
Université de Montréal

Continuous Coordination As a Realistic Scenario for

Lifelong Learning

par

Akilesh Badrinaaraayanan

Département d’informatique et de recherche opérationnelle

Faculté des arts et des sciences

Mémoire présenté en vue de l’obtention du grade de

Maître ès sciences (M.Sc.)
en informatique

April 30, 2021

© Akilesh Badrinaaraayanan, 2021

Université de Montréal
Faculté des arts et des sciences

Ce mémoire intitulé

Continuous Coordination As a

Realistic Scenario for Lifelong Learning

présenté par

Akilesh Badrinaaraayanan

a été évalué par un jury composé des personnes suivantes :

Liam Paull
(président-rapporteur)

Aaron Courville
(directeur de recherche)

Sarath Chandar Anbil Parthipan
(codirecteur)

Pierre Bellec
(membre du jury)

Résumé

Les algorithmes actuels d’apprentissage profond par renforcement (RL) sont encore très

spécifiques à leur tâche et n’ont pas la capacité de généraliser à de nouveaux environnements.

L’apprentissage tout au long de la vie (LLL), cependant, vise à résoudre plusieurs tâches de

manière séquentielle en transférant et en utilisant efficacement les connaissances entre les

tâches. Malgré un regain d’intérêt pour le RL tout au long de la vie ces dernières années,

l’absence d’un banc de test réaliste rend difficile une évaluation robuste des algorithmes

d’apprentissage tout au long de la vie. Le RL multi-agents (MARL), d’autre part, peut être

considérée comme un scénario naturel pour le RL tout au long de la vie en raison de sa

non-stationnarité inhérente, puisque les politiques des agents changent avec le temps. Dans

cette thèse, nous présentons un banc de test multi-agents d’apprentissage tout au long de la

vie qui prend en charge un paramétrage à la fois zéro et quelques-coups. Notre configuration

est basée sur Hanabi - un jeu multi-agents partiellement observable et entièrement coopératif

qui s’est avéré difficile pour la coordination zéro coup. Son vaste espace stratégique en fait un

environnement souhaitable pour les tâches RL tout au long de la vie. Nous évaluons plusieurs

méthodes MARL récentes et comparons des algorithmes d’apprentissage tout au long de la

vie de pointe dans des régimes de mémoire et de calcul limités pour faire la lumière sur

leurs forces et leurs faiblesses. Ce paradigme d’apprentissage continu nous fournit également

une manière pragmatique d’aller au-delà de la formation centralisée qui est le protocole de

formation le plus couramment utilisé dans MARL. Nous montrons empiriquement que les

agents entraînés dans notre environnement sont capables de bien se coordonner avec des

agents inconnus, sans aucune hypothèse supplémentaire faite par des travaux précédents.

Mots-clés: le RL multi-agents, l’apprentissage tout au long de la vie.

ii

Abstract

Current deep reinforcement learning (RL) algorithms are still highly task-specific and lack

the ability to generalize to new environments. Lifelong learning (LLL), however, aims at

solving multiple tasks sequentially by efficiently transferring and using knowledge between

tasks. Despite a surge of interest in lifelong RL in recent years, the lack of a realistic testbed

makes robust evaluation of lifelong learning algorithms difficult. Multi-agent RL (MARL),

on the other hand, can be seen as a natural scenario for lifelong RL due to its inherent

non-stationarity, since the agents’ policies change over time. In this thesis, we introduce

a multi-agent lifelong learning testbed that supports both zero-shot and few-shot settings.

Our setup is based on Hanabi — a partially-observable, fully cooperative multi-agent game

that has been shown to be challenging for zero-shot coordination. Its large strategy space

makes it a desirable environment for lifelong RL tasks. We evaluate several recent MARL

methods, and benchmark state-of-the-art lifelong learning algorithms in limited memory

and computation regimes to shed light on their strengths and weaknesses. This continual

learning paradigm also provides us with a pragmatic way of going beyond centralized training

which is the most commonly used training protocol in MARL. We empirically show that the

agents trained in our setup are able to coordinate well with unknown agents, without any

additional assumptions made by previous works. Key words: multi-agent reinforcement

learning, lifelong learning.

iii

Contents

Résumé . ii

Abstract . iii

List of tables . vii

List of figures . ix

List of acronyms and abbreviations . xii

Acknowledgement . xiii

Chapter 1. Introduction. 1

1.1. Contributions . 3

1.1.1. Author contributions for the paper . 4

Chapter 2. Machine Learning and Reinforcement Learning 6

2.1. Machine Learning basics . 6

2.1.1. Overfitting, Underfitting and Capacity . 8

2.1.2. Neural Networks . 11

2.2. Reinforcement Learning . 14

2.3. Markov Decision Process . 14

2.4. Return. 15

2.5. Policy . 16

2.6. Value functions . 17

iv

2.7. Bellman equations . 18

2.7.1. Dynamic Programming . 20

2.7.2. Monte-Carlo methods . 21

2.7.3. Temporal Difference learning . 22

2.7.4. SARSA . 22

2.7.5. Q-Learning . 23

2.7.6. Deep Q-Networks (DQN) . 23

2.8. Policy Gradient . 24

2.8.1. Policy Gradient with Baseline . 25

2.8.2. Actor-Critic methods . 26

Chapter 3. Lifelong Learning and Multi-agent Reinforcement Learning . . . 27

3.1. Lifelong Learning . 27

3.1.1. Characteristics of a good lifelong learning system. 29

3.1.2. Lifelong learning scenarios . 30

3.1.3. Lifelong learning methods . 31

3.1.4. Benchmarks . 32

3.2. Multi-agent RL . 34

3.2.1. MARL framework. 34

Chapter 4. Lifelong Hanabi setup . 39

4.1. Hanabi . 39

4.2. Multi-Agent RL and Lifelong Learning . 41

4.3. Lifelong Hanabi: A Benchmark for Lifelong Reinforcement Learning 42

4.3.1. Pool of Agents . 43

4.3.2. Evaluation methods . 44

4.3.3. Metrics . 45

Chapter 5. Experiments and Results . 47

v

5.1. List of agents . 51

5.2. Lifelong learning benchmarking . 52

5.3. Lifelong learning under constrained memory and compute . 57

5.3.1. Episodic memory size . 57

5.3.2. Gradient updates for few-shot evaluation . 58

5.4. Lifelong RL methods. 59

5.5. Zero-shot coordination . 60

5.6. Additional results on 10 tasks . 62

Chapter 6. Conclusions and Future work . 64

References . 66

6.1. All hyperparameters and experiment details . 78

vi

List of tables

5.1 Exact architectures used in the pool. 49

5.2 Benchmarking LLL methods on Hanabi. Average accuracy and forgetting of LLL

algorithms on hard task averaged over 5 runs with 5000 games. (↑ = higher better,

↓ = lower better) . 54

5.3 BEST : Comparison with other MARL algorithms on self-play (SP), cross-play

evaluation scores within method (Intra-CP), and across different methods (Inter-

CP). C: centralized training, GA: agents share their greedy action along with

their standard action, L: true labels of cards needed, SYM: symmetries of the

game needed upfront, P: require access to some pre-trained agents in sequence,

UP: Having access to all the fixed pre-trained agents at the same time. (↑ / ↓ =

Difference in score after continual training, red: pre-trained with MARL method,

blue: trained continually with LLL method, ∗ : results obtained using models

released by (Hu et al., 2020)) . 60

5.4 AVG : Comparison with other MARL algorithms on self-play (SP), cross-play

evaluation scores within method (Intra-CP), and across different methods (Inter-

CP). C: centralized training, GA: agents share their greedy action along with

their standard action, L: true labels of cards needed, SYM: symmetries of the

game needed upfront, P: require access to some pre-trained agents in sequence,

UP: Having access to all the fixed pre-trained agents at the same time. (↑ / ↓ =

Difference in score after continual training red: pre-trained with MARL method,

blue: trained continually with LLL method). Refer text for difference between

AVG and BEST. 62

6.1 All common hyperparameters and their description. 78

vii

6.2 Specific hyperparameters to each algorithm and their description 79

viii

List of figures

2.1 Underfit-Overfit . 8

2.2 Typical relationship between capacity and error. In the underfitting zone, the

generalization error has not reached its lowest yet, while in the overfitting

zone, the generalization error starts to increase steadily again while the training

error continues to decrease. Image source: reproduced from the Deep Learning

book (Goodfellow et al., 2016).. 9

2.3 Left - MLP; Right - CNNs. In CNNs, every neuron is only connected to a local

region of the input volume. Image source: reproduced from Stanford CS231n 1 . . 12

2.4 MDP . 14

3.1 Split MNIST protocol. 30

4.1 Hanabi game state showing the hint tokens, life tokens, discard pile and playing

cards. 40

4.2 Our Lifelong Hanabi setup consists of three phases: 1- Pre-training (Optional):

In this phase, a pool of agents are trained through SP, 2- Continual training:

The learner is taken from the pool (∼ ptrain) and trained sequentially with

some partners (∼ ptrain) and periodically evaluated against all the partners, 3-

Testing: The learner is evaluated with a set of random agents excluding its

partners (∼ ptest) to measure generalization. 43

4.3 The pool of 100 agents pre-trained through self-play using different MARL

methods (IQL/VDN/OP/AUX/SAD, and their combinations). 10 agents having

5 different architectures with 2 seeds are generated with each of these MARL

ix

methods. (i, j)th element is the average score of agent i paired with j over 5k

games. The diagonal entries indicate SP scores. 44

5.1 CP scores before (left) and after continual training (right) – (i, j)th element is

the average score of agent i paired with j. [A-C] is before continual training –

(A) Initial scores of the learner with its partners, (B) Cross-play scores amongst

the partners, low scores indicate they are far apart in the strategy space, (C)

Initial generalization scores with some unseen agents. The learner is then trained

continually with its partners following the order indicated by the arrows. [D-E]

is after continual training – (D) Scores with the original learner and its partners,

(E) Generalization scores with the same unseen agents. 48

5.2 Diverse agents used in our Inter-CP set for evaluating across-method performance

of agents trained in our setup. 51

5.3 Zero-shot (top row) and Few-shot (bottom row) performance of different LLL

algorithms with Adam optimizer on hard task. From left to right: current score (↑),

average score (↑), forgetting (↓), and average future score (↑) respectively. (↑ =

higher better, ↓ = lower better). 53

5.4 Zero-shot (top row) and Few-shot (bottom row) performance of different LLL

algorithms with Adam optimizer on easy task. From left to right: current score (↑),

average score (↑), forgetting (↓), and average future score (↑) respectively. (↑ =

higher better, ↓ = lower better). 55

5.5 Zero-shot (top row) and Few-shot (bottom row) performance of different LLL

algorithms with SGD optimizer on hard task. From left to right: current score (↑),

average score (↑), forgetting (↓), and average future score (↑) respectively. (↑ =

higher better, ↓ = lower better). 56

5.6 Zero-shot (top row) and Few-shot (bottom row) performance of different LLL

algorithms with SGD optimizer on easy task. From left to right: current score (↑),

average score (↑), forgetting (↓), and average future score (↑) respectively. (↑ =

higher better, ↓ = lower better). 56

x

5.7 More experiments: Generalization score with Inter-CP agents at the end of every

task during continual training. LLL algorithms using SGD as an optimizer have

better generalization performance compared to Adam. ER SGD has the highest

GIS. 58

5.8 Zero-shot (top row) and Few-shot (bottom row) performance of ER methods with

different types of episodic memory designed for lifelong RL Isele and Cosgun

(2018) with Adam optimizer on 10 tasks.. 59

5.9 Zero-shot (top row) and Few-shot (bottom row) performance of different LLL

algorithms with Adam optimizer on 10 tasks. From left to right: current score,

average score, forgetting and average future score respectively. 63

5.10 Zero-shot (top row) and Few-shot (bottom row) performance of different LLL

algorithms with SGD optimizer on 10 tasks. From left to right: current score,

average score, forgetting and average future score respectively. 63

xi

List of acronyms and abbreviations

LLL Lifelong Learning

RL Reinforcement Learning

MARL Multi-agent Reinforcement Learning

MDP Markov Decision Process

Dec-POMDP Decentralized Partially Observed Markov Decision Process

SAD Simplified Action Decoder

VDN Value Decomposition Network

AUX Auxiliary Task

SP Self Play

OP Other-Play

CP Cross-Play

SGD Stochastic gradient descent

ER Experience Replay

A-GEM Averaged Gradient Episodic Memory

EWC Elastic Weight Consolidation

MTL Multi-task Learning

xii

Acknowledgement

I thank my advisors Prof. Aaron Courville and Prof. Sarath Chandar for their excellent

guidance throughout my master’s journey at the Université de Montréal/Mila. I am fortu-

nate to benefit from their knowledge and ideas surrounding my research. Apart from being

great researchers themselves, they have good human values.

I am grateful to Hadi Nekoei for being an active contributor to the work presented in this

thesis and for being there through the highs and lows of this project, the countless hours

working and discussing things related to this project will remain vivid in my memory.

I also thank Olexa Bilaniuk for his help in addressing the engineering issues related to our

code/clusters; Sai Krishna, Pravish Sainath, and Eeshan Dhekane for providing feedback of

my thesis; Gabriele Prato for help with the French translation of the abstract.

I thank Linda Peinthière of Mila and Céline Bégin of Université de Montréal for their pa-

tience and help in all the administrative matters associated with my studies and research.

I am indebted to my undergraduate advisor Dr. Vineeth N Balasubramanian, IIT-Hyderabad

for introducing me to machine learning and research, highly encouraging me to go for grad-

uate studies.

Finally, I thank my parents Chandrika and Badrinaaraayanan for all their unconditional sup-

port, encouragement, and help throughout my life. They set high standards for me right from

a young age and always prioritized my education. I dedicate my efforts and achievements to

them, for without them, it would have been impossible.

xiii

Dedicated to my parents Chandrika and Badrinaaraayanan.

Chapter 1

Introduction

Recent advances in deep learning has revolutionized many fields in artificial intelligence (AI)

such as computer vision (Krizhevsky et al., 2017, Ren et al., 2016), natural language under-

standing (Sutskever et al., 2014, Vaswani et al., 2017), reinforcement learning (RL) (Silver

et al., 2017), and speech processing (Hinton et al., 2012). In particular, deep RL has shown

an immense potential to achieve superhuman performance (Mnih et al., 2013, Silver et al.,

2018) on some narrow and well-defined tasks. In contrast, humans can quickly and contin-

ually learn new tasks while maintaining the skills to solve previously learned tasks. The

ability of an AI system to effectively update new information over time is known as lifelong

learning (LLL) or continual learning, and one can postulate this as one of the fundamen-

tal ingredients of general AI. Balancing between learning from recent experiences while not

forgetting the knowledge acquired from the past is a well-studied problem known as the

stability-plasticity dilemma (Carpenter and Grossberg, 1987). Catastrophic forgetting is a

phenomenon in which training the model with new information obstructs previously learned

knowledge. This is a common failure case in training neural networks to adapt to new

tasks or learning from non-stationary data streams (i.e. non-iid) (McCloskey and Cohen,

1989). Alleviating catastrophic-forgetting is crucial to enable real-world applications where

input distributions can shift and where retraining on past data, or from scratch is infeasible.

While lifelong learning has been identified as an important and challenging problem decades

ago (Ring, 1998, Thrun, 1998), it has recently seen a surge of interest (Aljundi et al., 2018,

Chaudhry et al., 2018, 2019, Kirkpatrick et al., 2017, Lopez-Paz and Ranzato, 2017) with

the success of deep learning.

Several standard benchmarks have been proposed to evaluate novel lifelong learning ap-

proaches, mostly for supervised learning settings such as Permuted MNIST (Goodfellow

et al., 2013), Split MNIST/CUB/CIFAR (Chaudhry et al., 2018, Zenke et al., 2017). One

fundamental issue with using datasets like MNIST as a source of data is the lack of resulting

task complexity especially with the large capacity of modern neural networks. Another issue

with most current lifelong learning benchmarks is that the relation between tasks cannot

be quantified easily. Consequently, most of the evaluation efforts have focused mainly on

mitigating catastrophic forgetting, while an ideal lifelong learning system should in addi-

tion measure forward and backward transfer. Some recent works have shown limitations

of lifelong learning benchmarks (Antoniou et al., 2020, Roady et al., 2020). For instance,

it has been shown that after continual training, the performance of a model trained from

scratch using only samples from the episodic memory at test-time, is comparable to specifi-

cally designed lifelong learning solutions for most of these benchmarks (Prabhu et al., 2020).

There have been efforts to address this by proposing more challenging benchmarks like

CORe50 (Lomonaco and Maltoni, 2017), CRIB (Stojanov et al., 2019), OpenLoris (Shi et al.,

2020), Stream51 (Roady et al., 2020), and IIRC (Abdelsalam et al., 2020).

RL can be a natural fit for studying lifelong learning as it provides an agent-environment

interaction paradigm wherein the agent is exposed to non-stationary streams of data (Ka-

planis et al., 2018, 2019). However, there is a dearth of well-established benchmarks to study

progress in lifelong RL. Most of these benchmarks are hand-engineered customization to the

standard RL environments (Bellemare et al., 2013, Brockman et al., 2016) adding synthetic

non-stationarity to the environments (Al-Shedivat et al., 2017, Henderson et al., 2017) or

ordering some completely unrelated environments in a sequence (Xu et al., 2020) to facili-

tate the evaluation of lifelong learning performance (eg. a random sequence of Atari used

in (Kirkpatrick et al., 2017)). Designing overly-tailored experiments for a specific lifelong

RL problem can entail unwanted bias as shown in (Khetarpal et al., 2020). For instance, one

issue appears as inherent determinism in environments such as Arcade Learning Environ-

ment (Bellemare et al., 2013), where the problem is addressed by blindly saving state-action

sequence which defies the generalization purposes (Machado et al., 2018). Zintgraf et al.

(2019) also showed that adaptation steps needed in some few-shot learning tasks are small

2

and confirmed that task inference and multi-task learning is sufficient to do well in some

cases.

In this thesis, we propose a new lifelong RL setup based on Hanabi (Bard et al., 2020)

called Lifelong Hanabi. Hanabi is a partially-observable, fully cooperative multi-agent game

that consists of 2-5 players. In our setup, one agent (learner) is trained sequentially with a

set of partners (tasks). The learner and its partners are sampled from a large pool of pre-

trained agents (≥ 100). The pre-trained pool consists of agents trained with different MARL

methods such as Independent Q-learning (IQL) (Tan, 1993), Value Decomposition Networks

(VDN) (Sunehag et al., 2017), Simplified Action Decoder (SAD) (Hu and Foerster, 2019),

Other-Play (OP) (Hu et al., 2020) with different architectures and seeds for each method

that have shown good performance in Hanabi. Bard et al. (2020) show that agents trained

even with the same MARL method but different seeds do not learn to cooperate in the zero-

shot scenario, thereby suggesting that these agents converge to different strategies. This

large strategy space of Hanabi makes it an ideal scenario for lifelong learning. How far

apart the agents are in the strategy space can be measured through the cross-play (CP)

matrix (Bard et al., 2020) that contains the gameplay scores obtained by pairing the agents

with one another. Cross-play scores can be used as a proxy for task similarity to design tasks

in Lifelong Hanabi.

1.1. Contributions
The main contributions of this thesis are based on our paper “Continuous Coordi-

nation As a Realistic Scenario for Continual Learning” (Nekoei et al., 2021) (code

link), authored by Akilesh Badrinaaraayanan, Hadi Nekoei, Aaron Courville, and Sarath

Chandar, accepted at ICML 2021 (also accepted as a spotlight at ICLR 2021 workshop -

A Roadmap to Never-Ending Reinforcement Learning) and are summarized below:

• We propose a new lifelong reinforcement learning benchmark that has the following

desirable properties:

– It is challenging for state-of-the-art (SOTA) lifelong learning algorithms.

– It is straightforward to quantify the relation between tasks through the CP ma-

trix.

3

https://github.com/chandar-lab/Lifelong-Hanabi
https://github.com/chandar-lab/Lifelong-Hanabi

– It is easily extendable to long sequences of diverse tasks without any synthetic

modifications.

• We evaluate recent lifelong learning algorithms on this benchmark in limited memory

and computation regimes and highlight their strengths and limitations.

• We obtain comparable performance on zero-shot coordination in Hanabi even when

coordinating with agents trained with MARL methods different from that of the

learner, without any additional assumptions such as exploiting handcrafted symme-

tries (Hu et al., 2020) or having access to other agent’s greedy action or policy (Hu

and Foerster, 2019).

The rest of the thesis is organized as follows: in chapter 2 we present background on

machine learning and reinforcement learning, presenting specific related topics on lifelong

learning and multi-agent reinforcement learning in chapter 3. We present Lifelong Hanabi

setup in chapter 4, benchmark several recent lifelong learning algorithms in chapter 5 and

present conclusions as well as future work in chapter 6.

1.1.1. Author contributions for the paper

• Hadi Nekoei and Sarath Chandar were exploring ideas of decentralized training meth-

ods for MARL considering various multi-agent environments like Checkers, MARL

grid, Hanabi, etc.

• Their initial exploration around Hanabi as well as (Bard et al., 2020) work (in which

Sarath Chandar was one of the main contributors) suggested large strategy space in

Hanabi.

• I started working on this project when we had an initial idea to propose this as a

benchmark for lifelong learning as well as an alternate training paradigm for MARL.

• The code for all the algorithms and experiment setup for this paper were designed

and written by myself and Hadi Nekoei with valuable feedback from Sarath Chandar.

• All the experiments (pre-training, lifelong learning, and testing) and engineering

issues with our code/Mila cluster/Compute Canada clusters were done by me with

help from Hadi when relevant.

• Collection of results, organizing, and presenting them were done by myself and Hadi

Nekoei.

4

• The entire paper was written by myself and Hadi Nekoei with feedback from Sarath

Chandar and Aaron Courville.

• Aaron Courville also provided periodic feedback in steering the work in the right

direction.

5

Chapter 2

Machine Learning and Reinforcement

Learning

Learning is a fundamental characteristic of a human that can be defined as a process of

acquiring knowledge and skills through experience. As we live in an era where a vast amount

of data is being collected and stored every day through user presence in social media, video

streaming platforms, etc.; daily interaction with Machine Learning (ML) algorithms has

become inevitable.

2.1. Machine Learning basics
Mitchell (1997) defines a learning algorithm as “A computer program is said to learn

from experience E with respect to some set of tasks T and performance measure P , if its

performance at tasks T , as measured by P , improves with experience E”. For example in

the task of classifying emails as spam or not, the task is the binary classification of emails

and the performance measure is accuracy i.e. what percentage of emails the ML algorithm

classifies correctly. ML algorithms can be broadly classified as supervised, unsupervised, and

reinforcement learning (RL) depending on the type of experience the learning algorithm has

during the process. Supervised ML algorithms usually learn from labeled data and adapt in

a data-driven manner.

A dataset D is a collection of n data points
{
X(i)

}n
i=1

. If labeled, each data point

is a tuple containing inputs x(i) and labels y(i). In case of unlabeled dataset, the data

point just contains inputs x(i). A supervised learning algorithm learns a predictive function

fθ : X−→Y using a given labeled dataset D =
{
x(i), y(i)

}
, which when provided with similar

but unseen input x̄ ∈ X , potentially correctly predicts ȳ ∈ Y as f(x̄). Supervised learning

algorithms can be used to predict discrete values corresponding to the classes of the input x,

i.e.
(
y(i) ∈ Y , with |Y| = n ∈ N

)
, or values over a continuous interval

(
y(i) ∈ Y ⊆ R

)
. The

former problem is the classification problem and the latter regression. Some examples

of supervised learning algorithms include linear regression for regression; random forests,

decision trees for classification; regression and support vector machines for classification.

Supervised learning requires curating large amounts of labeled datasets, therefore can turn

out to be very laborious.

Unsupervised learning can learn from unlabeled datasets to discover the underlying

structure or distribution in the data. Formally, an unsupervised learning algorithm attempts

to learn the latent representation z ∈ Z for the input x ∈ X , where Z represents the space of

latent representation. Some examples of unsupervised learning problems include clustering

that tries to find groups among data and dimensionality reduction which transforms the

data from a high-dimensional space to a low-dimensional space with the hope that the low-

dimensional representation retains some meaningful properties of the original data.

Semi-supervised learning utilizes both labeled and unlabeled data, trying to leverage

the best of both worlds i.e. unsupervised learning techniques to discover and learn the

structure in input while supervised learning techniques can be used to guess the labels for

the unlabeled data which can then again be fed back to the supervised learning method as

training data.

Self-supervised learning is a form of unsupervised learning where the data itself pro-

vides the supervision. This is generally done by withholding some part of the data and

tasking the network to predict it. The task defines a proxy loss, and the network is forced

to learn what we care about to solve it e.g. a semantic representation.

Reinforcement Learning (RL) is another paradigm in which an agent interacts with

the environment to maximize its cumulative reward, thereby having a feedback loop between

the learning system and its experiences. In this thesis, we mainly focus on this paradigm.

1https://docs.aws.amazon.com/machine-learning/latest/dg/model-fit-underfitting-vs-overfitting.html

7

Fig. 2.1. Underfitting and Overfitting. Left: Data points being approximated by a straight

line (underfitting); Right: Fitted curve passes through most data points (overfitting); Middle:

Fitted curve is balanced having somewhat ideal capacity. Image source: reproduced from

AWS Machine Learning.1

2.1.1. Overfitting, Underfitting and Capacity

The fundamental challenge in ML is that any good algorithm should perform well on

novel, unseen data, an ability called generalization. We want the generalization error

(test error) to be low as well, in addition to the training error, where generalization error

is defined as the expected value of the error on a new input. Under the i.i.d assumptions i.e.

the examples in a dataset are independent of each other, and that the training and test

sets are identically distributed (i.e. drawn from the same probability distribution), we can

mathematically study the relationship between train error and generalization error (Good-

fellow et al., 2016). Underfitting refers to the case when the model is not able to obtain

a sufficiently low error value on the training set. Overfitting occurs when the gap be-

tween training and generalization errors is significantly large. Figure 2.1 shows an example

of underfitting, overfitting, and balanced model on a sample dataset. As we can observe,

the underfitted curve is a straight line that does not correspond to the data distribution,

while the overfitted curve passes through most of the individual points. The capacity of

a model refers to its ability to fit a wide range of functions. A low capacity model might

struggle to fit the training set well, whereas a high capacity model can potentially memorize

the training set thereby overfitting and perform poorly on the test set. The relationship

between capacity and error is given in Figure 2.2. The left side of the curve corresponds

to the underfitting regime (low capacity), while the right part of the curve corresponds to

overfitting (high capacity) as the generalization gap increases.

8

Fig. 2.2. Typical relationship between capacity and error. In the underfitting zone, the

generalization error has not reached its lowest yet, while in the overfitting zone, the general-

ization error starts to increase steadily again while the training error continues to decrease.

Image source: reproduced from the Deep Learning book (Goodfellow et al., 2016).

Parameters of an ML model (typically denoted by θ) are those that are estimated or

learned from the training data and are crucial for making predictions. Hyper-parameters

are tunable knobs of a model that are usually set manually to help learn better parameters,

although there are frameworks such as Hyperopt (Bergstra et al., 2013) that could help in

hyperparameter optimization. Hyperparameters have an effect in controlling the capacity of

a model. For eg. in linear regression, the degree of the polynomial is a hyperparameter that

controls its capacity.

Loss function is the objective function that we want to minimize (denote by L(θ)).

It tries to represent the different aspects of a complex model onto a single scalar value.

Most commonly, in the case of classification, a parametric model defines a distribution, and

using the principle of maximum likelihood one can define the loss function as the cross-

entropy between the training data and the model’s predictions. In the case of regression

problems, mean squared error is commonly used. Assuming differentiability of loss function,

gradient descent is most commonly used in ML to minimize the loss function L(θ) of the

model parameterized by θ ∈ Rd by updating its parameters in the opposite direction of the

gradient of the loss function w.r.t to its parameters∇θL(θ). The learning rate η determines

9

the size of the steps we take in the opposite direction of the gradients hoping to reach a local

minimum under ideal conditions. Gradient descent is typically employed in three common

modes:

• Full batch or batch; θ = θ − η.∇θL(θ)

• Stochastic; θ = θ − η.∇θL(θ;x(i); y(i))

• Mini-batch; θ = θ − η.∇θL(θ;x(i:i+n); y(i:i+n))

In batch gradient descent, the complete dataset is used for computing gradient, and then

the parameters are updated. Batch gradient descent is guaranteed to converge to the global

minimum for convex error functions and to a local minimum for non-convex functions. In

stochastic gradient descent, parameter update is done after every example. It can potentially

cause the loss function to fluctuate due to frequent updates having high variance. Mini-batch

gradient descent takes the best of both worlds and performs an update after every mini-batch

consisting of n training examples. In this way, it reduces the variance of parameter updates

and also makes use of matrix operations-based optimizations that most deep learning libraries

provide.

ML models are usually prone to overfitting the training data, leading to poor general-

ization performance. Regularization is a common technique employed in ML models to

improve its generalization performance, which as discussed previously is a key criterion in

designing ML algorithms and for achieving success in the real-world. These methods are

usually imposed as additional constraints on the loss function thereby penalizing the model

(i.e. the loss function is now L(θ) +R(θ) where R(θ) is the regularization term). L1 and L2

regularization are two commonly used methods (Goodfellow et al., 2016). L1 regularization

(R(θ) = ‖θ‖1) involves adding the sum of absolute value of the parameters and encourages

learning of sparse parameters. L2 regularization (a.k.a weight decay 1
2‖θ‖

2
2) encourages the

parameters to be closer to the origin. Regularization techniques are crucial to prevent over-

fitting and controlling the capacity of the model. Early stopping is another commonly-used

technique for preventing overfitting, where we monitor the losses on both train and valida-

tion sets and stop the training process when the loss on the validation set starts increasing

while training loss continues to decrease. Data augmentation is also a widely used tech-

nique which is to synthetically enlarge the size of the dataset through flipping, rotation,

scaling, translation, etc. (such that the labels remain unchanged) although choosing the

10

right augmentation strategy could be a daunting task. Other approaches to prevent over-

fitting include injecting specific noise to inputs or gradients (Neelakantan et al., 2015),

dropout (Srivastava et al., 2014), ensembling techniques, etc. Regularization methods

can be broadly classified into data-dependent and data-independent regularizers (Guo et al.,

2019). Data-dependent regularizers exploit the underlying structure of the data to constrain

the parameter space. Some examples are data-augmentation methods and regularizers like

mixup (Zhang et al., 2017), manifold mixup (Verma et al., 2019), patchup (Faramarzi et al.,

2020), etc. that work either in the input or the latent space. Data-independent methods

impose constraints on the parameters without exploiting the underlying structure of data.

Some examples include weight-decay, dropout, dropblock (Ghiasi et al., 2018), etc.

2.1.2. Neural Networks

Deep Learning has seen revolutionary performance across various domains in the last

decade. Fundamentally, they are neural networks having different structures and architec-

tures.

Neural networks can consist of one or more layers of trainable neurons, where the

outputs of the current layer are the inputs to the next layer. Neurons are fundamental

computational units partly inspired from biological neurons, that are capable of learning

based on feedback. The neurons have trainable parameters and the outputs of one layer are

passed through a non-linear activation layer, before being fed as input to the next layer. The

outputs of the neural network are computed based on the inputs and are compared against

the ground-truth values to compute the loss. The trainable parameters are updated based

on the loss function using the backpropagation algorithm. The gradients are propagated

from the last layer to the first layer sequentially using the chain rule. The neural networks

are typically end-to-end differentiable (if the activation function is differentiable too) and

hence are capable of end-to-end learning. Deep neural networks are neural networks

with many layers, having novel layers and techniques proposed for better learning custom

to the input data type (through better gradient propagation, higher capacity, etc.). Chain

rule allows for the reuse of gradients computed for parameter updates in lower layers of the

neural network effectively.

11

Feed-forward neural networks: In feed-forward neural networks, every neuron in one

layer has directed connections to neurons in the subsequent layer, i.e. a(l+1) = σ.
(
W (l).a(l) +

b(l)
)
; where al ∈ Rdl , where dl is the dimensionality of layer l, al+1 ∈ Rd(l+1) , where d(l+1)

is the dimensionality of layer l + 1, W (l) ∈ Rd(l+1)×dl is the weight matrix, b(l) ∈ Rd(l+1) is

the bias. Non-linearities or activation functions are crucial for neural networks to learn

many different function families. Activation functions commonly used in neural networks

are sigmoid, ReLU, tanh, etc. (Goodfellow et al., 2016) (equation 2.1.1). Typically, every

neuron in one layer is connected to all the neurons in the subsequent layer and the neurons

in a single layer function completely independently (do not share any connections). This is

called a fully-connected (FC) layer.

For x ∈ R,
sigmoid (x) = 1

1+e−x , tanh (x) = ex−e−x
ex+e−x ,

ReLU (x) =

 x if x > 0

0 otherwise
ELU (x) =

 x if x > 0

α · (ex − 1) otherwise

(2.1.1)

Fig. 2.3. Left - MLP; Right - CNNs. In CNNs, every neuron is only connected to a local

region of the input volume. Image source: reproduced from Stanford CS231n 2

Convolutional Neural Networks (CNNs) are similar to the feed-forward networks in

that they are made up of neurons that have learnable weights and biases. Given an input

image, they output class scores (for classification) through the softmax layer (that typically

converts a vector having K real values into another having K real values that sum to 1),

and loss is backpropagated to update the weights and biases. However, CNNs make an

explicit assumption that they model image data, thereby encode certain structural priors.

Images are very high-dimensional inputs, therefore flattening them to pass it through a feed-

forward network introduces a large number of trainable parameters, which is computationally
2https://cs231n.github.io/convolutional-networks/

12

inefficient. For eg. for an input image size 256×256×3, it has 256∗256∗3 = 196608 weights.

In addition, such flattening also makes the image lose its spatial information. Therefore,

CNNs have neurons arranged in a 3D volume (width, height and number of channels). Every

Conv layer transforms an input 3D volume into an output 3D volume and the final output

layer has dimensions 1×1×number of classes, i.e. a single vector of class scores arranged along

the depth. Figure 2.3 illustrates this difference between CNNs and feed-forward networks.

In CNNs, every neuron is only connected to a local region of the input volume. The spatial

extent of this connectivity is called filter-size or receptive-field of the neuron. Each of the

filters is shared by certain number of neurons. This is called parameter sharing and it’s a

reasonable assumption based on the rationale that if a particular filter is useful for detecting

vertical edges at one location in the image, it should also be useful in detecting vertical edges

at some other location as well. Convolutional networks typically consist of convolutional,

pooling and fully-connected layers. Pooling operation will downsample the input volume

along the spatial dimensions. The Conv and FC layers have parameters whereas ReLU and

Pool layers do not.

Recurrent neural networks (RNNs) are typically used for modeling variable-length

sequential data that have certain temporal structures. For eg. sentences are a se-

quence of words, videos are a sequence of images and audio is a sequence of sound pat-

terns. Recurrent networks enable modeling the conditional distribution of a sequence i.e.

pθ
(
x(t)|x(t−1), . . . x(1)

)
by keeping track of hidden state h(t) that captures the context. At

every time step t, vanilla RNNs use both input x(t) and h(t−1) to predict the output. Pa-

rameters in vanilla RNNs are shared across the different time steps. Vanilla RNNs are

known to suffer from vanishing or exploding gradient problems and hence are not effective

at learning temporal patterns over long sequence lengths. Several variants of RNNs have

been proposed to tackle this problem primarily by introducing cell states and specific gates

that selectively transmit information, most popular ones being Long Short Term Memory

(LSTM) (Hochreiter and Schmidhuber, 1997), Gated Recurrent Unit (GRU) (Chung et al.,

2014) and Non-saturating Recurrent Unit (NRU) (Chandar et al., 2019).

13

Fig. 2.4. Interaction of an agent with the environment. The agent takes action At based

on state St, receives reward Rt+1 and the state of the environment itself changes to St+1.

2.2. Reinforcement Learning
Reinforcement Learning (RL) studies the interaction of an agent in an environment (usu-

ally unknown) by attempting to learn the mapping of states to actions with the goal of the

agent being to maximize its cumulative rewards. In contrast to supervised learning, the

agent is not told what actions to take at each state, eg. a bot playing a game (say chess)

to achieve high scores. Delayed reward signals and learning through trial-and-error are two

aspects that make RL challenging. The RL problem is usually formulated using ideas bor-

rowed from dynamical systems and control theory, especially from the optimal control of

Markov Decision Processes (MDPs).

2.3. Markov Decision Process
Figure 2.4 shows an example of an agent interacting with an environment. The agent

is the learner and everything outside the agent is the environment. The agent can be present

in one of the many states (s ∈ S), takes action (a ∈ A) and the environment presents

the agent with new states and rewards. How the environment reacts to certain actions is

defined by a model which the agent may or may not have access to. The agent and the

environment interact actively through a sequence of actions and rewards that are observed

at time t = 1,2, . . . T . At each time step t, the environment outputs an observation which

14

represents the state st ∈ S, where S is the set of all possible states. The agent takes an

action at ∈ A, where A is the set of all possible actions. Subsequently, the environment

returns a numerical reward rt+1 ∈ R, and the agent transitions to the next state st+1. This

sequence produces a trajectory τ of one episode: τ = s0a0r1s1a1r2 . . . st.

An observation ot is a noisy version of the state. A fully observable environment is one

in which the agent can observe the full state of the world. On the other hand, in a partially

observable environment, the agent only observes ot 6= st.

Most RL problems can be mathematically formulated as a Markov Decision Process

(MDP), which lays the theoretical foundation through which some guarantees can be made.

rt+1 and st+1 are defined as random variables drawn from a probability distribution condi-

tioned on the preceding state and action, P
(
st+1, rt+1 | st = s, at = a

)
. In a finite MDP,

the sets of states and actions are finite. All states in an MDP has “Markov” property which

means that the current state captures the information from the entire history, relevant to

predict the next state and reward distribution, and hence:

P (st+1 | st, st−1, . . . , s1) = P (st+1 | st) (2.3.1)

The initial state s0 is sampled from start-state distribution ρ0, i.e. s0 ∼ ρ0(.) An interaction

between the agent and the environment at every time step t leads to a transition to a new

state. The state transition function can be either stochastic, i.e. st+1 ∼ P (. | st,at) or

deterministic, i.e. st+1 = f(st, at), where f is a deterministic function.

In environments with a discrete action space A, there are a finite number of actions

that the agent can take. On the other hand, in environments with continuous action space,

actions are represented as real-valued vectors.

To summarize, an MDP consists of five elements M = 〈S,A, P,R, γ〉, where S is a set of

states, A is a set of actions, P is a transition probability function, R is reward function and

γ is discount factor for future rewards. In an unknown environment, we do not have perfect

knowledge about P and R.

2.4. Return
The reward is the scalar value that the agent usually receives at every time step that

is dependent on the current state, current action, and sometimes the next state (typically,

15

rt = R(st, at)). The return is a cumulative function of the rewards obtained over a trajectory

τ and is denoted G(τ). The horizon T is the number of time steps in the trajectory. The

return for a finite horizon trajectory is G(τ) = ∑T−1
t=0 γ

trt; whereas for an infinite horizon is

G(τ) = ∑∞
t=0 γ

trt.

The discount factor γ ∈ (0,1) is used to discount more recent rewards, γ close to 0

indicates a myopic and shortsighted agent that cares only about the immediate reward,

whereas γ = 1 indicates that an agent assigns equal importance to rewards achieved both

in immediate and farther future. In an infinite-horizon setting, the return may not have a

finite value if γ = 1, hence discounting (i.e. 0 < γ < 1) is required.

2.5. Policy
A policy π tells the agent what actions to take in any given state st. It is a mapping

from state st to action at that can either be deterministic or stochastic. If the policy is

deterministic, then the action at at any time step t is computed as at = µθ(st), where

µ is a deterministic function with parameters θ. For stochastic policies, the action at is

sampled from a distribution conditioned on the state at ∼ πθ (. | st), where π is a conditional

probability distribution parameterized by θ.

Without any function approximation, the policies would be represented as a big table

with one row for every state containing the probability with which each action should be

taken in that state. However, for large and/or continuous state and action spaces, it is not

possible to maintain this explicit table, so function approximators are used. In such cases,

the policy function can be modeled using different function approximators, most commonly a

deep neural network. Changing the parameters of this policy function influences the agent’s

behavior. A policy π is better than policy π′ if its expected return is greater than that of π′

for all states. When using function approximation, stochastic policies are typically modeled

as categorical distributions for discrete action spaces and diagonal Gaussian distributions for

continuous action spaces. In order to apply these policies, we should be able to sample from

the associated probability distributions.

The objective of RL agents is to learn a policy such that its expected return is maximized.

If both the transition function and policy are stochastic, then the probability of a T -horizon

16

trajectory is given by:

P (τ) = ρ0(S0)
T−1∏
t=0

P (st+1 | st,at) π (at | st) (2.5.1)

which gives an expected return of:

J(π) =
∫
τ
P (τ)G(τ) = Eτ∼π[G(τ)] (2.5.2)

The optimal policy is given by the following equation:

π∗ = arg max
π

J(π). (2.5.3)

2.6. Value functions
The value function measures how rewarding a state or an action is by predicting the

expected future reward. The return (Gt) starting from time t is defined as:

Gt = Rt+1 + γRt+2 + . . . =
∞∑
k=0

γkRt+k+1 (2.6.1)

The state-value of a state s is the expected return if the agent is in this state at time t,

st = s and takes actions from a particular policy.

Vπ(s) = Eπ[Gt | st = s] (2.6.2)

The value of a terminal state, if it exists, is always zero. Vπ is called the state-value

function for any policy π.

The action-value (“Q-value”) of a state-action pair is defined as:

Qπ(s,a) = Eπ[Gt | st = s, at = a] (2.6.3)

which is the expected return starting at state s and taking an action a, followed by taking

actions as per policy π. Qπ is the action-value function for policy π.

In addition, since we follow the target policy π, we can make use of the probability

distribution over possible actions and the Q values to recover the state-value.

Vπ(s) =
∑
a∈A

Qπ(s, a)π(a | s) (2.6.4)

17

The objective of an RL problem is to learn the policy that gets the agent the optimal

expected return. Therefore, it is useful to estimate the value of each state under the optimal

policy, known as the optimal value function.

V∗(s) = max
π

Vπ(s) (2.6.5)

which is the expected value of starting at state s and always acting according to the optimal

policy. The optimal action-value function is defined as:

Q∗(s,a) = max
π

Qπ(s,a) (2.6.6)

which is the expected value of starting at state s and take an action a, and taking actions

from the optimal policy thereafter.

These value functions are related through the following relationships

Vπ(s) = Ea∼π[Qπ(s,a)] (2.6.7)

V∗(s) = max
a

Q∗(s,a) (2.6.8)

The optimal value functions and optimal policy are also related as follows:

π∗(s) = arg max
π

Qπ(s,a) (2.6.9)

π∗(s) = arg max
π

Vπ(s) (2.6.10)

The advantage function measures how much favorable is it to take one action relative to

other actions on average (or the “advantage” of taking that action):

Aπ(s,a) = Qπ(s,a)− Vπ(s) (2.6.11)

It is often used in policy gradient methods (see Section 2.8).

2.7. Bellman equations
Value estimation is one of the main methods for solving an RL problem. One way to

estimate the value of a state is by averaging the returns we get from that state. This method

is known as Monte Carlo (MC) estimation. However, by using the Markov property, one can

obtain value function estimates that have lower variance. This is achieved by expanding the

value function equation as below:

18

Vπ(s) = Eπ[Gt | st = s] (2.7.1)

= Eπ[rt+1 + γrt+2 + γ2rt+3 + . . . | st = s] (2.7.2)

= Eπ[rt+1 + γ(rt+2 + γrt+3 + . . .) | st = s] (2.7.3)

= Eπ[rt+1 + γGt+1 | st = s] (2.7.4)

= Eπ[rt+1 + γVπ(st+1) | st = s] (2.7.5)

where rt+1 is the expected reward from state st and Gt+1 is the return starting from state

st+1 = s′. This expression above is the Bellman equation for Vπ (Bellman, 1956). The Bell-

man equation decomposes the value function into its immediate reward plus the discounted

future value. Qπ(s,a) obeys a similar equation, conditioning on (s,a).

Qπ(s,a) = Eπ[rt+1 + γVπ(st+1) | st = s, at = a] (2.7.6)

= Eπ[rt+1 + γEa∼πQπ(st+1, a) | st = s, at = a] (2.7.7)

The above equations can be further broken down as follows:

Vπ(s) =
∑
a∈A

π(a | s)Qπ(s,a) (2.7.8)

Qπ(s,a) = R(s,a) + γ
∑
s′∈S

P a
ss′Vπ(s′) (2.7.9)

Vπ(s) =
∑
a∈A

π(a | s)
(
R(s,a) + γ

∑
s′∈S

P a
ss′Vπ(s′)

)
(2.7.10)

Qπ(s,a) = R(s,a) + γ
∑
s′∈S

P a
ss′

∑
a′∈A

π(a′ | s′)Qπ(s′, a′) (2.7.11)

These are called as Bellman expectation equations.

The optimal state value function and optimal action-value function also obey a set of

recursive relationships, called Bellman optimality equations:

V∗(s) = max
a∈A

Q∗(s, a) (2.7.12)

Q∗(s,a) = R(s,a) + γ
∑
s′∈S

P a
ss′V∗(s′) (2.7.13)

V∗(s) = max
a∈A

(
R(s,a) + γ

∑
s′∈S

P a
ss′V∗(s′)

)
(2.7.14)

Q∗(s,a) = R(s,a) + γ
∑
s′∈S

P a
ss′ max

a′∈A
Q∗(s′, a′) (2.7.15)

19

As shown above, the main difference between the Bellman expectation equations and Bellman

optimality equations is the max operation over actions, implying that the agent has to choose

the one that yields the highest return. Whenever complete information of the environment

is available, this can be reduced to a planning problem, solvable by Dynamic Programming.

However, in most scenarios, we do not know P a
ss′ or R(s,a), so we cannot solve MDPs by

applying Bellman equations directly.

2.7.1. Dynamic Programming

If the agent has access to the model of the environment (i.e. the model is fully known),

Dynamic programming (DP) can be used to find the optimal policy through iteratively eval-

uating value function and improving policy. DP requires enormous computational resources

and hence is not very efficient.

Policy iteration (Howard, 1960) constantly improves the policy to obtain the optimal

state value function. In this algorithm, V (s) is initialized to 0 and π(s) is initialized to

random for all states. V (s) is then iteratively updated for all states using the following

update rule derived from the Bellman equation, until convergence:

Vt+1(s) = Eπ[r + γVt(s′) | st = s] (2.7.16)

=
∑
a

π(a|s)
∑
s′,r

P (s′, r | s,a)[r + γVt(s′)] (2.7.17)

This is known as the policy evaluation stage. The policy π(s) is then updated for all the

states using the following equation:

π′(s) = arg max
a∈A

∑
s′,r

P (s′, r | s,a)[r + γVt(s′)] (2.7.18)

This is known as policy improvement. If policy improvement results in a better policy

(π′ ≥ π) by acting greedily, then the policy evaluation and policy improvement steps are

repeated until there is no change in the policy.

The Generalized Policy Iteration (GPI) is an iterative process that improves the policy

by altering between policy evaluation and policy improvement. Policy evaluation tries to

find the true values of all the states given the current policy. Policy improvement greedily

chooses the action that maximizes the value of a given state resulting in a better policy (π′).

20

Value Iteration (Howard, 1960) tries to perform both the above steps at once. Specifically,

V (s) is initialized to random values for all states. V (s) is then updated iteratively for all

states, using the following update rule until convergence:

Vt+1(s)← max
a

∑
s′,r

p(s′, r | s,a)[r + γVt(s′)] (2.7.19)

The final policy can be computed by using argmax:

π′(s)← arg max
a

∑
s′,r

p(s′, r | s,a)[r + γVt(s′)] (2.7.20)

Value iteration is guaranteed to converge to the optimal values. Both value-iteration

and policy iteration are offline planning algorithms where the agent assumes that the MDP

model is known. GPI is guaranteed to converge to the optimal policy and usually takes

fewer iterations to converge than the value-iteration algorithm, although each iteration itself

is computationally more expensive.

2.7.2. Monte-Carlo methods

Monte-Carlo (MC) methods learn directly from episodes of experiences (model-free) with-

out modeling the environment dynamics and computes the mean return from the observation.

Consider complete episodes (that terminate): s0a0r1s1a1r2 . . . sT , MC methods computes

return Gt=
∑T−t−1
k=0 γkRt+k+1, i.e. the return of the trajectory from time t onward. The

empirical mean return for state s can now be obtained as:

V (s) =
∑T
t=1 1[st = s]Gt∑T
t=1 1[st = s]

(2.7.21)

where 1[St = s] is a binary indicator function. The visit of state s can be counted every time

("every-visit") or only the first time the state is encountered in one episode ("first-visit"). An

action-value function can be obtained similarly:

Q(s,a) =
∑T
t=1 1[st = s, at = a]Gt∑T
t=1 1[st = s, at = a]

(2.7.22)

By following an idea similar to GPI, we can obtain the optimal policy through MC. The

MC value estimates converge to that state’s true value as the number of visits of that state

tends to infinity. The MC estimate can have high variance, especially if that state is visited

by only one trajectory (very less data) and if the policy or environment is stochastic.

21

2.7.3. Temporal Difference learning

Temporal Difference (TD) learning (Sutton, 1988) tries to combine the best of MC and

dynamic programming. TD is model-free similar to MC and uses the current estimate of

the value function as an approximation of future return similar to DP, an approach called

bootstrapping.

MC requires complete episodes to update the value estimates based on the return (Gt)

as follows

V (st)← V (st) + α
(
Gt − V (st)

)
(2.7.23)

where Gt is the return from time t onward and α ∈ (0,1) is the step size. The main difference

between MC and TD learning is that TD learning can learn from incomplete episodes. The

TD learning update is given by the following equation:

V (st)← V (st) + α
(
rt+1 + γV (st+1)− V (st)

)
(2.7.24)

The difference between (rt+1 + γV (st+1)) and V (st) is called the TD-error.

Action-value estimation can be done similarly,

Q(st, at)← Q(st, at) + α
(
rt+1 + γQ(st+1, at+1)−Q(st, at)

)
(2.7.25)

Optimal policy in TD learning (known as “TD control”) can be learned through either On-

Policy SARSA or Off-Policy Q-Learning.

2.7.4. SARSA

SARSA (Sutton and Barto, 2018) is an on-policy TD control method. We start with state

s0 and choose action a0 = arg maxa∈AQ(s0, a) (ε-greedy is commonly applied). At time t,

after applying action at, the agent gets reward rt+1 and transitions into the next state st+1.

Then, the next action is selected in the same way, i.e. at+1 = arg maxa∈AQ(st+1, a). Q-values

are then updated based on:

Q(st, at)← Q(st, at) + α
(
rt+1 + γQ(st+1, at+1)−Q(st, at)

)
(2.7.26)

In every step of SARSA, the next action is also chosen according to the current policy.

22

2.7.5. Q-Learning

Q-Learning (Watkins and Dayan, 1992) is an off-policy TD control method in which the

optimal action value function is learned from sampled transitions. We start with state s0,

at each time step t, action is selected according to the Q values i.e. at = arg maxa∈AQ(st, a)

and ε-greedy is applied commonly. Q-values are then updated based on:

Q(st, at)← Q(st, at) + α
(
rt+1 + γmax

a∈A
Q(st+1, a)−Q(st, at)

)
(2.7.27)

where α ∈ (0,1) is the step size. It assumes that from st+1 onward, the agent will follow the

policy which maximizes its current value estimates.

2.7.6. Deep Q-Networks (DQN)

Although memorizing the optimal Q values (Q∗) for all state-action pairs is theoretically

possible, it becomes computationally infeasible with large state and action spaces. Q values

can then be approximated using function approximation Q(s, a; θ). The Deep Q-Network

(DQN) algorithm (Mnih et al., 2013) extends the Q-Learning algorithm with neural networks

as function approximators to approximate Q(s,a) and achieve impressive results. However,

Q-learning can suffer from instability and divergence when combined with non-linear func-

tion approximators and bootstrapping. To tackle this issue, the DQN paper proposes two

innovative solutions.

• Experience Replay: All the transitions in an episode are stored in one replay buffer

(RB). Replay buffer has experiences over many episodes. Batches are drawn at ran-

dom from this replay buffer for updating the Q-values, hence samples could be reused

multiple times. This trick helps improve data efficiency and removes correlations in

the sequences observed.

• Target network: Using the same deep neural network to learn and compute target

action-values makes the problem highly non-stationary. DQN solves this issue by

using a separate target network whose weights are frozen to compute the target

values, which makes the learning stable. The weights of the action-value network are

copied onto the target network after every k updates, where k is a hyper-parameter.

23

The loss function is as below:

L(θ) = E(s,a,r,s′)∼U(RB)
[(
r + γmax

a′
Q(s′, a′; θ−)−Q(s,a; θ)

)2]
(2.7.28)

where U(RB) is a uniform distribution over the replay buffer RB; θ− are the parameters of

the target Q-network (frozen).

2.8. Policy Gradient
Policy optimization is a family of RL algorithms that try to learn πθ(a|s) through either

directly optimizing J(πθ) = Eτ∼πθ [G(τ)] using gradient ascent or indirectly maximizing local

approximations of J(πθ). This optimization can be done through either on-policy or off-

policy. In on-policy, the rollouts are generated by acting in the world using the latest

version of the policy, whereas in off-policy the data used for learning comes from a different

policy than the one we are trying to optimize. The most popular algorithms of this family

that have achieved impressive results are Policy Gradient (Williams, 1992), Actor Critic

methods (Sutton and Barto, 2018), Trust Region Policy Optimization (Schulman et al.,

2015), and Proximal Policy Optimization (Schulman et al., 2017).

Policy gradient methods directly optimize the policy πθ(a|s) through gradient ascent.

Let J(θ) be the expected return and our objective is to maximize this expected return.

J(θ) =
∑
s∈S

dπθ(s)Vπθ(s) (2.8.1)

=
∑
s∈S

(
dπθ(s)

∑
a∈A

π(a|s, θ)Qπ(s,a)
)

(2.8.2)

where dπθ(s) is the stationary distribution of Markov Chain for πθ. Intuitively, the goal

is to increase the probability of the actions with a higher expected return. The aim is to use

gradient ascent to optimize the parameters θ of the policy as follows:

θk+1 = θk + α∇θJ(θ) (2.8.3)

24

J(θ) = Eπθ [r] (2.8.4)

=
∑
s∈S

(
dπθ(s)

∑
a∈A

π(a|s; θ)Qπ(s,a)
)

(2.8.5)

∝
∑
s∈S

d(s)
∑
a∈A

π(a|s; θ)Qπ(s,a) (2.8.6)

∇J(θ) =
∑
s∈S

d(s)
∑
a∈A
∇θπ(a|s; θ)Qπ(s,a) (2.8.7)

=
∑
s∈S

d(s)
∑
a∈A

π(a|s; θ)∇θπ(a|s; θ)
π(a|s; θ) Qπ(s,a) (2.8.8)

=
∑
s∈S

d(s)
∑
a∈A

π(a|s; θ)∇θ ln π(a|s; θ)Qπ(s,a) (2.8.9)

= Eπθ [∇θ ln π(a|s; θ)Qπ(s,a)] (2.8.10)

The above result is the Policy Gradient Theorem and it lays the foundation for various

policy gradient algorithms. Vanilla PG also known as REINFORCE relies on Qπ(s,a), an

estimated return by MC methods using episodic trajectories to update the policy parameter

θ.

2.8.1. Policy Gradient with Baseline

In Equation 2.8.10, Qπ(s,a) is used (more generally any return Gt can be used). This can

also be implemented by comparing the action value (or return) with an arbitrary baseline

b(s) that is independent of action, as follows:

∇θJ(θ) = Eπθ [
T∑
t=0
∇θ log πθ(at|st)(Gt − b(st))] (2.8.11)

The baseline b is chosen such that the variance of gradient estimation is reduced and it is

not dependent on actions. In many scenarios, the baseline is simply the moving average

of the rewards observed up to the current time step which encourages the agent to take

actions that are at least as good as the average value of the actions taken thus far. A

commonly used baseline is state-value V (s), in which case we would have the advantage

A(s,a) = Q(s,a)− V (s).

25

2.8.2. Actor-Critic methods

If state-value V (s) function is learned in addition to the policy π, we get Actor-Critic

algorithm. This has two components: i) A Critic that updates value function parameters

w (either action-value Q(s,a) or state-value V (s)), and ii) An Actor that updates policy

parameters θ based on critic’s suggestion. In the standard actor-critic setup, the actor and

critic update equations are as below.

Actor update (policy parameters):

θ ← θ + αθQ(st,at;w)∇θ ln π(at|st; θ). (2.8.12)

Critic update:

w ← w + αwδt∇wQ(st,at;w) (2.8.13)

where δt = rt + γQ(st+1, at+1;w) − Q(st,at;w) and αθ, αw are learning rates of actor and

critic respectively.

Other variants have been proposed that vary in how the actor and critic are implemented

and/or updated.

This concludes the primer on machine learning and reinforcement learning. In the next

chapter, we present topics in lifelong learning and MARL.

26

Chapter 3

Lifelong Learning and Multi-agent

Reinforcement Learning

In this chapter, we will introduce the lifelong learning problem and also provide the necessary

background on MARL required for understanding the work to be presented in this thesis.

3.1. Lifelong Learning
In recent years, ML algorithms and in particular Deep Learning (Goodfellow et al., 2016),

a subfield of ML that uses neural networks to automatically extract features from data has

achieved significant breakthroughs across different domains. This success can be partly at-

tributed to the availability of large datasets and faster compute. Deep learning models

have achieved great performance in computer vision in a variety of tasks : object classi-

fication (He et al., 2016, Krizhevsky et al., 2012, Simonyan and Zisserman, 2014), object

detection (Bochkovskiy et al., 2020, Sandler et al., 2018), semantic segmentation (Badri-

narayanan et al., 2017, He et al., 2017, Jégou et al., 2017), object tracking (Danelljan et al.,

2017, Wang et al., 2019), etc. In natural language processing, deep learning models are

dominating in various applications like machine translation (Bahdanau et al., 2014, Lample

et al., 2017, Vaswani et al., 2017), dialogue systems (Gao et al., 2018, Zhang et al., 2019), text

classification (Conneau et al., 2016, Kumar et al., 2016, Yang et al., 2016), etc. Large scale

models that learn general purpose representations in an unsupervised manner from massive

datasets like BERT, GPT-2, GPT-3 (Devlin et al., 2018, Radford et al., 2019), which can

then be used for several down stream tasks, have also become very popular. With regard to

game play, deep learning models have achieved superhuman performance in perfect informa-

tion games such as Chess, Go or Shogi (Silver et al., 2018) and even in games involving mix

of betrayal and teamwork such as Diplomacy (Anthony et al., 2020, Paquette et al., 2019).

Other areas such as medical imaging (Gulshan et al., 2016), drug discovery (Gottipati et al.,

2020), robotics (Schulman et al., 2015), creativity (Karras et al., 2020) has also seen deep

learning flourish. Thus far, supervised learning is the paradigm that has turned out to be

most successful in deep learning. It typically involves collecting a large training dataset

of input/output pairs which is both expensive and laborious task. Annotating these large

datasets is another cumbersome task, for eg. it could take about four minutes on average to

annotate a single image for semantic segmentation tasks (Bearman et al., 2016). Hence, they

are highly sample inefficient. These supervised learning models also typically have large

training times (slow convergence) and are prone to changes in the training environment,

often requiring re-training from scratch. Thus, these models have poor adaptability.

Lifelong learning (Thrun, 1998) attempts to break the learning problem into smaller

tasks and learn from these tasks in an incremental manner. This paradigm can potentially

solve the main drawbacks of the supervised deep learning models highlighted above which

are sample inefficiency, slow convergence and poor adaptability.

In contrast, humans can quickly and continually learn new tasks while maintaining the

skills to solve previously learned tasks. The ability of an AI system to effectively update new

information over time is known as lifelong learning or continual learning, and one can pos-

tulate this as one of the fundamental ingredients of general AI. Balancing between learning

from recent experiences while not forgetting the knowledge acquired from the past is a well-

studied problem known as the stability-plasticity dilemma (Carpenter and Grossberg,

1987) in neural networks. The stability refers to preserving the previously learned knowledge

while plasticity refers to updating the model to learn new tasks. Increasing the plasticity of

the model leads to more forgetting i.e. less stability and on a similar note, increasing the

stability of the model can prevent the network from learning new tasks. Catastrophic forget-

ting is a phenomenon in which training the model with new information obstructs previously

learned knowledge. This is a common failure case in training neural networks to adapt to new

tasks or learning from non-stationary data streams (i.e. non-iid) (McCloskey and Cohen,

1989). Alleviating catastrophic-forgetting is crucial to enable real-world applications where

28

input distributions can shift and where retraining on past data or from scratch is infeasible.

While lifelong learning has been identified as an important and challenging problem decades

ago (Ring, 1998, Thrun, 1998), it has recently seen a surge of interest (Aljundi et al., 2018,

Chaudhry et al., 2018, 2019, Kirkpatrick et al., 2017, Lopez-Paz and Ranzato, 2017) with

the success of deep learning.

A typical supervised ML setup assumes the availability of a labeled dataset D =

{xi, yi}Ni=1, that is sampled independent and identically distributed (i.i.d) from a joint proba-

bility distribution P (X,Y) that is usually fixed. The objective is to learn a model fθ : X → Y ,

that is parametrized by θ which predicts a target vector (ȳ ∈ Y) for any input (x̄ ∈ X).

This is usually done through the principle of Empirical Risk Minimization (ERM) (Vapnik,

2013).

E[l(f(x), y)] =
∫
l(f(x), y)dP (X,Y) ≈ 1

N

N∑
i=1

l(f(xi), yi) (3.1.1)

where l is a loss function or objective function. The objective of the neural network optimizer

is to minimize this loss function.

In a lifelong learning setup, the learning problem is divided into a sequence of tasks

T = {T1, T2, . . .}, where the number of tasks may not be known upfront. Each task t

consists of Nt data points drawn from a probability distribution (xi, yi) ∼ Pt, where x, y are

the input and output respectively. Formally, the multitask objective function is

1
T

T∑
t=1

1
Nt

Nt∑
i=1

l(f(xti), yti) (3.1.2)

However, the constraint imposed in lifelong learning is that all tasks are not observed at

once but in a sequence. Specifically, when accessing the dataset of task t, the datasets of all

other tasks (i 6= t) are not available. This makes the problem non-iid and equation 3.1.2 is

no longer valid, as it assumes that the data samples are drawn i.i.d from a fixed probability

distribution.

3.1.1. Characteristics of a good lifelong learning system

An ideal lifelong learner should have the below desiderata:

• Less forgetting/Backward transfer: The lifelong learner should not forget the

knowledge from previous tasks catastrophically as it experiences new tasks. It exhibits

29

Fig. 3.1. Split MNIST protocol - The MNIST dataset is divided into 5 disjoint subsets, each

subset having 2 randomly sampled classes without replacement. Image source: reproduced

from the paper (Van de Ven and Tolias, 2019).

negative backward transfer if it forgets, while an ideal lifelong learner should exhibit

positive backward transfer, i.e. performance on previous tasks should improve as it

experiences similar new tasks.

• Forward transfer: As the learner encounters new tasks, it should be able to leverage

knowledge gathered from previous tasks to learn new tasks quickly.

• Limited memory: The memory footprint of a lifelong learner should not grow

linearly with the number of tasks.

• Fast adaptation: The lifelong learner should learn from a stream of data that is

not randomly shuffled. Hence, it should adapt almost in real time to facilitate online

learning.

3.1.2. Lifelong learning scenarios

When considering the problem of a single neural network adapting sequentially to a

series of tasks, there could be three scenarios that occur of increasing difficulty (Van de

Ven and Tolias, 2019). This categorization also helps to standardize evaluation enabling

better comparison among methods.

• Task-incremental - In Task-incremental learning (Task-IL), model has the access to

task-ID. Hence, common network architecture in this scenario has a “multi-headed”

output layer with each task having its own output units but the rest of the network

is usually shared.

• Domain-incremental - In Domain-incremental learning (Domain-IL), models are

only required to solve the task at hand and task-ID is not available at test time.

30

• Class-incremental - In Class-incremental learning (Class-IL), the models must infer

task-ID at test time.

For eg. in the Split MNIST protocol (Figure 3.1), we can think of the three scenarios as

follows: a) Task-IL : Is it 1’st or 2’nd class given the task-ID? (e.g. 0 or 1), b) Domain-IL: Is

it 1’st or 2’nd class with task-ID unknown, (e.g. [0,2,4,6,8] or [1,3,5,7,9]), c) Class-IL: Which

class is it with task-ID unknown (e.g. choice from 0 to 9).

3.1.3. Lifelong learning methods

Existing algorithms for lifelong learning can be broadly classified into a) Replay-based

methods, b) Regularization-based methods, and c) Parameter isolation methods.

• Replay methods - These methods store raw samples from the dataset or generates

fake samples with a generative model. The samples from the previous tasks are

replayed when learning a new task, which aids in alleviating catastrophic forgetting.

Methods such as (Chaudhry et al., 2019, Rebuffi et al., 2017) explicitly retrain on

the stored samples, thus are prone to overfitting the subset of stored samples, while

methods such as (Chaudhry et al., 2018) constrain the optimization using these stored

samples by projecting the gradients such that the average loss over the previous tasks

does not increase.

• Regularization-based methods - These methods add an additional regularization

term that consolidates knowledge from previous tasks when learning on new tasks, in-

stead of storing samples. Assuming parameters of a neural network are independent,

the importance of all its parameters is estimated and changes to important parame-

ters are penalized. Methods such as Elastic weight consolidation (EWC) (Kirkpatrick

et al., 2017), Variational Continual Learning (VCL) (Nguyen et al., 2017) are some ex-

amples of this category drawing inspiration from Bayesian methods. Other examples

include distillation methods such as (Li and Hoiem, 2017) that focus on knowledge

distillation from a previous model that is trained on an older task to the current

model being trained with new data.

• Parameter isolation methods - These methods have different model parameters

to every task to help alleviate forgetting. This could be through having new branches

for new tasks while the old task parameters are frozen (Rusu et al., 2016) or having

31

a static architecture with every task having their allocated parts. In the latter case,

parts corresponding to previous tasks are masked out during new task training (Fer-

nando et al., 2017, Mallya and Lazebnik, 2018).

3.1.4. Benchmarks

Some of the commonly used benchmarks in supervised lifelong learning are as below:

• Permuted MNIST: MNIST dataset consists of 60,000 train images and 10,000 test

images of handwritten digits of 10 classes. Each image is of size 28× 28. Every task

consists of a random permutation of the input pixels applied to all images in the

dataset.

• Rotated MNIST: Every task is defined by applying some random rotation to all

images.

• Split MNIST: The dataset is divided into 5 disjoint subsets, each subset having 2

randomly sampled classes without replacement (Figure 3.1).

• Split CIFAR-10: CIFAR-10 consists of 60,000 colored images of 10 different ob-

jects, each being being of size 32 × 32. In Split CIFAR-10, the dataset is divided

into 5 disjoint subsets, each subset consists of 2 randomly sampled classes without

replacement.

• Split CIFAR-100: CIFAR-100 consists of 60,000 colored images of 100 different

categories. Each image is of size 32× 32. In Split CIFAR-100, the dataset is divided

into 20 disjoint subsets, each subset consists of 5 randomly sampled classes without

replacement.

• Split CUB: CUB contains 11,788 colored images of 200 bird classes. Each image is

of size 224× 224. In Split CUB, the dataset is divided into 20 disjoint subsets, each

subset consists of 10 randomly sampled classes without replacement.

• Split miniImageNet: miniImageNet contains 60,000 colored images of 100 different

objects. Each image is of size 84× 84. In Split miniImageNet, the dataset is divided

into 20 disjoint subsets, each subset consists of 5 randomly sampled classes without

replacement.

32

• Core50: Core50 (Lomonaco and Maltoni, 2017) is a dataset consisting of 50 domestic

objects belonging to 10 categories. Classification can be performed at object level

(50 classes) or at category level (10 classes).

• CRIB: CRIB (Stojanov et al., 2019) supports existing 3D datasets and is capable

of generating unlimited data for incremental instance and category learning. They

also introduce a new 3D object dataset, Toys-200 that contains 200 unique toy-like

object instances.

• OpenLoris: OpenLoris (Shi et al., 2020) provides visual, inertial and odometry data

recorded with real robots in real scenes, and ground-truth robot trajectories acquired

by motion capture system or high-resolution LiDARs, primarily for benchmarking

lifelong SLAM algorithms.

• Stream 51: Stream 51 (Roady et al., 2020) is a large-scale streaming dataset having

images that are temporally correlated with training instances drawn from 51 unique

classes.

• IIRC: IIRC (Abdelsalam et al., 2020) starts training with some coarse, high-level

classes and observes new, fine-grained classes as it trains over new tasks.

With regard to lifelong RL benchmarks,

• (Henderson et al., 2017) proposed 50 new variations to OpenAI Gym environments

through modifying some aspects of either the environments or agents like gravity,

morphology of the agent’s body, or goal positions.

• (Al-Shedivat et al., 2017) introduced RoboSumo — a 3D environment based on

MuJoCo physics simulator that allows pairs of agents to compete against each other.

The robots differ in anatomy: the number of legs, their positions, and constraints on

the thigh and knee joints.

• (Lomonaco et al., 2020) designed CRLMaze based on VizDoom (Kempka et al.,

2016), an object-picking lifelong learning task that is composed of 4 scenarios (Light,

Texture, Object, All) of incremental difficulty and a total of 12 maps.

• (Cobbe et al., 2019) proposed Coinrun, that is a procedurally generated environ-

ment having different training and testing sets to measure generalization in RL.

• Recently, Jelly Bean World (JBW) (Platanios et al., 2020) was introduced as a

testbed to develop agents with never-ending learning capabilities. It provides support

33

to create non-stationary environments with wide range of tasks including multi-task

and multi-modal settings. These are 2D grid worlds filled with items in which agents

can navigate.

While these are interesting benchmarks, they still need synthetic modifications to either

the environment or the agent to introduce non-stationarity.

3.2. Multi-agent RL
Progress in deep RL has mostly focused on settings where a single agent needs to solve a

static task. However, many real-world applications such as self-driving cars, cyber-physical

systems, etc. involve environments that contain a large number of learning agents. Multi-

agent RL (MARL) addresses the sequential decision-making problem when there are multiple

autonomous agents that interact in a common environment, each of which aims to optimize

its own long-term return. MARL takes into account the presence of other learning agents’

in the environment and hence the environment is non-stationary from one agent’s point of

view. For this reason, MARL can be also be seen as a stepping stone towards developing

systems that have human-like reasoning abilities. MARL framework can potentially learn

higher cognitive concepts like reciprocity, theory of mind etc. that can facilitate artificial

agents’ cooperation amongst themselves, as well as humans. Theory of mind refers to the

ability of an agent to think from other agents’ perspectives and amend its actions.

3.2.1. MARL framework

The evolution of the state and the reward received by each agent are influenced by the

joint actions of all agents. We can categorize framework for studying theoretical aspects into

a) Markov or stochastic games and b) Extensive-form games.

A Markov game is defined by a tuple (N ,S, {Ai}i∈N ,P , {Ri}i∈N , γ), where N =

{1, . . . , N} denotes the set of N > 1 agents, S is the state space observed by all the agents, Ai

denotes the action space of agent i. SupposeA := A1×A2×. . .×AN , then P : S×A → ∆(S)

denotes the transition probability from any state s ∈ S to any state s′ ∈ S for any joint

action a ∈ A, Ri : S × A × S → R is the reward function that determines the immediate

reward received by agent i for a transition from (s,a) to s′; γ ∈ [0,1] is the discount factor.

34

At every time step t, each agent i ∈ N executes an action ait in state st, transitions to

state st+1. Each agent i receives a reward Ri(st, at, st+1). Every agent i tries to optimize its

own long-term return by finding the policy πi : S → ∆(Ai) such that ait ∼ πi(.|st). Hence,

the value-function V i : S → R of agent i is a function of the joint policy π : S → ∆(A) (i.e.

π(a|s) := Πi∈Nπ
i(ai|s)).

V i
πi,π−i(s) := E

[∑
t≥0

γtRi(st, at, st+1)
∣∣∣ait ∼ πi(.|st), s0 = s

]
(3.2.1)

where −i represents indices of all agents in N except agent i.

Most common solution concept in Markov game is the Nash Equilibrium (NE) (Başar

and Olsder, 1998). A nash equilibrium of the Markov game (N ,S, {Ai}i∈N ,P , {Ri}i∈N , γ)

is a joint policy π∗ = (π1,∗, π2,∗, . . . πN,∗), such that for any s ∈ S and i ∈ N

V i
πi,∗,π−i,∗(s) ≥ V i

πi,π−i,∗(s), (3.2.2)

for any πi. In essence, it characterizes an equilibrium point π∗ from which none of the agents

has any incentive to deviate. NE always exists for a discounted MG but may not necessarily

be unique in general (Filar and Vrieze, 2012).

Cooperative setting: In a fully cooperative setting, all agents share a common reward

function, i.e. R1 = R2 = . . . RN = R. Hence, the value function and Q-function are identical

to all agents, thus enabling the application of single-agent RL algorithms, e.g., Q-learning

(eq 2.7.27). There could also be team-average reward models (Doan et al., 2019, Zhang et al.,

2018) in which the agents are allowed to have different reward functions (potentially private

to each agent), with the cooperative goal being to optimize the average reward

R̄(s,a,s′) := 1
N

∑
i∈N

Ri(s,a,s′) (3.2.3)

for any (s,a,s′) ∈ S × A × S. This team-average model facilitates the development of

decentralized MARL algorithms.

Competitive setting: Fully competitive settings in MARL can be usually modeled as

zero-sum Markov games, i.e. ∑
i∈N R

i(s,a,s′) = 0 for any (s,a,s′). This setting is widely

applicable in game-playing (Berner et al., 2019, Silver et al., 2017).

Mixed setting: In this setting, there is no restriction imposed on the goal and relation-

ship among the agents. Each agent is self-interested, whose reward may be conflicting with

others’. It is also known as the general-sum setting.

35

Challenges in MARL: Non-unique learning goals, non-stationarity due to multiple

agents learning simultaneously, scability issues arising due to combinatorial nature, credit

assignment i.e. which agent contributed how much for the team performance make MARL

very challenging.

Common MARL methods: In independent learning, the agents can only observe

local action and reward. Assuming stationary environment (i.e. by ignoring other agents in

the environment), (Tan, 1993) use vanilla Q-learning, henceforth called as Independent Q-

Learners (IQL). Hence, independent learning suffer from non-convergence in general. Joint-

action learners (JALs) model the strategies of the opponents explicitly by taking into account

the joint-action of all the agents in the Q-learning update (the agent can observe the actions

of others) (Claus and Boutilier, 1998). Most works assume having a centralized controller

that can collect information about joint actions, joint rewards and joint observations and

design local policies for all agents (Foerster et al., 2018, Rashid et al., 2018) leading to

the centralized-training-decentralized-execution paradigm. This paradigm simplifies

the analysis for cooperative settings through the use of single-agent RL analysis, while for

non-cooperative settings, it does not help much. Under this paradigm, information can be

exchanged freely amongst all the agents during centralized training, as long as the final

policies rely only on local observations during decentralized execution. A fully-decentralized

learning scheme is usually preferred as the assumption of a central controller is not pragmatic

in general, except in cases where the agents can access a simulator such as video games and

robotics.

Decentralized-POMDP (Dec-POMDP) (Oliehoek and Amato, 2016) is an extension of

Markov game model previously described, to partially observed setting. It shares the reward

function and the transition model similar to Markov game, but the agent only has access to

its local observations si. Partially observed Markov games under the cooperative setting are

usually formulated as Dec-POMDPs. Standard MARL methods for Dec-POMDPs typically

focus on the self-play (SP) setting (Tesauro, 1994) where agents learn by playing the game

with themselves repeatedly. In self-play, the agent (single parameter set) controls both

players during training and iteratively improves both players’ strategies. The agent then

uses this learned strategy at test time. If it converges, self-play finds a Nash equilibrium of

the game and gives rise to superhuman performance in two-player zero-sum games such as

36

Chess, Go (Silver et al., 2018) and Poker (Brown and Sandholm, 2018). Methods such as

Value Decomposition Networks (VDNs) (Sunehag et al., 2017), QMIX (Rashid et al., 2018)

use self-play to optimize team performance. QMIX and VDN try to exploit independence

among agents through factorizing value functions. VDNs decompose a team action-value

function into individual value functions across the agents such that these pieces can be

easily added. Similarly, QMIX decomposes a team action-value function. However, QMIX

assumes a mixing network (instead of the sum) that combines the local values in a non-linear

way, which can represent monotonic action-value functions.

As seen previously in section 2.2, it is imperative for an RL agent to explore to discover

good policies through trial and error. However, naive exploration will add noise to the

policy of the agent during the training process, thus making their actions less informative

to their teammates. Bayesian Action Decoder (BAD) (Foerster et al., 2019) explores in the

space of deterministic partial policies instead of actions, and samples these policies from a

distribution that conditions on a common knowledge Bayesian belief. However, since BAD

requires tracking an explicit common knowledge Bayesian belief, it adds a computational

burden due to the required sampling steps as well as it uses expert knowledge regarding

the game dynamics. Reliance on this common knowledge also limits the generality of the

method. Typically, BAD is trained using actor-critic methods which are sample inefficient

and suffer from local optima. Population-based training is used in (Foerster et al., 2019)

to get around this, further increasing the number of samples required. Simplified Action

Decoder (SAD) (Hu and Foerster, 2019) was proposed to address the above-mentioned

drawbacks in BAD. SAD has a different approach towards resolving this conflict between

being interpretable and exploring. It also relies on the centralized training with decentralized

execution paradigm. During training, SAD allows other agents to not only observe the chosen

exploratory action, but instead, agents also observe the greedy action of their teammates.

The greedy actions are not executed by the environment and are only meant to be additional

information to the teammates. In essence, in SAD each agent takes two different actions at

every time step: a greedy action, which is not presented to the environment but observed

by the teammates at the next time step as an additional input, and the exploratory action

that gets executed by the environment and is observed by the teammates as part of the

environment dynamics. During greedy execution, the observed environment action can be

37

used instead of centralized information for the additional input, since now the agent has

stopped exploring. Other Play (OP) (Hu et al., 2020) is a learning algorithm that enhances

self-play by exploiting known symmetries (φ) in the underlying game. OP has been shown

to construct good strategies for the zero-shot coordination problem. Zero-shot coordination

refers to the setting where an RL agent should coordinate with unseen novel partners at

test-time without any chance to adapt its policy to the partner (for eg. fine-tuning or co-

training for a few games). They assume that every Markov game also comes with a set

of symmetries that are arbitrary relabeling of the state and/or action space, that leave

trajectories unchanged up to relabeling. Agents have no way to break the symmetry.

Extensive-form games: Extensive form games (Shoham and Leyton-Brown, 2008) is

another paradigm used for modeling MARL problems. This framework can handle imperfect

information in MARL and is rooted in computational game theory. These are usually used

to model non-cooperative settings.

This concludes the presentation of fundamental background topics required for under-

standing the work presented in this thesis. In the next chapter, we jump straight into our

Lifelong Hanabi setup.

.

38

Chapter 4

Lifelong Hanabi setup

In this chapter, we will introduce the Hanabi game as well as the Lifelong Hanabi setup,

which is one of our main contributions of this thesis. We also argue how the fields of MARL

and Lifelong learning are closely tied, how progress in one can benefit the other.

4.1. Hanabi
Hanabi is a partially-observable, fully cooperative, 2-5 player card game in which all

players work together to form piles of cards referred to as fireworks. It has recently been

proposed as a new benchmark challenge for AI research (Bard et al., 2020), in particular for

theory of mind reasoning and ad-hoc cooperation. Each card has a rank from 1 to 5, and a

color that could be one of the following: red, green, blue, yellow and white. Each firework

(one per color) starts with a 1 and is completed once the 5 has been added. There are three

1s, one 5, two 2s, two 3s and two 4s for each of the colors, adding up to a total of 50 cards

in the deck. Since there is only one 5, it needs to be used very carefully. In a 2-player game,

each player maintains a 5-card hand. The unique characteristic in Hanabi is that players

can observe the cards held by their team mates but they cannot observe their own cards and

thus need to exchange information with each other in order to understand what cards can be

played. Thus the players need to find conventions that allow them to exchange information

effectively from their local observations through their actions. Actions taken by a player are

observed by all team mates. In each turn, a player can play or discard a card in their hand,

or give a hint to their partner by spending a hint token. Players can take “hint” actions, in

which they reveal the subset of a team mate’s hand that matches a specific rank or color.

Fig. 4.1. Hanabi game state showing the hint tokens, life tokens, discard pile and playing

cards.

Some example hints are “Your third and fifth cards are 1s” or “Your first and fourth cards are

red”. These hint actions cost information tokens that are scarce, which can be replenished

by either discarding a card or successfully playing a 5 (i.e. completing one firework), both

of which lead to regaining one hint token. The team shares 8 hint tokens at the start of

the game. Discarding a card is an action that both removes the card from the game and

makes it visible to all players. Finally, players can also choose to play a card. If this card

is the next card for the firework of the corresponding color, it is added to the firework and

the team scores one point. Otherwise the card is removed from the game, its identity is

revealed, and the team loses one of the 3 life tokens. If the team runs out of life tokens

(“bomb out”) before the end of the game, all points accumulated so far are lost, and the

game finishes immediately. In essence, the objective in Hanabi is to form completing stacks

of cards in order from 1 to 5, one for each color. These rules result in a maximum score

of 5 × 5 = 25 points in any game, which corresponds to all five fireworks being completed

40

with five cards per firework. Figure 4.1 illustrates an example Hanabi game state. Thus,

Hanabi is a challenging game that requires the agent to possess the theory of mind (Premack

and Woodruff, 1978, Rabinowitz et al., 2018) in order to cooperate effectively. The theory

of mind is the ability of an agent to see the world through the lens of other agents. It is

about asking what a given action by another agent implies about the state of the world and

it requires understanding of why this action was taken i.e. doing counterfactual reasoning.

Ad-hoc and Zero-shot coordination: Learning in Dec-POMDPs is typically done

through self-play. Optimal self-play policies usually rely on arbitrary conventions, which the

whole team can jointly coordinate on during training. However, many real-world problems

require agents to cooperate with other, unseen agents and humans at test time. Ad-hoc team

play setting in Hanabi refers to developing RL agents that can coordinate well with unknown

novel partners (that are independently trained agents) that they have not been trained with,

without providing the agent “sufficient” chance to adapt its policy to its partner at test-time.

(Hu et al., 2020) refer to the setting where the RL agent has to coordinate strictly without

providing “any” chance to adapt or fine-tune at test time as the zero-shot coordination

setting. Both ad-hoc and zero-shot settings are crucial for developing learning algorithms

that can produce robust solutions that are capable of potentially coordinating even with

humans. The main difference between these two settings is that in the ad-hoc setting, the

agent can play a few games with the new partner to adapt its policy, while in the zero-shot

setting it has to strictly coordinate on the fly.

4.2. Multi-Agent RL and Lifelong Learning
MARL for Lifelong learning: As seen before, many machine learning algorithms

make the assumption that the observations in the dataset are i.i.d. However, in many

real-world scenarios, this assumption is violated because the underlying data distribution is

non-stationary. Lifelong learning tries to address this problem, where the non-stationarity

of data is usually described as a sequence of distinct tasks. On the other hand, MARL

is inherently non-stationary due to changing behavior of other agents present in the envi-

ronment. Therefore, MARL is a realistic scenario for lifelong learning. Another source of

non-stationarity in MARL arises when the agent has to interact with different agents over

its lifetime, even if the other agents are fixed. For example, in the game of Hanabi, we are

41

interested in designing a single agent that can learn to coordinate well with a sequence of

agents it will see over its lifetime. This is a lifelong learning problem.

Lifelong learning for MARL: Standard MARL methods typically focus on the cen-

tralized training with decentralized execution paradigm where agents have access to other

agents’ policies and observations during training (OroojlooyJadid and Hajinezhad, 2019,

Zhang et al., 2019). Self-Play (Tesauro, 1995), the most common centralized training setting

involves training a single agent against itself without any extra supervision. While this strat-

egy works very well in competitive settings like playing the game of Go (Silver et al., 2016),

in cooperative settings it can produce agents that establish highly specialized conventions

that do not carry over to novel partners they have not been trained with (Bard et al., 2020).

In particular, Bard et al. (2020) show that even though RL agents achieve a decent score

after training in the self-play setting, their performance drops off sharply in the zero-shot

coordination scenario, with some agents scoring essentially zero. Therefore, self-play agents

fail to learn robust strategies that facilitate cooperation with other agents. Lifelong learn-

ing provides a natural framework to transfer knowledge from previous experience to future

scenarios. Hence, in this thesis, we consider lifelong learning as an alternative to self-play

in MARL with the hope that lifelong learning algorithms can learn to coordinate well with

unseen agents.

4.3. Lifelong Hanabi: A Benchmark for Lifelong Rein-

forcement Learning
As shown in Figure 4.2, in our Lifelong RL setup, the learner (∼ ptrain) is trained se-

quentially on a set of tasks M = {Mt}Tt=1 sampled from a distribution ptrain over diverse

strategies that perform well in Hanabi. The objective of the learner is to learn to coordinate

well with its partners during continual training, with the ultimate goal of learning to coor-

dinate well with unseen agents at the end of the training. During the testing phase, in order

to measure generalization performance, the learner is evaluated with some random agents

sampled from ptest. Although we consider Hanabi, a fully cooperative game in this work,

our proposed lifelong RL setup can be easily extended to other multi-agent scenarios (e.g.

fully competitive, mixed cooperative-competitive, etc.). Our proposed setup consists of three

42

Fig. 4.2. Our Lifelong Hanabi setup consists of three phases: 1- Pre-training (Optional):

In this phase, a pool of agents are trained through SP, 2- Continual training: The learner

is taken from the pool (∼ ptrain) and trained sequentially with some partners (∼ ptrain) and

periodically evaluated against all the partners, 3- Testing: The learner is evaluated with a

set of random agents excluding its partners (∼ ptest) to measure generalization.

phases: (1) Pre-training, (2) Continual-training, and (3) Testing. The detailed description

of each phase is as follows:

Pre-training: In this phase, agents are trained through SP to play the game of Hanabi.

We consider several recent MARL methods for training the agents (IQL/VDN/OP/SAD,

and their combinations; refer sections 3.2.1) across different seeds and architectures leading

to a pool of agents having diverse strategies.

Continual-training: An agent sampled from the pool is chosen as the learner and is

trained sequentially with a set of agents (partners) for a fixed number of games per partner.

The learner is also periodically evaluated with all its partners under both zero-shot and

few-shot settings. In order to implement memory-based lifelong learning algorithms (ER,

A-GEM, etc.), we also include an episodic memory that is used to store some transitions

from every task, which can be then be used for replaying in the future tasks.

Testing: The learner is evaluated with K random agents sampled from the pool exclud-

ing its partners in order to measure the generalization performance.

4.3.1. Pool of Agents

The cross-play matrix of all the 100 agents trained with different MARL algorithms is

shown in figure 4.3. There are five types of architectures with two different seeds per MARL

algorithm. Auxiliary task (AUX) in Hanabi is to predict the card of player’s own hand. In

our experiments, it is to predict the status of a card, which can be playable, discardable, or

43

Fig. 4.3. The pool of 100 agents pre-trained through self-play using different MARL meth-

ods (IQL/VDN/OP/AUX/SAD, and their combinations). 10 agents having 5 different ar-

chitectures with 2 seeds are generated with each of these MARL methods. (i, j)th element is

the average score of agent i paired with j over 5k games. The diagonal entries indicate SP

scores.

unknown. The loss between the predicted hand and ground-truth labels is the average cross

entropy loss per card and is simply added to the TD-error of RL during training.

4.3.2. Evaluation methods

We consider two modes of evaluation in our setup : (a) zero-shot and (b) few-shot. In

zero-shot setting, the learner is evaluated with another agent without providing it a chance

to make updates to its own policy through its interaction with the other agent. On the

44

other hand, in the few-shot setting, the learner plays a few games with the other agent,

thereby adapting its policy through interaction, before being evaluated. We believe agents

performing well under both these evaluation settings are crucial to developing AI systems

that can adapt well to unknown partners not just in Hanabi but can also facilitate effective

collaboration with humans. Few-shot evaluation setting also opens a door to explore recent

advances in Meta-RL algorithms to enable fast adaptation.

4.3.3. Metrics

We measure the learner ’s performance during continual training with some standard

metrics from the lifelong learning literature such as average score (A), forgetting (F), and

forward transfer (FT) (Chaudhry et al., 2018, Lopez-Paz and Ranzato, 2017). We also define

a metric for measuring OOD generalization in our setup called generalization improvement

score (GIS), inspired by Zhang et al. (2018). To calculate these metrics, we map Hanabi

scores at the end of the game from [0, 25] to [0, 1] to have values more consistent with the

literature.

Average score (A ∈ [0, 1]): Let ai,j be the score of the learner versus the jth partner,

after training it with the ith partner in sequential training. The average score of the learner

at task t (At) is defined as:

At = 1
t

t∑
j=1

at,j (4.3.1)

Forgetting(F ∈ [−1, 1]): Let f tj represent the forgetting on task j after the learner is

trained on task t and is computed as:

f tj = max
l∈1,...,t−1

al,j − at,j (4.3.2)

The average forgetting at task t is then defined as:

Ft = 1
t− 1

t−1∑
j=1

f tj (4.3.3)

Average future score (FT ∈ [0, 1]): Let ai,j be the score of the learner versus the jth

partner, after training it with the ith partner in sequential training. The average future score

(or forward transfer) of the learner at task t (FTt) is defined as:

45

FTt = 1
T − t

T∑
j=t+1

at,j (4.3.4)

Generalization Improvement Score (GIS ∈ [0, 1]): (Zhang et al., 2018) define in-

task generalization as the difference in the performance of an RL algorithm between a set of

training and testing trajectories all generated by the same simulator. In this case, the only

source of variation is through random seeds. However, in our work, we are more interested

in the out-of-task generalization that can be defined as follows. Let a0,k and aN,k be the

score of the learner versus the kth random agent sampled from the pool (different from its

partners) before the start of LLL and at the end of continual training, respectively (T is

number of tasks in LLL). The GIS is computed as follows:

GIS = 1
K

K∑
k=1

(aT,k − a0,k) (4.3.5)

where K is the total number of unseen agents.

This concludes the presentation of our Lifelong Hanabi setup as well as the modes and

metrics used for evaluation. In the next chapter, we benchmark several popular lifelong

learning algorithms and provide experimental results.

46

Chapter 5

Experiments and Results

In this chapter, we understand how standard lifelong learning algorithms perform in Lifelong

Hanabi and also provide experimental evidence on hard and easy settings that we introduce

later in this chapter. In addition, we also see how well our lifelong-learned agent performs

when compared to other MARL methods on the zero-shot coordination setting.

Figure 5.1 showcases how continual training can lead to improved scores and better zero-

shot coordination. An IQL agent (pre-trained with self-play) is trained sequentially with

5 partners that correspond to the hard setting (ordering denoted by arrows in Figure 5.1),

and then evaluated with both its partners seen during continual training as well as some

unseen agents (SAD+AUX+OP, VDN+AUX). In this figure, we consider 5 agents each of

VDN+AUX and SAD+AUX+OP mainly for measuring the generalization performance of

our lifelong learned agent. Recall from Chapter 3 that a SAD agent allows other agents to

not only observe the chosen exploratory action but also observe the greedy action of their

teammates, while a VDN agent decomposes a team action-value function into individual

value functions across the agents such that the pieces can be easily added. Auxiliary task

(AUX) is predicting the player’s own hand. Sections (C) and (E) in Figure 5.1 show the

performance of the IQL agent on unseen agents before and after continual training respec-

tively, clearly showing signs of OOD generalization. Likewise, sections (A) and (D) show

the performance before and after training respectively with its partners used in continual

training. For completeness, we also show the performance of MTL with partners as well as

with the same unseen agents after training.

Fig. 5.1. CP scores before (left) and after continual training (right) – (i, j)th element is

the average score of agent i paired with j. [A-C] is before continual training – (A) Initial

scores of the learner with its partners, (B) Cross-play scores amongst the partners, low scores

indicate they are far apart in the strategy space, (C) Initial generalization scores with some

unseen agents. The learner is then trained continually with its partners following the order

indicated by the arrows. [D-E] is after continual training – (D) Scores with the original

learner and its partners, (E) Generalization scores with the same unseen agents.

As described in Section 4.3, we first pre-train a set of agents to play the game of Hanabi

through self-play. Our RL agents are based on the distributed deep recurrent Q-learning

with prioritized experience replay R2D2 architecture (Kapturowski et al., 2018). Training

consists of a large number of parallel environments that invoke a deep neural network to

approximate the Q function at each time step to generate trajectories, a prioritized replay

buffer that is distributed and shared by N asynchronous actors to store the trajectories (Hor-

gan et al., 2018). A training loop updates the neural network using samples from the replay

48

buffer. In each actor thread, there are K environments run sequentially and the queries

from these different environments are batched dynamically together making it efficient to

run on GPUs (Espeholt et al., 2019), thus improving the throughput and efficiency. To

update the model, a centralized trainer samples mini-batches from the replay buffer. The

observation batch is then fed into an actor that utilizes GPUs to compute a batch of actions.

All asynchronous actors share 2 GPUs leading to faster data generation and the trainer uses

another GPU for gradient computation and model updates. This is different from the stan-

dard RL settings which run single actor and single environment in each thread on a CPU.

This mechanism enables to run a very large number of simulations with moderate compu-

tation resources. In all Hanabi experiments, we run N = 10 actor threads with K = 80

environments. A similar setting was first used in the SAD paper by (Hu and Foerster, 2019).

Table 5.1. Exact architectures used in the pool.

Agent RNN type Num of feed-forward layers Num of RNN layers RNN hid dim

Type-1 LSTM 1 1 256

Type-2 LSTM 2 2 256

Type-3 LSTM 1 2 512

Type-4 GRU 1 2 256

Type-5 GRU 2 1 512

The diversity in strategies learned by these self-play agents are controlled by varying the

seed, the MARL methods used for training (either IQL/VDN/OP/SAD and their combina-

tions), type of recurrence (LSTM/GRU), number and dimension of recurrent layers, number

and dimension of feed-forward layers before recurrence. The exact architecture details are

described in the table 5.1. A pool of more than 100 self-play agents is created this way.

A subset of 100 agents with 10 agents from each of these 10 MARL methods are used to

generate the cross-play (CP) matrix as shown in Figure 4.3 in chapter 4. The entries in

this matrix (diagonal entries indicate self-play scores) are obtained through the gameplay of

agents with each other for 5k games, and then averaging the scores.

We propose two levels of tasks based on these scores that have different difficulty levels:

easy and hard. In both the settings, one of the agents is used as learner and the rest as

its partners that are fixed during continual training i.e. they represent different tasks since

49

these agents have different strategies. Both the learner and its partners are initialized with

weights of the pre-trained agents as we found pre-training to be crucial to learn some basic

knowledge of Hanabi since training Hanabi agents from scratch in a decentralized manner

is extremely hard. Our preliminary experiments suggested that fully decentralized learning

with current deep MARL methods can be extremely challenging. However, we found that

pre-training is not essential for simpler games such as the lever game (Hu et al., 2020). The

names of these tasks are self-explanatory in the sense the learner in the hard version has

to start from a much lower cross-play score with its partners and learn to achieve a good

final score (out of 25). During continual training, the learner is trained sequentially with

every partner for a fixed number of epochs and evaluated periodically with all its partners

under both zero-shot and few-shot settings. In the zero-shot setting, the learner is directly

evaluated with all its partners, while in the few-shot setting, the learner is fine-tuned with

its partner for a few gradient steps before evaluating against the same partner. In both these

settings, scores are reported based on an average of over 5k gameplay. The complete set of

hyperparameters used in our experiments are listed in Tables 6.1 and 6.2.

Although the hard and easy settings consist of five tasks, our setup as such can be

effortlessly extended to any number of tasks by selecting a different number of partners from

the pre-trained pool and the pre-trained pool can itself be expanded by training more agents

through SP. For instance, we report results on 10 tasks in section 5.4 and section 5.6. Note

that to choose the partners, we excluded all the agents using either SAD or AUX from the

pre-trained pool as we wanted to compare the continually trained learner with them in terms

of zero-shot coordination. We also wanted to select partners that have low CP scores so that

the tasks are diverse.

R2D2 agents keep recent game transitions in a fixed-size prioritized replay buffer (Schaul

et al., 2015). At the end of every task, the replay-buffer is sliced and stored in an episodic

memory, which is then used for replay in different memory-based lifelong learning algorithms

that we consider in our benchmark. The learner can also start with random parameters (i.e.

without pre-training), albeit, as previously mentioned this setting is very hard for the game

of Hanabi. Our setup also contains support to restrict training based on the number of

environment steps taken by the learner instead of a pre-determined number of epochs.

50

We aim to answer the following questions through our experiments : (1) How well stan-

dard LLL algorithms perform in our setup (section 5.2), (2) How well do these LLL algo-

rithms fare under constrained memory and compute settings (section 5.3), (3) How lifelong

RL methods perform in our setup (section 5.4), (4) How well the agents trained in our setup

do in zero-shot and few-shot coordination scenarios in Hanabi (section 5.5) when compared

to other recent methods such as OP (Hu et al., 2020).

Fig. 5.2. Diverse agents used in our Inter-CP set for evaluating across-method performance

of agents trained in our setup.

5.1. List of agents
In this section, we present the exact type of agents that we use as the learner and its

partners in both easy and hard settings, as well as the set of 10 partners used in section 5.4

51

and section 5.6. All these settings have an IQL agent of Type-2 as the learner and a sequence

of 5/10 agents (can be extended to any number of agents) as its partners. Recall that the

table 5.1 has details of the exact architectures corresponding to these Types.

• Easy : Learner —
{
IQL (Type-2)

}
Partners —

{
IQL (Type-1), VDN (Type-3), VDN (Type-5), IQL+OP (Type-2),

VDN+OP (Type-5)
}
.

• Hard : Learner —
{
IQL (Type-2)

}
Partners —

{
VDN+OP (Type-3), VDN (Type-4), VDN (Type-5), IQL+OP (Type-

3), VDN (Type-3)
}
.

The partner agents in the Figure 5.1 are these hard agents.

• 10 agents: Learner —
{
IQL (Type-2)

}
Partners —

{
VDN (Type-2), VDN (Type-3), IQL+OP (Type-2), VDN+OP

(Type-5), IQL (Type-4), VDN+OP (Type-1), VDN (Type-4), IQL+OP (Type-3),

VDN+OP (Type-1), VDN (Type-5)
}
.

The below are the set of 20 held-out agents that we use for across method evaluation in

Tables 5.3 and 5.4. Figure 5.2 shows the cross-play matrix of Inter-CP agents.

Inter-CP :
{

IQL (Type-1), IQL (Type-3), IQL+OP (Type-4), IQL+OP (Type-5),

VDN+AUX (Type-2), VDN+AUX (Type-3), SAD+OP (Type-3), SAD+OP (Type-1),

SAD+OP+AUX (Type-3), SAD+OP+AUX (Type-1), SAD+AUX (Type-3), SAD+AUX

(Type-1), SAD (Type-3), SAD (Type-2), IQL+AUX (Type-3), IQL+AUX (Type-1), VDN

(Type-4), VDN (Type-2), VDN+OP (Type-5), VDN+OP(Type-4)
}
.

5.2. Lifelong learning benchmarking
We implement some standard lifelong learning algorithms that are both replay-based and

regularization-based.

52

Naive: This is the simplest algorithm in which the learner is trained sequentially on

subsequent tasks, starting with the learned parameters at the end of the previous task,

without any episodic memory or regularization.

Experience Replay (ER):We follow the procedure described in (Chaudhry et al., 2019)

for implementing ER. We sample a mini-batch Bk from the current task (in which the learner

plays with partner k), and a mini-batch Bm that consists of an equal number of samples from

all previous tasks collectively. These mini-batches are stacked and a single gradient step is

used to update the learner. Our implementation closely resembles the ring buffer strategy

described in (Chaudhry et al., 2019), as there’s equal representation from all previous tasks

when sampling Bm, although the samples within each task itself are prioritized.

Averaged Gradient Episodic Memory (A-GEM):Minibatches Bk and Bm are sam-

pled as described in (Chaudhry et al., 2018) and similar to ER. The gradients corresponding

to these mini-batches are first computed denoted by g and gref respectively. If gTgref ≥ 0,

then the gradient of the current task g is directly used to update the learner ’s parameters,

whereas if gTgref < 0, g is first projected such that gTgref = 0 before updating the learner.

This projection ensures that the average loss over the previous tasks does not increase.

Fig. 5.3. Zero-shot (top row) and Few-shot (bottom row) performance of different LLL

algorithms with Adam optimizer on hard task. From left to right: current score (↑), average

score (↑), forgetting (↓), and average future score (↑) respectively. (↑ = higher better, ↓ =

lower better).

53

Table 5.2. Benchmarking LLL methods on Hanabi. Average accuracy and forgetting of

LLL algorithms on hard task averaged over 5 runs with 5000 games. (↑ = higher better, ↓

= lower better)

Method Zero-shot Few-shot

AT ↑ FT ↓ AT ↑ FT ↓

Naive Adam 0.39 0.60 0.52 0.44

EWC off. Adam 0.45 0.45 0.60 0.27

EWC on. Adam 0.55 0.28 0.63 0.17

ER Adam 0.44 0.26 0.53 0.20

AGEM Adam 0.38 0.62 0.57 0.38

Naive SGD 0.52 0.15 0.52 0.14

EWC off. SGD 0.49 0.12 0.50 0.11

EWC on. SGD 0.47 0.12 0.48 0.11

ER SGD 0.50 0.05 0.50 0.04

AGEM SGD 0.50 0.13 0.51 0.12

Multi-Task Adam 0.70 0 0.77 0

Multi-Task SGD 0.50 0 0.51 0

Elastic Weight Consolidation (EWC): EWC is a regularization-based technique

proposed to alleviate catastrophic forgetting by selectively reducing the plasticity of weights

drawing inspiration from Bayesian methods (Kirkpatrick et al., 2017). EWC uses Fisher

information matrix as a surrogate for the importance of learned weights and uses that for

gradient updates. Offline EWC uses one Fisher matrix per task, therefore the number of reg-

ularization terms increases linearly with the number of tasks whereas Online EWC (Schwarz

et al., 2018) uses only one Fisher matrix that is computed based on all the previous tasks.

We consider both these variants in our benchmark.

Stable naive/ER/A-GEM/EWC: Mirzadeh et al. (2020) show that catastrophic for-

getting can be mitigated through careful design of training regimes such as learning rate

decay, batch size, dropout, and optimizer that can widen the tasks’ local minima. The

resulting model with these optimal choices is referred to as “stable”. In particular, we con-

sider if using larger batches, exponential learning rate decay, dropout (either in feed-forward

54

Fig. 5.4. Zero-shot (top row) and Few-shot (bottom row) performance of different LLL

algorithms with Adam optimizer on easy task. From left to right: current score (↑), average

score (↑), forgetting (↓), and average future score (↑) respectively. (↑ = higher better, ↓ =

lower better).

or recurrent layers in R2D2), and SGD optimizer help improve continual training, thereby

leading to better final performance as well as generalization to unseen agents.

Multi-Task Learning (MTL): In this setting, there’s a common replay-buffer that

contains the experiences of the learner interacting with all its partners. Mini-batches sampled

from this common replay buffer are used for training the learner. This serves as an upper-

bound on the achievable performance in our benchmark.

Some key observations from Figures 5.3, 5.4, 5.5, 5.6 and Table 5.2:

• We can observe from Figure 5.3 and Table 5.2 that online EWC with Adam has

the best average score in both the zero-shot and few-shot setting among the lifelong

learning algorithms.

• Forgetting is least for ER with SGD.

• Table 5.2 also shows the effect of the optimizer on different lifelong learning al-

gorithms. Lifelong learning algorithms with SGD tend to have comparatively less

forgetting and better zero-shot performance on average.

55

Fig. 5.5. Zero-shot (top row) and Few-shot (bottom row) performance of different LLL

algorithms with SGD optimizer on hard task. From left to right: current score (↑), average

score (↑), forgetting (↓), and average future score (↑) respectively. (↑ = higher better, ↓ =

lower better).

Fig. 5.6. Zero-shot (top row) and Few-shot (bottom row) performance of different LLL

algorithms with SGD optimizer on easy task. From left to right: current score (↑), average

score (↑), forgetting (↓), and average future score (↑) respectively. (↑ = higher better, ↓ =

lower better).

• We can infer from Figure 5.7 that using Adam helps in fast adaptation to current

task albeit at the expense of greater forgetting. This effect can also be seen in higher

average few shot scores (Table 5.2).

56

• As one might expect, MTL with Adam achieves the highest average score in both

zero-shot and few-shot as MTL has access to all the partners during training, which

is not a feasible option in general.

• From the last column of Figure 5.3, we can observe that when the learner start

playing with a new partner, there is an increase in average future score suggesting

it has learned some useful skills from previous tasks that is transferable to the other

partners. However, with more training, the learner possibly overfits to its current

partner, leading to a drop in average future scores.

To explore the effect of different training regimes on continual training, we study the

effect of larger batches (128 vs 32), learning rate decay with high initial rates (0.2/0.02), and

dropout.

Our experiments suggest that Lifelong Hanabi does not benefit greatly from the use of

large batches as the gain in scores is negligible. This observation aligns with the “stable”

networks (Mirzadeh et al., 2020) that suggests using small batches. In the case of EWC, we

find that there is a stark difference in performance with different λ values (the weight assigned

to the Fischer term). Our experiments indicate larger λ is beneficial. Figures 5.4, 5.5, 5.6

contains the training curves of lifelong learning algorithms for other settings — easy task

with Adam, hard task with SGD and easy task with SGD respectively. For all these figures,

the learner is pre-trained with IQL method and is continually trained with either easy or hard

agents mentioned in section 5.1. The sequential order of partners were chosen at random

from the pre-trained pool in both easy and hard setting. Careful curation of the partner

ordering and its effect on lifelong learning is left as future work.

5.3. Lifelong learning under constrained memory and

compute

5.3.1. Episodic memory size

In order to understand the effect of episodic memory on the performance of memory-based

lifelong learning algorithms, we vary the episodic memory size ({2k, 8k, 32k} × number of

tasks) in the case of ER with both SGD and Adam as shown in Figure 5.7. In both these

cases, a larger episodic memory size results in a better final performance.

57

(a) Adam vs SGD (b) GIS

(c) Episodic memory size (d) Few-shot gradient steps

Fig. 5.7. More experiments: Generalization score with Inter-CP agents at the end of every

task during continual training. LLL algorithms using SGD as an optimizer have better

generalization performance compared to Adam. ER SGD has the highest GIS.

5.3.2. Gradient updates for few-shot evaluation

To better understand the ability of the learner trained with different lifelong learning

algorithms to adapt quickly to all its partners, we vary the number of gradient steps used

to update the learner in the few-shot evaluation scenario. As it can be seen from Fig-

ure 5.7, there is a considerable difference between 10 and 50 gradient updates on the final

performance, whereas the benefit reaped beyond 50 updates is minimal.

58

Fig. 5.8. Zero-shot (top row) and Few-shot (bottom row) performance of ER methods with

different types of episodic memory designed for lifelong RL Isele and Cosgun (2018) with

Adam optimizer on 10 tasks.

5.4. Lifelong RL methods
Isele and Cosgun (2018) propose some strategies for storing experiences in the replay-

buffer that have been shown to reduce catastrophic forgetting in RL. All our methods use

prioritized replay buffer that resembles the surprise strategy (Isele and Cosgun, 2018). In

addition, we also compare this with FIFO and Reward strategies. For FIFO, we set the

prioritization exponent α to 0 (Schaul et al., 2015), which is equivalent to uniformly sampling.

In case of Reward, we do prioritized sampling that favors experiences based on the absolute

value of reward instead of TD-error as done in our default case. As can be seen in Figure 5.8,

ER with prioritized sampling performs best compared to Reward and FIFO strategies in

terms of both average score and average forgetting. Implementing other sampling strategies

such as Global Distribution Matching and Coverage Maximization are left for future work.

59

5.5. Zero-shot coordination
We compare our best-performing lifelong learning algorithms with recent MARL methods

that have shown good performance on Hanabi (Table 5.3). In addition to reporting self-play

evaluation scores, we evaluate each training method with two sets of unseen partners under

zero-shot coordination scenario: (1) Intra-CP - a set consisting of agents that are trained

with the same MARL method as the training method. For example, the SAD+OP agent

is evaluated with other SAD+OP agents only, but with different architectures and seeds.

Similarly, in order to evaluate agents trained in our setup, we evaluate them with other agents

that are trained with the same MARL method as the learner, (2) Inter-CP (section 5.1) - a

set containing 20 agents across all the MARL methods we consider.

Table 5.3. BEST : Comparison with other MARL algorithms on self-play (SP), cross-play

evaluation scores within method (Intra-CP), and across different methods (Inter-CP). C:

centralized training, GA: agents share their greedy action along with their standard action,

L: true labels of cards needed, SYM: symmetries of the game needed upfront, P: require

access to some pre-trained agents in sequence, UP: Having access to all the fixed pre-trained

agents at the same time. (↑ / ↓ = Difference in score after continual training, red: pre-trained

with MARL method, blue: trained continually with LLL method, ∗ : results obtained using

models released by (Hu et al., 2020))

Training Method SP Intra-CP Inter-CP Limitations

SAD 23.85± 0.03 7.70± 0.69 14.60± 0.24 C + GA

SAD + AUX 23.57± 0.03 20.97± 0.80 18.51± 0.23 C + GA + L

SAD + OP 24.14± 0.03 10.10± 0.87 16.09± 0.25 C + Sym + GA

SAD + AUX + OP 23.40± 0.04 21.23± 0.25 17.77 ± 0.23 C + Sym + L + GA

SAD* 23.97± 0.04 2.52± 0.0.34 11.46± 0.35 C + GA

SAD + AUX* 24.09± 0.03 17.65± 0.69 17.60± 0.42 C + GA + L

SAD + OP* 23.93± 0.02 15.32± 0.65 17.50± 0.34 C + Sym + GA

SAD + AUX + OP* 24.06± 0.02 22.07± 0.11 17.45 ± 0.38 C + Sym + L + GA

IQL + ER 20.91± 0.05 (↓ 2.98) 15.73± 0.39 (↑ 7.06) 16.32± 0.21 (↑ 8.09) P

IQL + AUX + ER 22.34± 0.06 (↓ 1.46) 20.90± 0.06 (↓ 0.15) 19.17± 0.22 (↑ 1.33) L + P

IQL + Multi-task 20.93± 0.09 (↓ 2.96) 16.05± 0.30 (↑ 7.38) 17.88± 0.17 (↑ 9.65) UP

60

As we can observe from Table 5.3, although recent MARL methods can achieve good

scores in SP and Intra-CP evaluations, they fail to achieve high scores in Inter-CP high-

lighting their inability to coordinate effectively with other MARL methods in the zero-shot

scenario. We can observe that agents trained in our setup have significant improvement in

both Inter-CP and Intra-CP compared to the agent at the start of continual learning, how-

ever, their SP scores are lower than at the start. The difference in scores due to continual

training is indicated in brackets. It is also worth mentioning that IQL+AUX+ER achieve

a better Inter-CP score than even other MARL methods, although this comes at a cost of

slight reduction to Intra-CP score.

All the training methods in Table 5.3 have some limitations that we highlight now.

During training, SAD allows agents to have access to the greedy action of their team mates

in addition to the actual exploratory action chosen (GA). AUX refers to having an auxiliary

task that predicts the learner ’s own hand and hence requires ground truth labels for this

(L). OP requires symmetries of the game to be known beforehand (SYM). IQL+ER and

IQL+AUX+ER require pre-trained agents in sequence for lifelong learning (P), while IQL +

Multi-Task requires access to all pre-trained agents simultaneously (UP). Figure 5.7 shows

the progression in generalization performance (Inter-CP) after every task during continual

training for several LLL algorithms. MTL (with Adam) and ER (with SGD) have the best

scores with the Inter-CP agents at the end of continual training. However, MTL needs to

interact with all the partners’ at the same time which is not always a realistic assumption.

In order to obtain the Intra-CP scores for the existing MARL methods in the Table 5.3

(referenced as BEST in caption), we take the agent from each training method that performs

best with the Inter-CP agents listed above in section 5.1 and evaluate them with the other

9 agents of the same method from the pretrained pool (Figure 4.3). However, in order to

obtain the Intra-CP scores for each MARL method in the Table 5.4 (referenced as AVG

in caption), we pick one agent, evaluate it with the rest (barring itself) and repeat the

same for all other agents. The average of these scores are reported. A similar process is

followed for reporting Inter-CP scores. The method of evaluating our LLL methods remains

consistent in all the Tables (5.3, 5.4). For IQL+ER, we start with the IQL agent that has

the least cross-play score and train it with hard agents sequentially using ER algorithm. In

the case of IQL+AUX+ER, we start with an IQL agent that is pre-trained with AUX and

61

is continually trained with the hard agents using ER algorithm. This continually trained

agent is then evaluated with 9 other agents in either IQL or IQL+AUX respectively in order

to obtain Intra-CP scores. However, please note that the auxiliary task is used only during

pre-training and is not used during continual training. Note that the middle row in the

Table 5.3 is generated using the latest models released by Hu et al. (2020).

Table 5.4. AVG : Comparison with other MARL algorithms on self-play (SP), cross-play

evaluation scores within method (Intra-CP), and across different methods (Inter-CP). C:

centralized training, GA: agents share their greedy action along with their standard action,

L: true labels of cards needed, SYM: symmetries of the game needed upfront, P: require

access to some pre-trained agents in sequence, UP: Having access to all the fixed pre-trained

agents at the same time. (↑ / ↓ = Difference in score after continual training red: pre-trained

with MARL method, blue: trained continually with LLL method). Refer text for difference

between AVG and BEST.

Training method SP Intra-CP Inter-CP Limitations

SAD 23.78 ± 0.03 4.38 ± 0.66 8.40 ± 0.23 C+GA

SAD+AUX 23.82 ± 0.02 21.15 ± 0.26 17.01 ± 0.22 C+GA+L

SAD+OP 23.67 ± 0.03 12.00 ± 0.86 12.79 ± 0.24 C+Sym+GA

SAD+AUX+OP 23.88 ± 0.03 22.01 ± 0.03 17.08 ± 0.22 C+Sym+L+GA

IQL + ER 20.91 ± 0.05 (↓ 2.98) 15.73±0.39 (↑ 7.06) 16.32±0.21 (↑ 8.09) P

IQL+AUX + ER 22.34± 0.06 (↓ 1.46) 20.90± 0.06 (↓0.15) 19.17±0.22(↑1.33) L+P

IQL + Multi-task 20.93±0.09 (↓ 2.96) 16.05± 0.30(↑ 7.38) 17.88±0.17 (↑ 9.65) UP

5.6. Additional results on 10 tasks
Figures 5.9, 5.10 shows the performance of ER, EWC online and offline, AGEM and

Naive when the learner is trained with 10 partners (exact agent types previously mentioned

in section 5.1). We can again observe that Adam EWC online and offline have the best

average scores in both zero-shot and few-shot settings while the forgetting is least for ER

SGD. This is consistent with what we observed in case of 5 tasks for both hard and easy

agents.

62

Fig. 5.9. Zero-shot (top row) and Few-shot (bottom row) performance of different LLL

algorithms with Adam optimizer on 10 tasks. From left to right: current score, average

score, forgetting and average future score respectively.

Fig. 5.10. Zero-shot (top row) and Few-shot (bottom row) performance of different LLL

algorithms with SGD optimizer on 10 tasks. From left to right: current score, average score,

forgetting and average future score respectively.

63

Chapter 6

Conclusions and Future work

Conclusions: In this thesis, we proposed Lifelong Hanabi, a new challenging benchmark for

lifelong RL in particular, and lifelong learning in general, as the boundaries between super-

vised lifelong learning and lifelong RL are somewhat blurry. This benchmark tries to address

some of the major drawbacks of previous lifelong learning benchmarks such as simplicity of

tasks and lack of a measure of task correlation. The non-stationarity in our benchmark was

introduced through agents having different strategies instead of synthetic modifications to

the environment or the agent, while cross-play score served as an easy metric to quantify the

similarity between tasks. By benchmarking several popular lifelong learning methods, we

hope that this serves as a starting point in understanding drawbacks with existing methods

and enabling researchers to come up with better lifelong learning algorithms. In Hanabi, we

also showed that our lifelong learned agent generalizes well to unseen agents trained with

the same MARL method as well as across different MARL methods, performing comparably

to previous state-of-the-art methods that require explicit additional knowledge of the envi-

ronment. We hope that the lifelong RL community adopts this as a standard benchmark for

evaluating algorithmic advances due to its ease of use.

Future work: Lifelong Hanabi aims to facilitate the development of novel algorithms

for lifelong learning specific to RL (i.e. lifelong RL). This framework also serves as a step

towards thinking beyond centralized training in MARL. Some interesting future directions

are to understand the kind of policies learned by the agents trained in our setup through

policy visualization to see what kind of conventions (if any) emerges. It is also valuable

to evaluate our trained agents with humans, as developing artificial agents capable of coor-

dinating effectively with humans is an important long-term goal of modern AI. Moreover,

exploiting recent advances in Meta-RL such as (Zintgraf et al., 2019) for faster adaptation in

the few-shot evaluation setting, instead of naively fine-tuning can lead to agents that adapt

well in the ad-hoc scenario. We believe studying the effect of the order of partners that the

learner encounters and its effect on final performance is an interesting next step. Currently,

the non-stationarity across different strategies is what we only exploit to design LLL tasks.

This already resulted in an interesting trade-off for the learner between adapting to new

partners and not forgetting to coordinate well with previous partners. Our preliminary ex-

periments suggest that extending our framework to learning partners is extremely difficult

for current methods, however, this could be an exciting future research direction.

65

References

[1] Mohamed Abdelsalam, Mojtaba Faramarzi, Shagun Sodhani, and Sarath Chandar.

Iirc: Incremental implicitly-refined classification. arXiv preprint arXiv:2012.12477,

2020.

[2] Maruan Al-Shedivat, Trapit Bansal, Yuri Burda, Ilya Sutskever, Igor Mordatch, and

Pieter Abbeel. Continuous adaptation via meta-learning in nonstationary and com-

petitive environments. arXiv preprint arXiv:1710.03641, 2017.

[3] Rahaf Aljundi, Francesca Babiloni, Mohamed Elhoseiny, Marcus Rohrbach, and Tinne

Tuytelaars. Memory aware synapses: Learning what (not) to forget. In Proceedings of

the European Conference on Computer Vision (ECCV), pages 139–154, 2018.

[4] Thomas Anthony, Tom Eccles, Andrea Tacchetti, János Kramár, Ian Gemp, Thomas C

Hudson, Nicolas Porcel, Marc Lanctot, Julien Pérolat, Richard Everett, et al. Learn-

ing to play no-press diplomacy with best response policy iteration. arXiv preprint

arXiv:2006.04635, 2020.

[5] Antreas Antoniou, Massimiliano Patacchiola, Mateusz Ochal, and Amos Storkey.

Defining benchmarks for continual few-shot learning. arXiv preprint arXiv:2004.11967,

2020.

[6] Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla. Segnet: A deep convo-

lutional encoder-decoder architecture for image segmentation. IEEE transactions on

pattern analysis and machine intelligence, 39(12):2481–2495, 2017.

[7] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation

by jointly learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

[8] Nolan Bard, Jakob N Foerster, Sarath Chandar, Neil Burch, Marc Lanctot, H Francis

Song, Emilio Parisotto, Vincent Dumoulin, Subhodeep Moitra, Edward Hughes, et al.

The hanabi challenge: A new frontier for ai research. Artificial Intelligence, 280:103216,

2020.

[9] Tamer Başar and Geert Jan Olsder. Dynamic noncooperative game theory. SIAM,

1998.

[10] Amy Bearman, Olga Russakovsky, Vittorio Ferrari, and Li Fei-Fei. What’s the point:

Semantic segmentation with point supervision. In European conference on computer

vision, pages 549–565. Springer, 2016.

[11] Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade

learning environment: An evaluation platform for general agents. Journal of Artificial

Intelligence Research, 47:253–279, 2013.

[12] Richard Bellman. Dynamic programming. Technical report, RAND CORP SANTA

MONICA CA, 1956.

[13] James Bergstra, Dan Yamins, David D Cox, et al. Hyperopt: A python library for

optimizing the hyperparameters of machine learning algorithms. In Proceedings of the

12th Python in science conference, volume 13, page 20. Citeseer, 2013.

[14] Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemysław Dębiak,

Christy Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Chris Hesse, et al. Dota

2 with large scale deep reinforcement learning. arXiv preprint arXiv:1912.06680, 2019.

[15] Alexey Bochkovskiy, Chien-Yao Wang, and Hong-Yuan Mark Liao. Yolov4: Optimal

speed and accuracy of object detection. arXiv preprint arXiv:2004.10934, 2020.

[16] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman,

Jie Tang, and Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

[17] Noam Brown and Tuomas Sandholm. Superhuman ai for heads-up no-limit poker:

Libratus beats top professionals. Science, 359(6374):418–424, 2018.

[18] Gail A Carpenter and Stephen Grossberg. A massively parallel architecture for a self-

organizing neural pattern recognition machine. Computer vision, graphics, and image

processing, 37(1):54–115, 1987.

[19] Sarath Chandar, Chinnadhurai Sankar, Eugene Vorontsov, Samira Ebrahimi Kahou,

and Yoshua Bengio. Towards non-saturating recurrent units for modelling long-term

dependencies. In Proceedings of the AAAI Conference on Artificial Intelligence, vol-

ume 33, pages 3280–3287, 2019.

67

[20] Arslan Chaudhry, Puneet K Dokania, Thalaiyasingam Ajanthan, and Philip HS Torr.

Riemannian walk for incremental learning: Understanding forgetting and intransigence.

In Proceedings of the European Conference on Computer Vision (ECCV), pages 532–

547, 2018.

[21] Arslan Chaudhry, Marc’Aurelio Ranzato, Marcus Rohrbach, and Mohamed Elhoseiny.

Efficient lifelong learning with a-gem. arXiv preprint arXiv:1812.00420, 2018.

[22] Arslan Chaudhry, Marcus Rohrbach, Mohamed Elhoseiny, Thalaiyasingam Ajanthan,

Puneet K Dokania, Philip HS Torr, and Marc’Aurelio Ranzato. On tiny episodic

memories in continual learning. arXiv preprint arXiv:1902.10486, 2019.

[23] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical

evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint

arXiv:1412.3555, 2014.

[24] Caroline Claus and Craig Boutilier. The dynamics of reinforcement learning in coop-

erative multiagent systems. AAAI/IAAI, 1998(746-752):2, 1998.

[25] Karl Cobbe, Oleg Klimov, Chris Hesse, Taehoon Kim, and John Schulman. Quantify-

ing generalization in reinforcement learning. In International Conference on Machine

Learning, pages 1282–1289. PMLR, 2019.

[26] Alexis Conneau, Holger Schwenk, Loïc Barrault, and Yann Lecun. Very deep convolu-

tional networks for text classification. arXiv preprint arXiv:1606.01781, 2016.

[27] Martin Danelljan, Goutam Bhat, Fahad Shahbaz Khan, and Michael Felsberg. Eco:

Efficient convolution operators for tracking. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 6638–6646, 2017.

[28] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-

training of deep bidirectional transformers for language understanding. arXiv preprint

arXiv:1810.04805, 2018.

[29] Thinh Doan, Siva Maguluri, and Justin Romberg. Finite-time analysis of distributed

td (0) with linear function approximation on multi-agent reinforcement learning. In

International Conference on Machine Learning, pages 1626–1635. PMLR, 2019.

[30] Lasse Espeholt, Raphaël Marinier, Piotr Stanczyk, Ke Wang, and Marcin Michalski.

Seed rl: Scalable and efficient deep-rl with accelerated central inference. arXiv preprint

arXiv:1910.06591, 2019.

68

[31] Mojtaba Faramarzi, Mohammad Amini, Akilesh Badrinaaraayanan, Vikas Verma, and

Sarath Chandar. Patchup: A regularization technique for convolutional neural net-

works. arXiv preprint arXiv:2006.07794, 2020.

[32] Chrisantha Fernando, Dylan Banarse, Charles Blundell, Yori Zwols, David Ha, An-

drei A Rusu, Alexander Pritzel, and Daan Wierstra. Pathnet: Evolution channels

gradient descent in super neural networks. arXiv preprint arXiv:1701.08734, 2017.

[33] Jerzy Filar and Koos Vrieze. Competitive Markov decision processes. Springer Science

& Business Media, 2012.

[34] Jakob Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, and Shimon

Whiteson. Counterfactual multi-agent policy gradients. In Proceedings of the AAAI

Conference on Artificial Intelligence, volume 32, 2018.

[35] Jakob Foerster, Francis Song, Edward Hughes, Neil Burch, Iain Dunning, Shimon

Whiteson, Matthew Botvinick, and Michael Bowling. Bayesian action decoder for deep

multi-agent reinforcement learning. In International Conference on Machine Learning,

pages 1942–1951, 2019.

[36] Jianfeng Gao, Michel Galley, and Lihong Li. Neural approaches to conversational

ai. In The 41st International ACM SIGIR Conference on Research & Development in

Information Retrieval, pages 1371–1374, 2018.

[37] Golnaz Ghiasi, Tsung-Yi Lin, and Quoc V Le. Dropblock: A regularization method

for convolutional networks. arXiv preprint arXiv:1810.12890, 2018.

[38] Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep learning,

volume 1. MIT press Cambridge, 2016.

[39] Ian J Goodfellow, Mehdi Mirza, Da Xiao, Aaron Courville, and Yoshua Bengio. An

empirical investigation of catastrophic forgetting in gradient-based neural networks.

arXiv preprint arXiv:1312.6211, 2013.

[40] Sai Krishna Gottipati, Boris Sattarov, Sufeng Niu, Yashaswi Pathak, Haoran Wei,

Shengchao Liu, Simon Blackburn, Karam Thomas, Connor Coley, Jian Tang, et al.

Learning to navigate the synthetically accessible chemical space using reinforcement

learning. In International Conference on Machine Learning, pages 3668–3679. PMLR,

2020.

69

[41] Varun Gulshan, Lily Peng, Marc Coram, Martin C Stumpe, Derek Wu, Arunacha-

lam Narayanaswamy, Subhashini Venugopalan, Kasumi Widner, Tom Madams, Jorge

Cuadros, et al. Development and validation of a deep learning algorithm for detection

of diabetic retinopathy in retinal fundus photographs. Jama, 316(22):2402–2410, 2016.

[42] Hongyu Guo, Yongyi Mao, and Richong Zhang. Mixup as locally linear out-of-manifold

regularization. In Proceedings of the AAAI Conference on Artificial Intelligence, vol-

ume 33, pages 3714–3722, 2019.

[43] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning

for image recognition. In Proceedings of the IEEE conference on computer vision and

pattern recognition, pages 770–778, 2016.

[44] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn. In

Proceedings of the IEEE international conference on computer vision, pages 2961–2969,

2017.

[45] Peter Henderson, Wei-Di Chang, Florian Shkurti, Johanna Hansen, David Meger, and

Gregory Dudek. Benchmark environments for multitask learning in continuous do-

mains. arXiv preprint arXiv:1708.04352, 2017.

[46] Geoffrey Hinton, Li Deng, Dong Yu, George E Dahl, Abdel-rahman Mohamed, Navdeep

Jaitly, Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Tara N Sainath, et al. Deep

neural networks for acoustic modeling in speech recognition: The shared views of four

research groups. IEEE Signal processing magazine, 29(6):82–97, 2012.

[47] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural compu-

tation, 9(8):1735–1780, 1997.

[48] Dan Horgan, John Quan, David Budden, Gabriel Barth-Maron, Matteo Hessel, Hado

Van Hasselt, and David Silver. Distributed prioritized experience replay. arXiv preprint

arXiv:1803.00933, 2018.

[49] Ronald A Howard. Dynamic programming and markov processes. 1960.

[50] Hengyuan Hu and Jakob N Foerster. Simplified action decoder for deep multi-agent

reinforcement learning. arXiv preprint arXiv:1912.02288, 2019.

[51] Hengyuan Hu, Adam Lerer, Alex Peysakhovich, and Jakob Foerster. " other-play" for

zero-shot coordination. arXiv preprint arXiv:2003.02979, 2020.

70

[52] David Isele and Akansel Cosgun. Selective experience replay for lifelong learning. In

Proceedings of the AAAI Conference on Artificial Intelligence, volume 32, 2018.

[53] Simon Jégou, Michal Drozdzal, David Vazquez, Adriana Romero, and Yoshua Bengio.

The one hundred layers tiramisu: Fully convolutional densenets for semantic segmenta-

tion. In Proceedings of the IEEE conference on computer vision and pattern recognition

workshops, pages 11–19, 2017.

[54] Christos Kaplanis, Murray Shanahan, and Claudia Clopath. Continual reinforcement

learning with complex synapses. In International Conference on Machine Learning,

pages 2497–2506. PMLR, 2018.

[55] Christos Kaplanis, Murray Shanahan, and Claudia Clopath. Policy consolidation for

continual reinforcement learning. arXiv preprint arXiv:1902.00255, 2019.

[56] Steven Kapturowski, Georg Ostrovski, John Quan, Remi Munos, and Will Dabney.

Recurrent experience replay in distributed reinforcement learning. In International

conference on learning representations, 2018.

[57] Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and Timo

Aila. Analyzing and improving the image quality of stylegan. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 8110–

8119, 2020.

[58] Michał Kempka, Marek Wydmuch, Grzegorz Runc, Jakub Toczek, and Wojciech

Jaśkowski. Vizdoom: A doom-based ai research platform for visual reinforcement

learning. In 2016 IEEE Conference on Computational Intelligence and Games (CIG),

pages 1–8. IEEE, 2016.

[59] Khimya Khetarpal, Matthew Riemer, Irina Rish, and Doina Precup. Towards continual

reinforcement learning: A review and perspectives. arXiv preprint arXiv:2012.13490,

2020.

[60] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Des-

jardins, Andrei A Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka

Grabska-Barwinska, et al. Overcoming catastrophic forgetting in neural networks.

Proceedings of the national academy of sciences, 114(13):3521–3526, 2017.

71

[61] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with

deep convolutional neural networks. Advances in neural information processing sys-

tems, 25:1097–1105, 2012.

[62] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with

deep convolutional neural networks. Communications of the ACM, 60(6):84–90, 2017.

[63] Ankit Kumar, Ozan Irsoy, Peter Ondruska, Mohit Iyyer, James Bradbury, Ishaan

Gulrajani, Victor Zhong, Romain Paulus, and Richard Socher. Ask me anything:

Dynamic memory networks for natural language processing. In International conference

on machine learning, pages 1378–1387. PMLR, 2016.

[64] Guillaume Lample, Alexis Conneau, Ludovic Denoyer, and Marc’Aurelio Ranzato.

Unsupervised machine translation using monolingual corpora only. arXiv preprint

arXiv:1711.00043, 2017.

[65] Zhizhong Li and Derek Hoiem. Learning without forgetting. IEEE transactions on

pattern analysis and machine intelligence, 40(12):2935–2947, 2017.

[66] Vincenzo Lomonaco and Davide Maltoni. Core50: a new dataset and benchmark for

continuous object recognition. arXiv preprint arXiv:1705.03550, 2017.

[67] Vincenzo Lomonaco, Karan Desai, Eugenio Culurciello, and Davide Maltoni. Con-

tinual reinforcement learning in 3d non-stationary environments. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops,

pages 248–249, 2020.

[68] David Lopez-Paz and Marc’Aurelio Ranzato. Gradient episodic memory for continual

learning. In Advances in neural information processing systems, pages 6467–6476, 2017.

[69] Marlos C Machado, Marc G Bellemare, Erik Talvitie, Joel Veness, Matthew

Hausknecht, and Michael Bowling. Revisiting the arcade learning environment:

Evaluation protocols and open problems for general agents. Journal of Artificial

Intelligence Research, 61:523–562, 2018.

[70] Arun Mallya and Svetlana Lazebnik. Packnet: Adding multiple tasks to a single

network by iterative pruning. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 7765–7773, 2018.

[71] Michael McCloskey and Neal J Cohen. Catastrophic interference in connectionist net-

works: The sequential learning problem. In Psychology of learning and motivation,

72

volume 24, pages 109–165. Elsevier, 1989.

[72] Seyed Iman Mirzadeh, Mehrdad Farajtabar, Razvan Pascanu, and Hassan

Ghasemzadeh. Understanding the role of training regimes in continual learning.

Advances in Neural Information Processing Systems, 33, 2020.

[73] Tom M Mitchell. Machine learning. 1997. Burr Ridge, IL: McGraw Hill, 45(37):

870–877, 1997.

[74] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou,

Daan Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning.

arXiv preprint arXiv:1312.5602, 2013.

[75] Arvind Neelakantan, Luke Vilnis, Quoc V Le, Ilya Sutskever, Lukasz Kaiser, Karol

Kurach, and James Martens. Adding gradient noise improves learning for very deep

networks. arXiv preprint arXiv:1511.06807, 2015.

[76] Hadi Nekoei, Akilesh Badrinaaraayanan, Aaron Courville, and Sarath Chandar. Con-

tinuous coordination as a realistic scenario for lifelong learning. arXiv preprint

arXiv:2103.03216, 2021.

[77] Cuong V Nguyen, Yingzhen Li, Thang D Bui, and Richard E Turner. Variational

continual learning. arXiv preprint arXiv:1710.10628, 2017.

[78] Frans A Oliehoek and Christopher Amato. A concise introduction to decentralized

POMDPs. Springer, 2016.

[79] Afshin OroojlooyJadid and Davood Hajinezhad. A review of cooperative multi-agent

deep reinforcement learning. arXiv preprint arXiv:1908.03963, 2019.

[80] Philip Paquette, Yuchen Lu, Steven Bocco, Max O Smith, Satya Ortiz-Gagné,

Jonathan K Kummerfeld, Satinder Singh, Joelle Pineau, and Aaron Courville. No

press diplomacy: Modeling multi-agent gameplay. arXiv preprint arXiv:1909.02128,

2019.

[81] Emmanouil Antonios Platanios, Abulhair Saparov, and TomMitchell. Jelly bean world:

A testbed for never-ending learning. arXiv preprint arXiv:2002.06306, 2020.

[82] Ameya Prabhu, Philip HS Torr, and Puneet K Dokania. Gdumb: A simple approach

that questions our progress in continual learning. In Proceedings of the European

Conference on Computer Vision, 2020.

73

[83] David Premack and Guy Woodruff. Does the chimpanzee have a theory of mind?

Behavioral and brain sciences, 1(4):515–526, 1978.

[84] Neil Rabinowitz, Frank Perbet, Francis Song, Chiyuan Zhang, SM Ali Eslami, and

Matthew Botvinick. Machine theory of mind. In International conference on machine

learning, pages 4218–4227. PMLR, 2018.

[85] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya

Sutskever. Language models are unsupervised multitask learners. OpenAI blog, 1

(8):9, 2019.

[86] Tabish Rashid, Mikayel Samvelyan, Christian Schroeder, Gregory Farquhar, Jakob

Foerster, and ShimonWhiteson. Qmix: Monotonic value function factorisation for deep

multi-agent reinforcement learning. In International Conference on Machine Learning,

pages 4295–4304. PMLR, 2018.

[87] Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lam-

pert. icarl: Incremental classifier and representation learning. In Proceedings of the

IEEE conference on Computer Vision and Pattern Recognition, pages 2001–2010, 2017.

[88] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-

time object detection with region proposal networks. IEEE transactions on pattern

analysis and machine intelligence, 39(6):1137–1149, 2016.

[89] Mark B Ring. Child: A first step towards continual learning. In Learning to learn,

pages 261–292. Springer, 1998.

[90] Ryne Roady, Tyler L. Hayes, Hitesh Vaidya, and Christopher Kanan. Stream-51:

Streaming classification and novelty detection from videos. In The IEEE/CVF Con-

ference on Computer Vision and Pattern Recognition (CVPR) Workshops, June 2020.

[91] Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirk-

patrick, Koray Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural

networks. arXiv preprint arXiv:1606.04671, 2016.

[92] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh

Chen. Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the

IEEE conference on computer vision and pattern recognition, pages 4510–4520, 2018.

[93] Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience

replay. arXiv preprint arXiv:1511.05952, 2015.

74

[94] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz.

Trust region policy optimization. In International conference on machine learning,

pages 1889–1897. PMLR, 2015.

[95] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.

Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[96] Jonathan Schwarz, Wojciech Czarnecki, Jelena Luketina, Agnieszka Grabska-

Barwinska, Yee Whye Teh, Razvan Pascanu, and Raia Hadsell. Progress & compress:

A scalable framework for continual learning. In International Conference on Machine

Learning, pages 4528–4537. PMLR, 2018.

[97] Xuesong Shi, Dongjiang Li, Pengpeng Zhao, Qinbin Tian, Yuxin Tian, Qiwei Long,

Chunhao Zhu, Jingwei Song, Fei Qiao, Le Song, Yangquan Guo, Zhigang Wang, Yimin

Zhang, Baoxing Qin, Wei Yang, Fangshi Wang, Rosa H. M. Chan, and Qi She. Are we

ready for service robots? the openloris-scene datasets for lifelong slam, 2020.

[98] Yoav Shoham and Kevin Leyton-Brown. Multiagent systems: Algorithmic, game-

theoretic, and logical foundations. Cambridge University Press, 2008.

[99] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van

Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc

Lanctot, et al. Mastering the game of go with deep neural networks and tree search.

nature, 529(7587):484–489, 2016.

[100] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang,

Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mas-

tering the game of go without human knowledge. nature, 550(7676):354–359, 2017.

[101] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai,

Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al.

A general reinforcement learning algorithm that masters chess, shogi, and go through

self-play. Science, 362(6419):1140–1144, 2018.

[102] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-

scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[103] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan

Salakhutdinov. Dropout: a simple way to prevent neural networks from overfitting.

The journal of machine learning research, 15(1):1929–1958, 2014.

75

[104] Stefan Stojanov, Samarth Mishra, Ngoc Anh Thai, Nikhil Dhanda, Ahmad Humayun,

Chen Yu, Linda B Smith, and James M Rehg. Incremental object learning from con-

tiguous views. In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 8777–8786, 2019.

[105] Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Vinicius

Zambaldi, Max Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z Leibo, Karl Tuyls,

et al. Value-decomposition networks for cooperative multi-agent learning. arXiv

preprint arXiv:1706.05296, 2017.

[106] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to sequence learning with

neural networks, 2014.

[107] Richard S Sutton. Learning to predict by the methods of temporal differences. Machine

learning, 3(1):9–44, 1988.

[108] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT

press, 2018.

[109] Ming Tan. Multi-agent reinforcement learning: Independent vs. cooperative agents. In

Proceedings of the tenth international conference on machine learning, pages 330–337,

1993.

[110] Gerald Tesauro. Td-gammon, a self-teaching backgammon program, achieves master-

level play. Neural computation, 6(2):215–219, 1994.

[111] Gerald Tesauro. Temporal difference learning and td-gammon. Communications of the

ACM, 38(3):58–68, 1995.

[112] Sebastian Thrun. Lifelong learning algorithms. In Learning to learn, pages 181–209.

Springer, 1998.

[113] Gido M Van de Ven and Andreas S Tolias. Three scenarios for continual learning.

arXiv preprint arXiv:1904.07734, 2019.

[114] Vladimir Vapnik. The nature of statistical learning theory. Springer science & business

media, 2013.

[115] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N.

Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need, 2017.

[116] Vikas Verma, Alex Lamb, Christopher Beckham, Amir Najafi, Ioannis Mitliagkas,

David Lopez-Paz, and Yoshua Bengio. Manifold mixup: Better representations by

76

interpolating hidden states. In International Conference on Machine Learning, pages

6438–6447. PMLR, 2019.

[117] Qiang Wang, Li Zhang, Luca Bertinetto, Weiming Hu, and Philip HS Torr. Fast

online object tracking and segmentation: A unifying approach. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 1328–

1338, 2019.

[118] Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8(3-4):

279–292, 1992.

[119] Ronald J Williams. Simple statistical gradient-following algorithms for connectionist

reinforcement learning. Machine learning, 8(3-4):229–256, 1992.

[120] Mengdi Xu, Wenhao Ding, Jiacheng Zhu, Zuxin Liu, Baiming Chen, and Ding Zhao.

Task-agnostic online reinforcement learning with an infinite mixture of gaussian pro-

cesses, 2020.

[121] Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He, Alex Smola, and Eduard Hovy.

Hierarchical attention networks for document classification. In Proceedings of the 2016

conference of the North American chapter of the association for computational linguis-

tics: human language technologies, pages 1480–1489, 2016.

[122] Friedemann Zenke, Ben Poole, and Surya Ganguli. Continual learning through synaptic

intelligence. Proceedings of machine learning research, 70:3987, 2017.

[123] Amy Zhang, Nicolas Ballas, and Joelle Pineau. A dissection of overfitting and general-

ization in continuous reinforcement learning. arXiv preprint arXiv:1806.07937, 2018.

[124] Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup:

Beyond empirical risk minimization. arXiv preprint arXiv:1710.09412, 2017.

[125] Kaiqing Zhang, Zhuoran Yang, Han Liu, Tong Zhang, and Tamer Basar. Fully decen-

tralized multi-agent reinforcement learning with networked agents. In International

Conference on Machine Learning, pages 5872–5881. PMLR, 2018.

[126] Kaiqing Zhang, Zhuoran Yang, and Tamer Başar. Multi-agent reinforcement learning:

A selective overview of theories and algorithms. arXiv preprint arXiv:1911.10635, 2019.

[127] Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen, Chris Brockett, Xiang Gao,

Jianfeng Gao, Jingjing Liu, and Bill Dolan. Dialogpt: Large-scale generative pre-

training for conversational response generation. arXiv preprint arXiv:1911.00536, 2019.

77

[128] Luisa Zintgraf, Kyriacos Shiarli, Vitaly Kurin, Katja Hofmann, and Shimon Whiteson.

Fast context adaptation via meta-learning. In International Conference on Machine

Learning, pages 7693–7702. PMLR, 2019.

6.1. All hyperparameters and experiment details
In this section, we present list of common and important hyperparameters used in our

experiments along with their description, while also presenting algorithm-specific hyperpa-

rameters.

Table 6.1. All common hyperparameters and their description.

hyperparameters value Description

batchsize 32 batchsize used for both training

and few-shot evaluation

max_train_steps 200m maximum number of training steps per task

max_eval_steps 500k maximum number of training steps

during few-shot evaluation

burn_in_frames 10k number of samples used to warm-up replay buffer

eval_burn_in_frames 1k number of samples used to warm-up

evaluation replay buffer

replay_buffer_size 32768 replay buffer size during continual training

eval_replay_buffer_size 10000 replay buffer size for few-shot evaluation

epoch_len_size 200 number of gradient updates per epoch

eval_epoch_len_size 50 number of gradient updates for few-shot evaluation

eval_freq 25 Learner is evaluated after each 25 epochs

num_thread 10 number of threads used for R2D2 actors

num_game_per_thread 80 number of game per threads used for R2D2 actors

eval_num_thread 10 number of threads used for R2D2 actors

during few-shot evaluation

eval_num_game_per_thread 10 number of games per threads used for R2D2 actors

during few-shot evaluation

sgd_momentum 0.8 momentum for SGD optimizer

78

Table 6.2. Specific hyperparameters to each algorithm and their description

hyperparameters value Description

ewc_lambda 50000 EWC

ewc_gamma 1 EWC

replay_buffer_size 163840 Multi-task

79

	Résumé
	Abstract
	Contents
	List of tables
	List of figures
	List of acronyms and abbreviations
	Acknowledgement
	Chapter 1. Introduction
	1.1. Contributions
	1.1.1. Author contributions for the paper

	Chapter 2. Machine Learning and Reinforcement Learning
	2.1. Machine Learning basics
	2.1.1. Overfitting, Underfitting and Capacity
	2.1.2. Neural Networks

	2.2. Reinforcement Learning
	2.3. Markov Decision Process
	2.4. Return
	2.5. Policy
	2.6. Value functions
	2.7. Bellman equations
	2.7.1. Dynamic Programming
	2.7.2. Monte-Carlo methods
	2.7.3. Temporal Difference learning
	2.7.4. SARSA
	2.7.5. Q-Learning
	2.7.6. Deep Q-Networks (DQN)

	2.8. Policy Gradient
	2.8.1. Policy Gradient with Baseline
	2.8.2. Actor-Critic methods

	Chapter 3. Lifelong Learning and Multi-agent Reinforcement Learning
	3.1. Lifelong Learning
	3.1.1. Characteristics of a good lifelong learning system
	3.1.2. Lifelong learning scenarios
	3.1.3. Lifelong learning methods
	3.1.4. Benchmarks

	3.2. Multi-agent RL
	3.2.1. MARL framework

	Chapter 4. Lifelong Hanabi setup
	4.1. Hanabi
	4.2. Multi-Agent RL and Lifelong Learning
	4.3. Lifelong Hanabi: A Benchmark for Lifelong Reinforcement Learning
	4.3.1. Pool of Agents
	4.3.2. Evaluation methods
	4.3.3. Metrics

	Chapter 5. Experiments and Results
	5.1. List of agents
	5.2. Lifelong learning benchmarking
	5.3. Lifelong learning under constrained memory and compute
	5.3.1. Episodic memory size
	5.3.2. Gradient updates for few-shot evaluation

	5.4. Lifelong RL methods
	5.5. Zero-shot coordination
	5.6. Additional results on 10 tasks

	Chapter 6. Conclusions and Future work
	References
	6.1. All hyperparameters and experiment details

