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Abstract

Effect modification occurs while the effect of the treatment is not homogeneous across

the different strata of patient characteristics. When the effect of treatment may vary

from individual to individual, precision medicine can be improved by identifying patient

covariates to estimate the size and direction of the effect at the individual level.

However, this task is statistically challenging and typically requires large amounts

of data. Investigators may be interested in using the individual patient data (IPD)

from multiple studies to estimate these treatment effect models. Our data arise

from a systematic review of observational studies contrasting different treatments

for multidrug-resistant tuberculosis (MDR-TB), where multiple antimicrobial agents

are taken concurrently to cure the infection. We propose a marginal structural model

(MSM) for effect modification by different patient characteristics and co-medications

in a meta-analysis of observational IPD. We develop, evaluate, and apply a targeted

maximum likelihood estimator (TMLE) for the doubly robust estimation of the

parameters of the proposed MSM in this context. In particular, we allow for differential

availability of treatments across studies, measured confounding within and across

studies, and random effects by study.
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1 Introduction

Multidrug-resistant tuberculosis (MDR-TB), a form of tuberculosis (TB) with

high mortality, is caused by bacteria resistant to at least the two most

effective anti-TB drugs, isoniazid and rifampicin. According to the World Health

Organization (WHO) (2020), a global total of 206 030 patients with MDR-TB or

rifampicin-resistant (RR)-TB were detected and notified of their infection in 2019,

a 10% increase compared to cases in 2018. However, the latest data reported to

WHO show a treatment success rate for MDR/RR-TB of 57% globally.1 Treating

MDR-TB is challenging as a result of the heterogeneity of patients’ characteristics

(age, sex, HIV or other comorbidities), disease characteristics (extent and prior

treatment), mycobacteria itself (different patterns of additional resistance) and

characteristics of drugs (more toxicity and less effect of second-line drugs).2,3

Patients are typically prescribed a combination of four or more antimicrobial

agents depending on the therapeutic phase and drug resistance pattern, if known.4

In addition, the effect of a treatment regimen may vary by an individual’s

characteristics and the specific combination of medications. When the effect

and drug resistance pattern may vary from individual to individual, precision

medicine can be improved by identifying patient covariates to estimate the size

and direction of the effect at the individual level. In other words, identifying effect

modifiers and assessing effect modification between different patient subgroups
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should be considered. However, this task is statistically challenging and typically

requires large amounts of data so that treatment effects may be well-estimated for

different combinations of covariate values. One may impose a working model in

order to smooth (or summarize) the covariate-specific effects rather than estimate

a separate effect for each possible combination of patient covariates.5–7 When

working with observational data one must also adjust for all potential confounders

of the treatment-outcome relationship, which can be accomplished via propensity

scores and/or outcome regression modeling.8 One way to model effect modification

in a simple binary treatment setting is through a marginal structural model

(MSM) for the conditional average treatment effect (CATE).7,9 This model may

be interpreted as the relationship between covariates and the expected treatment

effect where the treatment effect is defined through a contrast of counterfactual

outcomes. In non-meta-analytical settings, doubly robust estimators have been

proposed for the estimation of a parametric MSM for the CATE7 as well as for

nonparametric CATE models.10

Due to the large data requirements for estimating effects across patient

subgroups, investigators may be interested in using individual participant data

(IPD) from multiple studies to fit these treatment effect models. In our study, the

data were extracted from 31 observational studies11 which contrasted different

treatment regimens for patients with MDR-TB, where multiple antimicrobial

agents are taken concurrently by a patient over a long period. Our objective is to

perform an IPD meta-analysis12 to investigate the impact of different patient and

treatment characteristics on the average treatment effect (ATE) of 14 anti-TB

medications.

In this project, we propose and evaluate a targeted maximum likelihood

estimator (TMLE)13 to model effect modification for the estimation of the

parameters of the CATE MSM, in the IPD meta-analytical context. In the

supplementary materials, we also describe and evaluate a novel augmented inverse

probability of treatment weighted estimator (A-IPTW). For estimation of the

ATE, TMLE depends on two components: an outcome regression conditional on

treatment and covariates; and, weights comprised of the inverse of the propensity

score where the propensity score is the probability of treatment conditional on

covariates.14 TMLEs are plug in estimators with asymptotic properties that use

a targeting step to optimize the bias-variance trade-off for the target parameter.

In our setting, the estimator we propose allows for differential availability of
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treatments across studies and random effects by study due to measured and

unmeasured characteristics of the study-specific populations.

In Section 2, we describe the MDR-TB data structure and our parameters of

interest. Section 3 introduces the TMLE procedure. We also describe a clustered

influence function-based variance estimator. In Section 4, we present the results of

simulation studies to demonstrate the properties of the estimator under different

scenarios. Then in Section 5, we provide the results based on TMLE analysis of

effect modification for 14 anti-TB medications using the combined IPD of the 31

observational studies.

2 Pooled Observational Studies of MDR-TB

The application data consist of IPD derived from 31 observational studies resulting

in a total of 9290 MDR-TB patients. The data are available to any of the

data contributors, but not publicly available. The systematic review11 extended

three previous systematic reviews.15–17 These IPD were collected from cohorts

of adults with study years ranging from 1995 to 2009. The information collected

for each patient includes demographics (age and sex), past TB history, clinical

characteristics (pre-treatment sputum smear results for acid-fast bacilli (AFB)

and culture, chest radiography, HIV infection), drug susceptibility test (DST)

results, anti-microbial medications given, and outcomes. Our one-stage analytical

approach pools all IPD across studies, accounting for clustering and random

effects.

2.1 Data Structure

2.1.1 Outcome In the pooled dataset, the binary outcome Y represents the

treatment success (the treatment was completed and cured the disease) versus

treatment failure (the patient was still culture positive for MDR-TB, experienced

a relapse or died).18 A patient’s outcome realization is defined as lowercase yij

where (i, j) refers to patient i ∈ Cj in study j and Cj be the set of indices of

patients in study j where j ∈ (1, 2, · · · , J). In the MDR-TB data, there are pooled

data from 31 studies, i.e. J = 31.

2.1.2 Treatments and Treatment Availabilities There are 14 antimicrobial agents

observed in the data: ethambutol (EMB), ethionamide (ETO), ofloxacin

(OFX), pyrazinamide (PZA), kanamycin/amikacin (KM/AM), cycloserine
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(CS), capreomycin (CAP), para-aminosalicylic acid (PAS), prothionamide

(PTO), streptomycin (SM), ciprofloxacin (CIP), later-generation fluoroquinolones

(LgFQ), rifabutin (RIF) and group five level drugs (Gp5). LgFQ included

levofloxacin, moxifloxacin, gatifloxacin and sparfloxacin.11 Gp5 comprised

of amoxicillin-clavulanate, macrolides (azithromycin, roxithromycin, and

clarithromycin), clofazimine, thiacetazone, imipenem, linezolid, high dose

isoniazid, and thioridazine.11 We use k to index the k-th antimicrobial agent,

where k = 1, 2, . . . , 14 in this case. The binary random variable A(k) indicates the

exposure to medication k with patient realizations a
(k)
ij .

Not all treatments are observed in each study; we assume that a given treatment

was available for a given study’s participants based on whether we have observed

that this treatment was taken by any patient in the given study.19 The binary

variable D(k) is defined as the treatment availability of treatment k in a given

study. Specifically, d
(k)
ij = d

(k)
j = 1 means that the treatment k is available to any

subject i in study j, and is true if at least one patient in this study was prescribed

the treatment k, and otherwise d
(k)
ij = 0.

2.1.3 Baseline Covariates and Resistance Information The baseline covariates

consist of two study level covariates S (the start year of MDR-TB treatment and

the income group of the country of the study) and six individual level covariates

W (age, sex, AFB results, HIV infection, cavitation status on chest radiography

and past TB history).

Resistance information based on DST is defined as the binary variable R(k). In

this dataset, drug resistance information is available for eight medications. Thus,

we denote r(k) = 1 if the patient was found to be resistant to the treatment k and

otherwise r(k) = 0 which includes the situations where the patient’s infection was

susceptible to the treatment or was not known to be resistant to this treatment.

2.1.4 Observed Data Structure The observed data can be written as O =

[S,W , {A(k), D(k), R(k); k = 1, 2, . . . , 14}, Y ]. We will rewrite R = {R(k); k =

1, · · · , 14}, similarly for D and A. Then the data structure is O =

(S,D,W ,R,A, Y ).

2.1.5 Definition of Counterfactual Notation In this data, there is differential

availability of treatments across studies. In order to define a generalized parameter

of interest, we define counterfactual notation under the availability of a given

treatment.19 We define counterfactual exposure to treatment A(k){d(k) = 1} as
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the patient’s counterfactual usage of treatment k had the patient had access. Then

we define the counterfactual outcome Y {d(k) = 1, a(k)} = Y {a(k)} as the patient’s

outcome that would have occurred had treatment k been available and taken.

2.2 Parameter of Interest and Assumptions

As in previous work, we aim to estimate the parameters of interest defined with

respect to a global population which refers to the union of super-populations

specific to each study in this dataset.19,20 We define a non-parametric structural

equation model (NPSEM), which assumes a time ordered data generating

structure, in the Supplementary Materials Appendix A. Then the counterfactual

likelihood is derived under NPSEM and the parameter of interest is defined with

respect to this likelihood.

In this project, for a given medication k, we are interested in estimating the

coefficients of potential effect modifiers V (k) of the effect of medication k in an

MSM for the CATE.7 To define the corresponding parameters, we recall that

patients may take multiple medications concurrently. Given a medication k, we

conduct the analysis by treating all other medications as confounders. For ease of

notation, we define the adjustment set as

X(k) = [S,W ,R, {D(k∗), A(k∗); for ∀k∗ ∈ (1, · · · , 14) s.t. k∗ 6= k}]

with realizations x
(k)
ij for individual patients. Here, the symbol asterisk indicates

treatments other than the treatment of interest. The set of potential effect

modifiers investigated is a subset of the adjustment set X(k).7,9 The random

covariate vector is V (k) = {1, V (k)
1 , ..., V

(k)
p }. Then we can model the CATE of

treatment k, denoted ψ{V (k)}, as a linear function of potential effect modifiers

such that

E[Y {a(k) = 1} − Y {a(k) = 0}|V (k)] = ψ{V (k);βV
(k)} = {V (k)}ᵀβV (k)

where the symbol ᵀ indicates a transpose and βV
(k) = {β(k)

0 , β
(k)
1 , ..., β

(k)
p } ∈

Rp+1. The parameter β
(k)
m ,m 6= 0 represents the difference in the expected causal

effect related to a single unit change of the effect modifier V
(k)
m and β

(k)
0 is the

intercept term.
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Identifying the parameter of interest requires some assumptions that allow us

to write the parameter in terms of distributions of the observed data.19

(a) Consistency: The counterfactual outcome Y {d(k) = 1, a(k) = 1}, where

treatment k was available to and taken by the patient, is the same as the

observed outcome for patients who in fact had access to the treatment and took it.

Additionally, the counterfactual outcome had the patient not taken this treatment

Y {a(k) = 0} is equal to the observed outcome for those who had not taken the

treatment, either due to unavailability or other reasons. In particular, the first

consistency assumption may fail if this treatment was only taken temporarily by

the patient prior to a more effective antimicrobial being substituted in.

(b) Positivity: For the CATE to be estimable without extrapolation, we

also need positivity assumptions. Specifically, the conditional probability of

being treated for each patient given the drug’s availability Pr[A(k){d(k) =

1} = 1|X(k) = x(k), D(k) = 1] and the conditional probability of not being

treated Pr{A(k) = 0|X(k) = x(k)} must both be positive. This may fail if

contraindications exist in the covariates X(k), rendering treatment with A(k)

impossible. Furthermore, Pr{D(k) = 1|S(k) = s(k)}, the probability of availability

of treatment k conditional on the study-level covariates must also be positive.

We also assume that the probability of treatment availability conditional on all

measured covariates is only a function of the study-level covariates. Positivity is

violated when, for example, certain studies occurred in a time or country where

some drugs were not on the market, but only if time or country is a study-level

confounder.

(c) Transportability: The counterfactual outcomes had the patient had access to

the treatment and taken it are independent of treatment availability conditional on

measured covariates, i.e. Y (k){d(k) = 1, a(k) = 1} ⊥ D(k)|X(k). This means that

we can use the measured covariates to fit models where the treatment is available

and use those model fits to estimate overall effects.

(d) In addition, we require unconfoundedness: that the counterfactual outcomes

had the patient taken this treatment be independent of the treatment assignment

conditional on the measured covariates and treatment availability. i.e. Y (k){a(k) =

1} ⊥ A(k)|D,X(k). Moreover, the counterfactual outcomes had the patient not

taken this treatment, Y (k){a(k) = 0}, are independent of the treatment assignment

given the measured covariates.
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Under these assumptions, the CATE can be written as:

ψ{V (k)} =E[E{Y |A(k) = 1,X(k)}|V (k)]− E[E{Y |A(k) = 0,X(k)}|V (k)]

Both right-hand terms can be estimated from the observed data and thus the

CATE is nonparametrically identifiable. A proof is provided in Supplementary

Materials Appendix B.

3 Models and Algorithms

3.1 Outcome and Propensity Score Models

For ease of notation, we will drop the notation k for this section, and consider

A = A(k) for a given k with X = X(k) the adjustment set for k as previously

defined. The doubly robust estimators presented in this section require the

estimation of two quantities, the conditional outcome expectation and propensity

score. We define the former as Q(A,X) = Pr{Y (A = a) = 1|X}, the probability

of counterfactual treatment success conditional on the baseline covariates X. The

propensity score is g(A|X) = Pr(A = a|X), i.e. the conditional probability of

treatment given X.

In our setting with treatment availability variable D and the assumptions listed

in Section 2.2, we note that

Q(1,X) = Pr(Y = 1|A = 1,X) = Pr(Y = 1|D = 1, A = 1,X).

Thus, we can estimate this quantity by fitting a regression model using the

subgroup of subjects who received this treatment, which is necessarily a subset of

those who had access to the treatment. On the other hand, Q(0,X) = Pr(Y =

1|A = 0,X) includes both patients who did not have access to the given treatment

and patients who did but did not receive this treatment.

For the propensity score, the probability of being treated for each patient is:

g(1|X) = Pr(A = 1|D = 1,X)︸ ︷︷ ︸
g1

Pr(D = 1|S)︸ ︷︷ ︸
g2

.

The first component g1 may be estimated by fitting a model using patients who

had access to the treatment. The second part g2 can be obtained by regressing
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treatment availability on study level covariates S. This second regression takes

the study as the unit. Then, we can write the probability of not being treated as

g(0|X) = 1− g(1|X) = 1− g1 · g2.

3.2 Efficient Influence Function

The efficient influence function (EIF) for a specific parameter is the influence

function that achieves the efficiency in the given space of semi-parametric

models.21 The EIF defines the linear approximation of any efficient and regular

asymptotically linear estimator. The EIF for the coefficients βV in a working i.i.d.

model space M is

DβV = M−1D

where

D =

[{
IA=1

g(1|X)
− IA=0

g(0|X)

}
{Y −Q(A,X)}+Q(1,X)−Q(0,X)− V ᵀβV

]
V

(1)

with normalizing matrix M = −E( ∂D
∂βV

). A proof is provided in Supplementary

Materials Appendix C. An equivalent result was also given by Rosenblum and

van der Laan.22

3.3 TMLE

The general TMLE procedure was proposed by van der Laan and Rubin.23 Our

proposed procedure takes estimates of the conditional expected outcome Q(a,X)

and updates them using information from the propensity score.

The first step is to produce initial estimates for Q(a,X) for a = 1 and 0,

denoted as Qn(1,X) and Qn(0,X), respectively. For each of a = 1 and 0, we

run a weighted logistic regression of Y with offset logit{Qn(a,X)} and covariates

corresponding to the set of potential effect modifiers. The weights are A/gn(1|X)

for a = 1 and (1−A)/gn(0|X) for a = 0, respectively. We then set the updated

Q
∗
n(a,X) equal to the predicted values from the above logistic regression. Finally,

we fit a linear regression of Q
∗
n(1,X)−Q∗n(0,X) on the potential effect modifiers

in order to obtain the TMLE estimates, β̂V
TMLE

, of the parameters of interest.

We note that this TMLE solves the equation
∑J

j=1

∑
i∈Cj
Dij,n(β̂

TMLE

V ) = 0.

The estimator thus has the properties of double robustness and local efficiency.
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We also developed a closely related A-IPTW24, which is described in the

Supplementary Materials Appendix D. In finite samples, TMLE has been shown

to perform better than a related A-IPTW if the positivity assumption is nearly

violated or the true values of the parameters of interest are close to the parameter

space boundaries.25

3.4 Influence Function-based Variance Estimator

Standard errors can be estimated for the TMLE using a large-sample sandwich

estimator of the efficient influence function under consistency of Qn(a,X) and

gn(a|X).21 Let βV 0 be the true value of βV and β̂V be the TMLE estimate.

Under regularity conditions, we can write the linear approximation of the

estimator as19

√
n(β̂V − βV 0) ≈ 1√

n

J∑
j=1

∑
i∈Cj

Dij(βV 0)

where Dij(βV 0) is the influence function at the true values of Q(a,Xij) and

g(a|Xij) for each subject.

In order to estimate the variance of the parameter of interest while taking

clustering by studies into account, we only assume independence between studies,

and not individuals within the same study. Within study j, we denote the

(p+ 1)× (p+ 1) dimension variance-covariance matrix of the efficient influence

function as σ2
j . We denote the (p+ 1)× (p+ 1) dimension variance-covariance

matrix of the efficient influence function of any two different subjects in study j

as ρj . Both of these quantities can be estimated from the observed data. Then,

for large J , the variance-covariance matrix of β̂V can be estimated using:26

V ar(β̂V ) ≈ 1

n2
diag

{ J∑
j=1

( ∑
i,m∈Cj ,i6=m

E[Dij,n(β̂V ){Dmj,n(β̂V )}ᵀ]

+
∑
i∈Cj

E[Dij,n(β̂V ){Dij,n(β̂V )}ᵀ]

)}

=
1

n2
diag

[ J∑
j=1

{
nj(nj − 1)ρj + njσ

2
j

}]

where nj is the size of study Cj . This variance estimator is only valid for

larger numbers of clusters and consistent estimates of both the outcome and the
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propensity score.19 We investigate its finite-sample performance in the simulation

study. In past work, we have also found that the nonparametric clustered

bootstrap performs well.19,26

4 Simulation Study

We conducted simulation studies in R to develop and evaluate TMLE and

A-IPTW in the implementation to model effect modification for IPD meta-

analysis. We demonstrate the double robustness and finite-sample performance

of TMLE and A-IPTW. Results for the A-IPTW estimator are provided in the

Supplementary Materials Appendix E.

4.1 Data Generation

For each dataset, we generated two continuous study-level covariates, S1 and

S2, where we treated S2 as unobserved. We also generated three individual-

level covariates: W1 continuous and W2 and W3 binary. In this simulation, we

included three treatments where each study had access to one, two or all three.

We denote the treatment availability as D(k), k = 1, 2, 3 which was generated

conditional on the study level covariate S1. Then three treatment indicators A(k)

were generated based on the values of S1,W1,W2,W3 and D(k). Subjects could

take any combination of these treatments. Finally, we generated a continuous

outcome Y in a model with and without random effects, conditional on individual-

level covariates, all three treatments, and study-level covariate S1. Specifically,

this model included interactions between the two effect modifiers W1 and W3

and A(1). For random effects by study we added an additional interaction term

between S2 and A(1). Table S1 in Supplementary Material Appendix E displays

the full data generating mechanism. The observed data structure for each subject

is O = (S1,W1,W2,W3,D,A, Y ).

In this simulation study, we only aimed to estimate the parameters representing

effect modification of treatment k = 1. For both scenarios with the outcomes

involving random effects or not, we drew 1000 simulations with J ∈ {10, 30, 50}
studies where each study contained 300 subjects. This resulted in three total

sample sizes, n = 3000, 9000, 15000.
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4.2 Analysis

In order to model the effect modification of treatment k = 1, we included

treatment covariates A(2) and A(3) as confounders, as explained in Section 2.2. We

denote the baseline covariates as X(1) = {S1,W1,W2,W3, A
(2), A(3)}. In practice

we are not aware of the true set of effect modifiers so we define the potential set

as {W1,W2,W3, A
(2), A(3)} and set V (1) = {1,W1,W2,W3, A

(2), A(3)}.
As we discussed in Section 2.2, we model the CATE of treatment A(1) as a

linear function of potential effect modifiers: ψ{V (1);βV (1)} = {V (1)}ᵀβV (1) =

β
(1)
0 + β

(1)
1 W1 + ...+ β

(1)
5 A(3). Our parameters of interest are thus βV (1) . In the

scenarios without random effects, the true values of these parameters were derived

analytically. For the scenarios with random effects, we generated data with large

sample sizes (106) and forced all A(1) equal to 1 and 0, respectively, to obtain

both counterfactual outcomes. Then we obtained the true values of the parameters

by fitting the linear regression of the differences between the two counterfactual

outcomes on the potential effect modifiers. Given the data generating mechanism

there were two real effect modifiers, W1 and W3. When outcomes were simulated

without random effects, the true corresponding coefficient values were 0.65 and

0.35, respectively. When outcomes were generated with random effects, the true

values were 0.77 and 0.38 (Tables S2, S3 in the Supplementary Materials Appendix

E).

We used logistic regressions to estimate each component of g{A|X(1)},
collectively referred to as g, and Q̄{a,X(1)}, referred to as Q. To control the

potential sources of sparsity, predicted values for g1 and g2 were truncated at

(α, 1− α) where α = 0.001. To demonstrate the double robustness property of

both methods, we ran four different scenarios: 1) correctly specified parametric

models for both Q and g; 2) only the Q model correctly specified and the g model

misspecified as a null model; 3) only the g model correctly specified and the Q

model misspecified as a null model; 4) both Q and g misspecified as null models.

In this simulation, we applied the TMLE algorithms presented in Section

3.3. Note that the TMLE implementation we used requires that we transform

the continuous Y to lie in (0, 1), and then we reverse-transform at the end of

the procedure.27 The standard errors were estimated by the influence function

sandwich estimator, first ignoring clustering and then incorporating clustering

as described in Section 3.4. We compared both standard error estimates to the

Monte Carlo standard errors. Then based on the clustered standard errors, we
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constructed 95% Wald-type confidence intervals and computed the corresponding

coverage rates which are the percentage of times that the confidence intervals

contained the true parameter values.

4.3 Results

Figure 1 presents the results of TMLE for the estimation of five potential effect

modifiers under the four estimation scenarios and three different sample sizes

with outcomes generated without random effects. Figure 2 presents the TMLE

results under random effects. The coverage rates are presented in the blue boxes of

the two figures. More detailed TMLE results are provided in the Supplementary

Materials Appendix E (Tables S2 - S4), along with the figures and tables of the

results of the A-IPTW estimator (Tables S5 - S7 and Figures S1, S2).

From Figures 1 and 2, we see that under the first two scenarios, where the

model for Q was correctly specified, the TMLE estimators had no error on average

regardless of the presence of random effects. Unsurprisingly, under scenario 4 when

all quantities were assigned null models, a small bias was present without random

effects and a larger bias was present with random effects. In scenario 3, where the

model for Q was incorrectly specified but the model for g was correct, the average

error converged to zero as the number of studies increased. The estimates were also

more dispersed than for the previous scenarios. This occurred because the model

for g2 is estimated using the study as the unit in the analysis, so with few studies,

the sample size to fit this model is extremely small. Compared to TMLE, the

A-IPTW estimator had greater average error in scenarios 3 and 4, but otherwise

performed similarly (Table S8 in the Supplementary Materials Appendix E).

The coverage rates, given in the blue boxes of Figures 1 and 2, typically

increased with the number of studies. For instance, with random effects with

10 studies, in scenario 1 where all models were correctly specified, the coverage

rates for the five potential effect modifiers were between 79.8% and 90.1%. With

30 studies, the rates increased to 88.1%− 94.8%. Then for 50 studies, the coverage

rates were 89.6%− 96.7%. Similar patterns were also obtained in the second and

third scenarios.

Prepared using



14 0(0)

81.5% 89.6% 92% 86.6% 94.3% 95.1% 89.3% 96.1% 95% 85.1% 94% 94% 86% 93.5% 95.3%

w1 w2 w3 a2 a3

10 30 50 10 30 50 10 30 50 10 30 50 10 30 50

−0.50

−0.25

0.00

0.25

0.50

S
ce

na
rio

 1

90.8% 97.6% 97.6% 87.4% 94.5% 94.7% 90.2% 92.7% 92.2% 90.8% 97.3% 96.1% 86.9% 92.6% 94.9%

w1 w2 w3 a2 a3

10 30 50 10 30 50 10 30 50 10 30 50 10 30 50

−0.50

−0.25

0.00

0.25

0.50

S
ce

na
rio

 2

82.7% 89.8% 91.5% 86.4% 91.7% 95.9% 88.5% 94.3% 95.1% 84.2% 92.2% 93% 84.7% 93.2% 92.6%

w1 w2 w3 a2 a3

10 30 50 10 30 50 10 30 50 10 30 50 10 30 50

−0.50

−0.25

0.00

0.25

0.50

S
ce

na
rio

 3

93.9% 97.2% 96.1% 89.2% 92% 87.3% 86.4% 85.8% 81.9% 29.4% 11.9% 3.4% 82.4% 90.3% 90.8%

w1 w2 w3 a2 a3

10 30 50 10 30 50 10 30 50 10 30 50 10 30 50

−0.50

−0.25

0.00

0.25

0.50

S
ce

na
rio

 4

Figure 1. Error of TMLE estimates under four scenarios and three different sample sizes
without random effects. The x-axis represents the number of studies. Coverage rates based
on the clustered sandwich estimators of the standard error are presented in blue boxes. The
four scenarios are as follows: Scenario 1 - both Q and g models are correct; Scenario 2 - Q
model is correct, g is null; Scenario 3 - Q model is null, g model is correct; Scenario 4 -
both Q and g models are null.

Prepared using



15

79.8% 89% 93% 88.1% 94.6% 95.7% 90.1% 94.8% 96.7% 85.6% 92.2% 94.6% 82.6% 88.1% 89.6%

w1 w2 w3 a2 a3

10 30 50 10 30 50 10 30 50 10 30 50 10 30 50

−0.50

−0.25

0.00

0.25

0.50

S
ce

na
rio

 1

75% 85.3% 87.6% 85.5% 91.7% 92.8% 89.9% 92.7% 93.8% 88.3% 94.9% 96.2% 83.8% 89.7% 87.2%

w1 w2 w3 a2 a3

10 30 50 10 30 50 10 30 50 10 30 50 10 30 50

−0.50

−0.25

0.00

0.25

0.50

S
ce

na
rio

 2

79.7% 89.2% 91.1% 86.5% 91.4% 95.1% 88.3% 93.2% 95.3% 84.7% 91.3% 93.5% 82.7% 92.7% 93%

w1 w2 w3 a2 a3

10 30 50 10 30 50 10 30 50 10 30 50 10 30 50

−0.50

−0.25

0.00

0.25

0.50

S
ce

na
rio

 3

90% 89.1% 88.1% 89.2% 85.9% 74.4% 84.9% 82.9% 80.6% 40.1% 30.5% 18.2% 82.2% 90.9% 91.7%

w1 w2 w3 a2 a3

10 30 50 10 30 50 10 30 50 10 30 50 10 30 50

−0.50

−0.25

0.00

0.25

0.50

S
ce

na
rio

 4

Figure 2. Error of TMLE estimates under four scenarios and three different sample sizes
with random effects. The x-axis represents the number of studies for three sample sizes.
Coverage rates based on the clustered sandwich estimators of the standard error are
presented in blue boxes. The four scenarios are as follows: Scenario 1 - both Q and g
models are correct; Scenario 2 - Q model is correct, g is null; Scenario 3 - Q model is null,
g model is correct; Scenario 4 - both Q and g models are null.
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5 MDR-TB Data Analysis

5.1 Descriptive Statistics of MDR-TB

The combined dataset contained the IPD from 31 observational studies with

a total of 9290 patients. After removing 260 (2.8%) patients without reported

outcomes, 9030 patients taking combinations of 14 different antimicrobial

agents remained. Study-specific sample sizes ranged from 25 to 2182 patients

(Supplementary Materials Appendix F Table S9). Missing values were present in

the covariates; the cavity status variable had the most missing values (25.97%).

Appendix F Table S10 and Figure S3 give summaries of the treatment-specific

sample sizes and the six individual level covariates. Ofloxacin, pyrazinamide and

cycloserine were the three most prescribed medications. In contrast, fewer than

1000 patients were prescribed later-generation fluoroquinolones and ciprofloxacin.

Ethambutol and pyrazinamide were widely prescribed in 30 out of 31 studies,

while only 14 studies had patients who took ciprofloxacin or later-generation

fluoroquinolones. The number of male patients was around twice the number

of female patients in all treatment groups. A total of 4892 (54.33%) patients

were concentrated in the 26− 45 year-old age group while only 154 (1.71%) were

in the 0− 17 year-old group. For the other individual level covariates, about

75% of patients were diagnosed with TB in the past. Moreover, the majority

of patients had cavity (68.33%) and positive AFB (74.53%), but there were only

15% coinfected with HIV.

In order to assess the data support needed to investigate effect modification

by concurrent medication, Table 1 displays the number of patients who used

a combination of any two medications, with the diagonal indicating the total

number of patients taking the corresponding medication. Values ranged between

87 to 4574, indicating at least minimal data support for all pairwise combinations.
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Table 1. Summary of number of patients taking any combinations for any two medications during the treatment period. The diagonal
values represent the total number of patients taking each medication.

EMB CAP CIP CS ETO OFX PAS PTO RIF SM PZA KM/AM LgFQ Gp5

EMB 4188 734 565 1617 2472 2995 989 770 1080 634 3518 2706 272 768
CAP 734 1874 482 1719 900 1328 1386 722 325 151 1119 543 205 923
CIP 565 482 968 782 682 236 616 223 350 232 645 481 127 555
CS 1617 1719 782 5629 1941 4195 3573 3004 523 981 3234 2900 745 1833
ETO 2472 900 682 1941 3911 3175 1206 240 397 309 3433 3014 287 670
OFX 2995 1328 236 4195 3175 6464 2750 2566 465 786 4574 4191 192 1262
PAS 989 1386 616 3573 1206 2750 3937 2292 293 732 1962 1816 644 1463
PTO 770 722 223 3004 240 2566 2292 3304 154 749 1564 1532 449 1065
RIF 1080 325 350 523 397 465 293 154 1261 406 1133 332 87 195
SM 634 151 232 981 309 786 732 749 406 1366 870 192 269 339
PZA 3518 1119 645 3234 3433 4574 1962 1564 1133 870 6102 3775 436 930
KM/AM 2706 543 481 2900 3014 4191 1816 1532 332 192 3775 5015 416 1166
LgFQ 272 205 127 745 287 192 644 449 87 269 436 416 866 511
Gp5 768 923 555 1833 670 1262 1463 1065 195 339 930 1166 511 2138
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5.2 Analysis and Results of MDR-TB

For each medication k, the target parameters in this application are the coefficients

of the MSMs,

ψ{V (k);βV (k)} = {V (k)}ᵀβV (k) = β
(k)
0 +

19∑
j=1

V
(k)
j β

(k)
j

where V (k) = {1, V (k)
1 , · · · , V (k)

19 } is the set including six individual level covariates

and the 13 medications excluding medication k. We standardized the continuous

variable age. β
(k)
0 represents the baseline effect for the reference group of

female patients with mean age (39), negative AFB test, no cavitation on chest

radiography, no past TB history, no HIV co-infection and not taking any other of

the 13 medications. The associated coefficients β
(k)
j , j = 1, · · · , 19 represent the

difference in the CATE when varying the characteristic V
(k)
j by one unit while

holding other covariates fixed.

As noted, there are missing values in the individual-level covariates. We used

multiple imputation28 by chained equations with the MICE package29 in R to

produce 20 imputations then used Rubin’s rules to combine the estimates.30

In each imputed dataset we followed the procedure described in Section 3.3

to fit a TMLE. We estimated the Q component using SuperLearner (SL)31

which is a methodology that uses cross validation to find an optimal convex

combination of the predictions of a library of candidate algorithms defined by the

user. We included the following algorithms in the SL library: generalized linear

models with penalized maximum likelihood (glmnet function)32,33, with forward

stepwise variable selection (step function), and with a stepwise procedure based

on the Akaike Information Criterion (stepAIC function), respectively.34 Logistic

regressions were used for the g models and LASSO penalties were added when

the logistic regression failed to converge.

In each completed dataset, variance estimates for the coefficients were computed

using the sample variance of the influence function following the expression in

Section 3.4. Finally, since many comparisons made in this analysis, we performed

a multiple testing adjustment of the “significance level” of the p-values to control

the false discovery rate via the method of Benjamini and Hochberg 35 with further

details given in the Supplementary Materials Appendix G.
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Figures 3, 4 and 5 show the estimated coefficients, standard errors and 95%

confidence intervals corresponding to the intercept and six individual-level effect

modifiers and the other 13 medications. The outputs for estimated coefficients

that are statistically significant after adjustment are marked in red color and

with an asterisk. Corresponding tables of the numerical results are also provided

in the Supplementary Materials Appendix F (Tables S11 and S12). From Figure 3

there is no evidence that the six characteristics modify the treatment effect of any

drug. In Figure 4 (CS plot), patients prescribed streptomycin might have benefited

less from cycloserine than patients not receiving streptomycin. In addition, taking

cycloserine was associated with a greater estimated effect of ethionamide while

capreomycin, kanamycin/amikacin drugs were associated with lower estimated

effects (ETO plot).

The empirical distributions of the untruncated propensity scores for all drugs

are provided in the Supplementary Materials Appendix F (Table S13 and Figure

S4). For later-generation fluoroquinolones, we noted very large weights which

likely yielded the large variability observed in Figure 5, LgFQ plot. In addition,

since fewer patients were prescribed later-generation fluoroquinolones among

those who were HIV positive (Appendix F Figure S3), the standard errors were

inflated for the coefficient of HIV in the fluoroquinolones MSM (Figure 3, LgFQ

plot). Also, among those who took rifabutin, only 87/866 subjects were also

prescribed later-generation fluoroquinolones, giving rise to the large standard error

(Figure 5, RIF plot).

To highlight the differences between meta-analysis and individual study results,

we compared the results of Mitnick et al., conducted in 1996-200236,37 for the

effect modification of ethionamide. Given that all 14 medications were observed

in only two studies (Appendix F Table S9), Mitnick et al. (710 subjects) and

Tupasi et al. (170 subjects), we chose Mitnick et. al. to make the comparison.

In Figure 6, we see that a single-study TMLE analysis of the data from the

study by Mitnick et al. concluded that prothionamide was associated with greater

estimated effects of ethionamide while group 5 drugs and rifabutin were associated

with lower estimated effects. Both the meta-analysis and the single study results

agreed that cycloserine and capreomycin were effect modifiers (positive and

negative, respectively). As expected, the estimation in the meta-analysis had

lower standard errors than the individual study (Figure 6). The deviation of the

results suggests heterogeneity between different studies in the meta-analysis. It is
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important to note that analysis of an individual study targets a parameter that

is interpreted in the individual study’s super-population while the meta-analysis

targets the parameter interpreted in the global population. These parameters may

not coincide when there is heterogeneity.

6 Discussion

In this paper, we developed one-stage doubly-robust methods for the analysis

of baseline effect modification in an IPD meta-analysis. The model space that

we considered was nonparametric though the parameters of interest were defined

through a working linear MSM for the CATE. Our approach allowed us to analyze

pooled IPD from multiple studies in order to evaluate how estimated treatment

effects may vary depending on the values of patient covariates. Our past work,

which proposed related methods and a TMLE for IPD meta-analysis with multiple

treatments, instead estimated a treatment importance metric defined as the

difference in adjusted probabilities of treatment success between the patients who

used each medication and the overall population.19 Our current work proposes

a novel TMLE and A-IPTW for the estimation of effect modification in the

described marginal structural model in an IPD meta-analysis.

Vo et al. illustrated that in IPD meta-analysis, heterogeneity across studies

can come from two sources: case-mix heterogeneity, due to effect modification,

and beyond case-mix heterogeneity, due to differences in study design and

measurement.38 Our methods address heterogeneity by allowing for differential

availability of treatments across studies and random effects by study due to

measured and unmeasured characteristics of the study-specific populations.

In clinical and epidemiological research, model misspecification is always

a concern when estimating treatment or exposure effects. Doubly robust

methods yield consistent estimators even under misspecification of either the

treatment or the outcome model. In the simulation study, we demonstrated the

double robustness property of both TMLE and A-IPTW. We observed similar

performance of TMLE and A-IPTW but we did not investigate near-positivity

violations or other scenarios that may differentiate them in finite samples as

have others.25,39 In addition, we demonstrated the double robustness of both

methods when there are study-specific random effects for the outcome. Finally,

we showed that the proposed confidence intervals, estimated using the influence
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Figure 3. Estimated coefficients and the corresponding 95% confidence interval for 14
medications relative to the intercept and six demographic or clinical covariates. None of the
coefficients reached statistical significance.
# Larger scale for the y-axis of the LgFQ plot.
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Figure 4. Estimated coefficients of potential effect modifiers and the corresponding 95%
confidence intervals for EMB, CAP, CIP, CS, ETO and OFX. Significant results are shown
in red and indicated with an ∗.
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Figure 5. Estimated coefficients of potential effect modifiers and the corresponding 95%
confidence intervals for PAS, PTO, RIF, SM, PZA, KM/AM, LgFQ and Gp5. None of the
coefficients reached statistical significance.
# Larger scale for the y-axis of the RIF and LgFQ plots.
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Figure 6. Estimated coefficients of potential effect modifiers and the corresponding 95%
confidence intervals for ETO in the study by Mitnick et al. (left column) and in the
meta-analysis (right column). Significant results are shown in red and indicated with an ∗.

function sandwich estimator that considers clustering by study, performed well

when there were greater than 30 studies in the analysis. Indeed, a limitation

of our approach is that it relies on a sufficient number of studies to estimate

the generalized parameter interpreted in the global population. In particular, the

ability to adjust for confounding by treatment availability depends on fitting a

model for treatment availability conditional on study-level covariates, which is

limited by the typically small number of studies in a meta-analysis. Indeed, we

observe in the simulation study that error may persist when the number of studies
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is small and the outcome regression model is incorrectly specified, even when

the propensity score model components are correctly specified with parametric

models. Therefore, our approach should only be undertaken when a larger number

of studies are available.

The treatment of MDR-TB is challenging because of its prolonged duration,

toxicity, costs and unsatisfactory outcomes.1 Second-line TB medicines used

for the treatment of drug-resistant TB include injectable drugs (capreomycin,

streptomycin, kanamycin or amikacin), fluoroquinolones (ciprofloxacin, ofloxacin

or later-generation fluoroquinolones), ethionamide or prothionamide, para-

aminosalicyclic acid and cycloserine. The WHO (2019) revised the guidelines and

currently suggest that streptomycin and amikacin are to be considered only if

DST results confirm susceptibility and adequate measures to monitor for adverse

reactions can be ensured. In addition, capreomycin and kanamycin are not to

be included in the treatment of MDR-TB patients.4 Currently, in general, the

selection of antimicrobials for the treatment of an individual patient with TB

is based, apart from drug availability, on issues such as the mycobacteria’s drug-

resistance pattern and assumptions about the chosen drugs (mechanism of action,

potential toxicity, known pharmacological interactions, possible development of

drug resistance due to previous use, etc.). However, the actual role played by each

drug in the therapeutic outcome is difficult to assess because of the large number

of possible combinations of antimicrobials and the potential yet undiscovered

interactions affecting their pharmacokinetic and/or pharmacodynamic properties.

The statistical approach proposed by the present study takes advantage of the

IPD meta-analysis in order to unveil treatment effect modifiers, either regarding

medications or other variables at the individual-level, with the aim to better treat

and understand not only TB, but also other diseases, including those requiring

the concurrent use of several drugs such as arterial hypertension, diabetes, etc.

As discussed in Section 2.2, we require unconfoundedness when estimating

the causal effect. However, in practice, this condition is non-testable and we are

limited to the covariates collected by the original studies. While most important

confounders were collected across all studies, we did not receive DST results from

many studies. However, the results were available to clinicians who may have

responsively changed or added medications, making DST results an important

confounder. Our analyses adjusted for all available drug sensitivity information.
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Our results suggest that cycloserine may enhance the effects of ethionamide but

capreomycin and kanamycin or amikacin were associated with reduced effects.

In addition, streptomycin may reduce the effect of cycloserine. Our findings

support the revised WHO guidelines that injectable drugs are not as beneficial as

previously believed. The analyses informing the 2019 WHO guidelines (Ahmad

et al.) showed that kanamycin and capreomycin were associated with worse

outcomes.40 In our results, these drugs were associated with worse outcomes in

regimes with ethionamide. For the six individual characteristics, age, sex, acid

fast bacilli status, HIV infection, cavitation status on chest radiography, and past

TB history, they might be potential for effect modifiers since we did not find

any evidence of effect modification. Being that MDR-TB an infectious disease,

this finding may simply reflect that antimicrobial drugs play a much larger and

definitive role for success than other characteristics at the individual level.

Since our MDR-TB data were identified from studies carried out up to

2009, we have no information about both new and repurposed effective anti-TB

drugs.41,42 Upcoming work will apply our methods to data from more recently

treated patients. Another limitation of our approach is that, because we only

considered the effect of intervening on one treatment at a time, we cannot directly

address how to select combinations of medications that would be expected to

optimize the probability of treatment success. Previous work evaluated the causal

contrasts between different regimens of concurrent medications in MDR-TB.43

Future applications should directly address the more challenging question of

treatment-treatment interactions on the outcome which would directly allow for

the evaluation of optimal medication usage. Other ongoing work in our group

involves using LASSO,33 rather than hypothesis testing, to select the effect

modifiers in the linear MSM for the CATE. This may improve upon the current

work by utilizing a superior approach to variable selection.

Identifying effect modifiers is an important step for estimating subpopulation

causal effects that can help guide treatment decision making for individual

patients. However, such analyses require larger amounts of data than the

estimation of average treatment effects. This analytic approach can generate

hypotheses for drug combinations which can be tested in randomized controlled

trials. We have also contributed by extending existing doubly robust methods

to incorporate multiple data sources. Advances in IPD meta-analysis enable

researchers to incorporate multiple sources of previously collected observational
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data in their analyses in order to increase their power, which is greatly beneficial

for the identification of effect modifiers.
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