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Abstract 

Combining MRI modalities is a growing trend in neurosciences. It provides opportunities to investigate the 

brain architecture supporting cognitive functions. Integrating fMRI activation to guide dMRI tractography 

offers potential advantages over standard tractography methods. A quick glimpse of the literature on this topic 

reveals that this technique is challenging, and no consensus or “best practices” currently exist, at least not 

within a single document. We present the first attempt to systematically analyze and summarize the literature 

of 80 studies that integrated task-based fMRI results to guide tractography, over the last two decades. We 

report 19 findings that cover challenges related to sample size, microstructure modelling, seeding methods, 

multimodal space registration, false negatives/positives, specificity/validity, gray/white matter interface and 

more. These findings will help the scientific community (1) understand the strengths and limitations of the 

approaches, (2) design studies using this integrative framework, and (3) motivate researchers to fill the gaps 

identified. We provide references toward best practices, in order to improve the overall result's replicability, 

sensitivity, specificity, and validity. 
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Introduction 

The combination of functional MRI and diffusion MRI 

MRI is sometimes compared to a “Swiss knife” because it is a single tool that has multiple functions. Thus, 

MRI is a perfect means by which to collect multimodal brain imaging data; it can be used to collect 

information about the brain’s anatomy (structural MRI [sMRI]), activity (fMRI), and to probe white matter 

organization and microstructural properties (diffusion MRI [dMRI]). Acquiring multimodal brain data in a 
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single study is common practice, yet most scientific investigations tend to analyze and report their results in a 

unimodal or separated fashion (Calhoun and Adali, 2009; Sui et al., 2014). However, the combination of fMRI 

and dMRI data to study brain activations and white matter, respectively, is a growing trend (Soares et al., 

2013). This multimodal approach is strongly encouraged by the cognitive neuroscience research community in 

order to better understand the brain architecture that sustains cognitive functions (Calamante et al., 2013; Zhu 

et al., 2014). The combination of multimodal MRI data can shed light on the anatomical and functional 

organization of the brain, and improve our understanding of many brain phenomena (i.e., development, 

cognition, pathological processes, and psychiatric disorders) (Sui et al., 2014). 

MRI modalities 

Functional MRI (fMRI) 

Functional MRI has contributed to critical progress in the field of cognitive neuroscience. Task-based fMRI 

allows identification of the patterns of neural activation associated with an experimental task. It relies on the 

measurement of dynamic changes in brain oxygenation levels (BOLD signal) due to underlying neuronal 

activity (Chen and Glover, 2015). FMRI is also used to investigate the brain’s BOLD signal spontaneous 

fluctuation when at rest (Biswal et al., 1995; Fox et al., 2005; Raichle and Mintun, 2006). Resting state fMRI 

(rs-fMRI) relies on the assumption that brain regions maintain temporally synchronized patterns of 

spontaneous activity, in an organized fashion, that forms interconnected networks such as the Default Mode 

Network (Greicius et al., 2003; Raichle and Mintun, 2006). The recent development of fMRI connectivity 

analysis has provided new ways to investigate the relationship between active brain regions, by measuring their 

connectivity (i.e., functional and effective connectivity) (Friston, 2011). 

Diffusion MRI 

dMRI pledges to help us in our understanding of the brain’s white matter organization. By probing the 

diffusion of water molecules in the brain, dMRI provides useful information about the underlying 

microstructural properties of white matter (Jones, 2010a). The diffusion of water molecules is highly 

dependent on their immediate surrounding environment. White matter is mostly composed of densely packed 

and organized axons, oligodendrocytes (myelin sheaths), and other glial cells, where the random motion of 

water molecules becomes restricted and hindered, which strengthen the dMRI signal. In contrast to white 

matter, water molecules diffuse freely in the cerebrospinal fluid, resulting in a dMRI signal loss. The behavior 

of water molecules in gray matter lies somewhere between that of cerebrospinal fluid and white matter. Indeed, 

gray matter is composed of neuronal cell bodies, dendrites, and glial cells that allow some degree of free 

diffusion and some degree of restricted and hindered diffusion (intermediate signal) (Rowe et al., 2016). 

Different microstructure modeling strategies have been proposed in the last decades in order to better 

understand the complex organization of the local microstructure of tissues probed by dMRI. Models include 

diffusion tensor imaging (DTI) (Basser et al., 1994), Q-ball imaging (Tuch, 2004), spherical deconvolution 

(SD) (Tournier, Calamante, Gadian, & Connelly, 2004), amongst others, and each have their own strengths and 

weaknesses (see Descoteaux & Poupon, 2012 for a review). These dMRI local microstructure models allow 

two main types of analysis. The first type is voxel-based analysis of white matter microstructural properties, 

such as fractional anisotropy (FA) or other metrics (e.g., axial diffusivity [AD], radial diffusivity [RD], and 

mean diffusivity [MD]). This analysis can be carried out using a standard parametric voxel-based approach, or 

by using alternatives such as tract-based spatial statistics (TBSS) (Jones and Cercignani, 2010; Smith et al., 

2006; Van Hecke et al., 2016). The second approach, tractography is a computational approach attempting to 

virtually reconstruct white matter structural pathways (Caan, 2016; Descoteaux and Poupon, 2012). Thus, both 
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approaches, voxel-based and tractography, allows the analysis of the same white matter microstructural 

properties. However, one happens at the voxel level, while the other, tractography, encompasses the whole 

course of the reconstructed streamlines, or subparts of it (see ‘tractometry’ and ‘tract profiling’ in Boukadi et 

al., 2019; Cousineau et al., 2016; Yeatman et al., 2012. 

Before the advent of tractography, we had to rely solely on more invasive means, such as animal tracer studies, 

Wallerian degeneration, myelogenic development and post-mortem human brain dissection to investigate white 

matter pathways (Axer, 2011; Axer et al., 2013; Catani et al., 2002; Chanraud et al., 2010; Schmahmann and 

Pandya, 2006). Tractography allows the course of white matter fiber bundles to be followed between two (or 

more) selected brain regions, which can be validated with other more invasive methods (Catani, 2010; Catani 

et al., 2002; Wakana et al., 2004). Tractography also provides information about in-vivo neuroanatomical 

connections between brain regions (structural connectivity) and white matter microstructural properties (Caan, 

2016; Jones, 2010a). However, the methods used to quantify structural connectivity should be used with 

caution because they remain the subject of vigorous scientific debate (Calamante, 2019; Jones, 2010b; Jones et 

al., 2013; Maier-Hein et al., 2017). The integration of fMRI to guide tractography represents an excellent 

means by which to gain insight about the functional and structural organization of cognitive brain functions. 

For this reason, our scoping review will focus on the integration of fMRI task-related brain activations to guide 

tractography, rather than dMRI voxel-based analysis (i.e., TBSS). 

Types of combination 

Overlay approaches 

Thus far, a growing number of studies combine fMRI and dMRI data with different methodological 

approaches. One can collect functional and diffusion data and analyze these in a parallel way. This is defined 

as an overlay approach (Calhoun and Adali, 2009; Sui et al., 2014) because results from multiple MRI 

modalities are simply co-registered (i.e., in native space), or normalized in a common template (group-wise 

analysis), but do not interact with one another and remain independent (see Figure 1A). The reader can find 

examples of the overlay approach in: Cha et al., 2016; Chamberland et al., 2017; Papadelis et al., 2014; 

Perobelli et al., 2015; Santhanam et al., 2011; and Sun et al., 2018. Note that it is also possible to compare 

structural connectivity matrices with functional connectivity matrices obtained from fMRI (Horn et al., 2014). 

Data fusion approaches 

Another way of combining multiple MRI modalities is data fusion. This is a symmetric approach where 

multiple MRI modalities (i.e., fMRI and dMRI) contribute to the same statistical model to identify how these 

fused data sets explain a phenomenon of interest (Calhoun and Adali, 2009; Sui et al., 2014) (see Figure 1B). 

Data fusion involves exploratory analysis such as joint independent component analysis (jICA). The reader can 

find examples of data fusion in: Calhoun, Liu, & Adali, 2009; Franco et al., 2008; Sui et al., 2012, 2013, 2011; 

and Teipel et al., 2010.  

Data integration approaches 

Conversely, data integration is an asymmetric approach where one modality is used to enhance or constrain the 

second one (Sui et al., 2014) (see Figure 1C). An example of such an integrative multimodal MRI approach is 

when fMRI task-related brain activations are used to precisely guide the tracking of the white matter fiber 

bundle via dMRI tractography (also referred to as ‘fiber tracking’) (Bernier et al., 2014; Caan, 2016; 

Descoteaux and Poupon, 2012). Note that this precision will depend upon the implementation of the procedure 

and the quality of the data and its critical examination is one of the objectives of this scoping review. The 
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opposite approach is also possible (i.e., functional connectivity guided by dMRI tractography), as 

demonstrated in Chamberland et al., 2015. Since cognitive functions are implemented through large-scale brain 

networks, the integration of fMRI and dMRI data is an exciting approach to disentangle the neural organization 

of mental processes in the brain (Catani and Ffytche, 2005; Mesulam, 1990; Sui et al., 2014). For this reason, 

multiple articles using this integrative framework will be presented in this scoping review. 

  

Advantages of the integration of fMRI to tractography 

When multimodal brain datasets that comprise fMRI and dMRI are available, the integration of fMRI to guide 

tractography offers potential advantages over the standard dMRI tractography methods. In previous studies, 

two principal methods were commonly used to perform dMRI tractography. One requires the initial definition 

of seed regions based on anatomical landmarks from brain atlases, or the reliance on manual seed placement on 

directionally encoded color fractional anisotropy maps (DEC-FA maps). The second firstly performs whole-

brain tractography by seeding every voxel in the white matter (or the gray and white matter interface), with a 

pre-defined ending criteria (e.g., gray matter), and then filters out the tracts of interest that intersect the regions 

of interest obtained from a chosen brain atlas (Descoteaux and Poupon, 2012; Girard et al., 2014; Soares et al., 

2013; St-Onge et al., 2018). The latter method suffers from limitations, as the following are sometimes 

assumed: 

1. The entire selected brain regions are involved in the process of interest, which is sometimes 

true, however, sub-parts of a given brain region can be involved in more specific processes 

(Yang et al., 2009) 

2. The brain anatomical and functional organization is not deformed by a pathological entity (i.e., 

tumor) (Niu et al., 2016; Schonberg et al., 2006; Uzuki et al., 2009) 

3. The analyzed brains developed in a typical manner, which may not the case in many 

neurodevelopmental disorders 

4. The analyzed brains are at the same level of development/maturation as the atlas of reference, 

which can be problematic when studying pediatric or elderly populations (Broser et al., 2012) 

The manual placement of seed regions in DEC-FA maps is 1) user and expertise dependent, which makes it 

error-prone; and 2) depends on the chosen DTI atlas and the chosen tract delineation guidelines (Lee et al., 

2012). Furthermore, studies have shown that seed placement precision is critical because it influences the 

results of fiber tracking (Liu, 2011; Soares et al., 2013). Therefore, the seeding method derived from task-

based fMRI results could enhance the precision of fiber tracking by targeting parts of the brain functionally 

involved in the sensory, motor, or cognitive process of interest, while respecting the subjects’ or targeted 

groups’ underlying functional and structural organization. In addition, this data integration approach allows, to 

a certain degree, interpretation of the relationship between specific white matter fiber tracks and a given 

cognitive process, a concept that some authors have termed as “functionally defined white matter” (Gomez et 

al., 2015). This is an argument that has motivated research groups to initiate their tractography based on fMRI 

experimental results. However, such claims must be made with caution, while respecting the limitations of 

each method (fMRI and dMRI) and incorporating a priori knowledge from other sources (e.g., brain 

stimulation studies, dissection studies, animals tracing studies, or evidence from neurological patients) 

(Duffau, 2008; Jones and Cercignani, 2010; Park and Friston, 2013; Raichle and Mintun, 2006; Schmahmann 

and Pandya, 2006). Finally, structural connectivity between brain regions active during a given cognitive 

process can be investigated when integrating fMRI experimental results to guide fiber tracking.  
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The arguments discussed above clearly highlight the potential relevance of integrating fMRI and tractography, 

although, as the saying goes, more is not always better. In their studies, Dyrba et al. showed that, in some 

instances, adding another MRI modality did not improve their classification accuracy of Alzheimer's disease 

patients (Dyrba et al., 2015). Even though this study used the data fusion approach, it serves as a proof of 

concept. Obviously, the decision to combine multiple MRI modalities must be clearly in line with the research 

questions and must result in the identification of new and useful information. A quick glimpse of the scientific 

literature relating to this topic has led us to believe that this technique is quite complex, that no guidelines or 

consensuses exist, and that it poses many challenges that are not clearly addressed by the current literature, or 

at least not within a single document. Consequently, there is a clear need to compile and summarize the 

literature on this precise topic. 

Aims 

Our aim was to review articles that integrated task-based fMRI results to guide dMRI tractography, in order to 

address the challenges that this new field of research faces, provide some solutions, and discuss the advantages 

and limitations of using this integrative approach. We restricted our analysis to the integration of task-based 

fMRI, without covering the integration of functional connectivity obtained by rs-fMRI. This was because 1) 

we were interested in using the integration of task-based fMRI in a research project and 2) the amount of 

articles to review would have been overwhelming if we had covered both types of fMRI analysis. However, it 

must be kept in mind that rs-fMRI results can be used to guide tractography (for examples see: Cui et al., 2017; 

Figley, Bhullar, Courtney, & Figley, 2015; Ge et al., 2013; and Palesi et al., 2016).  

Methods 

Since our topic is broad and has not yet been extensively reviewed, we opted for a scoping review approach 

because our research goals necessitate raking through a wide range of research topics. This approach is widely 

used in human sciences and allows for the synthesis of knowledge, the mapping of relevant key concepts, and 

the identification of gaps in a defined area where the patients’/participants’ population characteristics, study 

designs, methods, and data analyses are heterogeneous (Arksey and O’Malley, 2005; Dijkers, 2011; Peters et 

al., 2015; Pham et al., 2014; Tricco et al., 2016). It is based on an exhaustive and systematic search of the 

literature based on key words. We adopted the five-stage framework for conducting a scoping review, as 

reported by Arksey and O'Malley (2005). This framework included the following five steps: (1) identifying the 

initial research questions, (2) identifying relevant studies, (3) study selection, (4) charting the data, and (5) 

summarizing and reporting the results. 

(1) Identifying the initial research questions: Our goal was to compile and provide a descriptive and critical 

overview of the available experimental reports using task-based fMRI results to guide dMRI tractography. We 

will address the challenges that this new field of research faces, provide some solutions, and discuss the 

advantages and limitations of using this integrative approach. 

Concerning the integration of task-based fMRI results to guide tractography, we aimed to address the 

following research questions and, when possible, sought to identify the associated advantages and limitations:  

1. What type of combination approach is most widely used?  

2. What sample size is commonly used when using this integrative approach? 

3. Is it used to investigate a clinical population (if yes, which one)?  

4. What are the commonly used dMRI acquisition parameters?  
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5. What packages or software is used to analyze MRI data in the reviewed articles? 

6. What fiber tracking strategies and algorithm classes are used? 

7. How are seed regions from task-based fMRI derived for tractography? 

8. How do researchers deal with the gray and white matter interface when using the task-based fMRI seed 

region for guidance? 

9. How do researchers deal with the different MRI modality (native or standard) spaces? 

10. How do researchers present/report their results using this integrative approach? 

11. Do researchers validate their fiber tracking results by triangulation? 

12. When analyzing diffusion metrics along the obtained tracts, how is it done and do authors include a 

comparison/control tract?  

13. Do authors label their fiber tracking results when using this integrative approach? 

(2) Identifying relevant studies: First we conducted a documentary search using all the Web of Science  

databases. Since fMRI and dMRI were emerging in the 1990s, we thought it would be reasonable to only 

include studies published between January 1, 1990 and September 28, 2018. Second, we performed an update 

of the literature from October 2018 to august 2021. 

We searched for the following keywords: [“fMRI” OR “Functional magnetic resonance imaging”] AND 

[“DTI” OR “tractography” OR "fiber tracking"] AND [“combin*” OR “multimodal”]. We included articles 

that reported primary experiments involving task-based fMRI brain activation to guide fiber tracking. We 

excluded case studies, non-human or post-mortem research, reviews, meta-analysis, and methodological 

papers. Publications in a language other than English were excluded because of the cost and time involved in 

translating the material. Note that we did not examine unpublished or ambiguous literature in our scoping 

review. For these reasons, important publications could have been neglected. 

(3) Study selection: Before the literature update, we retrieved 643 results published between 1995 and 

September 2018 through the database search. Titles and abstracts were screened by one of the authors (JJ) 

according to the above-mentioned inclusion and exclusion criteria. A psychology undergraduate student with 

no formal training in MRI was trained by JJ to independently screen 10% of randomly selected titles and 

abstracts (N=64) for quality assurance. Inter-rater percent agreement was 90.62 % and reached 100% when 

disagreements were resolved. In the case of a considerable discrepancy between the two judges, we planned to 

invoke a systematic inter-rater procedure. However, this was not required. After the update, we retrieved 

another 161 results published between October 2018 and august 2021 leaving us with 804 articles from which 

two duplicates were removed and 14 other articles were added through cross-referencing. Out of these 816 

articles that were screened a total of 736 articles were excluded for not meeting the inclusion/exclusion criteria 

or omitted for not containing enough information (i.e. proceedings and conferences abstracts). This left us with 

a final count of 80 articles to be included in the scoping review.  Figure 2 shows a PRISMA flow diagram 

outlining our scoping review process (Moher et al., 2016; Peters et al., 2015) 

(4) Data charting: For each article included in the scoping review, we extracted the following data: 1) year of 

publication; 2) name of the journal; 3) the neuroscience domain (e.g., language, perception, memory, and 

others); 4) sample size; 5) study population (healthy and/or clinical); 6) scanner strength; 7) fMRI design and 

experimental paradigm; 8) dMRI data acquisition parameter (b-values and number of gradient directions); 9) 

dMRI and fMRI processing/analysis software; 10) methods used to derive tractography seed region from task-

based fMRI results; 11) analysis performed at the individual or group-wise level in the native or standardized 
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space; 12) methods used to insure contact between white matter and fMRI driven tractography seed regions; 

13) dMRI models used (i.e., diffusion tensor or higher order); 14) fiber tracking algorithm class (i.e., 

deterministic or probabilistic); 15) track selection method (i.e., whole-brain tractography or seed-based); and 

16) diffusion and tractography metrics analyzed (e.g., FA, AD, RD, track volume of length, number of 

streamlines, and others). 

As our critical reading of the selected articles progressed, further questions gradually came to mind. Therefore, 

“new” data were extracted a posteriori to the initial research questions. These were 1) the presence of a 

reference from the scientific literature to cross validate the results of fiber tracking (e.g., an animal tracing 

study or human post-mortem dissection), 2) the presence of a control/comparison tract, 3) whether fMRI data 

was obtained from the same or different samples as the dMRI data, 4) which methods were used to perform the 

analysis of diffusion metrics on the obtained track (whole track mean or subparts of it), and 5) if the labeling of 

the fiber tracking result was in accordance with a known white matter structure (e.g., as depicted in a brain 

atlas). 

We directly addressed questions about the article to the corresponding author, by e-mail, when we needed 

clarification about a topic during our critical reading. 

(5) Summarizing and reporting the results: The summary of the findings, representing the last stage of the 

five-stage framework for conducting a scoping review, is reported in the following section. 

 

Results and Discussion 

The current review allowed us to take a bird’s eye view of the different methodologies used to circumvent 

many challenges associated with the integration of task-based fMRI to guide dMRI tractography. We will 

address the key findings one by one, and break down the advantages and inconveniences associated with the 

different approaches that were used in the reviewed articles. Note that there are more findings than research 

questions because more than one finding can correspond to the same research question. These findings might 

be helpful to readers interested in integrating task-based fMRI to guide dMRI tractography. Let us remember 

that even if some methods were more predominant compared to others, it is not necessarily a pledge of their 

quality. 

Database search and trends through the years 

Finding 1: The overlay approach is the most commonly used when compared with fusion and integration 

for the combination of fMRI with dMRI. [Research question #1] 

A total of 504 (61%) primary experiments had acquired more than one brain imaging modality, and 439 (53%) 

had acquired fMRI along with dMRI data. Among the 439 studies that had acquired fMRI along with dMRI 

data, 267 (58%) used an overlay approach, 55 (12%) used a data fusion approach, and 136 (30%) used an 

integration approach (Figure 3B). Only 80  studies (10%) had integrated task-based fMRI results to guide 

tractography. Conturo et al., 1999 were the first to adopt this integrative framework. All the included articles 

are reported in Table 1. 

Table 1: 80 studies included references with the data charted to produce most of the figures and statistics we 

reference throughout the scoping review 
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Studies Sample description dMRI and tractography parameters Multimodal integration parameters 

Fig. 4 Fig.5B Table. 2 
Fig. 

5A 
Table. 3 Fig. 7A Fig. 7B Fig 7C Fig. 9A Fig. 9C Fig. 9B 

Articles 
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n
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C
o

n
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o
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P
o

p
u
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ti

o
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G
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n
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d
ir

e
ct

io
n

s 

m
o

d
e

l f
it

te
d

 Tractograp

hy 

Algorithm 

Seeding 

method 

Tractograp

hy space 

track 

selectio

n 

White and 

Grey matter 

interface 

method 

Seed regions 

transferred from 

native to standard 

Conturo et al. 

1999 

Vision 4 - 4 Healt

hy 

12 DTI Unknown N/A Native Cluster Displace ROIs fMRI single-subject 

analysis 

Guye et al. 2003 Motor 9 1 8 BT 54 DTI Unknown N/A Native Other Displace ROIs fMRI single-subject 

analysis 

Kim et al. 2005 Vision N/A - N/A Healt

hy 

N/A DTI Unknown N/A Native Cluster Others fMRI single-subject 

analysis 

Powell et al. 2006 Langua

ge 

10 - 10 Healt

hy 

54 DTI Probabilist

ic 

Seed Native Trace 

VOIs 

Others Reverse normalization 

Schonberg et al. 

2006 

Motor 14 9 5 BT 6 DTI Unknown N/A Native Sphere Displace ROIs fMRI single-subject 

analysis 

Cherubini et al. 

2007 

Motor 9 2 7 TBI 12 DTI Probabilist

ic 

Seed Native Cluster N/A Reverse normalization 

Powell et al. 2007 Langua

ge 

24 14 10 TLE 54 DTI Probabilist

ic 

Seed Native Trace 

VOIs 

Others Reverse normalization 

Takahashi et al. 

2007 

Memor

y 

20 - 20 Healt

hy 

15 DTI Probabilist

ic 

Seed Native Cluster N/A Reverse normalization 

Upadhyay et al. 

2007 

Auditio

n 

8 - 8 Healt

hy 

15 DTI Probabilist

ic 

Seed Native Cluster Dilate ROIs fMRI single-subject 

analysis 

Saur et al. 2008 Langua

ge 

33 - 33 Healt

hy 

61 DTI Probabilist

ic 

Seed Native Sphere Rim of gray 

matter 

Reverse normalization 

Staempfli et al. 

2008 

Motor 6 - 6 Healt

hy 

15 DTI Unknown N/A Native Sphere Others fMRI single-subject 

analysis 

Bonzano et al. 

2009 

Memor

y 

41 23 18 MS 15 DTI Probabilist

ic 

Seed Native Cluster Dilate ROIs Reverse normalization 

Lanyon et al. 

2009 

Vision 10 - 10 Healt

hy 

32 DTI Determinis

tic 

Whole-

brain 

Native Trace 

VOIs 

N/A fMRI single-subject 

analysis 

Morgan et al. 

2009 

Langua

ge 

12 - 12 Healt

hy 

32 DTI Determinis

tic 

Seed Native Cluster Others Reverse normalization 
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Uzuki et al. 2009 Motor 19 19  BT 42 DTI Unknown N/A Native N/A N/A fMRI single-subject 

analysis 

Yang et al. 2009 Motor 11 - 11 Healt

hy 

32 DTI Probabilist

ic 

Seed Native Cluster N/A fMRI single-subject 

analysis 

Kleiser et al. 2010 Motor 11 8 3 BT 15 DTI Probabilist

ic 

Seed Native Sphere Others fMRI single-subject 

analysis 

Mazerolle et al. 

2010 

Motor 10 - 10 Healt

hy 

30 DTI Determinis

tic 

Whole-

brain 

Native Cluster Dilate ROIs fMRI single-subject 

analysis 

Moisset et al. 

2010 

Pain 11 - 11 Healt

hy 

25 DTI Unknown N/A Native N/A N/A N/A 

 

Table 1: (continued) 
Studies Sample description dMRI and tractography parameters Multimodal integration parameters 

Fig. 4 Fig.5B Table. 2 
Fig. 

5A 
Table. 3 Fig. 7A Fig. 7B Fig 7C Fig. 9A Fig. 9C Fig. 9B 

Articles 

To
p

ic
 

To
ta

l 

P
at

ie
n

ts
 

C
o

n
tr

o
ls

 

P
o

p
u

la
ti

o
n

 

G
ra

d
ie

n
t 

d
ir

e
ct

io
n

s 

m
o

d
e

l f
it

te
d

 Tractograp

hy 

Algorithm 

Seedi

ng 

metho

d 

Tractograp

hy space 

track 

selectio

n 

White and 

Grey matter 

interface 

method 

Seed regions 

transferred from 

native to standard 

Saur et al. 2010 Langua

ge 

33 - 33 Healt

hy 

61 DTI Probabilisti

c 

Seed Native Sphere Rim of gray 

matter 

Reverse normalization 

Umarova et al. 

2010 

Attenti

on 

26 - 26 Healt

hy 

61 DTI Probabilisti

c 

Seed Native Sphere Rim of gray 

matter 

Reverse normalization 

Blank et al. 2011 Auditio

n 

19 - 19 Healt

hy 

60 DTI Probabilisti

c 

Seed Native Sphere Displace ROIs fMRI single-subject 

analysis 

Brauer et al. 2011 Langua

ge 

20 - 20 Healt

hy 

60 DTI Unknown N/A Standard Other N/A Averaged “DT image”  

Ethofer et al. 

2011 

Vision 22 - 22 Healt

hy 

30 DTI Probabilisti

c 

N/A Native Cluster N/A Reverse normalization 

Hong et al. 2011 Motor 19 - 19 Healt

hy 

32 DTI Probabilisti

c 

Seed Native Cluster N/A fMRI single-subject 

analysis 

Schott et al. 2011 Memor

y 

28 - 28 Healt

hy 

N/A DTI Probabilisti

c 

Seed Native Sphere N/A Reverse normalization 

Wahl et al. 2011 Motor 28 16 12 MS 12 DTI Unknown Seed Native Cube Others fMRI single-subject 

analysis 
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Anderson et al. 

2012 

Motor 10 - 10 Healt

hy 

64 DTI Unknown N/A Native Cluster Others fMRI single-subject 

analysis 

Broser et al. 2012 Langua

ge 

15 - 15 Healt

hy 

60 HAR

DI 

Probabilisti

c 

Seed Native Other N/A fMRI single-subject 

analysis 

Ethofer et al. 

2012 

Auditio

n 

22 - 22 Healt

hy 

30 DTI Probabilisti

c 

N/A Native Cluster Others N/A 

Greenberg et al. 

2012 

Attenti

on 

5 - 5 Healt

hy 

257 DSI Determinis

tic 

Seed Native Cluster Displace ROIs fMRI single-subject 

analysis 

Gschwind et al. 

2012 

Vision 24 - 24 Healt

hy 

30 DTI Probabilisti

c 

Seed Native Sphere Displace ROIs Reverse normalization 

Iidaka et al. 2012 Vision 30 - 30 Healt

hy 

64 DTI Probabilisti

c 

Seed Native Cluster N/A N/A 

Lee et al. 2012 Motor 10 - 10 Healt

hy 

32 DTI Probabilisti

c 

Seed Native Trace 

VOIs 

N/A fMRI single-subject 

analysis 

Shimono et al. 

2012 

Vision 11 - 11 Healt

hy 

16 DTI Probabilisti

c 

Seed Native N/A N/A fMRI single-subject 

analysis 

Vry et al. 2012 Motor 23 - 23 Healt

hy 

61 DTI Probabilisti

c 

Seed Native Sphere Rim of gray 

matter 

Reverse normalization 

Bonner et al. 

2013 

Langua

ge 

22 - 22 Healt

hy 

30 DTI Determinis

tic 

N/A Standard Cluster Dilate ROIs Averaged “DT image” 

Bray et al. 2013 Vision 32 - 32 Healt

hy 

60 HAR

DI 

Probabilisti

c 

Seed Native Cluster N/A fMRI single-subject 

analysis 

 

Table 1: (continued) 
Studies Sample description dMRI and tractography parameters Multimodal integration parameters 

Fig. 4 Fig.5B Table. 2 
Fig. 

5A 
Table. 3 Fig. 7A Fig. 7B Fig 7C Fig. 9A Fig. 9C Fig. 9B 
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m
o

d
e

l f
it

te
d

 Tractogra

phy 

Algorithm 

Seeding 

method 

Tractogra

phy space 

track 

selecti

on 

White and 

Grey matter 

interface 

method 

Seed regions 

transferred from 

native to standard 

Caeyenberghs et 

al. 2013 

Executive 

Function 

31 16 17 TBI 64 DTI Determini

stic 

Whole-

brain 

Native Sphere N/A N/A 

Ethofer et al. 2013 Vision 29 - 29 Healt

hy 

30 DTI Probabilis

tic 

N/A Native Cluster N/A fMRI single-subject 

analysis 
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Griffiths et al. 2013 Language 30 16 14 PSA 64 DTI Probabilis

tic 

Seed Native Cluster N/A Reverse 

normalization 

Hartwigsen et al. 

2013 

Language 17 - 17 Healt

hy 

60 DTI Probabilis

tic 

Seed N/A Sphere N/A N/A 

Klein et al. 2013 Arithmetic 33 - 33 Healt

hy 

61 DTI Probabilis

tic 

Seed Native Sphere Rim of gray 

matter 

Reverse 

normalization 

Lee et al. 2013 Motor 14 - 14 Healt

hy 

32 DTI Determini

stic 

N/A Native N/A N/A fMRI single-subject 

analysis 

Lemaire et al. 2013 Language 12 - 12 Healt

hy 

31 DTI Unknown N/A Native Cube Displace ROIs fMRI single-subject 

analysis 

Oguri et al. 2013 Motor 25 - 25 Healt

hy 

81 DTI Probabilis

tic 

Seed Native Cluster N/A fMRI single-subject 

analysis 

Pyles et al. 2013 Vision 5 - 5 Healt

hy 

362 DSI Determini

stic 

N/A Native Cluster Dilate ROIs fMRI single-subject 

analysis 

Szczepanski et al. 

2013 

Attention 14 - 14 Healt

hy 

60 DTI Probabilis

tic 

Seed Native Other N/A fMRI single-subject 

analysis 

Gao et al. 2014 Memory 38 13 25 AD 15 DTI Unknown N/A Native Cluster N/A Reverse 

normalization 

Iwabuchi et al. 

2014 

Language 21 - 21 Healt

hy 

30 DTI Probabilis

tic 

Seed N/A Cluster Displace ROIs N/A 

Javad et al. 2014 Audition 14 - 14 Healt

hy 

64 HAR

DI 

Probabilis

tic 

Seed Native Sphere N/A Reverse 

normalization 

Jeon et al. 2014 Executive 

Function 

19 - 19 Healt

hy 

60 DTI Probabilis

tic 

Seed Native Sphere Displace ROIs Reverse 

normalization 

Lee et al. 2014 Motor 10 - 10 Healt

hy 

32 DTI Probabilis

tic 

Seed Native Cluster N/A fMRI single-subject 

analysis 

Preti et al. 2014 Language 68 29 39 AD 12 DTI Determini

stic 

Whole-

brain 

Native Cluster Dilate ROIs Normalized 

tractogram 

 

 

Table 1: (continued) 
Studies Sample description dMRI and tractography parameters Multimodal integration parameters 

Fig. 4 Fig.5B Table. 2 
Fig. 

5A 
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Algorithm 

Seeding 

method 

Tractogra

phy space 

track 

selecti

on 

White and 

Grey matter 

interface 

method 

Seed regions 

transferred from 

native to standard 

Thomalla et al. 

2014 

Executi

ve 

Functio

n 

30 15 15 GTS 24 DTI Probabilist

ic 

Seed Native Sphere N/A Reverse normalization 

Whittingstall et al. 

2014 

Vision 18 - 18 Healt

hy 

60 HAR

DI 

Probabilist

ic 

Seed Native Cluster Rim of gray 

matter 

fMRI single-subject 

analysis 

Wu et al. 2014 Langua

ge 

36 18 18 SCZ 362 DSI Determinis

tic 

Seed Native Sphere Dilate ROIs N/A 

Gomez et al. 2015 Vision 26 8 18 DP 30 HAR

DI 

Probabilist

ic 

Seed Native Sphere Others fMRI single-subject 

analysis 

Hakun et al. 2015 Executi

ve 

Functio

n 

18 - 18 Healt

hy 

36 DTI Probabilist

ic 

Seed Native Cluster N/A Reverse normalization 

Jouen et al. 2015 Langua

ge 

19 - 19 Healt

hy 

60 DTI Determinis

tic 

Whole-

brain 

Native Sphere N/A Reverse normalization 

Leroux et al. 2015 Langua

ge 

34 17 17 SCZ 21 DTI Probabilist

ic 

Seed Native Cluster N/A N/A 

Musso et al. 2015 Auditio

n 

11 - 11 Healt

hy 

61 DTI Probabilist

ic 

Seed Native Sphere Rim of gray 

matter 

Reverse normalization 

Péron et al. 2015 Auditio

n 

15 - 15 Healt

hy 

30 DTI Probabilist

ic 

Seed Native Sphere N/A Reverse normalization 

Riley et al. 2015 Vision 43 24 19 TLE 64 DTI Probabilist

ic 

Seed Native Sphere Displace ROIs Reverse normalization 

Vry et al. 2015 Motor 24 - 24 Healt

hy 

61 DTI Probabilist

ic 

Seed Native Sphere Rim of gray 

matter 

Reverse normalization 

Feng et al. 2016 Langua

ge 

26 - 26 Healt

hy 

30 DTI Probabilist

ic 

Seed Native Sphere N/A N/A 

Hamzei et al. 2016 Motor 116 - 116 Healt

hy 

61 DTI Probabilist

ic 

N/A N/A Sphere Rim of gray 

matter 

N/A 

Niu et al. 2016 Motor 16 16  BT 30 DTI Probabilist Seed Native Sphere N/A fMRI single-subject 
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ic analysis 

O'Hanlon et al. 

2016 

Memor

y 

48 22 26 22q11 61 HAR

DI 

Determinis

tic 

Whole-

brain 

Native Cluster N/A Reverse normalization 

Reid et al. 2016 Motor 37 37 - CP 64 HAR

DI 

Probabilist

ic 

Seed Native Cluster Displace ROIs fMRI single-subject 

analysis 

 

Table 1: (continued) 
Studies Sample description dMRI and tractography parameters Multimodal integration parameters 

Fig. 4 Fig.5B Table. 2 
Fig. 

5A 
Table. 3 Fig. 6A Fig. 6B Fig 6C Fig. 9A Fig. 9C Fig. 9B 

Articles 

To
p
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C
o
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 Tractograp

hy 

Algorithm 

Seeding 

method 

Tractograp

hy space 

track 

selecti

on 

White and 

Grey 

matter 

interface 

method 

Seed regions 

transferred from 

native to standard 

Scaccianoce et al. 2016 Langua

ge 

22 1 21 PSA 12 DTI Determinis

tic 

Whole-

brain 

Standard Sphere Others Done in standard 

space 

Oechslin et al. 2017 Auditio

n 

59 - 59 Healt

hy 

63 DTI Probabilist

ic 

Seed Native Sphere Others Reverse normalization 

Reid et al. 2017 Motor  22 - 22 Healt

hy 

64 HAR

DI 

Probabilist

ic 

Seed Native Cluster Displace 

ROIs 

fMRI single-subject 

analysis 

Xing et al. 2018 Langua

ge 

70 45 25 PSA 60 DTI Probabilist

ic 

Seed Native Sphere N/A Reverse normalization 

Zhu et al. 2018 Motor 6 - 6 OBPP 30 DTI Determinis

tic 

Whole-

brain 

Native Cluster N/A fMRI single-subject 

analysis 

Sitek et al. 2019 Auditio

n 

10 10 - Healt

hy 

198 HAR

DI 

Determinis

tic 

Seed Native Cluster N/A Reverse normalization 

Hazza et al 2019 Motor 19 10 9 BT 25 DTI Probabilist

ic 

Seed Native Cluster N/A fMRI single-subject 

analysis 

Sanvito et al. 2020 Langua

ge 

32 16 16 BT 60 HAR

DI 

Probabilist

ic 

Whole-

brain 

Native Cluster Dilate ROIs fMRI single-subject 

analysis 

Meissner et al. 2021 Vision 31 31 - Healt

hy 

33 DTI Probabilist

ic 

Seed Native Cluster N/A fMRI single-subject 

analysis 

Gurtubay-Antolin et al. 

2021 

Vision 

and 

16 16 - Healt

hy 

60 HAR

DI 

Probabilist

ic 

Seed Standard Sphere Displace 

ROIs 

Reverse normalization 
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List of abbreviations used in table 1:  

 

 

 

Model fitted:DSI  Diffusion Spectrum Imaging 

 DTI  Diffusion Tensor Imaging 

 HARDI  High Angular Resolution Diffusion Imaging 

Population: 

 22q11  22q11 deletion syndrome 

 AD  Alzheimer Disease 

 BT  Brain Tumor 

 DP  Developmental Prosopagnosia 

 GTS  Gilles de la Tourette’s Syndrome 

 MS  Multiple Sclerosis 

 OBPP  obstetric brachial plexus palsy 

 PSA  Post-Stroke Aphasia 

 SCZ  Schizophrenia 

 TLE  Temporal Lobe Epilepsy 

 TBI  Traumatic Brain Injury
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The populations investigated - sample sizes and diagnoses 

Finding 2: The average sample size was ≈17 and no guidelines currently exist with respect to sample 

size for fiber tracking, while some recommendations exist for fMRI.  [Research question #2] 

Study designs were heterogeneous, in so far that some investigated healthy individuals or patients, 

whereas others performed group comparisons (young healthy individuals, healthy elderly individuals, 

training groups, or patients). Therefore, the mean sample size for studies investigating healthy 

individuals was 18.6. Note that one study did not report their sample size, also the Hamzei et al., 2016 

study was considered an outlier and removed from the analysis because it artificially inflated the 

descriptive statistics because it had 116 participants. The mean sample size for studies comparing 

groups was 16.0 for the patient group and 16.1 for the control group (see Table 2 for more 

information). To our knowledge, no current guidelines exist with respect to sample size for fiber 

tracking. However if the objective is to perform fiber tracking based on fMRI result, then the reader 

must be aware that small sample size offers unreliable results (Turner et al., 2018). Therefore, driving 

permanent conclusion about the brain organization from a small sample appears to be a risky bet. 

Figure 4 clearly demonstrate that most of the studies included in this scoping review were 

underpowered with respect to methodological studies about task-based fMRI  (Thirion et al., 2007; 

Turner et al., 2018). 

 

Table 2: Sample size descriptive statistics of included studies  

  Mean Mdn SD Min Max 

Healthy individuals (N=53) 18,6 18,0 9,8 4,0 59,0 

Patient (N=26) 16,0 16,0 10,2 1,0 45,0 

Control (N=22) 16,1 16,5 8,1 3,0 39,0 

 

Finding 3: The integration of fMRI to guide fiber tracking can be performed with a clinical 

population, but it is not without shortcomings [Research question #3].  

Most studies included in this scoping review investigated healthy individual (67.5%) while a minority 

investigated patients (32,5%).  Figure 5 shows the partitioning of diagnoses across included studies and 

the partitioning of the neuroscientific domains investigated. Studies investigating clinical populations 

were focused on finding biomarkers (68%) or guiding possible intervention (32%). The most frequent 

problem reported was brain tumors with 7 published articles in the domain of neurosurgery (Guye et 

al., 2003; Kleiser et al., 2010; Niu et al., 2016; Schonberg et al., 2006; Uzuki et al., 2009). Even if the 

studies reviewed provided examples of successful application of this integration framework in patients, 

we remind the reader that they are not without shortcomings. Multimodal acquisition implies a longer 

time spent in the MRI scanner and this is not well suited to all clinical populations. As it was illustrated 

by Reid et al., 2016, acquiring good quality fMRI and dMRI data with patients can be a challenge due 

to excessive movement or non-compliance. Since the amount of clinical studies is relatively small with 

very heterogeneous studies it is difficult to draw clear conclusion of the applicability of this approach 

to find valid biomarkers in clinical population or to guide possible intervention.  A detailed review of 

the designs and methods of studies that investigated clinical populations is available in the 

supplementary material. 
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Finding 4: No studies investigated the impact of using sets of fMRI and dMRI data obtained from 

different/independent samples. [a posteriori question] 

Four of the reviewed studies used fMRI data obtained from samples different to, or independent of, 

those from the dMRI data obtained to perform their functionally driven fiber tracking (Gurtubay-

Antolin et al., 2021; Hartwigsen et al., 2013; Klein et al., 2013; Musso et al., 2015). According to Klein 

et al., 2013 and Musso et al., 2015, using independent samples across MRI modalities strengthens the 

results because it reduces the chances that unknown anatomical peculiarities of a sample influence the 

overall results. However, Umarova et al., 2010 adopted the opposite point of view on this topic stating 

that “the use of regions of interest, obtained in other studies, may lead to a systematic error also due to 

the different spatial preprocessing.” To our knowledge, no studies have investigated the impact of using 

sets of fMRI and dMRI data obtained from different/independent samples. This kind of investigation 

should be carried out in the near future by experienced fiber-tracking methodologists. In the meantime, 

if researchers endeavor to review the fMRI meta-analysis literature and drive fiber-tracking from the 

significant MNI coordinates in their dMRI data sample (or open source dMRI data sample), then they 

should be aware that this procedure could have an unprecedented impact on their results. 

Diffusion MRI and tractography parameters 

Finding 5: Higher order microstructure modeling strategies are under-used when integrating task-

based fMRI to guide fiber-tracking. [Research question #4]. 

In Table 3 we report the descriptive statistics of the dMRI acquisition parameters by the microstructure 

modeling categories (DTI, high angular resolution diffusion imaging [HARDI], and diffusion spectrum 

imaging [DSI]) used in the 80 selected studies. Most studies included (66/80 = 82.5%) opted for a 

tensor model (DTI), and 11 of these studies used a two principal direction tensor model. Out of the 11 

studies using HARDI, 10 (90%) opted for the fiber orientation distribution (FOD) from the constrained 

spherical deconvolution approach, and another used a ball and stick model. The ones who used DSI 

computed the orientation distribution function (ODF) from Q-ball imaging.  

Table 3: dMRI acquisition parameters descriptive statistics by the microstructure model 

   b value s/mm2 # directions 

Microstructure model Mode Mean SD Min Max Mode Mean SD Min Max 

DSI = (N=3) 7000 (N=2) 6000 1732 4000 7000 362 327 61 257 362 

DTI (N=66) 1000 (N=46) 1037 719 600 3000 30 38,88 20 3 81 

HARDI (N=11) 
3000 (N=3) 

1755 861 900 3000 60 71 43 30 198 
1000 (N=3) 

Even if higher order microstructure modeling strategies have been validated for some time (e.g., Q-ball 

imaging since 2004), our data clearly suggest that the tensor model (DTI) is still the leading model 

when integrating fMRI to guide fiber-tracking, and it does not seem that researchers adopted higher 

order models as time progressed (see Figure 6). This can be considered as “bad news”, considering that 

DTI fails to track properly in brain regions where white matter configuration is more complex (e.g., 

crossing fibers). Studies have shown that complex white matter configurations represent approximately 

90% of white matter voxels (Descoteaux, 2008; Jeurissen et al., 2013). Furthermore, there is no reason 

to justify the use of DTI for fiber-tracking in reviewed articles that had acquired 45 or more 

independent diffusion weighted encoding direction with b-values between 1000-3000 s/mm
2
 because 
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these parameters are relatively well suited to many HARDI models (Descoteaux & Poupon, 2012; 

Tournier, Calamante, & Connelly, 2013). The fact that researchers continue to use DTI for fiber 

tracking is not isolated to the domain of the integration of fMRI to tractography. This has been declared 

the first of the “Seven Deadly Sins” of fiber tacking (Calamante, 2019; Farquharson et al., 2013; Jones, 

2010b). We remind the reader that DTI is still a valuable tool to estimate microstructural properties 

such as fractional anisotropy (FA) and other metrics. Nevertheless, DTI is not well suited for fiber 

tracking, while higher order microstructure models are proven to be more robust for this task 

(Calamante, 2019; Farquharson et al., 2013). Moving beyond the tensor model requires the consequent 

adaption of dMRI data acquisition protocols to ensure optimal HARDI parameter estimation. The 

reader can find such information in the following references: Descoteaux & Poupon, 2012 and Tournier 

et al., 2013. 
 

Tractography specifications 

Finding 6: Publications fail to report the bare minimal information about tractography parameters 

[a posteriori question] 

We would like to emphasize that 39% of the reviewed studies did not clearly specify the number of 

streamlines generated per seed regions, 23% did not clearly specify if they performed whole-brain or 

seed region based tractography, 15% did not specify the nature of the fiber-tracking algorithm that was 

used, and 4% did not clearly specify if fiber tracking was performed in a native or standard space. This 

is problematic because it does not allow full appreciation of the extent of the results, precludes 

replicability of the findings, and introduces inconsistencies for future systematic review or meta-

analysis. Descriptive statistics and further information about the number of streamlines generated per 

seed regions are depicted in supplementary Table 1. 

Finding 7: Probabilistic algorithms are preferred to deterministic algorithms as they offer important 

advantages [Research question #6]. 

In the 80 articles selected, 66% performed probabilistic fiber tracking, while 19% used a deterministic 

algorithm (Figure 7A). The use of probabilistic tractography algorithms has increased over time, when 

task-based fMRI results have been integrated to guide tractography (see supplementary Figure 2). This 

is not surprising, considering the advantages over deterministic tractography. Deterministic 

tractography algorithms are sensitive to a single principal direction, and tracking results can be easily 

corrupted/penalized by regions with higher curvature, complex organization, or noisy data (Alexander, 

2010; Descoteaux and Poupon, 2012; Parker, 2010). In contrast, probabilistic fiber tracking offers the 

advantage of considering all the possible directions (as opposed to only the principal direction), and 

provides a quantitative indicator of the confidence in the tracking results, which is not negligible 

(Descoteaux and Poupon, 2012; Parker, 2010). 

 

Track selection methods 

Finding 8: Seed based tractography is preferred over filtering whole-brain fiber tracking  [Research 

question #6]. 

Most of the selected articles (65%) ran a seed region based tractography, while 11% performed whole-

brain fiber tracking and then filtered out their track of interest using functionally derived regions of 
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interest (Figure 7B). To our knowledge, the advantages of seed to seed tractography over filtering 

whole-brain tractography (or the other way around) remain to be studied more extensively before 

deriving a conclusion on this topic. However, some evidence suggests that seed based tractography 

yields more chances for succeeding in delineating fiber bundles that are harder to track, when 

compared to whole-brain fiber tracking (Chamberland et al., 2014). 

The following articles performed single seed fiber tracking, which means that they ran fiber tracking 

from an activated ROI toward all other points in the brain: (Bonzano et al., 2009; Cherubini et al., 

2007; Guye et al., 2003; Kleiser et al., 2010; Little and Holloway, 2007; Powell et al., 2007, 2006; 

Thomalla et al., 2014). The single seed tracking method allows the generation of a structural 

connectivity map (or structural connectivity profile) of the seed regions with the rest of the brain. 

Powell et al., 2007 argues that single seed region fiber tracking “allows a global assessment of the 

pattern of connectivity without imposing strong prior user knowledge” and adds that “two-region 

approaches also have the disadvantage of potential bias due to the a priori assumption that connections 

between the two sites do actually exist”. This argument highlights an advantage of this method, 

however, one must keep in mind that single seed region fiber tracking is a non-commutative process 

(tracking from a starting point does not necessarily guarantee the same result when tracking is initiated 

from the end points initially obtained) (Caan, 2016; Jones, 2010b). Furthermore, it is often well-

justified to track back and forth between a seed ROI and a target ROI to put a hypothesis to the test or 

verify the presence of a disconnection in patients between two normally connected regions. Even if 

some “fixed or standardized” set of tractography parameters have been suggested in the literature, we 

remind the reader that fiber tracking in a clinical population could be influenced by those parameters 

because of the patient’s peculiarities, as illustrated in Chamberland et al., 2014. 

 

Finding 9: Fiber tracking is performed in the participant’s dMRI native space when integrating 

task-based fMRI to guide fiber tracking, as suggested by the best practices [Research question #6]. 

The majority (90%) of assessed articles performed fiber tracking in the participants’ dMRI native space 

(Figure 7C). This is considered “best practice” because performing fiber tracking in native unwrapped 

images prevents misregistration errors and failure of b-matrix rotation (Gao et al., 2014; Jones and 

Cercignani, 2010). In a different manner, 5 articles (6%) performed fiber tracking in a standard space 

(Figure 7C). Scaccianoce et al., 2016 warped their participants’ DTI data in MNI space before 

performing fiber tracking, while Bonner, Peelle, Cook, & Grossman, 2013 and Brauer, Anwander, & 

Friederici, 2011 produced a single averaged “DT image” across the participants, then warped this “DT 

image” in a standardized space for fiber tracking.  

Finding 10: False negatives could be prevented by adopting a track profiling approach when 

measuring white matter microstructural properties over a track. [Research question #12]. 

Out of the 80 articles selected, 29 (36%) analyzed white matter microstructural properties such as FA 

and other metrics (AD, RD, MD, and others). Most of these articles (27/29 = 93%) calculated a mean 

value over the whole track. This procedure is relatively common; however, it could potentially lead to 

type II errors (false negatives) stating that no significant variation of the metric is observed on the 

track. As it was demonstrated by Gomez et al., 2015, subtle and meaningful variation can be detected 
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in subsections of a track, while it is not detected when using the average of the whole track. This makes 

sense, knowing that tracks are formed of multiple individual streamlines each having different gross 

trajectories, length, shape, and branching (Chamberland et al., 2019). For this reason, we believe that 

adopting a track profiling approach when performing tractometry could be beneficial. This means 

collecting multiple samples of microstructural properties across/along the track (subsections), instead 

of only averaging over the course of the whole track (Chamberland et al., 2019; Cousineau et al., 

2016). Only two articles calculated the white matter microstructural properties on subsections of the 

tracks (see Gomez et al., 2015 and Reid, Sale, Cunnington, Mattingley, & Rose, 2017 for more details). 

Finding 11: Sub-optimal fiber tracking strategies adopted by the scoped articles could promote false 

positives [Research question #6]. 

Only one of the reviewed articles (Gurtubay-Antolin et al., 2021) performed their fiber tracking using 

well-developed tracking strategies such as Anatomically Constrained Tractography (ACT) (Smith et 

al., 2012a), Continuous Map Criterion (CMC) (Lemkaddem et al., 2014), or Particle Filtering 

Tractography (PFT) (Girard et al., 2014). These tools integrate anatomical priors derived from T1-

weighted image tissue segmentation, which offers higher spatial resolution than dMRI images, into the 

tracking process to make the tracking results more consistent with knowledge obtained from other 

studies that use invasive means. In the case of ACT, these anatomical priors are used to preclude fiber 

tracking in non-white matter tissues (i.e., cerebrospinal fluid, cortical gray matter, sub-cortical gray 

matter, and skull). This latter procedure is less prone to false positives and biases due to partial volume 

effect and FA map thresholding strategies (i.e., tracking in regions where FA > 0.25) where FA values 

fall within white matter voxels containing a more complex organization (Jeurissen et al., 2013; Jones 

and Cercignani, 2010). It also refines fiber tracking by using a set of rules regarding plausible 

termination points (gray matter) and non-plausible termination points (cerebrospinal fluid and white 

matter). These tools were developed in 2012 and 2014, so we understand why the reviewed articles 

published before this period did not use these strategies to refine their results. However, we highly 

recommend incorporating these strategies for future research that will integrate task-based fMRI results 

to guide tractography. Furthermore, we stress that Anatomically Constrained Tractography (ACT) can 

serve as a potential problem solver to the issue of the gray/white matter interface (see Finding 20), as it 

can flexibly perform tracking in ROIs if classified/defined properly in the ACT framework. 

Finding 12: Lack of convergent and divergent validity diminish the overall specificity and 

confidence of the findings [Research question #11, 12 and 13]. 

Of the reviewed studies, 66/80 (82.5%) did not cross validate their finding through other sources such 

studies that uses more invasive means (e.g., animal tracer studies, Wallerian degeneration, myelogenic 

development and post-mortem human brain dissection). We argue that authors ought to consider this 

option, when possible, to support and strengthen their findings. On the other hand, we understand that 

is it not always possible to support tractography findings with converging evidence from other invasive 

means. A common issue is to try to compare/support findings about the human language system with 

animal studies. Such comparisons cannot be established in a straightforward manner due to the large 

evolutionary gap between human language and language in other species (Rilling et al., 2008).  
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When presenting their fiber tracking results, 54/80 (67.5%) of the selected articles labeled the tracts 

according to a known white matter structure (from a DTI, tractography, or white matter atlas), while 

the other 26/80 (32.5%) did not. It can be difficult for readers to understand the practical or theoretical 

implications of a statement such as “there were structural connections between the left inferior frontal 

gyrus and the left angular gyrus”. The statement provides no information about the anatomical 

underpinning of the so-called structural connection. Therefore, we argue that tractography results could 

become more meaningful if they were properly labeled according to a known white matter structure 

(e.g., “there were structural connections between the left inferior frontal gyrus and the left angular 

gyrus, passing by the superior longitudinal fasciculus [SLF-II]”). Labeling tractography results also 

allows the evaluation of the consistency of tractography findings across studies. Furthermore, it offers 

the opportunity to verify if the tractography results are part of a known white matter structure or are 

segregated from it. In their studies, Gomez et al., 2015 provide rich information about the topographic 

organization of the face and place selective functionally defined white matter tracts in relation to the 

inferior longitudinal fasciculus (ILF). 

Another issue related to studies that performed measures of white matter microstructural properties is 

the lack of control/comparison tracts. A minority of studies (18/80 or 22.5%) included a control track, 

or a form of control tract, for quality assurance or comparison purposes, while others did not. Few 

articles reported significant microstructural property differences between groups in the investigated 

track, without providing measurements from a control/comparison tract. This is problematic because it 

is impossible to know if the difference is specific to this track, or is a more general characteristic of the 

population investigated (i.e., the difference is present in all the white matter). Control/comparison 

tracks can take multiple forms, such as the extracted values in a well know bundle, such as the 

corticospinal track (CST), or the simple delineation of the “same tract” in the opposite hemisphere. We 

argue that authors should provide control/comparison tracks when comparing white matter 

microstructural properties between groups to support the validity and specificity of their findings. 

Examples of articles providing different forms of control/comparison tracts are Bonner et al., 2013a; 

Ethofer et al., 2011; Gomez et al., 2015; Reid et al., 2017a, 2016; and Upadhyay et al., 2007a. 

MRI analysis packages 

Finding 13: FSL and SPM were the most frequently used software [Research question #5]. 

The software that was most frequently used to pre-process dMRI data and perform tractography was 

FSL (www.fmrib.ox.ac.uk/fsl) accounting for 43% and 37% of the articles, respectively. Other 

packages were used and are reported in Figures 8A and 8B. SPM 

(https://www.fil.ion.ucl.ac.uk/spm/software/) was the software that was used by most of the reviewed 

studies (74%) to perform fMRI data processing and analysis. Figure 8C reports the other software used 

for fMRI data analysis. Although DIPY (https://dipy.org/) is a toolbox frequently employed in 

tractography studies, surprisingly, only one of the studies included in the present scoping review report 

using this toolbox in their analysis.  

Methods to derive tractography seed region from task-based fMRI 

A critical aspect of this integrative approach is deriving seed or filter regions from task-based fMRI in 

order to guide the tractography. Various methods were used to do so across the selected articles. We 
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classified these methods into four main categories: the cluster method, the sphere method, the manual 

tracing method, and others (Figure 9A). 

Finding 14: Clusters of activation and spherical regions of interest based on fMRI are often used to 

guide fiber tracking [Research question #7]. 

The most frequently performed seeding/filtering method was the cluster method, representing 36 (45%) 

of the selected articles. This is probably the most straightforward method, as it “only” saves the task-

based fMRI activation clusters into an object that can be used for fiber tracking directly from the 

neuroimaging statistical package (i.e., a binary mask or n-ary mask). It also has the advantage of 

reflecting the whole extent of the activated brain region (relative to the threshold applied). This 

seeding/filtering method (or extremely similar ones) was used by the following authors: Anderson et 

al., 2012; Bonner et al., 2013a; Bonzano et al., 2009; Bray et al., 2013; Cherubini et al., 2007; Conturo 

et al., 1999; Ethofer et al., 2013, 2012, 2011; Gao et al., 2014; Greenberg et al., 2012; Griffiths et al., 

2013; Hakun et al., 2015; Hazzaa et al., 2019; Hong and Jang, 2011; Iidaka et al., 2012; Iwabuchi and 

Kirk, 2014; Kim and Kim, 2005; Lee et al., 2014; Leroux et al., 2015; Mazerolle et al., 2010; Morgan 

et al., 2009; O’Hanlon et al., 2016; Oguri et al., 2013; Preti et al., 2014; Pyles et al., 2013; Reid et al., 

2017b, 2016; Sanvito et al., 2020; Sitek et al., 2019; Takahashi et al., 2007; Upadhyay et al., 2007a; 

Whittingstall et al., 2014; Xi et al., 2018; Yang et al., 2009. However, it is not always feasible or 

realistic to directly use clusters as seeds/filtering regions, given their varying size and shape and wide 

brain surface coverage. Therefore, it becomes difficult to make sense of such clusters, and they might 

not be useful for fiber tracking.  

The sphere method consists of placing a sphere ROI onto the coordinate of the peak activation point (or 

the center of gravity) of a cluster. This offers the advantage of ruling out the previously mentioned 

issue related to cluster size and shape. Sphere sizes varied across the 30 articles using this method. 

Sphere radius size varied across articles (see Table 1 for descriptive statistics) and we do not know 

exactly what the impacts of sphere radius size are on tractography results. The most frequent sphere 

size radius used was 4 mm and 5 mm in 15 out of 30 studies. It seems very improbable that the brain 

regions we are trying to identify with fMRI are reliably represented with large spheres (> 8 mm radius) 

that jump across multiple gyri/sulci or white matter voxels. Without studies and precise guidelines 

regarding the “ideal” radius of sphere ROIs it is difficult to recommend anything beyond stating that 4- 

and 5-mm radii were the most frequently used in the reviewed articles (see Table 1). Note that the user 

must remain vigilant about the risk of resampling errors when carrying ROIs between different MRI 

spatial resolutions (nearest neighbor interpolation should be used when reslicing images). The sphere 

method (or extremely similar methods) was performed in the following articles: Blank et al., 2011; 

Caeyenberghs et al., 2013; Feng et al., 2016; Gomez et al., 2015; Gschwind et al., 2012; Gurtubay-

Antolin et al., 2021; Guye et al., 2003; Hamzei et al., 2016; Hartwigsen et al., 2013; Javad et al., 2014; 

Jeon et al., 2014; Jouen et al., 2015; Klein et al., 2013; Kleiser et al., 2010; Musso et al., 2015; Niu et 

al., 2016; Oechslin et al., 2017; Péron et al., 2015; Riley et al., 2015; Saur et al., 2010, 2008; 

Scaccianoce et al., 2016; Schonberg et al., 2006; Schott et al., 2011; Shimono et al., 2012; Staempfli et 

al., 2008; Vry et al., 2015, 2012; Wu et al., 2014; Xing et al., 2018. 

The manual tracing method implies to manually draws the cluster of activation to transform it into a 

ROI (or volume of interest [VOI]) to seed/filter fiber tracking. It was used in the following four 
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articles: Lanyon et al., 2009; Lee et al., 2012; and Powell et al., 2007, 2006. Note that this technique is 

highly similar to the cluster method previously mentioned. However, the manual drawing method is 

user dependent, which may lead to human errors, and is far more time consuming than the cluster 

method. 

The category “others” encompasses different seeding/filtering methods that were used by two or fewer 

articles, and is further described in the supplementary material. To our knowledge, the other methods 

used to derive ROIs from task-based fMRI do not offer any advantages over the above-mentioned 

methods. Finally, four of the selected studies did not clearly state how they derived their seed regions 

for fiber tracking, based on task-based fMRI activation results. 

Table 4: Sphere size radius (in mm) descriptive statistics  

Mode Mdn Mean SD Min Max 

4 (N=7) 
5 5,5 2,21 2 11 

5 (N=8) 

Methods used to match the multimodal MRI spaces 

We previously mentioned that 90% of the selected studies performed tractography in the subject’s 

native space (Figure 9C). This can be an issue, knowing that 44/80 (55%) of the selected studies 

performed a group-wise random effect fMRI analysis in a standard space (i.e., MNI template). 

Finding 15: When performing group-wise fMRI analysis, most researchers used an inverse/reverse 

normalization procedure to return their ROIs in the participant’s dMRI native space [Research 

question #8]. 

Few studies (10/80 = 12.5%) did not clearly specify how they managed to perform fiber tracking in the 

participant’s dMRI native space when they ran group-wise analysis in a standardized template (Figure 

9B). Most of these studies (30/44) solved this issue by returning their ROIs (i.e., fMRI cluster, sphere, 

or MNI coordinates) into the participant’s dMRI native space by using a reverse/inverse normalization 

procedure (Bonzano et al., 2009; Cherubini et al., 2007; Ethofer et al., 2011; Gao et al., 2014; Griffiths 

et al., 2013; Gschwind et al., 2012; Gurtubay-Antolin et al., 2021; Hakun et al., 2015; Javad et al., 

2014; Jeon et al., 2014; Jouen et al., 2015; Klein et al., 2013; Morgan et al., 2009; Musso et al., 2015; 

O’Hanlon et al., 2016; Oechslin et al., 2017; Péron et al., 2015; Powell et al., 2007, 2006; Riley et al., 

2015; Saur et al., 2010, 2008; Schott et al., 2011; Sitek et al., 2019; Takahashi et al., 2007; Thomalla et 

al., 2014; Umarova et al., 2010; Vry et al., 2015, 2012; Xing et al., 2018). This procedure consists of 

using the reversed deformation field obtained/saved during the T1-weighted image tissue segmentation 

step, and requires co-registration of all the MRI modalities to the participant’s dMRI space before 

segmenting and normalizing the MRI data. It is also possible to keep multimodal MRI data in distinct 

spaces and save the normalization deformation fields for each modality, in order to ensure 

correspondence in the future. However, the latter involves an accumulation of residual errors across the 

different deformation fields used. 

Four studies performed their fMRI analysis and then integrated their fiber tracking results in a standard 

space. Preti et al., 2014 and Scaccianoce et al., 2016 normalized their participants’ whole-brain 

tractogram in MNI space and then filtered out the track of interest using the group-wise activated brain 
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regions. Streamlines obtained in the participant’s dMRI native space can be warped to a standard 

template (i.e., MNI template) using software such as Megatrack (Dell’Acqua et al., 2015) or DIPY 

direct streamlines Normalization (https://dipy.org/) (Avants et al., 2011; Greene et al., 2018).  

Bonner et al., 2013 and Brauer et al., 2011 produced a single averaged “DT image” across the 

participants. This averaged “DT image” was then warped in a standardized space and whole-brain 

tractography was performed. They then filtered out the track of interest using the group-wise activated 

brain regions. 

Finding 16: When performing single subject fMRI analysis, one “simply” needs to ensure proper 

registration between the different MRI modalities [Research question #8]. 

Another straightforward method applied in 36/80 (45%) of the selected studies was to perform fMRI 

single-subject analysis (fixed effect) for each subject in their respective MRI native space (Anderson et 

al., 2012; Blank et al., 2011; Bray et al., 2013; Broser et al., 2012; Conturo et al., 1999; Ethofer et al., 

2013; Gomez et al., 2015; Greenberg et al., 2012; Guye et al., 2003; Hong and Jang, 2011; Kim and 

Kim, 2005; Kleiser et al., 2010; Lanyon et al., 2009; Lee et al., 2014, 2013, 2012; Lemaire et al., 2013; 

Mazerolle et al., 2010; Niu et al., 2016; Oguri et al., 2013; Pyles et al., 2013; Reid et al., 2017b, 2016; 

Schonberg et al., 2006; Shimono et al., 2012; Staempfli et al., 2008; Upadhyay et al., 2007a; Uzuki et 

al., 2009; Wahl et al., 2011; Whittingstall et al., 2014; Yang et al., 2009). Therefore, one “simply” 

needs to insure proper registration between the different MRI modalities. Single-subject analysis in 

fMRI ensures suitable localization of brain activations, while respecting the individual’s neuroanatomy. 

On the other hand, group-wise fMRI analysis provides more sensibility and reliability as the sample 

size increases (Geuter et al., 2018).  

Methods to address the gray/white matter interface 

fMRI aims to localize brain activations in the cortex and in subcortical nuclei where neural activity 

occurs and generate a detectable BOLD signal. However, fiber tracking is generally performed in white 

matter areas; it is not performed in cortical gray matter, sub-cortical nuclei, and cerebrospinal fluid, 

especially in the case of anatomically constrained tractography (Smith, Tournier, Calamante, & 

Connelly, 2012). Thus, it is a good idea to ensure that the fiber tracking seed and target ROIs are in 

contact, at least partially, with white matter to guarantee that streamlines reach their target 

(Whittingstall et al., 2014). Publications in this scoping review proposed various approaches to deal 

with this gray and white matter interface issue. We organized the different methods according to their 

similarities into five main categories: displace ROIs, rim of gray matter, dilate ROIs, others, and 

unknown (Figure 9C). A large number of these articles (34/80) did not clearly specify how they ruled 

out this gray and white matter interface issue. 

Finding 17: The problem of white and gray matter interface might not always need to be addressed, 

but when it does, solutions have been proposed [Research question #8]. 

One question that arose when we realized that a considerable amount (45%) of the reviewed articles did 

not clearly specify how they ruled out this gray and white matter interface issue was “maybe it is not 

always necessary to manipulate the ROIs or the white matter fiber tracking mask to obtain descent fiber 

tracking?” In fact, as addressed by Gomez et al., 2015; Kleiser et al., 2010; and Staempfli et al., 2008, 

it is possible that spherical ROIs (from 3 to 7 mm radius) could be sufficient to guarantee contact with 
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white matter. This makes sense, knowing that the human cortex thickness is roughly 2.5 mm and 

ranges between 1 mm and 4.5 mm from one folding to another (Fischl and Dale, 2000). When using 

fMRI clusters as tractography ROIs, it is possible that the smoothing kernel applied during fMRI 

preprocessing solves the white and gray matter interface issue, as stated by Powell et al., 2006, 2007: 

“Spatial smoothing of the fMRI scans leads to blurring of activations across neighboring voxels, 

leading to activations which include both gray and white matter. This provides a relatively unbiased 

choice of white matter voxels for tractography seeding, avoiding the necessity to manually define the 

white matter voxels expected to subserve a particular gray matter area.” 

In their study, Schonberg et al., 2006 manually placed their seed ROIs on the directionally encoded 

color FA maps next to the fMRI activations. Lemaire et al., 2013 manually placed a cubic seed ROI 

within a white matter fascicle determined by a neuroanatomist. Conturo et al., 1999 constructed a 1-cm 

band that laterally followed the activated cortex. 

In a different manner, 13 studies displaced the localization of seed ROIs to get around the issue of the 

gray and white matter interface. Some researchers displaced the center of the ROIs to the closest point 

of the gray/white matter junction, based on FA maps (Blank et al., 2011; Gschwind et al., 2012; Jeon et 

al., 2014; Riley et al., 2015). This point of gray/white matter junction is frequently defined using an FA 

threshold such as FA > 0.25 (where values < 0.2 are often considered to belong to gray matter). In a 

similar manner, Guye et al., 2003 selected a set of three voxels in the white matter under the local 

maxima based on FA maps. Although these methods might appear to be unbiased when compared to 

simple visual inspection or manual ROIs displacement, they are still prone to errors due to FA 

thresholding. Indeed, it is not considered good practice since it has been demonstrated that FA values 

fall within white matter voxel-containing complex fiber organization (i.e., fiber crossing, kissing, high 

curvature, and fanning) (Jones, 2010b).  

Another approach (9/80) used to overcome the gray and white matter interface problem was to add a 

rim of gray matter to the tractography mask, to ensure that fiber tracking reaches cortical ROIs 

(Hamzei et al., 2016; Klein et al., 2013; Musso et al., 2015; Saur et al., 2010, 2008; Umarova et al., 

2010; Vry et al., 2015, 2012). These articles do not clearly state how this procedure was performed. We 

corresponded with some of the original authors of these studies and one of them answered: “we 

expanded the white matter mask by a millimeter”. In the same vein, Whittingstall et al., 2014 dilated 

the white matter mask by 1 spherical millimeter to allow tractography to reach cortical regions and sub-

cortical nuclei. However, this procedure dilates the whole mask, which might include undesirable areas 

such as the ventricles.  

Instead of dilating the white matter mask, some authors dilated the fMRI driven ROIs to ensure proper 

overlap with white matter voxels (8/80). The size of the dilation kernel ranged from two to six isotropic 

millimeters across studies (Bonner et al., 2013b; Bonzano et al., 2009; Mazerolle et al., 2010; Preti et 

al., 2012; Pyles et al., 2013; Upadhyay et al., 2007b; Wu et al., 2014). 

The category “others” encompasses heterogeneous methods to ensure contact between functionally 

driven seed/filter ROIs and white matter that were used by three or fewer articles. Further description is 

available in the supplementary material. 
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Four articles projected activated clusters onto a gray/white matter boundary mesh and then performed 

fiber tracking from the surfaces vertices into participants’ native dMRI space (Greenberg et al., 2012; 

Iwabuchi and Kirk, 2014; Reid et al., 2017a, 2016). This raised the question whether we should 

continue to perform analysis at the voxel level or move towards surface analysis. Recently, dMRI 

methodological studies provided strong support for the use of cortical surface to improve the precision 

of tractography (surface-enhanced tractography) (Glasser et al., 2016; St-Onge et al., 2018). Research 

into the combining fMRI and dMRI could consider this approach to address the issue of the gray/white 

matter interface. 

Methods to present integrated results 

Finding 18: Methods to present the results of this integrative framework were extremely 

heterogeneous [Research question #10]. 

The presentation of the results was extremely heterogeneous across the studies we scoped, since they 

had different research questions and methods. Some of these measured the microstructural properties of 

the white matter tracks while others investigated the structural connectivity or the reliability of 

reconstructed bundles across a group. Therefore, we will present some methods that were commonly 

used across the scoped literature.  

Witthingstall et al. 2014 presented an example of how fiber tracking data from multiple participants can 

be integrated in a group statistic while remaining in its original native space. In their study, they 

assessed connection reproducibility across participants by reporting the percentage of subjects that had 

streamlines structurally connecting two ROIs (Figure 10A) (Whittingstall et al., 2014). In a analogous 

way, other authors derived structural connectivity measurements from the participant’s fiber bundles 

reconstructed in their native space (Figure 10B) (Bray et al., 2013; Broser et al., 2012; Greenberg et al., 

2012; Oguri et al., 2013; Pyles et al., 2013; Szczepanski et al., 2013; Upadhyay et al., 2007a). In the 

latter studies, the structural connectivity measurements were mostly based on the number of tracts 

connecting sets of ROIs. We remind the reader that methods to quantify structural connectivity are to 

be used with caution because they are still the subject of vigorous scientific debate (Jones, 2010b). 

The following articles collected microstructural white matter properties (i.e., FA and other values) from 

the participant’s tracts in their native space: Bonzano et al., 2009; Broser et al., 2012; Gao et al., 2014; 

Gomez et al., 2015; Griffiths et al., 2013; Gschwind et al., 2012; Kleiser et al., 2010; Moisset et al., 

2010; O’Hanlon et al., 2016; Powell et al., 2006, 2007; Reid et al., 2017b, 2016; Riley et al., 2015; 

Schonberg et al., 2006; Upadhyay et al., 2007a; Wahl et al., 2011; Wu et al., 2014; Xing et al., 2018; 

and Yang et al., 2009. This approach allows the comparison of groups, the determination of the effect 

of an intervention/training, or the following of the recuperation/evolution of a patient’s brain over time. 

Some of these have established correlation between the microstructural white matter properties and 

behavioral/cognitive measures (see Figure 11 for examples) (Gao et al., 2014; Gomez et al., 2015; 

Powell et al., 2007, 2006; Reid et al., 2016; Wu et al., 2014; Xing et al., 2018). 

In order to represent fiber bundles in a common space, Javad et al. 2014 normalized tracts extracted 

from fMRI derived ROIs in a standard space to obtain a group-wise fascicle representation, where 

voxel intensity is proportional to the number of subjects in which the tracks were identified (Figure 

12A) (Javad et al., 2014). Ethofer et al. 2012 also displayed tractography results in a standardized space 
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in a similar fashion. The degree of fiber connection overlap is illustrated in Figure 3 of their publication 

(Ethofer et al., 2012). In order to visualize fiber tracking results in a standardized space, Jeon et al. 

2014 normalized the thresholded (10%) visitation maps and slightly smoothed the group overlapping 

pathways with a 1 mm full width half maximum filter (FWHM) (see Figure 6 of their article) (Jeon et 

al., 2014). Finally, many authors mentioned in this scoping review used a technique that estimates the 

probability that a voxel is connected by a direct path to both seed regions. The estimation is first done 

at the individual level, and then combined in a normalized space for visualization (Figure 12B) 

(Hartwigsen et al., 2013; Klein et al., 2013; Musso et al., 2015; Saur et al., 2010, 2008; Umarova et al., 

2010; Vry et al., 2015, 2012). This method produces estimate maps called “probability index on 

forming part of the bundle of interest” (PIBI), and is further described by Kreher et al., 2008. 

fMRI and dMRI tractography limitations 

Finding 19: Identification of a structural link between functionally activated brain regions does not 

necessarily imply a causal role [a posteriori question] 

Even if tractography identifies a clear structural connection between activated brain regions during a 

given cognitive process, researchers should remain cautious of straightforward interpretations of 

relationships between a given white matter tract and specific cognitive function because degenerate 

structure-function mappings impede this reasoning (Park and Friston, 2013). It is still necessary to look 

for converging evidence between fMRI, dMRI, and the patients’ notes to establish strong 

structure/network to function relationships. We remind the reader that one limitation of dMRI 

tractography is that it cannot distinguish between efferent and afferent fibers (Jones, 2010b). Although 

it might be possible to infer a certain direction of the fMRI signal by using effective connectivity 

approaches, it would still be impossible to highlight the existence of feedforward connections in the 

fiber bundles. Hartwigsen et al., 2013 used dynamic causal modeling (DCM) to show facilitatory 

connectivity from the pre-supplementary motor area (pre-SMA) to the left dorsal premotor cortex 

during pseudoword repetition. This facilitatory connectivity was possible through the direct anatomical 

connection between the two cortical regions, as demonstrated by fiber tracking (Hartwigsen et al., 

2013).  
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Conclusion 

Our scoping review represents the first attempt to systematically gather, analyze, and summarize the 

literature describing 80 studies that integrated task-based fMRI results to guide tractography over the 

last two decades. Other reviews published previous to this did not adopt a systematic approach and 

were not focused on the topic of the integration of task-based fMRI with tractography (see 

Rykhlevskaia, Gratton, & Fabiani, 2008; Sui et al., 2014; Zhu et al., 2014). This makes the present 

article the most comprehensive reference document regarding methodological issues related to the 

integration of task-based fMRI with tractography. We have provided an exhaustive overview of the 

tools that currently exists to help researchers willing to integrate fMRI to guide tractography. This 

scoping review can be used by the neuroscientific community to 1) better understand possible strengths 

and limitations of the methods used in this field, 2) help design studies using this integrative approach, 

and 3) motivate researchers to fill the gaps identified. 

We demonstrated that the overlay approach is still the dominant approach when combining fMRI with 

tractography (finding 1). When integrating fMRI to guide fiber tracking, clinical studies are feasible, 

but one must remember that multimodal acquisition implies a longer time spent in the MRI scanner, 

and this is not always suited to clinical populations. Furthermore, populations investigated were 

heterogeneous and most clinical studies focused on finding biomarkers. Validation studies and 

standardization of this approach to find clinical biomarker remains to be done (finding 3). We also 

highlighted that no studies have investigated the impact of using sets of fMRI and dMRI data obtained 

from different/independent samples and that this issue needs to be addressed in a near future (finding 

4). 

At this stage, it is still difficult for us to provide clear guidelines on “what to do” and “what not to do” 

when integrating fMRI to guide fiber tracking due to the lack of consensus among the reviewed articles 

and the lack of studies that measure the impact of each method on the results. However, this scoping 

review point out that the articles that integrated fMRI to guide dMRI tractography often failed to apply 

the current best practices for each MRI modality individually (findings 2,5,6,10 and11). Therefore, we 

believe that fMRI and tractography outcomes could be greatly improved by incorporating the best 

practice tackled in the paragraph related to each finding.  

When it comes to the “integration step”, we have addressed the issues related to the usage of task-based 

fMRI activation results to guide tractography and how to deal with different MRI spaces across 

modalities (native and/or standardized) (findings 14,15 and 16). Solutions were proposed to circumvent 

the issues of the gray and white matter interface, yet few of these solutions implies data transformation 

(i.e. dilate or displace ROIs) and we don’t know what the impacts of such manipulations are. Surface 

based analysis appears to be an interesting candidate to overcome this issue and a consensus about 

moving towards surface analysis seems to gradually emerge (Glasser et al., 2016; Reid et al., 2016; St-

Onge et al., 2018) (finding 17).  

Researchers who are planning to integrate fMRI activation results to guide tractography should 

consider that fiber tracking can lead to potential false positives that do not necessarily reflect real 

anatomically proven fiber bundles. With this in mind, it should be considered good practice to 1) label 

Jo
ur

na
l P

re
-p

ro
of



 

 

the tracking results according to a known white matter structure, 2) cross validate findings with other 

sources such studies that use more invasive means, 3) assess the amount of overlap between 

reconstructed track and know fiber bundles obtained with whole brain fiber tracking while making sure 

its topographical organization is plausible (finding 12). In the same vein, we remind the reader that the 

identification of a structural link between functionally activated brain regions does not necessarily 

imply its causal role in the function assessed. It is still necessary to look for converging evidence in the 

literature to establish strong structure/network to function relationships (finding 19).  

Finally, the choice of the most well-suited approach should always be guided by the specific research 

question of the study.  
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Supplementary material:  

Results and discussion 

The populations investigated -diagnoses 

The most frequent problematic reported was brain tumors with 7 published articles in the domain of 

neurosurgery (Guye et al., 2003; Hazzaa et al., 2019; Kleiser et al., 2010; Niu et al., 2016; Sanvito et 

al., 2020; Schonberg et al., 2006; Uzuki et al., 2009). Most of these studies (5/7) investigated the 

advantages of integrating task-based fMRI to guide the tractography to follow the course of the 

corticospinal tract (CST) that has been displaced/deviated by tumors. They succeeded in tracking the 

CST and showed that this approach could benefit surgery planning. Using fMRI seed regions from 

motor tasks (e.g. hand grip, finger tapping, ankle flexion, etc.) help to better track the CST than 

classical anatomical seed placement in the motor cortex because the mass effect could cause anatomical 

and function distortion of the cortex (Kleiser et al., 2010; Niu et al., 2016). This seeding method shows 

no advantages as compared to anatomical seeding when it comes to track white matter infiltrated by the 

tumor because the partial volume effect significantly blurs the dMRI signal (Schonberg et al., 2006). 

The neurodevelopmental disorder category contains three studies, but the clinical problematic are 

heterogeneous. Cerebral palsy: Reid, Cunnington, Boyd, & Rose, 2016 studied cerebral palsy patients 

to validate that their surface based fMRI-driven diffusion tractography method was suitable for clinical 

population that presents important anatomical distortion. They also demonstrate that their approach 

generates better results than standard voxel-based methods. They delineate the hand representation of 

the CST by using seed region provided by a hand flexion fMRI task. The authors highlight the fact that 

acquiring good quality fMRI and dMRI data with patients can be problematic. In their cases, they had 

to exclude six participants because of poor data quality, excessive movement or non-compliance with 

the fMRI task (Reid et al., 2016). Developmental prosopagnosia: In their study, Gomez et al., 2015 

demonstrate that face and place selective brain regions (localized via fMRI and used as seed region for 

fiber tracking) in the ventral temporal cortex project tracts that are segregated one from another. They 

also provide clear indication that these functionally define white matter tracts are arranged in a parallel 

fashion in relation to the inferior longitudinal fasciculus (ILF). To do so they measured the distance 

from the center of the obtained tracts relative to the center of the ILF. Finally, Gomez et al., 2015 found 

a structure-behavior relationship between these functionally defined white matter tracts microstructural 

proprieties and performances of developmental prosopagnosia patients on the Benton Facial 

recognition test. However, this structure-behavior relationship was not present in the ILF (Gomez et al., 

2015). Gilles de la Tourette syndrome : Thomalla et al., 2014 derived tractography from a Go/NoGo 

fMRI paradigm in Gilles de la Tourette’s syndrome patients. To do so they closely monitored the tics 

during data acquisition by combining surface electromyogram and facial video recording. They ran a 

single seed region probabilistic fiber tracking from the activated left primary motor cortex (note that 

the issues related to single seed fiber tracking are covered elsewhere in the scoping review). Their 

result shows no difference between groups in the structural connectivity profile of the left primary 

motor cortex. The absence of difference between group in the structural connectivity profile could be 

attributable to this choice instead of using whole-brain or multiple seed tractography.  
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Post stoke aphasia: Three studies investigated post stroke aphasia (Griffiths et al., 2013; Scaccianoce 

et al., 2016; Xing et al., 2018). Griffiths et al., 2013 seized activation clusters of a syntactic processing 

task from a previous fMRI study (Tyler et al., 2010) and used these as seed regions in aphasic patients 

(note that the issues of acquiring fMRI data obtained from a different sample than dMRI data is 

covered elsewhere in the scoping review). They found that structural disconnection of either the ventral 

or dorsal language processing stream (Hickok and Poeppel, 2004) was associated with syntactic 

impairment in patients who completed offline (outside the scanner) syntactic processing tasks. 

Scaccianoce et al., 2016 first dissected the left arcuate fasciculus (AF) and the left cingulum bundle 

(CB) through a standard anatomical procedure (Catani and Thiebaut de Schotten, 2008). They then 

filtered the track using regions of interest (ROIs) derived from their fMRI covert verbal fluency task. 

This procedure was done on a healthy individual sample; however, they demonstrate that this 

procedure could be applied in a clinical context. To do so, they did a 3-month follow-up of an aphasic 

patient with three MRI sessions. They showed that the volume of connections (the volume the 

intersection of the track and the ROIs) changed across time. Xing et al., 2018 first mapped the brain 

network involved in picture naming of healthy individual using fMRI. They then used the peak 

activation regions as seed regions for fiber tracking. Once they had delineated the tracts, they imported 

binary mask of these tracts into aphasic brain dMRI data to verify which of these tracts were crucial for 

picture naming by conducting partial correlation between white matter microstructural properties (FA) 

and patients picture naming performances on the Philadelphia Naming Test (PNT). Their study 

identifies 14 tracts significantly related to patient’s picture naming performances. The authors warn us 

that the tractography results obtain from healthy individuals may not directly reflect the true 

organization of stroke patients white matter (Xing et al., 2018). 

Schizophrenia: Two studies investigated schizophrenia (Leroux et al., 2015; Wu et al., 2014) . Wu et 

al., 2014 used diffusion spectrum imaging (DSI) to track the dual stream of language and measured its 

microstructural proprieties in schizophrenic patients. They used an anatomical brain atlas to create their 

tractography seed regions. However, they chose these seed regions based on the MNI coordinate 

reported in Saur et al., 2008 fMRI experiment. They adjusted size and location of the seed region until 

the reconstructed tracts were consistent with a reference DTI atlas. The latter appears problematic 

because it is a post-hoc procedure that confirms their expected tractography result. However, their 

result shows a decreased of generalized fractional anisotropy (GFA) in the left ventral, right ventral and 

right dorsal tracts of schizophrenic patients. Leroux et al., 2015 performed inter hemispheric 

tractography between homotopic temporal brain regions activated by a verbal comprehension task in 

schizophrenic patients and controls. They report that patients with schizophrenia had lower GFA values 

compared to controls in the dissected interhemispheric callosal fiber. These values were associated with 

reduced hemispheric specialization for language in patients with schizophrenia (Leroux et al., 2015). 

Multiple sclerosis: Two studies investigated multiple sclerosis (Bonzano et al., 2009; Wahl et al., 

2011). Bonzano et al., 2009 performed fMRI-guided fiber tractography of the fronto-parietal attention 

network in multiple sclerosis patient’s brain. A control group had performed the Paced Visual Serial 

Addition Test (PVSAT) in the fMRI and they derived their seed region for fiber tracking from the 

activated brain regions. They found that patients who had higher FA values in the investigated tract 

(superior longitudinal fasciculus) had brain activations patterns similar to controls. In contrast, the 
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patients with lower FA values in this tract showed bilateral cortical activations (Bonzano et al., 2009). 

Wahl et al., 2011 measured the micro structural proprieties of the motor callosal fiber in early 

relapsing-remitting Multiple Sclerosis patients. They placed a rectangular seed region on the bilateral 

motor hand knobs localized by a fMRI left/right-hand flexion paradigm then performed 

interhemispheric fiber tracking. Their study highlights that early relapsing-remitting Multiple Sclerosis 

patients show reduced FA values in the motor callosal fiber when compared to controls (Wahl et al., 

2011).  

Temporal lobe epilepsy: Two studies investigated temporal lobe epilepsy (TLE) (Powell et al., 2007; 

Riley et al., 2015). Powell et al., 2007 used a verb generation and reading fMRI task to investigate the 

impact of unilateral TLE on the structural and functional asymmetrical organization of the language 

network. Their participants were seven left TLE and seven right TLE. They used the functional 

activation as starting points to perform single seed fiber tracking procedure to reconstruct the white 

matter pathways underlying the language network (note that the issues related to single seed fiber 

tracking are covered elsewhere in the scoping review). Their finding indicates that left TLE patients 

had more symmetrical language activations, increased right hemisphere and reduced left hemisphere 

structural connections while controls and right TLE patients had a similar functional and structural 

leftward organization of the language network. Riley et al., 2015 studied the influences of the side of 

seizures on face processing functional and structural networks in unilateral TLE. To do so they 

performed fiber tracking between functional regions that showed altered brain activation when 

compared to controls. Their result demonstrates that the occipital face area and anterior temporal lobe 

are connected via the inferior longitudinal fasciculus and that individuals with TLE showed reduced 

mean FA along this tract suggesting a reduced structural integrity. 

Alzheimer's disease: Two studies investigated Alzheimer Disease (AD) (Gao et al., 2014; Preti et al., 

2014). Gao et al., 2014 recruited 13 healthy young adults, 13 healthy older adults and 17 patients with 

AD who completed a prospective memory task during fMRI data acquisition. The activated brain 

network among the whole sample was used as ROI for fiber tracking. They classified the resulting 

streamlines as “short-range fibers” if they had a maximum length of 35 mm and streamlines longer than 

that were classified as “long-range fibers”. Finally, they performed analysis of the microstructural 

propriety over these two types of fibers to identify potential differences across the groups. Their result 

indicates that when compared to younger adults, both older adults and AD patients had higher mean 

MD and lower mean FA in short-range fibers while only the AD patients had higher mean MD in long-

range fibers. These results suggest that normal aging only affect short-range fibers while 

neurodegenerative disease processes such as AD are more prone to affect short and long-range fibers 

leading to greater cognitive deficits. Preti et al., 2014 performed whole-brain tractography in healthy 

elderly adults, mild cognitive impairment (MCI) participants and AD patients. They then filter out the 

track according the activated brain region involved in a verbal fluency task of each groups respectively. 

Finally, they measured the involvement of classical fiber bundle (i.e. arcuate fasciculus, cingulum 

bundle) in the verbal fluency task by calculating the overlap of the selected track with the classical 

fiber bundle defined by an anatomical atlas. They showed that MCI participant recruited extended 

verbal fluency functional network while AD patients recruited fewer brain regions when compared to 

healthy elderly adults. Their study also highlights that the left arcuate fasciculus and left cingulum 
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bundle of healthy elderly adults is more involved in verbal fluency followed by MCI participants than 

by AD patients who show reduced involvement of these fiber bundles in the verbal fluency. 

Genetic syndrome: O’Hanlon et al., 2016 employs multimodal MRI approach to examine the 

structural and functional underpinnings of spatial working memory in individuals with 22q11 deletion 

syndrome. They performed whole-brain tractography then filtered out the track of interest using 

activated brain regions subserving a spatial working memory task. Their findings indicate that 22q11 

deletion syndrome patients shows differences in white matter micro macro structural proprieties 

subserving working memory network (namely lower MD,RD and track volume in 22q11 when 

compared to healthy controls). 

Scanner Parameters 

Most studies (68%) employed 3 Tesla field strength scanners for data acquisition and only two studies 

(Jeon et al., 2014; Mazerolle et al., 2010) acquired high field MRI data (Supplementary figure 1A). The 

proportion of studies that had acquired MRI data on 1.5 Tesla scanners -this field strength is more 

common in clinical settings- were roughly similar across studies that had investigated patients (28%) or 

healthy individuals (26%). 

Tractography specifications 

A significant number of published articles (44%) who ran a probabilistic fiber tracking algorithm 

seeded 5000 streamlines per seed voxels. This is probably because it is the default parameters 

implemented in FMRIB diffusion toolbox (FSL; www.fmrib.ox.ac.uk/fsl). Descriptive statistics about 

the number of streamlines generated per seed regions are depicted in supplementary table 1. 

Concerning this particular topic, note that Gauvin et al. 2016 addressed the following question, “How 

many streamlines are needed to reliably compute volume or spatial extent of a bundle?” and concluded 

that it was variable from bundle to bundle depending on their “geometrical properties and ease of 

tracking particularities” (Gauvin et al., 2016). 

Supplementary table 1: Number of streamlines generated per seed region descriptive statistics 

  Mode Mdn Mean SD Min Max 

Streamlines per seed voxel 
5000 

(N=22) 
5000 14081 327525 33 1000000 

fMRI experimental designs 

Note that 71% of the fMRI experimental design used were blocked while 21% of studies used event-

related fMRI. A remaining 8% of studies did not clearly specify which fMRI design they used 

(Supplementary figure 1B). 

 

Other methods used to derive seeds/filter region from task-based fMRI. 

Two articles positioned a cubic or rectangular seed region near or covering brain regions activated by a 

task (Lemaire et al., 2013; Wahl et al., 2011). The latter is similar to the sphere method except cubes 

were not necessarily centered on the peak fMRI coordinate. Guye et al., 2003 seeded their fiber 

tracking from a set of three voxel located in the white matter immediately adjacent to the highest 

significantly activated fMRI voxel. Brauer et al., 2011 launched their tractography from a single 3mm 

isotropic voxel that was located on peak fMRI activation. Szczepanski, Pinsk, Douglas, Kastner, & 
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Saalmann, 2013 created their seed regions by selecting the six voxels that surrounded the fMRI peak 

activation coordinate. Again, this last method is fairly similar to the sphere approach except that the 

size of the seed region is determined by the voxel size and the number of voxels chosen. 

Other methods used to address the gray/white matter boundary 

Anderson et al., 2012; Ethofer et al., 2012; Oechslin et al., 2017 visually inspected if their ROIs were in 

contact with white matter or made sure that it was in brain regions where FA > 0.2. (Gomez et al., 

2015; Kleiser et al., 2010; Staempfli et al., 2008) created spherical ROIs of a size that guaranteed 

contract with white matter (ranging from 3mm radius to 7mm radius). Morgan et al., 2009 and Wahl et 

al., 2011 lowered the fiber tracking termination threshold between FA >0.15 and FA >0.1 to insure 

tracking reaches the grey matter where FA is generally less than 0.2 (fiber tracking is generally 

performed in area where FA > 0.2). Scaccianoce et al., 2016 first performed whole-brain tractography. 

Then extended both extremities of their tracts of interest of 10 mm length using a in-housse MATLAB 

script. Finally, they filtered the track using regions of interest (ROIs). Kim & Kim, 2005 added at least 

one more voxel beyond the gray/white matter boundary into their seeding ROIs.  
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FIGURE LEGENDS 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Schematic representation of the types of MRI modalities combination 

 

 

 

 

 

Figure 2: PRISMA Flow Diagram for Scoping Review 

Figure 3: (A) Number of studies that collected fMRI & dMRI data published per year sorted by 

combination types. (B) Repartition of studies that collected fMRI & dMRI data by combination types 

Figure 4: Number of studies included published and their sample size sorted by the type of population 

investigated. 

Figure 5: (A) Repartition of diagnosis across included studies (B) Repartition of the neuroscientific 

domain investigated 

Figure 6: Number of studies included published per years sorted by microstructure modelling category. 

Figure 7: (A) Repartition of tractography algorithm used across studies (B) Repartition of tractogram 

methods used across studies (C) Repartition of spaces used for tractography 
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Figure 8: (A) dMRI preprocessing software repartition. The category others represent the following 

softwares that were used by fewer than 3 publications; Camino, Diffusion and perfusion tools, 

DTIstudio, Philips PRIDE workstation, Slicer, PatXfer, Bear toolbox, ExploreDTI, MedINRIA, 

Trackvis and AFNI (B) Tractography software repartition. The category others represent the following 

software that were used by fewer than 3 publications: Camino, DTIquery, mrDiffusion, PatXfer, Slice, 

Bear Toolbox, DTIstudio and ExploreDTI. (C) fMRI software repartitions. 

Figure 9: (A) Repartition of the methods to derive seed region from task-based fMRI. (B) Repartition 

of methods used to match the fMRI and dMRI spaces. (C) Repartition of the methods to address the 

gray/white matter boundary 

Figure 10: Two examples of functionally derived fibre tracking data from multiple participants 

integrated in a group statistic while remaining in the participants native space. (A) Summary of 

anatomical connections underlying visuospatial imagery found in the Whittingstall et al., 2014 study. 

Connections in red represent those observed in over 80% of subjects. Reprinted from Cortex, vol. 56, 

Whittingstall et al., Structural network underlying visuospatial imagery in humans, page 95, copyright 

2013, with permission from Elsevier. (B) Left: Left hemisphere intraparietal sulcus topographic 

subregions (IPS1–4) connectivity to retinotopically defined striate and extrastriate visual regions. 

Right: Single participant illustrations of fiber tracking between IPS1 and V1. Reprinted from 

NeuroImage, vol. 82, Bray et al., Structural connectivity of visuotopic intraparietal sulcus, page 141, 

copyright 2013, with permission from Elsevier. 

 

Figure 11: Two examples of structure to function relationship derived from the integration task-based 

fMRI results to guide fiber tracking while remaining in the participants native space. Correlations 

between the FA of a functionally defined white matter track and performance in face-processing tasks 

(A) (Benton Face Recognition task (BENTON) and (B) the Cambridge Face Memory Test (CFMT)) in 

developmental prosopagnosia patients (DPs) and Typical Adults from Gomez et al., 2015 study. 

Reprinted from Neuron, vol. 85, Gomez et al., Functionally Defined White Matter Reveals Segregated 

Pathways in Human Ventral Temporal Cortex Associated with Category-Specific Processing, page 

223, copyright 2015, with permission from Elsevier. 

 

Figure 12: Two examples of methods used to represent fibre bundles obtained in the participants 

native space in a common space. (A) Group fascicles connecting right and left sound auditory cortexes 

via the corpus callosum overlaid onto the onto an averaged T1 weighted image in the MNI space. The 

signal color intensity is proportional to the number of participants in which the tracts were identified (2 

to 13 participants). Reprinted from NeuroImage, vol. 84, Javad et al., Auditory tracts identified with 

combined fMRI and diffusion tractography, page 572, copyright 2013, with permission from Elsevier. 

(B) Each map shows the indices of connection probability between 2 cortical regions. The color 

intensity scales refer to the PIBI where higher values indicate higher probability that a voxel is 

connected by a direct path to both seed regions. The abbreviations refer to: arcuate and superior 

longitudinal fascicles (AF/SLF), middle longitudinal fascicle (MdLF), premotor node (PMd) and 

anterior temporal node (T1a). Reprinted from NeuroImage, vol. 49, Saur et al., Combining functional 

and anatomical connectivity reveals brain networks for auditory language comprehension, page 3193, 

copyright 2009, with permission from Elsevier.  

Supplementary figure 1: (A) Scanner field strengths repartition. (B) fMRI experimental design 

repartition.  
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Supplementary Figure 2: Number of studies included published per years sorted by tractography 

algorithms. 
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Figure-7 
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Figure-8 
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Figure-9 
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HIGHLIGHTS  

• We reviewed 80 studies that integrated task-based fMRI to guide tractography over the last two 

decades • We present findings about the integration of task-based fMRI to tractography • It will help 

researchers to use this integrative multimodal MRI approach • We provide references pointing to best 

practices 
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