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Résumé

Dans un monde de mondialisation, où les offres continuent de croître, la capacité de référer les
gens vers leurs besoins spécifiques est essentiel. Après avoir été un facteur de différenciation
clé pour Netflix et Amazon, les systèmes de recommandation en général ne sont pas près de
disparaître. Néanmoins, l’un des leurs inconvénients est qu’ils sont principalement basés sur
des informations indirectes (notre comportement, principalement du passé) par opposition à
une demande explicite à un moment donné.

Le développement récent de l’apprentissage automatique nous rapproche de la possibilité
d’exprimer nos besoins spécifiques en langage naturel et d’obtenir une réponse générée par la
machine. C’est ce en quoi consiste la recommandation conversationnelle. La recommanda-
tion conversationnelle englobe plusieurs sous-tâches d’apprentissage automatique. Dans ce
travail, nous concentrons notre étude sur les méthodes entourant la tâche de recommandation
d’item (dans notre cas, un film) à partir d’un dialogue.

Pour explorer cette avenue, nous adaptons et étendons les techniques de modélisation
du langage basées sur les transformeurs à la tâche de recommandation à partir du dialogue.
Nous étudions les performances de différentes méthodes à l’aide de l’ensemble de données Re-
Dial [25], un ensemble de données de recommandation conversationnelle pour les films. Nous
utilisons également une base de connaissances de films et mesurons sa capacité à améliorer
les performances lorsque peu d’information sur les utilisateurs/éléments est disponible.

Ce mémoire par article est divisé comme suit. Tout d’abord, nous passons en revue
tous les concepts de base et les travaux antérieurs nécessaires à cette lecture. Ensuite, nous
élaborons les spécificités de notre gestion des données, les différents modèles que nous avons
testés, la mise en place de nos expériences et les résultats que nous avons obtenus. Suit
l’article original que nous avons soumis à la conférence RecSys 2020. Notez qu’il y a une
incohérence mineure puisque tout au long du mémoire, nous utilisons v pour représenter les
éléments mais dans l’article, nous avons utilisé i.

Dans l’ensemble, nous constatons que les modèles de transformeurs pré-entraînés sur-
passent les modèles de bases même si les modèles de base ont accès aux préférences utilisateur
extraites manuellement des dialogues.

Mots-clés: Recommandation, systèmes de dialogue, transformeurs
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Abstract

In a world of globalization, where offers continue to grow, the ability to direct people to their
specific needs is essential. After being key differentiating factors for Netflix and Amazon,
Recommender Systems are nowhere near a downfall. Still, one downside of the basic recom-
mender systems is that they are mainly based on indirect feedback (our behaviour, mainly
from the past) as opposed to explicit demand at a specific time.

Recent development in machine learning brings us closer to the possibility for a user to
express its specific needs in natural language and get a machine generated reply. This is what
Conversational Recommendation is about. Conversational recommendation encapsulates
several machine learning sub-tasks. In this work, we focus our study on methods for the task
of item (in our case, movie) recommendation from conversation.

To explore this setting, we use, adapt and extend state-of-the-art transformer based
neural language modelling techniques to the task of recommendation from dialogue. We
study the performance of different methods using the ReDial dataset [25], a conversational-
recommendation dataset for movies. We also make use of a knowledge base of movies and
measure their ability to improve performance for cold-start users, items, and/or both.

This master thesis is divided as follows. First, we review all the basics concepts and the
previous work necessary to this lecture. When then dive deep into the specifics of our data
management, the different models we tested, the set-up of our experiments and the results
we got. Follows the original paper we submitted at RecSys 2020 Conference. Note that there
is a minor inconsistency since throughout the thesis, we use v to represent items but in the
paper, we used i.

Overall, we find that pre-trained transformer models outperform baselines even if the
baselines have access to the user preferences manually extracted from their utterances.

Keywords: Recommendation, Dialogue Systems, Transformers
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Chapitre 1

Reviewing the Basics

In this chapter, we review lines of works related to ours, including machine learning, recom-
mender systems, natural language processing, transformers and conversational recommen-
dation.

1.1. General Machine Learning Concepts
Machine learning is a set of statistical methods to help make sense of a data set, to gain

useful insight or to automate a task. More specifically, it is the study of algorithms that
are able to fit a model, often predictive, based on a data set. By extracting the structure
of the data, such algorithms are able to solve tasks that might be complicated to code
otherwise. Much of the machine learning algorithms, including those in this memoir, use
parametric models. A model is a family of functions and the goal of training is to estimate
the parameters giving the “best” function of this family for a given task.

Machine learning algorithms are commonly separated into three classes: supervised, un-
supervised, and reinforcement learning. In this work, we are in a supervised setting and we
review the basic concepts of supervised learning below.

1.1.1. Supervised learning

Supervised Learning is a type of machine learning in which an algorithm is fed some
training data such that the algorithm has ex-ante ‘rules’ or a specific, known target to
obtain with a specific data point. Suppose we observe the dataset D = {(xi, yi); i = 1,...,N}
which are independent and identically distributed (i.i.d) samples from a joint distribution
over (x, y). The learning is said to be supervised because each xi has a label yi. Supervised
learning consists of estimating a function f : x → y using a dataset D. When y is a
categorical variable, we speak of a classification problem. For example, predicting whether
the value of a financial security will go up or down is a classification problem: it is about
deciding, for a set of features, whether it is positive or negative (2 possible outcomes). When



y takes continuous values, we speak of a regression problem. For example, predicting the
price of a stock is a regression problem. Among the most efficient and studied supervised
learning algorithms, one can cite Support Vector Machines [9], Random Forests [4] or neural
networks, described in Section §1.1.4.

1.1.2. Optimization

1.1.2.1. Loss function. We often measure the performance of a supervised model f with a
loss function or cost function, l(y, f(x)). For example, a quadratic loss is written l(y, f(x)) =
||y − f(x)||2. Facing a binary classification problem, using the cross-entropy loss function
l(y, f(x)) = −(y log f(x)+(1−y) log(1−f(x))) is often more efficient. Given a loss function
l, we try to find the function f which minimizes the risk R(f) defined by:

R(f) = E(x,y) [l(y, f(x))] .

Since the distribution of the data is unknown, the empirical risk is rather minimized:

R̂(f,D) = 1
N

N∑
i=1

l(yi, f(xi))

which calculates the average error over the entire data set D. Thus, if the function f is
parameterized by θ, we then look for

θ∗ = arg min
θ
J(θ) (1.1.1)

where:

J(θ) = 1
N

N∑
i=1

l(yi, fθ(xi))

J(θ) ∈ R is called the objective function and training a model is equivalent to optimizing
(here minimizing) this objective function.

In the case of an unsupervised problem, we may estimate a probability density Pθ(x) and
seek to maximize its likelihood. Hence, the goal is still to minimize Equation 1.1.1, but with

J(θ) = − log
N∏
i=1

Pθ(xi) = −
N∑
i=1

logPθ(xi)

using the fact that D is i.i.d and log is a monotonic function.

1.1.2.2. Gradient Descent. The objective function J depends on the dataset and can
have a very complex expression. There is usually no analytical solution to the arg minθ J(θ)
optimization problem. Therefore, we use a technique called gradient descent. Gradient
descent is an iterative approach that makes it possible to approximately find a local minimum
of a differentiable function. The J function defines a cost surface and the idea is to follow
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the direction that locally gives the “steepest” slope, down the cost surface. Each update of
the model parameters is written:

θ ← θ − η∇J(θ)

where η is the learning rate and ∇J(θ) is the gradient of J with respect to θ. The learning
rate gives the size of the step to be taken in the direction of descent. In this configuration,
the gradient must be calculated for the loss function J which takes into account the entire
data set. To speed up the calculation and the update rate of the parameters, it is common to
calculate the gradient using minibatches. A minibatch contains a small number of training
examples. Several techniques aim to adapt the learning rate as training progresses [29].

1.1.3. Generalization

The capacity of a model designates its representation power. There are multiple ways to
measure the capacity of a model, the Vapnik-Chervonenkis dimension [45] being one of them.
A larger capacity model typically has a lot of parameters and will be able to approximate
more complex functions. Consequently, high capacity models can achieve perfect precision
on training data simply by memorizing it.

The goal of machine learning, however, is for a model to generalize well. That is to
say, perform well on new data, data never seen during training. When an increase in the
capacity of the model worsens performance on new data, we refer to this situation as over-
fitting. Conversely, a model that is not complex enough (not enough capacity) can’t capture
all the variations in the data and suffers from under-fitting.

A common way to identify the correct model is to divide the dataset into three subsets:
the training set, the validation set, and the test set. The training set is used for optimizing
model parameters. The validation set to identify the best hyper-parameters and stop training
before over-fitting. Finally, the test set is used to report an unbiased estimator of the risk.
Hyper-parameters control the general shape of the model and its capacity. It is important
to adjust them to avoid over-fitting, under-fitting and to get a good generalization. The
degree of polynomial regression, the number of epochs (the number of times we go through
the entire data set during the gradient descent) or the learning rate are examples of such
hyper-parameters.

Several methods, known as regularization methods, make it possible to reduce capacity.
It is common to add a term proportional to the norm of the model parameters as a regular-
ization. If J(θ) denotes the initial objective function, the new regularized objective function
is written:

J̃(θ) = J(θ) + λ||θ||
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where λ is a scalar hyper-parameter controlling the importance of the regularization and || · ||
is a norm, typically norm 1 or norm 2.

1.1.4. Neural Networks

Neural Networks (NN) are inspired by biological nervous systems in the sense that these
models, capable of modelling very complex functions, are made up of a very large number
of more basic computational units, called neurons.

Let x ∈ Rd be an input. A neuron calculates a linear combination of the components of
x and then applies an activation function f to the result obtained:

y = f

(
d∑
i=1

wixi + b

)
= f(wTx + b)

where w is the weight vector, and b is the bias.
Setting the activation function to be a nonlinear one is the key element that allows

the neural network to learn nonlinear and increasingly complex functions. The choice of
activation functions is made, among other things, on the values that the function can take,
on the ranges where the derivative approaches zero or on the ease with which a computer
can calculate its derivative. Frequently used activation functions include Sigmoid, tanh and
Rectified Linear Unit (ReLU).

To build a layer of neurons, simply combine n neurons. The result, y, becomes a vector
in Rn:

y = f(Wx + b)

where W ∈ Rn×d is the weight matrix, b ∈ Rn the bias vector of the neural layer and
f is applied component by component. Here, the components of W and b constitute the
parameters of the model which will be learned during training.

1.1.5. Deep Learning

Deep Learning is a class of machine learning algorithms that uses multiple layers to
progressively extract higher-level features from the raw input.

A deep neural network (DNN) is a neural network with multiple layers between the input
and output layers. They can model complex non-linear relationships. DNN architectures are
compositional models where the object is expressed as a layered composition of primitives.
The extra layers enable composition of features from lower layers, potentially modelling more
effectively complex data with fewer units than a similarly performing shallow network.

Examples of DNN include Convolutional Neural Networks (CNN), mainly used to treat
images, but they also find applications in recommendation engines and financial time series,
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to name a few [39, 47, 35]. They can be seen as a regularized version of multilayer per-
ceptrons as they limit the number of connections between neurons in different layers. They
do so through a shared-weight architecture of convolutional kernels that shift over the fea-
tures, taking advantage of their local connectivity. This technique also provides translation
equivariance, which is useful when dealing with some problems, including image recognition.

Another significant family of DNN is the Recurrent Neural Networks (RNN), used to
treat sequential data, as we’ll see in Section 1.2.2.

1.2. Natural Language Processing
Natural Language Processing (NLP) studies how machines understand human language.

Its goal is to build systems that can make sense of text and perform tasks like translation or
topic classification, among others.

Throughout history, approaches to solving this problem varied.
From the ’50s to the late ’80s, many language-processing systems were designed by sym-

bolic methods, implying the hand-coding of a set of rules, coupled with a dictionary lookup.
These methods are often referred to as rule based methods. Even though the popularity of
rule based methods has strongly declined these days in favour of neural systems, they are
still relevant in some cases. For example, when the amount of data is low, for some pre-
processing or post-processing steps or when interpretability and transparency are required.
Major drawbacks of the technique include the fact that to increase the accuracy of the sys-
tem, you need to add rules, which becomes harder and harder to manage. Also, rare cases
or errors (which can be common in multiple natural language datasets, think social media)
get complex to handle.

During the ’90s and up to around 2010, a shift towards statistical methods happened.
Here, statistical inference is used to learn rules through the analysis of large corpora. At
first, the decisions were hard, using, for example, decision tree models. Then, models that
make soft, probabilistic decisions took the lead, as they were better with unfamiliar inputs
and errors. Moreover, they provided better results when integrated into larger systems. A
drawback from these techniques is the elaborated feature engineering process, which brings
us to the most popular techniques used today.

Since 2010 or so, neural networks took the lead, replacing feature engineering with word
embeddings (see §1.2.1.2). Another important change resides in an end-to-end approach:
from embedding to downstream task. These methods are not relying on separate intermediate
tasks (e.g. part-of-speech). They also brought sequence-to-sequence models, as in neural
machine translation.
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1.2.1. Text Representations

Using simple statistics and computers to process raw text is limited. In this section, we
first consider the possibility to upgrade raw text with features accounting for syntax and
semantic. Then, we explore how text can be turned into numbers, which opens up a world
of opportunities but brings the new challenge of finding the best numbers to represent text.

1.2.1.1. NLP Processing Pipeline. Text pipelines can be elaborate. An example is pre-
sented in Figure 1.1.1 Since the goal of this work is not to overview the basics of NLP, we
won’t go into a description of each of these. The main idea is that executing a subset of all
these steps, depending on the desired downstream task, provides a new representation for
text, adding syntax and semantic features.

Fig. 1.1. Traditional pipeline in NLP.

1.2.1.2. Word Embeddgings. The first way one may think to represent words is to sequen-
tially associate a value to each word. For example, if ’to’ = 1, ’be’ = 2, ’or’ = 3 and ’not’ =
4, the sentence «To be or not to be» could be expressed as (1,2,3,4,1,2). But, this represen-
tation has many pitfalls, namely that it’s introducing size and ordering aspect, which will
impact the statistics calculated. Why is ’to’ smaller than ’not’ or why is ’to’ before ’not’?

One way to alleviate this problem is to represent text as a set of words, counting how
many times a word appears in the text. Hence, «To be or not to be» becomes {’to’=2, ’be’=2,
’or’=1, ’not’=1}. This is what is referred to as a Bag of Words (BoW) representation. Since
mathematical operations on sets are limited, we can now move to a one-hot encoding. Then,
if ’to’ = (1,0,0,0), ’be’ = (0,1,0,0), ’or’ = (0,0,1,0), ’not’ = (0,0,0,1), «To be or not to be» =
(2,2,1,1). Drawbacks for this representation include sparsity and high dimensionality. Note
also that if it’s not combined with pre-processing steps displayed in Figure 1.1, all the context
of the words is lost, therefore the syntax and semantic too.

n-grams try to better integrate the context by combining words, where n is the number
of words combined. The BoW representation can be considered as a n-grams representation
where n = 1. As an example, a tri-grams (n = 3) representation of «To be or not to be»
implies sequences ’to be or’, ’be or not’, ’or not to’ and ’not to be’. One can easily see that
the gain in context is making the sparsity and high dimensionality issues even worse.

1Taken from https://medium.com/@ageitgey/natural-language-processing-is-fun-9a0bff37854e
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Word embeddings address many issues presented above by bringing the high dimensional
sparse representation into a continuous vector space with a much lower dimension. It does
so using the context, i.e. the words surrounding the one concerned by the embedding. Many
techniques can be used, including Dimensionality Reduction, Co-occurrence Matrix [22] and
probabilistic models. Word embeddings were introduced in neural networks by Bengio et al.
at NIPS 2000 [3].

We choose to present a Neural Networks approach called Word2Vec [31]. Let’s say you
want to embed the tth word of a sentence wt. First, you specify a context c which is the
number of words before and after wt. You also fix the vector you want to have for the
embedding d. The neural network has only one hidden layer of size d. Then, there are two
approaches to choose from as presented in Figure 1.2. In the CBoW one, you input the c
words before and the c words after wt and you try to output wt. In the Skip-gram approach,
you feed wt and learn to output the c words before and the c words after wt. In general,
CBoW converges faster while Skip-gram finds better representations.

Fig. 1.2. Word2Vec. CBoW and Skip-gram approaches. The CBoW architecture predicts
the current word based on the context, and the Skip-gram predicts surrounding words given
the current word. Image taken from [31]

It’s worth noting that performing simple math operations on Word2Vec representa-
tions preserves some kind of logic. For example, it was observed that Word2Vec(’king’)
– Word2Vec(’man’) + Word2Vec(’woman’) ≈ Word2Vec(’queen’).
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Unfortunately, once the training completed, a word always has the same embedding
(representation), whatever the context it’s used in. We’ll see in Section 1.3.3 that this is not
the case for BERT’s embedding. Still, one can use different NLP processing techniques (e.g.
part-of-speech) to disambiguate the different meanings of a word.

Word and phrase embeddings, when used as the underlying input representation, have
shown to boost the performance in numerous NLP tasks.

1.2.2. Models

Fundamentally, language is a sequential type of data. Words are formed by a sequence
of letters, sentences by a sequence of words and documents by a sequence of sentences. The
task to accomplish and the language representation you choose influences the type of models
one can use. For example, BoW representations are of fixed length. This means that any
traditional machine learning model can be used. But, if you want to process sentences and
you are using word embeddings, the size of your input will vary. One way to manage this
problem is to use sequential models.

A type of DNN known as Recurrent Neural Networks (RNN) has been used to treat
sequential data. Because of vanishing or exploding gradient issues (the fact that the gradient
tends to 0 or goes to infinity as it flows back in the sequence), new models like LSTM [17]
and GRU [7] were created and alleviate these issues.

More recently, another type of DNN, transformers (introduced in Section 1.3.2), have
been extensively used to process sequential data even though transformers are not specifically
sequential models, they are more general, i.e. set of processing models.

1.3. Transformers for Language Modelling
1.3.1. Attention

Ever since its introduction, the attention mechanism [2] provided great results in mod-
elling sequential data. Informally, the attention mechanism equips neural networks with the
ability to focus on a subset of its features. Compared to recurrent models, it allows the mod-
elling of dependencies without regard to their distance in sequences. Also, it expands the
capabilities of neural networks by allowing the approximation of more complicated functions.

More specifically, in a traditional RNN encoder-decoder, for an input sentence represented
by the sequence of vectors x1, x2,...xT , the encoder builds hidden states h1, h2,...hT and the
decoder uses the same context vector c for all predictions it makes. Usually, the context
vector is the last hidden layer of the encoder (i.e. c = hT ). The addition of attention implies
different context vectors ci for each prediction. These context vectors are weighted sums
over all the hidden states of the encoder.
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Formally,

ci =
T∑
i=1

αijhj

where αij = softmax[a(si−1, hj)]j, si−1 is the hidden state of the decoder producing word
i− 1 and a is a feedforward neural network jointly trained with all the other components of
the system.

Fig. 1.3. On the left, transformer encoder as presented in [46]. Right side shows a BERT
model used for pair classification task as presented in [12]

1.3.2. Transformers

At first, attention was incorporated as an additional feature to existing models. In
contrast, transformers as presented in [46] are sequence to sequence models built on multi-
head self-attention. They have an encoder-decoder structure. In this work, we solely use the
encoder part, our goal being to find a dense representation of natural language text to make
the recommendation, not to output a sequence. The encoder part is composed of a stack of
layers. Each of these layers is composed of two different sub-layers. The first is a multi-head
self-attention mechanism, and the second is a simple, position wise fully connected feed-
forward network. Residual connection around each of the two sub-layers, followed by layer
normalization is also used as shown on the left of Figure 1.3 taken in [46].
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Self-attention is an attention mechanism relating different positions of a single sequence
in order to compute a representation of the sequence. Learning long-range dependencies
is a key challenge. An important factor affecting the ability to learn such dependencies
is the length of the paths forward and backward signals have to traverse in the network.
The shorter these paths between any combination of positions in the input and the output,
the easier it is to learn long-range dependencies, hence the benefits of self-attention over
recurrence.

Multi-head attention allows the model to jointly attend to information from different
representation subspaces at different positions. With a single attention head, averaging
inhibits this.

Since transformers contain no recurrence nor convolution, in order for the model to make
use of the order of the sequence, we must inject some information about the relative position
of the tokens in the sequence. To this end, they add positional encodings to the input
embeddings at the bottoms of the encoder stack.

Finally, it’s important to notice the huge speed benefit which comes from how transform-
ers lend themselves to parallelization.

1.3.3. BERT

The architecture of BERT [12] is a multi-layer Transformer encoder based on the original
implementation described in [46]. It is pre-trained on two unsupervised tasks in a bidirec-
tional manner to obtain an encoded representation of a sequence of words. The first task
is masked language modelling (MLM), where some tokens in the input sentence are masked
and the goal is to predict those masked tokens. The second task is next sentence prediction
(NSP) where two sentences are input and the goal is to predict if the second sentence follows
the first one. This pre-trained version can be trained further on another dataset and/or
another downstream task. This process is known as model fine-tuning.

To make BERT as versatile as possible on downstream tasks, the input representation is
able to unambiguously represent both a single sentence and a pair of sentences in one token
sequence, thanks to their embedding strategy. A lot can be said about their embedding
strategy. Let’s just say that it’s composed of three parts: the token embedding, the positional
embedding and a segment embedding. WordPiece [53] embedding strategy was used for
tokenization. The positional embedding is managed as in [46]. Segment embedding are
added to manage the fact that two sentences can be input in the model in conjunction with
the special token [SEP] put in between tokens of both sentences. Figure 1.4 taken in [12]
nicely shows this input representation strategy.

We should also mention another special token of importance, [CLS]. [CLS] is always the
first token in BERT. It is mainly used for classification tasks. From the last hidden layer of
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BERT, the [CLS] token is input in a fully connected layer which output is the size of the
number of labels in the classification task. A Tanh activation is used. During the pre-training
phase, it’s trained through the NSP task to predict whether or not the two sentences input
are following one another (output of size two). We will refer to it as the pooler output pool.

Fig. 1.4. BERT input representation strategy. Image taken from [12]

Because of this specific set-up, BERT will provide contextualized word embeddings that
will be different according to the sentence. For instance, whereas the vector for "running"
will have the same Word2Vec representation for both of its occurrences in the sentences "He
is running a company" and "He is running a marathon", they will differ if BERT is used.

Thanks to the Hugging Face group [51], pre-trained BERT models are easily available
and can be fine-tuned for a variety of tasks, including sentence classification and readily
available pooler output.

1.4. Recommender Systems
Recommender surface products in large online catalogues. Obvious examples of such

catalogues include Netflix and Amazon.
Typically, to achieve such recommendations, a representation of the user (their prefer-

ences) or the item (referred to as their profile) or both is built. These representations are
either based on the information available (content based) or past users’ behaviour (Collab-
orative Filtering (CF)). Furthermore, these past behaviours can be either explicit (a rating
provided by the user) or implicit (completed viewing of a movie or watched a preview, click
or not,...) or a combination of both. Content filtering suffers from a lack of access to the
information, need for domain knowledge and the difficulty to address some elusive or com-
plex data aspects. Collaborative filtering alleviates most of these problems but suffers from
cold start issues, that being the difficulty to represent new users or new items. Since there
are downsides to both techniques, hybrid methods are also used.
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1.4.1. Collaborative Filtering (CF)

Among various CF methods, one can find item-based neighbourhood [11] or Restricted
Boltzmann Machines methods [37]. Matrix Factorization (MF) techniques are also very
popular. They project both users and items into a shared vector space and estimate a user’s
preference on an item by the inner product between their vectors [21, 55].

Deep learning techniques tried to improve this conventional MF by estimating user prefer-
ences via Multi-Layer Perceptron (MLP) instead of inner product, as in Neural Collaborative
Filtering (NCF) [15].

Other examples, inspired by the Auto-Encoder framework include CDAE [52] and Au-
toRec [38] where only the user representation is found and from it, ratings for all items
are predicted. Note that this corresponds to the user-based AutoRec. It’s also possible to
build an item representation and predict ratings users would give to this item (item-based
AutoRec).

1.4.2. Hybrid Methods

Numerous deep learning based methods seek to improve the recommendation performance
by integrating the distributed item representations learned from auxiliary information into
CF models. For example, this information can be found in knowledge bases specific to
each domain and in forms as various as text [20], images [48] or acoustic features [44].
Moreover, propagating this information through graphs, either by convolution techniques
[43] or attention mechanism [49] has been shown to boost performance and in some models,
to explain recommendations [50].

1.4.3. Sequential Recommendation

Most methods above aren’t taking into account the temporality of recommendations.
Time effects can come from a variety of sources. Items may have a seasonality (boots),
lose relevance as they age (news) or simply depend on the user’s specific mood or need
at this moment (interactive setup). Moreover, as shown in [10], setting the problem as a
prediction of the next movie to watch instead of trying to predict one held out movie, as it
is often the case in non-sequential settings, provides better performance. In that sense, a
sequence of videos watched on YouTube has similarities with conversation patterns for movie
recommendations.

Adding temporal biases to MF techniques showed interesting results. Deep learning
techniques like RNN and its variants, Gated Recurrent Unit (GRU) [7] and Long Short-
Term Memory (LSTM) [17], are used to model user behaviour sequences [14, 24, 33]. The
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idea is to encode a user’s previous representation into a single vector and combine it with
the actual state.

More recently, transformers have been used to model sequences in a bidirectional way as
in BERT4Rec [41].

1.4.4. Conversational Recommendation

Traditional recommender systems work in a static way, estimating user preferences on
items from past interaction history. This has a fundamental intrinsic limitation: the system
is not able to capture a user’s current preferences, which may have shifted away from their
historical ones.

In conversational recommendation, the process becomes an interactive one through which
users converse with the recommender using natural language. In this manner, a conversa-
tional recommender system should be able to obtain or infer the dynamic preferences of
users from their utterances, which might consist of their direct or indirect descriptions of
their needs or of answers to questions posed by the recommender system in a mixed-initiative
setup. Such information can help the system to adjust its recommendation strategy effec-
tively and enhance its performance.

The rapid development of recommender systems and dialogue agents in recent years
provides an opportunity to help define how these two technologies can be combined. As we
see, conversational recommendation incorporates a lot of cutting edge technology all dealing
with technical difficulties, so the field has various approaches to tackle them.

Some of them take advantage of bandit approaches to balance the exploration and ex-
ploitation trade-offs for cold-start users in conversational recommendation scenarios [56].
Christakopoulou et al. [8] make the first step to adapt a typical bandit-based method like
Upper Confidence Bound (UCB) and Thompson Sampling to the conversational recommen-
dation scenario.

In a question driven approach, the estimation and utilization of a user’s preferences
towards attributes become a key research issue of asking an attribute-centric question. Zhang
et al. [57] use a multi-memory network to estimate user’s preferred attributes to consult the
user from their profile and product description in an e-commerce scenario.

Our line of work is oriented on Dialogue Understanding so we focus on how to understand
a user’s preferences and intentions from their utterances. Many ([18], [23], [26]) combine
this with Dialogue Generation, an important and complex field in itself. We decided to take
one step at a time. Listen before you talk.
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Chapitre 2

Recommendation From Dialogues

In this chapter, we will be focusing on dialogue understanding and the specific task of
providing recommendations based on dialogues.

Data are discussed first. Then we tackle the models we use. Our experimental setup
follows. Finally, we share and discuss our results.

Note that in order to limit duplication, this chapter uses several references to chapter 3,
which presents the original version of the paper we submitted to the Conference RecSys 2020.

2.1. Data
2.1.1. Conversational Recommendation Data

One of the many difficulties to do research in this domain is the lack of publicly available
data. This is why a lot of initiatives use machine generated text based on well-known rec-
ommendation datasets, like MovieLens. The Facebook Research team, as part of The bAbI
project, proposes The Movie Dialogue dataset as introduced in their paper [13]. Another ex-
ample of a synthetic language dataset is created in the paper Conversational Recommender
System [42], which mainly focuses on attributes of items.

To the best of our knowledge, the first dataset with human generated dialogues and
recommendation is ReDial, as introduced [25]. ReDial was used in the framework of KBDR
[6] in and provided state-of-the-art results on both recommendation and dialogue generation.

Because our work is specifically focused on the task of making recommendations based
on natural language, we solely used the ReDial Dataset. Machine generated text, as it’s done
in [13] for example, has a strong repetitive structure that doesn’t correspond to the goal we
are trying to achieve.

More recently, the dataset GoRecDial [19] is available through the Parlai framework from
Facebook. Due to time restrictions, we have to leave experiments on this dataset for future
work.



2.1.2. ReDial Dataset

The ReDial Dataset1 [25] was created to allow research at the intersection of goal-directed
dialogue systems (such as restaurant recommendation) and free-form (also called “chit-chat”)
dialogue systems.

In the dataset, users talk about which movies they like and which ones they do not like,
which ones they have seen or not etc. It contains a total of 11,348 conversations, 10,006 for
training and model selection and 1,342 for testing.

One person in the conversation is the recommendation seeker and the other is the recom-
mender. The movie seeker has to explain what kind of movie he/she likes and asks for movie
suggestions. The recommender tries to understand the seeker’s movie tastes and recom-
mends movies. All exchanges of information and recommendations are made using natural
language.

Each conversation contains roughly ten messages minimum and at least four different
movie mentions. In addition, every movie mention is tagged using the ‘@’ symbol, which
simplifies extraction (during data gathering, users were asked to tag movies after each con-
versation).

ReDial also comes with movie dialogue forms (ReDial’s forms). They include answers
from both seeker and recommenders to the following questions:

(1) Whether the movie was mentioned by the seeker or was a suggestion from the rec-
ommender (“suggested” label)

(2) Whether the seeker has seen the movie (“seen” label). One of: Seen it, Haven’t seen
it or Didn’t say

(3) Whether the seeker liked the movie or the suggestion (“liked” label). One of: Liked,
Didn’t like, Didn’t say.

Ideally, seeker and recommender have the same answers, but it is possible that their an-
swers do not coincide due to the carelessness of the participants or to the dialogue ambiguity.

The liked/disliked/did not say label is highly imbalanced, 94% of ratings correspond to
liked movies. This is standard for recommendation data [30], since people are naturally more
likely to talk about movies that they like and the recommender’s objective is to recommend
movies that the seeker is likely to appreciate.

An example of a conversation in ReDial is in Table 2.1.

2.1.3. Knowledge Base

Relevant knowledge bases have been useful in various machine learning setups [1, 28].

1available at https://redialdata.github.io/website/
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SEEKER: hi ! i ’m looking for an action filled movie similar
to jurassic park

RECOMMENDER: ok , have you seen jurassic world ?

SEEKER: yes i loved that movie as well . are there any good movies
without dinosaurs ?

RECOMMENDER: have you seen king kong ?

SEEKER: yes ! that was another great giant monster movie : )
RECOMMENDER: what about jaws & amp ; jaws 2 ? oldies but goodies

scary action ? suspense gives me the rumblies

SEEKER: i absolutely loved the first one . one of my favorite movies ever : )
honestly i can’t say i remember much about the second one .
jaws 3-d was quite funny and jaws : the revenge was just weird .
i do love suspense too ...

RECOMMENDER: i like suspense but sometimes i can barely handle it !
it gives me anxiety ! lol

SEEKER: that ’s understandable . as long as it ’s not too gory i don’t
generally have a problem with those things .

RECOMMENDER: well , it was great chatting with you ! have a great one !

SEEKER: you too ! thanks !

Table 2.1. Example of conversation in ReDial’s dataset

To build a knowledge base relevant to our work, we used information from the Internet
Movie Database (IMDb). We accessed the data using the IMDb python package2. For every
movie in ReDial, we match the title and the release date to retrieve IMDb_id, genres, actors,
directors and plot.

2.2. Modelling
In this section, following a brief introduction, we first present our baseline models, both

using extracted entities from text. We then move on to models using full text as input.

2https://pypi.org/project/IMDb/

37



Finally, we discuss the output of the models being the ratings for all the items at once or
only for one item.

As a summary, you can find a visual of all models studied in Figure 3.1 as well their
mathematical description in Table 3.1.

2.2.1. Overview

Traditional recommendation engines do not rely on inputs in the form of text (never mind
dialogue) to make recommendations. Likewise, both of our baseline models use historical
ratings of a user and try to predict their future ratings.

The Basic Encoder Decoder (BED) model simply takes the item’s rating as inputs. Note
that we use ReDial’s forms to get the ratings.

The Knowledge Base Augmented Encoder Decoder (KBAED) model augments the input
using the item’s attributes. To do so, we extract the attributes mentioned in the seeker’s
dialogue (see Section 2.3.1.2) and identify the items related to the extracted attributes (using
the knowledge base). The items identified this way are then augmented. Implementation
details are in Section 2.2.2.

The goal of conversational recommendation is to directly use all the information in the
text to make predictions. The four models we propose (BERT U, BERT MF Fixed, BERT
MF Learned and BERT UnV) all proceed this way. The first step is always to find a dialogue
embedding, which we use BERT for. In most cases, the dialogue embedding we use is the
one corresponding to the [CLS] token. We also ran some tests using the average of all the
tokens from the last layer of BERT (avg).

When the time comes and the model has to make predictions, there are two main options.
If the representation before the prediction corresponds to the user, creating a decoder

that will learn to predict the ratings of all items will make inference efficient. The major
downside of this method being its impossibility to predict a rating for new items. It’s the
approach we used for BED, KBAED and BERT U.

On the other hand, if the learned representation is a combination of both the user and
the item, you are left with predicting a single rating, the one this user would have for this
item. This is the approach you’ll find in the BERT MF Fixed, BERT MF Learned and
BERT UnV.

2.2.2. Baselines

Both models in this category, BED and KBAED are strongly inspired by AutoRec [38],
an autoencoder model for rating prediction, and adapted for sequential recommendations.
This implies that the ratings we use as input are only those mentioned in the conversation
up to the point were the next item will be recommended. The output is the predicted ratings
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for all items. The only observed items are the item that will be further recommended in the
sequence.

Formally, we consider a sequence of T events, indexed {1,...,T}, a set of users U , a set of
items V and a partially observed Rating Matrix a time t, R1:t ∈ R|U|×|V|, which includes all
ratings from timesteps 1 to t. To lighten the text, the superscript referring to timesteps will
be omitted when not significant.

Our loss function differs from the one proposed in AutoRec [38]. Since we only have 0
and 1 ratings, we used the binary cross entropy (BCE) to evaluate our error instead of Mean
Square Error (MSE). But, as in AutoRec, while training, we only update the weight related
to observed items. For this reason, we use the Masked Binary Cross Entropy (MBCE). Its
value is the same as BCE for observed items, 0 elsewhere.

Finally, we needed to manage the strong imbalance of ratings in ReDial: 94% of ratings
are 1 (liked) and only 6% are 0. This corresponds to our intuition that people tend to talk
about movies they like and want to see more than those they didn’t like. Without any
adjustment, the model could easily learn to predict 1 for all items. There are multiple ways
this can be handled. We used a softmax on the output, forcing the model to favour a small
subset of items. This technique was also used in [27] and has shown the best results in our
set-up.

Considering a user u at time t and its processed input x1:t
u (which depends on the model

used, details in each model’s section), we formally have that both models solve:

min
θ

∑
(x,y)∈D,t∈{1:T−1}

MBCE(yt+1 − softmax(Wd · Encoder(x1:t) + bd)) (2.2.1)

where θ includes Wd and bd (the trainable parameters of the Decoder) plus the trainable
parameters of the Encoder, yt+1 is the vector of item ratings at time t + 1 and D is the
dataset. Note the values of yt+1 of items that won’t be mentioned in the next sequence are
undetermined, but it’s not an issue since we use MBCE, they are masked in the objective.

The only difference between the two baseline models (BED and KBAED) is the
Encoder(·) part, i.e. the way we encode the user u at time t to find its latent representation.

2.2.2.1. Basic Encoder Decoder (BED) (Figure 3.1a top). For the BED model, we use
as input the ratings of the observed movies. As a reminder, during the ReDial data col-
lection, after all conversations, both users were asked to extract all ratings available in the
conversation (ReDial’s forms, see §2.1.2). Here, we use these extracted ratings.

Formally, following Equation 2.2.1, we have that user u at time t can be represented as
x1:t
u = R1:t

u = R1:t
u,1, ...,R1:t

u,|V| and:

Encoder(x1:t
u ) = ReLU(Wex1:t

u + be) (2.2.2)
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where We and be are the trainable parameters of the Encoder (included in θ of Equa-
tion 2.2.1). For the details of how we built R, see the Rating Matrix Section 2.3.1.1.

2.2.2.2. Knowledge Base Augmented Encoder Decoder (KBAED) (Figure 3.1a). With
KBAED, one goal is to alleviate the well known user cold start issue of collaborative filtering,
while keeping a similar structure. Hence, we added a content portion to the user’s input.
Content information typically comes from a knowledge base of items and their associated
attributes (for movies we use as attributes: genres, actors, directors, plots, etc.). In order
to consider attributes mentioned by the user u at time t, we introduce a vector of attributes
mentioned A1:t

u ∈ R1×|V| (see §2.3.1.2 for details on how we established attributes mentioned).
This vector is filled with zeros, except at index corresponding to items which attributes
include all attributes mentioned by user u at time t. For example, if at some point, attributes
mentioned by the seeker are “comedy” and “action”, all indices corresponding to movies
having attributes “comedy” and “action”(and maybe more) are set to 1.

Formally, if A1:t
u represents the set of attributes mentioned by user u at time t and Av the

set of attributes associated with item v in the knowledge base, we have that A1:t
uv = 1A1:t

u ⊆Av
,

for all v ∈ |V|, where 1 is the Indicator function.
Depending on the attributes mentioned by user u, the number of ones in this vector

can vary a lot. For example, there are many more comedies than there are western movies.
To mitigate the unbalanced quantity of ones in vector A1:t

u , we define the attribute input
vector a1:t

u =‖ top100(A1:t
u ∗ p) ‖, where ‖ · ‖ is the norm, the top100 function zeroes out

entries that correspond to movies outside of the top 100 most popular ones and p is a
popularity of movies vector defined by the sum of ratings from all users in ReDial, formely,
p = ∑

u∈U R1:T
u,1 , ...,R1:T

u,|V|.
Hence, for the KBAED model, at time t, we augment our user u input with αa1:t

u , yielding

x1:t
u = R1:t

u,1, ...,R1:t
u,|V| + αa1:t

u

where α ∈ θ is also vector of trainable parameters. The rest of the Encoder is as in
Equation 2.2.2.

2.2.3. Language Models for Recommendations from Dialogue

We now move our attention to our four main models. Each uses natural language input.
We introduce m to denote the text of a user or an item.

At time t, all the messages (m) exchanged, in text, between a seeker and a recommender
are m1:t

u . We include seekers and recommenders messages in this representation since it is
impossible for the model to know which movie the seeker referred to in a case like: “Yes, I
really liked that one.” Please see §2.3.1.3 for more all details regarding m1:t

u .
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For an item v, we use mv, which is not time dependant. However, we use different textual
representations of the movies so a superscript helps distinguish them. For example, an item
having a full representation f (using all the attributes in the knowledge base) is noted as
mf
v . The details are presented in §2.3.1.4,
One limitation of our baseline models (and BERT U, to be introduced) is that they

cannot recommend new (cold-start) items. As a remedy we introduce three models (BERT
MF Fixed, BERT MF Learned and BERT UnV) all based on Matrix Factorization (MF).
MF learns a representation for the user and one for the item and combines them to output
a scalar interpreted as their associated rating. Formally, it solves:

min
θ

∑
(u,v)∈D,t∈{1,...,T−1}

BCE(Rt+1
u,v − σ(Combine(m1:t

u ,mv))) (2.2.3)

where θ includes all trainable parameters and σ is the sigmoid function. The Combine
function, m1:t

u and mv vary from model to model and are specified in the sections introducing
each of them.

Here again, we need to manage the strong imbalance of ratings in ReDial: 94% of ratings
are 1 (liked) and only 6% are 0, but cannot use the softmax technique. We revert to the
common practice of negative sampling, i.e. impute ratings of 0 to a random subset of
unobserved items [15, 54]. We refer to this subset of ratings randomly set to 0 as random
ratings and the number of random ratings is R−. The random ratings are then included in
the rating matrix R.

2.2.3.1. BERT U (Figure 3.1b). BERT U is an interesting mix. It also solves Equa-
tion 2.2.1, as our baseline models, but uses text as input.

To manage the text, as it is commonly done, we leverage transfer learning from a pre-
trained BERT model and fine-tune it. Specifically, we add a fully connected layer on the
pooler output (pool, see BERT description §1.3.3) and train all the parameters with the
ReDial dataset. In our case, the fully connected layer goes from dimension 768 (token size in
BERT base) to 6924 (the number of movies mentioned in ReDial’s dataset). As with both
baselines models, the output is the predicted ratings for all items.

Hence, referring to Equation 2.2.1, our processed input x1:t
u of a user u at time t simply

becomes m1:t
u and

Encoder(x1:t
u ) = pool(BERT(m1:t

u )).

Finally, note that we can also instantiate a BERT V model which takes as input a natural
language representation of the items, for example mf

v , and tries to predict the ratings all
users would give this item.

2.2.3.2. BERT MF Fixed (Figure 3.1d). For BERT MF Fixed, we are inspired by MF
techniques, more specifically the neural collaborative filtering model [16]. We concatenate
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the BERT representations of a user and an item and input them to a neural network that
predicts their rating. Each representation is the pooler output of optimized (fixed) BERT U
and BERT V models.

Hence, following Equation 2.2.3:

Combine(m1:t
u ,mv) = MLP[pool(BERT U∗(m1:t

u )) : pool(BERT V∗(mv))].

.

2.2.3.3. BERT MF Learned. In BERT MF Learned, we go back to the basic approach
of matrix factorization where a simple dot product combination of a user and an item rep-
resentation is used to predict their rating. This forces all the learning to take place in the
representation learning. We use two BERT models, one for the users (BERT) and one for
the items (BERT’) and combine their output with a dot product.

Also, we use the average (avg) of the last hidden layer in BERT, not the pooler output.
Average yielded better empirical results (see Table 3.3) as suggested in the documentation
of the Hugging Face group [51].

Again, referring to Equation 2.2.3:

Combine(m1:t
u ,mv) = avg(BERT(m1:t

u )) · avg(BERT’(mv)).

2.2.3.4. BERT UnV. BERT UnV is inspired by the Next Sentence Prediction (NSP) task
presented in Figure 1.3, where two sentences are input in BERT and the model predicts if
they come one after the other. We adapt it so that both sentences input are now the natural
language representations of a user and item and the goal is to predict the rating associated
with them at time t. As in the NSP setup, a [SEP] token is added between the user and item
representation. Finally, an affine transformation is added on top of BERT’s pooler output
to predict the particular user-item rating.

Therefore, in combination with Equation 2.2.3, the model is

Combine(m1:t
u ,mv) = w[pool(BERT(m1:t

u : [SEP] : mv)] + b.

2.3. Experiment Set-up
We now discuss the specifics of how we tested our models using the ReDial dataset.

2.3.1. Data Pre-Processing

In all our experiments, it is important to keep in mind that the task is one of sequential
recommendation.

We split every conversation in ReDial into timesteps. We segmented the conversations
such that each time step ends by the recommender mentioning a movie (or more). Note that
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Table 2.2. Descriptive statistics of the sequential ReDial data.

Conversations Timesteps Target movies
Train 9,006 23,499 26,872
Valid 1,000 2,569 2,958
Test 1,342 3,177 3,646
Total 11,348 29,245 33,476

it is possible to have multiple new movies mentioned in the recommender’s next message.
Recall that we only considered movies for which we have a rating from the ReDial’s forms.
In particular, there are 6,924 movies discussed in ReDial but only 5,908 of these have at
least one associated rating (from movie forms).

In summary, each conversation has multiple timesteps. Each time step has at least one
target movie but can have more since the recommender can mention multiple movies in a
single message. Table 2.2 provides descriptive statistics of our resulting train/validation/test
splits.

An important thing to consider in regards to our performance is whether or not the rated
movie is in the training set. There are 5,281 movies that are discussed in the train set, either
as an input or a target and for which we have a rating, For the test set, 803 movies have
never been seen in the train set, 299 of which are targets. Note that it is also possible to
consider unseen movies like new movies release in real life, relating them to the cold-item
case.

Fig. 2.1. Test set statistics. The x-axis represents the number of movies mentioned in the
input. The y-axis represents the percentage of target movies that were never seen during
training.
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Furthermore, Figure 2.1 presents the percentage of target movies that were never seen
during training, as a function of the number of movies mentioned in the input. We see that
there is an important increase further down in the conversation when there are more movies
mentioned in the input. Our intuition is that at the beginning of a conversation with little
knowledge of the seeker’s preferences, the recommender suggests more popular, well-known
or general movies. As the recommender better understand what the seeker wants, they can
provide more targeted, specific, and so more unseen movies. This has important implications
for the performance of our models through time. Predicting movies unseen in the train set
is hard. This may explain the decrease in performance as the number of movies mentioned
in the input increases (see Figure 3.2b). We will further discuss this issue in Section 2.4.2.

2.3.1.1. Rating Matrix. We build our rating matrix R using the ratings available in the
ReDial’s forms (§2.1.2). Users were asked to rate the movies that were mentioned in the
conversation as liked (1), disliked (0) or don’t know (2).

We used only observed ratings to build R and so discarded the “don’t know.” This
causes a change in the number of movies mentioned for different models. For models based
on BERT, it is possible to use all movies mentioned, even if they were not rated in the
ReDial. But, for BED and KBAED, it is only possible to input movies with an explicit
rating.

To denote ratings at a particular time step t we use Rt. We use Rt1:t2 to denote all
observed ratings from t1 to t2, inclusively.

2.3.1.2. Attributes. For simplicity, when considering attributes mentioned by a user Au

we limited ourselves to the genre attribute, as it is the most common one in the ReDial
conversations. We used an exact string match to find them.

2.3.1.3. User text. For a user u at time t, what we define as its representation in natural
language, m1:t

u , is the concatenation of all the messages that were exchanged between the
seeker and the recommender up to time t.

BERT is pre-trained with different sentences having different segment tokens (recall Fig-
ure 1.4). We decided not to use these segment tokens as they were used only with one change
of speaker: one to start and another one that ends. Since our conversation can go on for
multiple rounds, we opted for a simple solution where we added “S::” before each message by
the seeker and “R::” in front of messages by the recommender. Experiments showed better
performance when these separators were added. An example is: “S:: Hello, I’m looking for
movie recommendations R:: Hey! Happy to help. What kind of movies do you like S:: I’m
really into action movies. I loved The Matrix R:: Who about superhero movies? S:: Not
that much into superheroes.”
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2.3.1.4. Item text. For an item v, we define its natural language representation mv as
information that we have about it in the knowledge base. The information is encoded as
a single string. We used three different subsets of information. First, the short one, ms

v,
contains the movie title, its genre and the three leading actors. The medium one mm

v is as
ms
v, but with all the actors. Finally, mf

v corresponds to all information in the movie available
in the knowledge base.

Using the movie “The Matrix” as an example, we would have the following text for its
medium representation: “The Matrix. Genres: [’Action’, ’Sci-Fi’]. Actors: [’Keanu Reeves’,
’Laurence Fishburne’, ’Carrie-Anne Moss’, ’Hugo Weaving’, ’Gloria Foster’, ’Joe Pantoliano’,
’Marcus Chong’, ’Julian Arahanga’, ’Matt Doran’, ’Belinda McClory’].”

2.3.2. Metrics

In all experiments, we used recall@k and NDCG@k. Both are standard for the evaluation
of recommender systems.

We used recall@k since it is used in other papers on conversational recommender systems
and thus and allows us to compare our work. Recall@k is the number of items retrieved
among all the items there are. Since we are in a setup where we only consider the next
movie recommended, we have that recall@k is 1 if the item recommended is in the first k
positions and 0 if not. We multiplied by 100 to get percentages.

The problem with recall@k is that it gives equal importance to a movie regardless of its
actual ranking (as long as it’s below k). In most interfaces items ranked closer to the top
have much more importance. for example, in an interface that would show ten movies at a
time, movies recommended in 27th position have barely any chance compared to those in the
top 10 spots.

Normalized discounted cumulative gain (NDCG) is a more complete metric. It is based
on the discounted cumulative gain (DCG) that not only accounts for the presence of items,
but also for their rank and the relevance of the item. The value is reduced logarithmically
proportional to the position of the item

NDCG@k = DCG@k
IDCG@k

where

DCG@k =
k∑
i=1

2reli − 1
log2(i+ 1)

and with k the max rank considered and reli the relevance of item at rank i. In our case, the
relevance is 1 for a good movie recommendation (the next one to be recommended), 0 if not.
The ideal discounted cumulative gain (IDCG) is just the DCG of the best possible solution
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(IDCG normalized DCG), which in our case corresponds to the next movie recommended to
be in the first position.

2.4. Results
Generally, our results are presented from two points of view: the overall performance

of the models and their performance through time. We then study the specific results in
regards of user cold start, items cold star, the different latent representations, negative
sampling implications and time considerations.

When considering the overall performance, we look at recall@1, recall@10, recall@50 and
ndcg@100. The scores for all our models can be found in Table 3.2 and general discussion
about it in Section 3.5.1.

To better understand the impact of time, Figure 3.2b presents all models using recall@50
scores (y-axis) in relation to the number of movies mentioned (x-axis). Note that KBRD
results were taken directly from [6]. To our knowledge, our setup is the same as theirs and
so the results are comparable.

2.4.1. User Cold Start

Figure 3.2b reports the performance of all models according to the number of movies
mentioned. To analyze the user cold start issue, we focus on 0 or 1 movie mention, as a
completely new user has no movie mentions.

For our baseline model BED, where only movie mentions are input, this corresponds to
the best guess of the model for no input (probably related to the popularity of the first
movies recommended in our database). KBAED can have no movie mention input, but
still have a genre input, which explains the relative gain over BED. Furthermore, models
using the complete text available through different implementations of BERT show improved
performances since they use much more information. For example, they can use all the
mentions of movie’s attributes, establish a connection between words like “comedy” and
“funny”, differentiate between “I like this” or “I never want to see this again”.

After two movie mentions, the information provided by full text usage in the user’s input
provides less differentiation with our baseline than at the beginning. This is to be expected
since at that stage the models benefit from collaborative filtering in the composition of their
latent representations.

2.4.2. Item Cold Start

To understand the impact of item cold start, we consider the ability of models to predict
movies that were never seen in the train set. (See Section 2.3.1 for a discussion of cold-start
movies.)
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First, we consider the prediction performance overall timesteps. In Table 3.2, the scores
in parentheses are the performance of the models only considering movies never mentioned
in training. We observe that the impact of unseen movies is more important on models
employing only user information as input (BED, KBAED, BERT U) with a score of 0 across
all metrics. There is no way for these models to know about new movies (even though
they might be similar to other movies and the users would like them). On the other hand,
models based on MF combine user and item information for prediction. Hence, a movie may
never have been seen in the train set, but its representation can still be inferred as long
as it has similar attributes to movies that were seen during training. Hence, these models
have some information about the unseen movies through their attributes and they can infer
some relations between movies and even recommend unseen ones. Table 3.2 shows better
performance for the MF models.

Now, consider the cold-start issue as it relates to time. Remember that the percentage
of movies that were never seen during training grows with time (Figure 2.1). This growing
ratio partly explains why the performance decreases over time (Figure 3.2b). Even if the
model has more information about the user in later timesteps, the task might become harder
because it has to predict more unseen movies.

Fig. 2.2. Test set statistics. The x-axis represents the number of movies mentioned in the
input. The y-axis represents the average number of time target movies were mentioned in
the ReDial dataset.

The rest of the performance decrease can be explained by the fact that in ReDial, movies
mentioned at beginning of conversations are, on average, more popular. But, as the con-
versation progresses recommendations are better informed and become more specific, hence
harder to predict in absolute terms. Figure 2.2 shows the decrease in popularity of target
movies as time goes by.
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2.4.3. MF: Pooler Output VS Last Hidden layer Average

We now compare the two different outputs from BERT that can be used as a latent
representation. For so, we stick to BERT MF Learned models, with 40 negative samples
(R− = 40). Results in Table 3.3 suggest that averaging the last hidden layer of BERT
outperforms the usage of the pooler output.

Note that the difference between BERT MF Learned results in Tables 3.2 and 3.3 is
caused by using if in the former and im in the latter, emphasizing the importance of using
all available item features.

2.4.4. Impact of Random Negative Samples

We now move our attention to the impact of the number of random negative samples.
Figure 3.2a shows the evolution of our metrics as a function of R− (x-axis). Since scale varies
by metric, we present four different graphs. For all, we used BERT UnV models.

We see a clear benefit in augmenting R− for Recall@1. The same goes for Recall@10 at
least until after 20 R−. The story differs for Recall@50 whose performance decreases after
20. NDCG@100, accounting strongly for top ranking predictions but also being affected by
last tier ranking, shows mixed results. Overall, it seems like having more negative examples
clarifies the top choices the model should make (steady increase for recall@1 and recall@10),
but we can imagine that this gain in specificity has a cost over popular choices, hence the
decrease for recall@50 and NDCG@100 for R− > 20.

To clarify this first impression, future work should include exploration with a greater
number of random negative samples, even though training time is seriously impacted, as we
will see in the following section.

2.4.5. Time Considerations

Fine-tuning a BERT model can be resource and time consuming. Table 3.4 displays
time and resource consumptions. For BERT MF and BERT UnV, training time depends
on the number of random ratings (RR). We present results for 20 RR. It is also important
to remember that BERT MF Learned needs to learn 2 BERT models, one for users, one
for items, which impacts memory consumption, forcing us to reduce batch size and increase
training time.

Prediction and ranking (for example, at test time) are also important to consider resource
wise since there are important variations between models. Let us consider making predictions
for |U| users and |V| items. Remembering that BERT is composed of thousands of feed-
forward networks and millions of dot products, we assume negligible time to go through our
MLP and executing dot products, focusing solely on the resources needed to go through
BERT once, denoted Br. For BERT U, a single pass of a user conversation provides rating
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predictions for all items, hence a cost of |U|Br. BERT MF Fixed first needs representation
of all users and all items from BERT models and are then combined through the MLP,
hence |U|Br + |V|Br. The same goes for BERT MF Learned since we assume MLP and dot
product time to be negligible. With BERT UnV, each user-item pair has to be processed
independently by BERT which results in a |U||V|Br complexity. These results appear in the
last column of Table 3.4.
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Chapitre 3

Paper 1 - Conversational Recommendation:
Listen Before You Talk

Authors: Nicholas Vachon, Christopher Pal, Laurent Charlin.
Submitted to Conference: The ACM Conference Series on Recommender Systems 2020.
Contribution: Implemented the models and ran the experiments. I wrote the original draft
and contributed to its polishing.

3.1. Introduction
Conversational recommendations encapsulate several machine learning sub-tasks includ-

ing preference elicitation, item recommendation, and language generation.
In this work, we focus on item recommendation as the core task for a conversational

recommender system and we study methods for the task of item (in our case, movie) recom-
mendation from conversation.

This task comes with challenges, for example, a user may express preferences about
items and their attributes (I enjoy action movies such as Wonder Woman). Further, the
dialogue component introduces challenges beyond standard settings like recommendations
from user reviews [32], since models have to understand dialogue dynamics. Fully interactive
dialogue systems allow models to also alter dialogue dynamics; however, here we focus on the
retrospective analysis of recorded dialogues to evaluate model performance in a controlled
manner.

To explore this setting, we use, adapt and extend state-of-the-art transformer based
neural language modelling techniques to the task of recommendation from dialogue. We
study the performance of different methods using the ReDial dataset [25], a conversational-
recommendation dataset for movies. We also make use of a knowledge base of movies and
measure their ability to improve performance for cold-start users, items, and/or both.



We find that pre-trained transformer models outperform non-transformer baselines even
if the baselines have access to the user preferences manually extracted from their utterances.

3.2. Transformers for Language Modeling
We provide a succinct review of transformer models focusing on the BERT model [12]

which we use in this paper. The architecture of BERT is a multi-layer transformer encoder
based on the original implementation described in [46]. It is pre-trained on two unsupervised
tasks to obtain an encoded representation of language. The first task is masked language
modelling (MLM), where the goal is to predict tokens that were masked from the input
sequence. The second task is next sentence prediction (NSP) where two sentences are input
and the goal is to predict if the second sentence follows the first one. Pre-trained BERTs
can then be used for downstream tasks, either in a feature-based manner or by fine-tuning,
fine-tuning showing better results.

In this work, we use two outputs from BERT. First, we used the [CLS] token, which is
always the first token in a BERT model. We refer to this output as the pooler output (pool).
Second, we averaged the tokens across all positions (avg) in the last hidden layer.

3.3. Recommendations from Dialogues
Problem definition. Our task is item recommendations for text-based conversational rec-
ommender systems. A conversation consists of a sequence of utterances (a user utterance
followed by a system utterance) indexed {1, . . . ,T}. The system can recommend an item i

after each user u’s utterance. The task then consists of predicting user preference or a rating
Rt+1
u at time t + 1 given a conversation c1:t

u up to utterance t. In a complete system, this
predicted rating would then be used downstream to compose the next utterance.
Data. We assume that we have access to the text of each conversation which we denote c1:T

u .
Each utterance is prefixed by a special token to denote the corresponding speaker’s role
(“S::” for the user seeking the recommendation and “R::” for the recommender).

We also assume access to a user’s preferences or rating vector R1:t
u ∈ R|V| extracted from

the dialogues up to utterance t (for example, labelled by the users at the end of the dialogue).
In practice, the data we study has binary labels (liked/disliked), but our models generalize
beyond that.

In addition, to model cold-start items, some models will use item features. We assume
access to a knowledge base of movies from which we can extract these features and encode
them as text. We denote the resulting string as if . Further, in conversations, users can also
express their preferences toward item attributes. Such preferences can be extracted. For
example, in our target dataset users often mention movie genres they like. We encode the
attributes a user mentions in a sparse vector Au ∈ R|V| (or A1:t

u to denote available attributes
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following utterances 1 through t) where non-zero entries correspond to movies that have all
attributes mentioned by user u. If Au represents the set of attributes mentioned by user u
and Ai the set of attributes associated with movie i in the knowledge base, we have that,
for i ∈ V , Aui = 1Au⊆Ai

, where 1 is the indicator function.

3.4. Modelling
We use and develop several models for the task of recommendations from dialogue ut-

terances. We first discuss models which assume that user preferences (ratings) have been
pre-extracted from the conversation and are available in a ratings-vector format (R1:t

u ). We
then introduce several variations of transformer models based on BERT that directly model
the dialogue text. We also consider methods for modelling movie features to address the
cold-start problem.

Fig. 3.1. We study different classes of models for item recommendation from conversa-
tion (c1:t

u ). (a) Encoder-decoders that rely on ratings R1:t
u and attributes a1:t

u having been
extracted from the conversation. (b–e) Transformer-based models that directly model the
(text) conversation. Models (b) and (c) are instances of BERT trained for recommendations.
Models (d) and (e) are inspired by matrix factorization approaches and use two BERTs to
learn a user and an item embedding. For (d) we reuse the BERTs trained using (b) (and
denote them BERT U* and I*).

Visuals of all models contributed in this paper.
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3.4.1. Baselines

Our Basic Encoder Decoder BED (Figure 3.1a top) is an instance of an auto-encoder for
recommendations [38]. It uses the vector of observed ratings R1:t

u as input. Ratings must
then be extracted from the dialogue utterances upstream. BED serves as a baseline method
with which to compare models of conversation (§3.4.2). Ratings Rt+1

u are computed as
softmax(W2 ·ReLU(W1R1:t

u +b1)+b2) with parameters θ := W{1,2},b{1,2}. The parameters
are optimized by minimizing a masked binary cross-entropy (MBCE) on the training data.
It is masked since only the output dimensions that are observed are used in the loss. (It is
not standard to combine a softmax with a BCE loss, but we found that it performs best in
our study and is also supported by other studies [27].)

We also examine a Knowledge-base augmented BED model (KBAED) (Figure 3.1a). In
conversational recommender systems, users can express preferences toward attributes of
movies. For example, the dataset we study in this paper contains many conversations in
which movie genres (e.g., comedy, drama) are used to steer recommendations. KBAED ex-
tends BED to model such attribute preferences. The assumption we make is that a user
expressing a preference for one or more attributes is expressing a positive preference toward
movies that contains these attributes.

The input of KBAED consists of a vector of available attributes A1:t
u —which encodes the

preferences of user u for item attributes—summed with the ratings vector R1:t
u . For genres, we

found that limiting the attribute preferences to the top movies (we use 100) and weighting the
level of the preference using movie popularity was beneficial: a1:t

u =‖ topn(A1:t
u ∗p) ‖, where

topn returns its arguments for the top n values and zero otherwise. We estimate a movie’s
popularity using its number of (training) ratings p = ∑

u∈U [Ru,1, . . . ,Ru,|V|]. Hence, Rt+1
u =

softmax(W2 · ReLU(W1(R1:t
u + αa1:t

u ) + b1) + b2) with parameters θ := {W{1,2},b{1,2},α}.
KBAED trains with the MBCE loss.

3.4.2. Language Models for Recommendations from Dialogue

Here we introduce a set of recommendation models based on BERT. Compared to the
above baselines these models have the ability to make recommendations directly from the
text of the conversations c1:t

u . We explore different methods for transforming representations
inferred through BERT into recommendations. We present two methods inspired by matrix-
factorization (MF) modelling [36] that learn a separate user and item representation which
is then combined into a rating (prediction). We also explore methods for modelling the item
attributes if in the conversation (in addition to the conversation).

BERT U (Figure 3.1b) is a vanilla BERT which models the text in the conversation. Its
pooler output (pool) is used as input to an affine transformation followed by a softmax over
all movies Rt+1

u = softmax(W(pool(BERT(c1:t
u )) + b) with parameters θ := W,b and BERT
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parameters. Training is done with MBCE. In a similar fashion, we can also instanciate
BERT I which takes as input if and predicts ratings for all users.

One limitation of BERT U is that it cannot recommend new (cold-start) items. As a
remedy we can use BERT to also model item attributes. The input of BERT UnI (Fig-
ure 3.1c) consists of the conversation c1:t

u concatenated with the item features if separated
by a special token ([SEP]). An affine transformation is added on top of BERT’s pooler output
to predict the particular user-item rating Rt+1

ui = σ(w · pool(BERT(c1:t
u : [SEP ] : if )) + b)

with parameters θ := W,b and BERT parameters all learned with BCE loss.
BERT MF Fixed (Figure 3.1d) is inspired by the neural collaborative filtering model [16].

We concatenate the BERT representations of a user and an item and input them to
a neural network that predicts their rating. Each representation is the pooler output
of optimized BERT U and BERT I models. The predicted rating Rt+1

ui is given by
σ(MLP([pool(BERT U∗), pool(BERT I∗)])) where learning optimizes the MLP parameters
only, using BCE loss.

BERT MF Learned (Figure 3.1e) is similar to BERT MF Fixed, but 1) it combines the
user and item representations through a dot product, and 2) both BERTs are trained using
the BCE loss. Preliminary results showed benefits in using the average of the last hidden layer
(avg instead of pool) to obtain representations: Rt+1

ui = σ(avg(BERT(c1:t
u ))·avg(BERT’(if ))).

3.5. Study
Dataset. We use the ReDial dataset which contains 11,348 conversations between a user
seeking a recommendation and a user acting as a recommendation provider [25].

Binary ratings have been extracted at the utterance level. We split the conversations
80/10/10 in train/valid/test. We further segment conversations into multiple instances, one
for each user utterance that was followed by a recommendation from the recommender.
There are 6,924 movies (items) discussed in ReDial. Our test set has 299 target movies that
were never seen in the training set. These will be considered as new movies for studying item
cold-start and we use a movie knowledge base from IMDB1 to create movie item embeddings.
Experimental Details: When considering the attributes A1:t

u mentioned by a user we limit
ourselves to the genre attribute, as it is the most common one in ReDial’s conversations.
We matched them using a list of 24 popular genres from IMDB. 2 We studied three different
subsets of item information: if corresponds to a text representation of the full knowledge
base we collected about item i, im is a shorter version with only title, genres, and actors,
and is, is the same as im but with only up to three (leading) actors.

1we accessed the data using the IMDb python package https://pypi.org/project/IMDb/
2“Popular TV Series by Genre” from https://www.imdb.com/feature/genre/?ref_=nv_ch_gr
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In Table 3.1 we report the exact attributes that were selected (based on cross-validation
using ndcg@100 for early stopping) in each model.

Model Model Description

BED softmax(W2f(W1R1:t
u + b1) + b2)

KBAED softmax(W2f(W1(R1:t
u + αa1:t

u ) + b1) + b2)

BERT U softmax(W(pool(BERT(c1:t
u )) + b)

BERT MF Fixed σ(MLP(BERT U∗ : BERT I∗))

BERT MF Learned σ(avg(BERT(c1:t
u ))) · avg(BERT’(if ))

BERT UnI (R−20) σ(w(pool(BERT(is : [SEP] :c1:t
u ))) + b

BERT UnI (R−40) σ(w(pool(BERT(is : [SEP] :c1:t
u ))) + b

Table 3.1. Models description. W,b,α are trainable parameters as those in BERT models,
f is the ReLU activation function, σ is sigmoid, · is dot product, : concatenation and ∗ stands
for optimized models.

We need to manage the rating imbalance in ReDial: 94% of ratings are 1s (liked) and
only 6% are 0s.

For models predicting a vector of ratings (BED, KBAED, and BERT U), it helps to use
a softmax output forcing the model to keep a fixed probability mass over all items [27]. For
the others, we used the common practice of imputing zero ratings to a random subset of
unobserved items [15, 54]. We denote the number of random ratings as R−.

Metrics. We use two standard metrics in our experiments: Recall@k and NDCG@k. Both
evaluate the quality of the top-k ranked items by a model. Recall considers that items ranked
below rank k have uniform importance, while NDCG exponentially reduces the importance
of lower-ranked items.

3.5.1. Results

We first report overall results and then focus on different facets of the tasks and the
models. Table 3.2 reports the average test recommendation performance of all models. In
addition to the model we propose, we also compare it with KBRD [6]. KBRD extracts
entities from the dialogue and learns their embeddings using an external knowledge graph.
Predictions are obtained through attention on these learned entities. The results of the Re-
Dial model (the model accompanying the ReDial paper[25]) and KBRD were taken directly
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from [6]. To our knowledge, our setup is the same as theirs and the results comparable (up
to a random seed).

The best recommendations are obtained by BERT UnI (only outperformed by BERT U
in Recall@1). The fact that it infers a joint user-item distribution (as opposed to MF models
that infer them independently) may explain this result. Note that we used is for BERT UnI
for computational reasons since its input sequences are longer (concatenation of user and
item text).

Still, BERT UnI comes with a larger computational cost at prediction time since it needs
to do a BERT forward pass for all combinations of users and items (Table 3.4). BERT MF
provides good performance at a reasonable cost since inferred user and item embeddings can
be reused across predictions.

Model Recall@1 Recall@10 Recall@50 NDCG@100

ReDial model[25] 2.3 12.9 28.7 -

KBRD[6] 3.0 16.3 33.8 -

BED 2.96 13.26 30.02 0.1262

KBAED 3.05 15.33 34.16 0.1402

BERT U 3.13 (0) 15.36 (0) 34.25 (0) 0.1365 (0)

BERT MF Fixed 2.93 (0) 13.33 (0) 32.54 (1.06) 0.1300 (0.0078)

BERT MF Learned 3.08 (0) 15.16 (0) 36.10 (0.71) 0.1432 (0.0048)

BERT UnI (R−20) 2.03 (0.24) 15.28 (4.33) 40.59 (9.38) 0.1471 (0.0320)

BERT UnI (R−40) 3.02 (0.24) 16.54 (4.33) 38.67 (6.73) 0.1511 (0.0231)

Table 3.2. Models recommendation test results on ReDial. Scores in parentheses corre-
spond to recommendation score on new items (we kept as targets only movies never seen in
training). Results for ReDial Model and KBRD copied from [6].

3.5.1.1. Sequential and User Cold Start Evaluation. In conversational recommendations,
the system gathers information throughout the dialogue. Figure 3.2b presents a temporal
view of the experiment reported in Table 3.2. We group conversations in terms of how many
movie preferences were available before making the recommendation. We note that overall
the relative performance of models are similar in Table 3.2 with BERT UnI outperforming
all approaches.
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Fig. 3.2. (a) Impact in variation of R− on four metrics. (b) Recall@50 for all models,
KBRD[6] is the previous state of the art.

The trend that performance degrades over time is surprising. However, in ReDial, movies
mentioned at beginning of conversations are, on average, very popular. But, as the conver-
sation progresses recommendations are better informed and become more specific and hence
harder to predict in absolute terms.

At the start of the conversation, we can evaluate the performance of models in the user
cold-start setting. Without surprise, BED’s performance is the lowest since it only uses
previous ratings. The results also show that KBRD is unable to use the little information
available.

The performance of KBAED is also low early in the conversation, but since it can use
a genre input when available, it outperforms BED. Further, models using the complete text
available through different implementations of BERT show even better performances as they
can use all available information (e.g. all available attributes of movies and their associated
sentiments) even including the nuances expressible in language.

We notice that two-movie mentions provide enough data for the encoder-encoder mod-
els (BED and KBAED) to match the performance of most text-based ones except for the
performance of BERT UnI which is only matched by the end of the conversation by KBRD.

3.5.1.2. Item Cold Start. To analyze the performance of the models on cold-start items,
we consider the ability of models to predict movies that were never seen in the train set,
as discussed above. These results are presented next to the full results in Table 3.2 (in
parentheses). We see that BERT U cannot rank unseen movies well, which is to be expected
since it does not learn an explicit item representation.
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Results suggest that BERT UnI would provide the best prediction for unseen items given
its joint representation of users and items. Further, the performance of BERT UnI on new
items contributes to its overall superior performance (Table 3.2).

3.5.1.3. Hyper-Parameter Exploration: Pooler Output VS Last Hidden Layer Average.
Table 3.3 reports a comparison between two methods for obtaining representations from
BERT: the pooler and averaging its last hidden layer. We compare these two strategies
using BERT MF Learned models with 40 R− and im. Results suggest that averaging the
last hidden layer provides a better representation, as suggested in the documentation of the
Hugging Face group [51]. Note that the difference between BERT MF Learned results in
Tables 3.2 and 3.3 is caused by using if in the former and im in the latter, emphasizing the
importance of using all available item features.

Model Output R@1 R@10 R@50 NDCG@100

BERT MF Learned Pooler 0.88 6.66 15.52 0.0679

BERT MF Learned Average 2.10 12.02 28.79 0.1176

Table 3.3. BERT MF Learned output - Pooler VS Learned.

Model Train (hours) Prediction

BERT U 19.2 |U|Br

BERT MF Fixed 38.7 |U|Br + |V|Br

BERT MF Learned 172 |U|Br + |V|Br

BERT UnI 44 |U||V|Br

Table 3.4. Training time (20 R−) and time complexity of BERT models to obtain predic-
tions for |U | users and |V | items, where Br is the complexity of the forward-pass of BERT.

3.5.1.4. Hyper-Parameter Exploration: Impact of Random Ratings (R−). We now explore
the impact of the number of items that we randomly set to 0 for training. Figure 3.2a shows
the performance of BERT UnI as a function of R− (x-axis).

We see a monotonic benefit in augmenting R− for Recall@1 and Recall@10. However, the
performance of Recall@50 actually diminishes when increasing R− above 20. NDCG@100
which gives more importance to the top ranks shows mixed results. Overall, it seems like
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having more counter-examples (higher R−) is beneficial to ensure the quality of short rec-
ommendation lists. This intuition is confirmed by the best results for Recall@1 obtained by
BERT U, a model that uses softmax, which is similar to setting all unmentioned items at 0
(i.e. huge R−).

3.5.1.5. Computational resources for training and serving recommendations. Even BERT
fine-tuning uses significant computing resources. In Table 3.4 we report training time and
resource consumption of the BERT-based models. For BERT MF and BERT UnI, the
time depends on the number of Random Ratings (R−). We present results for 20 R−.
BERT MF Learned requires learning two separate BERT models at the same time, one for
users, one for items, which uses more memory. It forces us to reduce batch size and increases
wall-clock training time.

We report the time complexity of making predictions for |U| user and |V| items in the last
column of Table 3.4. Recall that BERT is composed of thousands of feed-forward networks
and millions of dot products and so the extra time to computer the MLP and a small number
of extra dot products is negligible. We denote the time complexity of a forward pass through
BERT as Br. For BERT U, a single forward-pass gives an embedding that can be decoded to
obtain predicted ratings for all items, hence it costs |U|Br to compute. For both BERT MF
models, all users and all items have to go through their respective BERT once to get their
representations and their combination is obtained through a dot product or MLP (both
negligible time), hence |U|Br + |V|Br. For BERT UnI, since each combination of user and
item has to go through BERT, we have |U||V|Br.

3.6. Conclusion and Future Work
We studied the task of recommendations from dialogue, a core component of conver-

sational recommender systems. We show that new advances in language modelling provide
strong performance in several settings including user and item cold-start at different training
and serving costs.
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Chapitre 4

Conclusion and Future Work

4.1. Conclusion
Our study shows that recent improvements in language modelling can benefit conver-

sational recommender systems by improving recommendations made to users, especially in
cold-start settings. In particular, we show that pre-trained transformer models outperform
baselines even if the baselines have access to the user preferences manually extracted from
their utterances.

According to our results, there isn’t one go-to model to use in all cases. Here are some
of the things one might want to consider when deciding which model is better suited for its
situation:

• New users. If new users are important in your situation, all BERT models are showing
stronger performances. Since very low information about the user is available at
these stages, it’s better to use everything you have. Language may contain a lot of
information that you don’t want to turn your eyes of
• New items. In a situation where no new items are added or are important, BERT U
offers great results, especially for the first few ranks, plus it is super efficient. On
the other end, if new items are important to you, BERT MF methods or BERT
UnV should be preferred. For short dialogues, depending on the computing power
available, go from BERT MF Fixed, BERT MF Learned to BERT UnV. As dialogues
start to grow, all BERT models become problematic, BERT UnV being the first one
affected. See Future Work (section 4.2) for potential solutions
• Number of recommendations. When focusing solely on the first few items recom-
mended (e.g. less than 10), we haven’t found a limit to the amount of negative
sampling, so don’t be afraid to try above 40. On the other end, when considering
wider ranges of recommendations (e.g. 50), negative sampling seems better when
limited to around 20.



4.2. Future Work
Some aspects of our research could benefit from more exploration including which latent

representation to use (pooler output VS average of last hidden layer) and the number of
negative samples (R−). These might lead to further performance improvements. Another
obvious next step would be to explore our proposed approaches on other datasets to see
how our actual observations hold and possibly gain information on further directions to
investigate.

The length of the dialogues has an important impact on the models presented in this re-
search. Because we limited ourselves to the ReDial dataset and that the dialogues it contains
are relatively small, this topic is not covered by our research. But, finding user representa-
tion in real life would rapidly outgrow the capacity of BERT (only 512 tokens). Therefore,
future work should include such considerations. A typical approach is to divide the text into
subsets of approximately 512 tokens. At training time, all subsets have the same target.
For prediction, an average of ratings over all the subsets could be used. Depending on the
situation, aggregating subset’s results through a maximum can provide better performances.
This approach might lead to a very confused BERT since a sample (a subset of the full con-
versation) might not contain information about the recommendation to make. Complexity
grows even more when the same user returns for a completely different type of need. What
training target do you use then? Another approach could be to use a latent representation of
the user and combine it with the representation of the last conversation to get an actualized
user representation. Then, new questions arise as to how to obtain these latent representa-
tions, if they are fixed (easier to train) or part of an end-to-end model, and how to combine
them.

Finally, all our work in this paper focuses on the receptive part of a conversation: “Listen
before you talk”. Future work necessarily includes the end-to-end dialogue system. A lot of
challenges remain there. First, we could choose the intent, for example, whether or not the
text output will include a recommendation, a clarification question or a combination of both.
We could also compare retrieval versus generative dialogue models. Finally, the evaluation
of this type of work is also trickier, especially when the time comes to evaluate language
generation [5, 40, 34].
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