ2
ij

− 1
K

H∑
i=1

K∑
j=1

(yij − µij)2

σ2
ij

)2√
2K)
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Chapter 4

Experiments

We conduct a number of large-scale experiments on both synthetic and real-world datasets. I report
the following key findings which we elaborate on in the remainder of this section.

• f -Cal achieves significantly superior calibration compared to existing methods for calibrat-
ing aleatoric uncertainty estimates.
• These performance trends are consistently observed across multiple regression setups, neu-

ral network architectures, and dataset sizes.
• I show the trade-off between deterministic and calibration performance by varying the λ

hyper-parameter. This trade-off has been established in previous literature [13, 22]
• I demonstrate that consistency is a by product of calibration. I explicitly design metrics to

estimate consistency, and show high consistency for f -Cal.

4.1. Regression tasks
We consider 3 regression tasks to evaluate f -Cal.
• A synthetic disc tracking dataset (Bokeh), where we track location of one disk amidst a set

of distractor disks.
• Object detection: KITTI [17] and Cityscapes [7]
• Depth estimation: KITTI [17]

These tasks are chosen to span the gamut of regression tasks relevant for robotics applica-
tions: sparse (one output per image in disc tracking), semi-dense (object detection), and pixelwise
(fully) dense (depth estimation). Unless otherwise specified, we model aleatoric uncertainty using
heteroscedastic Gaussian distribution.

4.2. Baselines
We compare f -Cal models with the following baselines1:

1It is important to note that GP-beta [92] and isotonic regression [107] scaled to our synthetic dataset task, but didn’t
scale to large, real world datasets.



• Loss attenuation [76, 14]: The de facto method for aleatoric uncertainty estimation. Here,
we train the model with NLL Loss(eq 3.1.6), to regress over mean and standard deviation
estimates.
• Temperature scaling [13]: A post-hoc calibration technique that requires a large, held-out

calibration dataset. In this method, we train the model using NLL Loss, then introduce
a temperature parameter, which scales the standard deviation. This parameter is learned
using a held-out validation set.
• Isotonic regression [107]: A post-hoc calibration technique that requires expensive infer-

ence time (quadratic in the number of test examples).
• Calibration loss [13]: The loss function proposed in [13]; induces calibration at a local

(per-sample) level by making variance close to per-sample error.
• GP-beta [92]: Most recent method in calibrated aleatoric uncertainty estimation (inference

time is quadratic in the number of test examples).2

• MMD [8]: Current state of the art art for small scale regression problems. It uses maximum
mean discrepancy based distribution matching scheme to achieve calibration3.
• f -Cal-KL: Our approach trained using KL-divergence as the distance metric for distribu-

tion matching.
• f -Cal-Wass: Our approach trained using Wasserstein distance as the metric for distribution

matching.

4.3. Evaluation metrics
There are several existing metrics to evaluate the calibration of the model. In this work, we

extensively evaluate f -Cal models against multiple existing calibration metrics. In particular, we
benchmark it with expected calibration error (ECE) and maximum calibration error (MSE) [75].
In addition to these metrics, we also report negative log likelihood (NLL) [27]. We report KL-
divergence (KLD) and Wasserstein distance (W-dist) between output probability distribution and
target probability distribution (N (K, 2K)) for object detection. We also propose modifications
of MSE and ECE to quantify miscalibration between the target and output distributions. For
ECE/MSE, we group output Chi-squared random variables (q) into S intervals, each of size 1

S
,

and compare the empirical frequency of samples with the true frequency for each bin. Let Bs be
the set of indices for interval s. If we have total of P Chi-squared samples over our test set, ECE
and MSE can be expressed as below,

2GP-beta is not state of the art in our toy setup because of complexity of the task at hand. Original work was evaluated
for relatively simpler tasks and small datasets, owing to complexity of Gaussian processes. While our toy experiment
is relatively complex task. GP-beta didn’t scale for any real-world tasks of object detection or depth estimation.
3Being designed for very low data regimes, it failed to solve any of our tasks considered. We communicated with the
authors and used their original implementation, but it failed to scale for any of our tasks.
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ECEχ2
K

=
S∑
s=1

|Bs|
P

∥∥∥∥∥ 1
S
− |Bs|

P

∥∥∥∥∥ (4.3.1)

MCEχ2
K

= max
s∈{1,2,..,S}

∥∥∥∥∥ 1
S
− |Bs|

P

∥∥∥∥∥ (4.3.2)

For large values of K, when equation 3.3.9 holds, the fraction of samples falling in a particular
bin can be found using the inverse CDF of a Gaussian distribution. In addition to these metrics,
we also present a reliability diagram for our experiments, through which we can qualitatively see
the amount of miscalibration. Similar to our proposed ECE for Chi-squared random variables, we
also present reliability diagram over the output Chi-squared distribution.

4.4. Bokeh: synthetic disc-tracking benchmark
Since ground truth estimates of aleatoric uncertainty are extremely challenging to obtain in

practice, we first validate our proposed approach in simulation.

Fig. 4.1. Bokeh dataset: A synthetic dataset where task is to localize red disk among other distrac-
tor disks.

Dataset: We design a synthetic dataset (Fig. 4.1) akin to [24] for a disc-tracking task. We design
Bokeh with the complexities of a typical regression problem for computer vision in mind. The goal
is to predict the 2D location of the centre of a red disc from an input image containing other distrac-
tor discs. All discs are sampled from a known data-generating distribution4. Randomly coloured

4This is important, as it eliminates the usual handicaps with real data, where one may not have access to the label-
generating distribution.
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Approach SmoothL1 (GT) SmoothL1 ECE(z) ECE(q) NLL

NLL Loss[76] 1.67± 0.35 2.16± 0.36 0.016± 0.004 0.854± 0.109 −1.31± 0.14
Calibration Loss[13] 1.68± 0.32 2.19± 0.31 0.013± 0.004 0.72± 0.232 −1.36± 0.20

Temperature Scaling[13] 1.67± 0.35 2.16± 0.36 0.007± 0.001 0.128± 0.098 −1.38± 0.12
Isotonic Regression[107] 1.60± 0.32 2.05± 0.31 0.019± 0.005 0.909± 0.049 −1.31± 0.16

GP-Beta[92] 1.60± 0.31 2.06± 0.31 0.018± 0.009 0.837± 0.147 −1.31± 0.20
f -Cal-KL (ours) 1.67± 0.32 2.16± 0.32 0.005± 0.001 0.068± 0.007 −1.43± 0.08
f -Cal-Wass (ours) 1.59± 0.28 2.08± 0.28 0.006± 0.001 0.037± 0.0022 −1.45± 0.05

NLL Loss[76] 1.44± 0.34 1.54± 0.34 0.0173± 0.0027 0.9183± 0.0238 −1.60± 0.21
Calibration Loss[13] 1.46± 0.29 1.57± 0.31 0.0113± 0.0022 0.7611± 0.0129 −1.68± 0.19

Temperature Scaling[13] 1.44± 0.34 1.54± 0.34 0.0082± 0.0019 0.0922± 0.0235 −1.70± 0.15
Isotonic Regression[107] 1.38± 0.27 1.49± 0.27 0.0205± 0.0045 0.9378± 0.0124 −1.57± 0.24

GP-Beta[92] 1.39± 0.26 1.49± 0.27 0.0221± 0.0082 0.9348± 0.0208 −1.54± 0.28
f -Cal-KL (ours) 1.42± 0.33 1.52± 0.33 0.0056± 0.0011 0.0921± 0.0135 −1.76± 0.15
f -Cal-Wass (ours) 1.43± 0.34 1.54± 0.34 0.0079± 0.0016 0.0799± 0.0095 −1.75± 0.15

Table 4.1. Bokeh - disc-tracking: We evaluate several baselines under homoscedastic (top-half)
and heteroscedastic noise (bottom-half). f -Cal is consistently better calibrated (lower ECE) com-
pared to all considered baselines outperforms all considered baselines. Notably, this improved
calibration comes without any in terms of calibration, without sacrificing regression performance.
SmoothL1 and SmoothL1 (GT) scores have been scaled by 1000 and ECE scores by 100.

discs are added to the image to occlude the red disc and act as distractors. The locations and radii
of these distractor discs are sampled from a uniform distribution. We generate homoscedastic and
heteroscedastic variants of the dataset.

We introduce noise to our ground-truth labels and create two separate synthetic datasets: one
where noise is momoscedastic and the other where it is heteroscedastic. Noise in x and y are
sampled independently from a Gaussian distribution. In the case of homoscedastic noise, the noise
generating distribution is N (0, σ), where σ is a fixed value. On the other hand, heteroscedastic
noise is generated from the distribution N (0, σ(x)), where σ is a function of the input image x.
σ(x) depends on the proximity of the distractor discs in relation to the red disc. Simply put, if the
distractor discs are nearby or occluding the red disc, the σ(x) value will be high and conversly it
will be low when they are far away. We split the dataset into training, validation and test sets in
proportion of 3:1:1. All disc locations are sampled from a known data-generating distribution.
Models: We use a 3-layer ConvNet architecture extended to predict uncertainty.
Training: First, We train a purely deterministic model with SmoothL1 loss for both the ho-
moscedastic and heteroscedastic cases. This becomes a good baseline to compare the deterministic
performance of the calibration methods. Next, We train a loss attenuation model which acts as our
primary baseline and also is used as a good initialization for all f -Cal training. We train our
model using both KL divergence and Wasserstein distance as the distance measures between the
ground truth Chi-squared distribution and the predicted Chi-squared empirical distribution. All the
baseline calibration methods (Table 4.1) were initialized with NLL loss trained weights.

41



Fig. 4.2. Distributional and Reliability Diagrams (Bokeh): (Col 1) with homoscedastic Noise
(Col 2) with heteroscedastic noise. (Row 1) shows the Chi-squared distributional comparison of
the predicted outputs with the target. (Row 2) shows the reliability diagram with Chi-squared
distribution. (Row 3) shows the standard-normal distributional comparison. (Row 4) shows the
reliability curve with standard-normal variables.
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Results: Table 4.1 compares f -Cal to the aforementioned baselines, evaluating performance (i.e.,
the accuracy of the estimated mean) and calibration quality. We report the performance (SmoothL1
error) for both the noise-free ground-truth5, and the noisy ground-truth (accounting for label gen-
eration error). We ran each algorithm over 5 seeds for statistical significance. The deterministic
performance with a SmoothL1 error (denoted as L1 in short in Table 4.1) for both the actual
ground-truth (L1(GT)) and the noisy ground-truth (L1). We see in Table 4.1 that f -Cal outper-
forms all baselines considered by a significant margin. From Fig. 4.2, we can see qualitatively that
the output distributions from f -Cal trained models are much closer to the ground truth distribution
than the baselines. We can also see from the reliability curves, that f -Cal models are much closer
to the diagonal line representing perfect calibration than the baselines. Apart from the baseline
methods shown in Table4.1, we also trained MMD [8], but the model fails to converge on Bokeh
which is the simplest of the three datasets used in this work.

Calibration scores like ECE standard normal (ECE(z)) and ECE Chi-squared (ECE(q)) show
that f -Cal is able to outperform all the baseline methods for both the homoscedastic and het-
eroscedastic cases. Overall, Table 4.1 shows that f -Cal is able to predict calibrated uncertainties
without sacrificing significant deterministic performance. It is worth noting that we perform better
than temperature scaling [13] despite this being an unfair comparison (temperature scaling lever-
ages a large held-out calibration dataset, while we do not use any additional data).

4.5. Object detection
Setup: We use the popular Faster R-CNN [87] with a feature pyramid network [60] and a Resnet-
101 backbone [30]. We use the publicly available Detectron2 [103] and PyTorch [77] implemen-
tation and extend the model to regress uncertainty estimates. For uncertainty estimation in object
detectors, we add an uncertainty head in stage-2 of the network. We employ xyxy bounding box
parameterization as used in [32] as opposed to xywh used in [87]. Using xyxy bounding box pa-
rameterization ensures that we have all linear transformations over our predictions to get final the
bounding box. The reason for employing xyxy bounding box parameterization is to ensure that our
final prediction over the bounding box is a Gaussian distribution. A Gaussian uncertainty going
through a non-linear transformation may no longer be Gaussian. In the uncertainty head, we have
a fully connected layer followed by a Generalized Sigmoid non-linearity, g(x) = α + β−α

1+exp (−ηx) .
Here, β is an upper asymptote, α is a lower asymptote and η is the sharpness. For all the ex-
periments in this section, we have α = 0, β = 50 and η = 0.15. These hyperparameters are
chosen to have a wide range of uncertainty estimates. Using the generalized sigmoid function
bounds our variance predictions as well as provides stable training dynamics. The training is di-
vided into 3 stages. Let’s say that we have C classes in our dataset. Here, we represent our region

5In typical ML settings, we never have access to this variable. We only ever access the noisy ground-truth that includes
aleatoric uncertainty.
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proposal’s prediceted anchor offsets as ti = [tix1 ,t
i
y1 ,t

i
x2 ,t

i
y2 ] and ground-truth anchor offsets as

t∗i = [t∗ix1 ,t
∗i
y1 ,t
∗i
x2 ,t
∗i
y2 ]. If pi is the probability of positive anchor and p∗i is the anchor label, then

a multi-objective loss function to train the Region proposal network(RPN) can be expressed as
below,

LRPN = β1LBCE(pi, p∗i) + β2Lloc(ti, t∗i) (4.5.1)

Here, LBCE is a binary cross-entropy loss and Lloc is a smoothL1 loss. Lloc is evaluated only
for positive anchors. We take the weighted combination of these losses, to form LRPN . LRPN
is then used to train the region proposal network. In stage-2, let’s say p = (p1, p2, ..., pC) is
output probability distribution over C + 1 classes, and u is the actual class of the ROI region.
We have ground-truth ROI region offsets Bg = [xg1, yg1 , xg2, yg2 ]. Our predicted ROI region offsets
are represented by µd = [µdx1 , µ

d
y1 , µ

d
x2 , µ

d
y2 ]. In probabilistic object detection, we actually predict

Bd = N (µd,Σd), where Σd is 4 x 4 matrix representing co-variance matrix for bounding box.
In this work, we assume a diagonal co-variance matrix. Given this, we train stage-2 using the
following loss function,

LRCNN = α1Lcls(p, u) + α2Lloc(Bg, µd) (4.5.2)

Here, Lcls is a multi-class cross entropy loss function and Lloc is a smoothL1 loss, same as one
used to train RPN. Here, Lloc is only trained for foreground regions. LRCNN is the weighted sum
of classification and regression loss, used to train second stage of the 2-stage network. Given this,
the training is divided into 3 stages.

(1) Train a deterministic model without uncertainty head with 4.5.1 and 4.5.2.
(2) Train an uncertainty head with NLL loss(3.1.6).
(3) Train stage-2 of the model with empirical risk as NLL loss(3.1.6) and Lf -Cal.

All the baseline calibration models were initialized with NLL loss trained weights, and trained with
a learning rate of 1e-4. Each model is trained, until optimal validation performance is achieved.
Dataset For KITTI [17], there are 7481 images with corresponding annotations. This data is
divided intro train/test/val splits. 4500 images are used for training, 500 images are in the validation
set and the remaining 2481 are in the test dataset.

We have exactly the same procedure for the Cityscapes [7] dataset as well. In Cityscapes, we
have 3475 annotated images, out of which 2500 are used for training, 475 are used for validation,
and 500 are used for testing the models. We perform similar holdout cross validation for Cityscapes
also, and choose the best performing model for testing. For temperature scaling [13], we use the
validation dataset to learn the temperature parameter. We train the temperature parameter until its
value is stabilized.
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Fig. 4.3. KITTI dataset [17] - sample images

Fig. 4.4. Cityscapes dataset [7] - sample images

4.5.1. Consistency metrics

In this section, we present two new metrics to evaluate consistency of an object detector. We
report results for Expected calibration error (ECE) and Negative log likelihood (NLL), maximum
calibration error (MCE), KLD, Wasserstein distance between proposed and target distributions.
The above metrics reflect calibration quality of the models. In addition, for object detection, we
also modify existing popular metrics such as mAP [62] and PDQ [25], according to definition 2,
to report consistency of the models. Calibration generally implies consistency (vice versa is not
true), and we wish to validate that.

From the definition of consistency (Definition 2), we can observe that the requirement for cali-
bration is more stringent than that of consistency. We can have consistent probabilistic detection if
we predict arbitrarily high uncertainty (Fig. 1.1(c)), though the uncertainties can not be interpreted
as confidence scores. Through these new metrics, we show that consistency is the byproduct of
calibration. We do not enforce any explicit constraints for consistency, yet we show in our results
that we end up achieving highly consistent prediction. It is important to note that the consistency
metrics we report do not automatically imply calibration. So these metrics should be interpreted in
conjunction with calibration metrics.

Towards this end, we modify two popular object detection evaluation metrics, mAP and PDQ,
for consistency estimation. The new metrics are a minor modification of mAP and PDQ, designed
to evaluate consistency of the object detector. We use Definition 2 to build these metrics.

Formally, let’s say our ground truth bounding box is Bg = [xg1, yg1 , xg2, yg2 ], represented by top
left and bottom right corners of the bounding box. Our predicted box is represented by Bd =
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N (µd,Σd). Here, µd = [µdx1 , µ
d
y1 , µ

d
x2 , µ

d
y2 ]. Σd is 4 x 4 matrix representing co-variance matrix for

bounding box. For the purpose of this thesis, Σd is a diagonal co-variance matrix, however, it could
be a full co-variance too and this formulation will still hold. The loss attenuation formulation looks
as below,

Lla = (Bg − µd)TΣ−1
d (Bg − µd) + log(det(Σd)) (4.5.3)

In equation 4.5.3, the first term represents the squared Mahalanobis distance, which character-
izes the number of standard deviations a point is away from the mean of a distribution. The squared
Mahalanobis distance followed a Chi-squared distribution with K degrees of freedom. We obtain
a Mahalanobis distance threshold Mthresh when we evaluate a Chi-squared distribution with K
degrees of freedom and confidence interval α. In this case, it will denote the probability of the
ground truth being in the hyper-ellipse defined by the squared Mahalanobis distance.

Fig. 4.5. The definition of true positive changes when we evaluate a probabilistic object detector.
To evaluate consistency of probabilistic object detector, I propose a novel criteria based on con-
fidence interval of the prediction, the ground-truth sample lies on. The blue box represents the
ground truth object in both images. In the deterministic detection (a), we evaluate a proposal as
a true positive if the IoU with the actual annotation is greater than a certain threshold. In proba-
bilistic detection (b), we represent the uncertainty with ellipses. The ellipses visualized correspond
to the 80% confidence contour, and we observe that the ground truth falls within 80% confidence
contour, hence we classify that probabilistic detection as a true positive. We could perceive confi-
dence contour threshold as similar to IoU threshold used in deterministic object detection, and just
like mAP, where we evaluate the model for wide range of IoU thresholds, here also we evaluate
consistency for a wide range of confidence contour thresholds.

In this work, we propose to use probability confidence between the ground truth and the pre-
dicted distribution as a quality measure for detection. The lower the Mahalanobis distance, the
closer the ground-truth and the distribution are, the smaller the confidence contour would be.
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Now we formally define a confidence contour and corresponding Mahalanobis distance. Let’s
consider the confidence contour of a Gaussian distribution’s volume of α. It means that probability
of a random variable X falling inside this confidence contour is α. In this case, the probability
of random variable leaving this volume (also known as critical value) is β = 1 − α. Then, the
squared Mahalanobis distance threshold is Mthresh = χ̃2(K, β). This means that for a normal
distributionN (µ,Σ), ifX falls in confidence contour α, then (X−µ)TΣ−1(X−µ) ≤ χ̃2(K, 1−α).

Mean Mahalanobis average precision(mMAP)
Mean average precision(mAP) [62] has been the most popular metric to evaluate object de-

tector. For consistency estimation, we modify this metric to incorporate probabilistic bounding
box predictions. In mAP, precision is calculated for IoUs of 0.5 to 0.95 at the interval of 0.05. In
mMAP, we replace the IoU threshold with the confidence contour thresholds. We keep the con-
fidence contour as a threshold and determine true positives based on the Mahalanobis distance as
explained in Fig. 4.5.

In this work, we have thresholds of [0.999, 0.995, 0.99 , 0.95, 0.9, 0.85, 0.8, 0.7]. We observe
that mMAP is a more informative metric to analyse probabilistic consistency. The definition of
consistency (Definition 2) requires the prediction to be in a certain confidence contour bound,
c. This metric just evaluates that over multiple thresholds and averages across thresholds and
categories just like mAP.
Probability-based detection quality(PDQ)

PDQ (Probability-based Detection Quality) [25] is a recently proposed metric to evaluate prob-
abilistic object detectors. It incorporates spatial and label quality into the evaluation criteria, and
explicitly rewards probabilistically accurate detections. Both spatial and label quality measures
are calculated between all possible pairs of detections and the annotation. The geometric mean of
these two measures is calculated and used to find the optimal assignment between all detections
and annotations.

In PDQ, spatial quality is calculated by fusing background and foreground loss, which are
computed using the ground truth segmentation mask and the probabilistic detection. This requires
the availability of segmentation masks during test time which may not be possible for a bounding
box based object detection dataset. In addition to that, the evaluation objective of spatial quality
estimation is different compared to the training objective of probabilistic object detectors, which
are trained with NLL loss. In contrast, the modified evaluation criteria (Fig. 4.5) evaluates spatial
quality without the need of any segmentation mask. Incorporating the Mahalanobis distance based
criteria enables the modified metric to evaluate consistency. Mahalanobis distance is a reflection
of how many standard deviations away your mean prediction is compared to the sample (ground
truth in this case). Less Mahalanobis distance could be interpreted as good spatial quality of the
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Approach mAP AP50 AP75 mMAP PDQ PDQ
(spatial)

PDQ
(label) NLL

NLL Loss
(base) 54.451 78.476 62.876 76.76 0.601 0.725 0.976 1.022

NLL Loss
(full) 51.764 76.245 58.893 35.066 0.443 0.483 0.975 0.932

Calibration
loss 50.404 70.442 57.963 49.162 0.449 0.511 0.968 0.773

fCal-WS
(ours) 48.04 77.768 53.107 73.525 0.565 0.703 0.968 0.914

fCal-KL
(ours) 51.874 76.377 59.181 70.503 0.535 0.665 0.96 0.846

Temperature
scaling 54.451 78.476 62.876 77.433 0.608 0.737 0.976 1.021

Table 4.2. Object detection - KITTI [17]: Consistency and deterministic results. This table shows
results against various evaluation metrics for consistency and deterministic performance.

prediction. We redefine the spatial quality as below,

Qs(Bg, Bd) = exp(−(Bg − µd)TΣ−1
d (Bg − µd)

T
), (4.5.4)

where T is the temperature parameter (Not to be confused with temperature parameter of the
temperature scaling method). It determines how much the Mahalanobis distance should penalize
spatial quality. The higher the temperature value, the lower the penalty. In our experiments, we
keep the value of T to be 10.

Both these metrics complement mAP, which gives us estimates of how accurate our bounding
boxes are. On a contrary, mMAP and modified PDQ will tell us how consistent our uncertainty
values are. We can infer more about consistency of our models by analysing these metrics.

4.5.2. KITTI results

In table 4.2 and 4.3, we extensively report results for the KITTI [17] object detection dataset.
We evaluate our model for various metrics and baselines. We see that f -Cal is able to obtain
highly consistent and calibrated results. We observe that when we the train entire model with NLL
loss6 [76], due to its mean seeking nature, it is trying to maximize the likelihood, and predicting
very low uncertainty values, resulting in overconfident uncertainty estimates. This results in in-
consistent predictions as evident from the mMAP, PDQ and PDQ (spatial) values. Note that many
baselines have high consistency values but poorer calibration, which is a result of highly inflated
6In practice, NLL Loss is trained without freezing any part of the model. In this work, we just train the uncertainty
head with NLL loss to have base model, which is used as weight initializer for other methods. NLL Loss (base) works
better than NLL loss (full) for consistency and calibration.
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(a) Object detection - KITTI [17] - Chi-squared dis-
tribution plots of different baselines. To quanti-
tatively understand the results, see W-dist(q) and
KLD(q) columns of Table 4.3. Lower values of W-
dist(q) and KLD(q) correspond to better curves.

(b) Object detection - KITTI [17] - standard normal
distribution plots of different baselines. To quan-
titatively understand the results, see W-dist(z) and
KLD(z) columns of Table 4.3.

(c) Object detection - KITTI [17] - Chi-squared reli-
ability diagrams of different baselines. Closer to the
diagonal is better. To quantitatively understand the
results, see MCE(q) and ECE(q) columns of Table
4.3. Lower values of MCE(q) and ECE(q) reflect
better curves.

(d) Object detection - KITTI [17] - standard normal
reliability diagrams of different baselines. Closer to
the diagonal is better. To quantitatively understand
the results, see MCE(z) and ECE(z) columns of Ta-
ble 4.3.

Fig. 4.6. Reliability diagrams and distribution plots for object detection - KITTI[17] dataset.

uncertainty estimates. High consistency won’t be very useful if we do not have good calibration.
So consistency metrics must be interpreted in conjunction with calibration metrics to make accu-
rate conclusions. Currently, f -Cal achieves state-of-the-art calibration, while having competitive
consistency.
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Approach ECE(z) MCE(z) ECE(q) MCE(q) W-dist(z) KLD(z) W-dist(q) KLD(q)
NLL Loss

(base) 0.00304 0.01396 0.0537 0.21358 0.005 0.004 1183.549 0.768

NLL Loss
(full) 0.00345 0.0406 0.93312 0.96343 0.227 0.11 12190.394 3.052

Calibration
loss 0.00233 0.02759 0.8261 0.90619 0.151 0.088 10065.516 2.435

fCal-WS
(ours) 0.00115 0.00697 0.00697 0.06596 0.003 0.002 78.076 0.174

fCal-KL
(ours) 0.00162 0.01175 0.0393 0.18911 0.005 0.004 528.606 0.517

Temperature
scaling 0.00315 0.01268 0.04126 0.16199 0.002 0.001 742.99 0.631

Table 4.3. Object detection - KITTI [17]: Results of f -Cal and other baselines for various cali-
bration metrics.

Appoach ECE(z) MCE(z) ECE(q) MCE(q) W-dist(z) KLD(z) W-dist(q) KLD(q)
NLL Loss

(base) 0.00224 0.00886 0.03503 0.12766 0.00225 0.00130 681.220 0.607

NLL Loss
(full) 0.00146 0.02318 0.59936 0.77085 0.12145 0.07374 10953.997 1.768

Calibration
loss 0.00163 0.01464 0.09681 0.30432 0.01529 0.01258 1501.167 0.848

fCal-WS
(ours) 0.00104 0.00656 0.00832 0.06299 0.00022 0.00015 97.245 0.201

fCal-KL
(ours) 0.00126 0.00880 0.01686 0.11125 0.00037 0.00025 304.647 0.403

Temperature
scaling 0.00226 0.00928 0.02705 0.10635 0.00206 0.00110 754.356 0.637

Table 4.4. Object detection - Cityscapes [7]: Results of f -Cal and other baselines for various
calibration metrics.

4.5.3. Cityscapes results

In Tables 4.4 and 4.5, we report results for the Cityscapes [7] dataset. We observe that f -
Cal is able to obtain highly consistent and calibrated uncertainty estimates. We observe that the
NLL loss (full) is providing overconfident uncertainty estimates, resulting in poor consistency.
We observe that other baselines such as NLL loss (base) and calibration loss are able to obtain
high consistency, but poorer calibration, which is a result of inflated uncertainty estimates. f -Cal
and temperature scaling are able to yield calibrated and consistent uncertainty estimates, while
retaining deterministic performance. However, temperature scaling had a held out validation set
for tuning the temperature parameter, while f -Cal results are directly obtained using training data
only. We also note that f -Cal enables the model to learn uncertainty-aware representations, as
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(a) Object detection - Cityscapes [7] - Chi-squared
distribution plots of different baselines. To quanti-
tatively understand the results, see W-dist(q) and
KLD(q) columns of Table 4.4. Lower values of
W-dist(q) and KLD(q) correspond to better curves,
which can be visually understood in the figure.

(b) Object detection - Cityscapes [7] - standard nor-
mal distribution plots of different baselines. To
quantitatively understand the results, see W-dist(z)
and KLD(z) columns of Table 4.4.

(c) Object detection - Cityscapes [7] - Chi-squared
reliability diagrams of different baselines. To quan-
titatively understand the results, see MCE(q) and
ECE(q) columns of Table 4.4. Lower values of
MCE(q) and ECE(q) reflect better curves.

(d) Object detection - Cityscapes [7] - standard nor-
mal reliability diagrams of different baselines. To
quantitatively understand the results, see MCE(z)
and ECE(z) columns of Table 4.4.

Fig. 4.7. Reliability diagrams and distribution plots for Object detection - Cityscapes [7] dataset.

opposed to temperature scaling, where representations learned are same as those of uncalibrated
models. In Fig. 4.7, we show distributions and reliability diagrams of all the different baselines
and f -Cal.

4.6. KITTI Depth Estimation
Setup: To test the scalability of f -Cal, we also evaluate it on the the task of depth estimation. We
train f -Cal and several baseline calibration techniques on the KITTI depth estimation benchmark
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method mAP AP50 AP75 mMAP PDQ PDQ
(spatial)

PDQ
(label) NLL

NLL Loss
(base) 38.309 61.548 39.142 49.380 0.454 0.613 0.910 1.069

NLL Loss
(full) 36.199 55.878 39.283 23.763 0.361 0.453 0.934 1.029

Calibration
loss 39.218 61.922 40.220 42.302 0.424 0.560 0.920 0.999

fCal-WS
(ours) 37.220 61.486 38.469 46.202 0.442 0.593 0.911 1.007

fCal-KL
(ours) 38.481 61.924 40.210 43.982 0.442 0.584 0.915 0.929

Temperature
scaling 38.309 61.548 39.142 48.965 0.452 0.610 0.911 1.065

Table 4.5. Object detection - Cityscapes[7]: Consistency and deterministic results. This table
shows results against various evaluation metrics for consistency and deterministic performance.

dataset [17]. We modify the Big2small model [55] for supervised depth estimation into a Bayesian
Neural Network by adding a variance decoder. Big2small model’s encoder is a standard deep
feature extractor, while decoder uses dense atrous spatial pyramid pooling layer, which along with
local planar guidance module give predicted depth map. We evaluate the deterministic performance
using SiLog and RMSE metrics and calibration using ECE(z), ECE(q) and NLL. Let yi where i ∈
{1,2,3,...,N} be the predicted depth and y∗i be the groundtruth depth. Then RMSE and SiLog can
be expressed as below,

RMSE =
√√√√ 1
N

n∑
i=1
||yi − y∗i ||2

SiLog = 1
N

N∑
i=1

2 log
( yi
y∗i

)
− 1
N2

(
N∑
i=1

log
( yi
y∗i

))2

The loss function used for training these models was L = Lreg + λ ∗ Lcal , where Lcal can be
NLL, calibration loss or f -Cal.

4.6.1. Accuracy v/s calibration trade-off:

Discussion: Through our experiments, we conclude that there is a trade-off between determin-
isitic and calibration performance (also established in [22, 13]). We can control this trade-off by
varying the λ in Eq. 3.3.6. By plotting SiLog and ECE(z) for different values of λ we can analyze
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Approach SiLog RMSE ECE(z) ECE(q) NLL
NLL Loss[76] 9.213± 0.092 2.850± 0.035 2.39± 0.224 99.9± 0.001 3.403± 0.258

Calibration Loss[13] 9.604± 0.165 2.918± 0.015 1.71± 0.412 99.9± 0.000 2.878± 0.262
Temperature Scaling[13] 9.213± 0.092 2.850± 0.035 2.36± 0.214 99.9± 0.004 3.362± 0.221

f -Cal-KL (ours) 9.679± 0.091 2.911± 0.293 0.074± 0.021 22.5± 13.684 2.004± 0.143
f -Cal-Wass (ours) 9.509± 0.098 3.202± 0.247 0.156± 0.044 67.9± 9.616 2.157± 0.159

Table 4.6. Depth Regression - KITTI [17]: f -Cal on average gives better calibration perfor-
mance in comparison with the baselines. ECE scores have been scaled by 100 to enhance readabil-
ity

Fig. 4.8. Calibration vs. deterministic performance trade-off: We see that this trade-off is
observed for all the three calibration techniques. For similar deterministic performance f -Cal
models are able to achieve smaller ECE values (i.e., better calibration).

this trade-off for the baseline calibration techniques. We run each experiment over 5 seeds to cap-
ture the variability in deterministic and calibration performances represented by ellipses in Fig. 4.8.
f -Cal models result in better calibration performance than the baselines for similar deterministic
scores.

In Table. 4.6, for every method we select a λ which best balances between deterministic per-
formance and calibration. For this fixed λ we run the experiment over multiple seeds and report
mean scores (full results are given in Table. 4.6). We see that f -Cal outperforms all baselines on all
calibration metrics. We also observe that unlike Bokeh (Table. 4.1), temperature scaling struggles
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to calibrate uncertainties by tuning a single temperature parameter on such a large and complex
dataset.

4.7. Ablation
4.7.1. Impact of modeling assumption

We postulate that for real-world datasets such as KITTI [17], the trade-off in calibration and de-
terministic performance occurs due to poor modeling assumptions (i.e., modeling uncertainty using
a distribution family that is quite different from the underlying label error distribution). We carry
out an analysis on the impact of the modeling assumption needed to perform distribution matching.
Through controlled experiments on the Bokeh dataset, we observe that a reduction in deterministic
performance could be due to the true label error distribution not matching the assumed label error
distribution. To investigate this, we introduce a mismatch between the true distribution, a Gamma
distribution parameterized by the shape parameter γ7, and the model distribution, a Gaussian dis-
tribution, on the synthetic (Bokeh) dataset (Fig. 4.9 (left)). For lower distributional mismatch
(higher γ), the performance gap between the calibrated and deterministic models is reduced. The
hypothesis is that KITTI doesn’t align well with the modeling assumption, while Bokeh (synthetic)
dataset does (by construction), resulting in a trade-off in the former.

Note that this facet of our approach allows us to empirically estimate the underlying distribu-
tion that is producing the aleatoric uncertainty. In the case that the modeling assumptions about the
noise distribution is not correct, we can detect it by observing a larger drop in deterministic per-
formance in order to achieve calibration. If there is no degradation in deterministic performance,
then it is more likely that we will be able to jointly minimize the two terms in Eq. 3.3.6. An inter-
esting avenue for future work could be to automate this process of determining the true underlying
noise-generating distribution family.

4.7.2. Effect of degrees of freedom (K)

We analyze how the number of degrees of freedom in the Chi-squared distribution (K) would
impact calibration performance. We train models with different values of K and measure the
degree of calibration. In Fig. 4.9 (right), we can observe that for K > 50, the central limit theorem
holds and we see superior calibration when compared with models trained for K ≤ 50, when our
approximation of a Gaussian distribution breaks, resulting in poor calibration.

7note that the γ distribution converges to a Gaussian for large values of the shape parameter
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Fig. 4.9. Ablation: (left) We plot the % drop in deterministic performance compared to a deter-
ministic model for different noise distributions. For large shape parameter, the Gamma distribution
converges to a Gaussian, resulting in nearly identical performance to a deterministic model. (right)
Effect of K on the performance of f -Cal, we see that as long as K > 50, the central limit theorem
holds and we get good calibration.
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Chapter 5

Distributional uncertainty in Object detection

In this chapter, we will discuss the out-of-distribution (OOD) detection problem for object detec-
tion. Predominant architectures for object detection include: single-stage methods [94, 90, 84, 85,
65] and two-stage methods [20, 29, 18, 87, 9, 28, 58, 61, 60]. Most of these use “anchor boxes"
to handle variation in the number, size, and position of objects in an image. Each anchor box is
classified as either an in-distribution class or the background class. Unlike classification, in ob-
ject detection, if we have n in-distribution classes, the network learns to predict n + 1 classes to
incorporate background anchors. Current state of the art 1-stage architecture( [61]) and 2-stage
architecture( [87, 60]) are both anchor-based with a background class.

So far, OOD detection methods [34, 54, 33, 59, 22, 35, 72, 69, 89] have been designed ex-
clusively for image classification. Object detection methods, on the other hand, bear a different
design philosophy. The notion of a background class in object detection obfuscates the distinction
between novel objects and the background class. This necessitates discovery of background-aware
OOD detection methods to detect novel objects in an image. While some zero- and few-shot learn-
ing methods recognize novel objects in an image, zero-shot methods can only recognize OOD ob-
jects that are close to the training distribution [83, 1, 109, 81, 82, 23]. These methods employ usage
of visual-semantic embeddings. This enables the detector to recognize novel objects which are se-
mantically close to in-distribution objects. This assumes some semantic relation between seen and
unseen classes. However, these methods would fail to recognize a novel object which is semanti-
cally different from in-distribution objects. Some few shot learning methods [100, 43, 105, 44, 12]
port over the few-shot meta-learning setup for the specific setting of object detection and develop
algorithms to enable object detectors to detect and localise a set of new target objects given limited
samples for them.

We observe that it is arduously challenging to distinguish between the background class and a
novel object, owing to design decisions baked into modern object detectors. We now formalize the
definition of OOD for object detection. There are two types of OOD objects in this setup:



• Seen OOD objects: In object detection, Seen OOD objects are unannotated objects that are
present in training images. We call such objects “seen OOD objects” because they are part
of the training distribution, but due to absence of any label, they are automatically labeled
as background.
• Unseen OOD objects: Unseen OOD objects are completely novel objects which have not

been encountered during training in any form. Such objects are seen during test time only.
For instance, a cow on the road is a novel occurrence, when the detection models have been
trained on standard driving datasets [16] including only constrained urban scenes.

We conducted an experiment to understand the adverse impact of the background class for the
“seen OOD objects” case. In this experiment, we use a clustering based method to classify OOD
objects. The overall objective in this method is to view intermediate representations of an object in
the trained model (input to softmax layer1) as residing on a high-dimensional manifold, and then,
assuming that in-distribution samples should be “close” to each other on this manifold [99]. We
employ class conditional Gaussian clustering inspired from [56]. The embedding representation in
the layer immediately preceding the softmax layer is a suitable choice for perception/classification
tasks based on the intuition that the network is trying to find a representation at this layer that is
easily separable by the softmax.

We train a model on l classes of the dataset and hold out k classes. We treat these k classes as
seen OOD objects. We use the KITTI Object dataset [17] with l = 4 and k = 3. We follow the
procedure below,

(1) Train the probabilistic detector to convergence.
(2) Get embeddings of in-distribution objects and background.
(3) For each class c calculate a class-conditional Gaussian distribution (µc,Σc) based on the

cluster embeddings
(4) For a test datum x, calculate the closest class cluster in the embedding space, where “close-

ness” is determined by Mahalanobis distance:

M(x) = max
c
−(f(x)− µx)Σ−1

c (f(x)− µx) (5.0.1)

(5) If the closest class is above a threshold Mahalanobis distance, then the input is designated as OOD
since it does not correspond well to any of the known classes.

We treat an acceptable accuracy of the in-distribution samples as the control variable. This
control variable automatically presents a threshold on the Mahalanobis distance. Following the
procedure above, for each class, we obtain several data points in the validation set and compute a
Gaussian mean and covariance using the training data. We then use the validation data to find the
Mahalanobis distance threshold that will achieve the acceptable accuracy, across all object classes.
Next, using this threshold, we determine whether a new embedding belongs to any of these classes

1Note that getting intermediate representations is possible in 2-stage object detection only, we get intermediate repre-
sentation from stage-2 of the Faster RCNN
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or not. If it doesn’t we label it OOD. We perform this experiment for the two problem setups as
explained below,

• Setup 1 (“Easy” version without background): In this setup, we only keep in-distribution
objects and exclude the background class. If the Mahalanobis distance of an OOD em-
bedding with a class conditional Gaussian is greater than a Mahalanobis threshold of the
corresponding class, it is considered as a true positive (classified as OOD). Otherwise, it is
deemed a misclassification.
• Setup 2 (“Hard” version with background): In this setup, the Mahalanobis distance is

also calculated with background Gaussian statistics. Giving OOD embedding chance to be
classified as background.

Fig. 5.1. Background class hampers OOD detection performance as the cross-entropy objec-
tive forces an OOD object to be very confidently classified as background. We demonstrate that
removing the notion of a background class boosts performance. Our results are also corroborated
by [11].

We run experiments for both the above setups, for various acceptable accuracy thresholds, and
then we calculate the accuracy of OOD classes explicitly. To effectively understand the role of
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the background class, we follow the procedure outlined in 5 for both the setups (with and without
background class). Results are shown in Fig 5.1.

This demonstrates that redesigning object detectors without allowing a catch-all “background”
class can boost OOD detection performance.
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Chapter 6

Conclusion

6.1. Limitations
f -Cal, while being simple and effective, has a few limitations that warrant deeper investigation

and follow-up work.
(1) Need large values for K: The choice of K (Fig. 4.9(right)) has an impact on calibration

quality in that lower values (K < 30) incur larger calibration errors. This limits the appli-
cability of scenarios to very sparse regression tasks (e.g., when there is only a single scalar
predicted per input image). A workaround would be to use a much larger batch size during
training, which is compute-intensive.

(2) Performance relies on choice of modeling distribution: As with any Bayesian deep learning
approach, the success of f -Cal relies crucially on the choice of the modeling error distri-
bution. If the modeled error distribution does not match the underlying true distribution,
we observe a substantial performance drop (Fig. 4.9(left)). However, f -Cal can guide a
practitioner towards a good modeling choice (by tracking the drop in model performance).

(3) Limited distribution families: The f -Cal loss can only be applied to distribution families
that admit an analytical f−divergence computation, and allow for a canonical element to
be computed (such as z = y−µ

σ
for a Gaussian).

Despite these limitations, f -Cal is of high practical relevance, as demonstrated by our large-
scale real-world experiments on object detection and depth estimation.

6.2. Conclusion
In this thesis, I presented f -Cal, a simple and efficient technique based on variational inference

for calibrating aleatoric uncertainty estimates from a neural regressor. Different from previous
work, f -Cal does not require a large held-out calibration dataset or post-hoc computation. Unlike
previous methods, which mostly operated on per-sample basis, this method operates on a batch of
samples, to enforce calibration across the samples. The key insight was that calibration is typically



achieved by looking at multiple data samples at the same time. This key insight motivated us to en-
force a distribution matching loss, as opposed to per-sample loss, to achieve calibrated uncertainty
estimates. This distribution matching loss function is applied in conjunction with typical super-
vised learning losses. This allows us to implement f -Cal as an easy add-on to a typical aleatoric
uncertainty regression training loop, in about 10−15 lines of PyTorch code. Introduction of hyper-
constraint during training enforced stronger calibration during training. The stochastic nature of
this hyper-constraint enabled our model to capture the true underlying aleatoric uncertainty of the
data. I believe that this method opens up several avenues for employing well-calibrated uncertain-
ties in downstream modules like sensor fusion, planning in a typical robotics stack. For example,
uncertainties associated with object detectors can be employed in object-based state estimation or
in model-predictive control loops. I also characterize the limitations of our technique that I believe
will lead to interesting follow-up work. Another interesting avenue for future work could be to
investigate non-iid settings – common in sequential and online learning scenarios. I also presented
a method of distributional uncertainty estimation in context of object detection. Out-of-distribution
detection has received much attention in classification setups. I employed a standard classification
OOD detection method for object detection. A controlled experimental setup demonstrated that
typical distributional uncertainty estimation methods are not applicable to object detection setup,
owing to background class. The design of state of the art object detector forces presence of back-
ground class as a catch-all class. This presence massively blurs the distinction between OOD and
background class. Background class, without any semantic structure or meaning, can have arbi-
trarily high entropy. This may be consuming OOD objects into the background class. Interesting
future work could be to design object detectors which can capture generic object properties in the
bounding box candidate, which can definitely help in overcoming this challenge. Another interest-
ing avenue to explore would be designing an object detector without background class, which may
eliminate this problem.
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